1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/mm_inline.h>
5 #include <linux/hugetlb.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #ifdef CONFIG_MEM_PURGEABLE
24 #include <linux/mm_purgeable.h>
25 #endif
26
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31
32 #define SEQ_PUT_DEC(str, val) \
33 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)34 void task_mem(struct seq_file *m, struct mm_struct *mm)
35 {
36 unsigned long text, lib, swap, anon, file, shmem;
37 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
38 #ifdef CONFIG_MEM_PURGEABLE
39 unsigned long nr_purg_sum = 0, nr_purg_pin = 0;
40
41 mm_purg_pages_info(mm, &nr_purg_sum, &nr_purg_pin);
42 #endif
43
44 anon = get_mm_counter(mm, MM_ANONPAGES);
45 file = get_mm_counter(mm, MM_FILEPAGES);
46 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
47
48 /*
49 * Note: to minimize their overhead, mm maintains hiwater_vm and
50 * hiwater_rss only when about to *lower* total_vm or rss. Any
51 * collector of these hiwater stats must therefore get total_vm
52 * and rss too, which will usually be the higher. Barriers? not
53 * worth the effort, such snapshots can always be inconsistent.
54 */
55 hiwater_vm = total_vm = mm->total_vm;
56 if (hiwater_vm < mm->hiwater_vm)
57 hiwater_vm = mm->hiwater_vm;
58 hiwater_rss = total_rss = anon + file + shmem;
59 if (hiwater_rss < mm->hiwater_rss)
60 hiwater_rss = mm->hiwater_rss;
61
62 /* split executable areas between text and lib */
63 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
64 text = min(text, mm->exec_vm << PAGE_SHIFT);
65 lib = (mm->exec_vm << PAGE_SHIFT) - text;
66
67 swap = get_mm_counter(mm, MM_SWAPENTS);
68 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
69 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
70 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
71 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
72 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
73 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
74 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
75 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
76 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
77 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
78 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
79 seq_put_decimal_ull_width(m,
80 " kB\nVmExe:\t", text >> 10, 8);
81 seq_put_decimal_ull_width(m,
82 " kB\nVmLib:\t", lib >> 10, 8);
83 seq_put_decimal_ull_width(m,
84 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
85 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
86 #ifdef CONFIG_MEM_PURGEABLE
87 SEQ_PUT_DEC(" kB\nPurgSum:\t", nr_purg_sum);
88 SEQ_PUT_DEC(" kB\nPurgPin:\t", nr_purg_pin);
89 #endif
90 seq_puts(m, " kB\n");
91 hugetlb_report_usage(m, mm);
92 }
93 #undef SEQ_PUT_DEC
94
task_vsize(struct mm_struct * mm)95 unsigned long task_vsize(struct mm_struct *mm)
96 {
97 return PAGE_SIZE * mm->total_vm;
98 }
99
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)100 unsigned long task_statm(struct mm_struct *mm,
101 unsigned long *shared, unsigned long *text,
102 unsigned long *data, unsigned long *resident)
103 {
104 *shared = get_mm_counter(mm, MM_FILEPAGES) +
105 get_mm_counter(mm, MM_SHMEMPAGES);
106 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
107 >> PAGE_SHIFT;
108 *data = mm->data_vm + mm->stack_vm;
109 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
110 return mm->total_vm;
111 }
112
113 #ifdef CONFIG_NUMA
114 /*
115 * Save get_task_policy() for show_numa_map().
116 */
hold_task_mempolicy(struct proc_maps_private * priv)117 static void hold_task_mempolicy(struct proc_maps_private *priv)
118 {
119 struct task_struct *task = priv->task;
120
121 task_lock(task);
122 priv->task_mempolicy = get_task_policy(task);
123 mpol_get(priv->task_mempolicy);
124 task_unlock(task);
125 }
release_task_mempolicy(struct proc_maps_private * priv)126 static void release_task_mempolicy(struct proc_maps_private *priv)
127 {
128 mpol_put(priv->task_mempolicy);
129 }
130 #else
hold_task_mempolicy(struct proc_maps_private * priv)131 static void hold_task_mempolicy(struct proc_maps_private *priv)
132 {
133 }
release_task_mempolicy(struct proc_maps_private * priv)134 static void release_task_mempolicy(struct proc_maps_private *priv)
135 {
136 }
137 #endif
138
m_start(struct seq_file * m,loff_t * ppos)139 static void *m_start(struct seq_file *m, loff_t *ppos)
140 {
141 struct proc_maps_private *priv = m->private;
142 unsigned long last_addr = *ppos;
143 struct mm_struct *mm;
144 struct vm_area_struct *vma;
145
146 /* See m_next(). Zero at the start or after lseek. */
147 if (last_addr == -1UL)
148 return NULL;
149
150 priv->task = get_proc_task(priv->inode);
151 if (!priv->task)
152 return ERR_PTR(-ESRCH);
153
154 mm = priv->mm;
155 if (!mm || !mmget_not_zero(mm)) {
156 put_task_struct(priv->task);
157 priv->task = NULL;
158 return NULL;
159 }
160
161 if (mmap_read_lock_killable(mm)) {
162 mmput(mm);
163 put_task_struct(priv->task);
164 priv->task = NULL;
165 return ERR_PTR(-EINTR);
166 }
167
168 hold_task_mempolicy(priv);
169 priv->tail_vma = get_gate_vma(mm);
170
171 vma = find_vma(mm, last_addr);
172 if (vma)
173 return vma;
174
175 return priv->tail_vma;
176 }
177
m_next(struct seq_file * m,void * v,loff_t * ppos)178 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
179 {
180 struct proc_maps_private *priv = m->private;
181 struct vm_area_struct *next, *vma = v;
182
183 if (vma == priv->tail_vma)
184 next = NULL;
185 else if (vma->vm_next)
186 next = vma->vm_next;
187 else
188 next = priv->tail_vma;
189
190 *ppos = next ? next->vm_start : -1UL;
191
192 return next;
193 }
194
m_stop(struct seq_file * m,void * v)195 static void m_stop(struct seq_file *m, void *v)
196 {
197 struct proc_maps_private *priv = m->private;
198 struct mm_struct *mm = priv->mm;
199
200 if (!priv->task)
201 return;
202
203 release_task_mempolicy(priv);
204 mmap_read_unlock(mm);
205 mmput(mm);
206 put_task_struct(priv->task);
207 priv->task = NULL;
208 }
209
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)210 static int proc_maps_open(struct inode *inode, struct file *file,
211 const struct seq_operations *ops, int psize)
212 {
213 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
214
215 if (!priv)
216 return -ENOMEM;
217
218 priv->inode = inode;
219 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
220 if (IS_ERR(priv->mm)) {
221 int err = PTR_ERR(priv->mm);
222
223 seq_release_private(inode, file);
224 return err;
225 }
226
227 return 0;
228 }
229
proc_map_release(struct inode * inode,struct file * file)230 static int proc_map_release(struct inode *inode, struct file *file)
231 {
232 struct seq_file *seq = file->private_data;
233 struct proc_maps_private *priv = seq->private;
234
235 if (priv->mm)
236 mmdrop(priv->mm);
237
238 return seq_release_private(inode, file);
239 }
240
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)241 static int do_maps_open(struct inode *inode, struct file *file,
242 const struct seq_operations *ops)
243 {
244 return proc_maps_open(inode, file, ops,
245 sizeof(struct proc_maps_private));
246 }
247
248 /*
249 * Indicate if the VMA is a stack for the given task; for
250 * /proc/PID/maps that is the stack of the main task.
251 */
is_stack(struct vm_area_struct * vma)252 static int is_stack(struct vm_area_struct *vma)
253 {
254 /*
255 * We make no effort to guess what a given thread considers to be
256 * its "stack". It's not even well-defined for programs written
257 * languages like Go.
258 */
259 return vma->vm_start <= vma->vm_mm->start_stack &&
260 vma->vm_end >= vma->vm_mm->start_stack;
261 }
262
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)263 static void show_vma_header_prefix(struct seq_file *m,
264 unsigned long start, unsigned long end,
265 vm_flags_t flags, unsigned long long pgoff,
266 dev_t dev, unsigned long ino)
267 {
268 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
269 seq_put_hex_ll(m, NULL, start, 8);
270 seq_put_hex_ll(m, "-", end, 8);
271 seq_putc(m, ' ');
272 seq_putc(m, flags & VM_READ ? 'r' : '-');
273 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
274 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
275 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
276 seq_put_hex_ll(m, " ", pgoff, 8);
277 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
278 seq_put_hex_ll(m, ":", MINOR(dev), 2);
279 seq_put_decimal_ull(m, " ", ino);
280 seq_putc(m, ' ');
281 }
282
283 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)284 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
285 {
286 struct mm_struct *mm = vma->vm_mm;
287 struct file *file = vma->vm_file;
288 vm_flags_t flags = vma->vm_flags;
289 unsigned long ino = 0;
290 unsigned long long pgoff = 0;
291 unsigned long start, end;
292 dev_t dev = 0;
293 const char *name = NULL;
294
295 if (file) {
296 struct inode *inode = file_inode(vma->vm_file);
297 dev = inode->i_sb->s_dev;
298 ino = inode->i_ino;
299 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
300 }
301
302 start = vma->vm_start;
303 end = vma->vm_end;
304 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
305
306 /*
307 * Print the dentry name for named mappings, and a
308 * special [heap] marker for the heap:
309 */
310 if (file) {
311 seq_pad(m, ' ');
312 seq_file_path(m, file, "\n");
313 goto done;
314 }
315
316 if (vma->vm_ops && vma->vm_ops->name) {
317 name = vma->vm_ops->name(vma);
318 if (name)
319 goto done;
320 }
321
322 name = arch_vma_name(vma);
323 if (!name) {
324 struct anon_vma_name *anon_name;
325
326 if (!mm) {
327 name = "[vdso]";
328 goto done;
329 }
330
331 if (vma->vm_start <= mm->brk &&
332 vma->vm_end >= mm->start_brk) {
333 name = "[heap]";
334 goto done;
335 }
336
337 if (is_stack(vma)) {
338 name = "[stack]";
339 goto done;
340 }
341
342 anon_name = anon_vma_name(vma);
343 if (anon_name) {
344 seq_pad(m, ' ');
345 seq_printf(m, "[anon:%s]", anon_name->name);
346 }
347 }
348
349 done:
350 if (name) {
351 seq_pad(m, ' ');
352 seq_puts(m, name);
353 }
354 seq_putc(m, '\n');
355 }
356
show_map(struct seq_file * m,void * v)357 static int show_map(struct seq_file *m, void *v)
358 {
359 show_map_vma(m, v);
360 return 0;
361 }
362
363 static const struct seq_operations proc_pid_maps_op = {
364 .start = m_start,
365 .next = m_next,
366 .stop = m_stop,
367 .show = show_map
368 };
369
pid_maps_open(struct inode * inode,struct file * file)370 static int pid_maps_open(struct inode *inode, struct file *file)
371 {
372 return do_maps_open(inode, file, &proc_pid_maps_op);
373 }
374
375 const struct file_operations proc_pid_maps_operations = {
376 .open = pid_maps_open,
377 .read = seq_read,
378 .llseek = seq_lseek,
379 .release = proc_map_release,
380 };
381
382 /*
383 * Proportional Set Size(PSS): my share of RSS.
384 *
385 * PSS of a process is the count of pages it has in memory, where each
386 * page is divided by the number of processes sharing it. So if a
387 * process has 1000 pages all to itself, and 1000 shared with one other
388 * process, its PSS will be 1500.
389 *
390 * To keep (accumulated) division errors low, we adopt a 64bit
391 * fixed-point pss counter to minimize division errors. So (pss >>
392 * PSS_SHIFT) would be the real byte count.
393 *
394 * A shift of 12 before division means (assuming 4K page size):
395 * - 1M 3-user-pages add up to 8KB errors;
396 * - supports mapcount up to 2^24, or 16M;
397 * - supports PSS up to 2^52 bytes, or 4PB.
398 */
399 #define PSS_SHIFT 12
400
401 #ifdef CONFIG_PROC_PAGE_MONITOR
402 struct mem_size_stats {
403 unsigned long resident;
404 unsigned long shared_clean;
405 unsigned long shared_dirty;
406 unsigned long private_clean;
407 unsigned long private_dirty;
408 unsigned long referenced;
409 unsigned long anonymous;
410 unsigned long lazyfree;
411 unsigned long anonymous_thp;
412 unsigned long shmem_thp;
413 unsigned long file_thp;
414 unsigned long swap;
415 unsigned long shared_hugetlb;
416 unsigned long private_hugetlb;
417 u64 pss;
418 u64 pss_anon;
419 u64 pss_file;
420 u64 pss_shmem;
421 u64 pss_locked;
422 u64 swap_pss;
423 bool check_shmem_swap;
424 };
425
smaps_page_accumulate(struct mem_size_stats * mss,struct page * page,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)426 static void smaps_page_accumulate(struct mem_size_stats *mss,
427 struct page *page, unsigned long size, unsigned long pss,
428 bool dirty, bool locked, bool private)
429 {
430 mss->pss += pss;
431
432 if (PageAnon(page))
433 mss->pss_anon += pss;
434 else if (PageSwapBacked(page))
435 mss->pss_shmem += pss;
436 else
437 mss->pss_file += pss;
438
439 if (locked)
440 mss->pss_locked += pss;
441
442 if (dirty || PageDirty(page)) {
443 if (private)
444 mss->private_dirty += size;
445 else
446 mss->shared_dirty += size;
447 } else {
448 if (private)
449 mss->private_clean += size;
450 else
451 mss->shared_clean += size;
452 }
453 }
454
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool migration)455 static void smaps_account(struct mem_size_stats *mss, struct page *page,
456 bool compound, bool young, bool dirty, bool locked,
457 bool migration)
458 {
459 int i, nr = compound ? compound_nr(page) : 1;
460 unsigned long size = nr * PAGE_SIZE;
461
462 /*
463 * First accumulate quantities that depend only on |size| and the type
464 * of the compound page.
465 */
466 if (PageAnon(page)) {
467 mss->anonymous += size;
468 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
469 mss->lazyfree += size;
470 }
471
472 mss->resident += size;
473 /* Accumulate the size in pages that have been accessed. */
474 if (young || page_is_young(page) || PageReferenced(page))
475 mss->referenced += size;
476
477 /*
478 * Then accumulate quantities that may depend on sharing, or that may
479 * differ page-by-page.
480 *
481 * page_count(page) == 1 guarantees the page is mapped exactly once.
482 * If any subpage of the compound page mapped with PTE it would elevate
483 * page_count().
484 *
485 * The page_mapcount() is called to get a snapshot of the mapcount.
486 * Without holding the page lock this snapshot can be slightly wrong as
487 * we cannot always read the mapcount atomically. It is not safe to
488 * call page_mapcount() even with PTL held if the page is not mapped,
489 * especially for migration entries. Treat regular migration entries
490 * as mapcount == 1.
491 */
492 if ((page_count(page) == 1) || migration) {
493 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
494 locked, true);
495 return;
496 }
497 for (i = 0; i < nr; i++, page++) {
498 int mapcount = page_mapcount(page);
499 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
500 if (mapcount >= 2)
501 pss /= mapcount;
502 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
503 mapcount < 2);
504 }
505 }
506
507 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)508 static int smaps_pte_hole(unsigned long addr, unsigned long end,
509 __always_unused int depth, struct mm_walk *walk)
510 {
511 struct mem_size_stats *mss = walk->private;
512
513 mss->swap += shmem_partial_swap_usage(
514 walk->vma->vm_file->f_mapping, addr, end);
515
516 return 0;
517 }
518 #else
519 #define smaps_pte_hole NULL
520 #endif /* CONFIG_SHMEM */
521
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)522 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
523 struct mm_walk *walk)
524 {
525 struct mem_size_stats *mss = walk->private;
526 struct vm_area_struct *vma = walk->vma;
527 bool locked = !!(vma->vm_flags & VM_LOCKED);
528 struct page *page = NULL;
529 bool migration = false, young = false, dirty = false;
530
531 if (pte_present(*pte)) {
532 page = vm_normal_page(vma, addr, *pte);
533 young = pte_young(*pte);
534 dirty = pte_dirty(*pte);
535 } else if (is_swap_pte(*pte)) {
536 swp_entry_t swpent = pte_to_swp_entry(*pte);
537
538 if (!non_swap_entry(swpent)) {
539 int mapcount;
540
541 mss->swap += PAGE_SIZE;
542 mapcount = swp_swapcount(swpent);
543 if (mapcount >= 2) {
544 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
545
546 do_div(pss_delta, mapcount);
547 mss->swap_pss += pss_delta;
548 } else {
549 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
550 }
551 } else if (is_migration_entry(swpent)) {
552 migration = true;
553 page = migration_entry_to_page(swpent);
554 } else if (is_device_private_entry(swpent))
555 page = device_private_entry_to_page(swpent);
556 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
557 && pte_none(*pte))) {
558 page = xa_load(&vma->vm_file->f_mapping->i_pages,
559 linear_page_index(vma, addr));
560 if (xa_is_value(page))
561 mss->swap += PAGE_SIZE;
562 return;
563 }
564
565 if (!page)
566 return;
567
568 smaps_account(mss, page, false, young, dirty, locked, migration);
569 }
570
571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)572 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
573 struct mm_walk *walk)
574 {
575 struct mem_size_stats *mss = walk->private;
576 struct vm_area_struct *vma = walk->vma;
577 bool locked = !!(vma->vm_flags & VM_LOCKED);
578 struct page *page = NULL;
579 bool migration = false;
580
581 if (pmd_present(*pmd)) {
582 /* FOLL_DUMP will return -EFAULT on huge zero page */
583 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
584 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
585 swp_entry_t entry = pmd_to_swp_entry(*pmd);
586
587 if (is_migration_entry(entry)) {
588 migration = true;
589 page = migration_entry_to_page(entry);
590 }
591 }
592 if (IS_ERR_OR_NULL(page))
593 return;
594 if (PageAnon(page))
595 mss->anonymous_thp += HPAGE_PMD_SIZE;
596 else if (PageSwapBacked(page))
597 mss->shmem_thp += HPAGE_PMD_SIZE;
598 else if (is_zone_device_page(page))
599 /* pass */;
600 else
601 mss->file_thp += HPAGE_PMD_SIZE;
602
603 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
604 locked, migration);
605 }
606 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)607 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
608 struct mm_walk *walk)
609 {
610 }
611 #endif
612
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)613 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
614 struct mm_walk *walk)
615 {
616 struct vm_area_struct *vma = walk->vma;
617 pte_t *pte;
618 spinlock_t *ptl;
619
620 ptl = pmd_trans_huge_lock(pmd, vma);
621 if (ptl) {
622 smaps_pmd_entry(pmd, addr, walk);
623 spin_unlock(ptl);
624 goto out;
625 }
626
627 if (pmd_trans_unstable(pmd))
628 goto out;
629 /*
630 * The mmap_lock held all the way back in m_start() is what
631 * keeps khugepaged out of here and from collapsing things
632 * in here.
633 */
634 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
635 for (; addr != end; pte++, addr += PAGE_SIZE)
636 smaps_pte_entry(pte, addr, walk);
637 pte_unmap_unlock(pte - 1, ptl);
638 out:
639 cond_resched();
640 return 0;
641 }
642
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)643 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
644 {
645 /*
646 * Don't forget to update Documentation/ on changes.
647 */
648 static const char mnemonics[BITS_PER_LONG][2] = {
649 /*
650 * In case if we meet a flag we don't know about.
651 */
652 [0 ... (BITS_PER_LONG-1)] = "??",
653
654 [ilog2(VM_READ)] = "rd",
655 [ilog2(VM_WRITE)] = "wr",
656 [ilog2(VM_EXEC)] = "ex",
657 [ilog2(VM_SHARED)] = "sh",
658 [ilog2(VM_MAYREAD)] = "mr",
659 [ilog2(VM_MAYWRITE)] = "mw",
660 [ilog2(VM_MAYEXEC)] = "me",
661 [ilog2(VM_MAYSHARE)] = "ms",
662 [ilog2(VM_GROWSDOWN)] = "gd",
663 [ilog2(VM_PFNMAP)] = "pf",
664 [ilog2(VM_DENYWRITE)] = "dw",
665 [ilog2(VM_LOCKED)] = "lo",
666 [ilog2(VM_IO)] = "io",
667 [ilog2(VM_SEQ_READ)] = "sr",
668 [ilog2(VM_RAND_READ)] = "rr",
669 [ilog2(VM_DONTCOPY)] = "dc",
670 [ilog2(VM_DONTEXPAND)] = "de",
671 [ilog2(VM_ACCOUNT)] = "ac",
672 [ilog2(VM_NORESERVE)] = "nr",
673 [ilog2(VM_HUGETLB)] = "ht",
674 [ilog2(VM_SYNC)] = "sf",
675 [ilog2(VM_ARCH_1)] = "ar",
676 [ilog2(VM_WIPEONFORK)] = "wf",
677 [ilog2(VM_DONTDUMP)] = "dd",
678 #ifdef CONFIG_ARM64_BTI
679 [ilog2(VM_ARM64_BTI)] = "bt",
680 #endif
681 #ifdef CONFIG_MEM_SOFT_DIRTY
682 [ilog2(VM_SOFTDIRTY)] = "sd",
683 #endif
684 [ilog2(VM_MIXEDMAP)] = "mm",
685 [ilog2(VM_HUGEPAGE)] = "hg",
686 [ilog2(VM_NOHUGEPAGE)] = "nh",
687 [ilog2(VM_MERGEABLE)] = "mg",
688 [ilog2(VM_UFFD_MISSING)]= "um",
689 [ilog2(VM_UFFD_WP)] = "uw",
690 #ifdef CONFIG_ARM64_MTE
691 [ilog2(VM_MTE)] = "mt",
692 [ilog2(VM_MTE_ALLOWED)] = "",
693 #endif
694 #ifdef CONFIG_ARCH_HAS_PKEYS
695 /* These come out via ProtectionKey: */
696 [ilog2(VM_PKEY_BIT0)] = "",
697 [ilog2(VM_PKEY_BIT1)] = "",
698 [ilog2(VM_PKEY_BIT2)] = "",
699 [ilog2(VM_PKEY_BIT3)] = "",
700 #if VM_PKEY_BIT4
701 [ilog2(VM_PKEY_BIT4)] = "",
702 #endif
703 #endif /* CONFIG_ARCH_HAS_PKEYS */
704 };
705 size_t i;
706
707 seq_puts(m, "VmFlags: ");
708 for (i = 0; i < BITS_PER_LONG; i++) {
709 if (!mnemonics[i][0])
710 continue;
711 if (vma->vm_flags & (1UL << i)) {
712 seq_putc(m, mnemonics[i][0]);
713 seq_putc(m, mnemonics[i][1]);
714 seq_putc(m, ' ');
715 }
716 }
717 seq_putc(m, '\n');
718 }
719
720 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)721 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
722 unsigned long addr, unsigned long end,
723 struct mm_walk *walk)
724 {
725 struct mem_size_stats *mss = walk->private;
726 struct vm_area_struct *vma = walk->vma;
727 struct page *page = NULL;
728
729 if (pte_present(*pte)) {
730 page = vm_normal_page(vma, addr, *pte);
731 } else if (is_swap_pte(*pte)) {
732 swp_entry_t swpent = pte_to_swp_entry(*pte);
733
734 if (is_migration_entry(swpent))
735 page = migration_entry_to_page(swpent);
736 else if (is_device_private_entry(swpent))
737 page = device_private_entry_to_page(swpent);
738 }
739 if (page) {
740 int mapcount = page_mapcount(page);
741
742 if (mapcount >= 2)
743 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
744 else
745 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
746 }
747 return 0;
748 }
749 #else
750 #define smaps_hugetlb_range NULL
751 #endif /* HUGETLB_PAGE */
752
753 static const struct mm_walk_ops smaps_walk_ops = {
754 .pmd_entry = smaps_pte_range,
755 .hugetlb_entry = smaps_hugetlb_range,
756 };
757
758 static const struct mm_walk_ops smaps_shmem_walk_ops = {
759 .pmd_entry = smaps_pte_range,
760 .hugetlb_entry = smaps_hugetlb_range,
761 .pte_hole = smaps_pte_hole,
762 };
763
764 /*
765 * Gather mem stats from @vma with the indicated beginning
766 * address @start, and keep them in @mss.
767 *
768 * Use vm_start of @vma as the beginning address if @start is 0.
769 */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)770 static void smap_gather_stats(struct vm_area_struct *vma,
771 struct mem_size_stats *mss, unsigned long start)
772 {
773 const struct mm_walk_ops *ops = &smaps_walk_ops;
774
775 /* Invalid start */
776 if (start >= vma->vm_end)
777 return;
778
779 #ifdef CONFIG_SHMEM
780 /* In case of smaps_rollup, reset the value from previous vma */
781 mss->check_shmem_swap = false;
782 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
783 /*
784 * For shared or readonly shmem mappings we know that all
785 * swapped out pages belong to the shmem object, and we can
786 * obtain the swap value much more efficiently. For private
787 * writable mappings, we might have COW pages that are
788 * not affected by the parent swapped out pages of the shmem
789 * object, so we have to distinguish them during the page walk.
790 * Unless we know that the shmem object (or the part mapped by
791 * our VMA) has no swapped out pages at all.
792 */
793 unsigned long shmem_swapped = shmem_swap_usage(vma);
794
795 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
796 !(vma->vm_flags & VM_WRITE))) {
797 mss->swap += shmem_swapped;
798 } else {
799 mss->check_shmem_swap = true;
800 ops = &smaps_shmem_walk_ops;
801 }
802 }
803 #endif
804 /* mmap_lock is held in m_start */
805 if (!start)
806 walk_page_vma(vma, ops, mss);
807 else
808 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
809 }
810
811 #define SEQ_PUT_DEC(str, val) \
812 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
813
814 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)815 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
816 bool rollup_mode)
817 {
818 SEQ_PUT_DEC("Rss: ", mss->resident);
819 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
820 if (rollup_mode) {
821 /*
822 * These are meaningful only for smaps_rollup, otherwise two of
823 * them are zero, and the other one is the same as Pss.
824 */
825 SEQ_PUT_DEC(" kB\nPss_Anon: ",
826 mss->pss_anon >> PSS_SHIFT);
827 SEQ_PUT_DEC(" kB\nPss_File: ",
828 mss->pss_file >> PSS_SHIFT);
829 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
830 mss->pss_shmem >> PSS_SHIFT);
831 }
832 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
833 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
834 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
835 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
836 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
837 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
838 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
839 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
840 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
841 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
842 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
843 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
844 mss->private_hugetlb >> 10, 7);
845 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
846 SEQ_PUT_DEC(" kB\nSwapPss: ",
847 mss->swap_pss >> PSS_SHIFT);
848 SEQ_PUT_DEC(" kB\nLocked: ",
849 mss->pss_locked >> PSS_SHIFT);
850 seq_puts(m, " kB\n");
851 }
852
show_smap(struct seq_file * m,void * v)853 static int show_smap(struct seq_file *m, void *v)
854 {
855 struct vm_area_struct *vma = v;
856 struct mem_size_stats mss;
857
858 memset(&mss, 0, sizeof(mss));
859
860 smap_gather_stats(vma, &mss, 0);
861
862 show_map_vma(m, vma);
863
864 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
865 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
866 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
867 seq_puts(m, " kB\n");
868
869 __show_smap(m, &mss, false);
870
871 seq_printf(m, "THPeligible: %d\n",
872 transparent_hugepage_active(vma));
873
874 if (arch_pkeys_enabled())
875 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
876 show_smap_vma_flags(m, vma);
877
878 return 0;
879 }
880
show_smaps_rollup(struct seq_file * m,void * v)881 static int show_smaps_rollup(struct seq_file *m, void *v)
882 {
883 struct proc_maps_private *priv = m->private;
884 struct mem_size_stats mss;
885 struct mm_struct *mm;
886 struct vm_area_struct *vma;
887 unsigned long last_vma_end = 0;
888 int ret = 0;
889
890 priv->task = get_proc_task(priv->inode);
891 if (!priv->task)
892 return -ESRCH;
893
894 mm = priv->mm;
895 if (!mm || !mmget_not_zero(mm)) {
896 ret = -ESRCH;
897 goto out_put_task;
898 }
899
900 memset(&mss, 0, sizeof(mss));
901
902 ret = mmap_read_lock_killable(mm);
903 if (ret)
904 goto out_put_mm;
905
906 hold_task_mempolicy(priv);
907
908 for (vma = priv->mm->mmap; vma;) {
909 smap_gather_stats(vma, &mss, 0);
910 last_vma_end = vma->vm_end;
911
912 /*
913 * Release mmap_lock temporarily if someone wants to
914 * access it for write request.
915 */
916 if (mmap_lock_is_contended(mm)) {
917 mmap_read_unlock(mm);
918 ret = mmap_read_lock_killable(mm);
919 if (ret) {
920 release_task_mempolicy(priv);
921 goto out_put_mm;
922 }
923
924 /*
925 * After dropping the lock, there are four cases to
926 * consider. See the following example for explanation.
927 *
928 * +------+------+-----------+
929 * | VMA1 | VMA2 | VMA3 |
930 * +------+------+-----------+
931 * | | | |
932 * 4k 8k 16k 400k
933 *
934 * Suppose we drop the lock after reading VMA2 due to
935 * contention, then we get:
936 *
937 * last_vma_end = 16k
938 *
939 * 1) VMA2 is freed, but VMA3 exists:
940 *
941 * find_vma(mm, 16k - 1) will return VMA3.
942 * In this case, just continue from VMA3.
943 *
944 * 2) VMA2 still exists:
945 *
946 * find_vma(mm, 16k - 1) will return VMA2.
947 * Iterate the loop like the original one.
948 *
949 * 3) No more VMAs can be found:
950 *
951 * find_vma(mm, 16k - 1) will return NULL.
952 * No more things to do, just break.
953 *
954 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
955 *
956 * find_vma(mm, 16k - 1) will return VMA' whose range
957 * contains last_vma_end.
958 * Iterate VMA' from last_vma_end.
959 */
960 vma = find_vma(mm, last_vma_end - 1);
961 /* Case 3 above */
962 if (!vma)
963 break;
964
965 /* Case 1 above */
966 if (vma->vm_start >= last_vma_end)
967 continue;
968
969 /* Case 4 above */
970 if (vma->vm_end > last_vma_end)
971 smap_gather_stats(vma, &mss, last_vma_end);
972 }
973 /* Case 2 above */
974 vma = vma->vm_next;
975 }
976
977 show_vma_header_prefix(m, priv->mm->mmap ? priv->mm->mmap->vm_start : 0,
978 last_vma_end, 0, 0, 0, 0);
979 seq_pad(m, ' ');
980 seq_puts(m, "[rollup]\n");
981
982 __show_smap(m, &mss, true);
983
984 release_task_mempolicy(priv);
985 mmap_read_unlock(mm);
986
987 out_put_mm:
988 mmput(mm);
989 out_put_task:
990 put_task_struct(priv->task);
991 priv->task = NULL;
992
993 return ret;
994 }
995 #undef SEQ_PUT_DEC
996
997 static const struct seq_operations proc_pid_smaps_op = {
998 .start = m_start,
999 .next = m_next,
1000 .stop = m_stop,
1001 .show = show_smap
1002 };
1003
pid_smaps_open(struct inode * inode,struct file * file)1004 static int pid_smaps_open(struct inode *inode, struct file *file)
1005 {
1006 return do_maps_open(inode, file, &proc_pid_smaps_op);
1007 }
1008
smaps_rollup_open(struct inode * inode,struct file * file)1009 static int smaps_rollup_open(struct inode *inode, struct file *file)
1010 {
1011 int ret;
1012 struct proc_maps_private *priv;
1013
1014 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1015 if (!priv)
1016 return -ENOMEM;
1017
1018 ret = single_open(file, show_smaps_rollup, priv);
1019 if (ret)
1020 goto out_free;
1021
1022 priv->inode = inode;
1023 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1024 if (IS_ERR(priv->mm)) {
1025 ret = PTR_ERR(priv->mm);
1026
1027 single_release(inode, file);
1028 goto out_free;
1029 }
1030
1031 return 0;
1032
1033 out_free:
1034 kfree(priv);
1035 return ret;
1036 }
1037
smaps_rollup_release(struct inode * inode,struct file * file)1038 static int smaps_rollup_release(struct inode *inode, struct file *file)
1039 {
1040 struct seq_file *seq = file->private_data;
1041 struct proc_maps_private *priv = seq->private;
1042
1043 if (priv->mm)
1044 mmdrop(priv->mm);
1045
1046 kfree(priv);
1047 return single_release(inode, file);
1048 }
1049
1050 const struct file_operations proc_pid_smaps_operations = {
1051 .open = pid_smaps_open,
1052 .read = seq_read,
1053 .llseek = seq_lseek,
1054 .release = proc_map_release,
1055 };
1056
1057 const struct file_operations proc_pid_smaps_rollup_operations = {
1058 .open = smaps_rollup_open,
1059 .read = seq_read,
1060 .llseek = seq_lseek,
1061 .release = smaps_rollup_release,
1062 };
1063
1064 enum clear_refs_types {
1065 CLEAR_REFS_ALL = 1,
1066 CLEAR_REFS_ANON,
1067 CLEAR_REFS_MAPPED,
1068 CLEAR_REFS_SOFT_DIRTY,
1069 CLEAR_REFS_MM_HIWATER_RSS,
1070 CLEAR_REFS_LAST,
1071 };
1072
1073 struct clear_refs_private {
1074 enum clear_refs_types type;
1075 };
1076
1077 #ifdef CONFIG_MEM_SOFT_DIRTY
1078
1079 #define is_cow_mapping(flags) (((flags) & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE)
1080
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1081 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1082 {
1083 struct page *page;
1084
1085 if (!pte_write(pte))
1086 return false;
1087 if (!is_cow_mapping(vma->vm_flags))
1088 return false;
1089 if (likely(!atomic_read(&vma->vm_mm->has_pinned)))
1090 return false;
1091 page = vm_normal_page(vma, addr, pte);
1092 if (!page)
1093 return false;
1094 return page_maybe_dma_pinned(page);
1095 }
1096
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1097 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1098 unsigned long addr, pte_t *pte)
1099 {
1100 /*
1101 * The soft-dirty tracker uses #PF-s to catch writes
1102 * to pages, so write-protect the pte as well. See the
1103 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1104 * of how soft-dirty works.
1105 */
1106 pte_t ptent = *pte;
1107
1108 if (pte_present(ptent)) {
1109 pte_t old_pte;
1110
1111 if (pte_is_pinned(vma, addr, ptent))
1112 return;
1113 old_pte = ptep_modify_prot_start(vma, addr, pte);
1114 ptent = pte_wrprotect(old_pte);
1115 ptent = pte_clear_soft_dirty(ptent);
1116 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1117 } else if (is_swap_pte(ptent)) {
1118 ptent = pte_swp_clear_soft_dirty(ptent);
1119 set_pte_at(vma->vm_mm, addr, pte, ptent);
1120 }
1121 }
1122 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1123 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1124 unsigned long addr, pte_t *pte)
1125 {
1126 }
1127 #endif
1128
1129 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1130 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1131 unsigned long addr, pmd_t *pmdp)
1132 {
1133 pmd_t old, pmd = *pmdp;
1134
1135 if (pmd_present(pmd)) {
1136 /* See comment in change_huge_pmd() */
1137 old = pmdp_invalidate(vma, addr, pmdp);
1138 if (pmd_dirty(old))
1139 pmd = pmd_mkdirty(pmd);
1140 if (pmd_young(old))
1141 pmd = pmd_mkyoung(pmd);
1142
1143 pmd = pmd_wrprotect(pmd);
1144 pmd = pmd_clear_soft_dirty(pmd);
1145
1146 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1147 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1148 pmd = pmd_swp_clear_soft_dirty(pmd);
1149 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1150 }
1151 }
1152 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1153 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1154 unsigned long addr, pmd_t *pmdp)
1155 {
1156 }
1157 #endif
1158
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1159 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1160 unsigned long end, struct mm_walk *walk)
1161 {
1162 struct clear_refs_private *cp = walk->private;
1163 struct vm_area_struct *vma = walk->vma;
1164 pte_t *pte, ptent;
1165 spinlock_t *ptl;
1166 struct page *page;
1167
1168 ptl = pmd_trans_huge_lock(pmd, vma);
1169 if (ptl) {
1170 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1171 clear_soft_dirty_pmd(vma, addr, pmd);
1172 goto out;
1173 }
1174
1175 if (!pmd_present(*pmd))
1176 goto out;
1177
1178 page = pmd_page(*pmd);
1179
1180 /* Clear accessed and referenced bits. */
1181 pmdp_test_and_clear_young(vma, addr, pmd);
1182 test_and_clear_page_young(page);
1183 ClearPageReferenced(page);
1184 out:
1185 spin_unlock(ptl);
1186 return 0;
1187 }
1188
1189 if (pmd_trans_unstable(pmd))
1190 return 0;
1191
1192 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1193 for (; addr != end; pte++, addr += PAGE_SIZE) {
1194 ptent = *pte;
1195
1196 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1197 clear_soft_dirty(vma, addr, pte);
1198 continue;
1199 }
1200
1201 if (!pte_present(ptent))
1202 continue;
1203
1204 page = vm_normal_page(vma, addr, ptent);
1205 if (!page)
1206 continue;
1207
1208 /* Clear accessed and referenced bits. */
1209 ptep_test_and_clear_young(vma, addr, pte);
1210 test_and_clear_page_young(page);
1211 ClearPageReferenced(page);
1212 }
1213 pte_unmap_unlock(pte - 1, ptl);
1214 cond_resched();
1215 return 0;
1216 }
1217
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1218 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1219 struct mm_walk *walk)
1220 {
1221 struct clear_refs_private *cp = walk->private;
1222 struct vm_area_struct *vma = walk->vma;
1223
1224 if (vma->vm_flags & VM_PFNMAP)
1225 return 1;
1226
1227 /*
1228 * Writing 1 to /proc/pid/clear_refs affects all pages.
1229 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1230 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1231 * Writing 4 to /proc/pid/clear_refs affects all pages.
1232 */
1233 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1234 return 1;
1235 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1236 return 1;
1237 return 0;
1238 }
1239
1240 static const struct mm_walk_ops clear_refs_walk_ops = {
1241 .pmd_entry = clear_refs_pte_range,
1242 .test_walk = clear_refs_test_walk,
1243 };
1244
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1245 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1246 size_t count, loff_t *ppos)
1247 {
1248 struct task_struct *task;
1249 char buffer[PROC_NUMBUF];
1250 struct mm_struct *mm;
1251 struct vm_area_struct *vma;
1252 enum clear_refs_types type;
1253 int itype;
1254 int rv;
1255
1256 memset(buffer, 0, sizeof(buffer));
1257 if (count > sizeof(buffer) - 1)
1258 count = sizeof(buffer) - 1;
1259 if (copy_from_user(buffer, buf, count))
1260 return -EFAULT;
1261 rv = kstrtoint(strstrip(buffer), 10, &itype);
1262 if (rv < 0)
1263 return rv;
1264 type = (enum clear_refs_types)itype;
1265 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1266 return -EINVAL;
1267
1268 task = get_proc_task(file_inode(file));
1269 if (!task)
1270 return -ESRCH;
1271 mm = get_task_mm(task);
1272 if (mm) {
1273 struct mmu_notifier_range range;
1274 struct clear_refs_private cp = {
1275 .type = type,
1276 };
1277
1278 if (mmap_write_lock_killable(mm)) {
1279 count = -EINTR;
1280 goto out_mm;
1281 }
1282 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1283 /*
1284 * Writing 5 to /proc/pid/clear_refs resets the peak
1285 * resident set size to this mm's current rss value.
1286 */
1287 reset_mm_hiwater_rss(mm);
1288 goto out_unlock;
1289 }
1290
1291 if (type == CLEAR_REFS_SOFT_DIRTY) {
1292 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1293 if (!(vma->vm_flags & VM_SOFTDIRTY))
1294 continue;
1295 vma->vm_flags &= ~VM_SOFTDIRTY;
1296 vma_set_page_prot(vma);
1297 }
1298
1299 inc_tlb_flush_pending(mm);
1300 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1301 0, NULL, mm, 0, -1UL);
1302 mmu_notifier_invalidate_range_start(&range);
1303 }
1304 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1305 &cp);
1306 if (type == CLEAR_REFS_SOFT_DIRTY) {
1307 mmu_notifier_invalidate_range_end(&range);
1308 flush_tlb_mm(mm);
1309 dec_tlb_flush_pending(mm);
1310 }
1311 out_unlock:
1312 mmap_write_unlock(mm);
1313 out_mm:
1314 mmput(mm);
1315 }
1316 put_task_struct(task);
1317
1318 return count;
1319 }
1320
1321 const struct file_operations proc_clear_refs_operations = {
1322 .write = clear_refs_write,
1323 .llseek = noop_llseek,
1324 };
1325
1326 typedef struct {
1327 u64 pme;
1328 } pagemap_entry_t;
1329
1330 struct pagemapread {
1331 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1332 pagemap_entry_t *buffer;
1333 bool show_pfn;
1334 };
1335
1336 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1337 #define PAGEMAP_WALK_MASK (PMD_MASK)
1338
1339 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1340 #define PM_PFRAME_BITS 55
1341 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1342 #define PM_SOFT_DIRTY BIT_ULL(55)
1343 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1344 #define PM_FILE BIT_ULL(61)
1345 #define PM_SWAP BIT_ULL(62)
1346 #define PM_PRESENT BIT_ULL(63)
1347
1348 #define PM_END_OF_BUFFER 1
1349
make_pme(u64 frame,u64 flags)1350 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1351 {
1352 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1353 }
1354
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1355 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1356 struct pagemapread *pm)
1357 {
1358 pm->buffer[pm->pos++] = *pme;
1359 if (pm->pos >= pm->len)
1360 return PM_END_OF_BUFFER;
1361 return 0;
1362 }
1363
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1364 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1365 __always_unused int depth, struct mm_walk *walk)
1366 {
1367 struct pagemapread *pm = walk->private;
1368 unsigned long addr = start;
1369 int err = 0;
1370
1371 while (addr < end) {
1372 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1373 pagemap_entry_t pme = make_pme(0, 0);
1374 /* End of address space hole, which we mark as non-present. */
1375 unsigned long hole_end;
1376
1377 if (vma)
1378 hole_end = min(end, vma->vm_start);
1379 else
1380 hole_end = end;
1381
1382 for (; addr < hole_end; addr += PAGE_SIZE) {
1383 err = add_to_pagemap(addr, &pme, pm);
1384 if (err)
1385 goto out;
1386 }
1387
1388 if (!vma)
1389 break;
1390
1391 /* Addresses in the VMA. */
1392 if (vma->vm_flags & VM_SOFTDIRTY)
1393 pme = make_pme(0, PM_SOFT_DIRTY);
1394 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1395 err = add_to_pagemap(addr, &pme, pm);
1396 if (err)
1397 goto out;
1398 }
1399 }
1400 out:
1401 return err;
1402 }
1403
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1404 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1405 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1406 {
1407 u64 frame = 0, flags = 0;
1408 struct page *page = NULL;
1409 bool migration = false;
1410
1411 if (pte_present(pte)) {
1412 if (pm->show_pfn)
1413 frame = pte_pfn(pte);
1414 flags |= PM_PRESENT;
1415 page = vm_normal_page(vma, addr, pte);
1416 if (pte_soft_dirty(pte))
1417 flags |= PM_SOFT_DIRTY;
1418 } else if (is_swap_pte(pte)) {
1419 swp_entry_t entry;
1420 if (pte_swp_soft_dirty(pte))
1421 flags |= PM_SOFT_DIRTY;
1422 entry = pte_to_swp_entry(pte);
1423 if (pm->show_pfn)
1424 frame = swp_type(entry) |
1425 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1426 flags |= PM_SWAP;
1427 if (is_migration_entry(entry)) {
1428 migration = true;
1429 page = migration_entry_to_page(entry);
1430 }
1431
1432 if (is_device_private_entry(entry))
1433 page = device_private_entry_to_page(entry);
1434 }
1435
1436 if (page && !PageAnon(page))
1437 flags |= PM_FILE;
1438 if (page && !migration && page_mapcount(page) == 1)
1439 flags |= PM_MMAP_EXCLUSIVE;
1440 if (vma->vm_flags & VM_SOFTDIRTY)
1441 flags |= PM_SOFT_DIRTY;
1442
1443 return make_pme(frame, flags);
1444 }
1445
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1446 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1447 struct mm_walk *walk)
1448 {
1449 struct vm_area_struct *vma = walk->vma;
1450 struct pagemapread *pm = walk->private;
1451 spinlock_t *ptl;
1452 pte_t *pte, *orig_pte;
1453 int err = 0;
1454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1455 bool migration = false;
1456
1457 ptl = pmd_trans_huge_lock(pmdp, vma);
1458 if (ptl) {
1459 u64 flags = 0, frame = 0;
1460 pmd_t pmd = *pmdp;
1461 struct page *page = NULL;
1462
1463 if (vma->vm_flags & VM_SOFTDIRTY)
1464 flags |= PM_SOFT_DIRTY;
1465
1466 if (pmd_present(pmd)) {
1467 page = pmd_page(pmd);
1468
1469 flags |= PM_PRESENT;
1470 if (pmd_soft_dirty(pmd))
1471 flags |= PM_SOFT_DIRTY;
1472 if (pm->show_pfn)
1473 frame = pmd_pfn(pmd) +
1474 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1475 }
1476 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1477 else if (is_swap_pmd(pmd)) {
1478 swp_entry_t entry = pmd_to_swp_entry(pmd);
1479 unsigned long offset;
1480
1481 if (pm->show_pfn) {
1482 offset = swp_offset(entry) +
1483 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1484 frame = swp_type(entry) |
1485 (offset << MAX_SWAPFILES_SHIFT);
1486 }
1487 flags |= PM_SWAP;
1488 if (pmd_swp_soft_dirty(pmd))
1489 flags |= PM_SOFT_DIRTY;
1490 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1491 migration = is_migration_entry(entry);
1492 page = migration_entry_to_page(entry);
1493 }
1494 #endif
1495
1496 if (page && !migration && page_mapcount(page) == 1)
1497 flags |= PM_MMAP_EXCLUSIVE;
1498
1499 for (; addr != end; addr += PAGE_SIZE) {
1500 pagemap_entry_t pme = make_pme(frame, flags);
1501
1502 err = add_to_pagemap(addr, &pme, pm);
1503 if (err)
1504 break;
1505 if (pm->show_pfn) {
1506 if (flags & PM_PRESENT)
1507 frame++;
1508 else if (flags & PM_SWAP)
1509 frame += (1 << MAX_SWAPFILES_SHIFT);
1510 }
1511 }
1512 spin_unlock(ptl);
1513 return err;
1514 }
1515
1516 if (pmd_trans_unstable(pmdp))
1517 return 0;
1518 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1519
1520 /*
1521 * We can assume that @vma always points to a valid one and @end never
1522 * goes beyond vma->vm_end.
1523 */
1524 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1525 for (; addr < end; pte++, addr += PAGE_SIZE) {
1526 pagemap_entry_t pme;
1527
1528 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1529 err = add_to_pagemap(addr, &pme, pm);
1530 if (err)
1531 break;
1532 }
1533 pte_unmap_unlock(orig_pte, ptl);
1534
1535 cond_resched();
1536
1537 return err;
1538 }
1539
1540 #ifdef CONFIG_HUGETLB_PAGE
1541 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1542 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1543 unsigned long addr, unsigned long end,
1544 struct mm_walk *walk)
1545 {
1546 struct pagemapread *pm = walk->private;
1547 struct vm_area_struct *vma = walk->vma;
1548 u64 flags = 0, frame = 0;
1549 int err = 0;
1550 pte_t pte;
1551
1552 if (vma->vm_flags & VM_SOFTDIRTY)
1553 flags |= PM_SOFT_DIRTY;
1554
1555 pte = huge_ptep_get(ptep);
1556 if (pte_present(pte)) {
1557 struct page *page = pte_page(pte);
1558
1559 if (!PageAnon(page))
1560 flags |= PM_FILE;
1561
1562 if (page_mapcount(page) == 1)
1563 flags |= PM_MMAP_EXCLUSIVE;
1564
1565 flags |= PM_PRESENT;
1566 if (pm->show_pfn)
1567 frame = pte_pfn(pte) +
1568 ((addr & ~hmask) >> PAGE_SHIFT);
1569 }
1570
1571 for (; addr != end; addr += PAGE_SIZE) {
1572 pagemap_entry_t pme = make_pme(frame, flags);
1573
1574 err = add_to_pagemap(addr, &pme, pm);
1575 if (err)
1576 return err;
1577 if (pm->show_pfn && (flags & PM_PRESENT))
1578 frame++;
1579 }
1580
1581 cond_resched();
1582
1583 return err;
1584 }
1585 #else
1586 #define pagemap_hugetlb_range NULL
1587 #endif /* HUGETLB_PAGE */
1588
1589 static const struct mm_walk_ops pagemap_ops = {
1590 .pmd_entry = pagemap_pmd_range,
1591 .pte_hole = pagemap_pte_hole,
1592 .hugetlb_entry = pagemap_hugetlb_range,
1593 };
1594
1595 /*
1596 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1597 *
1598 * For each page in the address space, this file contains one 64-bit entry
1599 * consisting of the following:
1600 *
1601 * Bits 0-54 page frame number (PFN) if present
1602 * Bits 0-4 swap type if swapped
1603 * Bits 5-54 swap offset if swapped
1604 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1605 * Bit 56 page exclusively mapped
1606 * Bits 57-60 zero
1607 * Bit 61 page is file-page or shared-anon
1608 * Bit 62 page swapped
1609 * Bit 63 page present
1610 *
1611 * If the page is not present but in swap, then the PFN contains an
1612 * encoding of the swap file number and the page's offset into the
1613 * swap. Unmapped pages return a null PFN. This allows determining
1614 * precisely which pages are mapped (or in swap) and comparing mapped
1615 * pages between processes.
1616 *
1617 * Efficient users of this interface will use /proc/pid/maps to
1618 * determine which areas of memory are actually mapped and llseek to
1619 * skip over unmapped regions.
1620 */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1621 static ssize_t pagemap_read(struct file *file, char __user *buf,
1622 size_t count, loff_t *ppos)
1623 {
1624 struct mm_struct *mm = file->private_data;
1625 struct pagemapread pm;
1626 unsigned long src;
1627 unsigned long svpfn;
1628 unsigned long start_vaddr;
1629 unsigned long end_vaddr;
1630 int ret = 0, copied = 0;
1631
1632 if (!mm || !mmget_not_zero(mm))
1633 goto out;
1634
1635 ret = -EINVAL;
1636 /* file position must be aligned */
1637 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1638 goto out_mm;
1639
1640 ret = 0;
1641 if (!count)
1642 goto out_mm;
1643
1644 /* do not disclose physical addresses: attack vector */
1645 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1646
1647 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1648 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1649 ret = -ENOMEM;
1650 if (!pm.buffer)
1651 goto out_mm;
1652
1653 src = *ppos;
1654 svpfn = src / PM_ENTRY_BYTES;
1655 end_vaddr = mm->task_size;
1656
1657 /* watch out for wraparound */
1658 start_vaddr = end_vaddr;
1659 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1660 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1661
1662 /* Ensure the address is inside the task */
1663 if (start_vaddr > mm->task_size)
1664 start_vaddr = end_vaddr;
1665
1666 /*
1667 * The odds are that this will stop walking way
1668 * before end_vaddr, because the length of the
1669 * user buffer is tracked in "pm", and the walk
1670 * will stop when we hit the end of the buffer.
1671 */
1672 ret = 0;
1673 while (count && (start_vaddr < end_vaddr)) {
1674 int len;
1675 unsigned long end;
1676
1677 pm.pos = 0;
1678 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1679 /* overflow ? */
1680 if (end < start_vaddr || end > end_vaddr)
1681 end = end_vaddr;
1682 ret = mmap_read_lock_killable(mm);
1683 if (ret)
1684 goto out_free;
1685 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1686 mmap_read_unlock(mm);
1687 start_vaddr = end;
1688
1689 len = min(count, PM_ENTRY_BYTES * pm.pos);
1690 if (copy_to_user(buf, pm.buffer, len)) {
1691 ret = -EFAULT;
1692 goto out_free;
1693 }
1694 copied += len;
1695 buf += len;
1696 count -= len;
1697 }
1698 *ppos += copied;
1699 if (!ret || ret == PM_END_OF_BUFFER)
1700 ret = copied;
1701
1702 out_free:
1703 kfree(pm.buffer);
1704 out_mm:
1705 mmput(mm);
1706 out:
1707 return ret;
1708 }
1709
pagemap_open(struct inode * inode,struct file * file)1710 static int pagemap_open(struct inode *inode, struct file *file)
1711 {
1712 struct mm_struct *mm;
1713
1714 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1715 if (IS_ERR(mm))
1716 return PTR_ERR(mm);
1717 file->private_data = mm;
1718 return 0;
1719 }
1720
pagemap_release(struct inode * inode,struct file * file)1721 static int pagemap_release(struct inode *inode, struct file *file)
1722 {
1723 struct mm_struct *mm = file->private_data;
1724
1725 if (mm)
1726 mmdrop(mm);
1727 return 0;
1728 }
1729
1730 const struct file_operations proc_pagemap_operations = {
1731 .llseek = mem_lseek, /* borrow this */
1732 .read = pagemap_read,
1733 .open = pagemap_open,
1734 .release = pagemap_release,
1735 };
1736 #endif /* CONFIG_PROC_PAGE_MONITOR */
1737
1738 #ifdef CONFIG_NUMA
1739
1740 struct numa_maps {
1741 unsigned long pages;
1742 unsigned long anon;
1743 unsigned long active;
1744 unsigned long writeback;
1745 unsigned long mapcount_max;
1746 unsigned long dirty;
1747 unsigned long swapcache;
1748 unsigned long node[MAX_NUMNODES];
1749 };
1750
1751 struct numa_maps_private {
1752 struct proc_maps_private proc_maps;
1753 struct numa_maps md;
1754 };
1755
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1756 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1757 unsigned long nr_pages)
1758 {
1759 int count = page_mapcount(page);
1760
1761 md->pages += nr_pages;
1762 if (pte_dirty || PageDirty(page))
1763 md->dirty += nr_pages;
1764
1765 if (PageSwapCache(page))
1766 md->swapcache += nr_pages;
1767
1768 if (PageActive(page) || PageUnevictable(page))
1769 md->active += nr_pages;
1770
1771 if (PageWriteback(page))
1772 md->writeback += nr_pages;
1773
1774 if (PageAnon(page))
1775 md->anon += nr_pages;
1776
1777 if (count > md->mapcount_max)
1778 md->mapcount_max = count;
1779
1780 md->node[page_to_nid(page)] += nr_pages;
1781 }
1782
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1783 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1784 unsigned long addr)
1785 {
1786 struct page *page;
1787 int nid;
1788
1789 if (!pte_present(pte))
1790 return NULL;
1791
1792 page = vm_normal_page(vma, addr, pte);
1793 if (!page)
1794 return NULL;
1795
1796 if (PageReserved(page))
1797 return NULL;
1798
1799 nid = page_to_nid(page);
1800 if (!node_isset(nid, node_states[N_MEMORY]))
1801 return NULL;
1802
1803 return page;
1804 }
1805
1806 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1807 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1808 struct vm_area_struct *vma,
1809 unsigned long addr)
1810 {
1811 struct page *page;
1812 int nid;
1813
1814 if (!pmd_present(pmd))
1815 return NULL;
1816
1817 page = vm_normal_page_pmd(vma, addr, pmd);
1818 if (!page)
1819 return NULL;
1820
1821 if (PageReserved(page))
1822 return NULL;
1823
1824 nid = page_to_nid(page);
1825 if (!node_isset(nid, node_states[N_MEMORY]))
1826 return NULL;
1827
1828 return page;
1829 }
1830 #endif
1831
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1832 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1833 unsigned long end, struct mm_walk *walk)
1834 {
1835 struct numa_maps *md = walk->private;
1836 struct vm_area_struct *vma = walk->vma;
1837 spinlock_t *ptl;
1838 pte_t *orig_pte;
1839 pte_t *pte;
1840
1841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1842 ptl = pmd_trans_huge_lock(pmd, vma);
1843 if (ptl) {
1844 struct page *page;
1845
1846 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1847 if (page)
1848 gather_stats(page, md, pmd_dirty(*pmd),
1849 HPAGE_PMD_SIZE/PAGE_SIZE);
1850 spin_unlock(ptl);
1851 return 0;
1852 }
1853
1854 if (pmd_trans_unstable(pmd))
1855 return 0;
1856 #endif
1857 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1858 do {
1859 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1860 if (!page)
1861 continue;
1862 gather_stats(page, md, pte_dirty(*pte), 1);
1863
1864 } while (pte++, addr += PAGE_SIZE, addr != end);
1865 pte_unmap_unlock(orig_pte, ptl);
1866 cond_resched();
1867 return 0;
1868 }
1869 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1870 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1871 unsigned long addr, unsigned long end, struct mm_walk *walk)
1872 {
1873 pte_t huge_pte = huge_ptep_get(pte);
1874 struct numa_maps *md;
1875 struct page *page;
1876
1877 if (!pte_present(huge_pte))
1878 return 0;
1879
1880 page = pte_page(huge_pte);
1881 if (!page)
1882 return 0;
1883
1884 md = walk->private;
1885 gather_stats(page, md, pte_dirty(huge_pte), 1);
1886 return 0;
1887 }
1888
1889 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1890 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1891 unsigned long addr, unsigned long end, struct mm_walk *walk)
1892 {
1893 return 0;
1894 }
1895 #endif
1896
1897 static const struct mm_walk_ops show_numa_ops = {
1898 .hugetlb_entry = gather_hugetlb_stats,
1899 .pmd_entry = gather_pte_stats,
1900 };
1901
1902 /*
1903 * Display pages allocated per node and memory policy via /proc.
1904 */
show_numa_map(struct seq_file * m,void * v)1905 static int show_numa_map(struct seq_file *m, void *v)
1906 {
1907 struct numa_maps_private *numa_priv = m->private;
1908 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1909 struct vm_area_struct *vma = v;
1910 struct numa_maps *md = &numa_priv->md;
1911 struct file *file = vma->vm_file;
1912 struct mm_struct *mm = vma->vm_mm;
1913 struct mempolicy *pol;
1914 char buffer[64];
1915 int nid;
1916
1917 if (!mm)
1918 return 0;
1919
1920 /* Ensure we start with an empty set of numa_maps statistics. */
1921 memset(md, 0, sizeof(*md));
1922
1923 pol = __get_vma_policy(vma, vma->vm_start);
1924 if (pol) {
1925 mpol_to_str(buffer, sizeof(buffer), pol);
1926 mpol_cond_put(pol);
1927 } else {
1928 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1929 }
1930
1931 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1932
1933 if (file) {
1934 seq_puts(m, " file=");
1935 seq_file_path(m, file, "\n\t= ");
1936 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1937 seq_puts(m, " heap");
1938 } else if (is_stack(vma)) {
1939 seq_puts(m, " stack");
1940 }
1941
1942 if (is_vm_hugetlb_page(vma))
1943 seq_puts(m, " huge");
1944
1945 /* mmap_lock is held by m_start */
1946 walk_page_vma(vma, &show_numa_ops, md);
1947
1948 if (!md->pages)
1949 goto out;
1950
1951 if (md->anon)
1952 seq_printf(m, " anon=%lu", md->anon);
1953
1954 if (md->dirty)
1955 seq_printf(m, " dirty=%lu", md->dirty);
1956
1957 if (md->pages != md->anon && md->pages != md->dirty)
1958 seq_printf(m, " mapped=%lu", md->pages);
1959
1960 if (md->mapcount_max > 1)
1961 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1962
1963 if (md->swapcache)
1964 seq_printf(m, " swapcache=%lu", md->swapcache);
1965
1966 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1967 seq_printf(m, " active=%lu", md->active);
1968
1969 if (md->writeback)
1970 seq_printf(m, " writeback=%lu", md->writeback);
1971
1972 for_each_node_state(nid, N_MEMORY)
1973 if (md->node[nid])
1974 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1975
1976 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1977 out:
1978 seq_putc(m, '\n');
1979 return 0;
1980 }
1981
1982 static const struct seq_operations proc_pid_numa_maps_op = {
1983 .start = m_start,
1984 .next = m_next,
1985 .stop = m_stop,
1986 .show = show_numa_map,
1987 };
1988
pid_numa_maps_open(struct inode * inode,struct file * file)1989 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1990 {
1991 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1992 sizeof(struct numa_maps_private));
1993 }
1994
1995 const struct file_operations proc_pid_numa_maps_operations = {
1996 .open = pid_numa_maps_open,
1997 .read = seq_read,
1998 .llseek = seq_lseek,
1999 .release = proc_map_release,
2000 };
2001
2002 #endif /* CONFIG_NUMA */
2003