1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/debug.h"
25 #include "util/disk_cache.h"
26 #include "util/macros.h"
27 #include "util/mesa-sha1.h"
28 #include "util/u_atomic.h"
29 #include "vulkan/util/vk_util.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "aco_interface.h"
34
35 struct cache_entry {
36 union {
37 unsigned char sha1[20];
38 uint32_t sha1_dw[5];
39 };
40 uint32_t binary_sizes[MESA_VULKAN_SHADER_STAGES];
41 uint32_t num_stack_sizes;
42 struct radv_shader *shaders[MESA_VULKAN_SHADER_STAGES];
43 struct radv_pipeline_slab *slab;
44 char code[0];
45 };
46
47 static void
radv_pipeline_cache_lock(struct radv_pipeline_cache * cache)48 radv_pipeline_cache_lock(struct radv_pipeline_cache *cache)
49 {
50 if (cache->flags & VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT)
51 return;
52
53 mtx_lock(&cache->mutex);
54 }
55
56 static void
radv_pipeline_cache_unlock(struct radv_pipeline_cache * cache)57 radv_pipeline_cache_unlock(struct radv_pipeline_cache *cache)
58 {
59 if (cache->flags & VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT)
60 return;
61
62 mtx_unlock(&cache->mutex);
63 }
64
65 static bool
radv_is_cache_disabled(struct radv_device * device)66 radv_is_cache_disabled(struct radv_device *device)
67 {
68 /* Pipeline caches can be disabled with RADV_DEBUG=nocache, with MESA_GLSL_CACHE_DISABLE=1 and
69 * when ACO_DEBUG is used. MESA_GLSL_CACHE_DISABLE is done elsewhere.
70 */
71 return (device->instance->debug_flags & RADV_DEBUG_NO_CACHE) ||
72 (device->physical_device->use_llvm ? 0 : aco_get_codegen_flags());
73 }
74
75 void
radv_pipeline_cache_init(struct radv_pipeline_cache * cache,struct radv_device * device)76 radv_pipeline_cache_init(struct radv_pipeline_cache *cache, struct radv_device *device)
77 {
78 vk_object_base_init(&device->vk, &cache->base, VK_OBJECT_TYPE_PIPELINE_CACHE);
79
80 cache->device = device;
81 mtx_init(&cache->mutex, mtx_plain);
82 cache->flags = 0;
83
84 cache->modified = false;
85 cache->kernel_count = 0;
86 cache->total_size = 0;
87 cache->table_size = 1024;
88 const size_t byte_size = cache->table_size * sizeof(cache->hash_table[0]);
89 cache->hash_table = malloc(byte_size);
90
91 /* We don't consider allocation failure fatal, we just start with a 0-sized
92 * cache. Disable caching when we want to keep shader debug info, since
93 * we don't get the debug info on cached shaders. */
94 if (cache->hash_table == NULL || radv_is_cache_disabled(device))
95 cache->table_size = 0;
96 else
97 memset(cache->hash_table, 0, byte_size);
98 }
99
100 void
radv_pipeline_cache_finish(struct radv_pipeline_cache * cache)101 radv_pipeline_cache_finish(struct radv_pipeline_cache *cache)
102 {
103 for (unsigned i = 0; i < cache->table_size; ++i)
104 if (cache->hash_table[i]) {
105 for (int j = 0; j < MESA_VULKAN_SHADER_STAGES; ++j) {
106 if (cache->hash_table[i]->shaders[j])
107 radv_shader_destroy(cache->device, cache->hash_table[i]->shaders[j]);
108 }
109 if (cache->hash_table[i]->slab)
110 radv_pipeline_slab_destroy(cache->device, cache->hash_table[i]->slab);
111 vk_free(&cache->alloc, cache->hash_table[i]);
112 }
113 mtx_destroy(&cache->mutex);
114 free(cache->hash_table);
115
116 vk_object_base_finish(&cache->base);
117 }
118
119 static uint32_t
entry_size(struct cache_entry * entry)120 entry_size(struct cache_entry *entry)
121 {
122 size_t ret = sizeof(*entry);
123 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i)
124 if (entry->binary_sizes[i])
125 ret += entry->binary_sizes[i];
126 ret += sizeof(struct radv_pipeline_shader_stack_size) * entry->num_stack_sizes;
127 ret = align(ret, alignof(struct cache_entry));
128 return ret;
129 }
130
131 void
radv_hash_shaders(unsigned char * hash,const struct radv_pipeline_stage * stages,const struct radv_pipeline_layout * layout,const struct radv_pipeline_key * key,uint32_t flags)132 radv_hash_shaders(unsigned char *hash, const struct radv_pipeline_stage *stages,
133 const struct radv_pipeline_layout *layout, const struct radv_pipeline_key *key,
134 uint32_t flags)
135 {
136 struct mesa_sha1 ctx;
137
138 _mesa_sha1_init(&ctx);
139 if (key)
140 _mesa_sha1_update(&ctx, key, sizeof(*key));
141 if (layout)
142 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
143
144 for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) {
145 if (!stages[s].entrypoint)
146 continue;
147
148 _mesa_sha1_update(&ctx, stages[s].shader_sha1, sizeof(stages[s].shader_sha1));
149 }
150 _mesa_sha1_update(&ctx, &flags, 4);
151 _mesa_sha1_final(&ctx, hash);
152 }
153
154 void
radv_hash_rt_shaders(unsigned char * hash,const VkRayTracingPipelineCreateInfoKHR * pCreateInfo,uint32_t flags)155 radv_hash_rt_shaders(unsigned char *hash, const VkRayTracingPipelineCreateInfoKHR *pCreateInfo,
156 uint32_t flags)
157 {
158 RADV_FROM_HANDLE(radv_pipeline_layout, layout, pCreateInfo->layout);
159 struct mesa_sha1 ctx;
160
161 _mesa_sha1_init(&ctx);
162 if (layout)
163 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
164
165 for (uint32_t i = 0; i < pCreateInfo->stageCount; ++i) {
166 RADV_FROM_HANDLE(vk_shader_module, module, pCreateInfo->pStages[i].module);
167 const VkSpecializationInfo *spec_info = pCreateInfo->pStages[i].pSpecializationInfo;
168
169 const VkPipelineShaderStageModuleIdentifierCreateInfoEXT *iinfo =
170 vk_find_struct_const(pCreateInfo->pStages[i].pNext,
171 PIPELINE_SHADER_STAGE_MODULE_IDENTIFIER_CREATE_INFO_EXT);
172
173 if (module) {
174 _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
175 } else {
176 assert(iinfo);
177 assert(iinfo->identifierSize <= VK_MAX_SHADER_MODULE_IDENTIFIER_SIZE_EXT);
178 _mesa_sha1_update(&ctx, iinfo->pIdentifier, iinfo->identifierSize);
179 }
180
181 _mesa_sha1_update(&ctx, pCreateInfo->pStages[i].pName, strlen(pCreateInfo->pStages[i].pName));
182 if (spec_info && spec_info->mapEntryCount) {
183 _mesa_sha1_update(&ctx, spec_info->pMapEntries,
184 spec_info->mapEntryCount * sizeof spec_info->pMapEntries[0]);
185 _mesa_sha1_update(&ctx, spec_info->pData, spec_info->dataSize);
186 }
187 }
188
189 for (uint32_t i = 0; i < pCreateInfo->groupCount; i++) {
190 _mesa_sha1_update(&ctx, &pCreateInfo->pGroups[i].type,
191 sizeof(pCreateInfo->pGroups[i].type));
192 _mesa_sha1_update(&ctx, &pCreateInfo->pGroups[i].generalShader,
193 sizeof(pCreateInfo->pGroups[i].generalShader));
194 _mesa_sha1_update(&ctx, &pCreateInfo->pGroups[i].anyHitShader,
195 sizeof(pCreateInfo->pGroups[i].anyHitShader));
196 _mesa_sha1_update(&ctx, &pCreateInfo->pGroups[i].closestHitShader,
197 sizeof(pCreateInfo->pGroups[i].closestHitShader));
198 _mesa_sha1_update(&ctx, &pCreateInfo->pGroups[i].intersectionShader,
199 sizeof(pCreateInfo->pGroups[i].intersectionShader));
200 }
201
202 if (!radv_rt_pipeline_has_dynamic_stack_size(pCreateInfo))
203 _mesa_sha1_update(&ctx, &pCreateInfo->maxPipelineRayRecursionDepth, 4);
204 _mesa_sha1_update(&ctx, &flags, 4);
205 _mesa_sha1_final(&ctx, hash);
206 }
207
208 static struct cache_entry *
radv_pipeline_cache_search_unlocked(struct radv_pipeline_cache * cache,const unsigned char * sha1)209 radv_pipeline_cache_search_unlocked(struct radv_pipeline_cache *cache, const unsigned char *sha1)
210 {
211 const uint32_t mask = cache->table_size - 1;
212 const uint32_t start = (*(uint32_t *)sha1);
213
214 if (cache->table_size == 0)
215 return NULL;
216
217 for (uint32_t i = 0; i < cache->table_size; i++) {
218 const uint32_t index = (start + i) & mask;
219 struct cache_entry *entry = cache->hash_table[index];
220
221 if (!entry)
222 return NULL;
223
224 if (memcmp(entry->sha1, sha1, sizeof(entry->sha1)) == 0) {
225 return entry;
226 }
227 }
228
229 unreachable("hash table should never be full");
230 }
231
232 static struct cache_entry *
radv_pipeline_cache_search(struct radv_pipeline_cache * cache,const unsigned char * sha1)233 radv_pipeline_cache_search(struct radv_pipeline_cache *cache, const unsigned char *sha1)
234 {
235 struct cache_entry *entry;
236
237 radv_pipeline_cache_lock(cache);
238
239 entry = radv_pipeline_cache_search_unlocked(cache, sha1);
240
241 radv_pipeline_cache_unlock(cache);
242
243 return entry;
244 }
245
246 static void
radv_pipeline_cache_set_entry(struct radv_pipeline_cache * cache,struct cache_entry * entry)247 radv_pipeline_cache_set_entry(struct radv_pipeline_cache *cache, struct cache_entry *entry)
248 {
249 const uint32_t mask = cache->table_size - 1;
250 const uint32_t start = entry->sha1_dw[0];
251
252 /* We'll always be able to insert when we get here. */
253 assert(cache->kernel_count < cache->table_size / 2);
254
255 for (uint32_t i = 0; i < cache->table_size; i++) {
256 const uint32_t index = (start + i) & mask;
257 if (!cache->hash_table[index]) {
258 cache->hash_table[index] = entry;
259 break;
260 }
261 }
262
263 cache->total_size += entry_size(entry);
264 cache->kernel_count++;
265 }
266
267 static VkResult
radv_pipeline_cache_grow(struct radv_pipeline_cache * cache)268 radv_pipeline_cache_grow(struct radv_pipeline_cache *cache)
269 {
270 const uint32_t table_size = cache->table_size * 2;
271 const uint32_t old_table_size = cache->table_size;
272 const size_t byte_size = table_size * sizeof(cache->hash_table[0]);
273 struct cache_entry **table;
274 struct cache_entry **old_table = cache->hash_table;
275
276 table = malloc(byte_size);
277 if (table == NULL)
278 return vk_error(cache, VK_ERROR_OUT_OF_HOST_MEMORY);
279
280 cache->hash_table = table;
281 cache->table_size = table_size;
282 cache->kernel_count = 0;
283 cache->total_size = 0;
284
285 memset(cache->hash_table, 0, byte_size);
286 for (uint32_t i = 0; i < old_table_size; i++) {
287 struct cache_entry *entry = old_table[i];
288 if (!entry)
289 continue;
290
291 radv_pipeline_cache_set_entry(cache, entry);
292 }
293
294 free(old_table);
295
296 return VK_SUCCESS;
297 }
298
299 static void
radv_pipeline_cache_add_entry(struct radv_pipeline_cache * cache,struct cache_entry * entry)300 radv_pipeline_cache_add_entry(struct radv_pipeline_cache *cache, struct cache_entry *entry)
301 {
302 if (cache->kernel_count == cache->table_size / 2)
303 radv_pipeline_cache_grow(cache);
304
305 /* Failing to grow that hash table isn't fatal, but may mean we don't
306 * have enough space to add this new kernel. Only add it if there's room.
307 */
308 if (cache->kernel_count < cache->table_size / 2)
309 radv_pipeline_cache_set_entry(cache, entry);
310 }
311
312 bool
radv_create_shaders_from_pipeline_cache(struct radv_device * device,struct radv_pipeline_cache * cache,const unsigned char * sha1,struct radv_pipeline * pipeline,struct radv_pipeline_shader_stack_size ** stack_sizes,uint32_t * num_stack_sizes,bool * found_in_application_cache)313 radv_create_shaders_from_pipeline_cache(
314 struct radv_device *device, struct radv_pipeline_cache *cache, const unsigned char *sha1,
315 struct radv_pipeline *pipeline, struct radv_pipeline_shader_stack_size **stack_sizes,
316 uint32_t *num_stack_sizes, bool *found_in_application_cache)
317 {
318 struct cache_entry *entry;
319 VkResult result;
320
321 if (!cache) {
322 cache = device->mem_cache;
323 *found_in_application_cache = false;
324 }
325
326 radv_pipeline_cache_lock(cache);
327
328 entry = radv_pipeline_cache_search_unlocked(cache, sha1);
329
330 if (!entry) {
331 *found_in_application_cache = false;
332
333 /* Don't cache when we want debug info, since this isn't
334 * present in the cache.
335 */
336 if (radv_is_cache_disabled(device) || !device->physical_device->disk_cache) {
337 radv_pipeline_cache_unlock(cache);
338 return false;
339 }
340
341 uint8_t disk_sha1[20];
342 disk_cache_compute_key(device->physical_device->disk_cache, sha1, 20, disk_sha1);
343
344 entry =
345 (struct cache_entry *)disk_cache_get(device->physical_device->disk_cache, disk_sha1, NULL);
346 if (!entry) {
347 radv_pipeline_cache_unlock(cache);
348 return false;
349 } else {
350 size_t size = entry_size(entry);
351 struct cache_entry *new_entry =
352 vk_alloc(&cache->alloc, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
353 if (!new_entry) {
354 free(entry);
355 radv_pipeline_cache_unlock(cache);
356 return false;
357 }
358
359 memcpy(new_entry, entry, entry_size(entry));
360 free(entry);
361 entry = new_entry;
362
363 if (!(device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE) ||
364 cache != device->mem_cache)
365 radv_pipeline_cache_add_entry(cache, new_entry);
366 }
367 }
368
369 struct radv_shader_binary *binaries[MESA_VULKAN_SHADER_STAGES] = {NULL};
370 struct radv_shader_binary *gs_copy_binary = NULL;
371 bool needs_upload = false;
372 char *p = entry->code;
373 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
374 if (!entry->shaders[i] && entry->binary_sizes[i]) {
375 struct radv_shader_binary *binary = calloc(1, entry->binary_sizes[i]);
376 memcpy(binary, p, entry->binary_sizes[i]);
377 p += entry->binary_sizes[i];
378
379 entry->shaders[i] = radv_shader_create(device, binary, false, true, NULL);
380
381 needs_upload = true;
382 binaries[i] = binary;
383 } else if (entry->binary_sizes[i]) {
384 p += entry->binary_sizes[i];
385 }
386 }
387
388 memcpy(pipeline->shaders, entry->shaders, sizeof(entry->shaders));
389
390 if (pipeline->shaders[MESA_SHADER_GEOMETRY] &&
391 !pipeline->shaders[MESA_SHADER_GEOMETRY]->info.is_ngg) {
392 /* For the GS copy shader, RADV uses the compute shader slot to avoid a new cache entry. */
393 pipeline->gs_copy_shader = pipeline->shaders[MESA_SHADER_COMPUTE];
394 pipeline->shaders[MESA_SHADER_COMPUTE] = NULL;
395 gs_copy_binary = binaries[MESA_SHADER_COMPUTE];
396 }
397
398 if (needs_upload) {
399 result = radv_upload_shaders(device, pipeline, binaries, gs_copy_binary);
400
401 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
402 if (pipeline->shaders[i])
403 free(binaries[i]);
404 }
405 free(gs_copy_binary);
406
407 if (result != VK_SUCCESS) {
408 radv_pipeline_cache_unlock(cache);
409 return false;
410 }
411
412 entry->slab = pipeline->slab;
413 } else {
414 pipeline->slab = entry->slab;
415 pipeline->slab_bo = pipeline->slab->alloc->arena->bo;
416 }
417
418 if (num_stack_sizes) {
419 *num_stack_sizes = entry->num_stack_sizes;
420 if (entry->num_stack_sizes) {
421 *stack_sizes = malloc(entry->num_stack_sizes * sizeof(**stack_sizes));
422 memcpy(*stack_sizes, p, entry->num_stack_sizes * sizeof(**stack_sizes));
423 }
424 } else {
425 assert(!entry->num_stack_sizes);
426 }
427
428 p += entry->num_stack_sizes * sizeof(**stack_sizes);
429
430 if (device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE && cache == device->mem_cache)
431 vk_free(&cache->alloc, entry);
432 else {
433 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i)
434 if (entry->shaders[i])
435 p_atomic_inc(&entry->shaders[i]->ref_count);
436 p_atomic_inc(&entry->slab->ref_count);
437 }
438
439 assert((uintptr_t)p <= (uintptr_t)entry + entry_size(entry));
440 radv_pipeline_cache_unlock(cache);
441 return true;
442 }
443
444 void
radv_pipeline_cache_insert_shaders(struct radv_device * device,struct radv_pipeline_cache * cache,const unsigned char * sha1,struct radv_pipeline * pipeline,struct radv_shader_binary * const * binaries,const struct radv_pipeline_shader_stack_size * stack_sizes,uint32_t num_stack_sizes)445 radv_pipeline_cache_insert_shaders(struct radv_device *device, struct radv_pipeline_cache *cache,
446 const unsigned char *sha1, struct radv_pipeline *pipeline,
447 struct radv_shader_binary *const *binaries,
448 const struct radv_pipeline_shader_stack_size *stack_sizes,
449 uint32_t num_stack_sizes)
450 {
451 if (!cache)
452 cache = device->mem_cache;
453
454 radv_pipeline_cache_lock(cache);
455 struct cache_entry *entry = radv_pipeline_cache_search_unlocked(cache, sha1);
456 if (entry) {
457 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
458 if (!entry->shaders[i])
459 continue;
460
461 radv_shader_destroy(cache->device, pipeline->shaders[i]);
462
463 pipeline->shaders[i] = entry->shaders[i];
464 p_atomic_inc(&pipeline->shaders[i]->ref_count);
465 }
466
467 radv_pipeline_slab_destroy(cache->device, pipeline->slab);
468
469 pipeline->slab = entry->slab;
470 p_atomic_inc(&pipeline->slab->ref_count);
471
472 radv_pipeline_cache_unlock(cache);
473 return;
474 }
475
476 /* Don't cache when we want debug info, since this isn't
477 * present in the cache.
478 */
479 if (radv_is_cache_disabled(device)) {
480 radv_pipeline_cache_unlock(cache);
481 return;
482 }
483
484 size_t size = sizeof(*entry) + sizeof(*stack_sizes) * num_stack_sizes;
485 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i)
486 if (pipeline->shaders[i])
487 size += binaries[i]->total_size;
488 const size_t size_without_align = size;
489 size = align(size_without_align, alignof(struct cache_entry));
490
491 entry = vk_alloc(&cache->alloc, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
492 if (!entry) {
493 radv_pipeline_cache_unlock(cache);
494 return;
495 }
496
497 memset(entry, 0, sizeof(*entry));
498 memcpy(entry->sha1, sha1, 20);
499
500 char *p = entry->code;
501
502 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
503 if (!pipeline->shaders[i])
504 continue;
505
506 entry->binary_sizes[i] = binaries[i]->total_size;
507
508 memcpy(p, binaries[i], binaries[i]->total_size);
509 p += binaries[i]->total_size;
510 }
511
512 if (num_stack_sizes) {
513 memcpy(p, stack_sizes, sizeof(*stack_sizes) * num_stack_sizes);
514 p += sizeof(*stack_sizes) * num_stack_sizes;
515 }
516 entry->num_stack_sizes = num_stack_sizes;
517
518 // Make valgrind happy by filling the alignment hole at the end.
519 assert(p == (char *)entry + size_without_align);
520 assert(sizeof(*entry) + (p - entry->code) == size_without_align);
521 memset((char *)entry + size_without_align, 0, size - size_without_align);
522
523 /* Always add cache items to disk. This will allow collection of
524 * compiled shaders by third parties such as steam, even if the app
525 * implements its own pipeline cache.
526 *
527 * Make sure to exclude meta shaders because they are stored in a different cache file.
528 */
529 if (device->physical_device->disk_cache && cache != &device->meta_state.cache) {
530 uint8_t disk_sha1[20];
531 disk_cache_compute_key(device->physical_device->disk_cache, sha1, 20, disk_sha1);
532
533 disk_cache_put(device->physical_device->disk_cache, disk_sha1, entry, entry_size(entry),
534 NULL);
535 }
536
537 if (device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE && cache == device->mem_cache) {
538 vk_free2(&cache->alloc, NULL, entry);
539 radv_pipeline_cache_unlock(cache);
540 return;
541 }
542
543 /* We delay setting the shader so we have reproducible disk cache
544 * items.
545 */
546 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
547 if (!pipeline->shaders[i])
548 continue;
549
550 entry->shaders[i] = pipeline->shaders[i];
551 p_atomic_inc(&pipeline->shaders[i]->ref_count);
552 }
553
554 entry->slab = pipeline->slab;
555 p_atomic_inc(&pipeline->slab->ref_count);
556
557 radv_pipeline_cache_add_entry(cache, entry);
558
559 cache->modified = true;
560 radv_pipeline_cache_unlock(cache);
561 return;
562 }
563
564 bool
radv_pipeline_cache_load(struct radv_pipeline_cache * cache,const void * data,size_t size)565 radv_pipeline_cache_load(struct radv_pipeline_cache *cache, const void *data, size_t size)
566 {
567 struct radv_device *device = cache->device;
568 struct vk_pipeline_cache_header header;
569
570 if (size < sizeof(header))
571 return false;
572 memcpy(&header, data, sizeof(header));
573 if (header.header_size < sizeof(header))
574 return false;
575 if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
576 return false;
577 if (header.vendor_id != ATI_VENDOR_ID)
578 return false;
579 if (header.device_id != device->physical_device->rad_info.pci_id)
580 return false;
581 if (memcmp(header.uuid, device->physical_device->cache_uuid, VK_UUID_SIZE) != 0)
582 return false;
583
584 char *end = (char *)data + size;
585 char *p = (char *)data + header.header_size;
586
587 while (end - p >= sizeof(struct cache_entry)) {
588 struct cache_entry *entry = (struct cache_entry *)p;
589 struct cache_entry *dest_entry;
590 size_t size_of_entry = entry_size(entry);
591 if (end - p < size_of_entry)
592 break;
593
594 dest_entry = vk_alloc(&cache->alloc, size_of_entry, 8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
595 if (dest_entry) {
596 memcpy(dest_entry, entry, size_of_entry);
597 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i)
598 dest_entry->shaders[i] = NULL;
599 dest_entry->slab = NULL;
600 radv_pipeline_cache_add_entry(cache, dest_entry);
601 }
602 p += size_of_entry;
603 }
604
605 return true;
606 }
607
608 VKAPI_ATTR VkResult VKAPI_CALL
radv_CreatePipelineCache(VkDevice _device,const VkPipelineCacheCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineCache * pPipelineCache)609 radv_CreatePipelineCache(VkDevice _device, const VkPipelineCacheCreateInfo *pCreateInfo,
610 const VkAllocationCallbacks *pAllocator, VkPipelineCache *pPipelineCache)
611 {
612 RADV_FROM_HANDLE(radv_device, device, _device);
613 struct radv_pipeline_cache *cache;
614
615 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
616
617 cache = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*cache), 8,
618 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
619 if (cache == NULL)
620 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
621
622 if (pAllocator)
623 cache->alloc = *pAllocator;
624 else
625 cache->alloc = device->vk.alloc;
626
627 radv_pipeline_cache_init(cache, device);
628 cache->flags = pCreateInfo->flags;
629
630 if (pCreateInfo->initialDataSize > 0) {
631 radv_pipeline_cache_load(cache, pCreateInfo->pInitialData, pCreateInfo->initialDataSize);
632 }
633
634 *pPipelineCache = radv_pipeline_cache_to_handle(cache);
635
636 return VK_SUCCESS;
637 }
638
639 VKAPI_ATTR void VKAPI_CALL
radv_DestroyPipelineCache(VkDevice _device,VkPipelineCache _cache,const VkAllocationCallbacks * pAllocator)640 radv_DestroyPipelineCache(VkDevice _device, VkPipelineCache _cache,
641 const VkAllocationCallbacks *pAllocator)
642 {
643 RADV_FROM_HANDLE(radv_device, device, _device);
644 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
645
646 if (!cache)
647 return;
648
649 radv_pipeline_cache_finish(cache);
650 vk_free2(&device->vk.alloc, pAllocator, cache);
651 }
652
653 VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPipelineCacheData(VkDevice _device,VkPipelineCache _cache,size_t * pDataSize,void * pData)654 radv_GetPipelineCacheData(VkDevice _device, VkPipelineCache _cache, size_t *pDataSize, void *pData)
655 {
656 RADV_FROM_HANDLE(radv_device, device, _device);
657 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
658 struct vk_pipeline_cache_header *header;
659 VkResult result = VK_SUCCESS;
660
661 radv_pipeline_cache_lock(cache);
662
663 const size_t size = sizeof(*header) + cache->total_size;
664 if (pData == NULL) {
665 radv_pipeline_cache_unlock(cache);
666 *pDataSize = size;
667 return VK_SUCCESS;
668 }
669 if (*pDataSize < sizeof(*header)) {
670 radv_pipeline_cache_unlock(cache);
671 *pDataSize = 0;
672 return VK_INCOMPLETE;
673 }
674 void *p = pData, *end = (char *)pData + *pDataSize;
675 header = p;
676 header->header_size = align(sizeof(*header), alignof(struct cache_entry));
677 header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE;
678 header->vendor_id = ATI_VENDOR_ID;
679 header->device_id = device->physical_device->rad_info.pci_id;
680 memcpy(header->uuid, device->physical_device->cache_uuid, VK_UUID_SIZE);
681 p = (char *)p + header->header_size;
682
683 struct cache_entry *entry;
684 for (uint32_t i = 0; i < cache->table_size; i++) {
685 if (!cache->hash_table[i])
686 continue;
687 entry = cache->hash_table[i];
688 const uint32_t size_of_entry = entry_size(entry);
689 if ((char *)end < (char *)p + size_of_entry) {
690 result = VK_INCOMPLETE;
691 break;
692 }
693
694 memcpy(p, entry, size_of_entry);
695 for (int j = 0; j < MESA_VULKAN_SHADER_STAGES; ++j)
696 ((struct cache_entry *)p)->shaders[j] = NULL;
697 ((struct cache_entry *)p)->slab = NULL;
698 p = (char *)p + size_of_entry;
699 }
700 *pDataSize = (char *)p - (char *)pData;
701
702 radv_pipeline_cache_unlock(cache);
703 return result;
704 }
705
706 static void
radv_pipeline_cache_merge(struct radv_pipeline_cache * dst,struct radv_pipeline_cache * src)707 radv_pipeline_cache_merge(struct radv_pipeline_cache *dst, struct radv_pipeline_cache *src)
708 {
709 for (uint32_t i = 0; i < src->table_size; i++) {
710 struct cache_entry *entry = src->hash_table[i];
711 if (!entry || radv_pipeline_cache_search(dst, entry->sha1))
712 continue;
713
714 radv_pipeline_cache_add_entry(dst, entry);
715
716 src->hash_table[i] = NULL;
717 }
718 }
719
720 VKAPI_ATTR VkResult VKAPI_CALL
radv_MergePipelineCaches(VkDevice _device,VkPipelineCache destCache,uint32_t srcCacheCount,const VkPipelineCache * pSrcCaches)721 radv_MergePipelineCaches(VkDevice _device, VkPipelineCache destCache, uint32_t srcCacheCount,
722 const VkPipelineCache *pSrcCaches)
723 {
724 RADV_FROM_HANDLE(radv_pipeline_cache, dst, destCache);
725
726 for (uint32_t i = 0; i < srcCacheCount; i++) {
727 RADV_FROM_HANDLE(radv_pipeline_cache, src, pSrcCaches[i]);
728
729 radv_pipeline_cache_merge(dst, src);
730 }
731
732 return VK_SUCCESS;
733 }
734