1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "radv_shader.h"
29 #include "nir/nir.h"
30 #include "nir/nir_builder.h"
31 #include "nir/nir_xfb_info.h"
32 #include "spirv/nir_spirv.h"
33 #include "util/memstream.h"
34 #include "util/mesa-sha1.h"
35 #include "util/u_atomic.h"
36 #include "radv_debug.h"
37 #include "radv_meta.h"
38 #include "radv_private.h"
39 #include "radv_shader_args.h"
40
41 #include "util/debug.h"
42 #include "ac_binary.h"
43 #include "ac_nir.h"
44 #ifndef _WIN32
45 #include "ac_rtld.h"
46 #endif
47 #include "aco_interface.h"
48 #include "sid.h"
49 #include "vk_format.h"
50
51 #include "aco_shader_info.h"
52 #include "radv_aco_shader_info.h"
53 #ifdef LLVM_AVAILABLE
54 #include "ac_llvm_util.h"
55 #endif
56
57 static void
get_nir_options_for_stage(struct radv_physical_device * device,gl_shader_stage stage)58 get_nir_options_for_stage(struct radv_physical_device *device, gl_shader_stage stage)
59 {
60 bool split_fma = (stage <= MESA_SHADER_GEOMETRY || stage == MESA_SHADER_MESH) &&
61 device->instance->debug_flags & RADV_DEBUG_SPLIT_FMA;
62 device->nir_options[stage] = (nir_shader_compiler_options){
63 .vertex_id_zero_based = true,
64 .lower_scmp = true,
65 .lower_flrp16 = true,
66 .lower_flrp32 = true,
67 .lower_flrp64 = true,
68 .lower_device_index_to_zero = true,
69 .lower_fdiv = true,
70 .lower_fmod = true,
71 .lower_ineg = true,
72 .lower_bitfield_insert_to_bitfield_select = true,
73 .lower_bitfield_extract = true,
74 .lower_pack_snorm_4x8 = true,
75 .lower_pack_unorm_4x8 = true,
76 .lower_pack_half_2x16 = true,
77 .lower_pack_64_2x32 = true,
78 .lower_pack_64_4x16 = true,
79 .lower_pack_32_2x16 = true,
80 .lower_unpack_snorm_2x16 = true,
81 .lower_unpack_snorm_4x8 = true,
82 .lower_unpack_unorm_2x16 = true,
83 .lower_unpack_unorm_4x8 = true,
84 .lower_unpack_half_2x16 = true,
85 .lower_ffma16 = split_fma || device->rad_info.gfx_level < GFX9,
86 .lower_ffma32 = split_fma || device->rad_info.gfx_level < GFX10_3,
87 .lower_ffma64 = split_fma,
88 .lower_fpow = true,
89 .lower_mul_2x32_64 = true,
90 .lower_rotate = true,
91 .lower_iadd_sat = device->rad_info.gfx_level <= GFX8,
92 .lower_hadd = true,
93 .lower_mul_32x16 = true,
94 .has_fsub = true,
95 .has_isub = true,
96 .has_sdot_4x8 = device->rad_info.has_accelerated_dot_product,
97 .has_udot_4x8 = device->rad_info.has_accelerated_dot_product,
98 .has_dot_2x16 = device->rad_info.has_accelerated_dot_product,
99 .use_scoped_barrier = true,
100 #ifdef LLVM_AVAILABLE
101 .has_fmulz = !device->use_llvm || LLVM_VERSION_MAJOR >= 12,
102 #else
103 .has_fmulz = true,
104 #endif
105 .max_unroll_iterations = 32,
106 .max_unroll_iterations_aggressive = 128,
107 .use_interpolated_input_intrinsics = true,
108 .vectorize_vec2_16bit = true,
109 /* nir_lower_int64() isn't actually called for the LLVM backend,
110 * but this helps the loop unrolling heuristics. */
111 .lower_int64_options = nir_lower_imul64 | nir_lower_imul_high64 | nir_lower_imul_2x32_64 |
112 nir_lower_divmod64 | nir_lower_minmax64 | nir_lower_iabs64 |
113 nir_lower_iadd_sat64,
114 .lower_doubles_options = nir_lower_drcp | nir_lower_dsqrt | nir_lower_drsq | nir_lower_ddiv,
115 .divergence_analysis_options = nir_divergence_view_index_uniform,
116 };
117 }
118
119 void
radv_get_nir_options(struct radv_physical_device * device)120 radv_get_nir_options(struct radv_physical_device *device)
121 {
122 for (gl_shader_stage stage = MESA_SHADER_VERTEX; stage < MESA_VULKAN_SHADER_STAGES; stage++)
123 get_nir_options_for_stage(device, stage);
124 }
125
126 static uint8_t
vectorize_vec2_16bit(const nir_instr * instr,const void * _)127 vectorize_vec2_16bit(const nir_instr *instr, const void *_)
128 {
129 if (instr->type != nir_instr_type_alu)
130 return 0;
131
132 const nir_alu_instr *alu = nir_instr_as_alu(instr);
133 const unsigned bit_size = alu->dest.dest.ssa.bit_size;
134 if (bit_size == 16)
135 return 2;
136 else
137 return 1;
138 }
139
140 static bool
is_meta_shader(nir_shader * nir)141 is_meta_shader(nir_shader *nir)
142 {
143 return nir && nir->info.internal;
144 }
145
146 bool
radv_can_dump_shader(struct radv_device * device,nir_shader * nir,bool meta_shader)147 radv_can_dump_shader(struct radv_device *device, nir_shader *nir, bool meta_shader)
148 {
149 if (!(device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS))
150 return false;
151
152 if ((is_meta_shader(nir) || meta_shader) &&
153 !(device->instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS))
154 return false;
155
156 return true;
157 }
158
159 bool
radv_can_dump_shader_stats(struct radv_device * device,nir_shader * nir)160 radv_can_dump_shader_stats(struct radv_device *device, nir_shader *nir)
161 {
162 /* Only dump non-meta shader stats. */
163 return device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS && !is_meta_shader(nir);
164 }
165
166 void
radv_optimize_nir(struct nir_shader * shader,bool optimize_conservatively,bool allow_copies)167 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively, bool allow_copies)
168 {
169 bool progress;
170
171 do {
172 progress = false;
173
174 NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp);
175 NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp);
176
177 if (allow_copies) {
178 /* Only run this pass in the first call to
179 * radv_optimize_nir. Later calls assume that we've
180 * lowered away any copy_deref instructions and we
181 * don't want to introduce any more.
182 */
183 NIR_PASS(progress, shader, nir_opt_find_array_copies);
184 }
185
186 NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
187 NIR_PASS(progress, shader, nir_opt_dead_write_vars);
188 NIR_PASS(_, shader, nir_lower_vars_to_ssa);
189
190 NIR_PASS(_, shader, nir_lower_alu_width, vectorize_vec2_16bit, NULL);
191 NIR_PASS(_, shader, nir_lower_phis_to_scalar, true);
192
193 NIR_PASS(progress, shader, nir_copy_prop);
194 NIR_PASS(progress, shader, nir_opt_remove_phis);
195 NIR_PASS(progress, shader, nir_opt_dce);
196 if (nir_opt_trivial_continues(shader)) {
197 progress = true;
198 NIR_PASS(progress, shader, nir_copy_prop);
199 NIR_PASS(progress, shader, nir_opt_remove_phis);
200 NIR_PASS(progress, shader, nir_opt_dce);
201 }
202 NIR_PASS(progress, shader, nir_opt_if,
203 nir_opt_if_aggressive_last_continue | nir_opt_if_optimize_phi_true_false);
204 NIR_PASS(progress, shader, nir_opt_dead_cf);
205 NIR_PASS(progress, shader, nir_opt_cse);
206 NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true);
207 NIR_PASS(progress, shader, nir_opt_constant_folding);
208 NIR_PASS(progress, shader, nir_opt_algebraic);
209
210 NIR_PASS(progress, shader, nir_opt_undef);
211
212 if (shader->options->max_unroll_iterations) {
213 NIR_PASS(progress, shader, nir_opt_loop_unroll);
214 }
215 } while (progress && !optimize_conservatively);
216
217 NIR_PASS(progress, shader, nir_opt_shrink_vectors);
218 NIR_PASS(progress, shader, nir_remove_dead_variables,
219 nir_var_function_temp | nir_var_shader_in | nir_var_shader_out, NULL);
220
221 if (shader->info.stage == MESA_SHADER_FRAGMENT &&
222 (shader->info.fs.uses_discard || shader->info.fs.uses_demote)) {
223 NIR_PASS(progress, shader, nir_opt_conditional_discard);
224 NIR_PASS(progress, shader, nir_opt_move_discards_to_top);
225 }
226
227 NIR_PASS(progress, shader, nir_opt_move, nir_move_load_ubo);
228 }
229
230 void
radv_optimize_nir_algebraic(nir_shader * nir,bool opt_offsets)231 radv_optimize_nir_algebraic(nir_shader *nir, bool opt_offsets)
232 {
233 bool more_algebraic = true;
234 while (more_algebraic) {
235 more_algebraic = false;
236 NIR_PASS(_, nir, nir_copy_prop);
237 NIR_PASS(_, nir, nir_opt_dce);
238 NIR_PASS(_, nir, nir_opt_constant_folding);
239 NIR_PASS(_, nir, nir_opt_cse);
240 NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
241 }
242
243 if (opt_offsets) {
244 static const nir_opt_offsets_options offset_options = {
245 .uniform_max = 0,
246 .buffer_max = ~0,
247 .shared_max = ~0,
248 };
249 NIR_PASS(_, nir, nir_opt_offsets, &offset_options);
250 }
251
252 /* Do late algebraic optimization to turn add(a,
253 * neg(b)) back into subs, then the mandatory cleanup
254 * after algebraic. Note that it may produce fnegs,
255 * and if so then we need to keep running to squash
256 * fneg(fneg(a)).
257 */
258 bool more_late_algebraic = true;
259 while (more_late_algebraic) {
260 more_late_algebraic = false;
261 NIR_PASS(more_late_algebraic, nir, nir_opt_algebraic_late);
262 NIR_PASS(_, nir, nir_opt_constant_folding);
263 NIR_PASS(_, nir, nir_copy_prop);
264 NIR_PASS(_, nir, nir_opt_dce);
265 NIR_PASS(_, nir, nir_opt_cse);
266 }
267 }
268
269 static void
shared_var_info(const struct glsl_type * type,unsigned * size,unsigned * align)270 shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
271 {
272 assert(glsl_type_is_vector_or_scalar(type));
273
274 uint32_t comp_size = glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
275 unsigned length = glsl_get_vector_elements(type);
276 *size = comp_size * length, *align = comp_size;
277 }
278
279 struct radv_shader_debug_data {
280 struct radv_device *device;
281 const struct vk_object_base *object;
282 };
283
284 static void
radv_spirv_nir_debug(void * private_data,enum nir_spirv_debug_level level,size_t spirv_offset,const char * message)285 radv_spirv_nir_debug(void *private_data, enum nir_spirv_debug_level level, size_t spirv_offset,
286 const char *message)
287 {
288 struct radv_shader_debug_data *debug_data = private_data;
289 struct radv_instance *instance = debug_data->device->instance;
290
291 static const VkDebugReportFlagsEXT vk_flags[] = {
292 [NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
293 [NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
294 [NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
295 };
296 char buffer[256];
297
298 snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long)spirv_offset, message);
299
300 vk_debug_report(&instance->vk, vk_flags[level], debug_data->object, 0, 0, "radv", buffer);
301 }
302
303 static void
radv_compiler_debug(void * private_data,enum aco_compiler_debug_level level,const char * message)304 radv_compiler_debug(void *private_data, enum aco_compiler_debug_level level, const char *message)
305 {
306 struct radv_shader_debug_data *debug_data = private_data;
307 struct radv_instance *instance = debug_data->device->instance;
308
309 static const VkDebugReportFlagsEXT vk_flags[] = {
310 [ACO_COMPILER_DEBUG_LEVEL_PERFWARN] = VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
311 [ACO_COMPILER_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
312 };
313
314 /* VK_DEBUG_REPORT_DEBUG_BIT_EXT specifies diagnostic information
315 * from the implementation and layers.
316 */
317 vk_debug_report(&instance->vk, vk_flags[level] | VK_DEBUG_REPORT_DEBUG_BIT_EXT,
318 NULL, 0, 0, "radv", message);
319 }
320
321 static bool
lower_intrinsics(nir_shader * nir,const struct radv_pipeline_key * key)322 lower_intrinsics(nir_shader *nir, const struct radv_pipeline_key *key)
323 {
324 nir_function_impl *entry = nir_shader_get_entrypoint(nir);
325 bool progress = false;
326 nir_builder b;
327
328 nir_builder_init(&b, entry);
329
330 nir_foreach_block (block, entry) {
331 nir_foreach_instr_safe (instr, block) {
332 if (instr->type != nir_instr_type_intrinsic)
333 continue;
334
335 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
336 b.cursor = nir_before_instr(&intrin->instr);
337
338 nir_ssa_def *def = NULL;
339 switch (intrin->intrinsic) {
340 case nir_intrinsic_is_sparse_texels_resident:
341 def = nir_ieq_imm(&b, intrin->src[0].ssa, 0);
342 break;
343 case nir_intrinsic_sparse_residency_code_and:
344 def = nir_ior(&b, intrin->src[0].ssa, intrin->src[1].ssa);
345 break;
346 case nir_intrinsic_load_view_index:
347 if (key->has_multiview_view_index)
348 continue;
349 def = nir_imm_zero(&b, 1, 32);
350 break;
351 default:
352 continue;
353 }
354
355 nir_ssa_def_rewrite_uses(&intrin->dest.ssa, def);
356
357 nir_instr_remove(instr);
358 progress = true;
359 }
360 }
361
362 if (progress)
363 nir_metadata_preserve(entry, nir_metadata_block_index | nir_metadata_dominance);
364 else
365 nir_metadata_preserve(entry, nir_metadata_all);
366
367 return progress;
368 }
369
370 static bool
radv_lower_primitive_shading_rate(nir_shader * nir,enum amd_gfx_level gfx_level)371 radv_lower_primitive_shading_rate(nir_shader *nir, enum amd_gfx_level gfx_level)
372 {
373 nir_function_impl *impl = nir_shader_get_entrypoint(nir);
374 bool progress = false;
375
376 nir_builder b;
377 nir_builder_init(&b, impl);
378
379 /* Iterate in reverse order since there should be only one deref store to PRIMITIVE_SHADING_RATE
380 * after lower_io_to_temporaries for vertex shaders.
381 */
382 nir_foreach_block_reverse(block, impl) {
383 nir_foreach_instr_reverse(instr, block) {
384 if (instr->type != nir_instr_type_intrinsic)
385 continue;
386
387 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
388 if (intr->intrinsic != nir_intrinsic_store_deref)
389 continue;
390
391 nir_variable *var = nir_intrinsic_get_var(intr, 0);
392 if (var->data.mode != nir_var_shader_out ||
393 var->data.location != VARYING_SLOT_PRIMITIVE_SHADING_RATE)
394 continue;
395
396 b.cursor = nir_before_instr(instr);
397
398 nir_ssa_def *val = nir_ssa_for_src(&b, intr->src[1], 1);
399
400 /* x_rate = (shadingRate & (Horizontal2Pixels | Horizontal4Pixels)) ? 0x1 : 0x0; */
401 nir_ssa_def *x_rate = nir_iand_imm(&b, val, 12);
402 x_rate = nir_b2i32(&b, nir_ine_imm(&b, x_rate, 0));
403
404 /* y_rate = (shadingRate & (Vertical2Pixels | Vertical4Pixels)) ? 0x1 : 0x0; */
405 nir_ssa_def *y_rate = nir_iand_imm(&b, val, 3);
406 y_rate = nir_b2i32(&b, nir_ine_imm(&b, y_rate, 0));
407
408 nir_ssa_def *out = NULL;
409
410 /* MS:
411 * Primitive shading rate is a per-primitive output, it is
412 * part of the second channel of the primitive export.
413 * Bits [28:31] = VRS rate
414 * This will be added to the other bits of that channel in the backend.
415 *
416 * VS, TES, GS:
417 * Primitive shading rate is a per-vertex output pos export.
418 * Bits [2:5] = VRS rate
419 * HW shading rate = (xRate << 2) | (yRate << 4)
420 *
421 * GFX11: 4-bit VRS_SHADING_RATE enum
422 * GFX10: X = low 2 bits, Y = high 2 bits
423 */
424 unsigned x_rate_shift = 2;
425 unsigned y_rate_shift = 4;
426
427 if (gfx_level >= GFX11) {
428 x_rate_shift = 4;
429 y_rate_shift = 2;
430 }
431 if (nir->info.stage == MESA_SHADER_MESH) {
432 x_rate_shift += 26;
433 y_rate_shift += 26;
434 }
435
436 out = nir_ior(&b, nir_ishl_imm(&b, x_rate, x_rate_shift), nir_ishl_imm(&b, y_rate, y_rate_shift));
437
438 nir_instr_rewrite_src(&intr->instr, &intr->src[1], nir_src_for_ssa(out));
439
440 progress = true;
441 if (nir->info.stage == MESA_SHADER_VERTEX)
442 break;
443 }
444 if (nir->info.stage == MESA_SHADER_VERTEX && progress)
445 break;
446 }
447
448 if (progress)
449 nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
450 else
451 nir_metadata_preserve(impl, nir_metadata_all);
452
453 return progress;
454 }
455
456 bool
radv_force_primitive_shading_rate(nir_shader * nir,struct radv_device * device)457 radv_force_primitive_shading_rate(nir_shader *nir, struct radv_device *device)
458 {
459 nir_function_impl *impl = nir_shader_get_entrypoint(nir);
460 bool progress = false;
461
462 nir_builder b;
463 nir_builder_init(&b, impl);
464
465 nir_foreach_block_reverse(block, impl) {
466 nir_foreach_instr_reverse(instr, block) {
467 if (instr->type != nir_instr_type_intrinsic)
468 continue;
469
470 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
471 if (intr->intrinsic != nir_intrinsic_store_deref)
472 continue;
473
474 nir_variable *var = nir_intrinsic_get_var(intr, 0);
475 if (var->data.mode != nir_var_shader_out ||
476 var->data.location != VARYING_SLOT_POS)
477 continue;
478
479 b.cursor = nir_after_instr(instr);
480
481 nir_ssa_scalar scalar_idx = nir_ssa_scalar_resolved(intr->src[1].ssa, 3);
482
483 /* Use coarse shading if the value of Pos.W can't be determined or if its value is != 1
484 * (typical for non-GUI elements).
485 */
486 if (!nir_ssa_scalar_is_const(scalar_idx) ||
487 nir_ssa_scalar_as_uint(scalar_idx) != 0x3f800000u) {
488
489 var = nir_variable_create(nir, nir_var_shader_out, glsl_int_type(), "vrs rate");
490 var->data.location = VARYING_SLOT_PRIMITIVE_SHADING_RATE;
491 var->data.interpolation = INTERP_MODE_NONE;
492
493 nir_ssa_def *vrs_rates = nir_load_force_vrs_rates_amd(&b);
494
495 nir_ssa_def *pos_w = nir_channel(&b, intr->src[1].ssa, 3);
496 nir_ssa_def *val = nir_bcsel(&b, nir_fneu(&b, pos_w, nir_imm_float(&b, 1.0f)),
497 vrs_rates, nir_imm_int(&b, 0));
498
499 nir_deref_instr *deref = nir_build_deref_var(&b, var);
500 nir_store_deref(&b, deref, val, 0x1);
501
502 /* Update outputs_written to reflect that the pass added a new output. */
503 nir->info.outputs_written |= BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE);
504
505 progress = true;
506 if (nir->info.stage == MESA_SHADER_VERTEX)
507 break;
508 }
509 }
510 if (nir->info.stage == MESA_SHADER_VERTEX && progress)
511 break;
512 }
513
514 if (progress)
515 nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
516 else
517 nir_metadata_preserve(impl, nir_metadata_all);
518
519 return progress;
520 }
521
522 bool
radv_lower_fs_intrinsics(nir_shader * nir,const struct radv_pipeline_stage * fs_stage,const struct radv_pipeline_key * key)523 radv_lower_fs_intrinsics(nir_shader *nir, const struct radv_pipeline_stage *fs_stage,
524 const struct radv_pipeline_key *key)
525 {
526 const struct radv_shader_info *info = &fs_stage->info;
527 const struct radv_shader_args *args = &fs_stage->args;
528 nir_function_impl *impl = nir_shader_get_entrypoint(nir);
529 bool progress = false;
530
531 nir_builder b;
532 nir_builder_init(&b, impl);
533
534 nir_foreach_block(block, impl) {
535 nir_foreach_instr_safe(instr, block) {
536 if (instr->type != nir_instr_type_intrinsic)
537 continue;
538
539 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
540 b.cursor = nir_after_instr(&intrin->instr);
541
542 switch (intrin->intrinsic) {
543 case nir_intrinsic_load_sample_mask_in: {
544 uint8_t log2_ps_iter_samples;
545
546 if (info->ps.uses_sample_shading) {
547 log2_ps_iter_samples = util_logbase2(key->ps.num_samples);
548 } else {
549 log2_ps_iter_samples = key->ps.log2_ps_iter_samples;
550 }
551
552 nir_ssa_def *sample_coverage =
553 nir_load_vector_arg_amd(&b, 1, .base = args->ac.sample_coverage.arg_index);
554
555 nir_ssa_def *def = NULL;
556 if (log2_ps_iter_samples) {
557 /* gl_SampleMaskIn[0] = (SampleCoverage & (1 << gl_SampleID)). */
558 nir_ssa_def *sample_id = nir_load_sample_id(&b);
559 def = nir_iand(&b, sample_coverage, nir_ishl(&b, nir_imm_int(&b, 1u), sample_id));
560 } else {
561 def = sample_coverage;
562 }
563
564 nir_ssa_def_rewrite_uses(&intrin->dest.ssa, def);
565
566 nir_instr_remove(instr);
567 progress = true;
568 break;
569 }
570 case nir_intrinsic_load_frag_coord: {
571 if (!key->adjust_frag_coord_z)
572 continue;
573
574 if (!(nir_ssa_def_components_read(&intrin->dest.ssa) & (1 << 2)))
575 continue;
576
577 nir_ssa_def *frag_z = nir_channel(&b, &intrin->dest.ssa, 2);
578
579 /* adjusted_frag_z = fddx_fine(frag_z) * 0.0625 + frag_z */
580 nir_ssa_def *adjusted_frag_z = nir_fddx_fine(&b, frag_z);
581 adjusted_frag_z = nir_ffma_imm1(&b, adjusted_frag_z, 0.0625f, frag_z);
582
583 /* VRS Rate X = Ancillary[2:3] */
584 nir_ssa_def *ancillary =
585 nir_load_vector_arg_amd(&b, 1, .base = args->ac.ancillary.arg_index);
586 nir_ssa_def *x_rate = nir_ubfe_imm(&b, ancillary, 2, 2);
587
588 /* xRate = xRate == 0x1 ? adjusted_frag_z : frag_z. */
589 nir_ssa_def *cond = nir_ieq_imm(&b, x_rate, 1);
590 frag_z = nir_bcsel(&b, cond, adjusted_frag_z, frag_z);
591
592 nir_ssa_def *new_dest = nir_vector_insert_imm(&b, &intrin->dest.ssa, frag_z, 2);
593 nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa, new_dest, new_dest->parent_instr);
594
595 progress = true;
596 break;
597 }
598 default:
599 break;
600 }
601 }
602 }
603
604 if (progress)
605 nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
606 else
607 nir_metadata_preserve(impl, nir_metadata_all);
608
609 return progress;
610 }
611
612 /* Emulates NV_mesh_shader first_task using first_vertex. */
613 static bool
radv_lower_ms_workgroup_id(nir_shader * nir)614 radv_lower_ms_workgroup_id(nir_shader *nir)
615 {
616 nir_function_impl *impl = nir_shader_get_entrypoint(nir);
617 bool progress = false;
618 nir_builder b;
619 nir_builder_init(&b, impl);
620
621 nir_foreach_block(block, impl) {
622 nir_foreach_instr_safe(instr, block) {
623 if (instr->type != nir_instr_type_intrinsic)
624 continue;
625
626 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
627 if (intrin->intrinsic != nir_intrinsic_load_workgroup_id)
628 continue;
629
630 progress = true;
631 b.cursor = nir_after_instr(instr);
632 nir_ssa_def *x = nir_channel(&b, &intrin->dest.ssa, 0);
633 nir_ssa_def *x_full = nir_iadd(&b, x, nir_load_first_vertex(&b));
634 nir_ssa_def *v = nir_vector_insert_imm(&b, &intrin->dest.ssa, x_full, 0);
635 nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa, v, v->parent_instr);
636 }
637 }
638
639 nir_metadata preserved =
640 progress ? (nir_metadata_block_index | nir_metadata_dominance) : nir_metadata_all;
641 nir_metadata_preserve(impl, preserved);
642 return progress;
643 }
644
645 static bool
is_sincos(const nir_instr * instr,const void * _)646 is_sincos(const nir_instr *instr, const void *_)
647 {
648 return instr->type == nir_instr_type_alu &&
649 (nir_instr_as_alu(instr)->op == nir_op_fsin || nir_instr_as_alu(instr)->op == nir_op_fcos);
650 }
651
652 static nir_ssa_def *
lower_sincos(struct nir_builder * b,nir_instr * instr,void * _)653 lower_sincos(struct nir_builder *b, nir_instr *instr, void *_)
654 {
655 nir_alu_instr *sincos = nir_instr_as_alu(instr);
656 nir_ssa_def *src = nir_fmul_imm(b, nir_ssa_for_alu_src(b, sincos, 0), 0.15915493667125702);
657 return sincos->op == nir_op_fsin ? nir_fsin_amd(b, src) : nir_fcos_amd(b, src);
658 }
659
660 static bool
is_not_xfb_output(nir_variable * var,void * data)661 is_not_xfb_output(nir_variable *var, void *data)
662 {
663 if (var->data.mode != nir_var_shader_out)
664 return true;
665
666 return !var->data.explicit_xfb_buffer &&
667 !var->data.explicit_xfb_stride;
668 }
669
670 nir_shader *
radv_shader_spirv_to_nir(struct radv_device * device,const struct radv_pipeline_stage * stage,const struct radv_pipeline_key * key)671 radv_shader_spirv_to_nir(struct radv_device *device, const struct radv_pipeline_stage *stage,
672 const struct radv_pipeline_key *key)
673 {
674 unsigned subgroup_size = 64, ballot_bit_size = 64;
675 if (key->cs.compute_subgroup_size) {
676 /* Only compute shaders currently support requiring a
677 * specific subgroup size.
678 */
679 assert(stage->stage == MESA_SHADER_COMPUTE);
680 subgroup_size = key->cs.compute_subgroup_size;
681 ballot_bit_size = key->cs.compute_subgroup_size;
682 }
683
684 nir_shader *nir;
685
686 if (stage->internal_nir) {
687 /* Some things such as our meta clear/blit code will give us a NIR
688 * shader directly. In that case, we just ignore the SPIR-V entirely
689 * and just use the NIR shader. We don't want to alter meta and RT
690 * shaders IR directly, so clone it first. */
691 nir = nir_shader_clone(NULL, stage->internal_nir);
692 nir_validate_shader(nir, "in internal shader");
693
694 assert(exec_list_length(&nir->functions) == 1);
695 } else {
696 uint32_t *spirv = (uint32_t *)stage->spirv.data;
697 assert(stage->spirv.size % 4 == 0);
698
699 bool dump_meta = device->instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS;
700 if ((device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV) &&
701 (!device->app_shaders_internal || dump_meta))
702 radv_print_spirv(stage->spirv.data, stage->spirv.size, stderr);
703
704 uint32_t num_spec_entries = 0;
705 struct nir_spirv_specialization *spec_entries =
706 vk_spec_info_to_nir_spirv(stage->spec_info, &num_spec_entries);
707 struct radv_shader_debug_data spirv_debug_data = {
708 .device = device,
709 .object = stage->spirv.object,
710 };
711 const struct spirv_to_nir_options spirv_options = {
712 .caps =
713 {
714 .amd_fragment_mask = true,
715 .amd_gcn_shader = true,
716 .amd_image_gather_bias_lod = true,
717 .amd_image_read_write_lod = true,
718 .amd_shader_ballot = true,
719 .amd_shader_explicit_vertex_parameter = true,
720 .amd_trinary_minmax = true,
721 .demote_to_helper_invocation = true,
722 .derivative_group = true,
723 .descriptor_array_dynamic_indexing = true,
724 .descriptor_array_non_uniform_indexing = true,
725 .descriptor_indexing = true,
726 .device_group = true,
727 .draw_parameters = true,
728 .float_controls = true,
729 .float16 = device->physical_device->rad_info.has_packed_math_16bit,
730 .float32_atomic_add = true,
731 .float32_atomic_min_max = true,
732 .float64 = true,
733 .float64_atomic_min_max = true,
734 .geometry_streams = true,
735 .groups = true,
736 .image_atomic_int64 = true,
737 .image_ms_array = true,
738 .image_read_without_format = true,
739 .image_write_without_format = true,
740 .int8 = true,
741 .int16 = true,
742 .int64 = true,
743 .int64_atomics = true,
744 .integer_functions2 = true,
745 .mesh_shading_nv = true,
746 .min_lod = true,
747 .multiview = true,
748 .physical_storage_buffer_address = true,
749 .post_depth_coverage = true,
750 .ray_cull_mask = true,
751 .ray_query = true,
752 .ray_tracing = true,
753 .ray_traversal_primitive_culling = true,
754 .runtime_descriptor_array = true,
755 .shader_clock = true,
756 .shader_viewport_index_layer = true,
757 .sparse_residency = true,
758 .stencil_export = true,
759 .storage_8bit = true,
760 .storage_16bit = true,
761 .storage_image_ms = true,
762 .subgroup_arithmetic = true,
763 .subgroup_ballot = true,
764 .subgroup_basic = true,
765 .subgroup_quad = true,
766 .subgroup_shuffle = true,
767 .subgroup_uniform_control_flow = true,
768 .subgroup_vote = true,
769 .tessellation = true,
770 .transform_feedback = true,
771 .variable_pointers = true,
772 .vk_memory_model = true,
773 .vk_memory_model_device_scope = true,
774 .fragment_shading_rate = device->physical_device->rad_info.gfx_level >= GFX10_3,
775 .workgroup_memory_explicit_layout = true,
776 },
777 .ubo_addr_format = nir_address_format_vec2_index_32bit_offset,
778 .ssbo_addr_format = nir_address_format_vec2_index_32bit_offset,
779 .phys_ssbo_addr_format = nir_address_format_64bit_global,
780 .push_const_addr_format = nir_address_format_logical,
781 .shared_addr_format = nir_address_format_32bit_offset,
782 .constant_addr_format = nir_address_format_64bit_global,
783 .use_deref_buffer_array_length = true,
784 .debug =
785 {
786 .func = radv_spirv_nir_debug,
787 .private_data = &spirv_debug_data,
788 },
789 };
790 nir = spirv_to_nir(spirv, stage->spirv.size / 4, spec_entries, num_spec_entries, stage->stage,
791 stage->entrypoint, &spirv_options,
792 &device->physical_device->nir_options[stage->stage]);
793 nir->info.internal |= device->app_shaders_internal;
794 assert(nir->info.stage == stage->stage);
795 nir_validate_shader(nir, "after spirv_to_nir");
796
797 free(spec_entries);
798
799 const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = {
800 .point_coord = true,
801 };
802 NIR_PASS_V(nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings);
803
804 /* We have to lower away local constant initializers right before we
805 * inline functions. That way they get properly initialized at the top
806 * of the function and not at the top of its caller.
807 */
808 NIR_PASS(_, nir, nir_lower_variable_initializers, nir_var_function_temp);
809 NIR_PASS(_, nir, nir_lower_returns);
810 bool progress = false;
811 NIR_PASS(progress, nir, nir_inline_functions);
812 if (progress) {
813 NIR_PASS(_, nir, nir_opt_copy_prop_vars);
814 NIR_PASS(_, nir, nir_copy_prop);
815 }
816 NIR_PASS(_, nir, nir_opt_deref);
817
818 /* Pick off the single entrypoint that we want */
819 foreach_list_typed_safe(nir_function, func, node, &nir->functions)
820 {
821 if (func->is_entrypoint)
822 func->name = ralloc_strdup(func, "main");
823 else
824 exec_node_remove(&func->node);
825 }
826 assert(exec_list_length(&nir->functions) == 1);
827
828 /* Make sure we lower constant initializers on output variables so that
829 * nir_remove_dead_variables below sees the corresponding stores
830 */
831 NIR_PASS(_, nir, nir_lower_variable_initializers, nir_var_shader_out);
832
833 /* Now that we've deleted all but the main function, we can go ahead and
834 * lower the rest of the constant initializers.
835 */
836 NIR_PASS(_, nir, nir_lower_variable_initializers, ~0);
837
838 /* Split member structs. We do this before lower_io_to_temporaries so that
839 * it doesn't lower system values to temporaries by accident.
840 */
841 NIR_PASS(_, nir, nir_split_var_copies);
842 NIR_PASS(_, nir, nir_split_per_member_structs);
843
844 if (nir->info.stage == MESA_SHADER_FRAGMENT)
845 NIR_PASS(_, nir, nir_lower_io_to_vector, nir_var_shader_out);
846 if (nir->info.stage == MESA_SHADER_FRAGMENT)
847 NIR_PASS(_, nir, nir_lower_input_attachments,
848 &(nir_input_attachment_options){
849 .use_fragcoord_sysval = true,
850 .use_layer_id_sysval = false,
851 });
852
853 nir_remove_dead_variables_options dead_vars_opts = {
854 .can_remove_var = is_not_xfb_output,
855 };
856 NIR_PASS(_, nir, nir_remove_dead_variables,
857 nir_var_shader_in | nir_var_shader_out | nir_var_system_value | nir_var_mem_shared,
858 &dead_vars_opts);
859
860 /* Variables can make nir_propagate_invariant more conservative
861 * than it needs to be.
862 */
863 NIR_PASS(_, nir, nir_lower_global_vars_to_local);
864 NIR_PASS(_, nir, nir_lower_vars_to_ssa);
865
866 NIR_PASS(_, nir, nir_propagate_invariant, key->invariant_geom);
867
868 NIR_PASS(_, nir, nir_lower_clip_cull_distance_arrays);
869
870 if (nir->info.stage == MESA_SHADER_VERTEX ||
871 nir->info.stage == MESA_SHADER_TESS_EVAL ||
872 nir->info.stage == MESA_SHADER_GEOMETRY)
873 NIR_PASS_V(nir, nir_shader_gather_xfb_info);
874
875 NIR_PASS(_, nir, nir_lower_discard_or_demote, key->ps.lower_discard_to_demote);
876
877 nir_lower_doubles_options lower_doubles = nir->options->lower_doubles_options;
878
879 if (device->physical_device->rad_info.gfx_level == GFX6) {
880 /* GFX6 doesn't support v_floor_f64 and the precision
881 * of v_fract_f64 which is used to implement 64-bit
882 * floor is less than what Vulkan requires.
883 */
884 lower_doubles |= nir_lower_dfloor;
885 }
886
887 NIR_PASS(_, nir, nir_lower_doubles, NULL, lower_doubles);
888
889 NIR_PASS(_, nir, nir_shader_lower_instructions, &is_sincos, &lower_sincos, NULL);
890 }
891
892 NIR_PASS(_, nir, nir_lower_system_values);
893 nir_lower_compute_system_values_options csv_options = {
894 /* Mesh shaders run as NGG which can implement local_invocation_index from
895 * the wave ID in merged_wave_info, but they don't have local_invocation_ids.
896 */
897 .lower_cs_local_id_to_index = nir->info.stage == MESA_SHADER_MESH,
898 .lower_local_invocation_index = nir->info.stage == MESA_SHADER_COMPUTE &&
899 ((nir->info.workgroup_size[0] == 1) +
900 (nir->info.workgroup_size[1] == 1) +
901 (nir->info.workgroup_size[2] == 1)) == 2,
902 };
903 NIR_PASS(_, nir, nir_lower_compute_system_values, &csv_options);
904
905 if (nir->info.stage == MESA_SHADER_MESH) {
906 /* NV_mesh_shader: include first_task (aka. first_vertex) in workgroup ID. */
907 NIR_PASS(_, nir, radv_lower_ms_workgroup_id);
908
909 /* Mesh shaders only have a 1D "vertex index" which we use
910 * as "workgroup index" to emulate the 3D workgroup ID.
911 */
912 nir_lower_compute_system_values_options o = {
913 .lower_workgroup_id_to_index = true,
914 };
915 NIR_PASS(_, nir, nir_lower_compute_system_values, &o);
916 }
917
918 /* Vulkan uses the separate-shader linking model */
919 nir->info.separate_shader = true;
920
921 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
922
923 if (nir->info.ray_queries > 0) {
924 NIR_PASS(_, nir, nir_opt_ray_queries);
925 NIR_PASS(_, nir, radv_nir_lower_ray_queries, device);
926 }
927
928 static const nir_lower_tex_options tex_options = {
929 .lower_txp = ~0,
930 .lower_txf_offset = true,
931 .lower_tg4_offsets = true,
932 .lower_txs_cube_array = true,
933 .lower_to_fragment_fetch_amd = true,
934 .lower_lod_zero_width = true,
935 .lower_invalid_implicit_lod = true,
936 .lower_array_layer_round_even = true,
937 };
938
939 NIR_PASS(_, nir, nir_lower_tex, &tex_options);
940
941 static const nir_lower_image_options image_options = {
942 .lower_cube_size = true,
943 };
944
945 NIR_PASS(_, nir, nir_lower_image, &image_options);
946
947 NIR_PASS(_, nir, nir_lower_vars_to_ssa);
948
949 if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_GEOMETRY ||
950 nir->info.stage == MESA_SHADER_FRAGMENT) {
951 NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, true);
952 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
953 NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, false);
954 }
955
956 NIR_PASS(_, nir, nir_split_var_copies);
957
958 NIR_PASS(_, nir, nir_lower_global_vars_to_local);
959 NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
960 bool gfx7minus = device->physical_device->rad_info.gfx_level <= GFX7;
961 NIR_PASS(_, nir, nir_lower_subgroups,
962 &(struct nir_lower_subgroups_options){
963 .subgroup_size = subgroup_size,
964 .ballot_bit_size = ballot_bit_size,
965 .ballot_components = 1,
966 .lower_to_scalar = 1,
967 .lower_subgroup_masks = 1,
968 .lower_relative_shuffle = 1,
969 .lower_shuffle_to_32bit = 1,
970 .lower_vote_eq = 1,
971 .lower_quad_broadcast_dynamic = 1,
972 .lower_quad_broadcast_dynamic_to_const = gfx7minus,
973 .lower_shuffle_to_swizzle_amd = 1,
974 });
975
976 NIR_PASS(_, nir, nir_lower_load_const_to_scalar);
977 NIR_PASS(_, nir, nir_opt_shrink_stores, !device->instance->disable_shrink_image_store);
978
979 if (!key->optimisations_disabled)
980 radv_optimize_nir(nir, false, true);
981
982 /* We call nir_lower_var_copies() after the first radv_optimize_nir()
983 * to remove any copies introduced by nir_opt_find_array_copies().
984 */
985 NIR_PASS(_, nir, nir_lower_var_copies);
986
987 unsigned lower_flrp = (nir->options->lower_flrp16 ? 16 : 0) |
988 (nir->options->lower_flrp32 ? 32 : 0) |
989 (nir->options->lower_flrp64 ? 64 : 0);
990 if (lower_flrp != 0) {
991 bool progress = false;
992 NIR_PASS(progress, nir, nir_lower_flrp, lower_flrp, false /* always precise */);
993 if (progress)
994 NIR_PASS(_, nir, nir_opt_constant_folding);
995 }
996
997 const nir_opt_access_options opt_access_options = {
998 .is_vulkan = true,
999 .infer_non_readable = true,
1000 };
1001 NIR_PASS(_, nir, nir_opt_access, &opt_access_options);
1002
1003 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const, nir_address_format_32bit_offset);
1004
1005 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo | nir_var_mem_ssbo,
1006 nir_address_format_vec2_index_32bit_offset);
1007
1008 NIR_PASS(_, nir, lower_intrinsics, key);
1009
1010 /* Lower deref operations for compute shared memory. */
1011 if (nir->info.stage == MESA_SHADER_COMPUTE ||
1012 nir->info.stage == MESA_SHADER_TASK ||
1013 nir->info.stage == MESA_SHADER_MESH) {
1014 nir_variable_mode var_modes = nir_var_mem_shared;
1015
1016 if (nir->info.stage == MESA_SHADER_TASK ||
1017 nir->info.stage == MESA_SHADER_MESH)
1018 var_modes |= nir_var_mem_task_payload;
1019
1020 if (!nir->info.shared_memory_explicit_layout) {
1021 NIR_PASS(_, nir, nir_lower_vars_to_explicit_types, var_modes, shared_var_info);
1022 }
1023 NIR_PASS(_, nir, nir_lower_explicit_io, var_modes, nir_address_format_32bit_offset);
1024
1025 if (nir->info.zero_initialize_shared_memory && nir->info.shared_size > 0) {
1026 const unsigned chunk_size = 16; /* max single store size */
1027 const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size);
1028 NIR_PASS(_, nir, nir_zero_initialize_shared_memory, shared_size, chunk_size);
1029 }
1030 }
1031
1032 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global | nir_var_mem_constant,
1033 nir_address_format_64bit_global);
1034
1035 /* Lower large variables that are always constant with load_constant
1036 * intrinsics, which get turned into PC-relative loads from a data
1037 * section next to the shader.
1038 */
1039 NIR_PASS(_, nir, nir_opt_large_constants, glsl_get_natural_size_align_bytes, 16);
1040
1041 /* Lower primitive shading rate to match HW requirements. */
1042 if ((nir->info.stage == MESA_SHADER_VERTEX ||
1043 nir->info.stage == MESA_SHADER_GEOMETRY ||
1044 nir->info.stage == MESA_SHADER_MESH) &&
1045 nir->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE)) {
1046 /* Lower primitive shading rate to match HW requirements. */
1047 NIR_PASS(_, nir, radv_lower_primitive_shading_rate,
1048 device->physical_device->rad_info.gfx_level);
1049 }
1050
1051 /* Indirect lowering must be called after the radv_optimize_nir() loop
1052 * has been called at least once. Otherwise indirect lowering can
1053 * bloat the instruction count of the loop and cause it to be
1054 * considered too large for unrolling.
1055 */
1056 if (ac_nir_lower_indirect_derefs(nir, device->physical_device->rad_info.gfx_level) &&
1057 !key->optimisations_disabled && nir->info.stage != MESA_SHADER_COMPUTE) {
1058 /* Optimize the lowered code before the linking optimizations. */
1059 radv_optimize_nir(nir, false, false);
1060 }
1061
1062
1063 return nir;
1064 }
1065
1066 static int
type_size_vec4(const struct glsl_type * type,bool bindless)1067 type_size_vec4(const struct glsl_type *type, bool bindless)
1068 {
1069 return glsl_count_attribute_slots(type, false);
1070 }
1071
1072 static nir_variable *
find_layer_in_var(nir_shader * nir)1073 find_layer_in_var(nir_shader *nir)
1074 {
1075 nir_variable *var = nir_find_variable_with_location(nir, nir_var_shader_in, VARYING_SLOT_LAYER);
1076 if (var != NULL)
1077 return var;
1078
1079 var = nir_variable_create(nir, nir_var_shader_in, glsl_int_type(), "layer id");
1080 var->data.location = VARYING_SLOT_LAYER;
1081 var->data.interpolation = INTERP_MODE_FLAT;
1082 return var;
1083 }
1084
1085 /* We use layered rendering to implement multiview, which means we need to map
1086 * view_index to gl_Layer. The code generates a load from the layer_id sysval,
1087 * but since we don't have a way to get at this information from the fragment
1088 * shader, we also need to lower this to the gl_Layer varying. This pass
1089 * lowers both to a varying load from the LAYER slot, before lowering io, so
1090 * that nir_assign_var_locations() will give the LAYER varying the correct
1091 * driver_location.
1092 */
1093
1094 static bool
lower_view_index(nir_shader * nir,bool per_primitive)1095 lower_view_index(nir_shader *nir, bool per_primitive)
1096 {
1097 bool progress = false;
1098 nir_function_impl *entry = nir_shader_get_entrypoint(nir);
1099 nir_builder b;
1100 nir_builder_init(&b, entry);
1101
1102 nir_variable *layer = NULL;
1103 nir_foreach_block (block, entry) {
1104 nir_foreach_instr_safe (instr, block) {
1105 if (instr->type != nir_instr_type_intrinsic)
1106 continue;
1107
1108 nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr);
1109 if (load->intrinsic != nir_intrinsic_load_view_index)
1110 continue;
1111
1112 if (!layer)
1113 layer = find_layer_in_var(nir);
1114
1115 layer->data.per_primitive = per_primitive;
1116 b.cursor = nir_before_instr(instr);
1117 nir_ssa_def *def = nir_load_var(&b, layer);
1118 nir_ssa_def_rewrite_uses(&load->dest.ssa, def);
1119
1120 /* Update inputs_read to reflect that the pass added a new input. */
1121 nir->info.inputs_read |= VARYING_BIT_LAYER;
1122 if (per_primitive)
1123 nir->info.per_primitive_inputs |= VARYING_BIT_LAYER;
1124
1125 nir_instr_remove(instr);
1126 progress = true;
1127 }
1128 }
1129
1130 if (progress)
1131 nir_metadata_preserve(entry, nir_metadata_block_index | nir_metadata_dominance);
1132 else
1133 nir_metadata_preserve(entry, nir_metadata_all);
1134
1135 return progress;
1136 }
1137
1138 void
radv_lower_io(struct radv_device * device,nir_shader * nir,bool is_mesh_shading)1139 radv_lower_io(struct radv_device *device, nir_shader *nir, bool is_mesh_shading)
1140 {
1141 if (nir->info.stage == MESA_SHADER_COMPUTE)
1142 return;
1143
1144 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
1145 NIR_PASS(_, nir, lower_view_index, is_mesh_shading);
1146 nir_assign_io_var_locations(nir, nir_var_shader_in, &nir->num_inputs, MESA_SHADER_FRAGMENT);
1147 }
1148
1149 NIR_PASS(_, nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out, type_size_vec4,
1150 nir_lower_io_lower_64bit_to_32);
1151
1152 /* This pass needs actual constants */
1153 NIR_PASS(_, nir, nir_opt_constant_folding);
1154
1155 NIR_PASS(_, nir, nir_io_add_const_offset_to_base, nir_var_shader_in | nir_var_shader_out);
1156 }
1157
1158 bool
radv_lower_io_to_mem(struct radv_device * device,struct radv_pipeline_stage * stage,const struct radv_pipeline_key * pl_key)1159 radv_lower_io_to_mem(struct radv_device *device, struct radv_pipeline_stage *stage,
1160 const struct radv_pipeline_key *pl_key)
1161 {
1162 const struct radv_shader_info *info = &stage->info;
1163 nir_shader *nir = stage->nir;
1164
1165 if (nir->info.stage == MESA_SHADER_VERTEX) {
1166 if (info->vs.as_ls) {
1167 NIR_PASS_V(nir, ac_nir_lower_ls_outputs_to_mem, NULL, info->vs.tcs_in_out_eq,
1168 info->vs.tcs_temp_only_input_mask);
1169 return true;
1170 } else if (info->vs.as_es) {
1171 NIR_PASS_V(nir, ac_nir_lower_es_outputs_to_mem, NULL,
1172 device->physical_device->rad_info.gfx_level,
1173 info->vs.num_linked_outputs * 16u);
1174 return true;
1175 }
1176 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
1177 NIR_PASS_V(nir, ac_nir_lower_hs_inputs_to_mem, NULL, info->vs.tcs_in_out_eq);
1178 NIR_PASS_V(nir, ac_nir_lower_hs_outputs_to_mem, NULL,
1179 device->physical_device->rad_info.gfx_level,
1180 info->tcs.tes_reads_tess_factors, info->tcs.tes_inputs_read,
1181 info->tcs.tes_patch_inputs_read, info->tcs.num_linked_outputs,
1182 info->tcs.num_linked_patch_outputs, info->wave_size,
1183 false, false, true);
1184
1185 return true;
1186 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
1187 NIR_PASS_V(nir, ac_nir_lower_tes_inputs_to_mem, NULL);
1188
1189 if (info->tes.as_es) {
1190 NIR_PASS_V(nir, ac_nir_lower_es_outputs_to_mem, NULL,
1191 device->physical_device->rad_info.gfx_level,
1192 info->tes.num_linked_outputs * 16u);
1193 }
1194
1195 return true;
1196 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
1197 NIR_PASS_V(nir, ac_nir_lower_gs_inputs_to_mem, NULL,
1198 device->physical_device->rad_info.gfx_level, false);
1199 return true;
1200 } else if (nir->info.stage == MESA_SHADER_TASK) {
1201 ac_nir_apply_first_task_to_task_shader(nir);
1202 ac_nir_lower_task_outputs_to_mem(nir, AC_TASK_PAYLOAD_ENTRY_BYTES,
1203 device->physical_device->task_info.num_entries);
1204 return true;
1205 } else if (nir->info.stage == MESA_SHADER_MESH) {
1206 ac_nir_lower_mesh_inputs_to_mem(nir, AC_TASK_PAYLOAD_ENTRY_BYTES,
1207 device->physical_device->task_info.num_entries);
1208 return true;
1209 }
1210
1211 return false;
1212 }
1213
1214 bool
radv_consider_culling(const struct radv_physical_device * pdevice,struct nir_shader * nir,uint64_t ps_inputs_read,unsigned num_vertices_per_primitive,const struct radv_shader_info * info)1215 radv_consider_culling(const struct radv_physical_device *pdevice, struct nir_shader *nir, uint64_t ps_inputs_read,
1216 unsigned num_vertices_per_primitive, const struct radv_shader_info *info)
1217 {
1218 /* Culling doesn't make sense for meta shaders. */
1219 if (is_meta_shader(nir))
1220 return false;
1221
1222 /* We don't support culling with multiple viewports yet. */
1223 if (nir->info.outputs_written & (VARYING_BIT_VIEWPORT | VARYING_BIT_VIEWPORT_MASK))
1224 return false;
1225
1226 /* We don't support culling with vertex shader prologs. */
1227 if (info->vs.has_prolog)
1228 return false;
1229
1230 if (!pdevice->use_ngg_culling)
1231 return false;
1232
1233 /* Shader based culling efficiency can depend on PS throughput.
1234 * Estimate an upper limit for PS input param count based on GPU info.
1235 */
1236 unsigned max_ps_params;
1237 unsigned max_render_backends = pdevice->rad_info.max_render_backends;
1238 unsigned max_se = pdevice->rad_info.max_se;
1239
1240 if (max_render_backends / max_se == 4)
1241 max_ps_params = 6; /* Navi21 and other GFX10.3 dGPUs. */
1242 else
1243 max_ps_params = 4; /* Navi 1x. */
1244
1245 /* TODO: consider other heuristics here, such as PS execution time */
1246 if (util_bitcount64(ps_inputs_read & ~VARYING_BIT_POS) > max_ps_params)
1247 return false;
1248
1249 /* Only triangle culling is supported. */
1250 if (num_vertices_per_primitive != 3)
1251 return false;
1252
1253 /* When the shader writes memory, it is difficult to guarantee correctness.
1254 * Future work:
1255 * - if only write-only SSBOs are used
1256 * - if we can prove that non-position outputs don't rely on memory stores
1257 * then may be okay to keep the memory stores in the 1st shader part, and delete them from the 2nd.
1258 */
1259 if (nir->info.writes_memory)
1260 return false;
1261
1262 /* When the shader relies on the subgroup invocation ID, we'd break it, because the ID changes after the culling.
1263 * Future work: try to save this to LDS and reload, but it can still be broken in subtle ways.
1264 */
1265 if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SUBGROUP_INVOCATION))
1266 return false;
1267
1268 return true;
1269 }
1270
radv_lower_ngg(struct radv_device * device,struct radv_pipeline_stage * ngg_stage,const struct radv_pipeline_key * pl_key)1271 void radv_lower_ngg(struct radv_device *device, struct radv_pipeline_stage *ngg_stage,
1272 const struct radv_pipeline_key *pl_key)
1273 {
1274 const struct radv_shader_info *info = &ngg_stage->info;
1275 nir_shader *nir = ngg_stage->nir;
1276
1277 assert(nir->info.stage == MESA_SHADER_VERTEX ||
1278 nir->info.stage == MESA_SHADER_TESS_EVAL ||
1279 nir->info.stage == MESA_SHADER_GEOMETRY ||
1280 nir->info.stage == MESA_SHADER_MESH);
1281
1282 const struct gfx10_ngg_info *ngg_info = &info->ngg_info;
1283 unsigned num_vertices_per_prim = 3;
1284
1285 /* Get the number of vertices per input primitive */
1286 if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
1287 if (nir->info.tess.point_mode)
1288 num_vertices_per_prim = 1;
1289 else if (nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
1290 num_vertices_per_prim = 2;
1291
1292 /* Manually mark the primitive ID used, so the shader can repack it. */
1293 if (info->tes.outinfo.export_prim_id)
1294 BITSET_SET(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
1295
1296 } else if (nir->info.stage == MESA_SHADER_VERTEX) {
1297 /* Need to add 1, because: V_028A6C_POINTLIST=0, V_028A6C_LINESTRIP=1, V_028A6C_TRISTRIP=2, etc. */
1298 num_vertices_per_prim = si_conv_prim_to_gs_out(pl_key->vs.topology) + 1;
1299
1300 /* Manually mark the instance ID used, so the shader can repack it. */
1301 if (pl_key->vs.instance_rate_inputs)
1302 BITSET_SET(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
1303
1304 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
1305 num_vertices_per_prim = nir->info.gs.vertices_in;
1306 } else if (nir->info.stage == MESA_SHADER_MESH) {
1307 if (nir->info.mesh.primitive_type == SHADER_PRIM_POINTS)
1308 num_vertices_per_prim = 1;
1309 else if (nir->info.mesh.primitive_type == SHADER_PRIM_LINES)
1310 num_vertices_per_prim = 2;
1311 else
1312 assert(nir->info.mesh.primitive_type == SHADER_PRIM_TRIANGLES);
1313 } else {
1314 unreachable("NGG needs to be VS, TES or GS.");
1315 }
1316
1317 /* Invocations that process an input vertex */
1318 unsigned max_vtx_in = MIN2(256, ngg_info->enable_vertex_grouping ? ngg_info->hw_max_esverts : num_vertices_per_prim * ngg_info->max_gsprims);
1319
1320 if (nir->info.stage == MESA_SHADER_VERTEX ||
1321 nir->info.stage == MESA_SHADER_TESS_EVAL) {
1322 bool export_prim_id;
1323
1324 assert(info->is_ngg);
1325
1326 if (info->has_ngg_culling)
1327 radv_optimize_nir_algebraic(nir, false);
1328
1329 if (nir->info.stage == MESA_SHADER_VERTEX) {
1330 export_prim_id = info->vs.outinfo.export_prim_id;
1331 } else {
1332 export_prim_id = info->tes.outinfo.export_prim_id;
1333 }
1334
1335 NIR_PASS_V(nir, ac_nir_lower_ngg_nogs,
1336 device->physical_device->rad_info.family,
1337 max_vtx_in, num_vertices_per_prim,
1338 info->workgroup_size, info->wave_size, info->has_ngg_culling,
1339 info->has_ngg_early_prim_export, info->is_ngg_passthrough, export_prim_id,
1340 pl_key->vs.provoking_vtx_last, false, pl_key->primitives_generated_query,
1341 pl_key->vs.instance_rate_inputs);
1342
1343 /* Increase ESGS ring size so the LLVM binary contains the correct LDS size. */
1344 ngg_stage->info.ngg_info.esgs_ring_size = nir->info.shared_size;
1345 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
1346 assert(info->is_ngg);
1347 NIR_PASS_V(nir, ac_nir_lower_ngg_gs, info->wave_size, info->workgroup_size,
1348 info->ngg_info.esgs_ring_size, info->gs.gsvs_vertex_size,
1349 info->ngg_info.ngg_emit_size * 4u, pl_key->vs.provoking_vtx_last);
1350 } else if (nir->info.stage == MESA_SHADER_MESH) {
1351 bool scratch_ring = false;
1352 NIR_PASS_V(nir, ac_nir_lower_ngg_ms, &scratch_ring, info->wave_size, pl_key->has_multiview_view_index);
1353 ngg_stage->info.ms.needs_ms_scratch_ring = scratch_ring;
1354 } else {
1355 unreachable("invalid SW stage passed to radv_lower_ngg");
1356 }
1357 }
1358
1359 static unsigned
get_size_class(unsigned size,bool round_up)1360 get_size_class(unsigned size, bool round_up)
1361 {
1362 size = round_up ? util_logbase2_ceil(size) : util_logbase2(size);
1363 unsigned size_class =
1364 MAX2(size, RADV_SHADER_ALLOC_MIN_SIZE_CLASS) - RADV_SHADER_ALLOC_MIN_SIZE_CLASS;
1365 return MIN2(size_class, RADV_SHADER_ALLOC_NUM_FREE_LISTS - 1);
1366 }
1367
1368 static void
remove_hole(struct radv_device * device,union radv_shader_arena_block * hole)1369 remove_hole(struct radv_device *device, union radv_shader_arena_block *hole)
1370 {
1371 unsigned size_class = get_size_class(hole->size, false);
1372 list_del(&hole->freelist);
1373 if (list_is_empty(&device->shader_free_lists[size_class]))
1374 device->shader_free_list_mask &= ~(1u << size_class);
1375 }
1376
1377 static void
add_hole(struct radv_device * device,union radv_shader_arena_block * hole)1378 add_hole(struct radv_device *device, union radv_shader_arena_block *hole)
1379 {
1380 unsigned size_class = get_size_class(hole->size, false);
1381 list_addtail(&hole->freelist, &device->shader_free_lists[size_class]);
1382 device->shader_free_list_mask |= 1u << size_class;
1383 }
1384
1385 static union radv_shader_arena_block *
alloc_block_obj(struct radv_device * device)1386 alloc_block_obj(struct radv_device *device)
1387 {
1388 if (!list_is_empty(&device->shader_block_obj_pool)) {
1389 union radv_shader_arena_block *block =
1390 list_first_entry(&device->shader_block_obj_pool, union radv_shader_arena_block, pool);
1391 list_del(&block->pool);
1392 return block;
1393 }
1394
1395 return malloc(sizeof(union radv_shader_arena_block));
1396 }
1397
1398 static void
free_block_obj(struct radv_device * device,union radv_shader_arena_block * block)1399 free_block_obj(struct radv_device *device, union radv_shader_arena_block *block)
1400 {
1401 list_add(&block->pool, &device->shader_block_obj_pool);
1402 }
1403
1404 /* Segregated fit allocator, implementing a good-fit allocation policy.
1405 *
1406 * This is an variation of sequential fit allocation with several lists of free blocks ("holes")
1407 * instead of one. Each list of holes only contains holes of a certain range of sizes, so holes that
1408 * are too small can easily be ignored while allocating. Because this also ignores holes that are
1409 * larger than necessary (approximating best-fit allocation), this could be described as a
1410 * "good-fit" allocator.
1411 *
1412 * Typically, shaders are allocated and only free'd when the device is destroyed. For this pattern,
1413 * this should allocate blocks for shaders fast and with no fragmentation, while still allowing
1414 * free'd memory to be re-used.
1415 */
1416 union radv_shader_arena_block *
radv_alloc_shader_memory(struct radv_device * device,uint32_t size,void * ptr)1417 radv_alloc_shader_memory(struct radv_device *device, uint32_t size, void *ptr)
1418 {
1419 size = align(size, RADV_SHADER_ALLOC_ALIGNMENT);
1420
1421 mtx_lock(&device->shader_arena_mutex);
1422
1423 /* Try to use an existing hole. Unless the shader is very large, this should only have to look
1424 * at the first one available.
1425 */
1426 unsigned free_list_mask = BITFIELD_MASK(RADV_SHADER_ALLOC_NUM_FREE_LISTS);
1427 unsigned size_class =
1428 ffs(device->shader_free_list_mask & (free_list_mask << get_size_class(size, true)));
1429 if (size_class) {
1430 size_class--;
1431
1432 list_for_each_entry(union radv_shader_arena_block, hole,
1433 &device->shader_free_lists[size_class], freelist)
1434 {
1435 if (hole->size < size)
1436 continue;
1437
1438 assert(hole->offset % RADV_SHADER_ALLOC_ALIGNMENT == 0);
1439
1440 if (size == hole->size) {
1441 remove_hole(device, hole);
1442 hole->freelist.next = ptr;
1443 mtx_unlock(&device->shader_arena_mutex);
1444 return hole;
1445 } else {
1446 union radv_shader_arena_block *alloc = alloc_block_obj(device);
1447 if (!alloc) {
1448 mtx_unlock(&device->shader_arena_mutex);
1449 return NULL;
1450 }
1451 list_addtail(&alloc->list, &hole->list);
1452 alloc->freelist.prev = NULL;
1453 alloc->freelist.next = ptr;
1454 alloc->arena = hole->arena;
1455 alloc->offset = hole->offset;
1456 alloc->size = size;
1457
1458 remove_hole(device, hole);
1459 hole->offset += size;
1460 hole->size -= size;
1461 add_hole(device, hole);
1462
1463 mtx_unlock(&device->shader_arena_mutex);
1464 return alloc;
1465 }
1466 }
1467 }
1468
1469 /* Allocate a new shader arena. */
1470 struct radv_shader_arena *arena = calloc(1, sizeof(struct radv_shader_arena));
1471 union radv_shader_arena_block *alloc = NULL, *hole = NULL;
1472 if (!arena)
1473 goto fail;
1474
1475 unsigned arena_size =
1476 MAX2(RADV_SHADER_ALLOC_MIN_ARENA_SIZE
1477 << MIN2(RADV_SHADER_ALLOC_MAX_ARENA_SIZE_SHIFT, device->shader_arena_shift),
1478 size);
1479 VkResult result = device->ws->buffer_create(
1480 device->ws, arena_size, RADV_SHADER_ALLOC_ALIGNMENT, RADEON_DOMAIN_VRAM,
1481 RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT |
1482 (device->physical_device->rad_info.cpdma_prefetch_writes_memory ? 0
1483 : RADEON_FLAG_READ_ONLY),
1484 RADV_BO_PRIORITY_SHADER, 0, &arena->bo);
1485 if (result != VK_SUCCESS)
1486 goto fail;
1487
1488 list_inithead(&arena->entries);
1489
1490 arena->ptr = (char *)device->ws->buffer_map(arena->bo);
1491 if (!arena->ptr)
1492 goto fail;
1493
1494 alloc = alloc_block_obj(device);
1495 hole = arena_size - size > 0 ? alloc_block_obj(device) : alloc;
1496 if (!alloc || !hole)
1497 goto fail;
1498 list_addtail(&alloc->list, &arena->entries);
1499 alloc->freelist.prev = NULL;
1500 alloc->freelist.next = ptr;
1501 alloc->arena = arena;
1502 alloc->offset = 0;
1503 alloc->size = size;
1504
1505 if (hole != alloc) {
1506 hole->arena = arena;
1507 hole->offset = size;
1508 hole->size = arena_size - size;
1509
1510 list_addtail(&hole->list, &arena->entries);
1511 add_hole(device, hole);
1512 }
1513
1514 ++device->shader_arena_shift;
1515 list_addtail(&arena->list, &device->shader_arenas);
1516
1517 mtx_unlock(&device->shader_arena_mutex);
1518 return alloc;
1519
1520 fail:
1521 mtx_unlock(&device->shader_arena_mutex);
1522 free(alloc);
1523 free(hole);
1524 if (arena && arena->bo)
1525 device->ws->buffer_destroy(device->ws, arena->bo);
1526 free(arena);
1527 return NULL;
1528 }
1529
1530 static union radv_shader_arena_block *
get_hole(struct radv_shader_arena * arena,struct list_head * head)1531 get_hole(struct radv_shader_arena *arena, struct list_head *head)
1532 {
1533 if (head == &arena->entries)
1534 return NULL;
1535
1536 union radv_shader_arena_block *hole = list_entry(head, union radv_shader_arena_block, list);
1537 return hole->freelist.prev ? hole : NULL;
1538 }
1539
1540 void
radv_free_shader_memory(struct radv_device * device,union radv_shader_arena_block * alloc)1541 radv_free_shader_memory(struct radv_device *device, union radv_shader_arena_block *alloc)
1542 {
1543 mtx_lock(&device->shader_arena_mutex);
1544
1545 union radv_shader_arena_block *hole_prev = get_hole(alloc->arena, alloc->list.prev);
1546 union radv_shader_arena_block *hole_next = get_hole(alloc->arena, alloc->list.next);
1547
1548 union radv_shader_arena_block *hole = alloc;
1549
1550 /* merge with previous hole */
1551 if (hole_prev) {
1552 remove_hole(device, hole_prev);
1553
1554 hole_prev->size += hole->size;
1555 list_del(&hole->list);
1556 free_block_obj(device, hole);
1557
1558 hole = hole_prev;
1559 }
1560
1561 /* merge with next hole */
1562 if (hole_next) {
1563 remove_hole(device, hole_next);
1564
1565 hole_next->offset -= hole->size;
1566 hole_next->size += hole->size;
1567 list_del(&hole->list);
1568 free_block_obj(device, hole);
1569
1570 hole = hole_next;
1571 }
1572
1573 if (list_is_singular(&hole->list)) {
1574 struct radv_shader_arena *arena = hole->arena;
1575 free_block_obj(device, hole);
1576
1577 device->ws->buffer_destroy(device->ws, arena->bo);
1578 list_del(&arena->list);
1579 free(arena);
1580 } else {
1581 add_hole(device, hole);
1582 }
1583
1584 mtx_unlock(&device->shader_arena_mutex);
1585 }
1586
1587 void
radv_init_shader_arenas(struct radv_device * device)1588 radv_init_shader_arenas(struct radv_device *device)
1589 {
1590 mtx_init(&device->shader_arena_mutex, mtx_plain);
1591
1592 device->shader_free_list_mask = 0;
1593
1594 list_inithead(&device->shader_arenas);
1595 list_inithead(&device->shader_block_obj_pool);
1596 for (unsigned i = 0; i < RADV_SHADER_ALLOC_NUM_FREE_LISTS; i++)
1597 list_inithead(&device->shader_free_lists[i]);
1598 }
1599
1600 void
radv_destroy_shader_arenas(struct radv_device * device)1601 radv_destroy_shader_arenas(struct radv_device *device)
1602 {
1603 list_for_each_entry_safe(union radv_shader_arena_block, block, &device->shader_block_obj_pool,
1604 pool) free(block);
1605
1606 list_for_each_entry_safe(struct radv_shader_arena, arena, &device->shader_arenas, list)
1607 {
1608 device->ws->buffer_destroy(device->ws, arena->bo);
1609 free(arena);
1610 }
1611 mtx_destroy(&device->shader_arena_mutex);
1612 }
1613
1614 /* For the UMR disassembler. */
1615 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
1616 #define DEBUGGER_NUM_MARKERS 5
1617
1618 static unsigned
radv_get_shader_binary_size(size_t code_size)1619 radv_get_shader_binary_size(size_t code_size)
1620 {
1621 return code_size + DEBUGGER_NUM_MARKERS * 4;
1622 }
1623
1624 static bool
radv_should_use_wgp_mode(const struct radv_device * device,gl_shader_stage stage,const struct radv_shader_info * info)1625 radv_should_use_wgp_mode(const struct radv_device *device, gl_shader_stage stage,
1626 const struct radv_shader_info *info)
1627 {
1628 enum amd_gfx_level chip = device->physical_device->rad_info.gfx_level;
1629 switch (stage) {
1630 case MESA_SHADER_COMPUTE:
1631 case MESA_SHADER_TESS_CTRL:
1632 return chip >= GFX10;
1633 case MESA_SHADER_GEOMETRY:
1634 return chip == GFX10 || (chip >= GFX10_3 && !info->is_ngg);
1635 case MESA_SHADER_VERTEX:
1636 case MESA_SHADER_TESS_EVAL:
1637 return chip == GFX10 && info->is_ngg;
1638 default:
1639 return false;
1640 }
1641 }
1642
1643 static void
radv_postprocess_config(const struct radv_device * device,const struct ac_shader_config * config_in,const struct radv_shader_info * info,gl_shader_stage stage,const struct radv_shader_args * args,struct ac_shader_config * config_out)1644 radv_postprocess_config(const struct radv_device *device, const struct ac_shader_config *config_in,
1645 const struct radv_shader_info *info, gl_shader_stage stage,
1646 const struct radv_shader_args *args,
1647 struct ac_shader_config *config_out)
1648 {
1649 const struct radv_physical_device *pdevice = device->physical_device;
1650 bool scratch_enabled = config_in->scratch_bytes_per_wave > 0;
1651 bool trap_enabled = !!device->trap_handler_shader;
1652 unsigned vgpr_comp_cnt = 0;
1653 unsigned num_input_vgprs = args->ac.num_vgprs_used;
1654
1655 if (stage == MESA_SHADER_FRAGMENT) {
1656 num_input_vgprs = ac_get_fs_input_vgpr_cnt(config_in, NULL, NULL, NULL);
1657 }
1658
1659 unsigned num_vgprs = MAX2(config_in->num_vgprs, num_input_vgprs);
1660 /* +2 for the ring offsets, +3 for scratch wave offset and VCC */
1661 unsigned num_sgprs = MAX2(config_in->num_sgprs, args->ac.num_sgprs_used + 2 + 3);
1662 unsigned num_shared_vgprs = config_in->num_shared_vgprs;
1663 /* shared VGPRs are introduced in Navi and are allocated in blocks of 8 (RDNA ref 3.6.5) */
1664 assert((pdevice->rad_info.gfx_level >= GFX10 && num_shared_vgprs % 8 == 0) ||
1665 (pdevice->rad_info.gfx_level < GFX10 && num_shared_vgprs == 0));
1666 unsigned num_shared_vgpr_blocks = num_shared_vgprs / 8;
1667 unsigned excp_en = 0;
1668
1669 *config_out = *config_in;
1670 config_out->num_vgprs = num_vgprs;
1671 config_out->num_sgprs = num_sgprs;
1672 config_out->num_shared_vgprs = num_shared_vgprs;
1673
1674 config_out->rsrc2 = S_00B12C_USER_SGPR(args->num_user_sgprs) |
1675 S_00B12C_SCRATCH_EN(scratch_enabled) | S_00B12C_TRAP_PRESENT(trap_enabled);
1676
1677 if (trap_enabled) {
1678 /* Configure the shader exceptions like memory violation, etc.
1679 * TODO: Enable (and validate) more exceptions.
1680 */
1681 excp_en = 1 << 8; /* mem_viol */
1682 }
1683
1684 if (!pdevice->use_ngg_streamout) {
1685 config_out->rsrc2 |=
1686 S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) | S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
1687 S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) | S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
1688 S_00B12C_SO_EN(!!info->so.num_outputs);
1689 }
1690
1691 config_out->rsrc1 = S_00B848_VGPRS((num_vgprs - 1) / (info->wave_size == 32 ? 8 : 4)) |
1692 S_00B848_DX10_CLAMP(1) | S_00B848_FLOAT_MODE(config_out->float_mode);
1693
1694 if (pdevice->rad_info.gfx_level >= GFX10) {
1695 config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(args->num_user_sgprs >> 5);
1696 } else {
1697 config_out->rsrc1 |= S_00B228_SGPRS((num_sgprs - 1) / 8);
1698 config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(args->num_user_sgprs >> 5);
1699 }
1700
1701 bool wgp_mode = radv_should_use_wgp_mode(device, stage, info);
1702
1703 switch (stage) {
1704 case MESA_SHADER_TESS_EVAL:
1705 if (info->is_ngg) {
1706 config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10);
1707 config_out->rsrc2 |= S_00B22C_OC_LDS_EN(1) | S_00B22C_EXCP_EN(excp_en);
1708 } else if (info->tes.as_es) {
1709 assert(pdevice->rad_info.gfx_level <= GFX8);
1710 vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;
1711
1712 config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
1713 } else {
1714 bool enable_prim_id = info->tes.outinfo.export_prim_id || info->uses_prim_id;
1715 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
1716
1717 config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10);
1718 config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
1719 }
1720 config_out->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
1721 break;
1722 case MESA_SHADER_TESS_CTRL:
1723 if (pdevice->rad_info.gfx_level >= GFX9) {
1724 /* We need at least 2 components for LS.
1725 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
1726 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
1727 */
1728 if (pdevice->rad_info.gfx_level >= GFX10) {
1729 if (info->vs.needs_instance_id) {
1730 vgpr_comp_cnt = 3;
1731 } else if (pdevice->rad_info.gfx_level <= GFX10_3) {
1732 vgpr_comp_cnt = 1;
1733 }
1734 config_out->rsrc2 |=
1735 S_00B42C_LDS_SIZE_GFX10(info->tcs.num_lds_blocks) | S_00B42C_EXCP_EN_GFX6(excp_en);
1736 } else {
1737 vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
1738 config_out->rsrc2 |=
1739 S_00B42C_LDS_SIZE_GFX9(info->tcs.num_lds_blocks) | S_00B42C_EXCP_EN_GFX9(excp_en);
1740 }
1741 } else {
1742 config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
1743 }
1744 config_out->rsrc1 |=
1745 S_00B428_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10) | S_00B428_WGP_MODE(wgp_mode);
1746 config_out->rsrc2 |= S_00B42C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
1747 break;
1748 case MESA_SHADER_VERTEX:
1749 if (info->is_ngg) {
1750 config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10);
1751 } else if (info->vs.as_ls) {
1752 assert(pdevice->rad_info.gfx_level <= GFX8);
1753 /* We need at least 2 components for LS.
1754 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
1755 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
1756 */
1757 vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
1758 } else if (info->vs.as_es) {
1759 assert(pdevice->rad_info.gfx_level <= GFX8);
1760 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
1761 vgpr_comp_cnt = info->vs.needs_instance_id ? 1 : 0;
1762 } else {
1763 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
1764 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
1765 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
1766 */
1767 if (info->vs.needs_instance_id && pdevice->rad_info.gfx_level >= GFX10) {
1768 vgpr_comp_cnt = 3;
1769 } else if (info->vs.outinfo.export_prim_id) {
1770 vgpr_comp_cnt = 2;
1771 } else if (info->vs.needs_instance_id) {
1772 vgpr_comp_cnt = 1;
1773 } else {
1774 vgpr_comp_cnt = 0;
1775 }
1776
1777 config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10);
1778 }
1779 config_out->rsrc2 |=
1780 S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B12C_EXCP_EN(excp_en);
1781 break;
1782 case MESA_SHADER_MESH:
1783 config_out->rsrc1 |= S_00B228_MEM_ORDERED(1);
1784 config_out->rsrc2 |=
1785 S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B12C_EXCP_EN(excp_en);
1786 break;
1787 case MESA_SHADER_FRAGMENT:
1788 config_out->rsrc1 |= S_00B028_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10);
1789 config_out->rsrc2 |= S_00B02C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) |
1790 S_00B02C_EXCP_EN(excp_en);
1791 break;
1792 case MESA_SHADER_GEOMETRY:
1793 config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10);
1794 config_out->rsrc2 |=
1795 S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B22C_EXCP_EN(excp_en);
1796 break;
1797 case MESA_SHADER_COMPUTE:
1798 case MESA_SHADER_TASK:
1799 config_out->rsrc1 |=
1800 S_00B848_MEM_ORDERED(pdevice->rad_info.gfx_level >= GFX10) | S_00B848_WGP_MODE(wgp_mode);
1801 config_out->rsrc2 |= S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
1802 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
1803 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
1804 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2
1805 : info->cs.uses_thread_id[1] ? 1
1806 : 0) |
1807 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
1808 S_00B84C_LDS_SIZE(config_in->lds_size) | S_00B84C_EXCP_EN(excp_en);
1809 config_out->rsrc3 |= S_00B8A0_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
1810
1811 break;
1812 default:
1813 unreachable("unsupported shader type");
1814 break;
1815 }
1816
1817 if (pdevice->rad_info.gfx_level >= GFX10 && info->is_ngg &&
1818 (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL ||
1819 stage == MESA_SHADER_GEOMETRY || stage == MESA_SHADER_MESH)) {
1820 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
1821 gl_shader_stage es_stage = stage;
1822 if (stage == MESA_SHADER_GEOMETRY)
1823 es_stage = info->gs.es_type;
1824
1825 /* VGPR5-8: (VertexID, UserVGPR0, UserVGPR1, UserVGPR2 / InstanceID) */
1826 if (es_stage == MESA_SHADER_VERTEX) {
1827 es_vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 0;
1828 } else if (es_stage == MESA_SHADER_TESS_EVAL) {
1829 bool enable_prim_id = info->tes.outinfo.export_prim_id || info->uses_prim_id;
1830 es_vgpr_comp_cnt = enable_prim_id ? 3 : 2;
1831 } else if (es_stage == MESA_SHADER_MESH) {
1832 es_vgpr_comp_cnt = 0;
1833 } else {
1834 unreachable("Unexpected ES shader stage");
1835 }
1836
1837 /* GS vertex offsets in NGG:
1838 * - in passthrough mode, they are all packed into VGPR0
1839 * - in the default mode: VGPR0: offsets 0, 1; VGPR1: offsets 2, 3
1840 *
1841 * The vertex offset 2 is always needed when NGG isn't in passthrough mode
1842 * and uses triangle input primitives, including with NGG culling.
1843 */
1844 bool need_gs_vtx_offset2 = !info->is_ngg_passthrough || info->gs.vertices_in >= 3;
1845
1846 /* TES only needs vertex offset 2 for triangles or quads. */
1847 if (stage == MESA_SHADER_TESS_EVAL)
1848 need_gs_vtx_offset2 &= info->tes._primitive_mode == TESS_PRIMITIVE_TRIANGLES ||
1849 info->tes._primitive_mode == TESS_PRIMITIVE_QUADS;
1850
1851 if (info->uses_invocation_id) {
1852 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
1853 } else if (info->uses_prim_id || (es_stage == MESA_SHADER_VERTEX &&
1854 info->vs.outinfo.export_prim_id)) {
1855 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1856 } else if (need_gs_vtx_offset2) {
1857 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1858 } else {
1859 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 (or passthrough prim) */
1860 }
1861
1862 /* Disable the WGP mode on gfx10.3 because it can hang. (it
1863 * happened on VanGogh) Let's disable it on all chips that
1864 * disable exactly 1 CU per SA for GS.
1865 */
1866 config_out->rsrc1 |=
1867 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(wgp_mode);
1868 config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1869 S_00B22C_LDS_SIZE(config_in->lds_size) |
1870 S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL);
1871 } else if (pdevice->rad_info.gfx_level >= GFX9 && stage == MESA_SHADER_GEOMETRY) {
1872 unsigned es_type = info->gs.es_type;
1873 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
1874
1875 if (es_type == MESA_SHADER_VERTEX) {
1876 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
1877 if (info->vs.needs_instance_id) {
1878 es_vgpr_comp_cnt = pdevice->rad_info.gfx_level >= GFX10 ? 3 : 1;
1879 } else {
1880 es_vgpr_comp_cnt = 0;
1881 }
1882 } else if (es_type == MESA_SHADER_TESS_EVAL) {
1883 es_vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;
1884 } else {
1885 unreachable("invalid shader ES type");
1886 }
1887
1888 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1889 * VGPR[0:4] are always loaded.
1890 */
1891 if (info->uses_invocation_id) {
1892 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
1893 } else if (info->uses_prim_id) {
1894 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1895 } else if (info->gs.vertices_in >= 3) {
1896 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1897 } else {
1898 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1899 }
1900
1901 config_out->rsrc1 |=
1902 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(wgp_mode);
1903 config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1904 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
1905 } else if (pdevice->rad_info.gfx_level >= GFX9 && stage == MESA_SHADER_TESS_CTRL) {
1906 config_out->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
1907 } else {
1908 config_out->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
1909 }
1910 }
1911
1912 #ifndef _WIN32
1913 static bool
radv_open_rtld_binary(struct radv_device * device,const struct radv_shader * shader,const struct radv_shader_binary * binary,struct ac_rtld_binary * rtld_binary)1914 radv_open_rtld_binary(struct radv_device *device, const struct radv_shader *shader,
1915 const struct radv_shader_binary *binary, struct ac_rtld_binary *rtld_binary)
1916 {
1917 const char *elf_data = (const char *)((struct radv_shader_binary_rtld *)binary)->data;
1918 size_t elf_size = ((struct radv_shader_binary_rtld *)binary)->elf_size;
1919 struct ac_rtld_symbol lds_symbols[3];
1920 unsigned num_lds_symbols = 0;
1921
1922 if (device->physical_device->rad_info.gfx_level >= GFX9 &&
1923 (binary->stage == MESA_SHADER_GEOMETRY || binary->info.is_ngg) &&
1924 !binary->is_gs_copy_shader) {
1925 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
1926 sym->name = "esgs_ring";
1927 sym->size = binary->info.ngg_info.esgs_ring_size;
1928 sym->align = 64 * 1024;
1929 }
1930
1931 if (binary->info.is_ngg && binary->stage == MESA_SHADER_GEOMETRY) {
1932 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
1933 sym->name = "ngg_emit";
1934 sym->size = binary->info.ngg_info.ngg_emit_size * 4;
1935 sym->align = 4;
1936
1937 sym = &lds_symbols[num_lds_symbols++];
1938 sym->name = "ngg_scratch";
1939 sym->size = 8;
1940 sym->align = 4;
1941 }
1942
1943 struct ac_rtld_open_info open_info = {
1944 .info = &device->physical_device->rad_info,
1945 .shader_type = binary->stage,
1946 .wave_size = binary->info.wave_size,
1947 .num_parts = 1,
1948 .elf_ptrs = &elf_data,
1949 .elf_sizes = &elf_size,
1950 .num_shared_lds_symbols = num_lds_symbols,
1951 .shared_lds_symbols = lds_symbols,
1952 };
1953
1954 return ac_rtld_open(rtld_binary, open_info);
1955 }
1956 #endif
1957
1958 bool
radv_shader_binary_upload(struct radv_device * device,const struct radv_shader_binary * binary,struct radv_shader * shader,void * dest_ptr)1959 radv_shader_binary_upload(struct radv_device *device, const struct radv_shader_binary *binary,
1960 struct radv_shader *shader, void *dest_ptr)
1961 {
1962 if (binary->type == RADV_BINARY_TYPE_RTLD) {
1963 #ifdef _WIN32
1964 return false;
1965 #else
1966 struct ac_rtld_binary rtld_binary = {0};
1967
1968 if (!radv_open_rtld_binary(device, shader, binary, &rtld_binary)) {
1969 free(shader);
1970 return false;
1971 }
1972
1973 struct ac_rtld_upload_info info = {
1974 .binary = &rtld_binary,
1975 .rx_va = radv_shader_get_va(shader),
1976 .rx_ptr = dest_ptr,
1977 };
1978
1979 if (!ac_rtld_upload(&info)) {
1980 radv_shader_destroy(device, shader);
1981 ac_rtld_close(&rtld_binary);
1982 return false;
1983 }
1984
1985 shader->code_ptr = dest_ptr;
1986 ac_rtld_close(&rtld_binary);
1987 #endif
1988 } else {
1989 struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;
1990 memcpy(dest_ptr, bin->data + bin->stats_size, bin->code_size);
1991
1992 /* Add end-of-code markers for the UMR disassembler. */
1993 uint32_t *ptr32 = (uint32_t *)dest_ptr + bin->code_size / 4;
1994 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
1995 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
1996
1997 shader->code_ptr = dest_ptr;
1998 }
1999
2000 return true;
2001 }
2002
2003 struct radv_shader *
radv_shader_create(struct radv_device * device,const struct radv_shader_binary * binary,bool keep_shader_info,bool from_cache,const struct radv_shader_args * args)2004 radv_shader_create(struct radv_device *device, const struct radv_shader_binary *binary,
2005 bool keep_shader_info, bool from_cache, const struct radv_shader_args *args)
2006 {
2007 struct ac_shader_config config = {0};
2008 struct radv_shader *shader = calloc(1, sizeof(struct radv_shader));
2009 if (!shader)
2010 return NULL;
2011
2012 shader->ref_count = 1;
2013
2014 if (binary->type == RADV_BINARY_TYPE_RTLD) {
2015 #ifdef _WIN32
2016 free(shader);
2017 return NULL;
2018 #else
2019 struct ac_rtld_binary rtld_binary = {0};
2020
2021 if (!radv_open_rtld_binary(device, shader, binary, &rtld_binary)) {
2022 free(shader);
2023 return NULL;
2024 }
2025
2026 if (!ac_rtld_read_config(&device->physical_device->rad_info, &rtld_binary, &config)) {
2027 ac_rtld_close(&rtld_binary);
2028 free(shader);
2029 return NULL;
2030 }
2031
2032 if (rtld_binary.lds_size > 0) {
2033 unsigned encode_granularity = device->physical_device->rad_info.lds_encode_granularity;
2034 config.lds_size = DIV_ROUND_UP(rtld_binary.lds_size, encode_granularity);
2035 }
2036 if (!config.lds_size && binary->stage == MESA_SHADER_TESS_CTRL) {
2037 /* This is used for reporting LDS statistics */
2038 config.lds_size = binary->info.tcs.num_lds_blocks;
2039 }
2040
2041 assert(!binary->info.has_ngg_culling || config.lds_size);
2042
2043 shader->code_size = rtld_binary.rx_size;
2044 shader->exec_size = rtld_binary.exec_size;
2045 ac_rtld_close(&rtld_binary);
2046 #endif
2047 } else {
2048 assert(binary->type == RADV_BINARY_TYPE_LEGACY);
2049 config = ((struct radv_shader_binary_legacy *)binary)->base.config;
2050 shader->code_size =
2051 radv_get_shader_binary_size(((struct radv_shader_binary_legacy *)binary)->code_size);
2052 shader->exec_size = ((struct radv_shader_binary_legacy *)binary)->exec_size;
2053 }
2054
2055 shader->info = binary->info;
2056
2057 if (from_cache) {
2058 /* Copy the shader binary configuration from the cache. */
2059 memcpy(&shader->config, &binary->config, sizeof(shader->config));
2060 } else {
2061 assert(args);
2062 radv_postprocess_config(device, &config, &binary->info, binary->stage, args, &shader->config);
2063 }
2064
2065 if (binary->type == RADV_BINARY_TYPE_RTLD) {
2066 #ifdef _WIN32
2067 free(shader);
2068 return NULL;
2069 #else
2070 struct radv_shader_binary_rtld *bin = (struct radv_shader_binary_rtld *)binary;
2071 struct ac_rtld_binary rtld_binary = {0};
2072
2073 if (!radv_open_rtld_binary(device, shader, binary, &rtld_binary)) {
2074 free(shader);
2075 return NULL;
2076 }
2077
2078 if (keep_shader_info || (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS)) {
2079 const char *disasm_data;
2080 size_t disasm_size;
2081 if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm_data,
2082 &disasm_size)) {
2083 radv_shader_destroy(device, shader);
2084 ac_rtld_close(&rtld_binary);
2085 return NULL;
2086 }
2087
2088 shader->ir_string =
2089 bin->llvm_ir_size ? strdup((const char *)(bin->data + bin->elf_size)) : NULL;
2090 shader->disasm_string = malloc(disasm_size + 1);
2091 memcpy(shader->disasm_string, disasm_data, disasm_size);
2092 shader->disasm_string[disasm_size] = 0;
2093 }
2094 ac_rtld_close(&rtld_binary);
2095 #endif
2096 } else {
2097 struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;
2098
2099 shader->ir_string =
2100 bin->ir_size ? strdup((const char *)(bin->data + bin->stats_size + bin->code_size)) : NULL;
2101 shader->disasm_string =
2102 bin->disasm_size
2103 ? strdup((const char *)(bin->data + bin->stats_size + bin->code_size + bin->ir_size))
2104 : NULL;
2105
2106 if (bin->stats_size) {
2107 shader->statistics = calloc(bin->stats_size, 1);
2108 memcpy(shader->statistics, bin->data, bin->stats_size);
2109 }
2110 }
2111 return shader;
2112 }
2113
2114 static char *
radv_dump_nir_shaders(struct nir_shader * const * shaders,int shader_count)2115 radv_dump_nir_shaders(struct nir_shader *const *shaders, int shader_count)
2116 {
2117 char *data = NULL;
2118 char *ret = NULL;
2119 size_t size = 0;
2120 struct u_memstream mem;
2121 if (u_memstream_open(&mem, &data, &size)) {
2122 FILE *const memf = u_memstream_get(&mem);
2123 for (int i = 0; i < shader_count; ++i)
2124 nir_print_shader(shaders[i], memf);
2125 u_memstream_close(&mem);
2126 }
2127
2128 ret = malloc(size + 1);
2129 if (ret) {
2130 memcpy(ret, data, size);
2131 ret[size] = 0;
2132 }
2133 free(data);
2134 return ret;
2135 }
2136
2137 static void
radv_aco_build_shader_binary(void ** bin,gl_shader_stage stage,bool is_gs_copy_shader,const struct ac_shader_config * config,const char * llvm_ir_str,unsigned llvm_ir_size,const char * disasm_str,unsigned disasm_size,uint32_t * statistics,uint32_t stats_size,uint32_t exec_size,const uint32_t * code,uint32_t code_dw)2138 radv_aco_build_shader_binary(void **bin,
2139 gl_shader_stage stage,
2140 bool is_gs_copy_shader,
2141 const struct ac_shader_config *config,
2142 const char *llvm_ir_str,
2143 unsigned llvm_ir_size,
2144 const char *disasm_str,
2145 unsigned disasm_size,
2146 uint32_t *statistics,
2147 uint32_t stats_size,
2148 uint32_t exec_size,
2149 const uint32_t *code,
2150 uint32_t code_dw)
2151 {
2152 struct radv_shader_binary **binary = (struct radv_shader_binary **)bin;
2153 size_t size = llvm_ir_size;
2154
2155 size += disasm_size;
2156 size += stats_size;
2157
2158 size += code_dw * sizeof(uint32_t) + sizeof(struct radv_shader_binary_legacy);
2159
2160 /* We need to calloc to prevent unintialized data because this will be used
2161 * directly for the disk cache. Uninitialized data can appear because of
2162 * padding in the struct or because legacy_binary->data can be at an offset
2163 * from the start less than sizeof(radv_shader_binary_legacy). */
2164 struct radv_shader_binary_legacy *legacy_binary = (struct radv_shader_binary_legacy *)calloc(size, 1);
2165 legacy_binary->base.type = RADV_BINARY_TYPE_LEGACY;
2166 legacy_binary->base.stage = stage;
2167 legacy_binary->base.is_gs_copy_shader = is_gs_copy_shader;
2168 legacy_binary->base.total_size = size;
2169 legacy_binary->base.config = *config;
2170
2171 if (stats_size)
2172 memcpy(legacy_binary->data, statistics, stats_size);
2173 legacy_binary->stats_size = stats_size;
2174
2175 memcpy(legacy_binary->data + legacy_binary->stats_size, code,
2176 code_dw * sizeof(uint32_t));
2177 legacy_binary->exec_size = exec_size;
2178 legacy_binary->code_size = code_dw * sizeof(uint32_t);
2179
2180 legacy_binary->disasm_size = 0;
2181 legacy_binary->ir_size = llvm_ir_size;
2182
2183 memcpy((char*)legacy_binary->data + legacy_binary->stats_size + legacy_binary->code_size,
2184 llvm_ir_str, llvm_ir_size);
2185
2186 legacy_binary->disasm_size = disasm_size;
2187 if (disasm_size) {
2188 memcpy((char*)legacy_binary->data + legacy_binary->stats_size +
2189 legacy_binary->code_size + llvm_ir_size, disasm_str,
2190 disasm_size);
2191 }
2192 *binary = (struct radv_shader_binary*)legacy_binary;
2193 }
2194
2195 static struct radv_shader *
shader_compile(struct radv_device * device,struct nir_shader * const * shaders,int shader_count,gl_shader_stage stage,struct radv_shader_info * info,const struct radv_shader_args * args,struct radv_nir_compiler_options * options,bool gs_copy_shader,bool trap_handler_shader,bool keep_shader_info,bool keep_statistic_info,struct radv_shader_binary ** binary_out)2196 shader_compile(struct radv_device *device, struct nir_shader *const *shaders, int shader_count, gl_shader_stage stage,
2197 struct radv_shader_info *info, const struct radv_shader_args *args,
2198 struct radv_nir_compiler_options *options, bool gs_copy_shader,
2199 bool trap_handler_shader, bool keep_shader_info, bool keep_statistic_info,
2200 struct radv_shader_binary **binary_out)
2201 {
2202 enum radeon_family chip_family = device->physical_device->rad_info.family;
2203 struct radv_shader_binary *binary = NULL;
2204
2205 struct radv_shader_debug_data debug_data = {
2206 .device = device,
2207 .object = NULL,
2208 };
2209
2210 options->family = chip_family;
2211 options->gfx_level = device->physical_device->rad_info.gfx_level;
2212 options->has_3d_cube_border_color_mipmap = device->physical_device->rad_info.has_3d_cube_border_color_mipmap;
2213 options->dump_shader = radv_can_dump_shader(device, shaders[0], gs_copy_shader || trap_handler_shader);
2214 options->dump_preoptir =
2215 options->dump_shader && device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
2216 options->record_ir = keep_shader_info;
2217 options->record_stats = keep_statistic_info;
2218 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
2219 options->address32_hi = device->physical_device->rad_info.address32_hi;
2220 options->has_ls_vgpr_init_bug = device->physical_device->rad_info.has_ls_vgpr_init_bug;
2221 options->enable_mrt_output_nan_fixup =
2222 !is_meta_shader(shaders[0]) && options->key.ps.enable_mrt_output_nan_fixup;
2223 options->debug.func = radv_compiler_debug;
2224 options->debug.private_data = &debug_data;
2225
2226 #ifdef LLVM_AVAILABLE
2227 if (radv_use_llvm_for_stage(device, stage) || options->dump_shader || options->record_ir)
2228 ac_init_llvm_once();
2229
2230 if (radv_use_llvm_for_stage(device, stage)) {
2231 llvm_compile_shader(options, info, shader_count, shaders, &binary, args);
2232 #else
2233 if (false) {
2234 #endif
2235 } else {
2236 struct aco_shader_info ac_info;
2237 struct aco_compiler_options ac_opts;
2238 radv_aco_convert_opts(&ac_opts, options);
2239 radv_aco_convert_shader_info(&ac_info, info);
2240 aco_compile_shader(&ac_opts, &ac_info, shader_count, shaders, args, &radv_aco_build_shader_binary, (void **)&binary);
2241 }
2242
2243 binary->info = *info;
2244
2245 struct radv_shader *shader = radv_shader_create(device, binary, keep_shader_info, false, args);
2246 if (!shader) {
2247 free(binary);
2248 return NULL;
2249 }
2250
2251 if (options->dump_shader) {
2252 fprintf(stderr, "%s", radv_get_shader_name(info, shaders[0]->info.stage));
2253 for (int i = 1; i < shader_count; ++i)
2254 fprintf(stderr, " + %s", radv_get_shader_name(info, shaders[i]->info.stage));
2255
2256 fprintf(stderr, "\ndisasm:\n%s\n", shader->disasm_string);
2257 }
2258
2259 if (keep_shader_info) {
2260 shader->nir_string = radv_dump_nir_shaders(shaders, shader_count);
2261 }
2262
2263 /* Copy the shader binary configuration to store it in the cache. */
2264 memcpy(&binary->config, &shader->config, sizeof(binary->config));
2265
2266 *binary_out = binary;
2267 return shader;
2268 }
2269
2270 struct radv_shader *
2271 radv_shader_nir_to_asm(struct radv_device *device, struct radv_pipeline_stage *pl_stage,
2272 struct nir_shader *const *shaders, int shader_count,
2273 const struct radv_pipeline_key *key, bool keep_shader_info,
2274 bool keep_statistic_info, struct radv_shader_binary **binary_out)
2275 {
2276 gl_shader_stage stage = shaders[shader_count - 1]->info.stage;
2277 struct radv_nir_compiler_options options = {0};
2278
2279 if (key)
2280 options.key = *key;
2281
2282 options.robust_buffer_access = device->robust_buffer_access;
2283 options.wgp_mode = radv_should_use_wgp_mode(device, stage, &pl_stage->info);
2284
2285 return shader_compile(device, shaders, shader_count, stage, &pl_stage->info,
2286 &pl_stage->args, &options, false, false, keep_shader_info,
2287 keep_statistic_info, binary_out);
2288 }
2289
2290 struct radv_shader *
2291 radv_create_gs_copy_shader(struct radv_device *device, struct nir_shader *shader,
2292 struct radv_shader_info *info, const struct radv_shader_args *args,
2293 struct radv_shader_binary **binary_out, bool keep_shader_info,
2294 bool keep_statistic_info, bool disable_optimizations)
2295 {
2296 struct radv_nir_compiler_options options = {0};
2297 gl_shader_stage stage = MESA_SHADER_VERTEX;
2298
2299 options.key.optimisations_disabled = disable_optimizations;
2300
2301 return shader_compile(device, &shader, 1, stage, info, args, &options, true, false,
2302 keep_shader_info, keep_statistic_info, binary_out);
2303 }
2304
2305 struct radv_trap_handler_shader *
2306 radv_create_trap_handler_shader(struct radv_device *device)
2307 {
2308 struct radv_nir_compiler_options options = {0};
2309 struct radv_shader *shader = NULL;
2310 struct radv_shader_binary *binary = NULL;
2311 struct radv_shader_info info = {0};
2312 struct radv_pipeline_key key = {0};
2313 struct radv_trap_handler_shader *trap;
2314
2315 trap = malloc(sizeof(struct radv_trap_handler_shader));
2316 if (!trap)
2317 return NULL;
2318
2319 nir_builder b = radv_meta_init_shader(device, MESA_SHADER_COMPUTE, "meta_trap_handler");
2320
2321 options.wgp_mode = radv_should_use_wgp_mode(device, MESA_SHADER_COMPUTE, &info);
2322 info.wave_size = 64;
2323
2324 struct radv_shader_args args;
2325 args.explicit_scratch_args = true;
2326 args.is_trap_handler_shader = true;
2327 radv_declare_shader_args(device->physical_device->rad_info.gfx_level, &key, &info,
2328 MESA_SHADER_COMPUTE, false, MESA_SHADER_VERTEX, &args);
2329
2330 shader = shader_compile(device, &b.shader, 1, MESA_SHADER_COMPUTE, &info, &args, &options,
2331 false, true, false, false, &binary);
2332
2333 trap->alloc = radv_alloc_shader_memory(device, shader->code_size, NULL);
2334
2335 trap->bo = trap->alloc->arena->bo;
2336 char *dest_ptr = trap->alloc->arena->ptr + trap->alloc->offset;
2337
2338 struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;
2339 memcpy(dest_ptr, bin->data, bin->code_size);
2340
2341 ralloc_free(b.shader);
2342 free(shader);
2343 free(binary);
2344
2345 return trap;
2346 }
2347
2348 uint64_t radv_trap_handler_shader_get_va(const struct radv_trap_handler_shader *trap)
2349 {
2350 return radv_buffer_get_va(trap->alloc->arena->bo) + trap->alloc->offset;
2351 }
2352
2353 void
2354 radv_trap_handler_shader_destroy(struct radv_device *device, struct radv_trap_handler_shader *trap)
2355 {
2356 if (!trap)
2357 return;
2358
2359 radv_free_shader_memory(device, trap->alloc);
2360 free(trap);
2361 }
2362
2363 static struct radv_shader_part *
2364 upload_shader_part(struct radv_device *device, struct radv_shader_part_binary *bin, unsigned wave_size)
2365 {
2366 uint32_t code_size = radv_get_shader_binary_size(bin->code_size);
2367 struct radv_shader_part *shader_part = malloc(sizeof(struct radv_shader_part));
2368 if (!shader_part)
2369 return NULL;
2370
2371 shader_part->alloc = radv_alloc_shader_memory(device, code_size, NULL);
2372 if (!shader_part->alloc) {
2373 free(shader_part);
2374 return NULL;
2375 }
2376
2377 shader_part->bo = shader_part->alloc->arena->bo;
2378 char *dest_ptr = shader_part->alloc->arena->ptr + shader_part->alloc->offset;
2379
2380 memcpy(dest_ptr, bin->data, bin->code_size);
2381
2382 /* Add end-of-code markers for the UMR disassembler. */
2383 uint32_t *ptr32 = (uint32_t *)dest_ptr + bin->code_size / 4;
2384 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
2385 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
2386
2387 shader_part->rsrc1 = S_00B848_VGPRS((bin->num_vgprs - 1) / (wave_size == 32 ? 8 : 4)) |
2388 S_00B228_SGPRS((bin->num_sgprs - 1) / 8);
2389 shader_part->num_preserved_sgprs = bin->num_preserved_sgprs;
2390 shader_part->disasm_string = NULL;
2391
2392 return shader_part;
2393 }
2394
2395 static void radv_aco_build_shader_part(void **bin,
2396 uint32_t num_sgprs,
2397 uint32_t num_vgprs,
2398 uint32_t num_preserved_sgprs,
2399 const uint32_t *code,
2400 uint32_t code_size,
2401 const char *disasm_str,
2402 uint32_t disasm_size)
2403 {
2404 struct radv_shader_part_binary **binary = (struct radv_shader_part_binary **)bin;
2405 size_t size = code_size * sizeof(uint32_t) + sizeof(struct radv_shader_part_binary);
2406
2407 size += disasm_size;
2408 struct radv_shader_part_binary *part_binary = (struct radv_shader_part_binary *)calloc(size, 1);
2409
2410 part_binary->num_sgprs = num_sgprs;
2411 part_binary->num_vgprs = num_vgprs;
2412 part_binary->num_preserved_sgprs = num_preserved_sgprs;
2413 part_binary->code_size = code_size * sizeof(uint32_t);
2414 memcpy(part_binary->data, code, part_binary->code_size);
2415 if (disasm_size) {
2416 memcpy((char*)part_binary->data + part_binary->code_size,
2417 disasm_str, disasm_size);
2418 part_binary->disasm_size = disasm_size;
2419 }
2420
2421 *binary = part_binary;
2422 }
2423
2424 struct radv_shader_part *
2425 radv_create_vs_prolog(struct radv_device *device, const struct radv_vs_prolog_key *key)
2426 {
2427 struct radv_shader_args args = {0};
2428 struct radv_nir_compiler_options options = {0};
2429 options.family = device->physical_device->rad_info.family;
2430 options.gfx_level = device->physical_device->rad_info.gfx_level;
2431 options.has_3d_cube_border_color_mipmap = device->physical_device->rad_info.has_3d_cube_border_color_mipmap;
2432 options.address32_hi = device->physical_device->rad_info.address32_hi;
2433 options.dump_shader = device->instance->debug_flags & RADV_DEBUG_DUMP_PROLOGS;
2434 options.record_ir = device->instance->debug_flags & RADV_DEBUG_HANG;
2435
2436 struct radv_shader_info info = {0};
2437 info.wave_size = key->wave32 ? 32 : 64;
2438 info.vs.needs_instance_id = true;
2439 info.vs.needs_base_instance = true;
2440 info.vs.needs_draw_id = true;
2441 info.vs.use_per_attribute_vb_descs = true;
2442 info.vs.vb_desc_usage_mask = BITFIELD_MASK(key->num_attributes);
2443 info.vs.has_prolog = true;
2444 info.vs.as_ls = key->as_ls;
2445 info.is_ngg = key->is_ngg;
2446
2447 struct radv_pipeline_key pipeline_key = {0};
2448
2449 args.explicit_scratch_args = true;
2450 radv_declare_shader_args(options.gfx_level, &pipeline_key, &info, key->next_stage,
2451 key->next_stage != MESA_SHADER_VERTEX, MESA_SHADER_VERTEX, &args);
2452
2453 info.user_sgprs_locs = args.user_sgprs_locs;
2454 info.inline_push_constant_mask = args.ac.inline_push_const_mask;
2455
2456 #ifdef LLVM_AVAILABLE
2457 if (options.dump_shader || options.record_ir)
2458 ac_init_llvm_once();
2459 #endif
2460
2461 struct radv_shader_part_binary *binary = NULL;
2462 struct aco_shader_info ac_info;
2463 struct aco_vs_prolog_key ac_key;
2464 struct aco_compiler_options ac_opts;
2465 radv_aco_convert_shader_info(&ac_info, &info);
2466 radv_aco_convert_opts(&ac_opts, &options);
2467 radv_aco_convert_vs_prolog_key(&ac_key, key);
2468 aco_compile_vs_prolog(&ac_opts, &ac_info, &ac_key, &args, &radv_aco_build_shader_part,
2469 (void **)&binary);
2470 struct radv_shader_part *prolog = upload_shader_part(device, binary, info.wave_size);
2471 if (prolog) {
2472 prolog->nontrivial_divisors = key->state->nontrivial_divisors;
2473 prolog->disasm_string =
2474 binary->disasm_size ? strdup((const char *)(binary->data + binary->code_size)) : NULL;
2475 }
2476
2477 free(binary);
2478
2479 if (prolog && options.dump_shader) {
2480 fprintf(stderr, "Vertex prolog");
2481 fprintf(stderr, "\ndisasm:\n%s\n", prolog->disasm_string);
2482 }
2483
2484 return prolog;
2485 }
2486
2487 struct radv_shader_part *
2488 radv_create_ps_epilog(struct radv_device *device, const struct radv_ps_epilog_key *key)
2489 {
2490 struct radv_shader_args args = {0};
2491 struct radv_nir_compiler_options options = {0};
2492 options.family = device->physical_device->rad_info.family;
2493 options.gfx_level = device->physical_device->rad_info.gfx_level;
2494 options.address32_hi = device->physical_device->rad_info.address32_hi;
2495 options.dump_shader = device->instance->debug_flags & RADV_DEBUG_DUMP_EPILOGS;
2496 options.record_ir = device->instance->debug_flags & RADV_DEBUG_HANG;
2497 options.dump_preoptir = device->instance->debug_flags & RADV_DEBUG_DUMP_EPILOGS;
2498 options.dump_shader = device->instance->debug_flags & RADV_DEBUG_DUMP_EPILOGS;
2499
2500 struct radv_shader_info info = {0};
2501 info.wave_size = key->wave32 ? 32 : 64;
2502 info.workgroup_size = 64;
2503
2504 radv_declare_ps_epilog_args(device->physical_device->rad_info.gfx_level, key, &args);
2505
2506 #ifdef LLVM_AVAILABLE
2507 if (options.dump_shader || options.record_ir)
2508 ac_init_llvm_once();
2509 #endif
2510
2511 struct radv_shader_part_binary *binary = NULL;
2512 struct aco_shader_info ac_info;
2513 struct aco_ps_epilog_key ac_key;
2514 struct aco_compiler_options ac_opts;
2515 radv_aco_convert_shader_info(&ac_info, &info);
2516 radv_aco_convert_opts(&ac_opts, &options);
2517 radv_aco_convert_ps_epilog_key(&ac_key, key);
2518 aco_compile_ps_epilog(&ac_opts, &ac_info, &ac_key, &args, &radv_aco_build_shader_part,
2519 (void **)&binary);
2520 struct radv_shader_part *epilog = upload_shader_part(device, binary, info.wave_size);
2521 if (epilog) {
2522 epilog->disasm_string =
2523 binary->disasm_size ? strdup((const char *)(binary->data + binary->code_size)) : NULL;
2524 }
2525
2526 free(binary);
2527
2528 if (epilog && options.dump_shader) {
2529 fprintf(stderr, "Fragment epilog");
2530 fprintf(stderr, "\ndisasm:\n%s\n", epilog->disasm_string);
2531 }
2532
2533 return epilog;
2534 }
2535
2536 void
2537 radv_shader_destroy(struct radv_device *device, struct radv_shader *shader)
2538 {
2539 if (!p_atomic_dec_zero(&shader->ref_count))
2540 return;
2541
2542 free(shader->spirv);
2543 free(shader->nir_string);
2544 free(shader->disasm_string);
2545 free(shader->ir_string);
2546 free(shader->statistics);
2547 free(shader);
2548 }
2549
2550 void
2551 radv_shader_part_destroy(struct radv_device *device, struct radv_shader_part *shader_part)
2552 {
2553 if (!shader_part)
2554 return;
2555
2556 radv_free_shader_memory(device, shader_part->alloc);
2557 free(shader_part->disasm_string);
2558 free(shader_part);
2559 }
2560
2561 uint64_t
2562 radv_shader_get_va(const struct radv_shader *shader)
2563 {
2564 return shader->va;
2565 }
2566
2567 struct radv_shader *
2568 radv_find_shader(struct radv_device *device, uint64_t pc)
2569 {
2570 mtx_lock(&device->shader_arena_mutex);
2571 list_for_each_entry(struct radv_shader_arena, arena, &device->shader_arenas, list)
2572 {
2573 #ifdef __GNUC__
2574 #pragma GCC diagnostic push
2575 #pragma GCC diagnostic ignored "-Wshadow"
2576 #endif
2577 list_for_each_entry(union radv_shader_arena_block, block, &arena->entries, list)
2578 {
2579 #ifdef __GNUC__
2580 #pragma GCC diagnostic pop
2581 #endif
2582 uint64_t start = radv_buffer_get_va(block->arena->bo) + block->offset;
2583 if (!block->freelist.prev && pc >= start && pc < start + block->size) {
2584 mtx_unlock(&device->shader_arena_mutex);
2585
2586 struct radv_pipeline *pipeline = (struct radv_pipeline *)block->freelist.next;
2587 for (uint32_t i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
2588 struct radv_shader *shader = pipeline->shaders[i];
2589 if (!shader)
2590 continue;
2591
2592 if (pc >= shader->va &&
2593 pc < shader->va + align(shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT))
2594 return shader;
2595 }
2596 }
2597 }
2598 }
2599
2600 mtx_unlock(&device->shader_arena_mutex);
2601 return NULL;
2602 }
2603
2604 const char *
2605 radv_get_shader_name(const struct radv_shader_info *info, gl_shader_stage stage)
2606 {
2607 switch (stage) {
2608 case MESA_SHADER_VERTEX:
2609 if (info->vs.as_ls)
2610 return "Vertex Shader as LS";
2611 else if (info->vs.as_es)
2612 return "Vertex Shader as ES";
2613 else if (info->is_ngg)
2614 return "Vertex Shader as ESGS";
2615 else
2616 return "Vertex Shader as VS";
2617 case MESA_SHADER_TESS_CTRL:
2618 return "Tessellation Control Shader";
2619 case MESA_SHADER_TESS_EVAL:
2620 if (info->tes.as_es)
2621 return "Tessellation Evaluation Shader as ES";
2622 else if (info->is_ngg)
2623 return "Tessellation Evaluation Shader as ESGS";
2624 else
2625 return "Tessellation Evaluation Shader as VS";
2626 case MESA_SHADER_GEOMETRY:
2627 return "Geometry Shader";
2628 case MESA_SHADER_FRAGMENT:
2629 return "Pixel Shader";
2630 case MESA_SHADER_COMPUTE:
2631 return "Compute Shader";
2632 case MESA_SHADER_MESH:
2633 return "Mesh Shader as NGG";
2634 case MESA_SHADER_TASK:
2635 return "Task Shader as CS";
2636 default:
2637 return "Unknown shader";
2638 };
2639 }
2640
2641 unsigned
2642 radv_get_max_waves(const struct radv_device *device, struct radv_shader *shader,
2643 gl_shader_stage stage)
2644 {
2645 struct radeon_info *info = &device->physical_device->rad_info;
2646 enum amd_gfx_level gfx_level = info->gfx_level;
2647 uint8_t wave_size = shader->info.wave_size;
2648 struct ac_shader_config *conf = &shader->config;
2649 unsigned max_simd_waves;
2650 unsigned lds_per_wave = 0;
2651
2652 max_simd_waves = info->max_wave64_per_simd * (64 / wave_size);
2653
2654 if (stage == MESA_SHADER_FRAGMENT) {
2655 lds_per_wave =
2656 conf->lds_size * info->lds_encode_granularity + shader->info.ps.num_interp * 48;
2657 lds_per_wave = align(lds_per_wave, info->lds_alloc_granularity);
2658 } else if (stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_TASK) {
2659 unsigned max_workgroup_size = shader->info.workgroup_size;
2660 lds_per_wave =
2661 align(conf->lds_size * info->lds_encode_granularity, info->lds_alloc_granularity);
2662 lds_per_wave /= DIV_ROUND_UP(max_workgroup_size, wave_size);
2663 }
2664
2665 if (conf->num_sgprs && gfx_level < GFX10) {
2666 unsigned sgprs = align(conf->num_sgprs, gfx_level >= GFX8 ? 16 : 8);
2667 max_simd_waves = MIN2(max_simd_waves, info->num_physical_sgprs_per_simd / sgprs);
2668 }
2669
2670 if (conf->num_vgprs) {
2671 unsigned physical_vgprs = info->num_physical_wave64_vgprs_per_simd * (64 / wave_size);
2672 unsigned vgprs = align(conf->num_vgprs, wave_size == 32 ? 8 : 4);
2673 if (gfx_level == GFX10_3)
2674 vgprs = align(vgprs, wave_size == 32 ? 16 : 8);
2675 max_simd_waves = MIN2(max_simd_waves, physical_vgprs / vgprs);
2676 }
2677
2678 unsigned simd_per_workgroup = info->num_simd_per_compute_unit;
2679 if (gfx_level >= GFX10)
2680 simd_per_workgroup *= 2; /* like lds_size_per_workgroup, assume WGP on GFX10+ */
2681
2682 unsigned max_lds_per_simd = info->lds_size_per_workgroup / simd_per_workgroup;
2683 if (lds_per_wave)
2684 max_simd_waves = MIN2(max_simd_waves, DIV_ROUND_UP(max_lds_per_simd, lds_per_wave));
2685
2686 return gfx_level >= GFX10 ? max_simd_waves * (wave_size / 32) : max_simd_waves;
2687 }
2688
2689 unsigned
2690 radv_compute_spi_ps_input(const struct radv_pipeline_key *pipeline_key,
2691 const struct radv_shader_info *info)
2692 {
2693 unsigned spi_ps_input;
2694
2695 spi_ps_input = S_0286CC_PERSP_CENTER_ENA(info->ps.reads_persp_center) |
2696 S_0286CC_PERSP_CENTROID_ENA(info->ps.reads_persp_centroid) |
2697 S_0286CC_PERSP_SAMPLE_ENA(info->ps.reads_persp_sample) |
2698 S_0286CC_LINEAR_CENTER_ENA(info->ps.reads_linear_center) |
2699 S_0286CC_LINEAR_CENTROID_ENA(info->ps.reads_linear_centroid) |
2700 S_0286CC_LINEAR_SAMPLE_ENA(info->ps.reads_linear_sample)|
2701 S_0286CC_PERSP_PULL_MODEL_ENA(info->ps.reads_barycentric_model) |
2702 S_0286CC_FRONT_FACE_ENA(info->ps.reads_front_face);
2703
2704 if (info->ps.reads_frag_coord_mask ||
2705 info->ps.reads_sample_pos_mask) {
2706 uint8_t mask = info->ps.reads_frag_coord_mask | info->ps.reads_sample_pos_mask;
2707
2708 for (unsigned i = 0; i < 4; i++) {
2709 if (mask & (1 << i))
2710 spi_ps_input |= S_0286CC_POS_X_FLOAT_ENA(1) << i;
2711 }
2712
2713 if (pipeline_key->adjust_frag_coord_z && info->ps.reads_frag_coord_mask & (1 << 2)) {
2714 spi_ps_input |= S_0286CC_ANCILLARY_ENA(1);
2715 }
2716 }
2717
2718 if (info->ps.reads_sample_id || info->ps.reads_frag_shading_rate || info->ps.reads_sample_mask_in) {
2719 spi_ps_input |= S_0286CC_ANCILLARY_ENA(1);
2720 }
2721
2722 if (info->ps.reads_sample_mask_in) {
2723 spi_ps_input |= S_0286CC_SAMPLE_COVERAGE_ENA(1);
2724 }
2725
2726 if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_input)) {
2727 /* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
2728 spi_ps_input |= S_0286CC_PERSP_CENTER_ENA(1);
2729 }
2730
2731 if (!(spi_ps_input & 0x7F)) {
2732 /* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
2733 spi_ps_input |= S_0286CC_PERSP_CENTER_ENA(1);
2734 }
2735
2736 return spi_ps_input;
2737 }
2738
2739 VkResult
2740 radv_dump_shader_stats(struct radv_device *device, struct radv_pipeline *pipeline,
2741 gl_shader_stage stage, FILE *output)
2742 {
2743 struct radv_shader *shader = pipeline->shaders[stage];
2744 VkPipelineExecutablePropertiesKHR *props = NULL;
2745 uint32_t prop_count = 0;
2746 VkResult result;
2747
2748 VkPipelineInfoKHR pipeline_info = {0};
2749 pipeline_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INFO_KHR;
2750 pipeline_info.pipeline = radv_pipeline_to_handle(pipeline);
2751
2752 result = radv_GetPipelineExecutablePropertiesKHR(radv_device_to_handle(device), &pipeline_info,
2753 &prop_count, NULL);
2754 if (result != VK_SUCCESS)
2755 return result;
2756
2757 props = calloc(prop_count, sizeof(*props));
2758 if (!props)
2759 return VK_ERROR_OUT_OF_HOST_MEMORY;
2760
2761 result = radv_GetPipelineExecutablePropertiesKHR(radv_device_to_handle(device), &pipeline_info,
2762 &prop_count, props);
2763 if (result != VK_SUCCESS)
2764 goto fail;
2765
2766 for (unsigned exec_idx = 0; exec_idx < prop_count; exec_idx++) {
2767 if (!(props[exec_idx].stages & mesa_to_vk_shader_stage(stage)))
2768 continue;
2769
2770 VkPipelineExecutableStatisticKHR *stats = NULL;
2771 uint32_t stat_count = 0;
2772
2773 VkPipelineExecutableInfoKHR exec_info = {0};
2774 exec_info.pipeline = radv_pipeline_to_handle(pipeline);
2775 exec_info.executableIndex = exec_idx;
2776
2777 result = radv_GetPipelineExecutableStatisticsKHR(radv_device_to_handle(device), &exec_info,
2778 &stat_count, NULL);
2779 if (result != VK_SUCCESS)
2780 goto fail;
2781
2782 stats = calloc(stat_count, sizeof(*stats));
2783 if (!stats) {
2784 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2785 goto fail;
2786 }
2787
2788 result = radv_GetPipelineExecutableStatisticsKHR(radv_device_to_handle(device), &exec_info,
2789 &stat_count, stats);
2790 if (result != VK_SUCCESS) {
2791 free(stats);
2792 goto fail;
2793 }
2794
2795 fprintf(output, "\n%s:\n", radv_get_shader_name(&shader->info, stage));
2796 fprintf(output, "*** SHADER STATS ***\n");
2797
2798 for (unsigned i = 0; i < stat_count; i++) {
2799 fprintf(output, "%s: ", stats[i].name);
2800 switch (stats[i].format) {
2801 case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_BOOL32_KHR:
2802 fprintf(output, "%s", stats[i].value.b32 == VK_TRUE ? "true" : "false");
2803 break;
2804 case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_INT64_KHR:
2805 fprintf(output, "%" PRIi64, stats[i].value.i64);
2806 break;
2807 case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR:
2808 fprintf(output, "%" PRIu64, stats[i].value.u64);
2809 break;
2810 case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_FLOAT64_KHR:
2811 fprintf(output, "%f", stats[i].value.f64);
2812 break;
2813 default:
2814 unreachable("Invalid pipeline statistic format");
2815 }
2816 fprintf(output, "\n");
2817 }
2818
2819 fprintf(output, "********************\n\n\n");
2820
2821 free(stats);
2822 }
2823
2824 fail:
2825 free(props);
2826 return result;
2827 }
2828