• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42 
43 #include <asm/futex.h>
44 
45 #include "../locking/rtmutex_common.h"
46 
47 /*
48  * READ this before attempting to hack on futexes!
49  *
50  * Basic futex operation and ordering guarantees
51  * =============================================
52  *
53  * The waiter reads the futex value in user space and calls
54  * futex_wait(). This function computes the hash bucket and acquires
55  * the hash bucket lock. After that it reads the futex user space value
56  * again and verifies that the data has not changed. If it has not changed
57  * it enqueues itself into the hash bucket, releases the hash bucket lock
58  * and schedules.
59  *
60  * The waker side modifies the user space value of the futex and calls
61  * futex_wake(). This function computes the hash bucket and acquires the
62  * hash bucket lock. Then it looks for waiters on that futex in the hash
63  * bucket and wakes them.
64  *
65  * In futex wake up scenarios where no tasks are blocked on a futex, taking
66  * the hb spinlock can be avoided and simply return. In order for this
67  * optimization to work, ordering guarantees must exist so that the waiter
68  * being added to the list is acknowledged when the list is concurrently being
69  * checked by the waker, avoiding scenarios like the following:
70  *
71  * CPU 0                               CPU 1
72  * val = *futex;
73  * sys_futex(WAIT, futex, val);
74  *   futex_wait(futex, val);
75  *   uval = *futex;
76  *                                     *futex = newval;
77  *                                     sys_futex(WAKE, futex);
78  *                                       futex_wake(futex);
79  *                                       if (queue_empty())
80  *                                         return;
81  *   if (uval == val)
82  *      lock(hash_bucket(futex));
83  *      queue();
84  *     unlock(hash_bucket(futex));
85  *     schedule();
86  *
87  * This would cause the waiter on CPU 0 to wait forever because it
88  * missed the transition of the user space value from val to newval
89  * and the waker did not find the waiter in the hash bucket queue.
90  *
91  * The correct serialization ensures that a waiter either observes
92  * the changed user space value before blocking or is woken by a
93  * concurrent waker:
94  *
95  * CPU 0                                 CPU 1
96  * val = *futex;
97  * sys_futex(WAIT, futex, val);
98  *   futex_wait(futex, val);
99  *
100  *   waiters++; (a)
101  *   smp_mb(); (A) <-- paired with -.
102  *                                  |
103  *   lock(hash_bucket(futex));      |
104  *                                  |
105  *   uval = *futex;                 |
106  *                                  |        *futex = newval;
107  *                                  |        sys_futex(WAKE, futex);
108  *                                  |          futex_wake(futex);
109  *                                  |
110  *                                  `--------> smp_mb(); (B)
111  *   if (uval == val)
112  *     queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();                         if (waiters)
115  *                                           lock(hash_bucket(futex));
116  *   else                                    wake_waiters(futex);
117  *     waiters--; (b)                        unlock(hash_bucket(futex));
118  *
119  * Where (A) orders the waiters increment and the futex value read through
120  * atomic operations (see hb_waiters_inc) and where (B) orders the write
121  * to futex and the waiters read (see hb_waiters_pending()).
122  *
123  * This yields the following case (where X:=waiters, Y:=futex):
124  *
125  *	X = Y = 0
126  *
127  *	w[X]=1		w[Y]=1
128  *	MB		MB
129  *	r[Y]=y		r[X]=x
130  *
131  * Which guarantees that x==0 && y==0 is impossible; which translates back into
132  * the guarantee that we cannot both miss the futex variable change and the
133  * enqueue.
134  *
135  * Note that a new waiter is accounted for in (a) even when it is possible that
136  * the wait call can return error, in which case we backtrack from it in (b).
137  * Refer to the comment in queue_lock().
138  *
139  * Similarly, in order to account for waiters being requeued on another
140  * address we always increment the waiters for the destination bucket before
141  * acquiring the lock. It then decrements them again  after releasing it -
142  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143  * will do the additional required waiter count housekeeping. This is done for
144  * double_lock_hb() and double_unlock_hb(), respectively.
145  */
146 
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int  __read_mostly futex_cmpxchg_enabled;
151 #endif
152 
153 /*
154  * Futex flags used to encode options to functions and preserve them across
155  * restarts.
156  */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED		0x01
159 #else
160 /*
161  * NOMMU does not have per process address space. Let the compiler optimize
162  * code away.
163  */
164 # define FLAGS_SHARED		0x00
165 #endif
166 #define FLAGS_CLOCKRT		0x02
167 #define FLAGS_HAS_TIMEOUT	0x04
168 
169 /*
170  * Priority Inheritance state:
171  */
172 struct futex_pi_state {
173 	/*
174 	 * list of 'owned' pi_state instances - these have to be
175 	 * cleaned up in do_exit() if the task exits prematurely:
176 	 */
177 	struct list_head list;
178 
179 	/*
180 	 * The PI object:
181 	 */
182 	struct rt_mutex pi_mutex;
183 
184 	struct task_struct *owner;
185 	refcount_t refcount;
186 
187 	union futex_key key;
188 } __randomize_layout;
189 
190 /**
191  * struct futex_q - The hashed futex queue entry, one per waiting task
192  * @list:		priority-sorted list of tasks waiting on this futex
193  * @task:		the task waiting on the futex
194  * @lock_ptr:		the hash bucket lock
195  * @key:		the key the futex is hashed on
196  * @pi_state:		optional priority inheritance state
197  * @rt_waiter:		rt_waiter storage for use with requeue_pi
198  * @requeue_pi_key:	the requeue_pi target futex key
199  * @bitset:		bitset for the optional bitmasked wakeup
200  *
201  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
202  * we can wake only the relevant ones (hashed queues may be shared).
203  *
204  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
205  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
206  * The order of wakeup is always to make the first condition true, then
207  * the second.
208  *
209  * PI futexes are typically woken before they are removed from the hash list via
210  * the rt_mutex code. See unqueue_me_pi().
211  */
212 struct futex_q {
213 	struct plist_node list;
214 
215 	struct task_struct *task;
216 	spinlock_t *lock_ptr;
217 	union futex_key key;
218 	struct futex_pi_state *pi_state;
219 	struct rt_mutex_waiter *rt_waiter;
220 	union futex_key *requeue_pi_key;
221 	u32 bitset;
222 } __randomize_layout;
223 
224 static const struct futex_q futex_q_init = {
225 	/* list gets initialized in queue_me()*/
226 	.key = FUTEX_KEY_INIT,
227 	.bitset = FUTEX_BITSET_MATCH_ANY
228 };
229 
230 /*
231  * Hash buckets are shared by all the futex_keys that hash to the same
232  * location.  Each key may have multiple futex_q structures, one for each task
233  * waiting on a futex.
234  */
235 struct futex_hash_bucket {
236 	atomic_t waiters;
237 	spinlock_t lock;
238 	struct plist_head chain;
239 } ____cacheline_aligned_in_smp;
240 
241 /*
242  * The base of the bucket array and its size are always used together
243  * (after initialization only in hash_futex()), so ensure that they
244  * reside in the same cacheline.
245  */
246 static struct {
247 	struct futex_hash_bucket *queues;
248 	unsigned long            hashsize;
249 } __futex_data __read_mostly __aligned(2*sizeof(long));
250 #define futex_queues   (__futex_data.queues)
251 #define futex_hashsize (__futex_data.hashsize)
252 
253 
254 /*
255  * Fault injections for futexes.
256  */
257 #ifdef CONFIG_FAIL_FUTEX
258 
259 static struct {
260 	struct fault_attr attr;
261 
262 	bool ignore_private;
263 } fail_futex = {
264 	.attr = FAULT_ATTR_INITIALIZER,
265 	.ignore_private = false,
266 };
267 
setup_fail_futex(char * str)268 static int __init setup_fail_futex(char *str)
269 {
270 	return setup_fault_attr(&fail_futex.attr, str);
271 }
272 __setup("fail_futex=", setup_fail_futex);
273 
should_fail_futex(bool fshared)274 static bool should_fail_futex(bool fshared)
275 {
276 	if (fail_futex.ignore_private && !fshared)
277 		return false;
278 
279 	return should_fail(&fail_futex.attr, 1);
280 }
281 
282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283 
fail_futex_debugfs(void)284 static int __init fail_futex_debugfs(void)
285 {
286 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287 	struct dentry *dir;
288 
289 	dir = fault_create_debugfs_attr("fail_futex", NULL,
290 					&fail_futex.attr);
291 	if (IS_ERR(dir))
292 		return PTR_ERR(dir);
293 
294 	debugfs_create_bool("ignore-private", mode, dir,
295 			    &fail_futex.ignore_private);
296 	return 0;
297 }
298 
299 late_initcall(fail_futex_debugfs);
300 
301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302 
303 #else
should_fail_futex(bool fshared)304 static inline bool should_fail_futex(bool fshared)
305 {
306 	return false;
307 }
308 #endif /* CONFIG_FAIL_FUTEX */
309 
310 #ifdef CONFIG_COMPAT
311 static void compat_exit_robust_list(struct task_struct *curr);
312 #else
compat_exit_robust_list(struct task_struct * curr)313 static inline void compat_exit_robust_list(struct task_struct *curr) { }
314 #endif
315 
316 /*
317  * Reflects a new waiter being added to the waitqueue.
318  */
hb_waiters_inc(struct futex_hash_bucket * hb)319 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
320 {
321 #ifdef CONFIG_SMP
322 	atomic_inc(&hb->waiters);
323 	/*
324 	 * Full barrier (A), see the ordering comment above.
325 	 */
326 	smp_mb__after_atomic();
327 #endif
328 }
329 
330 /*
331  * Reflects a waiter being removed from the waitqueue by wakeup
332  * paths.
333  */
hb_waiters_dec(struct futex_hash_bucket * hb)334 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
335 {
336 #ifdef CONFIG_SMP
337 	atomic_dec(&hb->waiters);
338 #endif
339 }
340 
hb_waiters_pending(struct futex_hash_bucket * hb)341 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
342 {
343 #ifdef CONFIG_SMP
344 	/*
345 	 * Full barrier (B), see the ordering comment above.
346 	 */
347 	smp_mb();
348 	return atomic_read(&hb->waiters);
349 #else
350 	return 1;
351 #endif
352 }
353 
354 /**
355  * hash_futex - Return the hash bucket in the global hash
356  * @key:	Pointer to the futex key for which the hash is calculated
357  *
358  * We hash on the keys returned from get_futex_key (see below) and return the
359  * corresponding hash bucket in the global hash.
360  */
hash_futex(union futex_key * key)361 static struct futex_hash_bucket *hash_futex(union futex_key *key)
362 {
363 	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
364 			  key->both.offset);
365 
366 	return &futex_queues[hash & (futex_hashsize - 1)];
367 }
368 
369 
370 /**
371  * match_futex - Check whether two futex keys are equal
372  * @key1:	Pointer to key1
373  * @key2:	Pointer to key2
374  *
375  * Return 1 if two futex_keys are equal, 0 otherwise.
376  */
match_futex(union futex_key * key1,union futex_key * key2)377 static inline int match_futex(union futex_key *key1, union futex_key *key2)
378 {
379 	return (key1 && key2
380 		&& key1->both.word == key2->both.word
381 		&& key1->both.ptr == key2->both.ptr
382 		&& key1->both.offset == key2->both.offset);
383 }
384 
385 enum futex_access {
386 	FUTEX_READ,
387 	FUTEX_WRITE
388 };
389 
390 /**
391  * futex_setup_timer - set up the sleeping hrtimer.
392  * @time:	ptr to the given timeout value
393  * @timeout:	the hrtimer_sleeper structure to be set up
394  * @flags:	futex flags
395  * @range_ns:	optional range in ns
396  *
397  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
398  *	   value given
399  */
400 static inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t * time,struct hrtimer_sleeper * timeout,int flags,u64 range_ns)401 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
402 		  int flags, u64 range_ns)
403 {
404 	if (!time)
405 		return NULL;
406 
407 	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
408 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
409 				      HRTIMER_MODE_ABS);
410 	/*
411 	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
412 	 * effectively the same as calling hrtimer_set_expires().
413 	 */
414 	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
415 
416 	return timeout;
417 }
418 
419 /*
420  * Generate a machine wide unique identifier for this inode.
421  *
422  * This relies on u64 not wrapping in the life-time of the machine; which with
423  * 1ns resolution means almost 585 years.
424  *
425  * This further relies on the fact that a well formed program will not unmap
426  * the file while it has a (shared) futex waiting on it. This mapping will have
427  * a file reference which pins the mount and inode.
428  *
429  * If for some reason an inode gets evicted and read back in again, it will get
430  * a new sequence number and will _NOT_ match, even though it is the exact same
431  * file.
432  *
433  * It is important that match_futex() will never have a false-positive, esp.
434  * for PI futexes that can mess up the state. The above argues that false-negatives
435  * are only possible for malformed programs.
436  */
get_inode_sequence_number(struct inode * inode)437 static u64 get_inode_sequence_number(struct inode *inode)
438 {
439 	static atomic64_t i_seq;
440 	u64 old;
441 
442 	/* Does the inode already have a sequence number? */
443 	old = atomic64_read(&inode->i_sequence);
444 	if (likely(old))
445 		return old;
446 
447 	for (;;) {
448 		u64 new = atomic64_add_return(1, &i_seq);
449 		if (WARN_ON_ONCE(!new))
450 			continue;
451 
452 		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
453 		if (old)
454 			return old;
455 		return new;
456 	}
457 }
458 
459 /**
460  * get_futex_key() - Get parameters which are the keys for a futex
461  * @uaddr:	virtual address of the futex
462  * @fshared:	false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
463  * @key:	address where result is stored.
464  * @rw:		mapping needs to be read/write (values: FUTEX_READ,
465  *              FUTEX_WRITE)
466  *
467  * Return: a negative error code or 0
468  *
469  * The key words are stored in @key on success.
470  *
471  * For shared mappings (when @fshared), the key is:
472  *
473  *   ( inode->i_sequence, page->index, offset_within_page )
474  *
475  * [ also see get_inode_sequence_number() ]
476  *
477  * For private mappings (or when !@fshared), the key is:
478  *
479  *   ( current->mm, address, 0 )
480  *
481  * This allows (cross process, where applicable) identification of the futex
482  * without keeping the page pinned for the duration of the FUTEX_WAIT.
483  *
484  * lock_page() might sleep, the caller should not hold a spinlock.
485  */
get_futex_key(u32 __user * uaddr,bool fshared,union futex_key * key,enum futex_access rw)486 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
487 			 enum futex_access rw)
488 {
489 	unsigned long address = (unsigned long)uaddr;
490 	struct mm_struct *mm = current->mm;
491 	struct page *page, *tail;
492 	struct address_space *mapping;
493 	int err, ro = 0;
494 
495 	/*
496 	 * The futex address must be "naturally" aligned.
497 	 */
498 	key->both.offset = address % PAGE_SIZE;
499 	if (unlikely((address % sizeof(u32)) != 0))
500 		return -EINVAL;
501 	address -= key->both.offset;
502 
503 	if (unlikely(!access_ok(uaddr, sizeof(u32))))
504 		return -EFAULT;
505 
506 	if (unlikely(should_fail_futex(fshared)))
507 		return -EFAULT;
508 
509 	/*
510 	 * PROCESS_PRIVATE futexes are fast.
511 	 * As the mm cannot disappear under us and the 'key' only needs
512 	 * virtual address, we dont even have to find the underlying vma.
513 	 * Note : We do have to check 'uaddr' is a valid user address,
514 	 *        but access_ok() should be faster than find_vma()
515 	 */
516 	if (!fshared) {
517 		key->private.mm = mm;
518 		key->private.address = address;
519 		return 0;
520 	}
521 
522 again:
523 	/* Ignore any VERIFY_READ mapping (futex common case) */
524 	if (unlikely(should_fail_futex(true)))
525 		return -EFAULT;
526 
527 	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
528 	/*
529 	 * If write access is not required (eg. FUTEX_WAIT), try
530 	 * and get read-only access.
531 	 */
532 	if (err == -EFAULT && rw == FUTEX_READ) {
533 		err = get_user_pages_fast(address, 1, 0, &page);
534 		ro = 1;
535 	}
536 	if (err < 0)
537 		return err;
538 	else
539 		err = 0;
540 
541 	/*
542 	 * The treatment of mapping from this point on is critical. The page
543 	 * lock protects many things but in this context the page lock
544 	 * stabilizes mapping, prevents inode freeing in the shared
545 	 * file-backed region case and guards against movement to swap cache.
546 	 *
547 	 * Strictly speaking the page lock is not needed in all cases being
548 	 * considered here and page lock forces unnecessarily serialization
549 	 * From this point on, mapping will be re-verified if necessary and
550 	 * page lock will be acquired only if it is unavoidable
551 	 *
552 	 * Mapping checks require the head page for any compound page so the
553 	 * head page and mapping is looked up now. For anonymous pages, it
554 	 * does not matter if the page splits in the future as the key is
555 	 * based on the address. For filesystem-backed pages, the tail is
556 	 * required as the index of the page determines the key. For
557 	 * base pages, there is no tail page and tail == page.
558 	 */
559 	tail = page;
560 	page = compound_head(page);
561 	mapping = READ_ONCE(page->mapping);
562 
563 	/*
564 	 * If page->mapping is NULL, then it cannot be a PageAnon
565 	 * page; but it might be the ZERO_PAGE or in the gate area or
566 	 * in a special mapping (all cases which we are happy to fail);
567 	 * or it may have been a good file page when get_user_pages_fast
568 	 * found it, but truncated or holepunched or subjected to
569 	 * invalidate_complete_page2 before we got the page lock (also
570 	 * cases which we are happy to fail).  And we hold a reference,
571 	 * so refcount care in invalidate_complete_page's remove_mapping
572 	 * prevents drop_caches from setting mapping to NULL beneath us.
573 	 *
574 	 * The case we do have to guard against is when memory pressure made
575 	 * shmem_writepage move it from filecache to swapcache beneath us:
576 	 * an unlikely race, but we do need to retry for page->mapping.
577 	 */
578 	if (unlikely(!mapping)) {
579 		int shmem_swizzled;
580 
581 		/*
582 		 * Page lock is required to identify which special case above
583 		 * applies. If this is really a shmem page then the page lock
584 		 * will prevent unexpected transitions.
585 		 */
586 		lock_page(page);
587 		shmem_swizzled = PageSwapCache(page) || page->mapping;
588 		unlock_page(page);
589 		put_page(page);
590 
591 		if (shmem_swizzled)
592 			goto again;
593 
594 		return -EFAULT;
595 	}
596 
597 	/*
598 	 * Private mappings are handled in a simple way.
599 	 *
600 	 * If the futex key is stored on an anonymous page, then the associated
601 	 * object is the mm which is implicitly pinned by the calling process.
602 	 *
603 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
604 	 * it's a read-only handle, it's expected that futexes attach to
605 	 * the object not the particular process.
606 	 */
607 	if (PageAnon(page)) {
608 		/*
609 		 * A RO anonymous page will never change and thus doesn't make
610 		 * sense for futex operations.
611 		 */
612 		if (unlikely(should_fail_futex(true)) || ro) {
613 			err = -EFAULT;
614 			goto out;
615 		}
616 
617 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
618 		key->private.mm = mm;
619 		key->private.address = address;
620 
621 	} else {
622 		struct inode *inode;
623 
624 		/*
625 		 * The associated futex object in this case is the inode and
626 		 * the page->mapping must be traversed. Ordinarily this should
627 		 * be stabilised under page lock but it's not strictly
628 		 * necessary in this case as we just want to pin the inode, not
629 		 * update the radix tree or anything like that.
630 		 *
631 		 * The RCU read lock is taken as the inode is finally freed
632 		 * under RCU. If the mapping still matches expectations then the
633 		 * mapping->host can be safely accessed as being a valid inode.
634 		 */
635 		rcu_read_lock();
636 
637 		if (READ_ONCE(page->mapping) != mapping) {
638 			rcu_read_unlock();
639 			put_page(page);
640 
641 			goto again;
642 		}
643 
644 		inode = READ_ONCE(mapping->host);
645 		if (!inode) {
646 			rcu_read_unlock();
647 			put_page(page);
648 
649 			goto again;
650 		}
651 
652 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
653 		key->shared.i_seq = get_inode_sequence_number(inode);
654 		key->shared.pgoff = page_to_pgoff(tail);
655 		rcu_read_unlock();
656 	}
657 
658 out:
659 	put_page(page);
660 	return err;
661 }
662 
663 /**
664  * fault_in_user_writeable() - Fault in user address and verify RW access
665  * @uaddr:	pointer to faulting user space address
666  *
667  * Slow path to fixup the fault we just took in the atomic write
668  * access to @uaddr.
669  *
670  * We have no generic implementation of a non-destructive write to the
671  * user address. We know that we faulted in the atomic pagefault
672  * disabled section so we can as well avoid the #PF overhead by
673  * calling get_user_pages() right away.
674  */
fault_in_user_writeable(u32 __user * uaddr)675 static int fault_in_user_writeable(u32 __user *uaddr)
676 {
677 	struct mm_struct *mm = current->mm;
678 	int ret;
679 
680 	mmap_read_lock(mm);
681 	ret = fixup_user_fault(mm, (unsigned long)uaddr,
682 			       FAULT_FLAG_WRITE, NULL);
683 	mmap_read_unlock(mm);
684 
685 	return ret < 0 ? ret : 0;
686 }
687 
688 /**
689  * futex_top_waiter() - Return the highest priority waiter on a futex
690  * @hb:		the hash bucket the futex_q's reside in
691  * @key:	the futex key (to distinguish it from other futex futex_q's)
692  *
693  * Must be called with the hb lock held.
694  */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)695 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
696 					union futex_key *key)
697 {
698 	struct futex_q *this;
699 
700 	plist_for_each_entry(this, &hb->chain, list) {
701 		if (match_futex(&this->key, key))
702 			return this;
703 	}
704 	return NULL;
705 }
706 
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)707 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
708 				      u32 uval, u32 newval)
709 {
710 	int ret;
711 
712 	pagefault_disable();
713 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
714 	pagefault_enable();
715 
716 	return ret;
717 }
718 
get_futex_value_locked(u32 * dest,u32 __user * from)719 static int get_futex_value_locked(u32 *dest, u32 __user *from)
720 {
721 	int ret;
722 
723 	pagefault_disable();
724 	ret = __get_user(*dest, from);
725 	pagefault_enable();
726 
727 	return ret ? -EFAULT : 0;
728 }
729 
730 
731 /*
732  * PI code:
733  */
refill_pi_state_cache(void)734 static int refill_pi_state_cache(void)
735 {
736 	struct futex_pi_state *pi_state;
737 
738 	if (likely(current->pi_state_cache))
739 		return 0;
740 
741 	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
742 
743 	if (!pi_state)
744 		return -ENOMEM;
745 
746 	INIT_LIST_HEAD(&pi_state->list);
747 	/* pi_mutex gets initialized later */
748 	pi_state->owner = NULL;
749 	refcount_set(&pi_state->refcount, 1);
750 	pi_state->key = FUTEX_KEY_INIT;
751 
752 	current->pi_state_cache = pi_state;
753 
754 	return 0;
755 }
756 
alloc_pi_state(void)757 static struct futex_pi_state *alloc_pi_state(void)
758 {
759 	struct futex_pi_state *pi_state = current->pi_state_cache;
760 
761 	WARN_ON(!pi_state);
762 	current->pi_state_cache = NULL;
763 
764 	return pi_state;
765 }
766 
pi_state_update_owner(struct futex_pi_state * pi_state,struct task_struct * new_owner)767 static void pi_state_update_owner(struct futex_pi_state *pi_state,
768 				  struct task_struct *new_owner)
769 {
770 	struct task_struct *old_owner = pi_state->owner;
771 
772 	lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
773 
774 	if (old_owner) {
775 		raw_spin_lock(&old_owner->pi_lock);
776 		WARN_ON(list_empty(&pi_state->list));
777 		list_del_init(&pi_state->list);
778 		raw_spin_unlock(&old_owner->pi_lock);
779 	}
780 
781 	if (new_owner) {
782 		raw_spin_lock(&new_owner->pi_lock);
783 		WARN_ON(!list_empty(&pi_state->list));
784 		list_add(&pi_state->list, &new_owner->pi_state_list);
785 		pi_state->owner = new_owner;
786 		raw_spin_unlock(&new_owner->pi_lock);
787 	}
788 }
789 
get_pi_state(struct futex_pi_state * pi_state)790 static void get_pi_state(struct futex_pi_state *pi_state)
791 {
792 	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
793 }
794 
795 /*
796  * Drops a reference to the pi_state object and frees or caches it
797  * when the last reference is gone.
798  */
put_pi_state(struct futex_pi_state * pi_state)799 static void put_pi_state(struct futex_pi_state *pi_state)
800 {
801 	if (!pi_state)
802 		return;
803 
804 	if (!refcount_dec_and_test(&pi_state->refcount))
805 		return;
806 
807 	/*
808 	 * If pi_state->owner is NULL, the owner is most probably dying
809 	 * and has cleaned up the pi_state already
810 	 */
811 	if (pi_state->owner) {
812 		unsigned long flags;
813 
814 		raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
815 		pi_state_update_owner(pi_state, NULL);
816 		rt_mutex_proxy_unlock(&pi_state->pi_mutex);
817 		raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
818 	}
819 
820 	if (current->pi_state_cache) {
821 		kfree(pi_state);
822 	} else {
823 		/*
824 		 * pi_state->list is already empty.
825 		 * clear pi_state->owner.
826 		 * refcount is at 0 - put it back to 1.
827 		 */
828 		pi_state->owner = NULL;
829 		refcount_set(&pi_state->refcount, 1);
830 		current->pi_state_cache = pi_state;
831 	}
832 }
833 
834 #ifdef CONFIG_FUTEX_PI
835 
836 /*
837  * This task is holding PI mutexes at exit time => bad.
838  * Kernel cleans up PI-state, but userspace is likely hosed.
839  * (Robust-futex cleanup is separate and might save the day for userspace.)
840  */
exit_pi_state_list(struct task_struct * curr)841 static void exit_pi_state_list(struct task_struct *curr)
842 {
843 	struct list_head *next, *head = &curr->pi_state_list;
844 	struct futex_pi_state *pi_state;
845 	struct futex_hash_bucket *hb;
846 	union futex_key key = FUTEX_KEY_INIT;
847 
848 	if (!futex_cmpxchg_enabled)
849 		return;
850 	/*
851 	 * We are a ZOMBIE and nobody can enqueue itself on
852 	 * pi_state_list anymore, but we have to be careful
853 	 * versus waiters unqueueing themselves:
854 	 */
855 	raw_spin_lock_irq(&curr->pi_lock);
856 	while (!list_empty(head)) {
857 		next = head->next;
858 		pi_state = list_entry(next, struct futex_pi_state, list);
859 		key = pi_state->key;
860 		hb = hash_futex(&key);
861 
862 		/*
863 		 * We can race against put_pi_state() removing itself from the
864 		 * list (a waiter going away). put_pi_state() will first
865 		 * decrement the reference count and then modify the list, so
866 		 * its possible to see the list entry but fail this reference
867 		 * acquire.
868 		 *
869 		 * In that case; drop the locks to let put_pi_state() make
870 		 * progress and retry the loop.
871 		 */
872 		if (!refcount_inc_not_zero(&pi_state->refcount)) {
873 			raw_spin_unlock_irq(&curr->pi_lock);
874 			cpu_relax();
875 			raw_spin_lock_irq(&curr->pi_lock);
876 			continue;
877 		}
878 		raw_spin_unlock_irq(&curr->pi_lock);
879 
880 		spin_lock(&hb->lock);
881 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
882 		raw_spin_lock(&curr->pi_lock);
883 		/*
884 		 * We dropped the pi-lock, so re-check whether this
885 		 * task still owns the PI-state:
886 		 */
887 		if (head->next != next) {
888 			/* retain curr->pi_lock for the loop invariant */
889 			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
890 			spin_unlock(&hb->lock);
891 			put_pi_state(pi_state);
892 			continue;
893 		}
894 
895 		WARN_ON(pi_state->owner != curr);
896 		WARN_ON(list_empty(&pi_state->list));
897 		list_del_init(&pi_state->list);
898 		pi_state->owner = NULL;
899 
900 		raw_spin_unlock(&curr->pi_lock);
901 		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
902 		spin_unlock(&hb->lock);
903 
904 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
905 		put_pi_state(pi_state);
906 
907 		raw_spin_lock_irq(&curr->pi_lock);
908 	}
909 	raw_spin_unlock_irq(&curr->pi_lock);
910 }
911 #else
exit_pi_state_list(struct task_struct * curr)912 static inline void exit_pi_state_list(struct task_struct *curr) { }
913 #endif
914 
915 /*
916  * We need to check the following states:
917  *
918  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
919  *
920  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
921  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
922  *
923  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
924  *
925  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
926  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
927  *
928  * [6]  Found  | Found    | task      | 0         | 1      | Valid
929  *
930  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
931  *
932  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
933  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
934  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
935  *
936  * [1]	Indicates that the kernel can acquire the futex atomically. We
937  *	came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
938  *
939  * [2]	Valid, if TID does not belong to a kernel thread. If no matching
940  *      thread is found then it indicates that the owner TID has died.
941  *
942  * [3]	Invalid. The waiter is queued on a non PI futex
943  *
944  * [4]	Valid state after exit_robust_list(), which sets the user space
945  *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
946  *
947  * [5]	The user space value got manipulated between exit_robust_list()
948  *	and exit_pi_state_list()
949  *
950  * [6]	Valid state after exit_pi_state_list() which sets the new owner in
951  *	the pi_state but cannot access the user space value.
952  *
953  * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
954  *
955  * [8]	Owner and user space value match
956  *
957  * [9]	There is no transient state which sets the user space TID to 0
958  *	except exit_robust_list(), but this is indicated by the
959  *	FUTEX_OWNER_DIED bit. See [4]
960  *
961  * [10] There is no transient state which leaves owner and user space
962  *	TID out of sync. Except one error case where the kernel is denied
963  *	write access to the user address, see fixup_pi_state_owner().
964  *
965  *
966  * Serialization and lifetime rules:
967  *
968  * hb->lock:
969  *
970  *	hb -> futex_q, relation
971  *	futex_q -> pi_state, relation
972  *
973  *	(cannot be raw because hb can contain arbitrary amount
974  *	 of futex_q's)
975  *
976  * pi_mutex->wait_lock:
977  *
978  *	{uval, pi_state}
979  *
980  *	(and pi_mutex 'obviously')
981  *
982  * p->pi_lock:
983  *
984  *	p->pi_state_list -> pi_state->list, relation
985  *
986  * pi_state->refcount:
987  *
988  *	pi_state lifetime
989  *
990  *
991  * Lock order:
992  *
993  *   hb->lock
994  *     pi_mutex->wait_lock
995  *       p->pi_lock
996  *
997  */
998 
999 /*
1000  * Validate that the existing waiter has a pi_state and sanity check
1001  * the pi_state against the user space value. If correct, attach to
1002  * it.
1003  */
attach_to_pi_state(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state,struct futex_pi_state ** ps)1004 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1005 			      struct futex_pi_state *pi_state,
1006 			      struct futex_pi_state **ps)
1007 {
1008 	pid_t pid = uval & FUTEX_TID_MASK;
1009 	u32 uval2;
1010 	int ret;
1011 
1012 	/*
1013 	 * Userspace might have messed up non-PI and PI futexes [3]
1014 	 */
1015 	if (unlikely(!pi_state))
1016 		return -EINVAL;
1017 
1018 	/*
1019 	 * We get here with hb->lock held, and having found a
1020 	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1021 	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1022 	 * which in turn means that futex_lock_pi() still has a reference on
1023 	 * our pi_state.
1024 	 *
1025 	 * The waiter holding a reference on @pi_state also protects against
1026 	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1027 	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1028 	 * free pi_state before we can take a reference ourselves.
1029 	 */
1030 	WARN_ON(!refcount_read(&pi_state->refcount));
1031 
1032 	/*
1033 	 * Now that we have a pi_state, we can acquire wait_lock
1034 	 * and do the state validation.
1035 	 */
1036 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1037 
1038 	/*
1039 	 * Since {uval, pi_state} is serialized by wait_lock, and our current
1040 	 * uval was read without holding it, it can have changed. Verify it
1041 	 * still is what we expect it to be, otherwise retry the entire
1042 	 * operation.
1043 	 */
1044 	if (get_futex_value_locked(&uval2, uaddr))
1045 		goto out_efault;
1046 
1047 	if (uval != uval2)
1048 		goto out_eagain;
1049 
1050 	/*
1051 	 * Handle the owner died case:
1052 	 */
1053 	if (uval & FUTEX_OWNER_DIED) {
1054 		/*
1055 		 * exit_pi_state_list sets owner to NULL and wakes the
1056 		 * topmost waiter. The task which acquires the
1057 		 * pi_state->rt_mutex will fixup owner.
1058 		 */
1059 		if (!pi_state->owner) {
1060 			/*
1061 			 * No pi state owner, but the user space TID
1062 			 * is not 0. Inconsistent state. [5]
1063 			 */
1064 			if (pid)
1065 				goto out_einval;
1066 			/*
1067 			 * Take a ref on the state and return success. [4]
1068 			 */
1069 			goto out_attach;
1070 		}
1071 
1072 		/*
1073 		 * If TID is 0, then either the dying owner has not
1074 		 * yet executed exit_pi_state_list() or some waiter
1075 		 * acquired the rtmutex in the pi state, but did not
1076 		 * yet fixup the TID in user space.
1077 		 *
1078 		 * Take a ref on the state and return success. [6]
1079 		 */
1080 		if (!pid)
1081 			goto out_attach;
1082 	} else {
1083 		/*
1084 		 * If the owner died bit is not set, then the pi_state
1085 		 * must have an owner. [7]
1086 		 */
1087 		if (!pi_state->owner)
1088 			goto out_einval;
1089 	}
1090 
1091 	/*
1092 	 * Bail out if user space manipulated the futex value. If pi
1093 	 * state exists then the owner TID must be the same as the
1094 	 * user space TID. [9/10]
1095 	 */
1096 	if (pid != task_pid_vnr(pi_state->owner))
1097 		goto out_einval;
1098 
1099 out_attach:
1100 	get_pi_state(pi_state);
1101 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1102 	*ps = pi_state;
1103 	return 0;
1104 
1105 out_einval:
1106 	ret = -EINVAL;
1107 	goto out_error;
1108 
1109 out_eagain:
1110 	ret = -EAGAIN;
1111 	goto out_error;
1112 
1113 out_efault:
1114 	ret = -EFAULT;
1115 	goto out_error;
1116 
1117 out_error:
1118 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1119 	return ret;
1120 }
1121 
1122 /**
1123  * wait_for_owner_exiting - Block until the owner has exited
1124  * @ret: owner's current futex lock status
1125  * @exiting:	Pointer to the exiting task
1126  *
1127  * Caller must hold a refcount on @exiting.
1128  */
wait_for_owner_exiting(int ret,struct task_struct * exiting)1129 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1130 {
1131 	if (ret != -EBUSY) {
1132 		WARN_ON_ONCE(exiting);
1133 		return;
1134 	}
1135 
1136 	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1137 		return;
1138 
1139 	mutex_lock(&exiting->futex_exit_mutex);
1140 	/*
1141 	 * No point in doing state checking here. If the waiter got here
1142 	 * while the task was in exec()->exec_futex_release() then it can
1143 	 * have any FUTEX_STATE_* value when the waiter has acquired the
1144 	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1145 	 * already. Highly unlikely and not a problem. Just one more round
1146 	 * through the futex maze.
1147 	 */
1148 	mutex_unlock(&exiting->futex_exit_mutex);
1149 
1150 	put_task_struct(exiting);
1151 }
1152 
handle_exit_race(u32 __user * uaddr,u32 uval,struct task_struct * tsk)1153 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1154 			    struct task_struct *tsk)
1155 {
1156 	u32 uval2;
1157 
1158 	/*
1159 	 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1160 	 * caller that the alleged owner is busy.
1161 	 */
1162 	if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1163 		return -EBUSY;
1164 
1165 	/*
1166 	 * Reread the user space value to handle the following situation:
1167 	 *
1168 	 * CPU0				CPU1
1169 	 *
1170 	 * sys_exit()			sys_futex()
1171 	 *  do_exit()			 futex_lock_pi()
1172 	 *                                futex_lock_pi_atomic()
1173 	 *   exit_signals(tsk)		    No waiters:
1174 	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
1175 	 *  mm_release(tsk)		    Set waiter bit
1176 	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
1177 	 *      Set owner died		    attach_to_pi_owner() {
1178 	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
1179 	 *   }				     if (!tsk->flags & PF_EXITING) {
1180 	 *  ...				       attach();
1181 	 *  tsk->futex_state =               } else {
1182 	 *	FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1183 	 *					  FUTEX_STATE_DEAD)
1184 	 *				         return -EAGAIN;
1185 	 *				       return -ESRCH; <--- FAIL
1186 	 *				     }
1187 	 *
1188 	 * Returning ESRCH unconditionally is wrong here because the
1189 	 * user space value has been changed by the exiting task.
1190 	 *
1191 	 * The same logic applies to the case where the exiting task is
1192 	 * already gone.
1193 	 */
1194 	if (get_futex_value_locked(&uval2, uaddr))
1195 		return -EFAULT;
1196 
1197 	/* If the user space value has changed, try again. */
1198 	if (uval2 != uval)
1199 		return -EAGAIN;
1200 
1201 	/*
1202 	 * The exiting task did not have a robust list, the robust list was
1203 	 * corrupted or the user space value in *uaddr is simply bogus.
1204 	 * Give up and tell user space.
1205 	 */
1206 	return -ESRCH;
1207 }
1208 
1209 /*
1210  * Lookup the task for the TID provided from user space and attach to
1211  * it after doing proper sanity checks.
1212  */
attach_to_pi_owner(u32 __user * uaddr,u32 uval,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1213 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1214 			      struct futex_pi_state **ps,
1215 			      struct task_struct **exiting)
1216 {
1217 	pid_t pid = uval & FUTEX_TID_MASK;
1218 	struct futex_pi_state *pi_state;
1219 	struct task_struct *p;
1220 
1221 	/*
1222 	 * We are the first waiter - try to look up the real owner and attach
1223 	 * the new pi_state to it, but bail out when TID = 0 [1]
1224 	 *
1225 	 * The !pid check is paranoid. None of the call sites should end up
1226 	 * with pid == 0, but better safe than sorry. Let the caller retry
1227 	 */
1228 	if (!pid)
1229 		return -EAGAIN;
1230 	p = find_get_task_by_vpid(pid);
1231 	if (!p)
1232 		return handle_exit_race(uaddr, uval, NULL);
1233 
1234 	if (unlikely(p->flags & PF_KTHREAD)) {
1235 		put_task_struct(p);
1236 		return -EPERM;
1237 	}
1238 
1239 	/*
1240 	 * We need to look at the task state to figure out, whether the
1241 	 * task is exiting. To protect against the change of the task state
1242 	 * in futex_exit_release(), we do this protected by p->pi_lock:
1243 	 */
1244 	raw_spin_lock_irq(&p->pi_lock);
1245 	if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1246 		/*
1247 		 * The task is on the way out. When the futex state is
1248 		 * FUTEX_STATE_DEAD, we know that the task has finished
1249 		 * the cleanup:
1250 		 */
1251 		int ret = handle_exit_race(uaddr, uval, p);
1252 
1253 		raw_spin_unlock_irq(&p->pi_lock);
1254 		/*
1255 		 * If the owner task is between FUTEX_STATE_EXITING and
1256 		 * FUTEX_STATE_DEAD then store the task pointer and keep
1257 		 * the reference on the task struct. The calling code will
1258 		 * drop all locks, wait for the task to reach
1259 		 * FUTEX_STATE_DEAD and then drop the refcount. This is
1260 		 * required to prevent a live lock when the current task
1261 		 * preempted the exiting task between the two states.
1262 		 */
1263 		if (ret == -EBUSY)
1264 			*exiting = p;
1265 		else
1266 			put_task_struct(p);
1267 		return ret;
1268 	}
1269 
1270 	/*
1271 	 * No existing pi state. First waiter. [2]
1272 	 *
1273 	 * This creates pi_state, we have hb->lock held, this means nothing can
1274 	 * observe this state, wait_lock is irrelevant.
1275 	 */
1276 	pi_state = alloc_pi_state();
1277 
1278 	/*
1279 	 * Initialize the pi_mutex in locked state and make @p
1280 	 * the owner of it:
1281 	 */
1282 	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1283 
1284 	/* Store the key for possible exit cleanups: */
1285 	pi_state->key = *key;
1286 
1287 	WARN_ON(!list_empty(&pi_state->list));
1288 	list_add(&pi_state->list, &p->pi_state_list);
1289 	/*
1290 	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1291 	 * because there is no concurrency as the object is not published yet.
1292 	 */
1293 	pi_state->owner = p;
1294 	raw_spin_unlock_irq(&p->pi_lock);
1295 
1296 	put_task_struct(p);
1297 
1298 	*ps = pi_state;
1299 
1300 	return 0;
1301 }
1302 
lookup_pi_state(u32 __user * uaddr,u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1303 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1304 			   struct futex_hash_bucket *hb,
1305 			   union futex_key *key, struct futex_pi_state **ps,
1306 			   struct task_struct **exiting)
1307 {
1308 	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1309 
1310 	/*
1311 	 * If there is a waiter on that futex, validate it and
1312 	 * attach to the pi_state when the validation succeeds.
1313 	 */
1314 	if (top_waiter)
1315 		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1316 
1317 	/*
1318 	 * We are the first waiter - try to look up the owner based on
1319 	 * @uval and attach to it.
1320 	 */
1321 	return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1322 }
1323 
lock_pi_update_atomic(u32 __user * uaddr,u32 uval,u32 newval)1324 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1325 {
1326 	int err;
1327 	u32 curval;
1328 
1329 	if (unlikely(should_fail_futex(true)))
1330 		return -EFAULT;
1331 
1332 	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1333 	if (unlikely(err))
1334 		return err;
1335 
1336 	/* If user space value changed, let the caller retry */
1337 	return curval != uval ? -EAGAIN : 0;
1338 }
1339 
1340 /**
1341  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1342  * @uaddr:		the pi futex user address
1343  * @hb:			the pi futex hash bucket
1344  * @key:		the futex key associated with uaddr and hb
1345  * @ps:			the pi_state pointer where we store the result of the
1346  *			lookup
1347  * @task:		the task to perform the atomic lock work for.  This will
1348  *			be "current" except in the case of requeue pi.
1349  * @exiting:		Pointer to store the task pointer of the owner task
1350  *			which is in the middle of exiting
1351  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1352  *
1353  * Return:
1354  *  -  0 - ready to wait;
1355  *  -  1 - acquired the lock;
1356  *  - <0 - error
1357  *
1358  * The hb->lock and futex_key refs shall be held by the caller.
1359  *
1360  * @exiting is only set when the return value is -EBUSY. If so, this holds
1361  * a refcount on the exiting task on return and the caller needs to drop it
1362  * after waiting for the exit to complete.
1363  */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,struct task_struct ** exiting,int set_waiters)1364 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1365 				union futex_key *key,
1366 				struct futex_pi_state **ps,
1367 				struct task_struct *task,
1368 				struct task_struct **exiting,
1369 				int set_waiters)
1370 {
1371 	u32 uval, newval, vpid = task_pid_vnr(task);
1372 	struct futex_q *top_waiter;
1373 	int ret;
1374 
1375 	/*
1376 	 * Read the user space value first so we can validate a few
1377 	 * things before proceeding further.
1378 	 */
1379 	if (get_futex_value_locked(&uval, uaddr))
1380 		return -EFAULT;
1381 
1382 	if (unlikely(should_fail_futex(true)))
1383 		return -EFAULT;
1384 
1385 	/*
1386 	 * Detect deadlocks.
1387 	 */
1388 	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1389 		return -EDEADLK;
1390 
1391 	if ((unlikely(should_fail_futex(true))))
1392 		return -EDEADLK;
1393 
1394 	/*
1395 	 * Lookup existing state first. If it exists, try to attach to
1396 	 * its pi_state.
1397 	 */
1398 	top_waiter = futex_top_waiter(hb, key);
1399 	if (top_waiter)
1400 		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1401 
1402 	/*
1403 	 * No waiter and user TID is 0. We are here because the
1404 	 * waiters or the owner died bit is set or called from
1405 	 * requeue_cmp_pi or for whatever reason something took the
1406 	 * syscall.
1407 	 */
1408 	if (!(uval & FUTEX_TID_MASK)) {
1409 		/*
1410 		 * We take over the futex. No other waiters and the user space
1411 		 * TID is 0. We preserve the owner died bit.
1412 		 */
1413 		newval = uval & FUTEX_OWNER_DIED;
1414 		newval |= vpid;
1415 
1416 		/* The futex requeue_pi code can enforce the waiters bit */
1417 		if (set_waiters)
1418 			newval |= FUTEX_WAITERS;
1419 
1420 		ret = lock_pi_update_atomic(uaddr, uval, newval);
1421 		/* If the take over worked, return 1 */
1422 		return ret < 0 ? ret : 1;
1423 	}
1424 
1425 	/*
1426 	 * First waiter. Set the waiters bit before attaching ourself to
1427 	 * the owner. If owner tries to unlock, it will be forced into
1428 	 * the kernel and blocked on hb->lock.
1429 	 */
1430 	newval = uval | FUTEX_WAITERS;
1431 	ret = lock_pi_update_atomic(uaddr, uval, newval);
1432 	if (ret)
1433 		return ret;
1434 	/*
1435 	 * If the update of the user space value succeeded, we try to
1436 	 * attach to the owner. If that fails, no harm done, we only
1437 	 * set the FUTEX_WAITERS bit in the user space variable.
1438 	 */
1439 	return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1440 }
1441 
1442 /**
1443  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1444  * @q:	The futex_q to unqueue
1445  *
1446  * The q->lock_ptr must not be NULL and must be held by the caller.
1447  */
__unqueue_futex(struct futex_q * q)1448 static void __unqueue_futex(struct futex_q *q)
1449 {
1450 	struct futex_hash_bucket *hb;
1451 
1452 	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1453 		return;
1454 	lockdep_assert_held(q->lock_ptr);
1455 
1456 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1457 	plist_del(&q->list, &hb->chain);
1458 	hb_waiters_dec(hb);
1459 }
1460 
1461 /*
1462  * The hash bucket lock must be held when this is called.
1463  * Afterwards, the futex_q must not be accessed. Callers
1464  * must ensure to later call wake_up_q() for the actual
1465  * wakeups to occur.
1466  */
mark_wake_futex(struct wake_q_head * wake_q,struct futex_q * q)1467 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1468 {
1469 	struct task_struct *p = q->task;
1470 
1471 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1472 		return;
1473 
1474 	get_task_struct(p);
1475 	__unqueue_futex(q);
1476 	/*
1477 	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1478 	 * is written, without taking any locks. This is possible in the event
1479 	 * of a spurious wakeup, for example. A memory barrier is required here
1480 	 * to prevent the following store to lock_ptr from getting ahead of the
1481 	 * plist_del in __unqueue_futex().
1482 	 */
1483 	smp_store_release(&q->lock_ptr, NULL);
1484 
1485 	/*
1486 	 * Queue the task for later wakeup for after we've released
1487 	 * the hb->lock.
1488 	 */
1489 	wake_q_add_safe(wake_q, p);
1490 }
1491 
1492 /*
1493  * Caller must hold a reference on @pi_state.
1494  */
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state)1495 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1496 {
1497 	u32 curval, newval;
1498 	struct task_struct *new_owner;
1499 	bool postunlock = false;
1500 	DEFINE_WAKE_Q(wake_q);
1501 	int ret = 0;
1502 
1503 	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1504 	if (WARN_ON_ONCE(!new_owner)) {
1505 		/*
1506 		 * As per the comment in futex_unlock_pi() this should not happen.
1507 		 *
1508 		 * When this happens, give up our locks and try again, giving
1509 		 * the futex_lock_pi() instance time to complete, either by
1510 		 * waiting on the rtmutex or removing itself from the futex
1511 		 * queue.
1512 		 */
1513 		ret = -EAGAIN;
1514 		goto out_unlock;
1515 	}
1516 
1517 	/*
1518 	 * We pass it to the next owner. The WAITERS bit is always kept
1519 	 * enabled while there is PI state around. We cleanup the owner
1520 	 * died bit, because we are the owner.
1521 	 */
1522 	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1523 
1524 	if (unlikely(should_fail_futex(true))) {
1525 		ret = -EFAULT;
1526 		goto out_unlock;
1527 	}
1528 
1529 	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1530 	if (!ret && (curval != uval)) {
1531 		/*
1532 		 * If a unconditional UNLOCK_PI operation (user space did not
1533 		 * try the TID->0 transition) raced with a waiter setting the
1534 		 * FUTEX_WAITERS flag between get_user() and locking the hash
1535 		 * bucket lock, retry the operation.
1536 		 */
1537 		if ((FUTEX_TID_MASK & curval) == uval)
1538 			ret = -EAGAIN;
1539 		else
1540 			ret = -EINVAL;
1541 	}
1542 
1543 	if (!ret) {
1544 		/*
1545 		 * This is a point of no return; once we modified the uval
1546 		 * there is no going back and subsequent operations must
1547 		 * not fail.
1548 		 */
1549 		pi_state_update_owner(pi_state, new_owner);
1550 		postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1551 	}
1552 
1553 out_unlock:
1554 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1555 
1556 	if (postunlock)
1557 		rt_mutex_postunlock(&wake_q);
1558 
1559 	return ret;
1560 }
1561 
1562 /*
1563  * Express the locking dependencies for lockdep:
1564  */
1565 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1566 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1567 {
1568 	if (hb1 <= hb2) {
1569 		spin_lock(&hb1->lock);
1570 		if (hb1 < hb2)
1571 			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1572 	} else { /* hb1 > hb2 */
1573 		spin_lock(&hb2->lock);
1574 		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1575 	}
1576 }
1577 
1578 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1579 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1580 {
1581 	spin_unlock(&hb1->lock);
1582 	if (hb1 != hb2)
1583 		spin_unlock(&hb2->lock);
1584 }
1585 
1586 /*
1587  * Wake up waiters matching bitset queued on this futex (uaddr).
1588  */
1589 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1590 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1591 {
1592 	struct futex_hash_bucket *hb;
1593 	struct futex_q *this, *next;
1594 	union futex_key key = FUTEX_KEY_INIT;
1595 	int ret;
1596 	DEFINE_WAKE_Q(wake_q);
1597 
1598 	if (!bitset)
1599 		return -EINVAL;
1600 
1601 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1602 	if (unlikely(ret != 0))
1603 		return ret;
1604 
1605 	hb = hash_futex(&key);
1606 
1607 	/* Make sure we really have tasks to wakeup */
1608 	if (!hb_waiters_pending(hb))
1609 		return ret;
1610 
1611 	spin_lock(&hb->lock);
1612 
1613 	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1614 		if (match_futex (&this->key, &key)) {
1615 			if (this->pi_state || this->rt_waiter) {
1616 				ret = -EINVAL;
1617 				break;
1618 			}
1619 
1620 			/* Check if one of the bits is set in both bitsets */
1621 			if (!(this->bitset & bitset))
1622 				continue;
1623 
1624 			mark_wake_futex(&wake_q, this);
1625 			if (++ret >= nr_wake)
1626 				break;
1627 		}
1628 	}
1629 
1630 	spin_unlock(&hb->lock);
1631 	wake_up_q(&wake_q);
1632 	return ret;
1633 }
1634 
futex_atomic_op_inuser(unsigned int encoded_op,u32 __user * uaddr)1635 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1636 {
1637 	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
1638 	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1639 	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1640 	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1641 	int oldval, ret;
1642 
1643 	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1644 		if (oparg < 0 || oparg > 31) {
1645 			char comm[sizeof(current->comm)];
1646 			/*
1647 			 * kill this print and return -EINVAL when userspace
1648 			 * is sane again
1649 			 */
1650 			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1651 					get_task_comm(comm, current), oparg);
1652 			oparg &= 31;
1653 		}
1654 		oparg = 1 << oparg;
1655 	}
1656 
1657 	pagefault_disable();
1658 	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1659 	pagefault_enable();
1660 	if (ret)
1661 		return ret;
1662 
1663 	switch (cmp) {
1664 	case FUTEX_OP_CMP_EQ:
1665 		return oldval == cmparg;
1666 	case FUTEX_OP_CMP_NE:
1667 		return oldval != cmparg;
1668 	case FUTEX_OP_CMP_LT:
1669 		return oldval < cmparg;
1670 	case FUTEX_OP_CMP_GE:
1671 		return oldval >= cmparg;
1672 	case FUTEX_OP_CMP_LE:
1673 		return oldval <= cmparg;
1674 	case FUTEX_OP_CMP_GT:
1675 		return oldval > cmparg;
1676 	default:
1677 		return -ENOSYS;
1678 	}
1679 }
1680 
1681 /*
1682  * Wake up all waiters hashed on the physical page that is mapped
1683  * to this virtual address:
1684  */
1685 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1686 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1687 	      int nr_wake, int nr_wake2, int op)
1688 {
1689 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1690 	struct futex_hash_bucket *hb1, *hb2;
1691 	struct futex_q *this, *next;
1692 	int ret, op_ret;
1693 	DEFINE_WAKE_Q(wake_q);
1694 
1695 retry:
1696 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1697 	if (unlikely(ret != 0))
1698 		return ret;
1699 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1700 	if (unlikely(ret != 0))
1701 		return ret;
1702 
1703 	hb1 = hash_futex(&key1);
1704 	hb2 = hash_futex(&key2);
1705 
1706 retry_private:
1707 	double_lock_hb(hb1, hb2);
1708 	op_ret = futex_atomic_op_inuser(op, uaddr2);
1709 	if (unlikely(op_ret < 0)) {
1710 		double_unlock_hb(hb1, hb2);
1711 
1712 		if (!IS_ENABLED(CONFIG_MMU) ||
1713 		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1714 			/*
1715 			 * we don't get EFAULT from MMU faults if we don't have
1716 			 * an MMU, but we might get them from range checking
1717 			 */
1718 			ret = op_ret;
1719 			return ret;
1720 		}
1721 
1722 		if (op_ret == -EFAULT) {
1723 			ret = fault_in_user_writeable(uaddr2);
1724 			if (ret)
1725 				return ret;
1726 		}
1727 
1728 		if (!(flags & FLAGS_SHARED)) {
1729 			cond_resched();
1730 			goto retry_private;
1731 		}
1732 
1733 		cond_resched();
1734 		goto retry;
1735 	}
1736 
1737 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1738 		if (match_futex (&this->key, &key1)) {
1739 			if (this->pi_state || this->rt_waiter) {
1740 				ret = -EINVAL;
1741 				goto out_unlock;
1742 			}
1743 			mark_wake_futex(&wake_q, this);
1744 			if (++ret >= nr_wake)
1745 				break;
1746 		}
1747 	}
1748 
1749 	if (op_ret > 0) {
1750 		op_ret = 0;
1751 		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1752 			if (match_futex (&this->key, &key2)) {
1753 				if (this->pi_state || this->rt_waiter) {
1754 					ret = -EINVAL;
1755 					goto out_unlock;
1756 				}
1757 				mark_wake_futex(&wake_q, this);
1758 				if (++op_ret >= nr_wake2)
1759 					break;
1760 			}
1761 		}
1762 		ret += op_ret;
1763 	}
1764 
1765 out_unlock:
1766 	double_unlock_hb(hb1, hb2);
1767 	wake_up_q(&wake_q);
1768 	return ret;
1769 }
1770 
1771 /**
1772  * requeue_futex() - Requeue a futex_q from one hb to another
1773  * @q:		the futex_q to requeue
1774  * @hb1:	the source hash_bucket
1775  * @hb2:	the target hash_bucket
1776  * @key2:	the new key for the requeued futex_q
1777  */
1778 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1779 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1780 		   struct futex_hash_bucket *hb2, union futex_key *key2)
1781 {
1782 
1783 	/*
1784 	 * If key1 and key2 hash to the same bucket, no need to
1785 	 * requeue.
1786 	 */
1787 	if (likely(&hb1->chain != &hb2->chain)) {
1788 		plist_del(&q->list, &hb1->chain);
1789 		hb_waiters_dec(hb1);
1790 		hb_waiters_inc(hb2);
1791 		plist_add(&q->list, &hb2->chain);
1792 		q->lock_ptr = &hb2->lock;
1793 	}
1794 	q->key = *key2;
1795 }
1796 
1797 /**
1798  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1799  * @q:		the futex_q
1800  * @key:	the key of the requeue target futex
1801  * @hb:		the hash_bucket of the requeue target futex
1802  *
1803  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1804  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1805  * to the requeue target futex so the waiter can detect the wakeup on the right
1806  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1807  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1808  * to protect access to the pi_state to fixup the owner later.  Must be called
1809  * with both q->lock_ptr and hb->lock held.
1810  */
1811 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1812 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1813 			   struct futex_hash_bucket *hb)
1814 {
1815 	q->key = *key;
1816 
1817 	__unqueue_futex(q);
1818 
1819 	WARN_ON(!q->rt_waiter);
1820 	q->rt_waiter = NULL;
1821 
1822 	q->lock_ptr = &hb->lock;
1823 
1824 	wake_up_state(q->task, TASK_NORMAL);
1825 }
1826 
1827 /**
1828  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1829  * @pifutex:		the user address of the to futex
1830  * @hb1:		the from futex hash bucket, must be locked by the caller
1831  * @hb2:		the to futex hash bucket, must be locked by the caller
1832  * @key1:		the from futex key
1833  * @key2:		the to futex key
1834  * @ps:			address to store the pi_state pointer
1835  * @exiting:		Pointer to store the task pointer of the owner task
1836  *			which is in the middle of exiting
1837  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1838  *
1839  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1840  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1841  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1842  * hb1 and hb2 must be held by the caller.
1843  *
1844  * @exiting is only set when the return value is -EBUSY. If so, this holds
1845  * a refcount on the exiting task on return and the caller needs to drop it
1846  * after waiting for the exit to complete.
1847  *
1848  * Return:
1849  *  -  0 - failed to acquire the lock atomically;
1850  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1851  *  - <0 - error
1852  */
1853 static int
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,struct task_struct ** exiting,int set_waiters)1854 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1855 			   struct futex_hash_bucket *hb2, union futex_key *key1,
1856 			   union futex_key *key2, struct futex_pi_state **ps,
1857 			   struct task_struct **exiting, int set_waiters)
1858 {
1859 	struct futex_q *top_waiter = NULL;
1860 	u32 curval;
1861 	int ret, vpid;
1862 
1863 	if (get_futex_value_locked(&curval, pifutex))
1864 		return -EFAULT;
1865 
1866 	if (unlikely(should_fail_futex(true)))
1867 		return -EFAULT;
1868 
1869 	/*
1870 	 * Find the top_waiter and determine if there are additional waiters.
1871 	 * If the caller intends to requeue more than 1 waiter to pifutex,
1872 	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1873 	 * as we have means to handle the possible fault.  If not, don't set
1874 	 * the bit unecessarily as it will force the subsequent unlock to enter
1875 	 * the kernel.
1876 	 */
1877 	top_waiter = futex_top_waiter(hb1, key1);
1878 
1879 	/* There are no waiters, nothing for us to do. */
1880 	if (!top_waiter)
1881 		return 0;
1882 
1883 	/* Ensure we requeue to the expected futex. */
1884 	if (!match_futex(top_waiter->requeue_pi_key, key2))
1885 		return -EINVAL;
1886 
1887 	/*
1888 	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1889 	 * the contended case or if set_waiters is 1.  The pi_state is returned
1890 	 * in ps in contended cases.
1891 	 */
1892 	vpid = task_pid_vnr(top_waiter->task);
1893 	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1894 				   exiting, set_waiters);
1895 	if (ret == 1) {
1896 		requeue_pi_wake_futex(top_waiter, key2, hb2);
1897 		return vpid;
1898 	}
1899 	return ret;
1900 }
1901 
1902 /**
1903  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1904  * @uaddr1:	source futex user address
1905  * @flags:	futex flags (FLAGS_SHARED, etc.)
1906  * @uaddr2:	target futex user address
1907  * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1908  * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1909  * @cmpval:	@uaddr1 expected value (or %NULL)
1910  * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1911  *		pi futex (pi to pi requeue is not supported)
1912  *
1913  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1914  * uaddr2 atomically on behalf of the top waiter.
1915  *
1916  * Return:
1917  *  - >=0 - on success, the number of tasks requeued or woken;
1918  *  -  <0 - on error
1919  */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1920 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1921 			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1922 			 u32 *cmpval, int requeue_pi)
1923 {
1924 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1925 	int task_count = 0, ret;
1926 	struct futex_pi_state *pi_state = NULL;
1927 	struct futex_hash_bucket *hb1, *hb2;
1928 	struct futex_q *this, *next;
1929 	DEFINE_WAKE_Q(wake_q);
1930 
1931 	if (nr_wake < 0 || nr_requeue < 0)
1932 		return -EINVAL;
1933 
1934 	/*
1935 	 * When PI not supported: return -ENOSYS if requeue_pi is true,
1936 	 * consequently the compiler knows requeue_pi is always false past
1937 	 * this point which will optimize away all the conditional code
1938 	 * further down.
1939 	 */
1940 	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1941 		return -ENOSYS;
1942 
1943 	if (requeue_pi) {
1944 		/*
1945 		 * Requeue PI only works on two distinct uaddrs. This
1946 		 * check is only valid for private futexes. See below.
1947 		 */
1948 		if (uaddr1 == uaddr2)
1949 			return -EINVAL;
1950 
1951 		/*
1952 		 * requeue_pi requires a pi_state, try to allocate it now
1953 		 * without any locks in case it fails.
1954 		 */
1955 		if (refill_pi_state_cache())
1956 			return -ENOMEM;
1957 		/*
1958 		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1959 		 * + nr_requeue, since it acquires the rt_mutex prior to
1960 		 * returning to userspace, so as to not leave the rt_mutex with
1961 		 * waiters and no owner.  However, second and third wake-ups
1962 		 * cannot be predicted as they involve race conditions with the
1963 		 * first wake and a fault while looking up the pi_state.  Both
1964 		 * pthread_cond_signal() and pthread_cond_broadcast() should
1965 		 * use nr_wake=1.
1966 		 */
1967 		if (nr_wake != 1)
1968 			return -EINVAL;
1969 	}
1970 
1971 retry:
1972 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1973 	if (unlikely(ret != 0))
1974 		return ret;
1975 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1976 			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1977 	if (unlikely(ret != 0))
1978 		return ret;
1979 
1980 	/*
1981 	 * The check above which compares uaddrs is not sufficient for
1982 	 * shared futexes. We need to compare the keys:
1983 	 */
1984 	if (requeue_pi && match_futex(&key1, &key2))
1985 		return -EINVAL;
1986 
1987 	hb1 = hash_futex(&key1);
1988 	hb2 = hash_futex(&key2);
1989 
1990 retry_private:
1991 	hb_waiters_inc(hb2);
1992 	double_lock_hb(hb1, hb2);
1993 
1994 	if (likely(cmpval != NULL)) {
1995 		u32 curval;
1996 
1997 		ret = get_futex_value_locked(&curval, uaddr1);
1998 
1999 		if (unlikely(ret)) {
2000 			double_unlock_hb(hb1, hb2);
2001 			hb_waiters_dec(hb2);
2002 
2003 			ret = get_user(curval, uaddr1);
2004 			if (ret)
2005 				return ret;
2006 
2007 			if (!(flags & FLAGS_SHARED))
2008 				goto retry_private;
2009 
2010 			goto retry;
2011 		}
2012 		if (curval != *cmpval) {
2013 			ret = -EAGAIN;
2014 			goto out_unlock;
2015 		}
2016 	}
2017 
2018 	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2019 		struct task_struct *exiting = NULL;
2020 
2021 		/*
2022 		 * Attempt to acquire uaddr2 and wake the top waiter. If we
2023 		 * intend to requeue waiters, force setting the FUTEX_WAITERS
2024 		 * bit.  We force this here where we are able to easily handle
2025 		 * faults rather in the requeue loop below.
2026 		 */
2027 		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2028 						 &key2, &pi_state,
2029 						 &exiting, nr_requeue);
2030 
2031 		/*
2032 		 * At this point the top_waiter has either taken uaddr2 or is
2033 		 * waiting on it.  If the former, then the pi_state will not
2034 		 * exist yet, look it up one more time to ensure we have a
2035 		 * reference to it. If the lock was taken, ret contains the
2036 		 * vpid of the top waiter task.
2037 		 * If the lock was not taken, we have pi_state and an initial
2038 		 * refcount on it. In case of an error we have nothing.
2039 		 */
2040 		if (ret > 0) {
2041 			WARN_ON(pi_state);
2042 			task_count++;
2043 			/*
2044 			 * If we acquired the lock, then the user space value
2045 			 * of uaddr2 should be vpid. It cannot be changed by
2046 			 * the top waiter as it is blocked on hb2 lock if it
2047 			 * tries to do so. If something fiddled with it behind
2048 			 * our back the pi state lookup might unearth it. So
2049 			 * we rather use the known value than rereading and
2050 			 * handing potential crap to lookup_pi_state.
2051 			 *
2052 			 * If that call succeeds then we have pi_state and an
2053 			 * initial refcount on it.
2054 			 */
2055 			ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2056 					      &pi_state, &exiting);
2057 		}
2058 
2059 		switch (ret) {
2060 		case 0:
2061 			/* We hold a reference on the pi state. */
2062 			break;
2063 
2064 			/* If the above failed, then pi_state is NULL */
2065 		case -EFAULT:
2066 			double_unlock_hb(hb1, hb2);
2067 			hb_waiters_dec(hb2);
2068 			ret = fault_in_user_writeable(uaddr2);
2069 			if (!ret)
2070 				goto retry;
2071 			return ret;
2072 		case -EBUSY:
2073 		case -EAGAIN:
2074 			/*
2075 			 * Two reasons for this:
2076 			 * - EBUSY: Owner is exiting and we just wait for the
2077 			 *   exit to complete.
2078 			 * - EAGAIN: The user space value changed.
2079 			 */
2080 			double_unlock_hb(hb1, hb2);
2081 			hb_waiters_dec(hb2);
2082 			/*
2083 			 * Handle the case where the owner is in the middle of
2084 			 * exiting. Wait for the exit to complete otherwise
2085 			 * this task might loop forever, aka. live lock.
2086 			 */
2087 			wait_for_owner_exiting(ret, exiting);
2088 			cond_resched();
2089 			goto retry;
2090 		default:
2091 			goto out_unlock;
2092 		}
2093 	}
2094 
2095 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2096 		if (task_count - nr_wake >= nr_requeue)
2097 			break;
2098 
2099 		if (!match_futex(&this->key, &key1))
2100 			continue;
2101 
2102 		/*
2103 		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2104 		 * be paired with each other and no other futex ops.
2105 		 *
2106 		 * We should never be requeueing a futex_q with a pi_state,
2107 		 * which is awaiting a futex_unlock_pi().
2108 		 */
2109 		if ((requeue_pi && !this->rt_waiter) ||
2110 		    (!requeue_pi && this->rt_waiter) ||
2111 		    this->pi_state) {
2112 			ret = -EINVAL;
2113 			break;
2114 		}
2115 
2116 		/*
2117 		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2118 		 * lock, we already woke the top_waiter.  If not, it will be
2119 		 * woken by futex_unlock_pi().
2120 		 */
2121 		if (++task_count <= nr_wake && !requeue_pi) {
2122 			mark_wake_futex(&wake_q, this);
2123 			continue;
2124 		}
2125 
2126 		/* Ensure we requeue to the expected futex for requeue_pi. */
2127 		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2128 			ret = -EINVAL;
2129 			break;
2130 		}
2131 
2132 		/*
2133 		 * Requeue nr_requeue waiters and possibly one more in the case
2134 		 * of requeue_pi if we couldn't acquire the lock atomically.
2135 		 */
2136 		if (requeue_pi) {
2137 			/*
2138 			 * Prepare the waiter to take the rt_mutex. Take a
2139 			 * refcount on the pi_state and store the pointer in
2140 			 * the futex_q object of the waiter.
2141 			 */
2142 			get_pi_state(pi_state);
2143 			this->pi_state = pi_state;
2144 			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2145 							this->rt_waiter,
2146 							this->task);
2147 			if (ret == 1) {
2148 				/*
2149 				 * We got the lock. We do neither drop the
2150 				 * refcount on pi_state nor clear
2151 				 * this->pi_state because the waiter needs the
2152 				 * pi_state for cleaning up the user space
2153 				 * value. It will drop the refcount after
2154 				 * doing so.
2155 				 */
2156 				requeue_pi_wake_futex(this, &key2, hb2);
2157 				continue;
2158 			} else if (ret) {
2159 				/*
2160 				 * rt_mutex_start_proxy_lock() detected a
2161 				 * potential deadlock when we tried to queue
2162 				 * that waiter. Drop the pi_state reference
2163 				 * which we took above and remove the pointer
2164 				 * to the state from the waiters futex_q
2165 				 * object.
2166 				 */
2167 				this->pi_state = NULL;
2168 				put_pi_state(pi_state);
2169 				/*
2170 				 * We stop queueing more waiters and let user
2171 				 * space deal with the mess.
2172 				 */
2173 				break;
2174 			}
2175 		}
2176 		requeue_futex(this, hb1, hb2, &key2);
2177 	}
2178 
2179 	/*
2180 	 * We took an extra initial reference to the pi_state either
2181 	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2182 	 * need to drop it here again.
2183 	 */
2184 	put_pi_state(pi_state);
2185 
2186 out_unlock:
2187 	double_unlock_hb(hb1, hb2);
2188 	wake_up_q(&wake_q);
2189 	hb_waiters_dec(hb2);
2190 	return ret ? ret : task_count;
2191 }
2192 
2193 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)2194 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2195 	__acquires(&hb->lock)
2196 {
2197 	struct futex_hash_bucket *hb;
2198 
2199 	hb = hash_futex(&q->key);
2200 
2201 	/*
2202 	 * Increment the counter before taking the lock so that
2203 	 * a potential waker won't miss a to-be-slept task that is
2204 	 * waiting for the spinlock. This is safe as all queue_lock()
2205 	 * users end up calling queue_me(). Similarly, for housekeeping,
2206 	 * decrement the counter at queue_unlock() when some error has
2207 	 * occurred and we don't end up adding the task to the list.
2208 	 */
2209 	hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2210 
2211 	q->lock_ptr = &hb->lock;
2212 
2213 	spin_lock(&hb->lock);
2214 	return hb;
2215 }
2216 
2217 static inline void
queue_unlock(struct futex_hash_bucket * hb)2218 queue_unlock(struct futex_hash_bucket *hb)
2219 	__releases(&hb->lock)
2220 {
2221 	spin_unlock(&hb->lock);
2222 	hb_waiters_dec(hb);
2223 }
2224 
__queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2225 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2226 {
2227 	int prio;
2228 
2229 	/*
2230 	 * The priority used to register this element is
2231 	 * - either the real thread-priority for the real-time threads
2232 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2233 	 * - or MAX_RT_PRIO for non-RT threads.
2234 	 * Thus, all RT-threads are woken first in priority order, and
2235 	 * the others are woken last, in FIFO order.
2236 	 */
2237 	prio = min(current->normal_prio, MAX_RT_PRIO);
2238 
2239 	plist_node_init(&q->list, prio);
2240 	plist_add(&q->list, &hb->chain);
2241 	q->task = current;
2242 }
2243 
2244 /**
2245  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2246  * @q:	The futex_q to enqueue
2247  * @hb:	The destination hash bucket
2248  *
2249  * The hb->lock must be held by the caller, and is released here. A call to
2250  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2251  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2252  * or nothing if the unqueue is done as part of the wake process and the unqueue
2253  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2254  * an example).
2255  */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2256 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2257 	__releases(&hb->lock)
2258 {
2259 	__queue_me(q, hb);
2260 	spin_unlock(&hb->lock);
2261 }
2262 
2263 /**
2264  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2265  * @q:	The futex_q to unqueue
2266  *
2267  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2268  * be paired with exactly one earlier call to queue_me().
2269  *
2270  * Return:
2271  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2272  *  - 0 - if the futex_q was already removed by the waking thread
2273  */
unqueue_me(struct futex_q * q)2274 static int unqueue_me(struct futex_q *q)
2275 {
2276 	spinlock_t *lock_ptr;
2277 	int ret = 0;
2278 
2279 	/* In the common case we don't take the spinlock, which is nice. */
2280 retry:
2281 	/*
2282 	 * q->lock_ptr can change between this read and the following spin_lock.
2283 	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2284 	 * optimizing lock_ptr out of the logic below.
2285 	 */
2286 	lock_ptr = READ_ONCE(q->lock_ptr);
2287 	if (lock_ptr != NULL) {
2288 		spin_lock(lock_ptr);
2289 		/*
2290 		 * q->lock_ptr can change between reading it and
2291 		 * spin_lock(), causing us to take the wrong lock.  This
2292 		 * corrects the race condition.
2293 		 *
2294 		 * Reasoning goes like this: if we have the wrong lock,
2295 		 * q->lock_ptr must have changed (maybe several times)
2296 		 * between reading it and the spin_lock().  It can
2297 		 * change again after the spin_lock() but only if it was
2298 		 * already changed before the spin_lock().  It cannot,
2299 		 * however, change back to the original value.  Therefore
2300 		 * we can detect whether we acquired the correct lock.
2301 		 */
2302 		if (unlikely(lock_ptr != q->lock_ptr)) {
2303 			spin_unlock(lock_ptr);
2304 			goto retry;
2305 		}
2306 		__unqueue_futex(q);
2307 
2308 		BUG_ON(q->pi_state);
2309 
2310 		spin_unlock(lock_ptr);
2311 		ret = 1;
2312 	}
2313 
2314 	return ret;
2315 }
2316 
2317 /*
2318  * PI futexes can not be requeued and must remove themself from the
2319  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2320  * and dropped here.
2321  */
unqueue_me_pi(struct futex_q * q)2322 static void unqueue_me_pi(struct futex_q *q)
2323 	__releases(q->lock_ptr)
2324 {
2325 	__unqueue_futex(q);
2326 
2327 	BUG_ON(!q->pi_state);
2328 	put_pi_state(q->pi_state);
2329 	q->pi_state = NULL;
2330 
2331 	spin_unlock(q->lock_ptr);
2332 }
2333 
__fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2334 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2335 				  struct task_struct *argowner)
2336 {
2337 	struct futex_pi_state *pi_state = q->pi_state;
2338 	struct task_struct *oldowner, *newowner;
2339 	u32 uval, curval, newval, newtid;
2340 	int err = 0;
2341 
2342 	oldowner = pi_state->owner;
2343 
2344 	/*
2345 	 * We are here because either:
2346 	 *
2347 	 *  - we stole the lock and pi_state->owner needs updating to reflect
2348 	 *    that (@argowner == current),
2349 	 *
2350 	 * or:
2351 	 *
2352 	 *  - someone stole our lock and we need to fix things to point to the
2353 	 *    new owner (@argowner == NULL).
2354 	 *
2355 	 * Either way, we have to replace the TID in the user space variable.
2356 	 * This must be atomic as we have to preserve the owner died bit here.
2357 	 *
2358 	 * Note: We write the user space value _before_ changing the pi_state
2359 	 * because we can fault here. Imagine swapped out pages or a fork
2360 	 * that marked all the anonymous memory readonly for cow.
2361 	 *
2362 	 * Modifying pi_state _before_ the user space value would leave the
2363 	 * pi_state in an inconsistent state when we fault here, because we
2364 	 * need to drop the locks to handle the fault. This might be observed
2365 	 * in the PID check in lookup_pi_state.
2366 	 */
2367 retry:
2368 	if (!argowner) {
2369 		if (oldowner != current) {
2370 			/*
2371 			 * We raced against a concurrent self; things are
2372 			 * already fixed up. Nothing to do.
2373 			 */
2374 			return 0;
2375 		}
2376 
2377 		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2378 			/* We got the lock. pi_state is correct. Tell caller. */
2379 			return 1;
2380 		}
2381 
2382 		/*
2383 		 * The trylock just failed, so either there is an owner or
2384 		 * there is a higher priority waiter than this one.
2385 		 */
2386 		newowner = rt_mutex_owner(&pi_state->pi_mutex);
2387 		/*
2388 		 * If the higher priority waiter has not yet taken over the
2389 		 * rtmutex then newowner is NULL. We can't return here with
2390 		 * that state because it's inconsistent vs. the user space
2391 		 * state. So drop the locks and try again. It's a valid
2392 		 * situation and not any different from the other retry
2393 		 * conditions.
2394 		 */
2395 		if (unlikely(!newowner)) {
2396 			err = -EAGAIN;
2397 			goto handle_err;
2398 		}
2399 	} else {
2400 		WARN_ON_ONCE(argowner != current);
2401 		if (oldowner == current) {
2402 			/*
2403 			 * We raced against a concurrent self; things are
2404 			 * already fixed up. Nothing to do.
2405 			 */
2406 			return 1;
2407 		}
2408 		newowner = argowner;
2409 	}
2410 
2411 	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2412 	/* Owner died? */
2413 	if (!pi_state->owner)
2414 		newtid |= FUTEX_OWNER_DIED;
2415 
2416 	err = get_futex_value_locked(&uval, uaddr);
2417 	if (err)
2418 		goto handle_err;
2419 
2420 	for (;;) {
2421 		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2422 
2423 		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2424 		if (err)
2425 			goto handle_err;
2426 
2427 		if (curval == uval)
2428 			break;
2429 		uval = curval;
2430 	}
2431 
2432 	/*
2433 	 * We fixed up user space. Now we need to fix the pi_state
2434 	 * itself.
2435 	 */
2436 	pi_state_update_owner(pi_state, newowner);
2437 
2438 	return argowner == current;
2439 
2440 	/*
2441 	 * In order to reschedule or handle a page fault, we need to drop the
2442 	 * locks here. In the case of a fault, this gives the other task
2443 	 * (either the highest priority waiter itself or the task which stole
2444 	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2445 	 * are back from handling the fault we need to check the pi_state after
2446 	 * reacquiring the locks and before trying to do another fixup. When
2447 	 * the fixup has been done already we simply return.
2448 	 *
2449 	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2450 	 * drop hb->lock since the caller owns the hb -> futex_q relation.
2451 	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2452 	 */
2453 handle_err:
2454 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2455 	spin_unlock(q->lock_ptr);
2456 
2457 	switch (err) {
2458 	case -EFAULT:
2459 		err = fault_in_user_writeable(uaddr);
2460 		break;
2461 
2462 	case -EAGAIN:
2463 		cond_resched();
2464 		err = 0;
2465 		break;
2466 
2467 	default:
2468 		WARN_ON_ONCE(1);
2469 		break;
2470 	}
2471 
2472 	spin_lock(q->lock_ptr);
2473 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2474 
2475 	/*
2476 	 * Check if someone else fixed it for us:
2477 	 */
2478 	if (pi_state->owner != oldowner)
2479 		return argowner == current;
2480 
2481 	/* Retry if err was -EAGAIN or the fault in succeeded */
2482 	if (!err)
2483 		goto retry;
2484 
2485 	/*
2486 	 * fault_in_user_writeable() failed so user state is immutable. At
2487 	 * best we can make the kernel state consistent but user state will
2488 	 * be most likely hosed and any subsequent unlock operation will be
2489 	 * rejected due to PI futex rule [10].
2490 	 *
2491 	 * Ensure that the rtmutex owner is also the pi_state owner despite
2492 	 * the user space value claiming something different. There is no
2493 	 * point in unlocking the rtmutex if current is the owner as it
2494 	 * would need to wait until the next waiter has taken the rtmutex
2495 	 * to guarantee consistent state. Keep it simple. Userspace asked
2496 	 * for this wreckaged state.
2497 	 *
2498 	 * The rtmutex has an owner - either current or some other
2499 	 * task. See the EAGAIN loop above.
2500 	 */
2501 	pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2502 
2503 	return err;
2504 }
2505 
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2506 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2507 				struct task_struct *argowner)
2508 {
2509 	struct futex_pi_state *pi_state = q->pi_state;
2510 	int ret;
2511 
2512 	lockdep_assert_held(q->lock_ptr);
2513 
2514 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2515 	ret = __fixup_pi_state_owner(uaddr, q, argowner);
2516 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2517 	return ret;
2518 }
2519 
2520 static long futex_wait_restart(struct restart_block *restart);
2521 
2522 /**
2523  * fixup_owner() - Post lock pi_state and corner case management
2524  * @uaddr:	user address of the futex
2525  * @q:		futex_q (contains pi_state and access to the rt_mutex)
2526  * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2527  *
2528  * After attempting to lock an rt_mutex, this function is called to cleanup
2529  * the pi_state owner as well as handle race conditions that may allow us to
2530  * acquire the lock. Must be called with the hb lock held.
2531  *
2532  * Return:
2533  *  -  1 - success, lock taken;
2534  *  -  0 - success, lock not taken;
2535  *  - <0 - on error (-EFAULT)
2536  */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)2537 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2538 {
2539 	if (locked) {
2540 		/*
2541 		 * Got the lock. We might not be the anticipated owner if we
2542 		 * did a lock-steal - fix up the PI-state in that case:
2543 		 *
2544 		 * Speculative pi_state->owner read (we don't hold wait_lock);
2545 		 * since we own the lock pi_state->owner == current is the
2546 		 * stable state, anything else needs more attention.
2547 		 */
2548 		if (q->pi_state->owner != current)
2549 			return fixup_pi_state_owner(uaddr, q, current);
2550 		return 1;
2551 	}
2552 
2553 	/*
2554 	 * If we didn't get the lock; check if anybody stole it from us. In
2555 	 * that case, we need to fix up the uval to point to them instead of
2556 	 * us, otherwise bad things happen. [10]
2557 	 *
2558 	 * Another speculative read; pi_state->owner == current is unstable
2559 	 * but needs our attention.
2560 	 */
2561 	if (q->pi_state->owner == current)
2562 		return fixup_pi_state_owner(uaddr, q, NULL);
2563 
2564 	/*
2565 	 * Paranoia check. If we did not take the lock, then we should not be
2566 	 * the owner of the rt_mutex. Warn and establish consistent state.
2567 	 */
2568 	if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2569 		return fixup_pi_state_owner(uaddr, q, current);
2570 
2571 	return 0;
2572 }
2573 
2574 /**
2575  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2576  * @hb:		the futex hash bucket, must be locked by the caller
2577  * @q:		the futex_q to queue up on
2578  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2579  */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)2580 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2581 				struct hrtimer_sleeper *timeout)
2582 {
2583 	/*
2584 	 * The task state is guaranteed to be set before another task can
2585 	 * wake it. set_current_state() is implemented using smp_store_mb() and
2586 	 * queue_me() calls spin_unlock() upon completion, both serializing
2587 	 * access to the hash list and forcing another memory barrier.
2588 	 */
2589 	set_current_state(TASK_INTERRUPTIBLE);
2590 	queue_me(q, hb);
2591 
2592 	/* Arm the timer */
2593 	if (timeout)
2594 		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2595 
2596 	/*
2597 	 * If we have been removed from the hash list, then another task
2598 	 * has tried to wake us, and we can skip the call to schedule().
2599 	 */
2600 	if (likely(!plist_node_empty(&q->list))) {
2601 		/*
2602 		 * If the timer has already expired, current will already be
2603 		 * flagged for rescheduling. Only call schedule if there
2604 		 * is no timeout, or if it has yet to expire.
2605 		 */
2606 		if (!timeout || timeout->task)
2607 			freezable_schedule();
2608 	}
2609 	__set_current_state(TASK_RUNNING);
2610 }
2611 
2612 /**
2613  * futex_wait_setup() - Prepare to wait on a futex
2614  * @uaddr:	the futex userspace address
2615  * @val:	the expected value
2616  * @flags:	futex flags (FLAGS_SHARED, etc.)
2617  * @q:		the associated futex_q
2618  * @hb:		storage for hash_bucket pointer to be returned to caller
2619  *
2620  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2621  * compare it with the expected value.  Handle atomic faults internally.
2622  * Return with the hb lock held and a q.key reference on success, and unlocked
2623  * with no q.key reference on failure.
2624  *
2625  * Return:
2626  *  -  0 - uaddr contains val and hb has been locked;
2627  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2628  */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)2629 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2630 			   struct futex_q *q, struct futex_hash_bucket **hb)
2631 {
2632 	u32 uval;
2633 	int ret;
2634 
2635 	/*
2636 	 * Access the page AFTER the hash-bucket is locked.
2637 	 * Order is important:
2638 	 *
2639 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2640 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2641 	 *
2642 	 * The basic logical guarantee of a futex is that it blocks ONLY
2643 	 * if cond(var) is known to be true at the time of blocking, for
2644 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2645 	 * would open a race condition where we could block indefinitely with
2646 	 * cond(var) false, which would violate the guarantee.
2647 	 *
2648 	 * On the other hand, we insert q and release the hash-bucket only
2649 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2650 	 * absorb a wakeup if *uaddr does not match the desired values
2651 	 * while the syscall executes.
2652 	 */
2653 retry:
2654 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2655 	if (unlikely(ret != 0))
2656 		return ret;
2657 
2658 retry_private:
2659 	*hb = queue_lock(q);
2660 
2661 	ret = get_futex_value_locked(&uval, uaddr);
2662 
2663 	if (ret) {
2664 		queue_unlock(*hb);
2665 
2666 		ret = get_user(uval, uaddr);
2667 		if (ret)
2668 			return ret;
2669 
2670 		if (!(flags & FLAGS_SHARED))
2671 			goto retry_private;
2672 
2673 		goto retry;
2674 	}
2675 
2676 	if (uval != val) {
2677 		queue_unlock(*hb);
2678 		ret = -EWOULDBLOCK;
2679 	}
2680 
2681 	return ret;
2682 }
2683 
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2684 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2685 		      ktime_t *abs_time, u32 bitset)
2686 {
2687 	struct hrtimer_sleeper timeout, *to;
2688 	struct restart_block *restart;
2689 	struct futex_hash_bucket *hb;
2690 	struct futex_q q = futex_q_init;
2691 	int ret;
2692 
2693 	if (!bitset)
2694 		return -EINVAL;
2695 	q.bitset = bitset;
2696 
2697 	to = futex_setup_timer(abs_time, &timeout, flags,
2698 			       current->timer_slack_ns);
2699 retry:
2700 	/*
2701 	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2702 	 * q.key refs.
2703 	 */
2704 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2705 	if (ret)
2706 		goto out;
2707 
2708 	/* queue_me and wait for wakeup, timeout, or a signal. */
2709 	futex_wait_queue_me(hb, &q, to);
2710 
2711 	/* If we were woken (and unqueued), we succeeded, whatever. */
2712 	ret = 0;
2713 	/* unqueue_me() drops q.key ref */
2714 	if (!unqueue_me(&q))
2715 		goto out;
2716 	ret = -ETIMEDOUT;
2717 	if (to && !to->task)
2718 		goto out;
2719 
2720 	/*
2721 	 * We expect signal_pending(current), but we might be the
2722 	 * victim of a spurious wakeup as well.
2723 	 */
2724 	if (!signal_pending(current))
2725 		goto retry;
2726 
2727 	ret = -ERESTARTSYS;
2728 	if (!abs_time)
2729 		goto out;
2730 
2731 	restart = &current->restart_block;
2732 	restart->futex.uaddr = uaddr;
2733 	restart->futex.val = val;
2734 	restart->futex.time = *abs_time;
2735 	restart->futex.bitset = bitset;
2736 	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2737 
2738 	ret = set_restart_fn(restart, futex_wait_restart);
2739 
2740 out:
2741 	if (to) {
2742 		hrtimer_cancel(&to->timer);
2743 		destroy_hrtimer_on_stack(&to->timer);
2744 	}
2745 	return ret;
2746 }
2747 
2748 
futex_wait_restart(struct restart_block * restart)2749 static long futex_wait_restart(struct restart_block *restart)
2750 {
2751 	u32 __user *uaddr = restart->futex.uaddr;
2752 	ktime_t t, *tp = NULL;
2753 
2754 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2755 		t = restart->futex.time;
2756 		tp = &t;
2757 	}
2758 	restart->fn = do_no_restart_syscall;
2759 
2760 	return (long)futex_wait(uaddr, restart->futex.flags,
2761 				restart->futex.val, tp, restart->futex.bitset);
2762 }
2763 
2764 
2765 /*
2766  * Userspace tried a 0 -> TID atomic transition of the futex value
2767  * and failed. The kernel side here does the whole locking operation:
2768  * if there are waiters then it will block as a consequence of relying
2769  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2770  * a 0 value of the futex too.).
2771  *
2772  * Also serves as futex trylock_pi()'ing, and due semantics.
2773  */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,ktime_t * time,int trylock)2774 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2775 			 ktime_t *time, int trylock)
2776 {
2777 	struct hrtimer_sleeper timeout, *to;
2778 	struct task_struct *exiting = NULL;
2779 	struct rt_mutex_waiter rt_waiter;
2780 	struct futex_hash_bucket *hb;
2781 	struct futex_q q = futex_q_init;
2782 	int res, ret;
2783 
2784 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2785 		return -ENOSYS;
2786 
2787 	if (refill_pi_state_cache())
2788 		return -ENOMEM;
2789 
2790 	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2791 
2792 retry:
2793 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2794 	if (unlikely(ret != 0))
2795 		goto out;
2796 
2797 retry_private:
2798 	hb = queue_lock(&q);
2799 
2800 	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2801 				   &exiting, 0);
2802 	if (unlikely(ret)) {
2803 		/*
2804 		 * Atomic work succeeded and we got the lock,
2805 		 * or failed. Either way, we do _not_ block.
2806 		 */
2807 		switch (ret) {
2808 		case 1:
2809 			/* We got the lock. */
2810 			ret = 0;
2811 			goto out_unlock_put_key;
2812 		case -EFAULT:
2813 			goto uaddr_faulted;
2814 		case -EBUSY:
2815 		case -EAGAIN:
2816 			/*
2817 			 * Two reasons for this:
2818 			 * - EBUSY: Task is exiting and we just wait for the
2819 			 *   exit to complete.
2820 			 * - EAGAIN: The user space value changed.
2821 			 */
2822 			queue_unlock(hb);
2823 			/*
2824 			 * Handle the case where the owner is in the middle of
2825 			 * exiting. Wait for the exit to complete otherwise
2826 			 * this task might loop forever, aka. live lock.
2827 			 */
2828 			wait_for_owner_exiting(ret, exiting);
2829 			cond_resched();
2830 			goto retry;
2831 		default:
2832 			goto out_unlock_put_key;
2833 		}
2834 	}
2835 
2836 	WARN_ON(!q.pi_state);
2837 
2838 	/*
2839 	 * Only actually queue now that the atomic ops are done:
2840 	 */
2841 	__queue_me(&q, hb);
2842 
2843 	if (trylock) {
2844 		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2845 		/* Fixup the trylock return value: */
2846 		ret = ret ? 0 : -EWOULDBLOCK;
2847 		goto no_block;
2848 	}
2849 
2850 	rt_mutex_init_waiter(&rt_waiter);
2851 
2852 	/*
2853 	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2854 	 * hold it while doing rt_mutex_start_proxy(), because then it will
2855 	 * include hb->lock in the blocking chain, even through we'll not in
2856 	 * fact hold it while blocking. This will lead it to report -EDEADLK
2857 	 * and BUG when futex_unlock_pi() interleaves with this.
2858 	 *
2859 	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2860 	 * latter before calling __rt_mutex_start_proxy_lock(). This
2861 	 * interleaves with futex_unlock_pi() -- which does a similar lock
2862 	 * handoff -- such that the latter can observe the futex_q::pi_state
2863 	 * before __rt_mutex_start_proxy_lock() is done.
2864 	 */
2865 	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2866 	spin_unlock(q.lock_ptr);
2867 	/*
2868 	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2869 	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2870 	 * it sees the futex_q::pi_state.
2871 	 */
2872 	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2873 	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2874 
2875 	if (ret) {
2876 		if (ret == 1)
2877 			ret = 0;
2878 		goto cleanup;
2879 	}
2880 
2881 	if (unlikely(to))
2882 		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2883 
2884 	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2885 
2886 cleanup:
2887 	spin_lock(q.lock_ptr);
2888 	/*
2889 	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2890 	 * first acquire the hb->lock before removing the lock from the
2891 	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2892 	 * lists consistent.
2893 	 *
2894 	 * In particular; it is important that futex_unlock_pi() can not
2895 	 * observe this inconsistency.
2896 	 */
2897 	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2898 		ret = 0;
2899 
2900 no_block:
2901 	/*
2902 	 * Fixup the pi_state owner and possibly acquire the lock if we
2903 	 * haven't already.
2904 	 */
2905 	res = fixup_owner(uaddr, &q, !ret);
2906 	/*
2907 	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2908 	 * the lock, clear our -ETIMEDOUT or -EINTR.
2909 	 */
2910 	if (res)
2911 		ret = (res < 0) ? res : 0;
2912 
2913 	/* Unqueue and drop the lock */
2914 	unqueue_me_pi(&q);
2915 	goto out;
2916 
2917 out_unlock_put_key:
2918 	queue_unlock(hb);
2919 
2920 out:
2921 	if (to) {
2922 		hrtimer_cancel(&to->timer);
2923 		destroy_hrtimer_on_stack(&to->timer);
2924 	}
2925 	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2926 
2927 uaddr_faulted:
2928 	queue_unlock(hb);
2929 
2930 	ret = fault_in_user_writeable(uaddr);
2931 	if (ret)
2932 		goto out;
2933 
2934 	if (!(flags & FLAGS_SHARED))
2935 		goto retry_private;
2936 
2937 	goto retry;
2938 }
2939 
2940 /*
2941  * Userspace attempted a TID -> 0 atomic transition, and failed.
2942  * This is the in-kernel slowpath: we look up the PI state (if any),
2943  * and do the rt-mutex unlock.
2944  */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)2945 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2946 {
2947 	u32 curval, uval, vpid = task_pid_vnr(current);
2948 	union futex_key key = FUTEX_KEY_INIT;
2949 	struct futex_hash_bucket *hb;
2950 	struct futex_q *top_waiter;
2951 	int ret;
2952 
2953 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2954 		return -ENOSYS;
2955 
2956 retry:
2957 	if (get_user(uval, uaddr))
2958 		return -EFAULT;
2959 	/*
2960 	 * We release only a lock we actually own:
2961 	 */
2962 	if ((uval & FUTEX_TID_MASK) != vpid)
2963 		return -EPERM;
2964 
2965 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2966 	if (ret)
2967 		return ret;
2968 
2969 	hb = hash_futex(&key);
2970 	spin_lock(&hb->lock);
2971 
2972 	/*
2973 	 * Check waiters first. We do not trust user space values at
2974 	 * all and we at least want to know if user space fiddled
2975 	 * with the futex value instead of blindly unlocking.
2976 	 */
2977 	top_waiter = futex_top_waiter(hb, &key);
2978 	if (top_waiter) {
2979 		struct futex_pi_state *pi_state = top_waiter->pi_state;
2980 
2981 		ret = -EINVAL;
2982 		if (!pi_state)
2983 			goto out_unlock;
2984 
2985 		/*
2986 		 * If current does not own the pi_state then the futex is
2987 		 * inconsistent and user space fiddled with the futex value.
2988 		 */
2989 		if (pi_state->owner != current)
2990 			goto out_unlock;
2991 
2992 		get_pi_state(pi_state);
2993 		/*
2994 		 * By taking wait_lock while still holding hb->lock, we ensure
2995 		 * there is no point where we hold neither; and therefore
2996 		 * wake_futex_pi() must observe a state consistent with what we
2997 		 * observed.
2998 		 *
2999 		 * In particular; this forces __rt_mutex_start_proxy() to
3000 		 * complete such that we're guaranteed to observe the
3001 		 * rt_waiter. Also see the WARN in wake_futex_pi().
3002 		 */
3003 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3004 		spin_unlock(&hb->lock);
3005 
3006 		/* drops pi_state->pi_mutex.wait_lock */
3007 		ret = wake_futex_pi(uaddr, uval, pi_state);
3008 
3009 		put_pi_state(pi_state);
3010 
3011 		/*
3012 		 * Success, we're done! No tricky corner cases.
3013 		 */
3014 		if (!ret)
3015 			goto out_putkey;
3016 		/*
3017 		 * The atomic access to the futex value generated a
3018 		 * pagefault, so retry the user-access and the wakeup:
3019 		 */
3020 		if (ret == -EFAULT)
3021 			goto pi_faulted;
3022 		/*
3023 		 * A unconditional UNLOCK_PI op raced against a waiter
3024 		 * setting the FUTEX_WAITERS bit. Try again.
3025 		 */
3026 		if (ret == -EAGAIN)
3027 			goto pi_retry;
3028 		/*
3029 		 * wake_futex_pi has detected invalid state. Tell user
3030 		 * space.
3031 		 */
3032 		goto out_putkey;
3033 	}
3034 
3035 	/*
3036 	 * We have no kernel internal state, i.e. no waiters in the
3037 	 * kernel. Waiters which are about to queue themselves are stuck
3038 	 * on hb->lock. So we can safely ignore them. We do neither
3039 	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3040 	 * owner.
3041 	 */
3042 	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3043 		spin_unlock(&hb->lock);
3044 		switch (ret) {
3045 		case -EFAULT:
3046 			goto pi_faulted;
3047 
3048 		case -EAGAIN:
3049 			goto pi_retry;
3050 
3051 		default:
3052 			WARN_ON_ONCE(1);
3053 			goto out_putkey;
3054 		}
3055 	}
3056 
3057 	/*
3058 	 * If uval has changed, let user space handle it.
3059 	 */
3060 	ret = (curval == uval) ? 0 : -EAGAIN;
3061 
3062 out_unlock:
3063 	spin_unlock(&hb->lock);
3064 out_putkey:
3065 	return ret;
3066 
3067 pi_retry:
3068 	cond_resched();
3069 	goto retry;
3070 
3071 pi_faulted:
3072 
3073 	ret = fault_in_user_writeable(uaddr);
3074 	if (!ret)
3075 		goto retry;
3076 
3077 	return ret;
3078 }
3079 
3080 /**
3081  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3082  * @hb:		the hash_bucket futex_q was original enqueued on
3083  * @q:		the futex_q woken while waiting to be requeued
3084  * @key2:	the futex_key of the requeue target futex
3085  * @timeout:	the timeout associated with the wait (NULL if none)
3086  *
3087  * Detect if the task was woken on the initial futex as opposed to the requeue
3088  * target futex.  If so, determine if it was a timeout or a signal that caused
3089  * the wakeup and return the appropriate error code to the caller.  Must be
3090  * called with the hb lock held.
3091  *
3092  * Return:
3093  *  -  0 = no early wakeup detected;
3094  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3095  */
3096 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)3097 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3098 				   struct futex_q *q, union futex_key *key2,
3099 				   struct hrtimer_sleeper *timeout)
3100 {
3101 	int ret = 0;
3102 
3103 	/*
3104 	 * With the hb lock held, we avoid races while we process the wakeup.
3105 	 * We only need to hold hb (and not hb2) to ensure atomicity as the
3106 	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3107 	 * It can't be requeued from uaddr2 to something else since we don't
3108 	 * support a PI aware source futex for requeue.
3109 	 */
3110 	if (!match_futex(&q->key, key2)) {
3111 		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3112 		/*
3113 		 * We were woken prior to requeue by a timeout or a signal.
3114 		 * Unqueue the futex_q and determine which it was.
3115 		 */
3116 		plist_del(&q->list, &hb->chain);
3117 		hb_waiters_dec(hb);
3118 
3119 		/* Handle spurious wakeups gracefully */
3120 		ret = -EWOULDBLOCK;
3121 		if (timeout && !timeout->task)
3122 			ret = -ETIMEDOUT;
3123 		else if (signal_pending(current))
3124 			ret = -ERESTARTNOINTR;
3125 	}
3126 	return ret;
3127 }
3128 
3129 /**
3130  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3131  * @uaddr:	the futex we initially wait on (non-pi)
3132  * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3133  *		the same type, no requeueing from private to shared, etc.
3134  * @val:	the expected value of uaddr
3135  * @abs_time:	absolute timeout
3136  * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3137  * @uaddr2:	the pi futex we will take prior to returning to user-space
3138  *
3139  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3140  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3141  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3142  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3143  * without one, the pi logic would not know which task to boost/deboost, if
3144  * there was a need to.
3145  *
3146  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3147  * via the following--
3148  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3149  * 2) wakeup on uaddr2 after a requeue
3150  * 3) signal
3151  * 4) timeout
3152  *
3153  * If 3, cleanup and return -ERESTARTNOINTR.
3154  *
3155  * If 2, we may then block on trying to take the rt_mutex and return via:
3156  * 5) successful lock
3157  * 6) signal
3158  * 7) timeout
3159  * 8) other lock acquisition failure
3160  *
3161  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3162  *
3163  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3164  *
3165  * Return:
3166  *  -  0 - On success;
3167  *  - <0 - On error
3168  */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)3169 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3170 				 u32 val, ktime_t *abs_time, u32 bitset,
3171 				 u32 __user *uaddr2)
3172 {
3173 	struct hrtimer_sleeper timeout, *to;
3174 	struct rt_mutex_waiter rt_waiter;
3175 	struct futex_hash_bucket *hb;
3176 	union futex_key key2 = FUTEX_KEY_INIT;
3177 	struct futex_q q = futex_q_init;
3178 	int res, ret;
3179 
3180 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
3181 		return -ENOSYS;
3182 
3183 	if (uaddr == uaddr2)
3184 		return -EINVAL;
3185 
3186 	if (!bitset)
3187 		return -EINVAL;
3188 
3189 	to = futex_setup_timer(abs_time, &timeout, flags,
3190 			       current->timer_slack_ns);
3191 
3192 	/*
3193 	 * The waiter is allocated on our stack, manipulated by the requeue
3194 	 * code while we sleep on uaddr.
3195 	 */
3196 	rt_mutex_init_waiter(&rt_waiter);
3197 
3198 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3199 	if (unlikely(ret != 0))
3200 		goto out;
3201 
3202 	q.bitset = bitset;
3203 	q.rt_waiter = &rt_waiter;
3204 	q.requeue_pi_key = &key2;
3205 
3206 	/*
3207 	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3208 	 * count.
3209 	 */
3210 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3211 	if (ret)
3212 		goto out;
3213 
3214 	/*
3215 	 * The check above which compares uaddrs is not sufficient for
3216 	 * shared futexes. We need to compare the keys:
3217 	 */
3218 	if (match_futex(&q.key, &key2)) {
3219 		queue_unlock(hb);
3220 		ret = -EINVAL;
3221 		goto out;
3222 	}
3223 
3224 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
3225 	futex_wait_queue_me(hb, &q, to);
3226 
3227 	spin_lock(&hb->lock);
3228 	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3229 	spin_unlock(&hb->lock);
3230 	if (ret)
3231 		goto out;
3232 
3233 	/*
3234 	 * In order for us to be here, we know our q.key == key2, and since
3235 	 * we took the hb->lock above, we also know that futex_requeue() has
3236 	 * completed and we no longer have to concern ourselves with a wakeup
3237 	 * race with the atomic proxy lock acquisition by the requeue code. The
3238 	 * futex_requeue dropped our key1 reference and incremented our key2
3239 	 * reference count.
3240 	 */
3241 
3242 	/* Check if the requeue code acquired the second futex for us. */
3243 	if (!q.rt_waiter) {
3244 		/*
3245 		 * Got the lock. We might not be the anticipated owner if we
3246 		 * did a lock-steal - fix up the PI-state in that case.
3247 		 */
3248 		if (q.pi_state && (q.pi_state->owner != current)) {
3249 			spin_lock(q.lock_ptr);
3250 			ret = fixup_pi_state_owner(uaddr2, &q, current);
3251 			/*
3252 			 * Drop the reference to the pi state which
3253 			 * the requeue_pi() code acquired for us.
3254 			 */
3255 			put_pi_state(q.pi_state);
3256 			spin_unlock(q.lock_ptr);
3257 			/*
3258 			 * Adjust the return value. It's either -EFAULT or
3259 			 * success (1) but the caller expects 0 for success.
3260 			 */
3261 			ret = ret < 0 ? ret : 0;
3262 		}
3263 	} else {
3264 		struct rt_mutex *pi_mutex;
3265 
3266 		/*
3267 		 * We have been woken up by futex_unlock_pi(), a timeout, or a
3268 		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3269 		 * the pi_state.
3270 		 */
3271 		WARN_ON(!q.pi_state);
3272 		pi_mutex = &q.pi_state->pi_mutex;
3273 		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3274 
3275 		spin_lock(q.lock_ptr);
3276 		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3277 			ret = 0;
3278 
3279 		debug_rt_mutex_free_waiter(&rt_waiter);
3280 		/*
3281 		 * Fixup the pi_state owner and possibly acquire the lock if we
3282 		 * haven't already.
3283 		 */
3284 		res = fixup_owner(uaddr2, &q, !ret);
3285 		/*
3286 		 * If fixup_owner() returned an error, proprogate that.  If it
3287 		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3288 		 */
3289 		if (res)
3290 			ret = (res < 0) ? res : 0;
3291 
3292 		/* Unqueue and drop the lock. */
3293 		unqueue_me_pi(&q);
3294 	}
3295 
3296 	if (ret == -EINTR) {
3297 		/*
3298 		 * We've already been requeued, but cannot restart by calling
3299 		 * futex_lock_pi() directly. We could restart this syscall, but
3300 		 * it would detect that the user space "val" changed and return
3301 		 * -EWOULDBLOCK.  Save the overhead of the restart and return
3302 		 * -EWOULDBLOCK directly.
3303 		 */
3304 		ret = -EWOULDBLOCK;
3305 	}
3306 
3307 out:
3308 	if (to) {
3309 		hrtimer_cancel(&to->timer);
3310 		destroy_hrtimer_on_stack(&to->timer);
3311 	}
3312 	return ret;
3313 }
3314 
3315 /*
3316  * Support for robust futexes: the kernel cleans up held futexes at
3317  * thread exit time.
3318  *
3319  * Implementation: user-space maintains a per-thread list of locks it
3320  * is holding. Upon do_exit(), the kernel carefully walks this list,
3321  * and marks all locks that are owned by this thread with the
3322  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3323  * always manipulated with the lock held, so the list is private and
3324  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3325  * field, to allow the kernel to clean up if the thread dies after
3326  * acquiring the lock, but just before it could have added itself to
3327  * the list. There can only be one such pending lock.
3328  */
3329 
3330 /**
3331  * sys_set_robust_list() - Set the robust-futex list head of a task
3332  * @head:	pointer to the list-head
3333  * @len:	length of the list-head, as userspace expects
3334  */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)3335 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3336 		size_t, len)
3337 {
3338 	if (!futex_cmpxchg_enabled)
3339 		return -ENOSYS;
3340 	/*
3341 	 * The kernel knows only one size for now:
3342 	 */
3343 	if (unlikely(len != sizeof(*head)))
3344 		return -EINVAL;
3345 
3346 	current->robust_list = head;
3347 
3348 	return 0;
3349 }
3350 
3351 /**
3352  * sys_get_robust_list() - Get the robust-futex list head of a task
3353  * @pid:	pid of the process [zero for current task]
3354  * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3355  * @len_ptr:	pointer to a length field, the kernel fills in the header size
3356  */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)3357 SYSCALL_DEFINE3(get_robust_list, int, pid,
3358 		struct robust_list_head __user * __user *, head_ptr,
3359 		size_t __user *, len_ptr)
3360 {
3361 	struct robust_list_head __user *head;
3362 	unsigned long ret;
3363 	struct task_struct *p;
3364 
3365 	if (!futex_cmpxchg_enabled)
3366 		return -ENOSYS;
3367 
3368 	rcu_read_lock();
3369 
3370 	ret = -ESRCH;
3371 	if (!pid)
3372 		p = current;
3373 	else {
3374 		p = find_task_by_vpid(pid);
3375 		if (!p)
3376 			goto err_unlock;
3377 	}
3378 
3379 	ret = -EPERM;
3380 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3381 		goto err_unlock;
3382 
3383 	head = p->robust_list;
3384 	rcu_read_unlock();
3385 
3386 	if (put_user(sizeof(*head), len_ptr))
3387 		return -EFAULT;
3388 	return put_user(head, head_ptr);
3389 
3390 err_unlock:
3391 	rcu_read_unlock();
3392 
3393 	return ret;
3394 }
3395 
3396 /* Constants for the pending_op argument of handle_futex_death */
3397 #define HANDLE_DEATH_PENDING	true
3398 #define HANDLE_DEATH_LIST	false
3399 
3400 /*
3401  * Process a futex-list entry, check whether it's owned by the
3402  * dying task, and do notification if so:
3403  */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,bool pi,bool pending_op)3404 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3405 			      bool pi, bool pending_op)
3406 {
3407 	u32 uval, nval, mval;
3408 	pid_t owner;
3409 	int err;
3410 
3411 	/* Futex address must be 32bit aligned */
3412 	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3413 		return -1;
3414 
3415 retry:
3416 	if (get_user(uval, uaddr))
3417 		return -1;
3418 
3419 	/*
3420 	 * Special case for regular (non PI) futexes. The unlock path in
3421 	 * user space has two race scenarios:
3422 	 *
3423 	 * 1. The unlock path releases the user space futex value and
3424 	 *    before it can execute the futex() syscall to wake up
3425 	 *    waiters it is killed.
3426 	 *
3427 	 * 2. A woken up waiter is killed before it can acquire the
3428 	 *    futex in user space.
3429 	 *
3430 	 * In the second case, the wake up notification could be generated
3431 	 * by the unlock path in user space after setting the futex value
3432 	 * to zero or by the kernel after setting the OWNER_DIED bit below.
3433 	 *
3434 	 * In both cases the TID validation below prevents a wakeup of
3435 	 * potential waiters which can cause these waiters to block
3436 	 * forever.
3437 	 *
3438 	 * In both cases the following conditions are met:
3439 	 *
3440 	 *	1) task->robust_list->list_op_pending != NULL
3441 	 *	   @pending_op == true
3442 	 *	2) The owner part of user space futex value == 0
3443 	 *	3) Regular futex: @pi == false
3444 	 *
3445 	 * If these conditions are met, it is safe to attempt waking up a
3446 	 * potential waiter without touching the user space futex value and
3447 	 * trying to set the OWNER_DIED bit. If the futex value is zero,
3448 	 * the rest of the user space mutex state is consistent, so a woken
3449 	 * waiter will just take over the uncontended futex. Setting the
3450 	 * OWNER_DIED bit would create inconsistent state and malfunction
3451 	 * of the user space owner died handling. Otherwise, the OWNER_DIED
3452 	 * bit is already set, and the woken waiter is expected to deal with
3453 	 * this.
3454 	 */
3455 	owner = uval & FUTEX_TID_MASK;
3456 
3457 	if (pending_op && !pi && !owner) {
3458 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3459 		return 0;
3460 	}
3461 
3462 	if (owner != task_pid_vnr(curr))
3463 		return 0;
3464 
3465 	/*
3466 	 * Ok, this dying thread is truly holding a futex
3467 	 * of interest. Set the OWNER_DIED bit atomically
3468 	 * via cmpxchg, and if the value had FUTEX_WAITERS
3469 	 * set, wake up a waiter (if any). (We have to do a
3470 	 * futex_wake() even if OWNER_DIED is already set -
3471 	 * to handle the rare but possible case of recursive
3472 	 * thread-death.) The rest of the cleanup is done in
3473 	 * userspace.
3474 	 */
3475 	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3476 
3477 	/*
3478 	 * We are not holding a lock here, but we want to have
3479 	 * the pagefault_disable/enable() protection because
3480 	 * we want to handle the fault gracefully. If the
3481 	 * access fails we try to fault in the futex with R/W
3482 	 * verification via get_user_pages. get_user() above
3483 	 * does not guarantee R/W access. If that fails we
3484 	 * give up and leave the futex locked.
3485 	 */
3486 	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3487 		switch (err) {
3488 		case -EFAULT:
3489 			if (fault_in_user_writeable(uaddr))
3490 				return -1;
3491 			goto retry;
3492 
3493 		case -EAGAIN:
3494 			cond_resched();
3495 			goto retry;
3496 
3497 		default:
3498 			WARN_ON_ONCE(1);
3499 			return err;
3500 		}
3501 	}
3502 
3503 	if (nval != uval)
3504 		goto retry;
3505 
3506 	/*
3507 	 * Wake robust non-PI futexes here. The wakeup of
3508 	 * PI futexes happens in exit_pi_state():
3509 	 */
3510 	if (!pi && (uval & FUTEX_WAITERS))
3511 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3512 
3513 	return 0;
3514 }
3515 
3516 /*
3517  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3518  */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)3519 static inline int fetch_robust_entry(struct robust_list __user **entry,
3520 				     struct robust_list __user * __user *head,
3521 				     unsigned int *pi)
3522 {
3523 	unsigned long uentry;
3524 
3525 	if (get_user(uentry, (unsigned long __user *)head))
3526 		return -EFAULT;
3527 
3528 	*entry = (void __user *)(uentry & ~1UL);
3529 	*pi = uentry & 1;
3530 
3531 	return 0;
3532 }
3533 
3534 /*
3535  * Walk curr->robust_list (very carefully, it's a userspace list!)
3536  * and mark any locks found there dead, and notify any waiters.
3537  *
3538  * We silently return on any sign of list-walking problem.
3539  */
exit_robust_list(struct task_struct * curr)3540 static void exit_robust_list(struct task_struct *curr)
3541 {
3542 	struct robust_list_head __user *head = curr->robust_list;
3543 	struct robust_list __user *entry, *next_entry, *pending;
3544 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3545 	unsigned int next_pi;
3546 	unsigned long futex_offset;
3547 	int rc;
3548 
3549 	if (!futex_cmpxchg_enabled)
3550 		return;
3551 
3552 	/*
3553 	 * Fetch the list head (which was registered earlier, via
3554 	 * sys_set_robust_list()):
3555 	 */
3556 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3557 		return;
3558 	/*
3559 	 * Fetch the relative futex offset:
3560 	 */
3561 	if (get_user(futex_offset, &head->futex_offset))
3562 		return;
3563 	/*
3564 	 * Fetch any possibly pending lock-add first, and handle it
3565 	 * if it exists:
3566 	 */
3567 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3568 		return;
3569 
3570 	next_entry = NULL;	/* avoid warning with gcc */
3571 	while (entry != &head->list) {
3572 		/*
3573 		 * Fetch the next entry in the list before calling
3574 		 * handle_futex_death:
3575 		 */
3576 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3577 		/*
3578 		 * A pending lock might already be on the list, so
3579 		 * don't process it twice:
3580 		 */
3581 		if (entry != pending) {
3582 			if (handle_futex_death((void __user *)entry + futex_offset,
3583 						curr, pi, HANDLE_DEATH_LIST))
3584 				return;
3585 		}
3586 		if (rc)
3587 			return;
3588 		entry = next_entry;
3589 		pi = next_pi;
3590 		/*
3591 		 * Avoid excessively long or circular lists:
3592 		 */
3593 		if (!--limit)
3594 			break;
3595 
3596 		cond_resched();
3597 	}
3598 
3599 	if (pending) {
3600 		handle_futex_death((void __user *)pending + futex_offset,
3601 				   curr, pip, HANDLE_DEATH_PENDING);
3602 	}
3603 }
3604 
futex_cleanup(struct task_struct * tsk)3605 static void futex_cleanup(struct task_struct *tsk)
3606 {
3607 	if (unlikely(tsk->robust_list)) {
3608 		exit_robust_list(tsk);
3609 		tsk->robust_list = NULL;
3610 	}
3611 
3612 #ifdef CONFIG_COMPAT
3613 	if (unlikely(tsk->compat_robust_list)) {
3614 		compat_exit_robust_list(tsk);
3615 		tsk->compat_robust_list = NULL;
3616 	}
3617 #endif
3618 
3619 	if (unlikely(!list_empty(&tsk->pi_state_list)))
3620 		exit_pi_state_list(tsk);
3621 }
3622 
3623 /**
3624  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3625  * @tsk:	task to set the state on
3626  *
3627  * Set the futex exit state of the task lockless. The futex waiter code
3628  * observes that state when a task is exiting and loops until the task has
3629  * actually finished the futex cleanup. The worst case for this is that the
3630  * waiter runs through the wait loop until the state becomes visible.
3631  *
3632  * This is called from the recursive fault handling path in do_exit().
3633  *
3634  * This is best effort. Either the futex exit code has run already or
3635  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3636  * take it over. If not, the problem is pushed back to user space. If the
3637  * futex exit code did not run yet, then an already queued waiter might
3638  * block forever, but there is nothing which can be done about that.
3639  */
futex_exit_recursive(struct task_struct * tsk)3640 void futex_exit_recursive(struct task_struct *tsk)
3641 {
3642 	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3643 	if (tsk->futex_state == FUTEX_STATE_EXITING)
3644 		mutex_unlock(&tsk->futex_exit_mutex);
3645 	tsk->futex_state = FUTEX_STATE_DEAD;
3646 }
3647 
futex_cleanup_begin(struct task_struct * tsk)3648 static void futex_cleanup_begin(struct task_struct *tsk)
3649 {
3650 	/*
3651 	 * Prevent various race issues against a concurrent incoming waiter
3652 	 * including live locks by forcing the waiter to block on
3653 	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3654 	 * attach_to_pi_owner().
3655 	 */
3656 	mutex_lock(&tsk->futex_exit_mutex);
3657 
3658 	/*
3659 	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3660 	 *
3661 	 * This ensures that all subsequent checks of tsk->futex_state in
3662 	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3663 	 * tsk->pi_lock held.
3664 	 *
3665 	 * It guarantees also that a pi_state which was queued right before
3666 	 * the state change under tsk->pi_lock by a concurrent waiter must
3667 	 * be observed in exit_pi_state_list().
3668 	 */
3669 	raw_spin_lock_irq(&tsk->pi_lock);
3670 	tsk->futex_state = FUTEX_STATE_EXITING;
3671 	raw_spin_unlock_irq(&tsk->pi_lock);
3672 }
3673 
futex_cleanup_end(struct task_struct * tsk,int state)3674 static void futex_cleanup_end(struct task_struct *tsk, int state)
3675 {
3676 	/*
3677 	 * Lockless store. The only side effect is that an observer might
3678 	 * take another loop until it becomes visible.
3679 	 */
3680 	tsk->futex_state = state;
3681 	/*
3682 	 * Drop the exit protection. This unblocks waiters which observed
3683 	 * FUTEX_STATE_EXITING to reevaluate the state.
3684 	 */
3685 	mutex_unlock(&tsk->futex_exit_mutex);
3686 }
3687 
futex_exec_release(struct task_struct * tsk)3688 void futex_exec_release(struct task_struct *tsk)
3689 {
3690 	/*
3691 	 * The state handling is done for consistency, but in the case of
3692 	 * exec() there is no way to prevent futher damage as the PID stays
3693 	 * the same. But for the unlikely and arguably buggy case that a
3694 	 * futex is held on exec(), this provides at least as much state
3695 	 * consistency protection which is possible.
3696 	 */
3697 	futex_cleanup_begin(tsk);
3698 	futex_cleanup(tsk);
3699 	/*
3700 	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3701 	 * exec a new binary.
3702 	 */
3703 	futex_cleanup_end(tsk, FUTEX_STATE_OK);
3704 }
3705 
futex_exit_release(struct task_struct * tsk)3706 void futex_exit_release(struct task_struct *tsk)
3707 {
3708 	futex_cleanup_begin(tsk);
3709 	futex_cleanup(tsk);
3710 	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3711 }
3712 
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)3713 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3714 		u32 __user *uaddr2, u32 val2, u32 val3)
3715 {
3716 	int cmd = op & FUTEX_CMD_MASK;
3717 	unsigned int flags = 0;
3718 
3719 	if (!(op & FUTEX_PRIVATE_FLAG))
3720 		flags |= FLAGS_SHARED;
3721 
3722 	if (op & FUTEX_CLOCK_REALTIME) {
3723 		flags |= FLAGS_CLOCKRT;
3724 		if (cmd != FUTEX_WAIT_BITSET &&	cmd != FUTEX_WAIT_REQUEUE_PI)
3725 			return -ENOSYS;
3726 	}
3727 
3728 	switch (cmd) {
3729 	case FUTEX_LOCK_PI:
3730 	case FUTEX_UNLOCK_PI:
3731 	case FUTEX_TRYLOCK_PI:
3732 	case FUTEX_WAIT_REQUEUE_PI:
3733 	case FUTEX_CMP_REQUEUE_PI:
3734 		if (!futex_cmpxchg_enabled)
3735 			return -ENOSYS;
3736 	}
3737 
3738 	switch (cmd) {
3739 	case FUTEX_WAIT:
3740 		val3 = FUTEX_BITSET_MATCH_ANY;
3741 		fallthrough;
3742 	case FUTEX_WAIT_BITSET:
3743 		return futex_wait(uaddr, flags, val, timeout, val3);
3744 	case FUTEX_WAKE:
3745 		val3 = FUTEX_BITSET_MATCH_ANY;
3746 		fallthrough;
3747 	case FUTEX_WAKE_BITSET:
3748 		return futex_wake(uaddr, flags, val, val3);
3749 	case FUTEX_REQUEUE:
3750 		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3751 	case FUTEX_CMP_REQUEUE:
3752 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3753 	case FUTEX_WAKE_OP:
3754 		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3755 	case FUTEX_LOCK_PI:
3756 		return futex_lock_pi(uaddr, flags, timeout, 0);
3757 	case FUTEX_UNLOCK_PI:
3758 		return futex_unlock_pi(uaddr, flags);
3759 	case FUTEX_TRYLOCK_PI:
3760 		return futex_lock_pi(uaddr, flags, NULL, 1);
3761 	case FUTEX_WAIT_REQUEUE_PI:
3762 		val3 = FUTEX_BITSET_MATCH_ANY;
3763 		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3764 					     uaddr2);
3765 	case FUTEX_CMP_REQUEUE_PI:
3766 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3767 	}
3768 	return -ENOSYS;
3769 }
3770 
3771 
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct __kernel_timespec __user *,utime,u32 __user *,uaddr2,u32,val3)3772 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3773 		struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3774 		u32, val3)
3775 {
3776 	struct timespec64 ts;
3777 	ktime_t t, *tp = NULL;
3778 	u32 val2 = 0;
3779 	int cmd = op & FUTEX_CMD_MASK;
3780 
3781 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3782 		      cmd == FUTEX_WAIT_BITSET ||
3783 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3784 		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3785 			return -EFAULT;
3786 		if (get_timespec64(&ts, utime))
3787 			return -EFAULT;
3788 		if (!timespec64_valid(&ts))
3789 			return -EINVAL;
3790 
3791 		t = timespec64_to_ktime(ts);
3792 		if (cmd == FUTEX_WAIT)
3793 			t = ktime_add_safe(ktime_get(), t);
3794 		else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3795 			t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3796 		tp = &t;
3797 	}
3798 	/*
3799 	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3800 	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3801 	 */
3802 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3803 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3804 		val2 = (u32) (unsigned long) utime;
3805 
3806 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3807 }
3808 
3809 #ifdef CONFIG_COMPAT
3810 /*
3811  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3812  */
3813 static inline int
compat_fetch_robust_entry(compat_uptr_t * uentry,struct robust_list __user ** entry,compat_uptr_t __user * head,unsigned int * pi)3814 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3815 		   compat_uptr_t __user *head, unsigned int *pi)
3816 {
3817 	if (get_user(*uentry, head))
3818 		return -EFAULT;
3819 
3820 	*entry = compat_ptr((*uentry) & ~1);
3821 	*pi = (unsigned int)(*uentry) & 1;
3822 
3823 	return 0;
3824 }
3825 
futex_uaddr(struct robust_list __user * entry,compat_long_t futex_offset)3826 static void __user *futex_uaddr(struct robust_list __user *entry,
3827 				compat_long_t futex_offset)
3828 {
3829 	compat_uptr_t base = ptr_to_compat(entry);
3830 	void __user *uaddr = compat_ptr(base + futex_offset);
3831 
3832 	return uaddr;
3833 }
3834 
3835 /*
3836  * Walk curr->robust_list (very carefully, it's a userspace list!)
3837  * and mark any locks found there dead, and notify any waiters.
3838  *
3839  * We silently return on any sign of list-walking problem.
3840  */
compat_exit_robust_list(struct task_struct * curr)3841 static void compat_exit_robust_list(struct task_struct *curr)
3842 {
3843 	struct compat_robust_list_head __user *head = curr->compat_robust_list;
3844 	struct robust_list __user *entry, *next_entry, *pending;
3845 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3846 	unsigned int next_pi;
3847 	compat_uptr_t uentry, next_uentry, upending;
3848 	compat_long_t futex_offset;
3849 	int rc;
3850 
3851 	if (!futex_cmpxchg_enabled)
3852 		return;
3853 
3854 	/*
3855 	 * Fetch the list head (which was registered earlier, via
3856 	 * sys_set_robust_list()):
3857 	 */
3858 	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3859 		return;
3860 	/*
3861 	 * Fetch the relative futex offset:
3862 	 */
3863 	if (get_user(futex_offset, &head->futex_offset))
3864 		return;
3865 	/*
3866 	 * Fetch any possibly pending lock-add first, and handle it
3867 	 * if it exists:
3868 	 */
3869 	if (compat_fetch_robust_entry(&upending, &pending,
3870 			       &head->list_op_pending, &pip))
3871 		return;
3872 
3873 	next_entry = NULL;	/* avoid warning with gcc */
3874 	while (entry != (struct robust_list __user *) &head->list) {
3875 		/*
3876 		 * Fetch the next entry in the list before calling
3877 		 * handle_futex_death:
3878 		 */
3879 		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3880 			(compat_uptr_t __user *)&entry->next, &next_pi);
3881 		/*
3882 		 * A pending lock might already be on the list, so
3883 		 * dont process it twice:
3884 		 */
3885 		if (entry != pending) {
3886 			void __user *uaddr = futex_uaddr(entry, futex_offset);
3887 
3888 			if (handle_futex_death(uaddr, curr, pi,
3889 					       HANDLE_DEATH_LIST))
3890 				return;
3891 		}
3892 		if (rc)
3893 			return;
3894 		uentry = next_uentry;
3895 		entry = next_entry;
3896 		pi = next_pi;
3897 		/*
3898 		 * Avoid excessively long or circular lists:
3899 		 */
3900 		if (!--limit)
3901 			break;
3902 
3903 		cond_resched();
3904 	}
3905 	if (pending) {
3906 		void __user *uaddr = futex_uaddr(pending, futex_offset);
3907 
3908 		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3909 	}
3910 }
3911 
COMPAT_SYSCALL_DEFINE2(set_robust_list,struct compat_robust_list_head __user *,head,compat_size_t,len)3912 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3913 		struct compat_robust_list_head __user *, head,
3914 		compat_size_t, len)
3915 {
3916 	if (!futex_cmpxchg_enabled)
3917 		return -ENOSYS;
3918 
3919 	if (unlikely(len != sizeof(*head)))
3920 		return -EINVAL;
3921 
3922 	current->compat_robust_list = head;
3923 
3924 	return 0;
3925 }
3926 
COMPAT_SYSCALL_DEFINE3(get_robust_list,int,pid,compat_uptr_t __user *,head_ptr,compat_size_t __user *,len_ptr)3927 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3928 			compat_uptr_t __user *, head_ptr,
3929 			compat_size_t __user *, len_ptr)
3930 {
3931 	struct compat_robust_list_head __user *head;
3932 	unsigned long ret;
3933 	struct task_struct *p;
3934 
3935 	if (!futex_cmpxchg_enabled)
3936 		return -ENOSYS;
3937 
3938 	rcu_read_lock();
3939 
3940 	ret = -ESRCH;
3941 	if (!pid)
3942 		p = current;
3943 	else {
3944 		p = find_task_by_vpid(pid);
3945 		if (!p)
3946 			goto err_unlock;
3947 	}
3948 
3949 	ret = -EPERM;
3950 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3951 		goto err_unlock;
3952 
3953 	head = p->compat_robust_list;
3954 	rcu_read_unlock();
3955 
3956 	if (put_user(sizeof(*head), len_ptr))
3957 		return -EFAULT;
3958 	return put_user(ptr_to_compat(head), head_ptr);
3959 
3960 err_unlock:
3961 	rcu_read_unlock();
3962 
3963 	return ret;
3964 }
3965 #endif /* CONFIG_COMPAT */
3966 
3967 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE6(futex_time32,u32 __user *,uaddr,int,op,u32,val,struct old_timespec32 __user *,utime,u32 __user *,uaddr2,u32,val3)3968 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3969 		struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3970 		u32, val3)
3971 {
3972 	struct timespec64 ts;
3973 	ktime_t t, *tp = NULL;
3974 	int val2 = 0;
3975 	int cmd = op & FUTEX_CMD_MASK;
3976 
3977 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3978 		      cmd == FUTEX_WAIT_BITSET ||
3979 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3980 		if (get_old_timespec32(&ts, utime))
3981 			return -EFAULT;
3982 		if (!timespec64_valid(&ts))
3983 			return -EINVAL;
3984 
3985 		t = timespec64_to_ktime(ts);
3986 		if (cmd == FUTEX_WAIT)
3987 			t = ktime_add_safe(ktime_get(), t);
3988 		else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3989 			t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3990 		tp = &t;
3991 	}
3992 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3993 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3994 		val2 = (int) (unsigned long) utime;
3995 
3996 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3997 }
3998 #endif /* CONFIG_COMPAT_32BIT_TIME */
3999 
futex_detect_cmpxchg(void)4000 static void __init futex_detect_cmpxchg(void)
4001 {
4002 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4003 	u32 curval;
4004 
4005 	/*
4006 	 * This will fail and we want it. Some arch implementations do
4007 	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4008 	 * functionality. We want to know that before we call in any
4009 	 * of the complex code paths. Also we want to prevent
4010 	 * registration of robust lists in that case. NULL is
4011 	 * guaranteed to fault and we get -EFAULT on functional
4012 	 * implementation, the non-functional ones will return
4013 	 * -ENOSYS.
4014 	 */
4015 	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4016 		futex_cmpxchg_enabled = 1;
4017 #endif
4018 }
4019 
futex_init(void)4020 static int __init futex_init(void)
4021 {
4022 	unsigned int futex_shift;
4023 	unsigned long i;
4024 
4025 #if CONFIG_BASE_SMALL
4026 	futex_hashsize = 16;
4027 #else
4028 	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4029 #endif
4030 
4031 	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4032 					       futex_hashsize, 0,
4033 					       futex_hashsize < 256 ? HASH_SMALL : 0,
4034 					       &futex_shift, NULL,
4035 					       futex_hashsize, futex_hashsize);
4036 	futex_hashsize = 1UL << futex_shift;
4037 
4038 	futex_detect_cmpxchg();
4039 
4040 	for (i = 0; i < futex_hashsize; i++) {
4041 		atomic_set(&futex_queues[i].waiters, 0);
4042 		plist_head_init(&futex_queues[i].chain);
4043 		spin_lock_init(&futex_queues[i].lock);
4044 	}
4045 
4046 	return 0;
4047 }
4048 core_initcall(futex_init);
4049