1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Task-based RCU implementations.
4 *
5 * Copyright (C) 2020 Paul E. McKenney
6 */
7
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9
10 ////////////////////////////////////////////////////////////////////////
11 //
12 // Generic data structures.
13
14 struct rcu_tasks;
15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
16 typedef void (*pregp_func_t)(void);
17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
18 typedef void (*postscan_func_t)(struct list_head *hop);
19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
21
22 /**
23 * Definition for a Tasks-RCU-like mechanism.
24 * @cbs_head: Head of callback list.
25 * @cbs_tail: Tail pointer for callback list.
26 * @cbs_wq: Wait queue allowning new callback to get kthread's attention.
27 * @cbs_lock: Lock protecting callback list.
28 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
29 * @gp_func: This flavor's grace-period-wait function.
30 * @gp_state: Grace period's most recent state transition (debugging).
31 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
32 * @init_fract: Initial backoff sleep interval.
33 * @gp_jiffies: Time of last @gp_state transition.
34 * @gp_start: Most recent grace-period start in jiffies.
35 * @n_gps: Number of grace periods completed since boot.
36 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
37 * @n_ipis_fails: Number of IPI-send failures.
38 * @pregp_func: This flavor's pre-grace-period function (optional).
39 * @pertask_func: This flavor's per-task scan function (optional).
40 * @postscan_func: This flavor's post-task scan function (optional).
41 * @holdout_func: This flavor's holdout-list scan function (optional).
42 * @postgp_func: This flavor's post-grace-period function (optional).
43 * @call_func: This flavor's call_rcu()-equivalent function.
44 * @name: This flavor's textual name.
45 * @kname: This flavor's kthread name.
46 */
47 struct rcu_tasks {
48 struct rcu_head *cbs_head;
49 struct rcu_head **cbs_tail;
50 struct wait_queue_head cbs_wq;
51 raw_spinlock_t cbs_lock;
52 int gp_state;
53 int gp_sleep;
54 int init_fract;
55 unsigned long gp_jiffies;
56 unsigned long gp_start;
57 unsigned long n_gps;
58 unsigned long n_ipis;
59 unsigned long n_ipis_fails;
60 struct task_struct *kthread_ptr;
61 rcu_tasks_gp_func_t gp_func;
62 pregp_func_t pregp_func;
63 pertask_func_t pertask_func;
64 postscan_func_t postscan_func;
65 holdouts_func_t holdouts_func;
66 postgp_func_t postgp_func;
67 call_rcu_func_t call_func;
68 char *name;
69 char *kname;
70 };
71
72 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
73 static struct rcu_tasks rt_name = \
74 { \
75 .cbs_tail = &rt_name.cbs_head, \
76 .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \
77 .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \
78 .gp_func = gp, \
79 .call_func = call, \
80 .name = n, \
81 .kname = #rt_name, \
82 }
83
84 /* Track exiting tasks in order to allow them to be waited for. */
85 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
86
87 /* Avoid IPIing CPUs early in the grace period. */
88 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
89 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
90 module_param(rcu_task_ipi_delay, int, 0644);
91
92 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
93 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
94 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
95 module_param(rcu_task_stall_timeout, int, 0644);
96
97 /* RCU tasks grace-period state for debugging. */
98 #define RTGS_INIT 0
99 #define RTGS_WAIT_WAIT_CBS 1
100 #define RTGS_WAIT_GP 2
101 #define RTGS_PRE_WAIT_GP 3
102 #define RTGS_SCAN_TASKLIST 4
103 #define RTGS_POST_SCAN_TASKLIST 5
104 #define RTGS_WAIT_SCAN_HOLDOUTS 6
105 #define RTGS_SCAN_HOLDOUTS 7
106 #define RTGS_POST_GP 8
107 #define RTGS_WAIT_READERS 9
108 #define RTGS_INVOKE_CBS 10
109 #define RTGS_WAIT_CBS 11
110 #ifndef CONFIG_TINY_RCU
111 static const char * const rcu_tasks_gp_state_names[] = {
112 "RTGS_INIT",
113 "RTGS_WAIT_WAIT_CBS",
114 "RTGS_WAIT_GP",
115 "RTGS_PRE_WAIT_GP",
116 "RTGS_SCAN_TASKLIST",
117 "RTGS_POST_SCAN_TASKLIST",
118 "RTGS_WAIT_SCAN_HOLDOUTS",
119 "RTGS_SCAN_HOLDOUTS",
120 "RTGS_POST_GP",
121 "RTGS_WAIT_READERS",
122 "RTGS_INVOKE_CBS",
123 "RTGS_WAIT_CBS",
124 };
125 #endif /* #ifndef CONFIG_TINY_RCU */
126
127 ////////////////////////////////////////////////////////////////////////
128 //
129 // Generic code.
130
131 /* Record grace-period phase and time. */
set_tasks_gp_state(struct rcu_tasks * rtp,int newstate)132 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
133 {
134 rtp->gp_state = newstate;
135 rtp->gp_jiffies = jiffies;
136 }
137
138 #ifndef CONFIG_TINY_RCU
139 /* Return state name. */
tasks_gp_state_getname(struct rcu_tasks * rtp)140 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
141 {
142 int i = data_race(rtp->gp_state); // Let KCSAN detect update races
143 int j = READ_ONCE(i); // Prevent the compiler from reading twice
144
145 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
146 return "???";
147 return rcu_tasks_gp_state_names[j];
148 }
149 #endif /* #ifndef CONFIG_TINY_RCU */
150
151 // Enqueue a callback for the specified flavor of Tasks RCU.
call_rcu_tasks_generic(struct rcu_head * rhp,rcu_callback_t func,struct rcu_tasks * rtp)152 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
153 struct rcu_tasks *rtp)
154 {
155 unsigned long flags;
156 bool needwake;
157
158 rhp->next = NULL;
159 rhp->func = func;
160 raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
161 needwake = !rtp->cbs_head;
162 WRITE_ONCE(*rtp->cbs_tail, rhp);
163 rtp->cbs_tail = &rhp->next;
164 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
165 /* We can't create the thread unless interrupts are enabled. */
166 if (needwake && READ_ONCE(rtp->kthread_ptr))
167 wake_up(&rtp->cbs_wq);
168 }
169
170 // Wait for a grace period for the specified flavor of Tasks RCU.
synchronize_rcu_tasks_generic(struct rcu_tasks * rtp)171 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
172 {
173 /* Complain if the scheduler has not started. */
174 WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
175 "synchronize_rcu_tasks called too soon");
176
177 /* Wait for the grace period. */
178 wait_rcu_gp(rtp->call_func);
179 }
180
181 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
rcu_tasks_kthread(void * arg)182 static int __noreturn rcu_tasks_kthread(void *arg)
183 {
184 unsigned long flags;
185 struct rcu_head *list;
186 struct rcu_head *next;
187 struct rcu_tasks *rtp = arg;
188
189 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
190 housekeeping_affine(current, HK_FLAG_RCU);
191 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
192
193 /*
194 * Each pass through the following loop makes one check for
195 * newly arrived callbacks, and, if there are some, waits for
196 * one RCU-tasks grace period and then invokes the callbacks.
197 * This loop is terminated by the system going down. ;-)
198 */
199 for (;;) {
200 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
201
202 /* Pick up any new callbacks. */
203 raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
204 smp_mb__after_spinlock(); // Order updates vs. GP.
205 list = rtp->cbs_head;
206 rtp->cbs_head = NULL;
207 rtp->cbs_tail = &rtp->cbs_head;
208 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
209
210 /* If there were none, wait a bit and start over. */
211 if (!list) {
212 wait_event_interruptible(rtp->cbs_wq,
213 READ_ONCE(rtp->cbs_head));
214 if (!rtp->cbs_head) {
215 WARN_ON(signal_pending(current));
216 set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS);
217 schedule_timeout_idle(HZ/10);
218 }
219 continue;
220 }
221
222 // Wait for one grace period.
223 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
224 rtp->gp_start = jiffies;
225 rtp->gp_func(rtp);
226 rtp->n_gps++;
227
228 /* Invoke the callbacks. */
229 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
230 while (list) {
231 next = list->next;
232 local_bh_disable();
233 list->func(list);
234 local_bh_enable();
235 list = next;
236 cond_resched();
237 }
238 /* Paranoid sleep to keep this from entering a tight loop */
239 schedule_timeout_idle(rtp->gp_sleep);
240 }
241 }
242
243 /* Spawn RCU-tasks grace-period kthread. */
rcu_spawn_tasks_kthread_generic(struct rcu_tasks * rtp)244 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
245 {
246 struct task_struct *t;
247
248 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
249 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
250 return;
251 smp_mb(); /* Ensure others see full kthread. */
252 }
253
254 #ifndef CONFIG_TINY_RCU
255
256 /*
257 * Print any non-default Tasks RCU settings.
258 */
rcu_tasks_bootup_oddness(void)259 static void __init rcu_tasks_bootup_oddness(void)
260 {
261 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
262 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
263 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
264 #endif /* #ifdef CONFIG_TASKS_RCU */
265 #ifdef CONFIG_TASKS_RCU
266 pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
267 #endif /* #ifdef CONFIG_TASKS_RCU */
268 #ifdef CONFIG_TASKS_RUDE_RCU
269 pr_info("\tRude variant of Tasks RCU enabled.\n");
270 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
271 #ifdef CONFIG_TASKS_TRACE_RCU
272 pr_info("\tTracing variant of Tasks RCU enabled.\n");
273 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
274 }
275
276 #endif /* #ifndef CONFIG_TINY_RCU */
277
278 #ifndef CONFIG_TINY_RCU
279 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
show_rcu_tasks_generic_gp_kthread(struct rcu_tasks * rtp,char * s)280 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
281 {
282 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
283 rtp->kname,
284 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
285 jiffies - data_race(rtp->gp_jiffies),
286 data_race(rtp->n_gps),
287 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
288 ".k"[!!data_race(rtp->kthread_ptr)],
289 ".C"[!!data_race(rtp->cbs_head)],
290 s);
291 }
292 #endif /* #ifndef CONFIG_TINY_RCU */
293
294 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
295
296 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
297
298 ////////////////////////////////////////////////////////////////////////
299 //
300 // Shared code between task-list-scanning variants of Tasks RCU.
301
302 /* Wait for one RCU-tasks grace period. */
rcu_tasks_wait_gp(struct rcu_tasks * rtp)303 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
304 {
305 struct task_struct *g, *t;
306 unsigned long lastreport;
307 LIST_HEAD(holdouts);
308 int fract;
309
310 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
311 rtp->pregp_func();
312
313 /*
314 * There were callbacks, so we need to wait for an RCU-tasks
315 * grace period. Start off by scanning the task list for tasks
316 * that are not already voluntarily blocked. Mark these tasks
317 * and make a list of them in holdouts.
318 */
319 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
320 rcu_read_lock();
321 for_each_process_thread(g, t)
322 rtp->pertask_func(t, &holdouts);
323 rcu_read_unlock();
324
325 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
326 rtp->postscan_func(&holdouts);
327
328 /*
329 * Each pass through the following loop scans the list of holdout
330 * tasks, removing any that are no longer holdouts. When the list
331 * is empty, we are done.
332 */
333 lastreport = jiffies;
334
335 // Start off with initial wait and slowly back off to 1 HZ wait.
336 fract = rtp->init_fract;
337 if (fract > HZ)
338 fract = HZ;
339
340 for (;;) {
341 bool firstreport;
342 bool needreport;
343 int rtst;
344
345 if (list_empty(&holdouts))
346 break;
347
348 /* Slowly back off waiting for holdouts */
349 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
350 schedule_timeout_idle(HZ/fract);
351
352 if (fract > 1)
353 fract--;
354
355 rtst = READ_ONCE(rcu_task_stall_timeout);
356 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
357 if (needreport)
358 lastreport = jiffies;
359 firstreport = true;
360 WARN_ON(signal_pending(current));
361 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
362 rtp->holdouts_func(&holdouts, needreport, &firstreport);
363 }
364
365 set_tasks_gp_state(rtp, RTGS_POST_GP);
366 rtp->postgp_func(rtp);
367 }
368
369 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
370
371 #ifdef CONFIG_TASKS_RCU
372
373 ////////////////////////////////////////////////////////////////////////
374 //
375 // Simple variant of RCU whose quiescent states are voluntary context
376 // switch, cond_resched_rcu_qs(), user-space execution, and idle.
377 // As such, grace periods can take one good long time. There are no
378 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
379 // because this implementation is intended to get the system into a safe
380 // state for some of the manipulations involved in tracing and the like.
381 // Finally, this implementation does not support high call_rcu_tasks()
382 // rates from multiple CPUs. If this is required, per-CPU callback lists
383 // will be needed.
384
385 /* Pre-grace-period preparation. */
rcu_tasks_pregp_step(void)386 static void rcu_tasks_pregp_step(void)
387 {
388 /*
389 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
390 * to complete. Invoking synchronize_rcu() suffices because all
391 * these transitions occur with interrupts disabled. Without this
392 * synchronize_rcu(), a read-side critical section that started
393 * before the grace period might be incorrectly seen as having
394 * started after the grace period.
395 *
396 * This synchronize_rcu() also dispenses with the need for a
397 * memory barrier on the first store to t->rcu_tasks_holdout,
398 * as it forces the store to happen after the beginning of the
399 * grace period.
400 */
401 synchronize_rcu();
402 }
403
404 /* Per-task initial processing. */
rcu_tasks_pertask(struct task_struct * t,struct list_head * hop)405 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
406 {
407 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
408 get_task_struct(t);
409 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
410 WRITE_ONCE(t->rcu_tasks_holdout, true);
411 list_add(&t->rcu_tasks_holdout_list, hop);
412 }
413 }
414
415 /* Processing between scanning taskslist and draining the holdout list. */
rcu_tasks_postscan(struct list_head * hop)416 static void rcu_tasks_postscan(struct list_head *hop)
417 {
418 /*
419 * Wait for tasks that are in the process of exiting. This
420 * does only part of the job, ensuring that all tasks that were
421 * previously exiting reach the point where they have disabled
422 * preemption, allowing the later synchronize_rcu() to finish
423 * the job.
424 */
425 synchronize_srcu(&tasks_rcu_exit_srcu);
426 }
427
428 /* See if tasks are still holding out, complain if so. */
check_holdout_task(struct task_struct * t,bool needreport,bool * firstreport)429 static void check_holdout_task(struct task_struct *t,
430 bool needreport, bool *firstreport)
431 {
432 int cpu;
433
434 if (!READ_ONCE(t->rcu_tasks_holdout) ||
435 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
436 !READ_ONCE(t->on_rq) ||
437 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
438 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
439 WRITE_ONCE(t->rcu_tasks_holdout, false);
440 list_del_init(&t->rcu_tasks_holdout_list);
441 put_task_struct(t);
442 return;
443 }
444 rcu_request_urgent_qs_task(t);
445 if (!needreport)
446 return;
447 if (*firstreport) {
448 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
449 *firstreport = false;
450 }
451 cpu = task_cpu(t);
452 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
453 t, ".I"[is_idle_task(t)],
454 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
455 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
456 t->rcu_tasks_idle_cpu, cpu);
457 sched_show_task(t);
458 }
459
460 /* Scan the holdout lists for tasks no longer holding out. */
check_all_holdout_tasks(struct list_head * hop,bool needreport,bool * firstreport)461 static void check_all_holdout_tasks(struct list_head *hop,
462 bool needreport, bool *firstreport)
463 {
464 struct task_struct *t, *t1;
465
466 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
467 check_holdout_task(t, needreport, firstreport);
468 cond_resched();
469 }
470 }
471
472 /* Finish off the Tasks-RCU grace period. */
rcu_tasks_postgp(struct rcu_tasks * rtp)473 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
474 {
475 /*
476 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
477 * memory barriers prior to them in the schedule() path, memory
478 * reordering on other CPUs could cause their RCU-tasks read-side
479 * critical sections to extend past the end of the grace period.
480 * However, because these ->nvcsw updates are carried out with
481 * interrupts disabled, we can use synchronize_rcu() to force the
482 * needed ordering on all such CPUs.
483 *
484 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
485 * accesses to be within the grace period, avoiding the need for
486 * memory barriers for ->rcu_tasks_holdout accesses.
487 *
488 * In addition, this synchronize_rcu() waits for exiting tasks
489 * to complete their final preempt_disable() region of execution,
490 * cleaning up after the synchronize_srcu() above.
491 */
492 synchronize_rcu();
493 }
494
495 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
496 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
497
498 /**
499 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
500 * @rhp: structure to be used for queueing the RCU updates.
501 * @func: actual callback function to be invoked after the grace period
502 *
503 * The callback function will be invoked some time after a full grace
504 * period elapses, in other words after all currently executing RCU
505 * read-side critical sections have completed. call_rcu_tasks() assumes
506 * that the read-side critical sections end at a voluntary context
507 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
508 * or transition to usermode execution. As such, there are no read-side
509 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
510 * this primitive is intended to determine that all tasks have passed
511 * through a safe state, not so much for data-strcuture synchronization.
512 *
513 * See the description of call_rcu() for more detailed information on
514 * memory ordering guarantees.
515 */
call_rcu_tasks(struct rcu_head * rhp,rcu_callback_t func)516 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
517 {
518 call_rcu_tasks_generic(rhp, func, &rcu_tasks);
519 }
520 EXPORT_SYMBOL_GPL(call_rcu_tasks);
521
522 /**
523 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
524 *
525 * Control will return to the caller some time after a full rcu-tasks
526 * grace period has elapsed, in other words after all currently
527 * executing rcu-tasks read-side critical sections have elapsed. These
528 * read-side critical sections are delimited by calls to schedule(),
529 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
530 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
531 *
532 * This is a very specialized primitive, intended only for a few uses in
533 * tracing and other situations requiring manipulation of function
534 * preambles and profiling hooks. The synchronize_rcu_tasks() function
535 * is not (yet) intended for heavy use from multiple CPUs.
536 *
537 * See the description of synchronize_rcu() for more detailed information
538 * on memory ordering guarantees.
539 */
synchronize_rcu_tasks(void)540 void synchronize_rcu_tasks(void)
541 {
542 synchronize_rcu_tasks_generic(&rcu_tasks);
543 }
544 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
545
546 /**
547 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
548 *
549 * Although the current implementation is guaranteed to wait, it is not
550 * obligated to, for example, if there are no pending callbacks.
551 */
rcu_barrier_tasks(void)552 void rcu_barrier_tasks(void)
553 {
554 /* There is only one callback queue, so this is easy. ;-) */
555 synchronize_rcu_tasks();
556 }
557 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
558
rcu_spawn_tasks_kthread(void)559 static int __init rcu_spawn_tasks_kthread(void)
560 {
561 rcu_tasks.gp_sleep = HZ / 10;
562 rcu_tasks.init_fract = 10;
563 rcu_tasks.pregp_func = rcu_tasks_pregp_step;
564 rcu_tasks.pertask_func = rcu_tasks_pertask;
565 rcu_tasks.postscan_func = rcu_tasks_postscan;
566 rcu_tasks.holdouts_func = check_all_holdout_tasks;
567 rcu_tasks.postgp_func = rcu_tasks_postgp;
568 rcu_spawn_tasks_kthread_generic(&rcu_tasks);
569 return 0;
570 }
571
572 #ifndef CONFIG_TINY_RCU
show_rcu_tasks_classic_gp_kthread(void)573 static void show_rcu_tasks_classic_gp_kthread(void)
574 {
575 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
576 }
577 #endif /* #ifndef CONFIG_TINY_RCU */
578
579 /* Do the srcu_read_lock() for the above synchronize_srcu(). */
exit_tasks_rcu_start(void)580 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
581 {
582 preempt_disable();
583 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
584 preempt_enable();
585 }
586
587 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */
exit_tasks_rcu_finish(void)588 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
589 {
590 struct task_struct *t = current;
591
592 preempt_disable();
593 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
594 preempt_enable();
595 exit_tasks_rcu_finish_trace(t);
596 }
597
598 #else /* #ifdef CONFIG_TASKS_RCU */
show_rcu_tasks_classic_gp_kthread(void)599 static inline void show_rcu_tasks_classic_gp_kthread(void) { }
exit_tasks_rcu_start(void)600 void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)601 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
602 #endif /* #else #ifdef CONFIG_TASKS_RCU */
603
604 #ifdef CONFIG_TASKS_RUDE_RCU
605
606 ////////////////////////////////////////////////////////////////////////
607 //
608 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
609 // passing an empty function to schedule_on_each_cpu(). This approach
610 // provides an asynchronous call_rcu_tasks_rude() API and batching
611 // of concurrent calls to the synchronous synchronize_rcu_rude() API.
612 // This sends IPIs far and wide and induces otherwise unnecessary context
613 // switches on all online CPUs, whether idle or not.
614
615 // Empty function to allow workqueues to force a context switch.
rcu_tasks_be_rude(struct work_struct * work)616 static void rcu_tasks_be_rude(struct work_struct *work)
617 {
618 }
619
620 // Wait for one rude RCU-tasks grace period.
rcu_tasks_rude_wait_gp(struct rcu_tasks * rtp)621 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
622 {
623 if (num_online_cpus() <= 1)
624 return; // Fastpath for only one CPU.
625
626 rtp->n_ipis += cpumask_weight(cpu_online_mask);
627 schedule_on_each_cpu(rcu_tasks_be_rude);
628 }
629
630 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
631 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
632 "RCU Tasks Rude");
633
634 /**
635 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
636 * @rhp: structure to be used for queueing the RCU updates.
637 * @func: actual callback function to be invoked after the grace period
638 *
639 * The callback function will be invoked some time after a full grace
640 * period elapses, in other words after all currently executing RCU
641 * read-side critical sections have completed. call_rcu_tasks_rude()
642 * assumes that the read-side critical sections end at context switch,
643 * cond_resched_rcu_qs(), or transition to usermode execution. As such,
644 * there are no read-side primitives analogous to rcu_read_lock() and
645 * rcu_read_unlock() because this primitive is intended to determine
646 * that all tasks have passed through a safe state, not so much for
647 * data-strcuture synchronization.
648 *
649 * See the description of call_rcu() for more detailed information on
650 * memory ordering guarantees.
651 */
call_rcu_tasks_rude(struct rcu_head * rhp,rcu_callback_t func)652 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
653 {
654 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
655 }
656 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
657
658 /**
659 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
660 *
661 * Control will return to the caller some time after a rude rcu-tasks
662 * grace period has elapsed, in other words after all currently
663 * executing rcu-tasks read-side critical sections have elapsed. These
664 * read-side critical sections are delimited by calls to schedule(),
665 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
666 * anyway) cond_resched().
667 *
668 * This is a very specialized primitive, intended only for a few uses in
669 * tracing and other situations requiring manipulation of function preambles
670 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not
671 * (yet) intended for heavy use from multiple CPUs.
672 *
673 * See the description of synchronize_rcu() for more detailed information
674 * on memory ordering guarantees.
675 */
synchronize_rcu_tasks_rude(void)676 void synchronize_rcu_tasks_rude(void)
677 {
678 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
679 }
680 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
681
682 /**
683 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
684 *
685 * Although the current implementation is guaranteed to wait, it is not
686 * obligated to, for example, if there are no pending callbacks.
687 */
rcu_barrier_tasks_rude(void)688 void rcu_barrier_tasks_rude(void)
689 {
690 /* There is only one callback queue, so this is easy. ;-) */
691 synchronize_rcu_tasks_rude();
692 }
693 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
694
rcu_spawn_tasks_rude_kthread(void)695 static int __init rcu_spawn_tasks_rude_kthread(void)
696 {
697 rcu_tasks_rude.gp_sleep = HZ / 10;
698 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
699 return 0;
700 }
701
702 #ifndef CONFIG_TINY_RCU
show_rcu_tasks_rude_gp_kthread(void)703 static void show_rcu_tasks_rude_gp_kthread(void)
704 {
705 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
706 }
707 #endif /* #ifndef CONFIG_TINY_RCU */
708
709 #else /* #ifdef CONFIG_TASKS_RUDE_RCU */
show_rcu_tasks_rude_gp_kthread(void)710 static void show_rcu_tasks_rude_gp_kthread(void) {}
711 #endif /* #else #ifdef CONFIG_TASKS_RUDE_RCU */
712
713 ////////////////////////////////////////////////////////////////////////
714 //
715 // Tracing variant of Tasks RCU. This variant is designed to be used
716 // to protect tracing hooks, including those of BPF. This variant
717 // therefore:
718 //
719 // 1. Has explicit read-side markers to allow finite grace periods
720 // in the face of in-kernel loops for PREEMPT=n builds.
721 //
722 // 2. Protects code in the idle loop, exception entry/exit, and
723 // CPU-hotplug code paths, similar to the capabilities of SRCU.
724 //
725 // 3. Avoids expensive read-side instruction, having overhead similar
726 // to that of Preemptible RCU.
727 //
728 // There are of course downsides. The grace-period code can send IPIs to
729 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
730 // It is necessary to scan the full tasklist, much as for Tasks RCU. There
731 // is a single callback queue guarded by a single lock, again, much as for
732 // Tasks RCU. If needed, these downsides can be at least partially remedied.
733 //
734 // Perhaps most important, this variant of RCU does not affect the vanilla
735 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
736 // readers can operate from idle, offline, and exception entry/exit in no
737 // way allows rcu_preempt and rcu_sched readers to also do so.
738
739 // The lockdep state must be outside of #ifdef to be useful.
740 #ifdef CONFIG_DEBUG_LOCK_ALLOC
741 static struct lock_class_key rcu_lock_trace_key;
742 struct lockdep_map rcu_trace_lock_map =
743 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
744 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
745 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
746
747 #ifdef CONFIG_TASKS_TRACE_RCU
748
749 static atomic_t trc_n_readers_need_end; // Number of waited-for readers.
750 static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks.
751
752 // Record outstanding IPIs to each CPU. No point in sending two...
753 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
754
755 // The number of detections of task quiescent state relying on
756 // heavyweight readers executing explicit memory barriers.
757 static unsigned long n_heavy_reader_attempts;
758 static unsigned long n_heavy_reader_updates;
759 static unsigned long n_heavy_reader_ofl_updates;
760
761 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
762 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
763 "RCU Tasks Trace");
764
765 /*
766 * This irq_work handler allows rcu_read_unlock_trace() to be invoked
767 * while the scheduler locks are held.
768 */
rcu_read_unlock_iw(struct irq_work * iwp)769 static void rcu_read_unlock_iw(struct irq_work *iwp)
770 {
771 wake_up(&trc_wait);
772 }
773 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
774
775 /* If we are the last reader, wake up the grace-period kthread. */
rcu_read_unlock_trace_special(struct task_struct * t,int nesting)776 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting)
777 {
778 int nq = t->trc_reader_special.b.need_qs;
779
780 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
781 t->trc_reader_special.b.need_mb)
782 smp_mb(); // Pairs with update-side barriers.
783 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
784 if (nq)
785 WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
786 WRITE_ONCE(t->trc_reader_nesting, nesting);
787 if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
788 irq_work_queue(&rcu_tasks_trace_iw);
789 }
790 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
791
792 /* Add a task to the holdout list, if it is not already on the list. */
trc_add_holdout(struct task_struct * t,struct list_head * bhp)793 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
794 {
795 if (list_empty(&t->trc_holdout_list)) {
796 get_task_struct(t);
797 list_add(&t->trc_holdout_list, bhp);
798 }
799 }
800
801 /* Remove a task from the holdout list, if it is in fact present. */
trc_del_holdout(struct task_struct * t)802 static void trc_del_holdout(struct task_struct *t)
803 {
804 if (!list_empty(&t->trc_holdout_list)) {
805 list_del_init(&t->trc_holdout_list);
806 put_task_struct(t);
807 }
808 }
809
810 /* IPI handler to check task state. */
trc_read_check_handler(void * t_in)811 static void trc_read_check_handler(void *t_in)
812 {
813 struct task_struct *t = current;
814 struct task_struct *texp = t_in;
815
816 // If the task is no longer running on this CPU, leave.
817 if (unlikely(texp != t)) {
818 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
819 wake_up(&trc_wait);
820 goto reset_ipi; // Already on holdout list, so will check later.
821 }
822
823 // If the task is not in a read-side critical section, and
824 // if this is the last reader, awaken the grace-period kthread.
825 if (likely(!t->trc_reader_nesting)) {
826 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
827 wake_up(&trc_wait);
828 // Mark as checked after decrement to avoid false
829 // positives on the above WARN_ON_ONCE().
830 WRITE_ONCE(t->trc_reader_checked, true);
831 goto reset_ipi;
832 }
833 // If we are racing with an rcu_read_unlock_trace(), try again later.
834 if (unlikely(t->trc_reader_nesting < 0)) {
835 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
836 wake_up(&trc_wait);
837 goto reset_ipi;
838 }
839 WRITE_ONCE(t->trc_reader_checked, true);
840
841 // Get here if the task is in a read-side critical section. Set
842 // its state so that it will awaken the grace-period kthread upon
843 // exit from that critical section.
844 WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
845 WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
846
847 reset_ipi:
848 // Allow future IPIs to be sent on CPU and for task.
849 // Also order this IPI handler against any later manipulations of
850 // the intended task.
851 smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
852 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
853 }
854
855 /* Callback function for scheduler to check locked-down task. */
trc_inspect_reader(struct task_struct * t,void * arg)856 static bool trc_inspect_reader(struct task_struct *t, void *arg)
857 {
858 int cpu = task_cpu(t);
859 bool in_qs = false;
860 bool ofl = cpu_is_offline(cpu);
861
862 if (task_curr(t)) {
863 WARN_ON_ONCE(ofl && !is_idle_task(t));
864
865 // If no chance of heavyweight readers, do it the hard way.
866 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
867 return false;
868
869 // If heavyweight readers are enabled on the remote task,
870 // we can inspect its state despite its currently running.
871 // However, we cannot safely change its state.
872 n_heavy_reader_attempts++;
873 if (!ofl && // Check for "running" idle tasks on offline CPUs.
874 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
875 return false; // No quiescent state, do it the hard way.
876 n_heavy_reader_updates++;
877 if (ofl)
878 n_heavy_reader_ofl_updates++;
879 in_qs = true;
880 } else {
881 in_qs = likely(!t->trc_reader_nesting);
882 }
883
884 // Mark as checked so that the grace-period kthread will
885 // remove it from the holdout list.
886 t->trc_reader_checked = true;
887
888 if (in_qs)
889 return true; // Already in quiescent state, done!!!
890
891 // The task is in a read-side critical section, so set up its
892 // state so that it will awaken the grace-period kthread upon exit
893 // from that critical section.
894 atomic_inc(&trc_n_readers_need_end); // One more to wait on.
895 WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
896 WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
897 return true;
898 }
899
900 /* Attempt to extract the state for the specified task. */
trc_wait_for_one_reader(struct task_struct * t,struct list_head * bhp)901 static void trc_wait_for_one_reader(struct task_struct *t,
902 struct list_head *bhp)
903 {
904 int cpu;
905
906 // If a previous IPI is still in flight, let it complete.
907 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
908 return;
909
910 // The current task had better be in a quiescent state.
911 if (t == current) {
912 t->trc_reader_checked = true;
913 WARN_ON_ONCE(t->trc_reader_nesting);
914 return;
915 }
916
917 // Attempt to nail down the task for inspection.
918 get_task_struct(t);
919 if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) {
920 put_task_struct(t);
921 return;
922 }
923 put_task_struct(t);
924
925 // If currently running, send an IPI, either way, add to list.
926 trc_add_holdout(t, bhp);
927 if (task_curr(t) &&
928 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
929 // The task is currently running, so try IPIing it.
930 cpu = task_cpu(t);
931
932 // If there is already an IPI outstanding, let it happen.
933 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
934 return;
935
936 atomic_inc(&trc_n_readers_need_end);
937 per_cpu(trc_ipi_to_cpu, cpu) = true;
938 t->trc_ipi_to_cpu = cpu;
939 rcu_tasks_trace.n_ipis++;
940 if (smp_call_function_single(cpu,
941 trc_read_check_handler, t, 0)) {
942 // Just in case there is some other reason for
943 // failure than the target CPU being offline.
944 rcu_tasks_trace.n_ipis_fails++;
945 per_cpu(trc_ipi_to_cpu, cpu) = false;
946 t->trc_ipi_to_cpu = cpu;
947 if (atomic_dec_and_test(&trc_n_readers_need_end)) {
948 WARN_ON_ONCE(1);
949 wake_up(&trc_wait);
950 }
951 }
952 }
953 }
954
955 /* Initialize for a new RCU-tasks-trace grace period. */
rcu_tasks_trace_pregp_step(void)956 static void rcu_tasks_trace_pregp_step(void)
957 {
958 int cpu;
959
960 // Allow for fast-acting IPIs.
961 atomic_set(&trc_n_readers_need_end, 1);
962
963 // There shouldn't be any old IPIs, but...
964 for_each_possible_cpu(cpu)
965 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
966
967 // Disable CPU hotplug across the tasklist scan.
968 // This also waits for all readers in CPU-hotplug code paths.
969 cpus_read_lock();
970 }
971
972 /* Do first-round processing for the specified task. */
rcu_tasks_trace_pertask(struct task_struct * t,struct list_head * hop)973 static void rcu_tasks_trace_pertask(struct task_struct *t,
974 struct list_head *hop)
975 {
976 // During early boot when there is only the one boot CPU, there
977 // is no idle task for the other CPUs. Just return.
978 if (unlikely(t == NULL))
979 return;
980
981 WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
982 WRITE_ONCE(t->trc_reader_checked, false);
983 t->trc_ipi_to_cpu = -1;
984 trc_wait_for_one_reader(t, hop);
985 }
986
987 /*
988 * Do intermediate processing between task and holdout scans and
989 * pick up the idle tasks.
990 */
rcu_tasks_trace_postscan(struct list_head * hop)991 static void rcu_tasks_trace_postscan(struct list_head *hop)
992 {
993 int cpu;
994
995 for_each_possible_cpu(cpu)
996 rcu_tasks_trace_pertask(idle_task(cpu), hop);
997
998 // Re-enable CPU hotplug now that the tasklist scan has completed.
999 cpus_read_unlock();
1000
1001 // Wait for late-stage exiting tasks to finish exiting.
1002 // These might have passed the call to exit_tasks_rcu_finish().
1003 synchronize_rcu();
1004 // Any tasks that exit after this point will set ->trc_reader_checked.
1005 }
1006
1007 /* Show the state of a task stalling the current RCU tasks trace GP. */
show_stalled_task_trace(struct task_struct * t,bool * firstreport)1008 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1009 {
1010 int cpu;
1011
1012 if (*firstreport) {
1013 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1014 *firstreport = false;
1015 }
1016 // FIXME: This should attempt to use try_invoke_on_nonrunning_task().
1017 cpu = task_cpu(t);
1018 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1019 t->pid,
1020 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0],
1021 ".i"[is_idle_task(t)],
1022 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)],
1023 t->trc_reader_nesting,
1024 " N"[!!t->trc_reader_special.b.need_qs],
1025 cpu);
1026 sched_show_task(t);
1027 }
1028
1029 /* List stalled IPIs for RCU tasks trace. */
show_stalled_ipi_trace(void)1030 static void show_stalled_ipi_trace(void)
1031 {
1032 int cpu;
1033
1034 for_each_possible_cpu(cpu)
1035 if (per_cpu(trc_ipi_to_cpu, cpu))
1036 pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1037 }
1038
1039 /* Do one scan of the holdout list. */
check_all_holdout_tasks_trace(struct list_head * hop,bool needreport,bool * firstreport)1040 static void check_all_holdout_tasks_trace(struct list_head *hop,
1041 bool needreport, bool *firstreport)
1042 {
1043 struct task_struct *g, *t;
1044
1045 // Disable CPU hotplug across the holdout list scan.
1046 cpus_read_lock();
1047
1048 list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1049 // If safe and needed, try to check the current task.
1050 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1051 !READ_ONCE(t->trc_reader_checked))
1052 trc_wait_for_one_reader(t, hop);
1053
1054 // If check succeeded, remove this task from the list.
1055 if (READ_ONCE(t->trc_reader_checked))
1056 trc_del_holdout(t);
1057 else if (needreport)
1058 show_stalled_task_trace(t, firstreport);
1059 }
1060
1061 // Re-enable CPU hotplug now that the holdout list scan has completed.
1062 cpus_read_unlock();
1063
1064 if (needreport) {
1065 if (firstreport)
1066 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1067 show_stalled_ipi_trace();
1068 }
1069 }
1070
1071 /* Wait for grace period to complete and provide ordering. */
rcu_tasks_trace_postgp(struct rcu_tasks * rtp)1072 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1073 {
1074 bool firstreport;
1075 struct task_struct *g, *t;
1076 LIST_HEAD(holdouts);
1077 long ret;
1078
1079 // Remove the safety count.
1080 smp_mb__before_atomic(); // Order vs. earlier atomics
1081 atomic_dec(&trc_n_readers_need_end);
1082 smp_mb__after_atomic(); // Order vs. later atomics
1083
1084 // Wait for readers.
1085 set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
1086 for (;;) {
1087 ret = wait_event_idle_exclusive_timeout(
1088 trc_wait,
1089 atomic_read(&trc_n_readers_need_end) == 0,
1090 READ_ONCE(rcu_task_stall_timeout));
1091 if (ret)
1092 break; // Count reached zero.
1093 // Stall warning time, so make a list of the offenders.
1094 rcu_read_lock();
1095 for_each_process_thread(g, t)
1096 if (READ_ONCE(t->trc_reader_special.b.need_qs))
1097 trc_add_holdout(t, &holdouts);
1098 rcu_read_unlock();
1099 firstreport = true;
1100 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) {
1101 if (READ_ONCE(t->trc_reader_special.b.need_qs))
1102 show_stalled_task_trace(t, &firstreport);
1103 trc_del_holdout(t); // Release task_struct reference.
1104 }
1105 if (firstreport)
1106 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1107 show_stalled_ipi_trace();
1108 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1109 }
1110 smp_mb(); // Caller's code must be ordered after wakeup.
1111 // Pairs with pretty much every ordering primitive.
1112 }
1113
1114 /* Report any needed quiescent state for this exiting task. */
exit_tasks_rcu_finish_trace(struct task_struct * t)1115 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1116 {
1117 WRITE_ONCE(t->trc_reader_checked, true);
1118 WARN_ON_ONCE(t->trc_reader_nesting);
1119 WRITE_ONCE(t->trc_reader_nesting, 0);
1120 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
1121 rcu_read_unlock_trace_special(t, 0);
1122 }
1123
1124 /**
1125 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1126 * @rhp: structure to be used for queueing the RCU updates.
1127 * @func: actual callback function to be invoked after the grace period
1128 *
1129 * The callback function will be invoked some time after a full grace
1130 * period elapses, in other words after all currently executing RCU
1131 * read-side critical sections have completed. call_rcu_tasks_trace()
1132 * assumes that the read-side critical sections end at context switch,
1133 * cond_resched_rcu_qs(), or transition to usermode execution. As such,
1134 * there are no read-side primitives analogous to rcu_read_lock() and
1135 * rcu_read_unlock() because this primitive is intended to determine
1136 * that all tasks have passed through a safe state, not so much for
1137 * data-strcuture synchronization.
1138 *
1139 * See the description of call_rcu() for more detailed information on
1140 * memory ordering guarantees.
1141 */
call_rcu_tasks_trace(struct rcu_head * rhp,rcu_callback_t func)1142 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1143 {
1144 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1145 }
1146 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1147
1148 /**
1149 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1150 *
1151 * Control will return to the caller some time after a trace rcu-tasks
1152 * grace period has elapsed, in other words after all currently executing
1153 * rcu-tasks read-side critical sections have elapsed. These read-side
1154 * critical sections are delimited by calls to rcu_read_lock_trace()
1155 * and rcu_read_unlock_trace().
1156 *
1157 * This is a very specialized primitive, intended only for a few uses in
1158 * tracing and other situations requiring manipulation of function preambles
1159 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not
1160 * (yet) intended for heavy use from multiple CPUs.
1161 *
1162 * See the description of synchronize_rcu() for more detailed information
1163 * on memory ordering guarantees.
1164 */
synchronize_rcu_tasks_trace(void)1165 void synchronize_rcu_tasks_trace(void)
1166 {
1167 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1168 synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1169 }
1170 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1171
1172 /**
1173 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1174 *
1175 * Although the current implementation is guaranteed to wait, it is not
1176 * obligated to, for example, if there are no pending callbacks.
1177 */
rcu_barrier_tasks_trace(void)1178 void rcu_barrier_tasks_trace(void)
1179 {
1180 /* There is only one callback queue, so this is easy. ;-) */
1181 synchronize_rcu_tasks_trace();
1182 }
1183 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1184
rcu_spawn_tasks_trace_kthread(void)1185 static int __init rcu_spawn_tasks_trace_kthread(void)
1186 {
1187 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1188 rcu_tasks_trace.gp_sleep = HZ / 10;
1189 rcu_tasks_trace.init_fract = 10;
1190 } else {
1191 rcu_tasks_trace.gp_sleep = HZ / 200;
1192 if (rcu_tasks_trace.gp_sleep <= 0)
1193 rcu_tasks_trace.gp_sleep = 1;
1194 rcu_tasks_trace.init_fract = HZ / 5;
1195 if (rcu_tasks_trace.init_fract <= 0)
1196 rcu_tasks_trace.init_fract = 1;
1197 }
1198 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1199 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1200 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1201 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1202 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1203 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1204 return 0;
1205 }
1206
1207 #ifndef CONFIG_TINY_RCU
show_rcu_tasks_trace_gp_kthread(void)1208 static void show_rcu_tasks_trace_gp_kthread(void)
1209 {
1210 char buf[64];
1211
1212 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1213 data_race(n_heavy_reader_ofl_updates),
1214 data_race(n_heavy_reader_updates),
1215 data_race(n_heavy_reader_attempts));
1216 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1217 }
1218 #endif /* #ifndef CONFIG_TINY_RCU */
1219
1220 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
exit_tasks_rcu_finish_trace(struct task_struct * t)1221 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
show_rcu_tasks_trace_gp_kthread(void)1222 static inline void show_rcu_tasks_trace_gp_kthread(void) {}
1223 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1224
1225 #ifndef CONFIG_TINY_RCU
show_rcu_tasks_gp_kthreads(void)1226 void show_rcu_tasks_gp_kthreads(void)
1227 {
1228 show_rcu_tasks_classic_gp_kthread();
1229 show_rcu_tasks_rude_gp_kthread();
1230 show_rcu_tasks_trace_gp_kthread();
1231 }
1232 #endif /* #ifndef CONFIG_TINY_RCU */
1233
rcu_init_tasks_generic(void)1234 void __init rcu_init_tasks_generic(void)
1235 {
1236 #ifdef CONFIG_TASKS_RCU
1237 rcu_spawn_tasks_kthread();
1238 #endif
1239
1240 #ifdef CONFIG_TASKS_RUDE_RCU
1241 rcu_spawn_tasks_rude_kthread();
1242 #endif
1243
1244 #ifdef CONFIG_TASKS_TRACE_RCU
1245 rcu_spawn_tasks_trace_kthread();
1246 #endif
1247 }
1248
1249 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
rcu_tasks_bootup_oddness(void)1250 static inline void rcu_tasks_bootup_oddness(void) {}
show_rcu_tasks_gp_kthreads(void)1251 void show_rcu_tasks_gp_kthreads(void) {}
1252 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1253