1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68 };
69
70 /*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80 };
81
82 /*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
rdev_get_name(struct regulator_dev * rdev)111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
119 }
120
have_full_constraints(void)121 static bool have_full_constraints(void)
122 {
123 return has_full_constraints || of_have_populated_dt();
124 }
125
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
131 }
132
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
135
136 return false;
137 }
138
139 /**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
152 {
153 bool lock = false;
154 int ret = 0;
155
156 mutex_lock(®ulator_nesting_mutex);
157
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
163
164 if (lock) {
165 mutex_unlock(®ulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(®ulator_nesting_mutex);
168 }
169 } else {
170 lock = true;
171 }
172
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
176 }
177
178 mutex_unlock(®ulator_nesting_mutex);
179
180 return ret;
181 }
182
183 /**
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
regulator_lock(struct regulator_dev * rdev)193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
201 *
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
204 */
regulator_unlock(struct regulator_dev * rdev)205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 mutex_lock(®ulator_nesting_mutex);
208
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
212 }
213
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216 mutex_unlock(®ulator_nesting_mutex);
217 }
218
regulator_supply_is_couple(struct regulator_dev * rdev)219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221 struct regulator_dev *c_rdev;
222 int i;
223
224 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226
227 if (rdev->supply->rdev == c_rdev)
228 return true;
229 }
230
231 return false;
232 }
233
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235 unsigned int n_coupled)
236 {
237 struct regulator_dev *c_rdev, *supply_rdev;
238 int i, supply_n_coupled;
239
240 for (i = n_coupled; i > 0; i--) {
241 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242
243 if (!c_rdev)
244 continue;
245
246 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247 supply_rdev = c_rdev->supply->rdev;
248 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249
250 regulator_unlock_recursive(supply_rdev,
251 supply_n_coupled);
252 }
253
254 regulator_unlock(c_rdev);
255 }
256 }
257
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259 struct regulator_dev **new_contended_rdev,
260 struct regulator_dev **old_contended_rdev,
261 struct ww_acquire_ctx *ww_ctx)
262 {
263 struct regulator_dev *c_rdev;
264 int i, err;
265
266 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268
269 if (!c_rdev)
270 continue;
271
272 if (c_rdev != *old_contended_rdev) {
273 err = regulator_lock_nested(c_rdev, ww_ctx);
274 if (err) {
275 if (err == -EDEADLK) {
276 *new_contended_rdev = c_rdev;
277 goto err_unlock;
278 }
279
280 /* shouldn't happen */
281 WARN_ON_ONCE(err != -EALREADY);
282 }
283 } else {
284 *old_contended_rdev = NULL;
285 }
286
287 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 err = regulator_lock_recursive(c_rdev->supply->rdev,
289 new_contended_rdev,
290 old_contended_rdev,
291 ww_ctx);
292 if (err) {
293 regulator_unlock(c_rdev);
294 goto err_unlock;
295 }
296 }
297 }
298
299 return 0;
300
301 err_unlock:
302 regulator_unlock_recursive(rdev, i);
303
304 return err;
305 }
306
307 /**
308 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309 * regulators
310 * @rdev: regulator source
311 * @ww_ctx: w/w mutex acquire context
312 *
313 * Unlock all regulators related with rdev by coupling or supplying.
314 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316 struct ww_acquire_ctx *ww_ctx)
317 {
318 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319 ww_acquire_fini(ww_ctx);
320 }
321
322 /**
323 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324 * @rdev: regulator source
325 * @ww_ctx: w/w mutex acquire context
326 *
327 * This function as a wrapper on regulator_lock_recursive(), which locks
328 * all regulators related with rdev by coupling or supplying.
329 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331 struct ww_acquire_ctx *ww_ctx)
332 {
333 struct regulator_dev *new_contended_rdev = NULL;
334 struct regulator_dev *old_contended_rdev = NULL;
335 int err;
336
337 mutex_lock(®ulator_list_mutex);
338
339 ww_acquire_init(ww_ctx, ®ulator_ww_class);
340
341 do {
342 if (new_contended_rdev) {
343 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344 old_contended_rdev = new_contended_rdev;
345 old_contended_rdev->ref_cnt++;
346 }
347
348 err = regulator_lock_recursive(rdev,
349 &new_contended_rdev,
350 &old_contended_rdev,
351 ww_ctx);
352
353 if (old_contended_rdev)
354 regulator_unlock(old_contended_rdev);
355
356 } while (err == -EDEADLK);
357
358 ww_acquire_done(ww_ctx);
359
360 mutex_unlock(®ulator_list_mutex);
361 }
362
363 /**
364 * of_get_child_regulator - get a child regulator device node
365 * based on supply name
366 * @parent: Parent device node
367 * @prop_name: Combination regulator supply name and "-supply"
368 *
369 * Traverse all child nodes.
370 * Extract the child regulator device node corresponding to the supply name.
371 * returns the device node corresponding to the regulator if found, else
372 * returns NULL.
373 */
of_get_child_regulator(struct device_node * parent,const char * prop_name)374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375 const char *prop_name)
376 {
377 struct device_node *regnode = NULL;
378 struct device_node *child = NULL;
379
380 for_each_child_of_node(parent, child) {
381 regnode = of_parse_phandle(child, prop_name, 0);
382
383 if (!regnode) {
384 regnode = of_get_child_regulator(child, prop_name);
385 if (regnode)
386 goto err_node_put;
387 } else {
388 goto err_node_put;
389 }
390 }
391 return NULL;
392
393 err_node_put:
394 of_node_put(child);
395 return regnode;
396 }
397
398 /**
399 * of_get_regulator - get a regulator device node based on supply name
400 * @dev: Device pointer for the consumer (of regulator) device
401 * @supply: regulator supply name
402 *
403 * Extract the regulator device node corresponding to the supply name.
404 * returns the device node corresponding to the regulator if found, else
405 * returns NULL.
406 */
of_get_regulator(struct device * dev,const char * supply)407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409 struct device_node *regnode = NULL;
410 char prop_name[64]; /* 64 is max size of property name */
411
412 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413
414 snprintf(prop_name, 64, "%s-supply", supply);
415 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416
417 if (!regnode) {
418 regnode = of_get_child_regulator(dev->of_node, prop_name);
419 if (regnode)
420 return regnode;
421
422 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423 prop_name, dev->of_node);
424 return NULL;
425 }
426 return regnode;
427 }
428
429 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)430 int regulator_check_voltage(struct regulator_dev *rdev,
431 int *min_uV, int *max_uV)
432 {
433 BUG_ON(*min_uV > *max_uV);
434
435 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436 rdev_err(rdev, "voltage operation not allowed\n");
437 return -EPERM;
438 }
439
440 if (*max_uV > rdev->constraints->max_uV)
441 *max_uV = rdev->constraints->max_uV;
442 if (*min_uV < rdev->constraints->min_uV)
443 *min_uV = rdev->constraints->min_uV;
444
445 if (*min_uV > *max_uV) {
446 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447 *min_uV, *max_uV);
448 return -EINVAL;
449 }
450
451 return 0;
452 }
453
454 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)455 static int regulator_check_states(suspend_state_t state)
456 {
457 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459
460 /* Make sure we select a voltage that suits the needs of all
461 * regulator consumers
462 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)463 int regulator_check_consumers(struct regulator_dev *rdev,
464 int *min_uV, int *max_uV,
465 suspend_state_t state)
466 {
467 struct regulator *regulator;
468 struct regulator_voltage *voltage;
469
470 list_for_each_entry(regulator, &rdev->consumer_list, list) {
471 voltage = ®ulator->voltage[state];
472 /*
473 * Assume consumers that didn't say anything are OK
474 * with anything in the constraint range.
475 */
476 if (!voltage->min_uV && !voltage->max_uV)
477 continue;
478
479 if (*max_uV > voltage->max_uV)
480 *max_uV = voltage->max_uV;
481 if (*min_uV < voltage->min_uV)
482 *min_uV = voltage->min_uV;
483 }
484
485 if (*min_uV > *max_uV) {
486 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487 *min_uV, *max_uV);
488 return -EINVAL;
489 }
490
491 return 0;
492 }
493
494 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496 int *min_uA, int *max_uA)
497 {
498 BUG_ON(*min_uA > *max_uA);
499
500 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501 rdev_err(rdev, "current operation not allowed\n");
502 return -EPERM;
503 }
504
505 if (*max_uA > rdev->constraints->max_uA)
506 *max_uA = rdev->constraints->max_uA;
507 if (*min_uA < rdev->constraints->min_uA)
508 *min_uA = rdev->constraints->min_uA;
509
510 if (*min_uA > *max_uA) {
511 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512 *min_uA, *max_uA);
513 return -EINVAL;
514 }
515
516 return 0;
517 }
518
519 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521 unsigned int *mode)
522 {
523 switch (*mode) {
524 case REGULATOR_MODE_FAST:
525 case REGULATOR_MODE_NORMAL:
526 case REGULATOR_MODE_IDLE:
527 case REGULATOR_MODE_STANDBY:
528 break;
529 default:
530 rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 return -EINVAL;
532 }
533
534 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535 rdev_err(rdev, "mode operation not allowed\n");
536 return -EPERM;
537 }
538
539 /* The modes are bitmasks, the most power hungry modes having
540 * the lowest values. If the requested mode isn't supported
541 * try higher modes. */
542 while (*mode) {
543 if (rdev->constraints->valid_modes_mask & *mode)
544 return 0;
545 *mode /= 2;
546 }
547
548 return -EINVAL;
549 }
550
551 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
553 {
554 if (rdev->constraints == NULL)
555 return NULL;
556
557 switch (state) {
558 case PM_SUSPEND_STANDBY:
559 return &rdev->constraints->state_standby;
560 case PM_SUSPEND_MEM:
561 return &rdev->constraints->state_mem;
562 case PM_SUSPEND_MAX:
563 return &rdev->constraints->state_disk;
564 default:
565 return NULL;
566 }
567 }
568
569 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
571 {
572 const struct regulator_state *rstate;
573
574 rstate = regulator_get_suspend_state(rdev, state);
575 if (rstate == NULL)
576 return NULL;
577
578 /* If we have no suspend mode configuration don't set anything;
579 * only warn if the driver implements set_suspend_voltage or
580 * set_suspend_mode callback.
581 */
582 if (rstate->enabled != ENABLE_IN_SUSPEND &&
583 rstate->enabled != DISABLE_IN_SUSPEND) {
584 if (rdev->desc->ops->set_suspend_voltage ||
585 rdev->desc->ops->set_suspend_mode)
586 rdev_warn(rdev, "No configuration\n");
587 return NULL;
588 }
589
590 return rstate;
591 }
592
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)593 static ssize_t regulator_uV_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
595 {
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
597 int uV;
598
599 regulator_lock(rdev);
600 uV = regulator_get_voltage_rdev(rdev);
601 regulator_unlock(rdev);
602
603 if (uV < 0)
604 return uV;
605 return sprintf(buf, "%d\n", uV);
606 }
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)609 static ssize_t regulator_uA_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
615 }
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617
name_show(struct device * dev,struct device_attribute * attr,char * buf)618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
619 char *buf)
620 {
621 struct regulator_dev *rdev = dev_get_drvdata(dev);
622
623 return sprintf(buf, "%s\n", rdev_get_name(rdev));
624 }
625 static DEVICE_ATTR_RO(name);
626
regulator_opmode_to_str(int mode)627 static const char *regulator_opmode_to_str(int mode)
628 {
629 switch (mode) {
630 case REGULATOR_MODE_FAST:
631 return "fast";
632 case REGULATOR_MODE_NORMAL:
633 return "normal";
634 case REGULATOR_MODE_IDLE:
635 return "idle";
636 case REGULATOR_MODE_STANDBY:
637 return "standby";
638 }
639 return "unknown";
640 }
641
regulator_print_opmode(char * buf,int mode)642 static ssize_t regulator_print_opmode(char *buf, int mode)
643 {
644 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 }
646
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)647 static ssize_t regulator_opmode_show(struct device *dev,
648 struct device_attribute *attr, char *buf)
649 {
650 struct regulator_dev *rdev = dev_get_drvdata(dev);
651
652 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
653 }
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
655
regulator_print_state(char * buf,int state)656 static ssize_t regulator_print_state(char *buf, int state)
657 {
658 if (state > 0)
659 return sprintf(buf, "enabled\n");
660 else if (state == 0)
661 return sprintf(buf, "disabled\n");
662 else
663 return sprintf(buf, "unknown\n");
664 }
665
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)666 static ssize_t regulator_state_show(struct device *dev,
667 struct device_attribute *attr, char *buf)
668 {
669 struct regulator_dev *rdev = dev_get_drvdata(dev);
670 ssize_t ret;
671
672 regulator_lock(rdev);
673 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674 regulator_unlock(rdev);
675
676 return ret;
677 }
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
679
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)680 static ssize_t regulator_status_show(struct device *dev,
681 struct device_attribute *attr, char *buf)
682 {
683 struct regulator_dev *rdev = dev_get_drvdata(dev);
684 int status;
685 char *label;
686
687 status = rdev->desc->ops->get_status(rdev);
688 if (status < 0)
689 return status;
690
691 switch (status) {
692 case REGULATOR_STATUS_OFF:
693 label = "off";
694 break;
695 case REGULATOR_STATUS_ON:
696 label = "on";
697 break;
698 case REGULATOR_STATUS_ERROR:
699 label = "error";
700 break;
701 case REGULATOR_STATUS_FAST:
702 label = "fast";
703 break;
704 case REGULATOR_STATUS_NORMAL:
705 label = "normal";
706 break;
707 case REGULATOR_STATUS_IDLE:
708 label = "idle";
709 break;
710 case REGULATOR_STATUS_STANDBY:
711 label = "standby";
712 break;
713 case REGULATOR_STATUS_BYPASS:
714 label = "bypass";
715 break;
716 case REGULATOR_STATUS_UNDEFINED:
717 label = "undefined";
718 break;
719 default:
720 return -ERANGE;
721 }
722
723 return sprintf(buf, "%s\n", label);
724 }
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
726
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)727 static ssize_t regulator_min_uA_show(struct device *dev,
728 struct device_attribute *attr, char *buf)
729 {
730 struct regulator_dev *rdev = dev_get_drvdata(dev);
731
732 if (!rdev->constraints)
733 return sprintf(buf, "constraint not defined\n");
734
735 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
736 }
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)739 static ssize_t regulator_max_uA_show(struct device *dev,
740 struct device_attribute *attr, char *buf)
741 {
742 struct regulator_dev *rdev = dev_get_drvdata(dev);
743
744 if (!rdev->constraints)
745 return sprintf(buf, "constraint not defined\n");
746
747 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
748 }
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)751 static ssize_t regulator_min_uV_show(struct device *dev,
752 struct device_attribute *attr, char *buf)
753 {
754 struct regulator_dev *rdev = dev_get_drvdata(dev);
755
756 if (!rdev->constraints)
757 return sprintf(buf, "constraint not defined\n");
758
759 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
760 }
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)763 static ssize_t regulator_max_uV_show(struct device *dev,
764 struct device_attribute *attr, char *buf)
765 {
766 struct regulator_dev *rdev = dev_get_drvdata(dev);
767
768 if (!rdev->constraints)
769 return sprintf(buf, "constraint not defined\n");
770
771 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
772 }
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)775 static ssize_t regulator_total_uA_show(struct device *dev,
776 struct device_attribute *attr, char *buf)
777 {
778 struct regulator_dev *rdev = dev_get_drvdata(dev);
779 struct regulator *regulator;
780 int uA = 0;
781
782 regulator_lock(rdev);
783 list_for_each_entry(regulator, &rdev->consumer_list, list) {
784 if (regulator->enable_count)
785 uA += regulator->uA_load;
786 }
787 regulator_unlock(rdev);
788 return sprintf(buf, "%d\n", uA);
789 }
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
793 char *buf)
794 {
795 struct regulator_dev *rdev = dev_get_drvdata(dev);
796 return sprintf(buf, "%d\n", rdev->use_count);
797 }
798 static DEVICE_ATTR_RO(num_users);
799
type_show(struct device * dev,struct device_attribute * attr,char * buf)800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
801 char *buf)
802 {
803 struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805 switch (rdev->desc->type) {
806 case REGULATOR_VOLTAGE:
807 return sprintf(buf, "voltage\n");
808 case REGULATOR_CURRENT:
809 return sprintf(buf, "current\n");
810 }
811 return sprintf(buf, "unknown\n");
812 }
813 static DEVICE_ATTR_RO(type);
814
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816 struct device_attribute *attr, char *buf)
817 {
818 struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
821 }
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823 regulator_suspend_mem_uV_show, NULL);
824
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
827 {
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
831 }
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833 regulator_suspend_disk_uV_show, NULL);
834
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837 {
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839
840 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
841 }
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843 regulator_suspend_standby_uV_show, NULL);
844
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
847 {
848 struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850 return regulator_print_opmode(buf,
851 rdev->constraints->state_mem.mode);
852 }
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854 regulator_suspend_mem_mode_show, NULL);
855
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857 struct device_attribute *attr, char *buf)
858 {
859 struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861 return regulator_print_opmode(buf,
862 rdev->constraints->state_disk.mode);
863 }
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865 regulator_suspend_disk_mode_show, NULL);
866
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
869 {
870 struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872 return regulator_print_opmode(buf,
873 rdev->constraints->state_standby.mode);
874 }
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876 regulator_suspend_standby_mode_show, NULL);
877
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880 {
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883 return regulator_print_state(buf,
884 rdev->constraints->state_mem.enabled);
885 }
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887 regulator_suspend_mem_state_show, NULL);
888
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891 {
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894 return regulator_print_state(buf,
895 rdev->constraints->state_disk.enabled);
896 }
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898 regulator_suspend_disk_state_show, NULL);
899
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901 struct device_attribute *attr, char *buf)
902 {
903 struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905 return regulator_print_state(buf,
906 rdev->constraints->state_standby.enabled);
907 }
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909 regulator_suspend_standby_state_show, NULL);
910
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)911 static ssize_t regulator_bypass_show(struct device *dev,
912 struct device_attribute *attr, char *buf)
913 {
914 struct regulator_dev *rdev = dev_get_drvdata(dev);
915 const char *report;
916 bool bypass;
917 int ret;
918
919 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
920
921 if (ret != 0)
922 report = "unknown";
923 else if (bypass)
924 report = "enabled";
925 else
926 report = "disabled";
927
928 return sprintf(buf, "%s\n", report);
929 }
930 static DEVICE_ATTR(bypass, 0444,
931 regulator_bypass_show, NULL);
932
933 /* Calculate the new optimum regulator operating mode based on the new total
934 * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)935 static int drms_uA_update(struct regulator_dev *rdev)
936 {
937 struct regulator *sibling;
938 int current_uA = 0, output_uV, input_uV, err;
939 unsigned int mode;
940
941 /*
942 * first check to see if we can set modes at all, otherwise just
943 * tell the consumer everything is OK.
944 */
945 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946 rdev_dbg(rdev, "DRMS operation not allowed\n");
947 return 0;
948 }
949
950 if (!rdev->desc->ops->get_optimum_mode &&
951 !rdev->desc->ops->set_load)
952 return 0;
953
954 if (!rdev->desc->ops->set_mode &&
955 !rdev->desc->ops->set_load)
956 return -EINVAL;
957
958 /* calc total requested load */
959 list_for_each_entry(sibling, &rdev->consumer_list, list) {
960 if (sibling->enable_count)
961 current_uA += sibling->uA_load;
962 }
963
964 current_uA += rdev->constraints->system_load;
965
966 if (rdev->desc->ops->set_load) {
967 /* set the optimum mode for our new total regulator load */
968 err = rdev->desc->ops->set_load(rdev, current_uA);
969 if (err < 0)
970 rdev_err(rdev, "failed to set load %d: %pe\n",
971 current_uA, ERR_PTR(err));
972 } else {
973 /* get output voltage */
974 output_uV = regulator_get_voltage_rdev(rdev);
975 if (output_uV <= 0) {
976 rdev_err(rdev, "invalid output voltage found\n");
977 return -EINVAL;
978 }
979
980 /* get input voltage */
981 input_uV = 0;
982 if (rdev->supply)
983 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
984 if (input_uV <= 0)
985 input_uV = rdev->constraints->input_uV;
986 if (input_uV <= 0) {
987 rdev_err(rdev, "invalid input voltage found\n");
988 return -EINVAL;
989 }
990
991 /* now get the optimum mode for our new total regulator load */
992 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993 output_uV, current_uA);
994
995 /* check the new mode is allowed */
996 err = regulator_mode_constrain(rdev, &mode);
997 if (err < 0) {
998 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999 current_uA, input_uV, output_uV, ERR_PTR(err));
1000 return err;
1001 }
1002
1003 err = rdev->desc->ops->set_mode(rdev, mode);
1004 if (err < 0)
1005 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006 mode, ERR_PTR(err));
1007 }
1008
1009 return err;
1010 }
1011
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013 const struct regulator_state *rstate)
1014 {
1015 int ret = 0;
1016
1017 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018 rdev->desc->ops->set_suspend_enable)
1019 ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021 rdev->desc->ops->set_suspend_disable)
1022 ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024 ret = 0;
1025
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028 return ret;
1029 }
1030
1031 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033 if (ret < 0) {
1034 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035 return ret;
1036 }
1037 }
1038
1039 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041 if (ret < 0) {
1042 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043 return ret;
1044 }
1045 }
1046
1047 return ret;
1048 }
1049
suspend_set_initial_state(struct regulator_dev * rdev)1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1051 {
1052 const struct regulator_state *rstate;
1053
1054 rstate = regulator_get_suspend_state_check(rdev,
1055 rdev->constraints->initial_state);
1056 if (!rstate)
1057 return 0;
1058
1059 return __suspend_set_state(rdev, rstate);
1060 }
1061
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1063 static void print_constraints_debug(struct regulator_dev *rdev)
1064 {
1065 struct regulation_constraints *constraints = rdev->constraints;
1066 char buf[160] = "";
1067 size_t len = sizeof(buf) - 1;
1068 int count = 0;
1069 int ret;
1070
1071 if (constraints->min_uV && constraints->max_uV) {
1072 if (constraints->min_uV == constraints->max_uV)
1073 count += scnprintf(buf + count, len - count, "%d mV ",
1074 constraints->min_uV / 1000);
1075 else
1076 count += scnprintf(buf + count, len - count,
1077 "%d <--> %d mV ",
1078 constraints->min_uV / 1000,
1079 constraints->max_uV / 1000);
1080 }
1081
1082 if (!constraints->min_uV ||
1083 constraints->min_uV != constraints->max_uV) {
1084 ret = regulator_get_voltage_rdev(rdev);
1085 if (ret > 0)
1086 count += scnprintf(buf + count, len - count,
1087 "at %d mV ", ret / 1000);
1088 }
1089
1090 if (constraints->uV_offset)
1091 count += scnprintf(buf + count, len - count, "%dmV offset ",
1092 constraints->uV_offset / 1000);
1093
1094 if (constraints->min_uA && constraints->max_uA) {
1095 if (constraints->min_uA == constraints->max_uA)
1096 count += scnprintf(buf + count, len - count, "%d mA ",
1097 constraints->min_uA / 1000);
1098 else
1099 count += scnprintf(buf + count, len - count,
1100 "%d <--> %d mA ",
1101 constraints->min_uA / 1000,
1102 constraints->max_uA / 1000);
1103 }
1104
1105 if (!constraints->min_uA ||
1106 constraints->min_uA != constraints->max_uA) {
1107 ret = _regulator_get_current_limit(rdev);
1108 if (ret > 0)
1109 count += scnprintf(buf + count, len - count,
1110 "at %d mA ", ret / 1000);
1111 }
1112
1113 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114 count += scnprintf(buf + count, len - count, "fast ");
1115 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116 count += scnprintf(buf + count, len - count, "normal ");
1117 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118 count += scnprintf(buf + count, len - count, "idle ");
1119 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120 count += scnprintf(buf + count, len - count, "standby ");
1121
1122 if (!count)
1123 count = scnprintf(buf, len, "no parameters");
1124 else
1125 --count;
1126
1127 count += scnprintf(buf + count, len - count, ", %s",
1128 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129
1130 rdev_dbg(rdev, "%s\n", buf);
1131 }
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135
print_constraints(struct regulator_dev * rdev)1136 static void print_constraints(struct regulator_dev *rdev)
1137 {
1138 struct regulation_constraints *constraints = rdev->constraints;
1139
1140 print_constraints_debug(rdev);
1141
1142 if ((constraints->min_uV != constraints->max_uV) &&
1143 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144 rdev_warn(rdev,
1145 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 }
1147
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149 struct regulation_constraints *constraints)
1150 {
1151 const struct regulator_ops *ops = rdev->desc->ops;
1152 int ret;
1153
1154 /* do we need to apply the constraint voltage */
1155 if (rdev->constraints->apply_uV &&
1156 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157 int target_min, target_max;
1158 int current_uV = regulator_get_voltage_rdev(rdev);
1159
1160 if (current_uV == -ENOTRECOVERABLE) {
1161 /* This regulator can't be read and must be initialized */
1162 rdev_info(rdev, "Setting %d-%duV\n",
1163 rdev->constraints->min_uV,
1164 rdev->constraints->max_uV);
1165 _regulator_do_set_voltage(rdev,
1166 rdev->constraints->min_uV,
1167 rdev->constraints->max_uV);
1168 current_uV = regulator_get_voltage_rdev(rdev);
1169 }
1170
1171 if (current_uV < 0) {
1172 rdev_err(rdev,
1173 "failed to get the current voltage: %pe\n",
1174 ERR_PTR(current_uV));
1175 return current_uV;
1176 }
1177
1178 /*
1179 * If we're below the minimum voltage move up to the
1180 * minimum voltage, if we're above the maximum voltage
1181 * then move down to the maximum.
1182 */
1183 target_min = current_uV;
1184 target_max = current_uV;
1185
1186 if (current_uV < rdev->constraints->min_uV) {
1187 target_min = rdev->constraints->min_uV;
1188 target_max = rdev->constraints->min_uV;
1189 }
1190
1191 if (current_uV > rdev->constraints->max_uV) {
1192 target_min = rdev->constraints->max_uV;
1193 target_max = rdev->constraints->max_uV;
1194 }
1195
1196 if (target_min != current_uV || target_max != current_uV) {
1197 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198 current_uV, target_min, target_max);
1199 ret = _regulator_do_set_voltage(
1200 rdev, target_min, target_max);
1201 if (ret < 0) {
1202 rdev_err(rdev,
1203 "failed to apply %d-%duV constraint: %pe\n",
1204 target_min, target_max, ERR_PTR(ret));
1205 return ret;
1206 }
1207 }
1208 }
1209
1210 /* constrain machine-level voltage specs to fit
1211 * the actual range supported by this regulator.
1212 */
1213 if (ops->list_voltage && rdev->desc->n_voltages) {
1214 int count = rdev->desc->n_voltages;
1215 int i;
1216 int min_uV = INT_MAX;
1217 int max_uV = INT_MIN;
1218 int cmin = constraints->min_uV;
1219 int cmax = constraints->max_uV;
1220
1221 /* it's safe to autoconfigure fixed-voltage supplies
1222 and the constraints are used by list_voltage. */
1223 if (count == 1 && !cmin) {
1224 cmin = 1;
1225 cmax = INT_MAX;
1226 constraints->min_uV = cmin;
1227 constraints->max_uV = cmax;
1228 }
1229
1230 /* voltage constraints are optional */
1231 if ((cmin == 0) && (cmax == 0))
1232 return 0;
1233
1234 /* else require explicit machine-level constraints */
1235 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236 rdev_err(rdev, "invalid voltage constraints\n");
1237 return -EINVAL;
1238 }
1239
1240 /* no need to loop voltages if range is continuous */
1241 if (rdev->desc->continuous_voltage_range)
1242 return 0;
1243
1244 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245 for (i = 0; i < count; i++) {
1246 int value;
1247
1248 value = ops->list_voltage(rdev, i);
1249 if (value <= 0)
1250 continue;
1251
1252 /* maybe adjust [min_uV..max_uV] */
1253 if (value >= cmin && value < min_uV)
1254 min_uV = value;
1255 if (value <= cmax && value > max_uV)
1256 max_uV = value;
1257 }
1258
1259 /* final: [min_uV..max_uV] valid iff constraints valid */
1260 if (max_uV < min_uV) {
1261 rdev_err(rdev,
1262 "unsupportable voltage constraints %u-%uuV\n",
1263 min_uV, max_uV);
1264 return -EINVAL;
1265 }
1266
1267 /* use regulator's subset of machine constraints */
1268 if (constraints->min_uV < min_uV) {
1269 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270 constraints->min_uV, min_uV);
1271 constraints->min_uV = min_uV;
1272 }
1273 if (constraints->max_uV > max_uV) {
1274 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275 constraints->max_uV, max_uV);
1276 constraints->max_uV = max_uV;
1277 }
1278 }
1279
1280 return 0;
1281 }
1282
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284 struct regulation_constraints *constraints)
1285 {
1286 const struct regulator_ops *ops = rdev->desc->ops;
1287 int ret;
1288
1289 if (!constraints->min_uA && !constraints->max_uA)
1290 return 0;
1291
1292 if (constraints->min_uA > constraints->max_uA) {
1293 rdev_err(rdev, "Invalid current constraints\n");
1294 return -EINVAL;
1295 }
1296
1297 if (!ops->set_current_limit || !ops->get_current_limit) {
1298 rdev_warn(rdev, "Operation of current configuration missing\n");
1299 return 0;
1300 }
1301
1302 /* Set regulator current in constraints range */
1303 ret = ops->set_current_limit(rdev, constraints->min_uA,
1304 constraints->max_uA);
1305 if (ret < 0) {
1306 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307 return ret;
1308 }
1309
1310 return 0;
1311 }
1312
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1314
1315 /**
1316 * set_machine_constraints - sets regulator constraints
1317 * @rdev: regulator source
1318 *
1319 * Allows platform initialisation code to define and constrain
1320 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1321 * Constraints *must* be set by platform code in order for some
1322 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1323 * set_mode.
1324 */
set_machine_constraints(struct regulator_dev * rdev)1325 static int set_machine_constraints(struct regulator_dev *rdev)
1326 {
1327 int ret = 0;
1328 const struct regulator_ops *ops = rdev->desc->ops;
1329
1330 ret = machine_constraints_voltage(rdev, rdev->constraints);
1331 if (ret != 0)
1332 return ret;
1333
1334 ret = machine_constraints_current(rdev, rdev->constraints);
1335 if (ret != 0)
1336 return ret;
1337
1338 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1339 ret = ops->set_input_current_limit(rdev,
1340 rdev->constraints->ilim_uA);
1341 if (ret < 0) {
1342 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1343 return ret;
1344 }
1345 }
1346
1347 /* do we need to setup our suspend state */
1348 if (rdev->constraints->initial_state) {
1349 ret = suspend_set_initial_state(rdev);
1350 if (ret < 0) {
1351 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1352 return ret;
1353 }
1354 }
1355
1356 if (rdev->constraints->initial_mode) {
1357 if (!ops->set_mode) {
1358 rdev_err(rdev, "no set_mode operation\n");
1359 return -EINVAL;
1360 }
1361
1362 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1363 if (ret < 0) {
1364 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1365 return ret;
1366 }
1367 } else if (rdev->constraints->system_load) {
1368 /*
1369 * We'll only apply the initial system load if an
1370 * initial mode wasn't specified.
1371 */
1372 drms_uA_update(rdev);
1373 }
1374
1375 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1376 && ops->set_ramp_delay) {
1377 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1378 if (ret < 0) {
1379 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1380 return ret;
1381 }
1382 }
1383
1384 if (rdev->constraints->pull_down && ops->set_pull_down) {
1385 ret = ops->set_pull_down(rdev);
1386 if (ret < 0) {
1387 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1388 return ret;
1389 }
1390 }
1391
1392 if (rdev->constraints->soft_start && ops->set_soft_start) {
1393 ret = ops->set_soft_start(rdev);
1394 if (ret < 0) {
1395 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1396 return ret;
1397 }
1398 }
1399
1400 if (rdev->constraints->over_current_protection
1401 && ops->set_over_current_protection) {
1402 ret = ops->set_over_current_protection(rdev);
1403 if (ret < 0) {
1404 rdev_err(rdev, "failed to set over current protection: %pe\n",
1405 ERR_PTR(ret));
1406 return ret;
1407 }
1408 }
1409
1410 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1411 bool ad_state = (rdev->constraints->active_discharge ==
1412 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1413
1414 ret = ops->set_active_discharge(rdev, ad_state);
1415 if (ret < 0) {
1416 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1417 return ret;
1418 }
1419 }
1420
1421 /* If the constraints say the regulator should be on at this point
1422 * and we have control then make sure it is enabled.
1423 */
1424 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1425 /* If we want to enable this regulator, make sure that we know
1426 * the supplying regulator.
1427 */
1428 if (rdev->supply_name && !rdev->supply)
1429 return -EPROBE_DEFER;
1430
1431 /* If supplying regulator has already been enabled,
1432 * it's not intended to have use_count increment
1433 * when rdev is only boot-on.
1434 */
1435 if (rdev->supply &&
1436 (rdev->constraints->always_on ||
1437 !regulator_is_enabled(rdev->supply))) {
1438 ret = regulator_enable(rdev->supply);
1439 if (ret < 0) {
1440 _regulator_put(rdev->supply);
1441 rdev->supply = NULL;
1442 return ret;
1443 }
1444 }
1445
1446 ret = _regulator_do_enable(rdev);
1447 if (ret < 0 && ret != -EINVAL) {
1448 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1449 return ret;
1450 }
1451
1452 if (rdev->constraints->always_on)
1453 rdev->use_count++;
1454 } else if (rdev->desc->off_on_delay) {
1455 rdev->last_off_jiffy = jiffies;
1456 }
1457
1458 print_constraints(rdev);
1459 return 0;
1460 }
1461
1462 /**
1463 * set_supply - set regulator supply regulator
1464 * @rdev: regulator name
1465 * @supply_rdev: supply regulator name
1466 *
1467 * Called by platform initialisation code to set the supply regulator for this
1468 * regulator. This ensures that a regulators supply will also be enabled by the
1469 * core if it's child is enabled.
1470 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1471 static int set_supply(struct regulator_dev *rdev,
1472 struct regulator_dev *supply_rdev)
1473 {
1474 int err;
1475
1476 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1477
1478 if (!try_module_get(supply_rdev->owner))
1479 return -ENODEV;
1480
1481 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1482 if (rdev->supply == NULL) {
1483 module_put(supply_rdev->owner);
1484 err = -ENOMEM;
1485 return err;
1486 }
1487 supply_rdev->open_count++;
1488
1489 return 0;
1490 }
1491
1492 /**
1493 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1494 * @rdev: regulator source
1495 * @consumer_dev_name: dev_name() string for device supply applies to
1496 * @supply: symbolic name for supply
1497 *
1498 * Allows platform initialisation code to map physical regulator
1499 * sources to symbolic names for supplies for use by devices. Devices
1500 * should use these symbolic names to request regulators, avoiding the
1501 * need to provide board-specific regulator names as platform data.
1502 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1503 static int set_consumer_device_supply(struct regulator_dev *rdev,
1504 const char *consumer_dev_name,
1505 const char *supply)
1506 {
1507 struct regulator_map *node, *new_node;
1508 int has_dev;
1509
1510 if (supply == NULL)
1511 return -EINVAL;
1512
1513 if (consumer_dev_name != NULL)
1514 has_dev = 1;
1515 else
1516 has_dev = 0;
1517
1518 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1519 if (new_node == NULL)
1520 return -ENOMEM;
1521
1522 new_node->regulator = rdev;
1523 new_node->supply = supply;
1524
1525 if (has_dev) {
1526 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1527 if (new_node->dev_name == NULL) {
1528 kfree(new_node);
1529 return -ENOMEM;
1530 }
1531 }
1532
1533 mutex_lock(®ulator_list_mutex);
1534 list_for_each_entry(node, ®ulator_map_list, list) {
1535 if (node->dev_name && consumer_dev_name) {
1536 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1537 continue;
1538 } else if (node->dev_name || consumer_dev_name) {
1539 continue;
1540 }
1541
1542 if (strcmp(node->supply, supply) != 0)
1543 continue;
1544
1545 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1546 consumer_dev_name,
1547 dev_name(&node->regulator->dev),
1548 node->regulator->desc->name,
1549 supply,
1550 dev_name(&rdev->dev), rdev_get_name(rdev));
1551 goto fail;
1552 }
1553
1554 list_add(&new_node->list, ®ulator_map_list);
1555 mutex_unlock(®ulator_list_mutex);
1556
1557 return 0;
1558
1559 fail:
1560 mutex_unlock(®ulator_list_mutex);
1561 kfree(new_node->dev_name);
1562 kfree(new_node);
1563 return -EBUSY;
1564 }
1565
unset_regulator_supplies(struct regulator_dev * rdev)1566 static void unset_regulator_supplies(struct regulator_dev *rdev)
1567 {
1568 struct regulator_map *node, *n;
1569
1570 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1571 if (rdev == node->regulator) {
1572 list_del(&node->list);
1573 kfree(node->dev_name);
1574 kfree(node);
1575 }
1576 }
1577 }
1578
1579 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1580 static ssize_t constraint_flags_read_file(struct file *file,
1581 char __user *user_buf,
1582 size_t count, loff_t *ppos)
1583 {
1584 const struct regulator *regulator = file->private_data;
1585 const struct regulation_constraints *c = regulator->rdev->constraints;
1586 char *buf;
1587 ssize_t ret;
1588
1589 if (!c)
1590 return 0;
1591
1592 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1593 if (!buf)
1594 return -ENOMEM;
1595
1596 ret = snprintf(buf, PAGE_SIZE,
1597 "always_on: %u\n"
1598 "boot_on: %u\n"
1599 "apply_uV: %u\n"
1600 "ramp_disable: %u\n"
1601 "soft_start: %u\n"
1602 "pull_down: %u\n"
1603 "over_current_protection: %u\n",
1604 c->always_on,
1605 c->boot_on,
1606 c->apply_uV,
1607 c->ramp_disable,
1608 c->soft_start,
1609 c->pull_down,
1610 c->over_current_protection);
1611
1612 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1613 kfree(buf);
1614
1615 return ret;
1616 }
1617
1618 #endif
1619
1620 static const struct file_operations constraint_flags_fops = {
1621 #ifdef CONFIG_DEBUG_FS
1622 .open = simple_open,
1623 .read = constraint_flags_read_file,
1624 .llseek = default_llseek,
1625 #endif
1626 };
1627
1628 #define REG_STR_SIZE 64
1629
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1630 static struct regulator *create_regulator(struct regulator_dev *rdev,
1631 struct device *dev,
1632 const char *supply_name)
1633 {
1634 struct regulator *regulator;
1635 int err = 0;
1636
1637 if (dev) {
1638 char buf[REG_STR_SIZE];
1639 int size;
1640
1641 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1642 dev->kobj.name, supply_name);
1643 if (size >= REG_STR_SIZE)
1644 return NULL;
1645
1646 supply_name = kstrdup(buf, GFP_KERNEL);
1647 if (supply_name == NULL)
1648 return NULL;
1649 } else {
1650 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1651 if (supply_name == NULL)
1652 return NULL;
1653 }
1654
1655 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1656 if (regulator == NULL) {
1657 kfree_const(supply_name);
1658 return NULL;
1659 }
1660
1661 regulator->rdev = rdev;
1662 regulator->supply_name = supply_name;
1663
1664 regulator_lock(rdev);
1665 list_add(®ulator->list, &rdev->consumer_list);
1666 regulator_unlock(rdev);
1667
1668 if (dev) {
1669 regulator->dev = dev;
1670
1671 /* Add a link to the device sysfs entry */
1672 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1673 supply_name);
1674 if (err) {
1675 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1676 dev->kobj.name, ERR_PTR(err));
1677 /* non-fatal */
1678 }
1679 }
1680
1681 if (err != -EEXIST)
1682 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1683 if (!regulator->debugfs) {
1684 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1685 } else {
1686 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1687 ®ulator->uA_load);
1688 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1689 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1690 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1691 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1692 debugfs_create_file("constraint_flags", 0444,
1693 regulator->debugfs, regulator,
1694 &constraint_flags_fops);
1695 }
1696
1697 /*
1698 * Check now if the regulator is an always on regulator - if
1699 * it is then we don't need to do nearly so much work for
1700 * enable/disable calls.
1701 */
1702 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1703 _regulator_is_enabled(rdev))
1704 regulator->always_on = true;
1705
1706 return regulator;
1707 }
1708
_regulator_get_enable_time(struct regulator_dev * rdev)1709 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1710 {
1711 if (rdev->constraints && rdev->constraints->enable_time)
1712 return rdev->constraints->enable_time;
1713 if (rdev->desc->ops->enable_time)
1714 return rdev->desc->ops->enable_time(rdev);
1715 return rdev->desc->enable_time;
1716 }
1717
regulator_find_supply_alias(struct device * dev,const char * supply)1718 static struct regulator_supply_alias *regulator_find_supply_alias(
1719 struct device *dev, const char *supply)
1720 {
1721 struct regulator_supply_alias *map;
1722
1723 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1724 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1725 return map;
1726
1727 return NULL;
1728 }
1729
regulator_supply_alias(struct device ** dev,const char ** supply)1730 static void regulator_supply_alias(struct device **dev, const char **supply)
1731 {
1732 struct regulator_supply_alias *map;
1733
1734 map = regulator_find_supply_alias(*dev, *supply);
1735 if (map) {
1736 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1737 *supply, map->alias_supply,
1738 dev_name(map->alias_dev));
1739 *dev = map->alias_dev;
1740 *supply = map->alias_supply;
1741 }
1742 }
1743
regulator_match(struct device * dev,const void * data)1744 static int regulator_match(struct device *dev, const void *data)
1745 {
1746 struct regulator_dev *r = dev_to_rdev(dev);
1747
1748 return strcmp(rdev_get_name(r), data) == 0;
1749 }
1750
regulator_lookup_by_name(const char * name)1751 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1752 {
1753 struct device *dev;
1754
1755 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1756
1757 return dev ? dev_to_rdev(dev) : NULL;
1758 }
1759
1760 /**
1761 * regulator_dev_lookup - lookup a regulator device.
1762 * @dev: device for regulator "consumer".
1763 * @supply: Supply name or regulator ID.
1764 *
1765 * If successful, returns a struct regulator_dev that corresponds to the name
1766 * @supply and with the embedded struct device refcount incremented by one.
1767 * The refcount must be dropped by calling put_device().
1768 * On failure one of the following ERR-PTR-encoded values is returned:
1769 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1770 * in the future.
1771 */
regulator_dev_lookup(struct device * dev,const char * supply)1772 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1773 const char *supply)
1774 {
1775 struct regulator_dev *r = NULL;
1776 struct device_node *node;
1777 struct regulator_map *map;
1778 const char *devname = NULL;
1779
1780 regulator_supply_alias(&dev, &supply);
1781
1782 /* first do a dt based lookup */
1783 if (dev && dev->of_node) {
1784 node = of_get_regulator(dev, supply);
1785 if (node) {
1786 r = of_find_regulator_by_node(node);
1787 of_node_put(node);
1788 if (r)
1789 return r;
1790
1791 /*
1792 * We have a node, but there is no device.
1793 * assume it has not registered yet.
1794 */
1795 return ERR_PTR(-EPROBE_DEFER);
1796 }
1797 }
1798
1799 /* if not found, try doing it non-dt way */
1800 if (dev)
1801 devname = dev_name(dev);
1802
1803 mutex_lock(®ulator_list_mutex);
1804 list_for_each_entry(map, ®ulator_map_list, list) {
1805 /* If the mapping has a device set up it must match */
1806 if (map->dev_name &&
1807 (!devname || strcmp(map->dev_name, devname)))
1808 continue;
1809
1810 if (strcmp(map->supply, supply) == 0 &&
1811 get_device(&map->regulator->dev)) {
1812 r = map->regulator;
1813 break;
1814 }
1815 }
1816 mutex_unlock(®ulator_list_mutex);
1817
1818 if (r)
1819 return r;
1820
1821 r = regulator_lookup_by_name(supply);
1822 if (r)
1823 return r;
1824
1825 return ERR_PTR(-ENODEV);
1826 }
1827
regulator_resolve_supply(struct regulator_dev * rdev)1828 static int regulator_resolve_supply(struct regulator_dev *rdev)
1829 {
1830 struct regulator_dev *r;
1831 struct device *dev = rdev->dev.parent;
1832 int ret = 0;
1833
1834 /* No supply to resolve? */
1835 if (!rdev->supply_name)
1836 return 0;
1837
1838 /* Supply already resolved? (fast-path without locking contention) */
1839 if (rdev->supply)
1840 return 0;
1841
1842 r = regulator_dev_lookup(dev, rdev->supply_name);
1843 if (IS_ERR(r)) {
1844 ret = PTR_ERR(r);
1845
1846 /* Did the lookup explicitly defer for us? */
1847 if (ret == -EPROBE_DEFER)
1848 goto out;
1849
1850 if (have_full_constraints()) {
1851 r = dummy_regulator_rdev;
1852 get_device(&r->dev);
1853 } else {
1854 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1855 rdev->supply_name, rdev->desc->name);
1856 ret = -EPROBE_DEFER;
1857 goto out;
1858 }
1859 }
1860
1861 if (r == rdev) {
1862 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1863 rdev->desc->name, rdev->supply_name);
1864 if (!have_full_constraints()) {
1865 ret = -EINVAL;
1866 goto out;
1867 }
1868 r = dummy_regulator_rdev;
1869 get_device(&r->dev);
1870 }
1871
1872 /*
1873 * If the supply's parent device is not the same as the
1874 * regulator's parent device, then ensure the parent device
1875 * is bound before we resolve the supply, in case the parent
1876 * device get probe deferred and unregisters the supply.
1877 */
1878 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1879 if (!device_is_bound(r->dev.parent)) {
1880 put_device(&r->dev);
1881 ret = -EPROBE_DEFER;
1882 goto out;
1883 }
1884 }
1885
1886 /* Recursively resolve the supply of the supply */
1887 ret = regulator_resolve_supply(r);
1888 if (ret < 0) {
1889 put_device(&r->dev);
1890 goto out;
1891 }
1892
1893 /*
1894 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1895 * between rdev->supply null check and setting rdev->supply in
1896 * set_supply() from concurrent tasks.
1897 */
1898 regulator_lock(rdev);
1899
1900 /* Supply just resolved by a concurrent task? */
1901 if (rdev->supply) {
1902 regulator_unlock(rdev);
1903 put_device(&r->dev);
1904 goto out;
1905 }
1906
1907 ret = set_supply(rdev, r);
1908 if (ret < 0) {
1909 regulator_unlock(rdev);
1910 put_device(&r->dev);
1911 goto out;
1912 }
1913
1914 regulator_unlock(rdev);
1915
1916 /*
1917 * In set_machine_constraints() we may have turned this regulator on
1918 * but we couldn't propagate to the supply if it hadn't been resolved
1919 * yet. Do it now.
1920 */
1921 if (rdev->use_count) {
1922 ret = regulator_enable(rdev->supply);
1923 if (ret < 0) {
1924 _regulator_put(rdev->supply);
1925 rdev->supply = NULL;
1926 goto out;
1927 }
1928 }
1929
1930 out:
1931 return ret;
1932 }
1933
1934 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)1935 struct regulator *_regulator_get(struct device *dev, const char *id,
1936 enum regulator_get_type get_type)
1937 {
1938 struct regulator_dev *rdev;
1939 struct regulator *regulator;
1940 struct device_link *link;
1941 int ret;
1942
1943 if (get_type >= MAX_GET_TYPE) {
1944 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1945 return ERR_PTR(-EINVAL);
1946 }
1947
1948 if (id == NULL) {
1949 pr_err("get() with no identifier\n");
1950 return ERR_PTR(-EINVAL);
1951 }
1952
1953 rdev = regulator_dev_lookup(dev, id);
1954 if (IS_ERR(rdev)) {
1955 ret = PTR_ERR(rdev);
1956
1957 /*
1958 * If regulator_dev_lookup() fails with error other
1959 * than -ENODEV our job here is done, we simply return it.
1960 */
1961 if (ret != -ENODEV)
1962 return ERR_PTR(ret);
1963
1964 if (!have_full_constraints()) {
1965 dev_warn(dev,
1966 "incomplete constraints, dummy supplies not allowed\n");
1967 return ERR_PTR(-ENODEV);
1968 }
1969
1970 switch (get_type) {
1971 case NORMAL_GET:
1972 /*
1973 * Assume that a regulator is physically present and
1974 * enabled, even if it isn't hooked up, and just
1975 * provide a dummy.
1976 */
1977 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1978 rdev = dummy_regulator_rdev;
1979 get_device(&rdev->dev);
1980 break;
1981
1982 case EXCLUSIVE_GET:
1983 dev_warn(dev,
1984 "dummy supplies not allowed for exclusive requests\n");
1985 fallthrough;
1986
1987 default:
1988 return ERR_PTR(-ENODEV);
1989 }
1990 }
1991
1992 if (rdev->exclusive) {
1993 regulator = ERR_PTR(-EPERM);
1994 put_device(&rdev->dev);
1995 return regulator;
1996 }
1997
1998 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1999 regulator = ERR_PTR(-EBUSY);
2000 put_device(&rdev->dev);
2001 return regulator;
2002 }
2003
2004 mutex_lock(®ulator_list_mutex);
2005 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2006 mutex_unlock(®ulator_list_mutex);
2007
2008 if (ret != 0) {
2009 regulator = ERR_PTR(-EPROBE_DEFER);
2010 put_device(&rdev->dev);
2011 return regulator;
2012 }
2013
2014 ret = regulator_resolve_supply(rdev);
2015 if (ret < 0) {
2016 regulator = ERR_PTR(ret);
2017 put_device(&rdev->dev);
2018 return regulator;
2019 }
2020
2021 if (!try_module_get(rdev->owner)) {
2022 regulator = ERR_PTR(-EPROBE_DEFER);
2023 put_device(&rdev->dev);
2024 return regulator;
2025 }
2026
2027 regulator = create_regulator(rdev, dev, id);
2028 if (regulator == NULL) {
2029 regulator = ERR_PTR(-ENOMEM);
2030 module_put(rdev->owner);
2031 put_device(&rdev->dev);
2032 return regulator;
2033 }
2034
2035 rdev->open_count++;
2036 if (get_type == EXCLUSIVE_GET) {
2037 rdev->exclusive = 1;
2038
2039 ret = _regulator_is_enabled(rdev);
2040 if (ret > 0) {
2041 rdev->use_count = 1;
2042 regulator->enable_count = 1;
2043 } else {
2044 rdev->use_count = 0;
2045 regulator->enable_count = 0;
2046 }
2047 }
2048
2049 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2050 if (!IS_ERR_OR_NULL(link))
2051 regulator->device_link = true;
2052
2053 return regulator;
2054 }
2055
2056 /**
2057 * regulator_get - lookup and obtain a reference to a regulator.
2058 * @dev: device for regulator "consumer"
2059 * @id: Supply name or regulator ID.
2060 *
2061 * Returns a struct regulator corresponding to the regulator producer,
2062 * or IS_ERR() condition containing errno.
2063 *
2064 * Use of supply names configured via regulator_set_device_supply() is
2065 * strongly encouraged. It is recommended that the supply name used
2066 * should match the name used for the supply and/or the relevant
2067 * device pins in the datasheet.
2068 */
regulator_get(struct device * dev,const char * id)2069 struct regulator *regulator_get(struct device *dev, const char *id)
2070 {
2071 return _regulator_get(dev, id, NORMAL_GET);
2072 }
2073 EXPORT_SYMBOL_GPL(regulator_get);
2074
2075 /**
2076 * regulator_get_exclusive - obtain exclusive access to a regulator.
2077 * @dev: device for regulator "consumer"
2078 * @id: Supply name or regulator ID.
2079 *
2080 * Returns a struct regulator corresponding to the regulator producer,
2081 * or IS_ERR() condition containing errno. Other consumers will be
2082 * unable to obtain this regulator while this reference is held and the
2083 * use count for the regulator will be initialised to reflect the current
2084 * state of the regulator.
2085 *
2086 * This is intended for use by consumers which cannot tolerate shared
2087 * use of the regulator such as those which need to force the
2088 * regulator off for correct operation of the hardware they are
2089 * controlling.
2090 *
2091 * Use of supply names configured via regulator_set_device_supply() is
2092 * strongly encouraged. It is recommended that the supply name used
2093 * should match the name used for the supply and/or the relevant
2094 * device pins in the datasheet.
2095 */
regulator_get_exclusive(struct device * dev,const char * id)2096 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2097 {
2098 return _regulator_get(dev, id, EXCLUSIVE_GET);
2099 }
2100 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2101
2102 /**
2103 * regulator_get_optional - obtain optional access to a regulator.
2104 * @dev: device for regulator "consumer"
2105 * @id: Supply name or regulator ID.
2106 *
2107 * Returns a struct regulator corresponding to the regulator producer,
2108 * or IS_ERR() condition containing errno.
2109 *
2110 * This is intended for use by consumers for devices which can have
2111 * some supplies unconnected in normal use, such as some MMC devices.
2112 * It can allow the regulator core to provide stub supplies for other
2113 * supplies requested using normal regulator_get() calls without
2114 * disrupting the operation of drivers that can handle absent
2115 * supplies.
2116 *
2117 * Use of supply names configured via regulator_set_device_supply() is
2118 * strongly encouraged. It is recommended that the supply name used
2119 * should match the name used for the supply and/or the relevant
2120 * device pins in the datasheet.
2121 */
regulator_get_optional(struct device * dev,const char * id)2122 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2123 {
2124 return _regulator_get(dev, id, OPTIONAL_GET);
2125 }
2126 EXPORT_SYMBOL_GPL(regulator_get_optional);
2127
destroy_regulator(struct regulator * regulator)2128 static void destroy_regulator(struct regulator *regulator)
2129 {
2130 struct regulator_dev *rdev = regulator->rdev;
2131
2132 debugfs_remove_recursive(regulator->debugfs);
2133
2134 if (regulator->dev) {
2135 if (regulator->device_link)
2136 device_link_remove(regulator->dev, &rdev->dev);
2137
2138 /* remove any sysfs entries */
2139 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2140 }
2141
2142 regulator_lock(rdev);
2143 list_del(®ulator->list);
2144
2145 rdev->open_count--;
2146 rdev->exclusive = 0;
2147 regulator_unlock(rdev);
2148
2149 kfree_const(regulator->supply_name);
2150 kfree(regulator);
2151 }
2152
2153 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2154 static void _regulator_put(struct regulator *regulator)
2155 {
2156 struct regulator_dev *rdev;
2157
2158 if (IS_ERR_OR_NULL(regulator))
2159 return;
2160
2161 lockdep_assert_held_once(®ulator_list_mutex);
2162
2163 /* Docs say you must disable before calling regulator_put() */
2164 WARN_ON(regulator->enable_count);
2165
2166 rdev = regulator->rdev;
2167
2168 destroy_regulator(regulator);
2169
2170 module_put(rdev->owner);
2171 put_device(&rdev->dev);
2172 }
2173
2174 /**
2175 * regulator_put - "free" the regulator source
2176 * @regulator: regulator source
2177 *
2178 * Note: drivers must ensure that all regulator_enable calls made on this
2179 * regulator source are balanced by regulator_disable calls prior to calling
2180 * this function.
2181 */
regulator_put(struct regulator * regulator)2182 void regulator_put(struct regulator *regulator)
2183 {
2184 mutex_lock(®ulator_list_mutex);
2185 _regulator_put(regulator);
2186 mutex_unlock(®ulator_list_mutex);
2187 }
2188 EXPORT_SYMBOL_GPL(regulator_put);
2189
2190 /**
2191 * regulator_register_supply_alias - Provide device alias for supply lookup
2192 *
2193 * @dev: device that will be given as the regulator "consumer"
2194 * @id: Supply name or regulator ID
2195 * @alias_dev: device that should be used to lookup the supply
2196 * @alias_id: Supply name or regulator ID that should be used to lookup the
2197 * supply
2198 *
2199 * All lookups for id on dev will instead be conducted for alias_id on
2200 * alias_dev.
2201 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2202 int regulator_register_supply_alias(struct device *dev, const char *id,
2203 struct device *alias_dev,
2204 const char *alias_id)
2205 {
2206 struct regulator_supply_alias *map;
2207
2208 map = regulator_find_supply_alias(dev, id);
2209 if (map)
2210 return -EEXIST;
2211
2212 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2213 if (!map)
2214 return -ENOMEM;
2215
2216 map->src_dev = dev;
2217 map->src_supply = id;
2218 map->alias_dev = alias_dev;
2219 map->alias_supply = alias_id;
2220
2221 list_add(&map->list, ®ulator_supply_alias_list);
2222
2223 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2224 id, dev_name(dev), alias_id, dev_name(alias_dev));
2225
2226 return 0;
2227 }
2228 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2229
2230 /**
2231 * regulator_unregister_supply_alias - Remove device alias
2232 *
2233 * @dev: device that will be given as the regulator "consumer"
2234 * @id: Supply name or regulator ID
2235 *
2236 * Remove a lookup alias if one exists for id on dev.
2237 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2238 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2239 {
2240 struct regulator_supply_alias *map;
2241
2242 map = regulator_find_supply_alias(dev, id);
2243 if (map) {
2244 list_del(&map->list);
2245 kfree(map);
2246 }
2247 }
2248 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2249
2250 /**
2251 * regulator_bulk_register_supply_alias - register multiple aliases
2252 *
2253 * @dev: device that will be given as the regulator "consumer"
2254 * @id: List of supply names or regulator IDs
2255 * @alias_dev: device that should be used to lookup the supply
2256 * @alias_id: List of supply names or regulator IDs that should be used to
2257 * lookup the supply
2258 * @num_id: Number of aliases to register
2259 *
2260 * @return 0 on success, an errno on failure.
2261 *
2262 * This helper function allows drivers to register several supply
2263 * aliases in one operation. If any of the aliases cannot be
2264 * registered any aliases that were registered will be removed
2265 * before returning to the caller.
2266 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2267 int regulator_bulk_register_supply_alias(struct device *dev,
2268 const char *const *id,
2269 struct device *alias_dev,
2270 const char *const *alias_id,
2271 int num_id)
2272 {
2273 int i;
2274 int ret;
2275
2276 for (i = 0; i < num_id; ++i) {
2277 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2278 alias_id[i]);
2279 if (ret < 0)
2280 goto err;
2281 }
2282
2283 return 0;
2284
2285 err:
2286 dev_err(dev,
2287 "Failed to create supply alias %s,%s -> %s,%s\n",
2288 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2289
2290 while (--i >= 0)
2291 regulator_unregister_supply_alias(dev, id[i]);
2292
2293 return ret;
2294 }
2295 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2296
2297 /**
2298 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2299 *
2300 * @dev: device that will be given as the regulator "consumer"
2301 * @id: List of supply names or regulator IDs
2302 * @num_id: Number of aliases to unregister
2303 *
2304 * This helper function allows drivers to unregister several supply
2305 * aliases in one operation.
2306 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2307 void regulator_bulk_unregister_supply_alias(struct device *dev,
2308 const char *const *id,
2309 int num_id)
2310 {
2311 int i;
2312
2313 for (i = 0; i < num_id; ++i)
2314 regulator_unregister_supply_alias(dev, id[i]);
2315 }
2316 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2317
2318
2319 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2320 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2321 const struct regulator_config *config)
2322 {
2323 struct regulator_enable_gpio *pin, *new_pin;
2324 struct gpio_desc *gpiod;
2325
2326 gpiod = config->ena_gpiod;
2327 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2328
2329 mutex_lock(®ulator_list_mutex);
2330
2331 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2332 if (pin->gpiod == gpiod) {
2333 rdev_dbg(rdev, "GPIO is already used\n");
2334 goto update_ena_gpio_to_rdev;
2335 }
2336 }
2337
2338 if (new_pin == NULL) {
2339 mutex_unlock(®ulator_list_mutex);
2340 return -ENOMEM;
2341 }
2342
2343 pin = new_pin;
2344 new_pin = NULL;
2345
2346 pin->gpiod = gpiod;
2347 list_add(&pin->list, ®ulator_ena_gpio_list);
2348
2349 update_ena_gpio_to_rdev:
2350 pin->request_count++;
2351 rdev->ena_pin = pin;
2352
2353 mutex_unlock(®ulator_list_mutex);
2354 kfree(new_pin);
2355
2356 return 0;
2357 }
2358
regulator_ena_gpio_free(struct regulator_dev * rdev)2359 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2360 {
2361 struct regulator_enable_gpio *pin, *n;
2362
2363 if (!rdev->ena_pin)
2364 return;
2365
2366 /* Free the GPIO only in case of no use */
2367 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2368 if (pin != rdev->ena_pin)
2369 continue;
2370
2371 if (--pin->request_count)
2372 break;
2373
2374 gpiod_put(pin->gpiod);
2375 list_del(&pin->list);
2376 kfree(pin);
2377 break;
2378 }
2379
2380 rdev->ena_pin = NULL;
2381 }
2382
2383 /**
2384 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2385 * @rdev: regulator_dev structure
2386 * @enable: enable GPIO at initial use?
2387 *
2388 * GPIO is enabled in case of initial use. (enable_count is 0)
2389 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2390 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2391 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2392 {
2393 struct regulator_enable_gpio *pin = rdev->ena_pin;
2394
2395 if (!pin)
2396 return -EINVAL;
2397
2398 if (enable) {
2399 /* Enable GPIO at initial use */
2400 if (pin->enable_count == 0)
2401 gpiod_set_value_cansleep(pin->gpiod, 1);
2402
2403 pin->enable_count++;
2404 } else {
2405 if (pin->enable_count > 1) {
2406 pin->enable_count--;
2407 return 0;
2408 }
2409
2410 /* Disable GPIO if not used */
2411 if (pin->enable_count <= 1) {
2412 gpiod_set_value_cansleep(pin->gpiod, 0);
2413 pin->enable_count = 0;
2414 }
2415 }
2416
2417 return 0;
2418 }
2419
2420 /**
2421 * _regulator_enable_delay - a delay helper function
2422 * @delay: time to delay in microseconds
2423 *
2424 * Delay for the requested amount of time as per the guidelines in:
2425 *
2426 * Documentation/timers/timers-howto.rst
2427 *
2428 * The assumption here is that regulators will never be enabled in
2429 * atomic context and therefore sleeping functions can be used.
2430 */
_regulator_enable_delay(unsigned int delay)2431 static void _regulator_enable_delay(unsigned int delay)
2432 {
2433 unsigned int ms = delay / 1000;
2434 unsigned int us = delay % 1000;
2435
2436 if (ms > 0) {
2437 /*
2438 * For small enough values, handle super-millisecond
2439 * delays in the usleep_range() call below.
2440 */
2441 if (ms < 20)
2442 us += ms * 1000;
2443 else
2444 msleep(ms);
2445 }
2446
2447 /*
2448 * Give the scheduler some room to coalesce with any other
2449 * wakeup sources. For delays shorter than 10 us, don't even
2450 * bother setting up high-resolution timers and just busy-
2451 * loop.
2452 */
2453 if (us >= 10)
2454 usleep_range(us, us + 100);
2455 else
2456 udelay(us);
2457 }
2458
2459 /**
2460 * _regulator_check_status_enabled
2461 *
2462 * A helper function to check if the regulator status can be interpreted
2463 * as 'regulator is enabled'.
2464 * @rdev: the regulator device to check
2465 *
2466 * Return:
2467 * * 1 - if status shows regulator is in enabled state
2468 * * 0 - if not enabled state
2469 * * Error Value - as received from ops->get_status()
2470 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2471 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2472 {
2473 int ret = rdev->desc->ops->get_status(rdev);
2474
2475 if (ret < 0) {
2476 rdev_info(rdev, "get_status returned error: %d\n", ret);
2477 return ret;
2478 }
2479
2480 switch (ret) {
2481 case REGULATOR_STATUS_OFF:
2482 case REGULATOR_STATUS_ERROR:
2483 case REGULATOR_STATUS_UNDEFINED:
2484 return 0;
2485 default:
2486 return 1;
2487 }
2488 }
2489
_regulator_do_enable(struct regulator_dev * rdev)2490 static int _regulator_do_enable(struct regulator_dev *rdev)
2491 {
2492 int ret, delay;
2493
2494 /* Query before enabling in case configuration dependent. */
2495 ret = _regulator_get_enable_time(rdev);
2496 if (ret >= 0) {
2497 delay = ret;
2498 } else {
2499 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2500 delay = 0;
2501 }
2502
2503 trace_regulator_enable(rdev_get_name(rdev));
2504
2505 if (rdev->desc->off_on_delay) {
2506 /* if needed, keep a distance of off_on_delay from last time
2507 * this regulator was disabled.
2508 */
2509 unsigned long start_jiffy = jiffies;
2510 unsigned long intended, max_delay, remaining;
2511
2512 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2513 intended = rdev->last_off_jiffy + max_delay;
2514
2515 if (time_before(start_jiffy, intended)) {
2516 /* calc remaining jiffies to deal with one-time
2517 * timer wrapping.
2518 * in case of multiple timer wrapping, either it can be
2519 * detected by out-of-range remaining, or it cannot be
2520 * detected and we get a penalty of
2521 * _regulator_enable_delay().
2522 */
2523 remaining = intended - start_jiffy;
2524 if (remaining <= max_delay)
2525 _regulator_enable_delay(
2526 jiffies_to_usecs(remaining));
2527 }
2528 }
2529
2530 if (rdev->ena_pin) {
2531 if (!rdev->ena_gpio_state) {
2532 ret = regulator_ena_gpio_ctrl(rdev, true);
2533 if (ret < 0)
2534 return ret;
2535 rdev->ena_gpio_state = 1;
2536 }
2537 } else if (rdev->desc->ops->enable) {
2538 ret = rdev->desc->ops->enable(rdev);
2539 if (ret < 0)
2540 return ret;
2541 } else {
2542 return -EINVAL;
2543 }
2544
2545 /* Allow the regulator to ramp; it would be useful to extend
2546 * this for bulk operations so that the regulators can ramp
2547 * together. */
2548 trace_regulator_enable_delay(rdev_get_name(rdev));
2549
2550 /* If poll_enabled_time is set, poll upto the delay calculated
2551 * above, delaying poll_enabled_time uS to check if the regulator
2552 * actually got enabled.
2553 * If the regulator isn't enabled after enable_delay has
2554 * expired, return -ETIMEDOUT.
2555 */
2556 if (rdev->desc->poll_enabled_time) {
2557 int time_remaining = delay;
2558
2559 while (time_remaining > 0) {
2560 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2561
2562 if (rdev->desc->ops->get_status) {
2563 ret = _regulator_check_status_enabled(rdev);
2564 if (ret < 0)
2565 return ret;
2566 else if (ret)
2567 break;
2568 } else if (rdev->desc->ops->is_enabled(rdev))
2569 break;
2570
2571 time_remaining -= rdev->desc->poll_enabled_time;
2572 }
2573
2574 if (time_remaining <= 0) {
2575 rdev_err(rdev, "Enabled check timed out\n");
2576 return -ETIMEDOUT;
2577 }
2578 } else {
2579 _regulator_enable_delay(delay);
2580 }
2581
2582 trace_regulator_enable_complete(rdev_get_name(rdev));
2583
2584 return 0;
2585 }
2586
2587 /**
2588 * _regulator_handle_consumer_enable - handle that a consumer enabled
2589 * @regulator: regulator source
2590 *
2591 * Some things on a regulator consumer (like the contribution towards total
2592 * load on the regulator) only have an effect when the consumer wants the
2593 * regulator enabled. Explained in example with two consumers of the same
2594 * regulator:
2595 * consumer A: set_load(100); => total load = 0
2596 * consumer A: regulator_enable(); => total load = 100
2597 * consumer B: set_load(1000); => total load = 100
2598 * consumer B: regulator_enable(); => total load = 1100
2599 * consumer A: regulator_disable(); => total_load = 1000
2600 *
2601 * This function (together with _regulator_handle_consumer_disable) is
2602 * responsible for keeping track of the refcount for a given regulator consumer
2603 * and applying / unapplying these things.
2604 *
2605 * Returns 0 upon no error; -error upon error.
2606 */
_regulator_handle_consumer_enable(struct regulator * regulator)2607 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2608 {
2609 int ret;
2610 struct regulator_dev *rdev = regulator->rdev;
2611
2612 lockdep_assert_held_once(&rdev->mutex.base);
2613
2614 regulator->enable_count++;
2615 if (regulator->uA_load && regulator->enable_count == 1) {
2616 ret = drms_uA_update(rdev);
2617 if (ret)
2618 regulator->enable_count--;
2619 return ret;
2620 }
2621
2622 return 0;
2623 }
2624
2625 /**
2626 * _regulator_handle_consumer_disable - handle that a consumer disabled
2627 * @regulator: regulator source
2628 *
2629 * The opposite of _regulator_handle_consumer_enable().
2630 *
2631 * Returns 0 upon no error; -error upon error.
2632 */
_regulator_handle_consumer_disable(struct regulator * regulator)2633 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2634 {
2635 struct regulator_dev *rdev = regulator->rdev;
2636
2637 lockdep_assert_held_once(&rdev->mutex.base);
2638
2639 if (!regulator->enable_count) {
2640 rdev_err(rdev, "Underflow of regulator enable count\n");
2641 return -EINVAL;
2642 }
2643
2644 regulator->enable_count--;
2645 if (regulator->uA_load && regulator->enable_count == 0)
2646 return drms_uA_update(rdev);
2647
2648 return 0;
2649 }
2650
2651 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2652 static int _regulator_enable(struct regulator *regulator)
2653 {
2654 struct regulator_dev *rdev = regulator->rdev;
2655 int ret;
2656
2657 lockdep_assert_held_once(&rdev->mutex.base);
2658
2659 if (rdev->use_count == 0 && rdev->supply) {
2660 ret = _regulator_enable(rdev->supply);
2661 if (ret < 0)
2662 return ret;
2663 }
2664
2665 /* balance only if there are regulators coupled */
2666 if (rdev->coupling_desc.n_coupled > 1) {
2667 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2668 if (ret < 0)
2669 goto err_disable_supply;
2670 }
2671
2672 ret = _regulator_handle_consumer_enable(regulator);
2673 if (ret < 0)
2674 goto err_disable_supply;
2675
2676 if (rdev->use_count == 0) {
2677 /* The regulator may on if it's not switchable or left on */
2678 ret = _regulator_is_enabled(rdev);
2679 if (ret == -EINVAL || ret == 0) {
2680 if (!regulator_ops_is_valid(rdev,
2681 REGULATOR_CHANGE_STATUS)) {
2682 ret = -EPERM;
2683 goto err_consumer_disable;
2684 }
2685
2686 ret = _regulator_do_enable(rdev);
2687 if (ret < 0)
2688 goto err_consumer_disable;
2689
2690 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2691 NULL);
2692 } else if (ret < 0) {
2693 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2694 goto err_consumer_disable;
2695 }
2696 /* Fallthrough on positive return values - already enabled */
2697 }
2698
2699 rdev->use_count++;
2700
2701 return 0;
2702
2703 err_consumer_disable:
2704 _regulator_handle_consumer_disable(regulator);
2705
2706 err_disable_supply:
2707 if (rdev->use_count == 0 && rdev->supply)
2708 _regulator_disable(rdev->supply);
2709
2710 return ret;
2711 }
2712
2713 /**
2714 * regulator_enable - enable regulator output
2715 * @regulator: regulator source
2716 *
2717 * Request that the regulator be enabled with the regulator output at
2718 * the predefined voltage or current value. Calls to regulator_enable()
2719 * must be balanced with calls to regulator_disable().
2720 *
2721 * NOTE: the output value can be set by other drivers, boot loader or may be
2722 * hardwired in the regulator.
2723 */
regulator_enable(struct regulator * regulator)2724 int regulator_enable(struct regulator *regulator)
2725 {
2726 struct regulator_dev *rdev = regulator->rdev;
2727 struct ww_acquire_ctx ww_ctx;
2728 int ret;
2729
2730 regulator_lock_dependent(rdev, &ww_ctx);
2731 ret = _regulator_enable(regulator);
2732 regulator_unlock_dependent(rdev, &ww_ctx);
2733
2734 return ret;
2735 }
2736 EXPORT_SYMBOL_GPL(regulator_enable);
2737
_regulator_do_disable(struct regulator_dev * rdev)2738 static int _regulator_do_disable(struct regulator_dev *rdev)
2739 {
2740 int ret;
2741
2742 trace_regulator_disable(rdev_get_name(rdev));
2743
2744 if (rdev->ena_pin) {
2745 if (rdev->ena_gpio_state) {
2746 ret = regulator_ena_gpio_ctrl(rdev, false);
2747 if (ret < 0)
2748 return ret;
2749 rdev->ena_gpio_state = 0;
2750 }
2751
2752 } else if (rdev->desc->ops->disable) {
2753 ret = rdev->desc->ops->disable(rdev);
2754 if (ret != 0)
2755 return ret;
2756 }
2757
2758 /* cares about last_off_jiffy only if off_on_delay is required by
2759 * device.
2760 */
2761 if (rdev->desc->off_on_delay)
2762 rdev->last_off_jiffy = jiffies;
2763
2764 trace_regulator_disable_complete(rdev_get_name(rdev));
2765
2766 return 0;
2767 }
2768
2769 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2770 static int _regulator_disable(struct regulator *regulator)
2771 {
2772 struct regulator_dev *rdev = regulator->rdev;
2773 int ret = 0;
2774
2775 lockdep_assert_held_once(&rdev->mutex.base);
2776
2777 if (WARN(rdev->use_count <= 0,
2778 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2779 return -EIO;
2780
2781 /* are we the last user and permitted to disable ? */
2782 if (rdev->use_count == 1 &&
2783 (rdev->constraints && !rdev->constraints->always_on)) {
2784
2785 /* we are last user */
2786 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2787 ret = _notifier_call_chain(rdev,
2788 REGULATOR_EVENT_PRE_DISABLE,
2789 NULL);
2790 if (ret & NOTIFY_STOP_MASK)
2791 return -EINVAL;
2792
2793 ret = _regulator_do_disable(rdev);
2794 if (ret < 0) {
2795 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2796 _notifier_call_chain(rdev,
2797 REGULATOR_EVENT_ABORT_DISABLE,
2798 NULL);
2799 return ret;
2800 }
2801 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2802 NULL);
2803 }
2804
2805 rdev->use_count = 0;
2806 } else if (rdev->use_count > 1) {
2807 rdev->use_count--;
2808 }
2809
2810 if (ret == 0)
2811 ret = _regulator_handle_consumer_disable(regulator);
2812
2813 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2814 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2815
2816 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2817 ret = _regulator_disable(rdev->supply);
2818
2819 return ret;
2820 }
2821
2822 /**
2823 * regulator_disable - disable regulator output
2824 * @regulator: regulator source
2825 *
2826 * Disable the regulator output voltage or current. Calls to
2827 * regulator_enable() must be balanced with calls to
2828 * regulator_disable().
2829 *
2830 * NOTE: this will only disable the regulator output if no other consumer
2831 * devices have it enabled, the regulator device supports disabling and
2832 * machine constraints permit this operation.
2833 */
regulator_disable(struct regulator * regulator)2834 int regulator_disable(struct regulator *regulator)
2835 {
2836 struct regulator_dev *rdev = regulator->rdev;
2837 struct ww_acquire_ctx ww_ctx;
2838 int ret;
2839
2840 regulator_lock_dependent(rdev, &ww_ctx);
2841 ret = _regulator_disable(regulator);
2842 regulator_unlock_dependent(rdev, &ww_ctx);
2843
2844 return ret;
2845 }
2846 EXPORT_SYMBOL_GPL(regulator_disable);
2847
2848 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2849 static int _regulator_force_disable(struct regulator_dev *rdev)
2850 {
2851 int ret = 0;
2852
2853 lockdep_assert_held_once(&rdev->mutex.base);
2854
2855 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2856 REGULATOR_EVENT_PRE_DISABLE, NULL);
2857 if (ret & NOTIFY_STOP_MASK)
2858 return -EINVAL;
2859
2860 ret = _regulator_do_disable(rdev);
2861 if (ret < 0) {
2862 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2863 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2864 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2865 return ret;
2866 }
2867
2868 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2869 REGULATOR_EVENT_DISABLE, NULL);
2870
2871 return 0;
2872 }
2873
2874 /**
2875 * regulator_force_disable - force disable regulator output
2876 * @regulator: regulator source
2877 *
2878 * Forcibly disable the regulator output voltage or current.
2879 * NOTE: this *will* disable the regulator output even if other consumer
2880 * devices have it enabled. This should be used for situations when device
2881 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2882 */
regulator_force_disable(struct regulator * regulator)2883 int regulator_force_disable(struct regulator *regulator)
2884 {
2885 struct regulator_dev *rdev = regulator->rdev;
2886 struct ww_acquire_ctx ww_ctx;
2887 int ret;
2888
2889 regulator_lock_dependent(rdev, &ww_ctx);
2890
2891 ret = _regulator_force_disable(regulator->rdev);
2892
2893 if (rdev->coupling_desc.n_coupled > 1)
2894 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2895
2896 if (regulator->uA_load) {
2897 regulator->uA_load = 0;
2898 ret = drms_uA_update(rdev);
2899 }
2900
2901 if (rdev->use_count != 0 && rdev->supply)
2902 _regulator_disable(rdev->supply);
2903
2904 regulator_unlock_dependent(rdev, &ww_ctx);
2905
2906 return ret;
2907 }
2908 EXPORT_SYMBOL_GPL(regulator_force_disable);
2909
regulator_disable_work(struct work_struct * work)2910 static void regulator_disable_work(struct work_struct *work)
2911 {
2912 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2913 disable_work.work);
2914 struct ww_acquire_ctx ww_ctx;
2915 int count, i, ret;
2916 struct regulator *regulator;
2917 int total_count = 0;
2918
2919 regulator_lock_dependent(rdev, &ww_ctx);
2920
2921 /*
2922 * Workqueue functions queue the new work instance while the previous
2923 * work instance is being processed. Cancel the queued work instance
2924 * as the work instance under processing does the job of the queued
2925 * work instance.
2926 */
2927 cancel_delayed_work(&rdev->disable_work);
2928
2929 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2930 count = regulator->deferred_disables;
2931
2932 if (!count)
2933 continue;
2934
2935 total_count += count;
2936 regulator->deferred_disables = 0;
2937
2938 for (i = 0; i < count; i++) {
2939 ret = _regulator_disable(regulator);
2940 if (ret != 0)
2941 rdev_err(rdev, "Deferred disable failed: %pe\n",
2942 ERR_PTR(ret));
2943 }
2944 }
2945 WARN_ON(!total_count);
2946
2947 if (rdev->coupling_desc.n_coupled > 1)
2948 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2949
2950 regulator_unlock_dependent(rdev, &ww_ctx);
2951 }
2952
2953 /**
2954 * regulator_disable_deferred - disable regulator output with delay
2955 * @regulator: regulator source
2956 * @ms: milliseconds until the regulator is disabled
2957 *
2958 * Execute regulator_disable() on the regulator after a delay. This
2959 * is intended for use with devices that require some time to quiesce.
2960 *
2961 * NOTE: this will only disable the regulator output if no other consumer
2962 * devices have it enabled, the regulator device supports disabling and
2963 * machine constraints permit this operation.
2964 */
regulator_disable_deferred(struct regulator * regulator,int ms)2965 int regulator_disable_deferred(struct regulator *regulator, int ms)
2966 {
2967 struct regulator_dev *rdev = regulator->rdev;
2968
2969 if (!ms)
2970 return regulator_disable(regulator);
2971
2972 regulator_lock(rdev);
2973 regulator->deferred_disables++;
2974 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2975 msecs_to_jiffies(ms));
2976 regulator_unlock(rdev);
2977
2978 return 0;
2979 }
2980 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2981
_regulator_is_enabled(struct regulator_dev * rdev)2982 static int _regulator_is_enabled(struct regulator_dev *rdev)
2983 {
2984 /* A GPIO control always takes precedence */
2985 if (rdev->ena_pin)
2986 return rdev->ena_gpio_state;
2987
2988 /* If we don't know then assume that the regulator is always on */
2989 if (!rdev->desc->ops->is_enabled)
2990 return 1;
2991
2992 return rdev->desc->ops->is_enabled(rdev);
2993 }
2994
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)2995 static int _regulator_list_voltage(struct regulator_dev *rdev,
2996 unsigned selector, int lock)
2997 {
2998 const struct regulator_ops *ops = rdev->desc->ops;
2999 int ret;
3000
3001 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3002 return rdev->desc->fixed_uV;
3003
3004 if (ops->list_voltage) {
3005 if (selector >= rdev->desc->n_voltages)
3006 return -EINVAL;
3007 if (lock)
3008 regulator_lock(rdev);
3009 ret = ops->list_voltage(rdev, selector);
3010 if (lock)
3011 regulator_unlock(rdev);
3012 } else if (rdev->is_switch && rdev->supply) {
3013 ret = _regulator_list_voltage(rdev->supply->rdev,
3014 selector, lock);
3015 } else {
3016 return -EINVAL;
3017 }
3018
3019 if (ret > 0) {
3020 if (ret < rdev->constraints->min_uV)
3021 ret = 0;
3022 else if (ret > rdev->constraints->max_uV)
3023 ret = 0;
3024 }
3025
3026 return ret;
3027 }
3028
3029 /**
3030 * regulator_is_enabled - is the regulator output enabled
3031 * @regulator: regulator source
3032 *
3033 * Returns positive if the regulator driver backing the source/client
3034 * has requested that the device be enabled, zero if it hasn't, else a
3035 * negative errno code.
3036 *
3037 * Note that the device backing this regulator handle can have multiple
3038 * users, so it might be enabled even if regulator_enable() was never
3039 * called for this particular source.
3040 */
regulator_is_enabled(struct regulator * regulator)3041 int regulator_is_enabled(struct regulator *regulator)
3042 {
3043 int ret;
3044
3045 if (regulator->always_on)
3046 return 1;
3047
3048 regulator_lock(regulator->rdev);
3049 ret = _regulator_is_enabled(regulator->rdev);
3050 regulator_unlock(regulator->rdev);
3051
3052 return ret;
3053 }
3054 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3055
3056 /**
3057 * regulator_count_voltages - count regulator_list_voltage() selectors
3058 * @regulator: regulator source
3059 *
3060 * Returns number of selectors, or negative errno. Selectors are
3061 * numbered starting at zero, and typically correspond to bitfields
3062 * in hardware registers.
3063 */
regulator_count_voltages(struct regulator * regulator)3064 int regulator_count_voltages(struct regulator *regulator)
3065 {
3066 struct regulator_dev *rdev = regulator->rdev;
3067
3068 if (rdev->desc->n_voltages)
3069 return rdev->desc->n_voltages;
3070
3071 if (!rdev->is_switch || !rdev->supply)
3072 return -EINVAL;
3073
3074 return regulator_count_voltages(rdev->supply);
3075 }
3076 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3077
3078 /**
3079 * regulator_list_voltage - enumerate supported voltages
3080 * @regulator: regulator source
3081 * @selector: identify voltage to list
3082 * Context: can sleep
3083 *
3084 * Returns a voltage that can be passed to @regulator_set_voltage(),
3085 * zero if this selector code can't be used on this system, or a
3086 * negative errno.
3087 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3088 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3089 {
3090 return _regulator_list_voltage(regulator->rdev, selector, 1);
3091 }
3092 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3093
3094 /**
3095 * regulator_get_regmap - get the regulator's register map
3096 * @regulator: regulator source
3097 *
3098 * Returns the register map for the given regulator, or an ERR_PTR value
3099 * if the regulator doesn't use regmap.
3100 */
regulator_get_regmap(struct regulator * regulator)3101 struct regmap *regulator_get_regmap(struct regulator *regulator)
3102 {
3103 struct regmap *map = regulator->rdev->regmap;
3104
3105 return map ? map : ERR_PTR(-EOPNOTSUPP);
3106 }
3107
3108 /**
3109 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3110 * @regulator: regulator source
3111 * @vsel_reg: voltage selector register, output parameter
3112 * @vsel_mask: mask for voltage selector bitfield, output parameter
3113 *
3114 * Returns the hardware register offset and bitmask used for setting the
3115 * regulator voltage. This might be useful when configuring voltage-scaling
3116 * hardware or firmware that can make I2C requests behind the kernel's back,
3117 * for example.
3118 *
3119 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3120 * and 0 is returned, otherwise a negative errno is returned.
3121 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3122 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3123 unsigned *vsel_reg,
3124 unsigned *vsel_mask)
3125 {
3126 struct regulator_dev *rdev = regulator->rdev;
3127 const struct regulator_ops *ops = rdev->desc->ops;
3128
3129 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3130 return -EOPNOTSUPP;
3131
3132 *vsel_reg = rdev->desc->vsel_reg;
3133 *vsel_mask = rdev->desc->vsel_mask;
3134
3135 return 0;
3136 }
3137 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3138
3139 /**
3140 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3141 * @regulator: regulator source
3142 * @selector: identify voltage to list
3143 *
3144 * Converts the selector to a hardware-specific voltage selector that can be
3145 * directly written to the regulator registers. The address of the voltage
3146 * register can be determined by calling @regulator_get_hardware_vsel_register.
3147 *
3148 * On error a negative errno is returned.
3149 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3150 int regulator_list_hardware_vsel(struct regulator *regulator,
3151 unsigned selector)
3152 {
3153 struct regulator_dev *rdev = regulator->rdev;
3154 const struct regulator_ops *ops = rdev->desc->ops;
3155
3156 if (selector >= rdev->desc->n_voltages)
3157 return -EINVAL;
3158 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3159 return -EOPNOTSUPP;
3160
3161 return selector;
3162 }
3163 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3164
3165 /**
3166 * regulator_get_linear_step - return the voltage step size between VSEL values
3167 * @regulator: regulator source
3168 *
3169 * Returns the voltage step size between VSEL values for linear
3170 * regulators, or return 0 if the regulator isn't a linear regulator.
3171 */
regulator_get_linear_step(struct regulator * regulator)3172 unsigned int regulator_get_linear_step(struct regulator *regulator)
3173 {
3174 struct regulator_dev *rdev = regulator->rdev;
3175
3176 return rdev->desc->uV_step;
3177 }
3178 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3179
3180 /**
3181 * regulator_is_supported_voltage - check if a voltage range can be supported
3182 *
3183 * @regulator: Regulator to check.
3184 * @min_uV: Minimum required voltage in uV.
3185 * @max_uV: Maximum required voltage in uV.
3186 *
3187 * Returns a boolean.
3188 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3189 int regulator_is_supported_voltage(struct regulator *regulator,
3190 int min_uV, int max_uV)
3191 {
3192 struct regulator_dev *rdev = regulator->rdev;
3193 int i, voltages, ret;
3194
3195 /* If we can't change voltage check the current voltage */
3196 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3197 ret = regulator_get_voltage(regulator);
3198 if (ret >= 0)
3199 return min_uV <= ret && ret <= max_uV;
3200 else
3201 return ret;
3202 }
3203
3204 /* Any voltage within constrains range is fine? */
3205 if (rdev->desc->continuous_voltage_range)
3206 return min_uV >= rdev->constraints->min_uV &&
3207 max_uV <= rdev->constraints->max_uV;
3208
3209 ret = regulator_count_voltages(regulator);
3210 if (ret < 0)
3211 return 0;
3212 voltages = ret;
3213
3214 for (i = 0; i < voltages; i++) {
3215 ret = regulator_list_voltage(regulator, i);
3216
3217 if (ret >= min_uV && ret <= max_uV)
3218 return 1;
3219 }
3220
3221 return 0;
3222 }
3223 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3224
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3225 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3226 int max_uV)
3227 {
3228 const struct regulator_desc *desc = rdev->desc;
3229
3230 if (desc->ops->map_voltage)
3231 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3232
3233 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3234 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3235
3236 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3237 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3238
3239 if (desc->ops->list_voltage ==
3240 regulator_list_voltage_pickable_linear_range)
3241 return regulator_map_voltage_pickable_linear_range(rdev,
3242 min_uV, max_uV);
3243
3244 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3245 }
3246
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3247 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3248 int min_uV, int max_uV,
3249 unsigned *selector)
3250 {
3251 struct pre_voltage_change_data data;
3252 int ret;
3253
3254 data.old_uV = regulator_get_voltage_rdev(rdev);
3255 data.min_uV = min_uV;
3256 data.max_uV = max_uV;
3257 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3258 &data);
3259 if (ret & NOTIFY_STOP_MASK)
3260 return -EINVAL;
3261
3262 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3263 if (ret >= 0)
3264 return ret;
3265
3266 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3267 (void *)data.old_uV);
3268
3269 return ret;
3270 }
3271
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3272 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3273 int uV, unsigned selector)
3274 {
3275 struct pre_voltage_change_data data;
3276 int ret;
3277
3278 data.old_uV = regulator_get_voltage_rdev(rdev);
3279 data.min_uV = uV;
3280 data.max_uV = uV;
3281 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3282 &data);
3283 if (ret & NOTIFY_STOP_MASK)
3284 return -EINVAL;
3285
3286 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3287 if (ret >= 0)
3288 return ret;
3289
3290 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3291 (void *)data.old_uV);
3292
3293 return ret;
3294 }
3295
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3296 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3297 int uV, int new_selector)
3298 {
3299 const struct regulator_ops *ops = rdev->desc->ops;
3300 int diff, old_sel, curr_sel, ret;
3301
3302 /* Stepping is only needed if the regulator is enabled. */
3303 if (!_regulator_is_enabled(rdev))
3304 goto final_set;
3305
3306 if (!ops->get_voltage_sel)
3307 return -EINVAL;
3308
3309 old_sel = ops->get_voltage_sel(rdev);
3310 if (old_sel < 0)
3311 return old_sel;
3312
3313 diff = new_selector - old_sel;
3314 if (diff == 0)
3315 return 0; /* No change needed. */
3316
3317 if (diff > 0) {
3318 /* Stepping up. */
3319 for (curr_sel = old_sel + rdev->desc->vsel_step;
3320 curr_sel < new_selector;
3321 curr_sel += rdev->desc->vsel_step) {
3322 /*
3323 * Call the callback directly instead of using
3324 * _regulator_call_set_voltage_sel() as we don't
3325 * want to notify anyone yet. Same in the branch
3326 * below.
3327 */
3328 ret = ops->set_voltage_sel(rdev, curr_sel);
3329 if (ret)
3330 goto try_revert;
3331 }
3332 } else {
3333 /* Stepping down. */
3334 for (curr_sel = old_sel - rdev->desc->vsel_step;
3335 curr_sel > new_selector;
3336 curr_sel -= rdev->desc->vsel_step) {
3337 ret = ops->set_voltage_sel(rdev, curr_sel);
3338 if (ret)
3339 goto try_revert;
3340 }
3341 }
3342
3343 final_set:
3344 /* The final selector will trigger the notifiers. */
3345 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3346
3347 try_revert:
3348 /*
3349 * At least try to return to the previous voltage if setting a new
3350 * one failed.
3351 */
3352 (void)ops->set_voltage_sel(rdev, old_sel);
3353 return ret;
3354 }
3355
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3356 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3357 int old_uV, int new_uV)
3358 {
3359 unsigned int ramp_delay = 0;
3360
3361 if (rdev->constraints->ramp_delay)
3362 ramp_delay = rdev->constraints->ramp_delay;
3363 else if (rdev->desc->ramp_delay)
3364 ramp_delay = rdev->desc->ramp_delay;
3365 else if (rdev->constraints->settling_time)
3366 return rdev->constraints->settling_time;
3367 else if (rdev->constraints->settling_time_up &&
3368 (new_uV > old_uV))
3369 return rdev->constraints->settling_time_up;
3370 else if (rdev->constraints->settling_time_down &&
3371 (new_uV < old_uV))
3372 return rdev->constraints->settling_time_down;
3373
3374 if (ramp_delay == 0) {
3375 rdev_dbg(rdev, "ramp_delay not set\n");
3376 return 0;
3377 }
3378
3379 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3380 }
3381
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3382 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3383 int min_uV, int max_uV)
3384 {
3385 int ret;
3386 int delay = 0;
3387 int best_val = 0;
3388 unsigned int selector;
3389 int old_selector = -1;
3390 const struct regulator_ops *ops = rdev->desc->ops;
3391 int old_uV = regulator_get_voltage_rdev(rdev);
3392
3393 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3394
3395 min_uV += rdev->constraints->uV_offset;
3396 max_uV += rdev->constraints->uV_offset;
3397
3398 /*
3399 * If we can't obtain the old selector there is not enough
3400 * info to call set_voltage_time_sel().
3401 */
3402 if (_regulator_is_enabled(rdev) &&
3403 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3404 old_selector = ops->get_voltage_sel(rdev);
3405 if (old_selector < 0)
3406 return old_selector;
3407 }
3408
3409 if (ops->set_voltage) {
3410 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3411 &selector);
3412
3413 if (ret >= 0) {
3414 if (ops->list_voltage)
3415 best_val = ops->list_voltage(rdev,
3416 selector);
3417 else
3418 best_val = regulator_get_voltage_rdev(rdev);
3419 }
3420
3421 } else if (ops->set_voltage_sel) {
3422 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3423 if (ret >= 0) {
3424 best_val = ops->list_voltage(rdev, ret);
3425 if (min_uV <= best_val && max_uV >= best_val) {
3426 selector = ret;
3427 if (old_selector == selector)
3428 ret = 0;
3429 else if (rdev->desc->vsel_step)
3430 ret = _regulator_set_voltage_sel_step(
3431 rdev, best_val, selector);
3432 else
3433 ret = _regulator_call_set_voltage_sel(
3434 rdev, best_val, selector);
3435 } else {
3436 ret = -EINVAL;
3437 }
3438 }
3439 } else {
3440 ret = -EINVAL;
3441 }
3442
3443 if (ret)
3444 goto out;
3445
3446 if (ops->set_voltage_time_sel) {
3447 /*
3448 * Call set_voltage_time_sel if successfully obtained
3449 * old_selector
3450 */
3451 if (old_selector >= 0 && old_selector != selector)
3452 delay = ops->set_voltage_time_sel(rdev, old_selector,
3453 selector);
3454 } else {
3455 if (old_uV != best_val) {
3456 if (ops->set_voltage_time)
3457 delay = ops->set_voltage_time(rdev, old_uV,
3458 best_val);
3459 else
3460 delay = _regulator_set_voltage_time(rdev,
3461 old_uV,
3462 best_val);
3463 }
3464 }
3465
3466 if (delay < 0) {
3467 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3468 delay = 0;
3469 }
3470
3471 /* Insert any necessary delays */
3472 if (delay >= 1000) {
3473 mdelay(delay / 1000);
3474 udelay(delay % 1000);
3475 } else if (delay) {
3476 udelay(delay);
3477 }
3478
3479 if (best_val >= 0) {
3480 unsigned long data = best_val;
3481
3482 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3483 (void *)data);
3484 }
3485
3486 out:
3487 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3488
3489 return ret;
3490 }
3491
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3492 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3493 int min_uV, int max_uV, suspend_state_t state)
3494 {
3495 struct regulator_state *rstate;
3496 int uV, sel;
3497
3498 rstate = regulator_get_suspend_state(rdev, state);
3499 if (rstate == NULL)
3500 return -EINVAL;
3501
3502 if (min_uV < rstate->min_uV)
3503 min_uV = rstate->min_uV;
3504 if (max_uV > rstate->max_uV)
3505 max_uV = rstate->max_uV;
3506
3507 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3508 if (sel < 0)
3509 return sel;
3510
3511 uV = rdev->desc->ops->list_voltage(rdev, sel);
3512 if (uV >= min_uV && uV <= max_uV)
3513 rstate->uV = uV;
3514
3515 return 0;
3516 }
3517
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3518 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3519 int min_uV, int max_uV,
3520 suspend_state_t state)
3521 {
3522 struct regulator_dev *rdev = regulator->rdev;
3523 struct regulator_voltage *voltage = ®ulator->voltage[state];
3524 int ret = 0;
3525 int old_min_uV, old_max_uV;
3526 int current_uV;
3527
3528 /* If we're setting the same range as last time the change
3529 * should be a noop (some cpufreq implementations use the same
3530 * voltage for multiple frequencies, for example).
3531 */
3532 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3533 goto out;
3534
3535 /* If we're trying to set a range that overlaps the current voltage,
3536 * return successfully even though the regulator does not support
3537 * changing the voltage.
3538 */
3539 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3540 current_uV = regulator_get_voltage_rdev(rdev);
3541 if (min_uV <= current_uV && current_uV <= max_uV) {
3542 voltage->min_uV = min_uV;
3543 voltage->max_uV = max_uV;
3544 goto out;
3545 }
3546 }
3547
3548 /* sanity check */
3549 if (!rdev->desc->ops->set_voltage &&
3550 !rdev->desc->ops->set_voltage_sel) {
3551 ret = -EINVAL;
3552 goto out;
3553 }
3554
3555 /* constraints check */
3556 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3557 if (ret < 0)
3558 goto out;
3559
3560 /* restore original values in case of error */
3561 old_min_uV = voltage->min_uV;
3562 old_max_uV = voltage->max_uV;
3563 voltage->min_uV = min_uV;
3564 voltage->max_uV = max_uV;
3565
3566 /* for not coupled regulators this will just set the voltage */
3567 ret = regulator_balance_voltage(rdev, state);
3568 if (ret < 0) {
3569 voltage->min_uV = old_min_uV;
3570 voltage->max_uV = old_max_uV;
3571 }
3572
3573 out:
3574 return ret;
3575 }
3576
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3577 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3578 int max_uV, suspend_state_t state)
3579 {
3580 int best_supply_uV = 0;
3581 int supply_change_uV = 0;
3582 int ret;
3583
3584 if (rdev->supply &&
3585 regulator_ops_is_valid(rdev->supply->rdev,
3586 REGULATOR_CHANGE_VOLTAGE) &&
3587 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3588 rdev->desc->ops->get_voltage_sel))) {
3589 int current_supply_uV;
3590 int selector;
3591
3592 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3593 if (selector < 0) {
3594 ret = selector;
3595 goto out;
3596 }
3597
3598 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3599 if (best_supply_uV < 0) {
3600 ret = best_supply_uV;
3601 goto out;
3602 }
3603
3604 best_supply_uV += rdev->desc->min_dropout_uV;
3605
3606 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3607 if (current_supply_uV < 0) {
3608 ret = current_supply_uV;
3609 goto out;
3610 }
3611
3612 supply_change_uV = best_supply_uV - current_supply_uV;
3613 }
3614
3615 if (supply_change_uV > 0) {
3616 ret = regulator_set_voltage_unlocked(rdev->supply,
3617 best_supply_uV, INT_MAX, state);
3618 if (ret) {
3619 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3620 ERR_PTR(ret));
3621 goto out;
3622 }
3623 }
3624
3625 if (state == PM_SUSPEND_ON)
3626 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3627 else
3628 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3629 max_uV, state);
3630 if (ret < 0)
3631 goto out;
3632
3633 if (supply_change_uV < 0) {
3634 ret = regulator_set_voltage_unlocked(rdev->supply,
3635 best_supply_uV, INT_MAX, state);
3636 if (ret)
3637 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3638 ERR_PTR(ret));
3639 /* No need to fail here */
3640 ret = 0;
3641 }
3642
3643 out:
3644 return ret;
3645 }
3646 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3647
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3648 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3649 int *current_uV, int *min_uV)
3650 {
3651 struct regulation_constraints *constraints = rdev->constraints;
3652
3653 /* Limit voltage change only if necessary */
3654 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3655 return 1;
3656
3657 if (*current_uV < 0) {
3658 *current_uV = regulator_get_voltage_rdev(rdev);
3659
3660 if (*current_uV < 0)
3661 return *current_uV;
3662 }
3663
3664 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3665 return 1;
3666
3667 /* Clamp target voltage within the given step */
3668 if (*current_uV < *min_uV)
3669 *min_uV = min(*current_uV + constraints->max_uV_step,
3670 *min_uV);
3671 else
3672 *min_uV = max(*current_uV - constraints->max_uV_step,
3673 *min_uV);
3674
3675 return 0;
3676 }
3677
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3678 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3679 int *current_uV,
3680 int *min_uV, int *max_uV,
3681 suspend_state_t state,
3682 int n_coupled)
3683 {
3684 struct coupling_desc *c_desc = &rdev->coupling_desc;
3685 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3686 struct regulation_constraints *constraints = rdev->constraints;
3687 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3688 int max_current_uV = 0, min_current_uV = INT_MAX;
3689 int highest_min_uV = 0, target_uV, possible_uV;
3690 int i, ret, max_spread;
3691 bool done;
3692
3693 *current_uV = -1;
3694
3695 /*
3696 * If there are no coupled regulators, simply set the voltage
3697 * demanded by consumers.
3698 */
3699 if (n_coupled == 1) {
3700 /*
3701 * If consumers don't provide any demands, set voltage
3702 * to min_uV
3703 */
3704 desired_min_uV = constraints->min_uV;
3705 desired_max_uV = constraints->max_uV;
3706
3707 ret = regulator_check_consumers(rdev,
3708 &desired_min_uV,
3709 &desired_max_uV, state);
3710 if (ret < 0)
3711 return ret;
3712
3713 possible_uV = desired_min_uV;
3714 done = true;
3715
3716 goto finish;
3717 }
3718
3719 /* Find highest min desired voltage */
3720 for (i = 0; i < n_coupled; i++) {
3721 int tmp_min = 0;
3722 int tmp_max = INT_MAX;
3723
3724 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3725
3726 ret = regulator_check_consumers(c_rdevs[i],
3727 &tmp_min,
3728 &tmp_max, state);
3729 if (ret < 0)
3730 return ret;
3731
3732 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3733 if (ret < 0)
3734 return ret;
3735
3736 highest_min_uV = max(highest_min_uV, tmp_min);
3737
3738 if (i == 0) {
3739 desired_min_uV = tmp_min;
3740 desired_max_uV = tmp_max;
3741 }
3742 }
3743
3744 max_spread = constraints->max_spread[0];
3745
3746 /*
3747 * Let target_uV be equal to the desired one if possible.
3748 * If not, set it to minimum voltage, allowed by other coupled
3749 * regulators.
3750 */
3751 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3752
3753 /*
3754 * Find min and max voltages, which currently aren't violating
3755 * max_spread.
3756 */
3757 for (i = 1; i < n_coupled; i++) {
3758 int tmp_act;
3759
3760 if (!_regulator_is_enabled(c_rdevs[i]))
3761 continue;
3762
3763 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3764 if (tmp_act < 0)
3765 return tmp_act;
3766
3767 min_current_uV = min(tmp_act, min_current_uV);
3768 max_current_uV = max(tmp_act, max_current_uV);
3769 }
3770
3771 /* There aren't any other regulators enabled */
3772 if (max_current_uV == 0) {
3773 possible_uV = target_uV;
3774 } else {
3775 /*
3776 * Correct target voltage, so as it currently isn't
3777 * violating max_spread
3778 */
3779 possible_uV = max(target_uV, max_current_uV - max_spread);
3780 possible_uV = min(possible_uV, min_current_uV + max_spread);
3781 }
3782
3783 if (possible_uV > desired_max_uV)
3784 return -EINVAL;
3785
3786 done = (possible_uV == target_uV);
3787 desired_min_uV = possible_uV;
3788
3789 finish:
3790 /* Apply max_uV_step constraint if necessary */
3791 if (state == PM_SUSPEND_ON) {
3792 ret = regulator_limit_voltage_step(rdev, current_uV,
3793 &desired_min_uV);
3794 if (ret < 0)
3795 return ret;
3796
3797 if (ret == 0)
3798 done = false;
3799 }
3800
3801 /* Set current_uV if wasn't done earlier in the code and if necessary */
3802 if (n_coupled > 1 && *current_uV == -1) {
3803
3804 if (_regulator_is_enabled(rdev)) {
3805 ret = regulator_get_voltage_rdev(rdev);
3806 if (ret < 0)
3807 return ret;
3808
3809 *current_uV = ret;
3810 } else {
3811 *current_uV = desired_min_uV;
3812 }
3813 }
3814
3815 *min_uV = desired_min_uV;
3816 *max_uV = desired_max_uV;
3817
3818 return done;
3819 }
3820
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)3821 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3822 suspend_state_t state, bool skip_coupled)
3823 {
3824 struct regulator_dev **c_rdevs;
3825 struct regulator_dev *best_rdev;
3826 struct coupling_desc *c_desc = &rdev->coupling_desc;
3827 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3828 unsigned int delta, best_delta;
3829 unsigned long c_rdev_done = 0;
3830 bool best_c_rdev_done;
3831
3832 c_rdevs = c_desc->coupled_rdevs;
3833 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3834
3835 /*
3836 * Find the best possible voltage change on each loop. Leave the loop
3837 * if there isn't any possible change.
3838 */
3839 do {
3840 best_c_rdev_done = false;
3841 best_delta = 0;
3842 best_min_uV = 0;
3843 best_max_uV = 0;
3844 best_c_rdev = 0;
3845 best_rdev = NULL;
3846
3847 /*
3848 * Find highest difference between optimal voltage
3849 * and current voltage.
3850 */
3851 for (i = 0; i < n_coupled; i++) {
3852 /*
3853 * optimal_uV is the best voltage that can be set for
3854 * i-th regulator at the moment without violating
3855 * max_spread constraint in order to balance
3856 * the coupled voltages.
3857 */
3858 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3859
3860 if (test_bit(i, &c_rdev_done))
3861 continue;
3862
3863 ret = regulator_get_optimal_voltage(c_rdevs[i],
3864 ¤t_uV,
3865 &optimal_uV,
3866 &optimal_max_uV,
3867 state, n_coupled);
3868 if (ret < 0)
3869 goto out;
3870
3871 delta = abs(optimal_uV - current_uV);
3872
3873 if (delta && best_delta <= delta) {
3874 best_c_rdev_done = ret;
3875 best_delta = delta;
3876 best_rdev = c_rdevs[i];
3877 best_min_uV = optimal_uV;
3878 best_max_uV = optimal_max_uV;
3879 best_c_rdev = i;
3880 }
3881 }
3882
3883 /* Nothing to change, return successfully */
3884 if (!best_rdev) {
3885 ret = 0;
3886 goto out;
3887 }
3888
3889 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3890 best_max_uV, state);
3891
3892 if (ret < 0)
3893 goto out;
3894
3895 if (best_c_rdev_done)
3896 set_bit(best_c_rdev, &c_rdev_done);
3897
3898 } while (n_coupled > 1);
3899
3900 out:
3901 return ret;
3902 }
3903
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)3904 static int regulator_balance_voltage(struct regulator_dev *rdev,
3905 suspend_state_t state)
3906 {
3907 struct coupling_desc *c_desc = &rdev->coupling_desc;
3908 struct regulator_coupler *coupler = c_desc->coupler;
3909 bool skip_coupled = false;
3910
3911 /*
3912 * If system is in a state other than PM_SUSPEND_ON, don't check
3913 * other coupled regulators.
3914 */
3915 if (state != PM_SUSPEND_ON)
3916 skip_coupled = true;
3917
3918 if (c_desc->n_resolved < c_desc->n_coupled) {
3919 rdev_err(rdev, "Not all coupled regulators registered\n");
3920 return -EPERM;
3921 }
3922
3923 /* Invoke custom balancer for customized couplers */
3924 if (coupler && coupler->balance_voltage)
3925 return coupler->balance_voltage(coupler, rdev, state);
3926
3927 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3928 }
3929
3930 /**
3931 * regulator_set_voltage - set regulator output voltage
3932 * @regulator: regulator source
3933 * @min_uV: Minimum required voltage in uV
3934 * @max_uV: Maximum acceptable voltage in uV
3935 *
3936 * Sets a voltage regulator to the desired output voltage. This can be set
3937 * during any regulator state. IOW, regulator can be disabled or enabled.
3938 *
3939 * If the regulator is enabled then the voltage will change to the new value
3940 * immediately otherwise if the regulator is disabled the regulator will
3941 * output at the new voltage when enabled.
3942 *
3943 * NOTE: If the regulator is shared between several devices then the lowest
3944 * request voltage that meets the system constraints will be used.
3945 * Regulator system constraints must be set for this regulator before
3946 * calling this function otherwise this call will fail.
3947 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)3948 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3949 {
3950 struct ww_acquire_ctx ww_ctx;
3951 int ret;
3952
3953 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3954
3955 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3956 PM_SUSPEND_ON);
3957
3958 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3959
3960 return ret;
3961 }
3962 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3963
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)3964 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3965 suspend_state_t state, bool en)
3966 {
3967 struct regulator_state *rstate;
3968
3969 rstate = regulator_get_suspend_state(rdev, state);
3970 if (rstate == NULL)
3971 return -EINVAL;
3972
3973 if (!rstate->changeable)
3974 return -EPERM;
3975
3976 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3977
3978 return 0;
3979 }
3980
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)3981 int regulator_suspend_enable(struct regulator_dev *rdev,
3982 suspend_state_t state)
3983 {
3984 return regulator_suspend_toggle(rdev, state, true);
3985 }
3986 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3987
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)3988 int regulator_suspend_disable(struct regulator_dev *rdev,
3989 suspend_state_t state)
3990 {
3991 struct regulator *regulator;
3992 struct regulator_voltage *voltage;
3993
3994 /*
3995 * if any consumer wants this regulator device keeping on in
3996 * suspend states, don't set it as disabled.
3997 */
3998 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3999 voltage = ®ulator->voltage[state];
4000 if (voltage->min_uV || voltage->max_uV)
4001 return 0;
4002 }
4003
4004 return regulator_suspend_toggle(rdev, state, false);
4005 }
4006 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4007
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4008 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4009 int min_uV, int max_uV,
4010 suspend_state_t state)
4011 {
4012 struct regulator_dev *rdev = regulator->rdev;
4013 struct regulator_state *rstate;
4014
4015 rstate = regulator_get_suspend_state(rdev, state);
4016 if (rstate == NULL)
4017 return -EINVAL;
4018
4019 if (rstate->min_uV == rstate->max_uV) {
4020 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4021 return -EPERM;
4022 }
4023
4024 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4025 }
4026
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4027 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4028 int max_uV, suspend_state_t state)
4029 {
4030 struct ww_acquire_ctx ww_ctx;
4031 int ret;
4032
4033 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4034 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4035 return -EINVAL;
4036
4037 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4038
4039 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4040 max_uV, state);
4041
4042 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4043
4044 return ret;
4045 }
4046 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4047
4048 /**
4049 * regulator_set_voltage_time - get raise/fall time
4050 * @regulator: regulator source
4051 * @old_uV: starting voltage in microvolts
4052 * @new_uV: target voltage in microvolts
4053 *
4054 * Provided with the starting and ending voltage, this function attempts to
4055 * calculate the time in microseconds required to rise or fall to this new
4056 * voltage.
4057 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4058 int regulator_set_voltage_time(struct regulator *regulator,
4059 int old_uV, int new_uV)
4060 {
4061 struct regulator_dev *rdev = regulator->rdev;
4062 const struct regulator_ops *ops = rdev->desc->ops;
4063 int old_sel = -1;
4064 int new_sel = -1;
4065 int voltage;
4066 int i;
4067
4068 if (ops->set_voltage_time)
4069 return ops->set_voltage_time(rdev, old_uV, new_uV);
4070 else if (!ops->set_voltage_time_sel)
4071 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4072
4073 /* Currently requires operations to do this */
4074 if (!ops->list_voltage || !rdev->desc->n_voltages)
4075 return -EINVAL;
4076
4077 for (i = 0; i < rdev->desc->n_voltages; i++) {
4078 /* We only look for exact voltage matches here */
4079
4080 if (old_sel >= 0 && new_sel >= 0)
4081 break;
4082
4083 voltage = regulator_list_voltage(regulator, i);
4084 if (voltage < 0)
4085 return -EINVAL;
4086 if (voltage == 0)
4087 continue;
4088 if (voltage == old_uV)
4089 old_sel = i;
4090 if (voltage == new_uV)
4091 new_sel = i;
4092 }
4093
4094 if (old_sel < 0 || new_sel < 0)
4095 return -EINVAL;
4096
4097 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4098 }
4099 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4100
4101 /**
4102 * regulator_set_voltage_time_sel - get raise/fall time
4103 * @rdev: regulator source device
4104 * @old_selector: selector for starting voltage
4105 * @new_selector: selector for target voltage
4106 *
4107 * Provided with the starting and target voltage selectors, this function
4108 * returns time in microseconds required to rise or fall to this new voltage
4109 *
4110 * Drivers providing ramp_delay in regulation_constraints can use this as their
4111 * set_voltage_time_sel() operation.
4112 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4113 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4114 unsigned int old_selector,
4115 unsigned int new_selector)
4116 {
4117 int old_volt, new_volt;
4118
4119 /* sanity check */
4120 if (!rdev->desc->ops->list_voltage)
4121 return -EINVAL;
4122
4123 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4124 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4125
4126 if (rdev->desc->ops->set_voltage_time)
4127 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4128 new_volt);
4129 else
4130 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4131 }
4132 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4133
4134 /**
4135 * regulator_sync_voltage - re-apply last regulator output voltage
4136 * @regulator: regulator source
4137 *
4138 * Re-apply the last configured voltage. This is intended to be used
4139 * where some external control source the consumer is cooperating with
4140 * has caused the configured voltage to change.
4141 */
regulator_sync_voltage(struct regulator * regulator)4142 int regulator_sync_voltage(struct regulator *regulator)
4143 {
4144 struct regulator_dev *rdev = regulator->rdev;
4145 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4146 int ret, min_uV, max_uV;
4147
4148 regulator_lock(rdev);
4149
4150 if (!rdev->desc->ops->set_voltage &&
4151 !rdev->desc->ops->set_voltage_sel) {
4152 ret = -EINVAL;
4153 goto out;
4154 }
4155
4156 /* This is only going to work if we've had a voltage configured. */
4157 if (!voltage->min_uV && !voltage->max_uV) {
4158 ret = -EINVAL;
4159 goto out;
4160 }
4161
4162 min_uV = voltage->min_uV;
4163 max_uV = voltage->max_uV;
4164
4165 /* This should be a paranoia check... */
4166 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4167 if (ret < 0)
4168 goto out;
4169
4170 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4171 if (ret < 0)
4172 goto out;
4173
4174 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4175
4176 out:
4177 regulator_unlock(rdev);
4178 return ret;
4179 }
4180 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4181
regulator_get_voltage_rdev(struct regulator_dev * rdev)4182 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4183 {
4184 int sel, ret;
4185 bool bypassed;
4186
4187 if (rdev->desc->ops->get_bypass) {
4188 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4189 if (ret < 0)
4190 return ret;
4191 if (bypassed) {
4192 /* if bypassed the regulator must have a supply */
4193 if (!rdev->supply) {
4194 rdev_err(rdev,
4195 "bypassed regulator has no supply!\n");
4196 return -EPROBE_DEFER;
4197 }
4198
4199 return regulator_get_voltage_rdev(rdev->supply->rdev);
4200 }
4201 }
4202
4203 if (rdev->desc->ops->get_voltage_sel) {
4204 sel = rdev->desc->ops->get_voltage_sel(rdev);
4205 if (sel < 0)
4206 return sel;
4207 ret = rdev->desc->ops->list_voltage(rdev, sel);
4208 } else if (rdev->desc->ops->get_voltage) {
4209 ret = rdev->desc->ops->get_voltage(rdev);
4210 } else if (rdev->desc->ops->list_voltage) {
4211 ret = rdev->desc->ops->list_voltage(rdev, 0);
4212 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4213 ret = rdev->desc->fixed_uV;
4214 } else if (rdev->supply) {
4215 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4216 } else if (rdev->supply_name) {
4217 return -EPROBE_DEFER;
4218 } else {
4219 return -EINVAL;
4220 }
4221
4222 if (ret < 0)
4223 return ret;
4224 return ret - rdev->constraints->uV_offset;
4225 }
4226 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4227
4228 /**
4229 * regulator_get_voltage - get regulator output voltage
4230 * @regulator: regulator source
4231 *
4232 * This returns the current regulator voltage in uV.
4233 *
4234 * NOTE: If the regulator is disabled it will return the voltage value. This
4235 * function should not be used to determine regulator state.
4236 */
regulator_get_voltage(struct regulator * regulator)4237 int regulator_get_voltage(struct regulator *regulator)
4238 {
4239 struct ww_acquire_ctx ww_ctx;
4240 int ret;
4241
4242 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4243 ret = regulator_get_voltage_rdev(regulator->rdev);
4244 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4245
4246 return ret;
4247 }
4248 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4249
4250 /**
4251 * regulator_set_current_limit - set regulator output current limit
4252 * @regulator: regulator source
4253 * @min_uA: Minimum supported current in uA
4254 * @max_uA: Maximum supported current in uA
4255 *
4256 * Sets current sink to the desired output current. This can be set during
4257 * any regulator state. IOW, regulator can be disabled or enabled.
4258 *
4259 * If the regulator is enabled then the current will change to the new value
4260 * immediately otherwise if the regulator is disabled the regulator will
4261 * output at the new current when enabled.
4262 *
4263 * NOTE: Regulator system constraints must be set for this regulator before
4264 * calling this function otherwise this call will fail.
4265 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4266 int regulator_set_current_limit(struct regulator *regulator,
4267 int min_uA, int max_uA)
4268 {
4269 struct regulator_dev *rdev = regulator->rdev;
4270 int ret;
4271
4272 regulator_lock(rdev);
4273
4274 /* sanity check */
4275 if (!rdev->desc->ops->set_current_limit) {
4276 ret = -EINVAL;
4277 goto out;
4278 }
4279
4280 /* constraints check */
4281 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4282 if (ret < 0)
4283 goto out;
4284
4285 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4286 out:
4287 regulator_unlock(rdev);
4288 return ret;
4289 }
4290 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4291
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4292 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4293 {
4294 /* sanity check */
4295 if (!rdev->desc->ops->get_current_limit)
4296 return -EINVAL;
4297
4298 return rdev->desc->ops->get_current_limit(rdev);
4299 }
4300
_regulator_get_current_limit(struct regulator_dev * rdev)4301 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4302 {
4303 int ret;
4304
4305 regulator_lock(rdev);
4306 ret = _regulator_get_current_limit_unlocked(rdev);
4307 regulator_unlock(rdev);
4308
4309 return ret;
4310 }
4311
4312 /**
4313 * regulator_get_current_limit - get regulator output current
4314 * @regulator: regulator source
4315 *
4316 * This returns the current supplied by the specified current sink in uA.
4317 *
4318 * NOTE: If the regulator is disabled it will return the current value. This
4319 * function should not be used to determine regulator state.
4320 */
regulator_get_current_limit(struct regulator * regulator)4321 int regulator_get_current_limit(struct regulator *regulator)
4322 {
4323 return _regulator_get_current_limit(regulator->rdev);
4324 }
4325 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4326
4327 /**
4328 * regulator_set_mode - set regulator operating mode
4329 * @regulator: regulator source
4330 * @mode: operating mode - one of the REGULATOR_MODE constants
4331 *
4332 * Set regulator operating mode to increase regulator efficiency or improve
4333 * regulation performance.
4334 *
4335 * NOTE: Regulator system constraints must be set for this regulator before
4336 * calling this function otherwise this call will fail.
4337 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4338 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4339 {
4340 struct regulator_dev *rdev = regulator->rdev;
4341 int ret;
4342 int regulator_curr_mode;
4343
4344 regulator_lock(rdev);
4345
4346 /* sanity check */
4347 if (!rdev->desc->ops->set_mode) {
4348 ret = -EINVAL;
4349 goto out;
4350 }
4351
4352 /* return if the same mode is requested */
4353 if (rdev->desc->ops->get_mode) {
4354 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4355 if (regulator_curr_mode == mode) {
4356 ret = 0;
4357 goto out;
4358 }
4359 }
4360
4361 /* constraints check */
4362 ret = regulator_mode_constrain(rdev, &mode);
4363 if (ret < 0)
4364 goto out;
4365
4366 ret = rdev->desc->ops->set_mode(rdev, mode);
4367 out:
4368 regulator_unlock(rdev);
4369 return ret;
4370 }
4371 EXPORT_SYMBOL_GPL(regulator_set_mode);
4372
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4373 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4374 {
4375 /* sanity check */
4376 if (!rdev->desc->ops->get_mode)
4377 return -EINVAL;
4378
4379 return rdev->desc->ops->get_mode(rdev);
4380 }
4381
_regulator_get_mode(struct regulator_dev * rdev)4382 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4383 {
4384 int ret;
4385
4386 regulator_lock(rdev);
4387 ret = _regulator_get_mode_unlocked(rdev);
4388 regulator_unlock(rdev);
4389
4390 return ret;
4391 }
4392
4393 /**
4394 * regulator_get_mode - get regulator operating mode
4395 * @regulator: regulator source
4396 *
4397 * Get the current regulator operating mode.
4398 */
regulator_get_mode(struct regulator * regulator)4399 unsigned int regulator_get_mode(struct regulator *regulator)
4400 {
4401 return _regulator_get_mode(regulator->rdev);
4402 }
4403 EXPORT_SYMBOL_GPL(regulator_get_mode);
4404
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4405 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4406 unsigned int *flags)
4407 {
4408 int ret;
4409
4410 regulator_lock(rdev);
4411
4412 /* sanity check */
4413 if (!rdev->desc->ops->get_error_flags) {
4414 ret = -EINVAL;
4415 goto out;
4416 }
4417
4418 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4419 out:
4420 regulator_unlock(rdev);
4421 return ret;
4422 }
4423
4424 /**
4425 * regulator_get_error_flags - get regulator error information
4426 * @regulator: regulator source
4427 * @flags: pointer to store error flags
4428 *
4429 * Get the current regulator error information.
4430 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4431 int regulator_get_error_flags(struct regulator *regulator,
4432 unsigned int *flags)
4433 {
4434 return _regulator_get_error_flags(regulator->rdev, flags);
4435 }
4436 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4437
4438 /**
4439 * regulator_set_load - set regulator load
4440 * @regulator: regulator source
4441 * @uA_load: load current
4442 *
4443 * Notifies the regulator core of a new device load. This is then used by
4444 * DRMS (if enabled by constraints) to set the most efficient regulator
4445 * operating mode for the new regulator loading.
4446 *
4447 * Consumer devices notify their supply regulator of the maximum power
4448 * they will require (can be taken from device datasheet in the power
4449 * consumption tables) when they change operational status and hence power
4450 * state. Examples of operational state changes that can affect power
4451 * consumption are :-
4452 *
4453 * o Device is opened / closed.
4454 * o Device I/O is about to begin or has just finished.
4455 * o Device is idling in between work.
4456 *
4457 * This information is also exported via sysfs to userspace.
4458 *
4459 * DRMS will sum the total requested load on the regulator and change
4460 * to the most efficient operating mode if platform constraints allow.
4461 *
4462 * NOTE: when a regulator consumer requests to have a regulator
4463 * disabled then any load that consumer requested no longer counts
4464 * toward the total requested load. If the regulator is re-enabled
4465 * then the previously requested load will start counting again.
4466 *
4467 * If a regulator is an always-on regulator then an individual consumer's
4468 * load will still be removed if that consumer is fully disabled.
4469 *
4470 * On error a negative errno is returned.
4471 */
regulator_set_load(struct regulator * regulator,int uA_load)4472 int regulator_set_load(struct regulator *regulator, int uA_load)
4473 {
4474 struct regulator_dev *rdev = regulator->rdev;
4475 int old_uA_load;
4476 int ret = 0;
4477
4478 regulator_lock(rdev);
4479 old_uA_load = regulator->uA_load;
4480 regulator->uA_load = uA_load;
4481 if (regulator->enable_count && old_uA_load != uA_load) {
4482 ret = drms_uA_update(rdev);
4483 if (ret < 0)
4484 regulator->uA_load = old_uA_load;
4485 }
4486 regulator_unlock(rdev);
4487
4488 return ret;
4489 }
4490 EXPORT_SYMBOL_GPL(regulator_set_load);
4491
4492 /**
4493 * regulator_allow_bypass - allow the regulator to go into bypass mode
4494 *
4495 * @regulator: Regulator to configure
4496 * @enable: enable or disable bypass mode
4497 *
4498 * Allow the regulator to go into bypass mode if all other consumers
4499 * for the regulator also enable bypass mode and the machine
4500 * constraints allow this. Bypass mode means that the regulator is
4501 * simply passing the input directly to the output with no regulation.
4502 */
regulator_allow_bypass(struct regulator * regulator,bool enable)4503 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4504 {
4505 struct regulator_dev *rdev = regulator->rdev;
4506 const char *name = rdev_get_name(rdev);
4507 int ret = 0;
4508
4509 if (!rdev->desc->ops->set_bypass)
4510 return 0;
4511
4512 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4513 return 0;
4514
4515 regulator_lock(rdev);
4516
4517 if (enable && !regulator->bypass) {
4518 rdev->bypass_count++;
4519
4520 if (rdev->bypass_count == rdev->open_count) {
4521 trace_regulator_bypass_enable(name);
4522
4523 ret = rdev->desc->ops->set_bypass(rdev, enable);
4524 if (ret != 0)
4525 rdev->bypass_count--;
4526 else
4527 trace_regulator_bypass_enable_complete(name);
4528 }
4529
4530 } else if (!enable && regulator->bypass) {
4531 rdev->bypass_count--;
4532
4533 if (rdev->bypass_count != rdev->open_count) {
4534 trace_regulator_bypass_disable(name);
4535
4536 ret = rdev->desc->ops->set_bypass(rdev, enable);
4537 if (ret != 0)
4538 rdev->bypass_count++;
4539 else
4540 trace_regulator_bypass_disable_complete(name);
4541 }
4542 }
4543
4544 if (ret == 0)
4545 regulator->bypass = enable;
4546
4547 regulator_unlock(rdev);
4548
4549 return ret;
4550 }
4551 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4552
4553 /**
4554 * regulator_register_notifier - register regulator event notifier
4555 * @regulator: regulator source
4556 * @nb: notifier block
4557 *
4558 * Register notifier block to receive regulator events.
4559 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4560 int regulator_register_notifier(struct regulator *regulator,
4561 struct notifier_block *nb)
4562 {
4563 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4564 nb);
4565 }
4566 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4567
4568 /**
4569 * regulator_unregister_notifier - unregister regulator event notifier
4570 * @regulator: regulator source
4571 * @nb: notifier block
4572 *
4573 * Unregister regulator event notifier block.
4574 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4575 int regulator_unregister_notifier(struct regulator *regulator,
4576 struct notifier_block *nb)
4577 {
4578 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4579 nb);
4580 }
4581 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4582
4583 /* notify regulator consumers and downstream regulator consumers.
4584 * Note mutex must be held by caller.
4585 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4586 static int _notifier_call_chain(struct regulator_dev *rdev,
4587 unsigned long event, void *data)
4588 {
4589 /* call rdev chain first */
4590 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4591 }
4592
4593 /**
4594 * regulator_bulk_get - get multiple regulator consumers
4595 *
4596 * @dev: Device to supply
4597 * @num_consumers: Number of consumers to register
4598 * @consumers: Configuration of consumers; clients are stored here.
4599 *
4600 * @return 0 on success, an errno on failure.
4601 *
4602 * This helper function allows drivers to get several regulator
4603 * consumers in one operation. If any of the regulators cannot be
4604 * acquired then any regulators that were allocated will be freed
4605 * before returning to the caller.
4606 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4607 int regulator_bulk_get(struct device *dev, int num_consumers,
4608 struct regulator_bulk_data *consumers)
4609 {
4610 int i;
4611 int ret;
4612
4613 for (i = 0; i < num_consumers; i++)
4614 consumers[i].consumer = NULL;
4615
4616 for (i = 0; i < num_consumers; i++) {
4617 consumers[i].consumer = regulator_get(dev,
4618 consumers[i].supply);
4619 if (IS_ERR(consumers[i].consumer)) {
4620 ret = PTR_ERR(consumers[i].consumer);
4621 consumers[i].consumer = NULL;
4622 goto err;
4623 }
4624 }
4625
4626 return 0;
4627
4628 err:
4629 if (ret != -EPROBE_DEFER)
4630 dev_err(dev, "Failed to get supply '%s': %pe\n",
4631 consumers[i].supply, ERR_PTR(ret));
4632 else
4633 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4634 consumers[i].supply);
4635
4636 while (--i >= 0)
4637 regulator_put(consumers[i].consumer);
4638
4639 return ret;
4640 }
4641 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4642
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4643 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4644 {
4645 struct regulator_bulk_data *bulk = data;
4646
4647 bulk->ret = regulator_enable(bulk->consumer);
4648 }
4649
4650 /**
4651 * regulator_bulk_enable - enable multiple regulator consumers
4652 *
4653 * @num_consumers: Number of consumers
4654 * @consumers: Consumer data; clients are stored here.
4655 * @return 0 on success, an errno on failure
4656 *
4657 * This convenience API allows consumers to enable multiple regulator
4658 * clients in a single API call. If any consumers cannot be enabled
4659 * then any others that were enabled will be disabled again prior to
4660 * return.
4661 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4662 int regulator_bulk_enable(int num_consumers,
4663 struct regulator_bulk_data *consumers)
4664 {
4665 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4666 int i;
4667 int ret = 0;
4668
4669 for (i = 0; i < num_consumers; i++) {
4670 async_schedule_domain(regulator_bulk_enable_async,
4671 &consumers[i], &async_domain);
4672 }
4673
4674 async_synchronize_full_domain(&async_domain);
4675
4676 /* If any consumer failed we need to unwind any that succeeded */
4677 for (i = 0; i < num_consumers; i++) {
4678 if (consumers[i].ret != 0) {
4679 ret = consumers[i].ret;
4680 goto err;
4681 }
4682 }
4683
4684 return 0;
4685
4686 err:
4687 for (i = 0; i < num_consumers; i++) {
4688 if (consumers[i].ret < 0)
4689 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4690 ERR_PTR(consumers[i].ret));
4691 else
4692 regulator_disable(consumers[i].consumer);
4693 }
4694
4695 return ret;
4696 }
4697 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4698
4699 /**
4700 * regulator_bulk_disable - disable multiple regulator consumers
4701 *
4702 * @num_consumers: Number of consumers
4703 * @consumers: Consumer data; clients are stored here.
4704 * @return 0 on success, an errno on failure
4705 *
4706 * This convenience API allows consumers to disable multiple regulator
4707 * clients in a single API call. If any consumers cannot be disabled
4708 * then any others that were disabled will be enabled again prior to
4709 * return.
4710 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)4711 int regulator_bulk_disable(int num_consumers,
4712 struct regulator_bulk_data *consumers)
4713 {
4714 int i;
4715 int ret, r;
4716
4717 for (i = num_consumers - 1; i >= 0; --i) {
4718 ret = regulator_disable(consumers[i].consumer);
4719 if (ret != 0)
4720 goto err;
4721 }
4722
4723 return 0;
4724
4725 err:
4726 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4727 for (++i; i < num_consumers; ++i) {
4728 r = regulator_enable(consumers[i].consumer);
4729 if (r != 0)
4730 pr_err("Failed to re-enable %s: %pe\n",
4731 consumers[i].supply, ERR_PTR(r));
4732 }
4733
4734 return ret;
4735 }
4736 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4737
4738 /**
4739 * regulator_bulk_force_disable - force disable multiple regulator consumers
4740 *
4741 * @num_consumers: Number of consumers
4742 * @consumers: Consumer data; clients are stored here.
4743 * @return 0 on success, an errno on failure
4744 *
4745 * This convenience API allows consumers to forcibly disable multiple regulator
4746 * clients in a single API call.
4747 * NOTE: This should be used for situations when device damage will
4748 * likely occur if the regulators are not disabled (e.g. over temp).
4749 * Although regulator_force_disable function call for some consumers can
4750 * return error numbers, the function is called for all consumers.
4751 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)4752 int regulator_bulk_force_disable(int num_consumers,
4753 struct regulator_bulk_data *consumers)
4754 {
4755 int i;
4756 int ret = 0;
4757
4758 for (i = 0; i < num_consumers; i++) {
4759 consumers[i].ret =
4760 regulator_force_disable(consumers[i].consumer);
4761
4762 /* Store first error for reporting */
4763 if (consumers[i].ret && !ret)
4764 ret = consumers[i].ret;
4765 }
4766
4767 return ret;
4768 }
4769 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4770
4771 /**
4772 * regulator_bulk_free - free multiple regulator consumers
4773 *
4774 * @num_consumers: Number of consumers
4775 * @consumers: Consumer data; clients are stored here.
4776 *
4777 * This convenience API allows consumers to free multiple regulator
4778 * clients in a single API call.
4779 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)4780 void regulator_bulk_free(int num_consumers,
4781 struct regulator_bulk_data *consumers)
4782 {
4783 int i;
4784
4785 for (i = 0; i < num_consumers; i++) {
4786 regulator_put(consumers[i].consumer);
4787 consumers[i].consumer = NULL;
4788 }
4789 }
4790 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4791
4792 /**
4793 * regulator_notifier_call_chain - call regulator event notifier
4794 * @rdev: regulator source
4795 * @event: notifier block
4796 * @data: callback-specific data.
4797 *
4798 * Called by regulator drivers to notify clients a regulator event has
4799 * occurred.
4800 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4801 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4802 unsigned long event, void *data)
4803 {
4804 _notifier_call_chain(rdev, event, data);
4805 return NOTIFY_DONE;
4806
4807 }
4808 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4809
4810 /**
4811 * regulator_mode_to_status - convert a regulator mode into a status
4812 *
4813 * @mode: Mode to convert
4814 *
4815 * Convert a regulator mode into a status.
4816 */
regulator_mode_to_status(unsigned int mode)4817 int regulator_mode_to_status(unsigned int mode)
4818 {
4819 switch (mode) {
4820 case REGULATOR_MODE_FAST:
4821 return REGULATOR_STATUS_FAST;
4822 case REGULATOR_MODE_NORMAL:
4823 return REGULATOR_STATUS_NORMAL;
4824 case REGULATOR_MODE_IDLE:
4825 return REGULATOR_STATUS_IDLE;
4826 case REGULATOR_MODE_STANDBY:
4827 return REGULATOR_STATUS_STANDBY;
4828 default:
4829 return REGULATOR_STATUS_UNDEFINED;
4830 }
4831 }
4832 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4833
4834 static struct attribute *regulator_dev_attrs[] = {
4835 &dev_attr_name.attr,
4836 &dev_attr_num_users.attr,
4837 &dev_attr_type.attr,
4838 &dev_attr_microvolts.attr,
4839 &dev_attr_microamps.attr,
4840 &dev_attr_opmode.attr,
4841 &dev_attr_state.attr,
4842 &dev_attr_status.attr,
4843 &dev_attr_bypass.attr,
4844 &dev_attr_requested_microamps.attr,
4845 &dev_attr_min_microvolts.attr,
4846 &dev_attr_max_microvolts.attr,
4847 &dev_attr_min_microamps.attr,
4848 &dev_attr_max_microamps.attr,
4849 &dev_attr_suspend_standby_state.attr,
4850 &dev_attr_suspend_mem_state.attr,
4851 &dev_attr_suspend_disk_state.attr,
4852 &dev_attr_suspend_standby_microvolts.attr,
4853 &dev_attr_suspend_mem_microvolts.attr,
4854 &dev_attr_suspend_disk_microvolts.attr,
4855 &dev_attr_suspend_standby_mode.attr,
4856 &dev_attr_suspend_mem_mode.attr,
4857 &dev_attr_suspend_disk_mode.attr,
4858 NULL
4859 };
4860
4861 /*
4862 * To avoid cluttering sysfs (and memory) with useless state, only
4863 * create attributes that can be meaningfully displayed.
4864 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)4865 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4866 struct attribute *attr, int idx)
4867 {
4868 struct device *dev = kobj_to_dev(kobj);
4869 struct regulator_dev *rdev = dev_to_rdev(dev);
4870 const struct regulator_ops *ops = rdev->desc->ops;
4871 umode_t mode = attr->mode;
4872
4873 /* these three are always present */
4874 if (attr == &dev_attr_name.attr ||
4875 attr == &dev_attr_num_users.attr ||
4876 attr == &dev_attr_type.attr)
4877 return mode;
4878
4879 /* some attributes need specific methods to be displayed */
4880 if (attr == &dev_attr_microvolts.attr) {
4881 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4882 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4883 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4884 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4885 return mode;
4886 return 0;
4887 }
4888
4889 if (attr == &dev_attr_microamps.attr)
4890 return ops->get_current_limit ? mode : 0;
4891
4892 if (attr == &dev_attr_opmode.attr)
4893 return ops->get_mode ? mode : 0;
4894
4895 if (attr == &dev_attr_state.attr)
4896 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4897
4898 if (attr == &dev_attr_status.attr)
4899 return ops->get_status ? mode : 0;
4900
4901 if (attr == &dev_attr_bypass.attr)
4902 return ops->get_bypass ? mode : 0;
4903
4904 /* constraints need specific supporting methods */
4905 if (attr == &dev_attr_min_microvolts.attr ||
4906 attr == &dev_attr_max_microvolts.attr)
4907 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4908
4909 if (attr == &dev_attr_min_microamps.attr ||
4910 attr == &dev_attr_max_microamps.attr)
4911 return ops->set_current_limit ? mode : 0;
4912
4913 if (attr == &dev_attr_suspend_standby_state.attr ||
4914 attr == &dev_attr_suspend_mem_state.attr ||
4915 attr == &dev_attr_suspend_disk_state.attr)
4916 return mode;
4917
4918 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4919 attr == &dev_attr_suspend_mem_microvolts.attr ||
4920 attr == &dev_attr_suspend_disk_microvolts.attr)
4921 return ops->set_suspend_voltage ? mode : 0;
4922
4923 if (attr == &dev_attr_suspend_standby_mode.attr ||
4924 attr == &dev_attr_suspend_mem_mode.attr ||
4925 attr == &dev_attr_suspend_disk_mode.attr)
4926 return ops->set_suspend_mode ? mode : 0;
4927
4928 return mode;
4929 }
4930
4931 static const struct attribute_group regulator_dev_group = {
4932 .attrs = regulator_dev_attrs,
4933 .is_visible = regulator_attr_is_visible,
4934 };
4935
4936 static const struct attribute_group *regulator_dev_groups[] = {
4937 ®ulator_dev_group,
4938 NULL
4939 };
4940
regulator_dev_release(struct device * dev)4941 static void regulator_dev_release(struct device *dev)
4942 {
4943 struct regulator_dev *rdev = dev_get_drvdata(dev);
4944
4945 debugfs_remove_recursive(rdev->debugfs);
4946 kfree(rdev->constraints);
4947 of_node_put(rdev->dev.of_node);
4948 kfree(rdev);
4949 }
4950
rdev_init_debugfs(struct regulator_dev * rdev)4951 static void rdev_init_debugfs(struct regulator_dev *rdev)
4952 {
4953 struct device *parent = rdev->dev.parent;
4954 const char *rname = rdev_get_name(rdev);
4955 char name[NAME_MAX];
4956
4957 /* Avoid duplicate debugfs directory names */
4958 if (parent && rname == rdev->desc->name) {
4959 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4960 rname);
4961 rname = name;
4962 }
4963
4964 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4965 if (!rdev->debugfs) {
4966 rdev_warn(rdev, "Failed to create debugfs directory\n");
4967 return;
4968 }
4969
4970 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4971 &rdev->use_count);
4972 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4973 &rdev->open_count);
4974 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4975 &rdev->bypass_count);
4976 }
4977
regulator_register_resolve_supply(struct device * dev,void * data)4978 static int regulator_register_resolve_supply(struct device *dev, void *data)
4979 {
4980 struct regulator_dev *rdev = dev_to_rdev(dev);
4981
4982 if (regulator_resolve_supply(rdev))
4983 rdev_dbg(rdev, "unable to resolve supply\n");
4984
4985 return 0;
4986 }
4987
regulator_coupler_register(struct regulator_coupler * coupler)4988 int regulator_coupler_register(struct regulator_coupler *coupler)
4989 {
4990 mutex_lock(®ulator_list_mutex);
4991 list_add_tail(&coupler->list, ®ulator_coupler_list);
4992 mutex_unlock(®ulator_list_mutex);
4993
4994 return 0;
4995 }
4996
4997 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)4998 regulator_find_coupler(struct regulator_dev *rdev)
4999 {
5000 struct regulator_coupler *coupler;
5001 int err;
5002
5003 /*
5004 * Note that regulators are appended to the list and the generic
5005 * coupler is registered first, hence it will be attached at last
5006 * if nobody cared.
5007 */
5008 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5009 err = coupler->attach_regulator(coupler, rdev);
5010 if (!err) {
5011 if (!coupler->balance_voltage &&
5012 rdev->coupling_desc.n_coupled > 2)
5013 goto err_unsupported;
5014
5015 return coupler;
5016 }
5017
5018 if (err < 0)
5019 return ERR_PTR(err);
5020
5021 if (err == 1)
5022 continue;
5023
5024 break;
5025 }
5026
5027 return ERR_PTR(-EINVAL);
5028
5029 err_unsupported:
5030 if (coupler->detach_regulator)
5031 coupler->detach_regulator(coupler, rdev);
5032
5033 rdev_err(rdev,
5034 "Voltage balancing for multiple regulator couples is unimplemented\n");
5035
5036 return ERR_PTR(-EPERM);
5037 }
5038
regulator_resolve_coupling(struct regulator_dev * rdev)5039 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5040 {
5041 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5042 struct coupling_desc *c_desc = &rdev->coupling_desc;
5043 int n_coupled = c_desc->n_coupled;
5044 struct regulator_dev *c_rdev;
5045 int i;
5046
5047 for (i = 1; i < n_coupled; i++) {
5048 /* already resolved */
5049 if (c_desc->coupled_rdevs[i])
5050 continue;
5051
5052 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5053
5054 if (!c_rdev)
5055 continue;
5056
5057 if (c_rdev->coupling_desc.coupler != coupler) {
5058 rdev_err(rdev, "coupler mismatch with %s\n",
5059 rdev_get_name(c_rdev));
5060 return;
5061 }
5062
5063 c_desc->coupled_rdevs[i] = c_rdev;
5064 c_desc->n_resolved++;
5065
5066 regulator_resolve_coupling(c_rdev);
5067 }
5068 }
5069
regulator_remove_coupling(struct regulator_dev * rdev)5070 static void regulator_remove_coupling(struct regulator_dev *rdev)
5071 {
5072 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5073 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5074 struct regulator_dev *__c_rdev, *c_rdev;
5075 unsigned int __n_coupled, n_coupled;
5076 int i, k;
5077 int err;
5078
5079 n_coupled = c_desc->n_coupled;
5080
5081 for (i = 1; i < n_coupled; i++) {
5082 c_rdev = c_desc->coupled_rdevs[i];
5083
5084 if (!c_rdev)
5085 continue;
5086
5087 regulator_lock(c_rdev);
5088
5089 __c_desc = &c_rdev->coupling_desc;
5090 __n_coupled = __c_desc->n_coupled;
5091
5092 for (k = 1; k < __n_coupled; k++) {
5093 __c_rdev = __c_desc->coupled_rdevs[k];
5094
5095 if (__c_rdev == rdev) {
5096 __c_desc->coupled_rdevs[k] = NULL;
5097 __c_desc->n_resolved--;
5098 break;
5099 }
5100 }
5101
5102 regulator_unlock(c_rdev);
5103
5104 c_desc->coupled_rdevs[i] = NULL;
5105 c_desc->n_resolved--;
5106 }
5107
5108 if (coupler && coupler->detach_regulator) {
5109 err = coupler->detach_regulator(coupler, rdev);
5110 if (err)
5111 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5112 ERR_PTR(err));
5113 }
5114
5115 kfree(rdev->coupling_desc.coupled_rdevs);
5116 rdev->coupling_desc.coupled_rdevs = NULL;
5117 }
5118
regulator_init_coupling(struct regulator_dev * rdev)5119 static int regulator_init_coupling(struct regulator_dev *rdev)
5120 {
5121 struct regulator_dev **coupled;
5122 int err, n_phandles;
5123
5124 if (!IS_ENABLED(CONFIG_OF))
5125 n_phandles = 0;
5126 else
5127 n_phandles = of_get_n_coupled(rdev);
5128
5129 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5130 if (!coupled)
5131 return -ENOMEM;
5132
5133 rdev->coupling_desc.coupled_rdevs = coupled;
5134
5135 /*
5136 * Every regulator should always have coupling descriptor filled with
5137 * at least pointer to itself.
5138 */
5139 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5140 rdev->coupling_desc.n_coupled = n_phandles + 1;
5141 rdev->coupling_desc.n_resolved++;
5142
5143 /* regulator isn't coupled */
5144 if (n_phandles == 0)
5145 return 0;
5146
5147 if (!of_check_coupling_data(rdev))
5148 return -EPERM;
5149
5150 mutex_lock(®ulator_list_mutex);
5151 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5152 mutex_unlock(®ulator_list_mutex);
5153
5154 if (IS_ERR(rdev->coupling_desc.coupler)) {
5155 err = PTR_ERR(rdev->coupling_desc.coupler);
5156 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5157 return err;
5158 }
5159
5160 return 0;
5161 }
5162
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5163 static int generic_coupler_attach(struct regulator_coupler *coupler,
5164 struct regulator_dev *rdev)
5165 {
5166 if (rdev->coupling_desc.n_coupled > 2) {
5167 rdev_err(rdev,
5168 "Voltage balancing for multiple regulator couples is unimplemented\n");
5169 return -EPERM;
5170 }
5171
5172 if (!rdev->constraints->always_on) {
5173 rdev_err(rdev,
5174 "Coupling of a non always-on regulator is unimplemented\n");
5175 return -ENOTSUPP;
5176 }
5177
5178 return 0;
5179 }
5180
5181 static struct regulator_coupler generic_regulator_coupler = {
5182 .attach_regulator = generic_coupler_attach,
5183 };
5184
5185 /**
5186 * regulator_register - register regulator
5187 * @regulator_desc: regulator to register
5188 * @cfg: runtime configuration for regulator
5189 *
5190 * Called by regulator drivers to register a regulator.
5191 * Returns a valid pointer to struct regulator_dev on success
5192 * or an ERR_PTR() on error.
5193 */
5194 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5195 regulator_register(const struct regulator_desc *regulator_desc,
5196 const struct regulator_config *cfg)
5197 {
5198 const struct regulator_init_data *init_data;
5199 struct regulator_config *config = NULL;
5200 static atomic_t regulator_no = ATOMIC_INIT(-1);
5201 struct regulator_dev *rdev;
5202 bool dangling_cfg_gpiod = false;
5203 bool dangling_of_gpiod = false;
5204 struct device *dev;
5205 int ret, i;
5206
5207 if (cfg == NULL)
5208 return ERR_PTR(-EINVAL);
5209 if (cfg->ena_gpiod)
5210 dangling_cfg_gpiod = true;
5211 if (regulator_desc == NULL) {
5212 ret = -EINVAL;
5213 goto rinse;
5214 }
5215
5216 dev = cfg->dev;
5217 WARN_ON(!dev);
5218
5219 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5220 ret = -EINVAL;
5221 goto rinse;
5222 }
5223
5224 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5225 regulator_desc->type != REGULATOR_CURRENT) {
5226 ret = -EINVAL;
5227 goto rinse;
5228 }
5229
5230 /* Only one of each should be implemented */
5231 WARN_ON(regulator_desc->ops->get_voltage &&
5232 regulator_desc->ops->get_voltage_sel);
5233 WARN_ON(regulator_desc->ops->set_voltage &&
5234 regulator_desc->ops->set_voltage_sel);
5235
5236 /* If we're using selectors we must implement list_voltage. */
5237 if (regulator_desc->ops->get_voltage_sel &&
5238 !regulator_desc->ops->list_voltage) {
5239 ret = -EINVAL;
5240 goto rinse;
5241 }
5242 if (regulator_desc->ops->set_voltage_sel &&
5243 !regulator_desc->ops->list_voltage) {
5244 ret = -EINVAL;
5245 goto rinse;
5246 }
5247
5248 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5249 if (rdev == NULL) {
5250 ret = -ENOMEM;
5251 goto rinse;
5252 }
5253 device_initialize(&rdev->dev);
5254
5255 /*
5256 * Duplicate the config so the driver could override it after
5257 * parsing init data.
5258 */
5259 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5260 if (config == NULL) {
5261 ret = -ENOMEM;
5262 goto clean;
5263 }
5264
5265 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5266 &rdev->dev.of_node);
5267
5268 /*
5269 * Sometimes not all resources are probed already so we need to take
5270 * that into account. This happens most the time if the ena_gpiod comes
5271 * from a gpio extender or something else.
5272 */
5273 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5274 ret = -EPROBE_DEFER;
5275 goto clean;
5276 }
5277
5278 /*
5279 * We need to keep track of any GPIO descriptor coming from the
5280 * device tree until we have handled it over to the core. If the
5281 * config that was passed in to this function DOES NOT contain
5282 * a descriptor, and the config after this call DOES contain
5283 * a descriptor, we definitely got one from parsing the device
5284 * tree.
5285 */
5286 if (!cfg->ena_gpiod && config->ena_gpiod)
5287 dangling_of_gpiod = true;
5288 if (!init_data) {
5289 init_data = config->init_data;
5290 rdev->dev.of_node = of_node_get(config->of_node);
5291 }
5292
5293 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5294 rdev->reg_data = config->driver_data;
5295 rdev->owner = regulator_desc->owner;
5296 rdev->desc = regulator_desc;
5297 if (config->regmap)
5298 rdev->regmap = config->regmap;
5299 else if (dev_get_regmap(dev, NULL))
5300 rdev->regmap = dev_get_regmap(dev, NULL);
5301 else if (dev->parent)
5302 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5303 INIT_LIST_HEAD(&rdev->consumer_list);
5304 INIT_LIST_HEAD(&rdev->list);
5305 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5306 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5307
5308 /* preform any regulator specific init */
5309 if (init_data && init_data->regulator_init) {
5310 ret = init_data->regulator_init(rdev->reg_data);
5311 if (ret < 0)
5312 goto clean;
5313 }
5314
5315 if (config->ena_gpiod) {
5316 ret = regulator_ena_gpio_request(rdev, config);
5317 if (ret != 0) {
5318 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5319 ERR_PTR(ret));
5320 goto clean;
5321 }
5322 /* The regulator core took over the GPIO descriptor */
5323 dangling_cfg_gpiod = false;
5324 dangling_of_gpiod = false;
5325 }
5326
5327 /* register with sysfs */
5328 rdev->dev.class = ®ulator_class;
5329 rdev->dev.parent = dev;
5330 dev_set_name(&rdev->dev, "regulator.%lu",
5331 (unsigned long) atomic_inc_return(®ulator_no));
5332 dev_set_drvdata(&rdev->dev, rdev);
5333
5334 /* set regulator constraints */
5335 if (init_data)
5336 rdev->constraints = kmemdup(&init_data->constraints,
5337 sizeof(*rdev->constraints),
5338 GFP_KERNEL);
5339 else
5340 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5341 GFP_KERNEL);
5342 if (!rdev->constraints) {
5343 ret = -ENOMEM;
5344 goto wash;
5345 }
5346
5347 if (init_data && init_data->supply_regulator)
5348 rdev->supply_name = init_data->supply_regulator;
5349 else if (regulator_desc->supply_name)
5350 rdev->supply_name = regulator_desc->supply_name;
5351
5352 ret = set_machine_constraints(rdev);
5353 if (ret == -EPROBE_DEFER) {
5354 /* Regulator might be in bypass mode and so needs its supply
5355 * to set the constraints */
5356 /* FIXME: this currently triggers a chicken-and-egg problem
5357 * when creating -SUPPLY symlink in sysfs to a regulator
5358 * that is just being created */
5359 ret = regulator_resolve_supply(rdev);
5360 if (!ret)
5361 ret = set_machine_constraints(rdev);
5362 else
5363 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5364 ERR_PTR(ret));
5365 }
5366 if (ret < 0)
5367 goto wash;
5368
5369 ret = regulator_init_coupling(rdev);
5370 if (ret < 0)
5371 goto wash;
5372
5373 /* add consumers devices */
5374 if (init_data) {
5375 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5376 ret = set_consumer_device_supply(rdev,
5377 init_data->consumer_supplies[i].dev_name,
5378 init_data->consumer_supplies[i].supply);
5379 if (ret < 0) {
5380 dev_err(dev, "Failed to set supply %s\n",
5381 init_data->consumer_supplies[i].supply);
5382 goto unset_supplies;
5383 }
5384 }
5385 }
5386
5387 if (!rdev->desc->ops->get_voltage &&
5388 !rdev->desc->ops->list_voltage &&
5389 !rdev->desc->fixed_uV)
5390 rdev->is_switch = true;
5391
5392 ret = device_add(&rdev->dev);
5393 if (ret != 0)
5394 goto unset_supplies;
5395
5396 rdev_init_debugfs(rdev);
5397
5398 /* try to resolve regulators coupling since a new one was registered */
5399 mutex_lock(®ulator_list_mutex);
5400 regulator_resolve_coupling(rdev);
5401 mutex_unlock(®ulator_list_mutex);
5402
5403 /* try to resolve regulators supply since a new one was registered */
5404 class_for_each_device(®ulator_class, NULL, NULL,
5405 regulator_register_resolve_supply);
5406 kfree(config);
5407 return rdev;
5408
5409 unset_supplies:
5410 mutex_lock(®ulator_list_mutex);
5411 unset_regulator_supplies(rdev);
5412 regulator_remove_coupling(rdev);
5413 mutex_unlock(®ulator_list_mutex);
5414 wash:
5415 regulator_put(rdev->supply);
5416 kfree(rdev->coupling_desc.coupled_rdevs);
5417 mutex_lock(®ulator_list_mutex);
5418 regulator_ena_gpio_free(rdev);
5419 mutex_unlock(®ulator_list_mutex);
5420 put_device(&rdev->dev);
5421 rdev = NULL;
5422 clean:
5423 if (dangling_of_gpiod)
5424 gpiod_put(config->ena_gpiod);
5425 if (rdev && rdev->dev.of_node)
5426 of_node_put(rdev->dev.of_node);
5427 kfree(rdev);
5428 kfree(config);
5429 rinse:
5430 if (dangling_cfg_gpiod)
5431 gpiod_put(cfg->ena_gpiod);
5432 return ERR_PTR(ret);
5433 }
5434 EXPORT_SYMBOL_GPL(regulator_register);
5435
5436 /**
5437 * regulator_unregister - unregister regulator
5438 * @rdev: regulator to unregister
5439 *
5440 * Called by regulator drivers to unregister a regulator.
5441 */
regulator_unregister(struct regulator_dev * rdev)5442 void regulator_unregister(struct regulator_dev *rdev)
5443 {
5444 if (rdev == NULL)
5445 return;
5446
5447 if (rdev->supply) {
5448 while (rdev->use_count--)
5449 regulator_disable(rdev->supply);
5450 regulator_put(rdev->supply);
5451 }
5452
5453 flush_work(&rdev->disable_work.work);
5454
5455 mutex_lock(®ulator_list_mutex);
5456
5457 WARN_ON(rdev->open_count);
5458 regulator_remove_coupling(rdev);
5459 unset_regulator_supplies(rdev);
5460 list_del(&rdev->list);
5461 regulator_ena_gpio_free(rdev);
5462 device_unregister(&rdev->dev);
5463
5464 mutex_unlock(®ulator_list_mutex);
5465 }
5466 EXPORT_SYMBOL_GPL(regulator_unregister);
5467
5468 #ifdef CONFIG_SUSPEND
5469 /**
5470 * regulator_suspend - prepare regulators for system wide suspend
5471 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5472 *
5473 * Configure each regulator with it's suspend operating parameters for state.
5474 */
regulator_suspend(struct device * dev)5475 static int regulator_suspend(struct device *dev)
5476 {
5477 struct regulator_dev *rdev = dev_to_rdev(dev);
5478 suspend_state_t state = pm_suspend_target_state;
5479 int ret;
5480 const struct regulator_state *rstate;
5481
5482 rstate = regulator_get_suspend_state_check(rdev, state);
5483 if (!rstate)
5484 return 0;
5485
5486 regulator_lock(rdev);
5487 ret = __suspend_set_state(rdev, rstate);
5488 regulator_unlock(rdev);
5489
5490 return ret;
5491 }
5492
regulator_resume(struct device * dev)5493 static int regulator_resume(struct device *dev)
5494 {
5495 suspend_state_t state = pm_suspend_target_state;
5496 struct regulator_dev *rdev = dev_to_rdev(dev);
5497 struct regulator_state *rstate;
5498 int ret = 0;
5499
5500 rstate = regulator_get_suspend_state(rdev, state);
5501 if (rstate == NULL)
5502 return 0;
5503
5504 /* Avoid grabbing the lock if we don't need to */
5505 if (!rdev->desc->ops->resume)
5506 return 0;
5507
5508 regulator_lock(rdev);
5509
5510 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5511 rstate->enabled == DISABLE_IN_SUSPEND)
5512 ret = rdev->desc->ops->resume(rdev);
5513
5514 regulator_unlock(rdev);
5515
5516 return ret;
5517 }
5518 #else /* !CONFIG_SUSPEND */
5519
5520 #define regulator_suspend NULL
5521 #define regulator_resume NULL
5522
5523 #endif /* !CONFIG_SUSPEND */
5524
5525 #ifdef CONFIG_PM
5526 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5527 .suspend = regulator_suspend,
5528 .resume = regulator_resume,
5529 };
5530 #endif
5531
5532 struct class regulator_class = {
5533 .name = "regulator",
5534 .dev_release = regulator_dev_release,
5535 .dev_groups = regulator_dev_groups,
5536 #ifdef CONFIG_PM
5537 .pm = ®ulator_pm_ops,
5538 #endif
5539 };
5540 /**
5541 * regulator_has_full_constraints - the system has fully specified constraints
5542 *
5543 * Calling this function will cause the regulator API to disable all
5544 * regulators which have a zero use count and don't have an always_on
5545 * constraint in a late_initcall.
5546 *
5547 * The intention is that this will become the default behaviour in a
5548 * future kernel release so users are encouraged to use this facility
5549 * now.
5550 */
regulator_has_full_constraints(void)5551 void regulator_has_full_constraints(void)
5552 {
5553 has_full_constraints = 1;
5554 }
5555 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5556
5557 /**
5558 * rdev_get_drvdata - get rdev regulator driver data
5559 * @rdev: regulator
5560 *
5561 * Get rdev regulator driver private data. This call can be used in the
5562 * regulator driver context.
5563 */
rdev_get_drvdata(struct regulator_dev * rdev)5564 void *rdev_get_drvdata(struct regulator_dev *rdev)
5565 {
5566 return rdev->reg_data;
5567 }
5568 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5569
5570 /**
5571 * regulator_get_drvdata - get regulator driver data
5572 * @regulator: regulator
5573 *
5574 * Get regulator driver private data. This call can be used in the consumer
5575 * driver context when non API regulator specific functions need to be called.
5576 */
regulator_get_drvdata(struct regulator * regulator)5577 void *regulator_get_drvdata(struct regulator *regulator)
5578 {
5579 return regulator->rdev->reg_data;
5580 }
5581 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5582
5583 /**
5584 * regulator_set_drvdata - set regulator driver data
5585 * @regulator: regulator
5586 * @data: data
5587 */
regulator_set_drvdata(struct regulator * regulator,void * data)5588 void regulator_set_drvdata(struct regulator *regulator, void *data)
5589 {
5590 regulator->rdev->reg_data = data;
5591 }
5592 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5593
5594 /**
5595 * regulator_get_id - get regulator ID
5596 * @rdev: regulator
5597 */
rdev_get_id(struct regulator_dev * rdev)5598 int rdev_get_id(struct regulator_dev *rdev)
5599 {
5600 return rdev->desc->id;
5601 }
5602 EXPORT_SYMBOL_GPL(rdev_get_id);
5603
rdev_get_dev(struct regulator_dev * rdev)5604 struct device *rdev_get_dev(struct regulator_dev *rdev)
5605 {
5606 return &rdev->dev;
5607 }
5608 EXPORT_SYMBOL_GPL(rdev_get_dev);
5609
rdev_get_regmap(struct regulator_dev * rdev)5610 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5611 {
5612 return rdev->regmap;
5613 }
5614 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5615
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5616 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5617 {
5618 return reg_init_data->driver_data;
5619 }
5620 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5621
5622 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5623 static int supply_map_show(struct seq_file *sf, void *data)
5624 {
5625 struct regulator_map *map;
5626
5627 list_for_each_entry(map, ®ulator_map_list, list) {
5628 seq_printf(sf, "%s -> %s.%s\n",
5629 rdev_get_name(map->regulator), map->dev_name,
5630 map->supply);
5631 }
5632
5633 return 0;
5634 }
5635 DEFINE_SHOW_ATTRIBUTE(supply_map);
5636
5637 struct summary_data {
5638 struct seq_file *s;
5639 struct regulator_dev *parent;
5640 int level;
5641 };
5642
5643 static void regulator_summary_show_subtree(struct seq_file *s,
5644 struct regulator_dev *rdev,
5645 int level);
5646
regulator_summary_show_children(struct device * dev,void * data)5647 static int regulator_summary_show_children(struct device *dev, void *data)
5648 {
5649 struct regulator_dev *rdev = dev_to_rdev(dev);
5650 struct summary_data *summary_data = data;
5651
5652 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5653 regulator_summary_show_subtree(summary_data->s, rdev,
5654 summary_data->level + 1);
5655
5656 return 0;
5657 }
5658
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5659 static void regulator_summary_show_subtree(struct seq_file *s,
5660 struct regulator_dev *rdev,
5661 int level)
5662 {
5663 struct regulation_constraints *c;
5664 struct regulator *consumer;
5665 struct summary_data summary_data;
5666 unsigned int opmode;
5667
5668 if (!rdev)
5669 return;
5670
5671 opmode = _regulator_get_mode_unlocked(rdev);
5672 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5673 level * 3 + 1, "",
5674 30 - level * 3, rdev_get_name(rdev),
5675 rdev->use_count, rdev->open_count, rdev->bypass_count,
5676 regulator_opmode_to_str(opmode));
5677
5678 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5679 seq_printf(s, "%5dmA ",
5680 _regulator_get_current_limit_unlocked(rdev) / 1000);
5681
5682 c = rdev->constraints;
5683 if (c) {
5684 switch (rdev->desc->type) {
5685 case REGULATOR_VOLTAGE:
5686 seq_printf(s, "%5dmV %5dmV ",
5687 c->min_uV / 1000, c->max_uV / 1000);
5688 break;
5689 case REGULATOR_CURRENT:
5690 seq_printf(s, "%5dmA %5dmA ",
5691 c->min_uA / 1000, c->max_uA / 1000);
5692 break;
5693 }
5694 }
5695
5696 seq_puts(s, "\n");
5697
5698 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5699 if (consumer->dev && consumer->dev->class == ®ulator_class)
5700 continue;
5701
5702 seq_printf(s, "%*s%-*s ",
5703 (level + 1) * 3 + 1, "",
5704 30 - (level + 1) * 3,
5705 consumer->supply_name ? consumer->supply_name :
5706 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5707
5708 switch (rdev->desc->type) {
5709 case REGULATOR_VOLTAGE:
5710 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5711 consumer->enable_count,
5712 consumer->uA_load / 1000,
5713 consumer->uA_load && !consumer->enable_count ?
5714 '*' : ' ',
5715 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5716 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5717 break;
5718 case REGULATOR_CURRENT:
5719 break;
5720 }
5721
5722 seq_puts(s, "\n");
5723 }
5724
5725 summary_data.s = s;
5726 summary_data.level = level;
5727 summary_data.parent = rdev;
5728
5729 class_for_each_device(®ulator_class, NULL, &summary_data,
5730 regulator_summary_show_children);
5731 }
5732
5733 struct summary_lock_data {
5734 struct ww_acquire_ctx *ww_ctx;
5735 struct regulator_dev **new_contended_rdev;
5736 struct regulator_dev **old_contended_rdev;
5737 };
5738
regulator_summary_lock_one(struct device * dev,void * data)5739 static int regulator_summary_lock_one(struct device *dev, void *data)
5740 {
5741 struct regulator_dev *rdev = dev_to_rdev(dev);
5742 struct summary_lock_data *lock_data = data;
5743 int ret = 0;
5744
5745 if (rdev != *lock_data->old_contended_rdev) {
5746 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5747
5748 if (ret == -EDEADLK)
5749 *lock_data->new_contended_rdev = rdev;
5750 else
5751 WARN_ON_ONCE(ret);
5752 } else {
5753 *lock_data->old_contended_rdev = NULL;
5754 }
5755
5756 return ret;
5757 }
5758
regulator_summary_unlock_one(struct device * dev,void * data)5759 static int regulator_summary_unlock_one(struct device *dev, void *data)
5760 {
5761 struct regulator_dev *rdev = dev_to_rdev(dev);
5762 struct summary_lock_data *lock_data = data;
5763
5764 if (lock_data) {
5765 if (rdev == *lock_data->new_contended_rdev)
5766 return -EDEADLK;
5767 }
5768
5769 regulator_unlock(rdev);
5770
5771 return 0;
5772 }
5773
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)5774 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5775 struct regulator_dev **new_contended_rdev,
5776 struct regulator_dev **old_contended_rdev)
5777 {
5778 struct summary_lock_data lock_data;
5779 int ret;
5780
5781 lock_data.ww_ctx = ww_ctx;
5782 lock_data.new_contended_rdev = new_contended_rdev;
5783 lock_data.old_contended_rdev = old_contended_rdev;
5784
5785 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5786 regulator_summary_lock_one);
5787 if (ret)
5788 class_for_each_device(®ulator_class, NULL, &lock_data,
5789 regulator_summary_unlock_one);
5790
5791 return ret;
5792 }
5793
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)5794 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5795 {
5796 struct regulator_dev *new_contended_rdev = NULL;
5797 struct regulator_dev *old_contended_rdev = NULL;
5798 int err;
5799
5800 mutex_lock(®ulator_list_mutex);
5801
5802 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5803
5804 do {
5805 if (new_contended_rdev) {
5806 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5807 old_contended_rdev = new_contended_rdev;
5808 old_contended_rdev->ref_cnt++;
5809 }
5810
5811 err = regulator_summary_lock_all(ww_ctx,
5812 &new_contended_rdev,
5813 &old_contended_rdev);
5814
5815 if (old_contended_rdev)
5816 regulator_unlock(old_contended_rdev);
5817
5818 } while (err == -EDEADLK);
5819
5820 ww_acquire_done(ww_ctx);
5821 }
5822
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)5823 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5824 {
5825 class_for_each_device(®ulator_class, NULL, NULL,
5826 regulator_summary_unlock_one);
5827 ww_acquire_fini(ww_ctx);
5828
5829 mutex_unlock(®ulator_list_mutex);
5830 }
5831
regulator_summary_show_roots(struct device * dev,void * data)5832 static int regulator_summary_show_roots(struct device *dev, void *data)
5833 {
5834 struct regulator_dev *rdev = dev_to_rdev(dev);
5835 struct seq_file *s = data;
5836
5837 if (!rdev->supply)
5838 regulator_summary_show_subtree(s, rdev, 0);
5839
5840 return 0;
5841 }
5842
regulator_summary_show(struct seq_file * s,void * data)5843 static int regulator_summary_show(struct seq_file *s, void *data)
5844 {
5845 struct ww_acquire_ctx ww_ctx;
5846
5847 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5848 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5849
5850 regulator_summary_lock(&ww_ctx);
5851
5852 class_for_each_device(®ulator_class, NULL, s,
5853 regulator_summary_show_roots);
5854
5855 regulator_summary_unlock(&ww_ctx);
5856
5857 return 0;
5858 }
5859 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5860 #endif /* CONFIG_DEBUG_FS */
5861
regulator_init(void)5862 static int __init regulator_init(void)
5863 {
5864 int ret;
5865
5866 ret = class_register(®ulator_class);
5867
5868 debugfs_root = debugfs_create_dir("regulator", NULL);
5869 if (!debugfs_root)
5870 pr_warn("regulator: Failed to create debugfs directory\n");
5871
5872 #ifdef CONFIG_DEBUG_FS
5873 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5874 &supply_map_fops);
5875
5876 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5877 NULL, ®ulator_summary_fops);
5878 #endif
5879 regulator_dummy_init();
5880
5881 regulator_coupler_register(&generic_regulator_coupler);
5882
5883 return ret;
5884 }
5885
5886 /* init early to allow our consumers to complete system booting */
5887 core_initcall(regulator_init);
5888
regulator_late_cleanup(struct device * dev,void * data)5889 static int regulator_late_cleanup(struct device *dev, void *data)
5890 {
5891 struct regulator_dev *rdev = dev_to_rdev(dev);
5892 struct regulation_constraints *c = rdev->constraints;
5893 int ret;
5894
5895 if (c && c->always_on)
5896 return 0;
5897
5898 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5899 return 0;
5900
5901 regulator_lock(rdev);
5902
5903 if (rdev->use_count)
5904 goto unlock;
5905
5906 /* If reading the status failed, assume that it's off. */
5907 if (_regulator_is_enabled(rdev) <= 0)
5908 goto unlock;
5909
5910 if (have_full_constraints()) {
5911 /* We log since this may kill the system if it goes
5912 * wrong. */
5913 rdev_info(rdev, "disabling\n");
5914 ret = _regulator_do_disable(rdev);
5915 if (ret != 0)
5916 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5917 } else {
5918 /* The intention is that in future we will
5919 * assume that full constraints are provided
5920 * so warn even if we aren't going to do
5921 * anything here.
5922 */
5923 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5924 }
5925
5926 unlock:
5927 regulator_unlock(rdev);
5928
5929 return 0;
5930 }
5931
regulator_init_complete_work_function(struct work_struct * work)5932 static void regulator_init_complete_work_function(struct work_struct *work)
5933 {
5934 /*
5935 * Regulators may had failed to resolve their input supplies
5936 * when were registered, either because the input supply was
5937 * not registered yet or because its parent device was not
5938 * bound yet. So attempt to resolve the input supplies for
5939 * pending regulators before trying to disable unused ones.
5940 */
5941 class_for_each_device(®ulator_class, NULL, NULL,
5942 regulator_register_resolve_supply);
5943
5944 /* If we have a full configuration then disable any regulators
5945 * we have permission to change the status for and which are
5946 * not in use or always_on. This is effectively the default
5947 * for DT and ACPI as they have full constraints.
5948 */
5949 class_for_each_device(®ulator_class, NULL, NULL,
5950 regulator_late_cleanup);
5951 }
5952
5953 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5954 regulator_init_complete_work_function);
5955
regulator_init_complete(void)5956 static int __init regulator_init_complete(void)
5957 {
5958 /*
5959 * Since DT doesn't provide an idiomatic mechanism for
5960 * enabling full constraints and since it's much more natural
5961 * with DT to provide them just assume that a DT enabled
5962 * system has full constraints.
5963 */
5964 if (of_have_populated_dt())
5965 has_full_constraints = true;
5966
5967 /*
5968 * We punt completion for an arbitrary amount of time since
5969 * systems like distros will load many drivers from userspace
5970 * so consumers might not always be ready yet, this is
5971 * particularly an issue with laptops where this might bounce
5972 * the display off then on. Ideally we'd get a notification
5973 * from userspace when this happens but we don't so just wait
5974 * a bit and hope we waited long enough. It'd be better if
5975 * we'd only do this on systems that need it, and a kernel
5976 * command line option might be useful.
5977 */
5978 schedule_delayed_work(®ulator_init_complete_work,
5979 msecs_to_jiffies(30000));
5980
5981 return 0;
5982 }
5983 late_initcall_sync(regulator_init_complete);
5984