• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations.  Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/Pass.h"
51 #include <cstdint>
52 #include <functional>
53 #include <memory>
54 #include <vector>
55 
56 namespace llvm {
57 
58 class AnalysisUsage;
59 class BasicAAResult;
60 class BasicBlock;
61 class DominatorTree;
62 class OrderedBasicBlock;
63 class Value;
64 
65 /// The possible results of an alias query.
66 ///
67 /// These results are always computed between two MemoryLocation objects as
68 /// a query to some alias analysis.
69 ///
70 /// Note that these are unscoped enumerations because we would like to support
71 /// implicitly testing a result for the existence of any possible aliasing with
72 /// a conversion to bool, but an "enum class" doesn't support this. The
73 /// canonical names from the literature are suffixed and unique anyways, and so
74 /// they serve as global constants in LLVM for these results.
75 ///
76 /// See docs/AliasAnalysis.html for more information on the specific meanings
77 /// of these values.
78 enum AliasResult : uint8_t {
79   /// The two locations do not alias at all.
80   ///
81   /// This value is arranged to convert to false, while all other values
82   /// convert to true. This allows a boolean context to convert the result to
83   /// a binary flag indicating whether there is the possibility of aliasing.
84   NoAlias = 0,
85   /// The two locations may or may not alias. This is the least precise result.
86   MayAlias,
87   /// The two locations alias, but only due to a partial overlap.
88   PartialAlias,
89   /// The two locations precisely alias each other.
90   MustAlias,
91 };
92 
93 /// << operator for AliasResult.
94 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
95 
96 /// Flags indicating whether a memory access modifies or references memory.
97 ///
98 /// This is no access at all, a modification, a reference, or both
99 /// a modification and a reference. These are specifically structured such that
100 /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
101 /// work with any of the possible values.
102 enum class ModRefInfo : uint8_t {
103   /// Must is provided for completeness, but no routines will return only
104   /// Must today. See definition of Must below.
105   Must = 0,
106   /// The access may reference the value stored in memory,
107   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
108   MustRef = 1,
109   /// The access may modify the value stored in memory,
110   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
111   MustMod = 2,
112   /// The access may reference, modify or both the value stored in memory,
113   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
114   MustModRef = MustRef | MustMod,
115   /// The access neither references nor modifies the value stored in memory.
116   NoModRef = 4,
117   /// The access may reference the value stored in memory.
118   Ref = NoModRef | MustRef,
119   /// The access may modify the value stored in memory.
120   Mod = NoModRef | MustMod,
121   /// The access may reference and may modify the value stored in memory.
122   ModRef = Ref | Mod,
123 
124   /// About Must:
125   /// Must is set in a best effort manner.
126   /// We usually do not try our best to infer Must, instead it is merely
127   /// another piece of "free" information that is presented when available.
128   /// Must set means there was certainly a MustAlias found. For calls,
129   /// where multiple arguments are checked (argmemonly), this translates to
130   /// only MustAlias or NoAlias was found.
131   /// Must is not set for RAR accesses, even if the two locations must
132   /// alias. The reason is that two read accesses translate to an early return
133   /// of NoModRef. An additional alias check to set Must may be
134   /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
135   /// We refer to Must being *set* when the most significant bit is *cleared*.
136   /// Conversely we *clear* Must information by *setting* the Must bit to 1.
137 };
138 
isNoModRef(const ModRefInfo MRI)139 LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
140   return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
141          static_cast<int>(ModRefInfo::Must);
142 }
isModOrRefSet(const ModRefInfo MRI)143 LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
144   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
145 }
isModAndRefSet(const ModRefInfo MRI)146 LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
147   return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
148          static_cast<int>(ModRefInfo::MustModRef);
149 }
isModSet(const ModRefInfo MRI)150 LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
151   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
152 }
isRefSet(const ModRefInfo MRI)153 LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
154   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
155 }
isMustSet(const ModRefInfo MRI)156 LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
157   return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
158 }
159 
setMod(const ModRefInfo MRI)160 LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
161   return ModRefInfo(static_cast<int>(MRI) |
162                     static_cast<int>(ModRefInfo::MustMod));
163 }
setRef(const ModRefInfo MRI)164 LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
165   return ModRefInfo(static_cast<int>(MRI) |
166                     static_cast<int>(ModRefInfo::MustRef));
167 }
setMust(const ModRefInfo MRI)168 LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
169   return ModRefInfo(static_cast<int>(MRI) &
170                     static_cast<int>(ModRefInfo::MustModRef));
171 }
setModAndRef(const ModRefInfo MRI)172 LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
173   return ModRefInfo(static_cast<int>(MRI) |
174                     static_cast<int>(ModRefInfo::MustModRef));
175 }
clearMod(const ModRefInfo MRI)176 LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
177   return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
178 }
clearRef(const ModRefInfo MRI)179 LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
180   return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
181 }
clearMust(const ModRefInfo MRI)182 LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
183   return ModRefInfo(static_cast<int>(MRI) |
184                     static_cast<int>(ModRefInfo::NoModRef));
185 }
unionModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)186 LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
187                                              const ModRefInfo MRI2) {
188   return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
189 }
intersectModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)190 LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
191                                                  const ModRefInfo MRI2) {
192   return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
193 }
194 
195 /// The locations at which a function might access memory.
196 ///
197 /// These are primarily used in conjunction with the \c AccessKind bits to
198 /// describe both the nature of access and the locations of access for a
199 /// function call.
200 enum FunctionModRefLocation {
201   /// Base case is no access to memory.
202   FMRL_Nowhere = 0,
203   /// Access to memory via argument pointers.
204   FMRL_ArgumentPointees = 8,
205   /// Memory that is inaccessible via LLVM IR.
206   FMRL_InaccessibleMem = 16,
207   /// Access to any memory.
208   FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
209 };
210 
211 /// Summary of how a function affects memory in the program.
212 ///
213 /// Loads from constant globals are not considered memory accesses for this
214 /// interface. Also, functions may freely modify stack space local to their
215 /// invocation without having to report it through these interfaces.
216 enum FunctionModRefBehavior {
217   /// This function does not perform any non-local loads or stores to memory.
218   ///
219   /// This property corresponds to the GCC 'const' attribute.
220   /// This property corresponds to the LLVM IR 'readnone' attribute.
221   /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
222   FMRB_DoesNotAccessMemory =
223       FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
224 
225   /// The only memory references in this function (if it has any) are
226   /// non-volatile loads from objects pointed to by its pointer-typed
227   /// arguments, with arbitrary offsets.
228   ///
229   /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
230   FMRB_OnlyReadsArgumentPointees =
231       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
232 
233   /// The only memory references in this function (if it has any) are
234   /// non-volatile loads and stores from objects pointed to by its
235   /// pointer-typed arguments, with arbitrary offsets.
236   ///
237   /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
238   FMRB_OnlyAccessesArgumentPointees =
239       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
240 
241   /// The only memory references in this function (if it has any) are
242   /// references of memory that is otherwise inaccessible via LLVM IR.
243   ///
244   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
245   FMRB_OnlyAccessesInaccessibleMem =
246       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
247 
248   /// The function may perform non-volatile loads and stores of objects
249   /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
250   /// it may also perform loads and stores of memory that is otherwise
251   /// inaccessible via LLVM IR.
252   ///
253   /// This property corresponds to the LLVM IR
254   /// inaccessiblemem_or_argmemonly attribute.
255   FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
256                                           FMRL_ArgumentPointees |
257                                           static_cast<int>(ModRefInfo::ModRef),
258 
259   /// This function does not perform any non-local stores or volatile loads,
260   /// but may read from any memory location.
261   ///
262   /// This property corresponds to the GCC 'pure' attribute.
263   /// This property corresponds to the LLVM IR 'readonly' attribute.
264   /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
265   FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
266 
267   // This function does not read from memory anywhere, but may write to any
268   // memory location.
269   //
270   // This property corresponds to the LLVM IR 'writeonly' attribute.
271   // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
272   FMRB_DoesNotReadMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
273 
274   /// This indicates that the function could not be classified into one of the
275   /// behaviors above.
276   FMRB_UnknownModRefBehavior =
277       FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
278 };
279 
280 // Wrapper method strips bits significant only in FunctionModRefBehavior,
281 // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
282 // ModRefInfo enum changes, the wrapper can be updated to & with the new enum
283 // entry with all bits set to 1.
284 LLVM_NODISCARD inline ModRefInfo
createModRefInfo(const FunctionModRefBehavior FMRB)285 createModRefInfo(const FunctionModRefBehavior FMRB) {
286   return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
287 }
288 
289 /// This class stores info we want to provide to or retain within an alias
290 /// query. By default, the root query is stateless and starts with a freshly
291 /// constructed info object. Specific alias analyses can use this query info to
292 /// store per-query state that is important for recursive or nested queries to
293 /// avoid recomputing. To enable preserving this state across multiple queries
294 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
295 /// The information stored in an `AAQueryInfo` is currently limitted to the
296 /// caches used by BasicAA, but can further be extended to fit other AA needs.
297 class AAQueryInfo {
298 public:
299   using LocPair = std::pair<MemoryLocation, MemoryLocation>;
300   using AliasCacheT = SmallDenseMap<LocPair, AliasResult, 8>;
301   AliasCacheT AliasCache;
302 
303   using IsCapturedCacheT = SmallDenseMap<const Value *, bool, 8>;
304   IsCapturedCacheT IsCapturedCache;
305 
AAQueryInfo()306   AAQueryInfo() : AliasCache(), IsCapturedCache() {}
307 };
308 
309 class BatchAAResults;
310 
311 class AAResults {
312 public:
313   // Make these results default constructable and movable. We have to spell
314   // these out because MSVC won't synthesize them.
AAResults(const TargetLibraryInfo & TLI)315   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
316   AAResults(AAResults &&Arg);
317   ~AAResults();
318 
319   /// Register a specific AA result.
addAAResult(AAResultT & AAResult)320   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
321     // FIXME: We should use a much lighter weight system than the usual
322     // polymorphic pattern because we don't own AAResult. It should
323     // ideally involve two pointers and no separate allocation.
324     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
325   }
326 
327   /// Register a function analysis ID that the results aggregation depends on.
328   ///
329   /// This is used in the new pass manager to implement the invalidation logic
330   /// where we must invalidate the results aggregation if any of our component
331   /// analyses become invalid.
addAADependencyID(AnalysisKey * ID)332   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
333 
334   /// Handle invalidation events in the new pass manager.
335   ///
336   /// The aggregation is invalidated if any of the underlying analyses is
337   /// invalidated.
338   bool invalidate(Function &F, const PreservedAnalyses &PA,
339                   FunctionAnalysisManager::Invalidator &Inv);
340 
341   //===--------------------------------------------------------------------===//
342   /// \name Alias Queries
343   /// @{
344 
345   /// The main low level interface to the alias analysis implementation.
346   /// Returns an AliasResult indicating whether the two pointers are aliased to
347   /// each other. This is the interface that must be implemented by specific
348   /// alias analysis implementations.
349   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
350 
351   /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,LocationSize V1Size,const Value * V2,LocationSize V2Size)352   AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
353                     LocationSize V2Size) {
354     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
355   }
356 
357   /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,const Value * V2)358   AliasResult alias(const Value *V1, const Value *V2) {
359     return alias(V1, LocationSize::unknown(), V2, LocationSize::unknown());
360   }
361 
362   /// A trivial helper function to check to see if the specified pointers are
363   /// no-alias.
isNoAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)364   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
365     return alias(LocA, LocB) == NoAlias;
366   }
367 
368   /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,LocationSize V1Size,const Value * V2,LocationSize V2Size)369   bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
370                  LocationSize V2Size) {
371     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
372   }
373 
374   /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,const Value * V2)375   bool isNoAlias(const Value *V1, const Value *V2) {
376     return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
377   }
378 
379   /// A trivial helper function to check to see if the specified pointers are
380   /// must-alias.
isMustAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)381   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
382     return alias(LocA, LocB) == MustAlias;
383   }
384 
385   /// A convenience wrapper around the \c isMustAlias helper interface.
isMustAlias(const Value * V1,const Value * V2)386   bool isMustAlias(const Value *V1, const Value *V2) {
387     return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
388            MustAlias;
389   }
390 
391   /// Checks whether the given location points to constant memory, or if
392   /// \p OrLocal is true whether it points to a local alloca.
393   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
394 
395   /// A convenience wrapper around the primary \c pointsToConstantMemory
396   /// interface.
397   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
398     return pointsToConstantMemory(MemoryLocation(P), OrLocal);
399   }
400 
401   /// @}
402   //===--------------------------------------------------------------------===//
403   /// \name Simple mod/ref information
404   /// @{
405 
406   /// Get the ModRef info associated with a pointer argument of a call. The
407   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
408   /// that these bits do not necessarily account for the overall behavior of
409   /// the function, but rather only provide additional per-argument
410   /// information. This never sets ModRefInfo::Must.
411   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
412 
413   /// Return the behavior of the given call site.
414   FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
415 
416   /// Return the behavior when calling the given function.
417   FunctionModRefBehavior getModRefBehavior(const Function *F);
418 
419   /// Checks if the specified call is known to never read or write memory.
420   ///
421   /// Note that if the call only reads from known-constant memory, it is also
422   /// legal to return true. Also, calls that unwind the stack are legal for
423   /// this predicate.
424   ///
425   /// Many optimizations (such as CSE and LICM) can be performed on such calls
426   /// without worrying about aliasing properties, and many calls have this
427   /// property (e.g. calls to 'sin' and 'cos').
428   ///
429   /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(const CallBase * Call)430   bool doesNotAccessMemory(const CallBase *Call) {
431     return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
432   }
433 
434   /// Checks if the specified function is known to never read or write memory.
435   ///
436   /// Note that if the function only reads from known-constant memory, it is
437   /// also legal to return true. Also, function that unwind the stack are legal
438   /// for this predicate.
439   ///
440   /// Many optimizations (such as CSE and LICM) can be performed on such calls
441   /// to such functions without worrying about aliasing properties, and many
442   /// functions have this property (e.g. 'sin' and 'cos').
443   ///
444   /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(const Function * F)445   bool doesNotAccessMemory(const Function *F) {
446     return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
447   }
448 
449   /// Checks if the specified call is known to only read from non-volatile
450   /// memory (or not access memory at all).
451   ///
452   /// Calls that unwind the stack are legal for this predicate.
453   ///
454   /// This property allows many common optimizations to be performed in the
455   /// absence of interfering store instructions, such as CSE of strlen calls.
456   ///
457   /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(const CallBase * Call)458   bool onlyReadsMemory(const CallBase *Call) {
459     return onlyReadsMemory(getModRefBehavior(Call));
460   }
461 
462   /// Checks if the specified function is known to only read from non-volatile
463   /// memory (or not access memory at all).
464   ///
465   /// Functions that unwind the stack are legal for this predicate.
466   ///
467   /// This property allows many common optimizations to be performed in the
468   /// absence of interfering store instructions, such as CSE of strlen calls.
469   ///
470   /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(const Function * F)471   bool onlyReadsMemory(const Function *F) {
472     return onlyReadsMemory(getModRefBehavior(F));
473   }
474 
475   /// Checks if functions with the specified behavior are known to only read
476   /// from non-volatile memory (or not access memory at all).
onlyReadsMemory(FunctionModRefBehavior MRB)477   static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
478     return !isModSet(createModRefInfo(MRB));
479   }
480 
481   /// Checks if functions with the specified behavior are known to only write
482   /// memory (or not access memory at all).
doesNotReadMemory(FunctionModRefBehavior MRB)483   static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
484     return !isRefSet(createModRefInfo(MRB));
485   }
486 
487   /// Checks if functions with the specified behavior are known to read and
488   /// write at most from objects pointed to by their pointer-typed arguments
489   /// (with arbitrary offsets).
onlyAccessesArgPointees(FunctionModRefBehavior MRB)490   static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
491     return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
492   }
493 
494   /// Checks if functions with the specified behavior are known to potentially
495   /// read or write from objects pointed to be their pointer-typed arguments
496   /// (with arbitrary offsets).
doesAccessArgPointees(FunctionModRefBehavior MRB)497   static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
498     return isModOrRefSet(createModRefInfo(MRB)) &&
499            (MRB & FMRL_ArgumentPointees);
500   }
501 
502   /// Checks if functions with the specified behavior are known to read and
503   /// write at most from memory that is inaccessible from LLVM IR.
onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB)504   static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
505     return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
506   }
507 
508   /// Checks if functions with the specified behavior are known to potentially
509   /// read or write from memory that is inaccessible from LLVM IR.
doesAccessInaccessibleMem(FunctionModRefBehavior MRB)510   static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
511     return isModOrRefSet(createModRefInfo(MRB)) && (MRB & FMRL_InaccessibleMem);
512   }
513 
514   /// Checks if functions with the specified behavior are known to read and
515   /// write at most from memory that is inaccessible from LLVM IR or objects
516   /// pointed to by their pointer-typed arguments (with arbitrary offsets).
onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB)517   static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
518     return !(MRB & FMRL_Anywhere &
519              ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
520   }
521 
522   /// getModRefInfo (for call sites) - Return information about whether
523   /// a particular call site modifies or reads the specified memory location.
524   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
525 
526   /// getModRefInfo (for call sites) - A convenience wrapper.
getModRefInfo(const CallBase * Call,const Value * P,LocationSize Size)527   ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
528                            LocationSize Size) {
529     return getModRefInfo(Call, MemoryLocation(P, Size));
530   }
531 
532   /// getModRefInfo (for loads) - Return information about whether
533   /// a particular load modifies or reads the specified memory location.
534   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
535 
536   /// getModRefInfo (for loads) - A convenience wrapper.
getModRefInfo(const LoadInst * L,const Value * P,LocationSize Size)537   ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
538                            LocationSize Size) {
539     return getModRefInfo(L, MemoryLocation(P, Size));
540   }
541 
542   /// getModRefInfo (for stores) - Return information about whether
543   /// a particular store modifies or reads the specified memory location.
544   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
545 
546   /// getModRefInfo (for stores) - A convenience wrapper.
getModRefInfo(const StoreInst * S,const Value * P,LocationSize Size)547   ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
548                            LocationSize Size) {
549     return getModRefInfo(S, MemoryLocation(P, Size));
550   }
551 
552   /// getModRefInfo (for fences) - Return information about whether
553   /// a particular store modifies or reads the specified memory location.
554   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
555 
556   /// getModRefInfo (for fences) - A convenience wrapper.
getModRefInfo(const FenceInst * S,const Value * P,LocationSize Size)557   ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
558                            LocationSize Size) {
559     return getModRefInfo(S, MemoryLocation(P, Size));
560   }
561 
562   /// getModRefInfo (for cmpxchges) - Return information about whether
563   /// a particular cmpxchg modifies or reads the specified memory location.
564   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
565                            const MemoryLocation &Loc);
566 
567   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
getModRefInfo(const AtomicCmpXchgInst * CX,const Value * P,LocationSize Size)568   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
569                            LocationSize Size) {
570     return getModRefInfo(CX, MemoryLocation(P, Size));
571   }
572 
573   /// getModRefInfo (for atomicrmws) - Return information about whether
574   /// a particular atomicrmw modifies or reads the specified memory location.
575   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
576 
577   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
getModRefInfo(const AtomicRMWInst * RMW,const Value * P,LocationSize Size)578   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
579                            LocationSize Size) {
580     return getModRefInfo(RMW, MemoryLocation(P, Size));
581   }
582 
583   /// getModRefInfo (for va_args) - Return information about whether
584   /// a particular va_arg modifies or reads the specified memory location.
585   ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
586 
587   /// getModRefInfo (for va_args) - A convenience wrapper.
getModRefInfo(const VAArgInst * I,const Value * P,LocationSize Size)588   ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
589                            LocationSize Size) {
590     return getModRefInfo(I, MemoryLocation(P, Size));
591   }
592 
593   /// getModRefInfo (for catchpads) - Return information about whether
594   /// a particular catchpad modifies or reads the specified memory location.
595   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
596 
597   /// getModRefInfo (for catchpads) - A convenience wrapper.
getModRefInfo(const CatchPadInst * I,const Value * P,LocationSize Size)598   ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
599                            LocationSize Size) {
600     return getModRefInfo(I, MemoryLocation(P, Size));
601   }
602 
603   /// getModRefInfo (for catchrets) - Return information about whether
604   /// a particular catchret modifies or reads the specified memory location.
605   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
606 
607   /// getModRefInfo (for catchrets) - A convenience wrapper.
getModRefInfo(const CatchReturnInst * I,const Value * P,LocationSize Size)608   ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
609                            LocationSize Size) {
610     return getModRefInfo(I, MemoryLocation(P, Size));
611   }
612 
613   /// Check whether or not an instruction may read or write the optionally
614   /// specified memory location.
615   ///
616   ///
617   /// An instruction that doesn't read or write memory may be trivially LICM'd
618   /// for example.
619   ///
620   /// For function calls, this delegates to the alias-analysis specific
621   /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
622   /// helpers above.
getModRefInfo(const Instruction * I,const Optional<MemoryLocation> & OptLoc)623   ModRefInfo getModRefInfo(const Instruction *I,
624                            const Optional<MemoryLocation> &OptLoc) {
625     AAQueryInfo AAQIP;
626     return getModRefInfo(I, OptLoc, AAQIP);
627   }
628 
629   /// A convenience wrapper for constructing the memory location.
getModRefInfo(const Instruction * I,const Value * P,LocationSize Size)630   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
631                            LocationSize Size) {
632     return getModRefInfo(I, MemoryLocation(P, Size));
633   }
634 
635   /// Return information about whether a call and an instruction may refer to
636   /// the same memory locations.
637   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
638 
639   /// Return information about whether two call sites may refer to the same set
640   /// of memory locations. See the AA documentation for details:
641   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
642   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
643 
644   /// Return information about whether a particular call site modifies
645   /// or reads the specified memory location \p MemLoc before instruction \p I
646   /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
647   /// instruction ordering queries inside the BasicBlock containing \p I.
648   /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
649   /// set.
650   ModRefInfo callCapturesBefore(const Instruction *I,
651                                 const MemoryLocation &MemLoc, DominatorTree *DT,
652                                 OrderedBasicBlock *OBB = nullptr);
653 
654   /// A convenience wrapper to synthesize a memory location.
655   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
656                                 LocationSize Size, DominatorTree *DT,
657                                 OrderedBasicBlock *OBB = nullptr) {
658     return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
659   }
660 
661   /// @}
662   //===--------------------------------------------------------------------===//
663   /// \name Higher level methods for querying mod/ref information.
664   /// @{
665 
666   /// Check if it is possible for execution of the specified basic block to
667   /// modify the location Loc.
668   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
669 
670   /// A convenience wrapper synthesizing a memory location.
canBasicBlockModify(const BasicBlock & BB,const Value * P,LocationSize Size)671   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
672                            LocationSize Size) {
673     return canBasicBlockModify(BB, MemoryLocation(P, Size));
674   }
675 
676   /// Check if it is possible for the execution of the specified instructions
677   /// to mod\ref (according to the mode) the location Loc.
678   ///
679   /// The instructions to consider are all of the instructions in the range of
680   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
681   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
682                                  const MemoryLocation &Loc,
683                                  const ModRefInfo Mode);
684 
685   /// A convenience wrapper synthesizing a memory location.
canInstructionRangeModRef(const Instruction & I1,const Instruction & I2,const Value * Ptr,LocationSize Size,const ModRefInfo Mode)686   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
687                                  const Value *Ptr, LocationSize Size,
688                                  const ModRefInfo Mode) {
689     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
690   }
691 
692 private:
693   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
694                     AAQueryInfo &AAQI);
695   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
696                               bool OrLocal = false);
697   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
698                            AAQueryInfo &AAQIP);
699   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
700                            AAQueryInfo &AAQI);
701   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
702                            AAQueryInfo &AAQI);
703   ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
704                            AAQueryInfo &AAQI);
705   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
706                            AAQueryInfo &AAQI);
707   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
708                            AAQueryInfo &AAQI);
709   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
710                            AAQueryInfo &AAQI);
711   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
712                            const MemoryLocation &Loc, AAQueryInfo &AAQI);
713   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
714                            AAQueryInfo &AAQI);
715   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
716                            AAQueryInfo &AAQI);
717   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
718                            AAQueryInfo &AAQI);
getModRefInfo(const Instruction * I,const Optional<MemoryLocation> & OptLoc,AAQueryInfo & AAQIP)719   ModRefInfo getModRefInfo(const Instruction *I,
720                            const Optional<MemoryLocation> &OptLoc,
721                            AAQueryInfo &AAQIP) {
722     if (OptLoc == None) {
723       if (const auto *Call = dyn_cast<CallBase>(I)) {
724         return createModRefInfo(getModRefBehavior(Call));
725       }
726     }
727 
728     const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
729 
730     switch (I->getOpcode()) {
731     case Instruction::VAArg:
732       return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
733     case Instruction::Load:
734       return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
735     case Instruction::Store:
736       return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
737     case Instruction::Fence:
738       return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
739     case Instruction::AtomicCmpXchg:
740       return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
741     case Instruction::AtomicRMW:
742       return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
743     case Instruction::Call:
744       return getModRefInfo((const CallInst *)I, Loc, AAQIP);
745     case Instruction::Invoke:
746       return getModRefInfo((const InvokeInst *)I, Loc, AAQIP);
747     case Instruction::CatchPad:
748       return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
749     case Instruction::CatchRet:
750       return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
751     default:
752       return ModRefInfo::NoModRef;
753     }
754   }
755 
756   class Concept;
757 
758   template <typename T> class Model;
759 
760   template <typename T> friend class AAResultBase;
761 
762   const TargetLibraryInfo &TLI;
763 
764   std::vector<std::unique_ptr<Concept>> AAs;
765 
766   std::vector<AnalysisKey *> AADeps;
767 
768   friend class BatchAAResults;
769 };
770 
771 /// This class is a wrapper over an AAResults, and it is intended to be used
772 /// only when there are no IR changes inbetween queries. BatchAAResults is
773 /// reusing the same `AAQueryInfo` to preserve the state across queries,
774 /// esentially making AA work in "batch mode". The internal state cannot be
775 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
776 /// or create a new BatchAAResults.
777 class BatchAAResults {
778   AAResults &AA;
779   AAQueryInfo AAQI;
780 
781 public:
BatchAAResults(AAResults & AAR)782   BatchAAResults(AAResults &AAR) : AA(AAR), AAQI() {}
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)783   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
784     return AA.alias(LocA, LocB, AAQI);
785   }
786   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
787     return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
788   }
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc)789   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
790     return AA.getModRefInfo(Call, Loc, AAQI);
791   }
getModRefInfo(const CallBase * Call1,const CallBase * Call2)792   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
793     return AA.getModRefInfo(Call1, Call2, AAQI);
794   }
getModRefInfo(const Instruction * I,const Optional<MemoryLocation> & OptLoc)795   ModRefInfo getModRefInfo(const Instruction *I,
796                            const Optional<MemoryLocation> &OptLoc) {
797     return AA.getModRefInfo(I, OptLoc, AAQI);
798   }
getModRefInfo(Instruction * I,const CallBase * Call2)799   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
800     return AA.getModRefInfo(I, Call2, AAQI);
801   }
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)802   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
803     return AA.getArgModRefInfo(Call, ArgIdx);
804   }
getModRefBehavior(const CallBase * Call)805   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
806     return AA.getModRefBehavior(Call);
807   }
808 };
809 
810 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
811 /// pointer or reference.
812 using AliasAnalysis = AAResults;
813 
814 /// A private abstract base class describing the concept of an individual alias
815 /// analysis implementation.
816 ///
817 /// This interface is implemented by any \c Model instantiation. It is also the
818 /// interface which a type used to instantiate the model must provide.
819 ///
820 /// All of these methods model methods by the same name in the \c
821 /// AAResults class. Only differences and specifics to how the
822 /// implementations are called are documented here.
823 class AAResults::Concept {
824 public:
825   virtual ~Concept() = 0;
826 
827   /// An update API used internally by the AAResults to provide
828   /// a handle back to the top level aggregation.
829   virtual void setAAResults(AAResults *NewAAR) = 0;
830 
831   //===--------------------------------------------------------------------===//
832   /// \name Alias Queries
833   /// @{
834 
835   /// The main low level interface to the alias analysis implementation.
836   /// Returns an AliasResult indicating whether the two pointers are aliased to
837   /// each other. This is the interface that must be implemented by specific
838   /// alias analysis implementations.
839   virtual AliasResult alias(const MemoryLocation &LocA,
840                             const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
841 
842   /// Checks whether the given location points to constant memory, or if
843   /// \p OrLocal is true whether it points to a local alloca.
844   virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
845                                       AAQueryInfo &AAQI, bool OrLocal) = 0;
846 
847   /// @}
848   //===--------------------------------------------------------------------===//
849   /// \name Simple mod/ref information
850   /// @{
851 
852   /// Get the ModRef info associated with a pointer argument of a callsite. The
853   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
854   /// that these bits do not necessarily account for the overall behavior of
855   /// the function, but rather only provide additional per-argument
856   /// information.
857   virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
858                                       unsigned ArgIdx) = 0;
859 
860   /// Return the behavior of the given call site.
861   virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
862 
863   /// Return the behavior when calling the given function.
864   virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
865 
866   /// getModRefInfo (for call sites) - Return information about whether
867   /// a particular call site modifies or reads the specified memory location.
868   virtual ModRefInfo getModRefInfo(const CallBase *Call,
869                                    const MemoryLocation &Loc,
870                                    AAQueryInfo &AAQI) = 0;
871 
872   /// Return information about whether two call sites may refer to the same set
873   /// of memory locations. See the AA documentation for details:
874   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
875   virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
876                                    AAQueryInfo &AAQI) = 0;
877 
878   /// @}
879 };
880 
881 /// A private class template which derives from \c Concept and wraps some other
882 /// type.
883 ///
884 /// This models the concept by directly forwarding each interface point to the
885 /// wrapped type which must implement a compatible interface. This provides
886 /// a type erased binding.
887 template <typename AAResultT> class AAResults::Model final : public Concept {
888   AAResultT &Result;
889 
890 public:
Model(AAResultT & Result,AAResults & AAR)891   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
892     Result.setAAResults(&AAR);
893   }
894   ~Model() override = default;
895 
setAAResults(AAResults * NewAAR)896   void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
897 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)898   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
899                     AAQueryInfo &AAQI) override {
900     return Result.alias(LocA, LocB, AAQI);
901   }
902 
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)903   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
904                               bool OrLocal) override {
905     return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
906   }
907 
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)908   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
909     return Result.getArgModRefInfo(Call, ArgIdx);
910   }
911 
getModRefBehavior(const CallBase * Call)912   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
913     return Result.getModRefBehavior(Call);
914   }
915 
getModRefBehavior(const Function * F)916   FunctionModRefBehavior getModRefBehavior(const Function *F) override {
917     return Result.getModRefBehavior(F);
918   }
919 
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)920   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
921                            AAQueryInfo &AAQI) override {
922     return Result.getModRefInfo(Call, Loc, AAQI);
923   }
924 
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)925   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
926                            AAQueryInfo &AAQI) override {
927     return Result.getModRefInfo(Call1, Call2, AAQI);
928   }
929 };
930 
931 /// A CRTP-driven "mixin" base class to help implement the function alias
932 /// analysis results concept.
933 ///
934 /// Because of the nature of many alias analysis implementations, they often
935 /// only implement a subset of the interface. This base class will attempt to
936 /// implement the remaining portions of the interface in terms of simpler forms
937 /// of the interface where possible, and otherwise provide conservatively
938 /// correct fallback implementations.
939 ///
940 /// Implementors of an alias analysis should derive from this CRTP, and then
941 /// override specific methods that they wish to customize. There is no need to
942 /// use virtual anywhere, the CRTP base class does static dispatch to the
943 /// derived type passed into it.
944 template <typename DerivedT> class AAResultBase {
945   // Expose some parts of the interface only to the AAResults::Model
946   // for wrapping. Specifically, this allows the model to call our
947   // setAAResults method without exposing it as a fully public API.
948   friend class AAResults::Model<DerivedT>;
949 
950   /// A pointer to the AAResults object that this AAResult is
951   /// aggregated within. May be null if not aggregated.
952   AAResults *AAR = nullptr;
953 
954   /// Helper to dispatch calls back through the derived type.
derived()955   DerivedT &derived() { return static_cast<DerivedT &>(*this); }
956 
957   /// A setter for the AAResults pointer, which is used to satisfy the
958   /// AAResults::Model contract.
setAAResults(AAResults * NewAAR)959   void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
960 
961 protected:
962   /// This proxy class models a common pattern where we delegate to either the
963   /// top-level \c AAResults aggregation if one is registered, or to the
964   /// current result if none are registered.
965   class AAResultsProxy {
966     AAResults *AAR;
967     DerivedT &CurrentResult;
968 
969   public:
AAResultsProxy(AAResults * AAR,DerivedT & CurrentResult)970     AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
971         : AAR(AAR), CurrentResult(CurrentResult) {}
972 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)973     AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
974                       AAQueryInfo &AAQI) {
975       return AAR ? AAR->alias(LocA, LocB, AAQI)
976                  : CurrentResult.alias(LocA, LocB, AAQI);
977     }
978 
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)979     bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
980                                 bool OrLocal) {
981       return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
982                  : CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
983     }
984 
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)985     ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
986       return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
987                  : CurrentResult.getArgModRefInfo(Call, ArgIdx);
988     }
989 
getModRefBehavior(const CallBase * Call)990     FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
991       return AAR ? AAR->getModRefBehavior(Call)
992                  : CurrentResult.getModRefBehavior(Call);
993     }
994 
getModRefBehavior(const Function * F)995     FunctionModRefBehavior getModRefBehavior(const Function *F) {
996       return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
997     }
998 
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)999     ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1000                              AAQueryInfo &AAQI) {
1001       return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
1002                  : CurrentResult.getModRefInfo(Call, Loc, AAQI);
1003     }
1004 
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)1005     ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1006                              AAQueryInfo &AAQI) {
1007       return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
1008                  : CurrentResult.getModRefInfo(Call1, Call2, AAQI);
1009     }
1010   };
1011 
1012   explicit AAResultBase() = default;
1013 
1014   // Provide all the copy and move constructors so that derived types aren't
1015   // constrained.
AAResultBase(const AAResultBase & Arg)1016   AAResultBase(const AAResultBase &Arg) {}
AAResultBase(AAResultBase && Arg)1017   AAResultBase(AAResultBase &&Arg) {}
1018 
1019   /// Get a proxy for the best AA result set to query at this time.
1020   ///
1021   /// When this result is part of a larger aggregation, this will proxy to that
1022   /// aggregation. When this result is used in isolation, it will just delegate
1023   /// back to the derived class's implementation.
1024   ///
1025   /// Note that callers of this need to take considerable care to not cause
1026   /// performance problems when they use this routine, in the case of a large
1027   /// number of alias analyses being aggregated, it can be expensive to walk
1028   /// back across the chain.
getBestAAResults()1029   AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
1030 
1031 public:
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)1032   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1033                     AAQueryInfo &AAQI) {
1034     return MayAlias;
1035   }
1036 
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)1037   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1038                               bool OrLocal) {
1039     return false;
1040   }
1041 
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)1042   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1043     return ModRefInfo::ModRef;
1044   }
1045 
getModRefBehavior(const CallBase * Call)1046   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1047     return FMRB_UnknownModRefBehavior;
1048   }
1049 
getModRefBehavior(const Function * F)1050   FunctionModRefBehavior getModRefBehavior(const Function *F) {
1051     return FMRB_UnknownModRefBehavior;
1052   }
1053 
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)1054   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1055                            AAQueryInfo &AAQI) {
1056     return ModRefInfo::ModRef;
1057   }
1058 
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)1059   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1060                            AAQueryInfo &AAQI) {
1061     return ModRefInfo::ModRef;
1062   }
1063 };
1064 
1065 /// Return true if this pointer is returned by a noalias function.
1066 bool isNoAliasCall(const Value *V);
1067 
1068 /// Return true if this is an argument with the noalias attribute.
1069 bool isNoAliasArgument(const Value *V);
1070 
1071 /// Return true if this pointer refers to a distinct and identifiable object.
1072 /// This returns true for:
1073 ///    Global Variables and Functions (but not Global Aliases)
1074 ///    Allocas
1075 ///    ByVal and NoAlias Arguments
1076 ///    NoAlias returns (e.g. calls to malloc)
1077 ///
1078 bool isIdentifiedObject(const Value *V);
1079 
1080 /// Return true if V is umabigously identified at the function-level.
1081 /// Different IdentifiedFunctionLocals can't alias.
1082 /// Further, an IdentifiedFunctionLocal can not alias with any function
1083 /// arguments other than itself, which is not necessarily true for
1084 /// IdentifiedObjects.
1085 bool isIdentifiedFunctionLocal(const Value *V);
1086 
1087 /// A manager for alias analyses.
1088 ///
1089 /// This class can have analyses registered with it and when run, it will run
1090 /// all of them and aggregate their results into single AA results interface
1091 /// that dispatches across all of the alias analysis results available.
1092 ///
1093 /// Note that the order in which analyses are registered is very significant.
1094 /// That is the order in which the results will be aggregated and queried.
1095 ///
1096 /// This manager effectively wraps the AnalysisManager for registering alias
1097 /// analyses. When you register your alias analysis with this manager, it will
1098 /// ensure the analysis itself is registered with its AnalysisManager.
1099 ///
1100 /// The result of this analysis is only invalidated if one of the particular
1101 /// aggregated AA results end up being invalidated. This removes the need to
1102 /// explicitly preserve the results of `AAManager`. Note that analyses should no
1103 /// longer be registered once the `AAManager` is run.
1104 class AAManager : public AnalysisInfoMixin<AAManager> {
1105 public:
1106   using Result = AAResults;
1107 
1108   /// Register a specific AA result.
registerFunctionAnalysis()1109   template <typename AnalysisT> void registerFunctionAnalysis() {
1110     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1111   }
1112 
1113   /// Register a specific AA result.
registerModuleAnalysis()1114   template <typename AnalysisT> void registerModuleAnalysis() {
1115     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1116   }
1117 
run(Function & F,FunctionAnalysisManager & AM)1118   Result run(Function &F, FunctionAnalysisManager &AM) {
1119     Result R(AM.getResult<TargetLibraryAnalysis>(F));
1120     for (auto &Getter : ResultGetters)
1121       (*Getter)(F, AM, R);
1122     return R;
1123   }
1124 
1125 private:
1126   friend AnalysisInfoMixin<AAManager>;
1127 
1128   static AnalysisKey Key;
1129 
1130   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1131                        AAResults &AAResults),
1132               4> ResultGetters;
1133 
1134   template <typename AnalysisT>
getFunctionAAResultImpl(Function & F,FunctionAnalysisManager & AM,AAResults & AAResults)1135   static void getFunctionAAResultImpl(Function &F,
1136                                       FunctionAnalysisManager &AM,
1137                                       AAResults &AAResults) {
1138     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1139     AAResults.addAADependencyID(AnalysisT::ID());
1140   }
1141 
1142   template <typename AnalysisT>
getModuleAAResultImpl(Function & F,FunctionAnalysisManager & AM,AAResults & AAResults)1143   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1144                                     AAResults &AAResults) {
1145     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1146     auto &MAM = MAMProxy.getManager();
1147     if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) {
1148       AAResults.addAAResult(*R);
1149       MAMProxy
1150           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1151     }
1152   }
1153 };
1154 
1155 /// A wrapper pass to provide the legacy pass manager access to a suitably
1156 /// prepared AAResults object.
1157 class AAResultsWrapperPass : public FunctionPass {
1158   std::unique_ptr<AAResults> AAR;
1159 
1160 public:
1161   static char ID;
1162 
1163   AAResultsWrapperPass();
1164 
getAAResults()1165   AAResults &getAAResults() { return *AAR; }
getAAResults()1166   const AAResults &getAAResults() const { return *AAR; }
1167 
1168   bool runOnFunction(Function &F) override;
1169 
1170   void getAnalysisUsage(AnalysisUsage &AU) const override;
1171 };
1172 
1173 /// A wrapper pass for external alias analyses. This just squirrels away the
1174 /// callback used to run any analyses and register their results.
1175 struct ExternalAAWrapperPass : ImmutablePass {
1176   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1177 
1178   CallbackT CB;
1179 
1180   static char ID;
1181 
1182   ExternalAAWrapperPass();
1183 
1184   explicit ExternalAAWrapperPass(CallbackT CB);
1185 
getAnalysisUsageExternalAAWrapperPass1186   void getAnalysisUsage(AnalysisUsage &AU) const override {
1187     AU.setPreservesAll();
1188   }
1189 };
1190 
1191 FunctionPass *createAAResultsWrapperPass();
1192 
1193 /// A wrapper pass around a callback which can be used to populate the
1194 /// AAResults in the AAResultsWrapperPass from an external AA.
1195 ///
1196 /// The callback provided here will be used each time we prepare an AAResults
1197 /// object, and will receive a reference to the function wrapper pass, the
1198 /// function, and the AAResults object to populate. This should be used when
1199 /// setting up a custom pass pipeline to inject a hook into the AA results.
1200 ImmutablePass *createExternalAAWrapperPass(
1201     std::function<void(Pass &, Function &, AAResults &)> Callback);
1202 
1203 /// A helper for the legacy pass manager to create a \c AAResults
1204 /// object populated to the best of our ability for a particular function when
1205 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1206 ///
1207 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1208 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1209 /// getAnalysisUsage.
1210 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1211 
1212 /// A helper for the legacy pass manager to populate \p AU to add uses to make
1213 /// sure the analyses required by \p createLegacyPMAAResults are available.
1214 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1215 
1216 } // end namespace llvm
1217 
1218 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1219