• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Generic ring buffer
4   *
5   * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6   */
7  #include <linux/trace_events.h>
8  #include <linux/ring_buffer.h>
9  #include <linux/trace_clock.h>
10  #include <linux/sched/clock.h>
11  #include <linux/trace_seq.h>
12  #include <linux/spinlock.h>
13  #include <linux/irq_work.h>
14  #include <linux/security.h>
15  #include <linux/uaccess.h>
16  #include <linux/hardirq.h>
17  #include <linux/kthread.h>	/* for self test */
18  #include <linux/module.h>
19  #include <linux/percpu.h>
20  #include <linux/mutex.h>
21  #include <linux/delay.h>
22  #include <linux/slab.h>
23  #include <linux/init.h>
24  #include <linux/hash.h>
25  #include <linux/list.h>
26  #include <linux/cpu.h>
27  #include <linux/oom.h>
28  
29  #include <asm/local.h>
30  
31  static void update_pages_handler(struct work_struct *work);
32  
33  /*
34   * The ring buffer header is special. We must manually up keep it.
35   */
ring_buffer_print_entry_header(struct trace_seq * s)36  int ring_buffer_print_entry_header(struct trace_seq *s)
37  {
38  	trace_seq_puts(s, "# compressed entry header\n");
39  	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
40  	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
41  	trace_seq_puts(s, "\tarray       :   32 bits\n");
42  	trace_seq_putc(s, '\n');
43  	trace_seq_printf(s, "\tpadding     : type == %d\n",
44  			 RINGBUF_TYPE_PADDING);
45  	trace_seq_printf(s, "\ttime_extend : type == %d\n",
46  			 RINGBUF_TYPE_TIME_EXTEND);
47  	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48  			 RINGBUF_TYPE_TIME_STAMP);
49  	trace_seq_printf(s, "\tdata max type_len  == %d\n",
50  			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51  
52  	return !trace_seq_has_overflowed(s);
53  }
54  
55  /*
56   * The ring buffer is made up of a list of pages. A separate list of pages is
57   * allocated for each CPU. A writer may only write to a buffer that is
58   * associated with the CPU it is currently executing on.  A reader may read
59   * from any per cpu buffer.
60   *
61   * The reader is special. For each per cpu buffer, the reader has its own
62   * reader page. When a reader has read the entire reader page, this reader
63   * page is swapped with another page in the ring buffer.
64   *
65   * Now, as long as the writer is off the reader page, the reader can do what
66   * ever it wants with that page. The writer will never write to that page
67   * again (as long as it is out of the ring buffer).
68   *
69   * Here's some silly ASCII art.
70   *
71   *   +------+
72   *   |reader|          RING BUFFER
73   *   |page  |
74   *   +------+        +---+   +---+   +---+
75   *                   |   |-->|   |-->|   |
76   *                   +---+   +---+   +---+
77   *                     ^               |
78   *                     |               |
79   *                     +---------------+
80   *
81   *
82   *   +------+
83   *   |reader|          RING BUFFER
84   *   |page  |------------------v
85   *   +------+        +---+   +---+   +---+
86   *                   |   |-->|   |-->|   |
87   *                   +---+   +---+   +---+
88   *                     ^               |
89   *                     |               |
90   *                     +---------------+
91   *
92   *
93   *   +------+
94   *   |reader|          RING BUFFER
95   *   |page  |------------------v
96   *   +------+        +---+   +---+   +---+
97   *      ^            |   |-->|   |-->|   |
98   *      |            +---+   +---+   +---+
99   *      |                              |
100   *      |                              |
101   *      +------------------------------+
102   *
103   *
104   *   +------+
105   *   |buffer|          RING BUFFER
106   *   |page  |------------------v
107   *   +------+        +---+   +---+   +---+
108   *      ^            |   |   |   |-->|   |
109   *      |   New      +---+   +---+   +---+
110   *      |  Reader------^               |
111   *      |   page                       |
112   *      +------------------------------+
113   *
114   *
115   * After we make this swap, the reader can hand this page off to the splice
116   * code and be done with it. It can even allocate a new page if it needs to
117   * and swap that into the ring buffer.
118   *
119   * We will be using cmpxchg soon to make all this lockless.
120   *
121   */
122  
123  /* Used for individual buffers (after the counter) */
124  #define RB_BUFFER_OFF		(1 << 20)
125  
126  #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127  
128  #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129  #define RB_ALIGNMENT		4U
130  #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131  #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
132  
133  #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
134  # define RB_FORCE_8BYTE_ALIGNMENT	0
135  # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
136  #else
137  # define RB_FORCE_8BYTE_ALIGNMENT	1
138  # define RB_ARCH_ALIGNMENT		8U
139  #endif
140  
141  #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
142  
143  /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
144  #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
145  
146  enum {
147  	RB_LEN_TIME_EXTEND = 8,
148  	RB_LEN_TIME_STAMP =  8,
149  };
150  
151  #define skip_time_extend(event) \
152  	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
153  
154  #define extended_time(event) \
155  	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
156  
rb_null_event(struct ring_buffer_event * event)157  static inline int rb_null_event(struct ring_buffer_event *event)
158  {
159  	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
160  }
161  
rb_event_set_padding(struct ring_buffer_event * event)162  static void rb_event_set_padding(struct ring_buffer_event *event)
163  {
164  	/* padding has a NULL time_delta */
165  	event->type_len = RINGBUF_TYPE_PADDING;
166  	event->time_delta = 0;
167  }
168  
169  static unsigned
rb_event_data_length(struct ring_buffer_event * event)170  rb_event_data_length(struct ring_buffer_event *event)
171  {
172  	unsigned length;
173  
174  	if (event->type_len)
175  		length = event->type_len * RB_ALIGNMENT;
176  	else
177  		length = event->array[0];
178  	return length + RB_EVNT_HDR_SIZE;
179  }
180  
181  /*
182   * Return the length of the given event. Will return
183   * the length of the time extend if the event is a
184   * time extend.
185   */
186  static inline unsigned
rb_event_length(struct ring_buffer_event * event)187  rb_event_length(struct ring_buffer_event *event)
188  {
189  	switch (event->type_len) {
190  	case RINGBUF_TYPE_PADDING:
191  		if (rb_null_event(event))
192  			/* undefined */
193  			return -1;
194  		return  event->array[0] + RB_EVNT_HDR_SIZE;
195  
196  	case RINGBUF_TYPE_TIME_EXTEND:
197  		return RB_LEN_TIME_EXTEND;
198  
199  	case RINGBUF_TYPE_TIME_STAMP:
200  		return RB_LEN_TIME_STAMP;
201  
202  	case RINGBUF_TYPE_DATA:
203  		return rb_event_data_length(event);
204  	default:
205  		WARN_ON_ONCE(1);
206  	}
207  	/* not hit */
208  	return 0;
209  }
210  
211  /*
212   * Return total length of time extend and data,
213   *   or just the event length for all other events.
214   */
215  static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)216  rb_event_ts_length(struct ring_buffer_event *event)
217  {
218  	unsigned len = 0;
219  
220  	if (extended_time(event)) {
221  		/* time extends include the data event after it */
222  		len = RB_LEN_TIME_EXTEND;
223  		event = skip_time_extend(event);
224  	}
225  	return len + rb_event_length(event);
226  }
227  
228  /**
229   * ring_buffer_event_length - return the length of the event
230   * @event: the event to get the length of
231   *
232   * Returns the size of the data load of a data event.
233   * If the event is something other than a data event, it
234   * returns the size of the event itself. With the exception
235   * of a TIME EXTEND, where it still returns the size of the
236   * data load of the data event after it.
237   */
ring_buffer_event_length(struct ring_buffer_event * event)238  unsigned ring_buffer_event_length(struct ring_buffer_event *event)
239  {
240  	unsigned length;
241  
242  	if (extended_time(event))
243  		event = skip_time_extend(event);
244  
245  	length = rb_event_length(event);
246  	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
247  		return length;
248  	length -= RB_EVNT_HDR_SIZE;
249  	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
250                  length -= sizeof(event->array[0]);
251  	return length;
252  }
253  EXPORT_SYMBOL_GPL(ring_buffer_event_length);
254  
255  /* inline for ring buffer fast paths */
256  static __always_inline void *
rb_event_data(struct ring_buffer_event * event)257  rb_event_data(struct ring_buffer_event *event)
258  {
259  	if (extended_time(event))
260  		event = skip_time_extend(event);
261  	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
262  	/* If length is in len field, then array[0] has the data */
263  	if (event->type_len)
264  		return (void *)&event->array[0];
265  	/* Otherwise length is in array[0] and array[1] has the data */
266  	return (void *)&event->array[1];
267  }
268  
269  /**
270   * ring_buffer_event_data - return the data of the event
271   * @event: the event to get the data from
272   */
ring_buffer_event_data(struct ring_buffer_event * event)273  void *ring_buffer_event_data(struct ring_buffer_event *event)
274  {
275  	return rb_event_data(event);
276  }
277  EXPORT_SYMBOL_GPL(ring_buffer_event_data);
278  
279  #define for_each_buffer_cpu(buffer, cpu)		\
280  	for_each_cpu(cpu, buffer->cpumask)
281  
282  #define for_each_online_buffer_cpu(buffer, cpu)		\
283  	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
284  
285  #define TS_SHIFT	27
286  #define TS_MASK		((1ULL << TS_SHIFT) - 1)
287  #define TS_DELTA_TEST	(~TS_MASK)
288  
289  /**
290   * ring_buffer_event_time_stamp - return the event's extended timestamp
291   * @event: the event to get the timestamp of
292   *
293   * Returns the extended timestamp associated with a data event.
294   * An extended time_stamp is a 64-bit timestamp represented
295   * internally in a special way that makes the best use of space
296   * contained within a ring buffer event.  This function decodes
297   * it and maps it to a straight u64 value.
298   */
ring_buffer_event_time_stamp(struct ring_buffer_event * event)299  u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
300  {
301  	u64 ts;
302  
303  	ts = event->array[0];
304  	ts <<= TS_SHIFT;
305  	ts += event->time_delta;
306  
307  	return ts;
308  }
309  
310  /* Flag when events were overwritten */
311  #define RB_MISSED_EVENTS	(1 << 31)
312  /* Missed count stored at end */
313  #define RB_MISSED_STORED	(1 << 30)
314  
315  struct buffer_data_page {
316  	u64		 time_stamp;	/* page time stamp */
317  	local_t		 commit;	/* write committed index */
318  	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
319  };
320  
321  /*
322   * Note, the buffer_page list must be first. The buffer pages
323   * are allocated in cache lines, which means that each buffer
324   * page will be at the beginning of a cache line, and thus
325   * the least significant bits will be zero. We use this to
326   * add flags in the list struct pointers, to make the ring buffer
327   * lockless.
328   */
329  struct buffer_page {
330  	struct list_head list;		/* list of buffer pages */
331  	local_t		 write;		/* index for next write */
332  	unsigned	 read;		/* index for next read */
333  	local_t		 entries;	/* entries on this page */
334  	unsigned long	 real_end;	/* real end of data */
335  	struct buffer_data_page *page;	/* Actual data page */
336  };
337  
338  /*
339   * The buffer page counters, write and entries, must be reset
340   * atomically when crossing page boundaries. To synchronize this
341   * update, two counters are inserted into the number. One is
342   * the actual counter for the write position or count on the page.
343   *
344   * The other is a counter of updaters. Before an update happens
345   * the update partition of the counter is incremented. This will
346   * allow the updater to update the counter atomically.
347   *
348   * The counter is 20 bits, and the state data is 12.
349   */
350  #define RB_WRITE_MASK		0xfffff
351  #define RB_WRITE_INTCNT		(1 << 20)
352  
rb_init_page(struct buffer_data_page * bpage)353  static void rb_init_page(struct buffer_data_page *bpage)
354  {
355  	local_set(&bpage->commit, 0);
356  }
357  
358  /*
359   * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
360   * this issue out.
361   */
free_buffer_page(struct buffer_page * bpage)362  static void free_buffer_page(struct buffer_page *bpage)
363  {
364  	free_page((unsigned long)bpage->page);
365  	kfree(bpage);
366  }
367  
368  /*
369   * We need to fit the time_stamp delta into 27 bits.
370   */
test_time_stamp(u64 delta)371  static inline int test_time_stamp(u64 delta)
372  {
373  	if (delta & TS_DELTA_TEST)
374  		return 1;
375  	return 0;
376  }
377  
378  #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
379  
380  /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
381  #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
382  
ring_buffer_print_page_header(struct trace_seq * s)383  int ring_buffer_print_page_header(struct trace_seq *s)
384  {
385  	struct buffer_data_page field;
386  
387  	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
388  			 "offset:0;\tsize:%u;\tsigned:%u;\n",
389  			 (unsigned int)sizeof(field.time_stamp),
390  			 (unsigned int)is_signed_type(u64));
391  
392  	trace_seq_printf(s, "\tfield: local_t commit;\t"
393  			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
394  			 (unsigned int)offsetof(typeof(field), commit),
395  			 (unsigned int)sizeof(field.commit),
396  			 (unsigned int)is_signed_type(long));
397  
398  	trace_seq_printf(s, "\tfield: int overwrite;\t"
399  			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
400  			 (unsigned int)offsetof(typeof(field), commit),
401  			 1,
402  			 (unsigned int)is_signed_type(long));
403  
404  	trace_seq_printf(s, "\tfield: char data;\t"
405  			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406  			 (unsigned int)offsetof(typeof(field), data),
407  			 (unsigned int)BUF_PAGE_SIZE,
408  			 (unsigned int)is_signed_type(char));
409  
410  	return !trace_seq_has_overflowed(s);
411  }
412  
413  struct rb_irq_work {
414  	struct irq_work			work;
415  	wait_queue_head_t		waiters;
416  	wait_queue_head_t		full_waiters;
417  	long				wait_index;
418  	bool				waiters_pending;
419  	bool				full_waiters_pending;
420  	bool				wakeup_full;
421  };
422  
423  /*
424   * Structure to hold event state and handle nested events.
425   */
426  struct rb_event_info {
427  	u64			ts;
428  	u64			delta;
429  	u64			before;
430  	u64			after;
431  	unsigned long		length;
432  	struct buffer_page	*tail_page;
433  	int			add_timestamp;
434  };
435  
436  /*
437   * Used for the add_timestamp
438   *  NONE
439   *  EXTEND - wants a time extend
440   *  ABSOLUTE - the buffer requests all events to have absolute time stamps
441   *  FORCE - force a full time stamp.
442   */
443  enum {
444  	RB_ADD_STAMP_NONE		= 0,
445  	RB_ADD_STAMP_EXTEND		= BIT(1),
446  	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
447  	RB_ADD_STAMP_FORCE		= BIT(3)
448  };
449  /*
450   * Used for which event context the event is in.
451   *  TRANSITION = 0
452   *  NMI     = 1
453   *  IRQ     = 2
454   *  SOFTIRQ = 3
455   *  NORMAL  = 4
456   *
457   * See trace_recursive_lock() comment below for more details.
458   */
459  enum {
460  	RB_CTX_TRANSITION,
461  	RB_CTX_NMI,
462  	RB_CTX_IRQ,
463  	RB_CTX_SOFTIRQ,
464  	RB_CTX_NORMAL,
465  	RB_CTX_MAX
466  };
467  
468  #if BITS_PER_LONG == 32
469  #define RB_TIME_32
470  #endif
471  
472  /* To test on 64 bit machines */
473  //#define RB_TIME_32
474  
475  #ifdef RB_TIME_32
476  
477  struct rb_time_struct {
478  	local_t		cnt;
479  	local_t		top;
480  	local_t		bottom;
481  };
482  #else
483  #include <asm/local64.h>
484  struct rb_time_struct {
485  	local64_t	time;
486  };
487  #endif
488  typedef struct rb_time_struct rb_time_t;
489  
490  /*
491   * head_page == tail_page && head == tail then buffer is empty.
492   */
493  struct ring_buffer_per_cpu {
494  	int				cpu;
495  	atomic_t			record_disabled;
496  	atomic_t			resize_disabled;
497  	struct trace_buffer	*buffer;
498  	raw_spinlock_t			reader_lock;	/* serialize readers */
499  	arch_spinlock_t			lock;
500  	struct lock_class_key		lock_key;
501  	struct buffer_data_page		*free_page;
502  	unsigned long			nr_pages;
503  	unsigned int			current_context;
504  	struct list_head		*pages;
505  	struct buffer_page		*head_page;	/* read from head */
506  	struct buffer_page		*tail_page;	/* write to tail */
507  	struct buffer_page		*commit_page;	/* committed pages */
508  	struct buffer_page		*reader_page;
509  	unsigned long			lost_events;
510  	unsigned long			last_overrun;
511  	unsigned long			nest;
512  	local_t				entries_bytes;
513  	local_t				entries;
514  	local_t				overrun;
515  	local_t				commit_overrun;
516  	local_t				dropped_events;
517  	local_t				committing;
518  	local_t				commits;
519  	local_t				pages_touched;
520  	local_t				pages_lost;
521  	local_t				pages_read;
522  	long				last_pages_touch;
523  	size_t				shortest_full;
524  	unsigned long			read;
525  	unsigned long			read_bytes;
526  	rb_time_t			write_stamp;
527  	rb_time_t			before_stamp;
528  	u64				read_stamp;
529  	/* ring buffer pages to update, > 0 to add, < 0 to remove */
530  	long				nr_pages_to_update;
531  	struct list_head		new_pages; /* new pages to add */
532  	struct work_struct		update_pages_work;
533  	struct completion		update_done;
534  
535  	struct rb_irq_work		irq_work;
536  };
537  
538  struct trace_buffer {
539  	unsigned			flags;
540  	int				cpus;
541  	atomic_t			record_disabled;
542  	cpumask_var_t			cpumask;
543  
544  	struct lock_class_key		*reader_lock_key;
545  
546  	struct mutex			mutex;
547  
548  	struct ring_buffer_per_cpu	**buffers;
549  
550  	struct hlist_node		node;
551  	u64				(*clock)(void);
552  
553  	struct rb_irq_work		irq_work;
554  	bool				time_stamp_abs;
555  };
556  
557  struct ring_buffer_iter {
558  	struct ring_buffer_per_cpu	*cpu_buffer;
559  	unsigned long			head;
560  	unsigned long			next_event;
561  	struct buffer_page		*head_page;
562  	struct buffer_page		*cache_reader_page;
563  	unsigned long			cache_read;
564  	u64				read_stamp;
565  	u64				page_stamp;
566  	struct ring_buffer_event	*event;
567  	int				missed_events;
568  };
569  
570  #ifdef RB_TIME_32
571  
572  /*
573   * On 32 bit machines, local64_t is very expensive. As the ring
574   * buffer doesn't need all the features of a true 64 bit atomic,
575   * on 32 bit, it uses these functions (64 still uses local64_t).
576   *
577   * For the ring buffer, 64 bit required operations for the time is
578   * the following:
579   *
580   *  - Only need 59 bits (uses 60 to make it even).
581   *  - Reads may fail if it interrupted a modification of the time stamp.
582   *      It will succeed if it did not interrupt another write even if
583   *      the read itself is interrupted by a write.
584   *      It returns whether it was successful or not.
585   *
586   *  - Writes always succeed and will overwrite other writes and writes
587   *      that were done by events interrupting the current write.
588   *
589   *  - A write followed by a read of the same time stamp will always succeed,
590   *      but may not contain the same value.
591   *
592   *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
593   *      Other than that, it acts like a normal cmpxchg.
594   *
595   * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
596   *  (bottom being the least significant 30 bits of the 60 bit time stamp).
597   *
598   * The two most significant bits of each half holds a 2 bit counter (0-3).
599   * Each update will increment this counter by one.
600   * When reading the top and bottom, if the two counter bits match then the
601   *  top and bottom together make a valid 60 bit number.
602   */
603  #define RB_TIME_SHIFT	30
604  #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
605  
rb_time_cnt(unsigned long val)606  static inline int rb_time_cnt(unsigned long val)
607  {
608  	return (val >> RB_TIME_SHIFT) & 3;
609  }
610  
rb_time_val(unsigned long top,unsigned long bottom)611  static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
612  {
613  	u64 val;
614  
615  	val = top & RB_TIME_VAL_MASK;
616  	val <<= RB_TIME_SHIFT;
617  	val |= bottom & RB_TIME_VAL_MASK;
618  
619  	return val;
620  }
621  
__rb_time_read(rb_time_t * t,u64 * ret,unsigned long * cnt)622  static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
623  {
624  	unsigned long top, bottom;
625  	unsigned long c;
626  
627  	/*
628  	 * If the read is interrupted by a write, then the cnt will
629  	 * be different. Loop until both top and bottom have been read
630  	 * without interruption.
631  	 */
632  	do {
633  		c = local_read(&t->cnt);
634  		top = local_read(&t->top);
635  		bottom = local_read(&t->bottom);
636  	} while (c != local_read(&t->cnt));
637  
638  	*cnt = rb_time_cnt(top);
639  
640  	/* If top and bottom counts don't match, this interrupted a write */
641  	if (*cnt != rb_time_cnt(bottom))
642  		return false;
643  
644  	*ret = rb_time_val(top, bottom);
645  	return true;
646  }
647  
rb_time_read(rb_time_t * t,u64 * ret)648  static bool rb_time_read(rb_time_t *t, u64 *ret)
649  {
650  	unsigned long cnt;
651  
652  	return __rb_time_read(t, ret, &cnt);
653  }
654  
rb_time_val_cnt(unsigned long val,unsigned long cnt)655  static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
656  {
657  	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
658  }
659  
rb_time_split(u64 val,unsigned long * top,unsigned long * bottom)660  static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
661  {
662  	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
663  	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
664  }
665  
rb_time_val_set(local_t * t,unsigned long val,unsigned long cnt)666  static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
667  {
668  	val = rb_time_val_cnt(val, cnt);
669  	local_set(t, val);
670  }
671  
rb_time_set(rb_time_t * t,u64 val)672  static void rb_time_set(rb_time_t *t, u64 val)
673  {
674  	unsigned long cnt, top, bottom;
675  
676  	rb_time_split(val, &top, &bottom);
677  
678  	/* Writes always succeed with a valid number even if it gets interrupted. */
679  	do {
680  		cnt = local_inc_return(&t->cnt);
681  		rb_time_val_set(&t->top, top, cnt);
682  		rb_time_val_set(&t->bottom, bottom, cnt);
683  	} while (cnt != local_read(&t->cnt));
684  }
685  
686  static inline bool
rb_time_read_cmpxchg(local_t * l,unsigned long expect,unsigned long set)687  rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
688  {
689  	unsigned long ret;
690  
691  	ret = local_cmpxchg(l, expect, set);
692  	return ret == expect;
693  }
694  
rb_time_cmpxchg(rb_time_t * t,u64 expect,u64 set)695  static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
696  {
697  	unsigned long cnt, top, bottom;
698  	unsigned long cnt2, top2, bottom2;
699  	u64 val;
700  
701  	/* The cmpxchg always fails if it interrupted an update */
702  	 if (!__rb_time_read(t, &val, &cnt2))
703  		 return false;
704  
705  	 if (val != expect)
706  		 return false;
707  
708  	 cnt = local_read(&t->cnt);
709  	 if ((cnt & 3) != cnt2)
710  		 return false;
711  
712  	 cnt2 = cnt + 1;
713  
714  	 rb_time_split(val, &top, &bottom);
715  	 top = rb_time_val_cnt(top, cnt);
716  	 bottom = rb_time_val_cnt(bottom, cnt);
717  
718  	 rb_time_split(set, &top2, &bottom2);
719  	 top2 = rb_time_val_cnt(top2, cnt2);
720  	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
721  
722  	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
723  		return false;
724  	if (!rb_time_read_cmpxchg(&t->top, top, top2))
725  		return false;
726  	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
727  		return false;
728  	return true;
729  }
730  
731  #else /* 64 bits */
732  
733  /* local64_t always succeeds */
734  
rb_time_read(rb_time_t * t,u64 * ret)735  static inline bool rb_time_read(rb_time_t *t, u64 *ret)
736  {
737  	*ret = local64_read(&t->time);
738  	return true;
739  }
rb_time_set(rb_time_t * t,u64 val)740  static void rb_time_set(rb_time_t *t, u64 val)
741  {
742  	local64_set(&t->time, val);
743  }
744  
rb_time_cmpxchg(rb_time_t * t,u64 expect,u64 set)745  static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
746  {
747  	u64 val;
748  	val = local64_cmpxchg(&t->time, expect, set);
749  	return val == expect;
750  }
751  #endif
752  
753  /**
754   * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
755   * @buffer: The ring_buffer to get the number of pages from
756   * @cpu: The cpu of the ring_buffer to get the number of pages from
757   *
758   * Returns the number of pages used by a per_cpu buffer of the ring buffer.
759   */
ring_buffer_nr_pages(struct trace_buffer * buffer,int cpu)760  size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
761  {
762  	return buffer->buffers[cpu]->nr_pages;
763  }
764  
765  /**
766   * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
767   * @buffer: The ring_buffer to get the number of pages from
768   * @cpu: The cpu of the ring_buffer to get the number of pages from
769   *
770   * Returns the number of pages that have content in the ring buffer.
771   */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)772  size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
773  {
774  	size_t read;
775  	size_t lost;
776  	size_t cnt;
777  
778  	read = local_read(&buffer->buffers[cpu]->pages_read);
779  	lost = local_read(&buffer->buffers[cpu]->pages_lost);
780  	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
781  
782  	if (WARN_ON_ONCE(cnt < lost))
783  		return 0;
784  
785  	cnt -= lost;
786  
787  	/* The reader can read an empty page, but not more than that */
788  	if (cnt < read) {
789  		WARN_ON_ONCE(read > cnt + 1);
790  		return 0;
791  	}
792  
793  	return cnt - read;
794  }
795  
full_hit(struct trace_buffer * buffer,int cpu,int full)796  static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
797  {
798  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
799  	size_t nr_pages;
800  	size_t dirty;
801  
802  	nr_pages = cpu_buffer->nr_pages;
803  	if (!nr_pages || !full)
804  		return true;
805  
806  	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
807  
808  	return (dirty * 100) > (full * nr_pages);
809  }
810  
811  /*
812   * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
813   *
814   * Schedules a delayed work to wake up any task that is blocked on the
815   * ring buffer waiters queue.
816   */
rb_wake_up_waiters(struct irq_work * work)817  static void rb_wake_up_waiters(struct irq_work *work)
818  {
819  	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
820  
821  	wake_up_all(&rbwork->waiters);
822  	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
823  		rbwork->wakeup_full = false;
824  		rbwork->full_waiters_pending = false;
825  		wake_up_all(&rbwork->full_waiters);
826  	}
827  }
828  
829  /**
830   * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
831   * @buffer: The ring buffer to wake waiters on
832   *
833   * In the case of a file that represents a ring buffer is closing,
834   * it is prudent to wake up any waiters that are on this.
835   */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)836  void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
837  {
838  	struct ring_buffer_per_cpu *cpu_buffer;
839  	struct rb_irq_work *rbwork;
840  
841  	if (cpu == RING_BUFFER_ALL_CPUS) {
842  
843  		/* Wake up individual ones too. One level recursion */
844  		for_each_buffer_cpu(buffer, cpu)
845  			ring_buffer_wake_waiters(buffer, cpu);
846  
847  		rbwork = &buffer->irq_work;
848  	} else {
849  		cpu_buffer = buffer->buffers[cpu];
850  		rbwork = &cpu_buffer->irq_work;
851  	}
852  
853  	rbwork->wait_index++;
854  	/* make sure the waiters see the new index */
855  	smp_wmb();
856  
857  	rb_wake_up_waiters(&rbwork->work);
858  }
859  
860  /**
861   * ring_buffer_wait - wait for input to the ring buffer
862   * @buffer: buffer to wait on
863   * @cpu: the cpu buffer to wait on
864   * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
865   *
866   * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
867   * as data is added to any of the @buffer's cpu buffers. Otherwise
868   * it will wait for data to be added to a specific cpu buffer.
869   */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full)870  int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
871  {
872  	struct ring_buffer_per_cpu *cpu_buffer;
873  	DEFINE_WAIT(wait);
874  	struct rb_irq_work *work;
875  	long wait_index;
876  	int ret = 0;
877  
878  	/*
879  	 * Depending on what the caller is waiting for, either any
880  	 * data in any cpu buffer, or a specific buffer, put the
881  	 * caller on the appropriate wait queue.
882  	 */
883  	if (cpu == RING_BUFFER_ALL_CPUS) {
884  		work = &buffer->irq_work;
885  		/* Full only makes sense on per cpu reads */
886  		full = 0;
887  	} else {
888  		if (!cpumask_test_cpu(cpu, buffer->cpumask))
889  			return -ENODEV;
890  		cpu_buffer = buffer->buffers[cpu];
891  		work = &cpu_buffer->irq_work;
892  	}
893  
894  	wait_index = READ_ONCE(work->wait_index);
895  
896  	while (true) {
897  		if (full)
898  			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
899  		else
900  			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
901  
902  		/*
903  		 * The events can happen in critical sections where
904  		 * checking a work queue can cause deadlocks.
905  		 * After adding a task to the queue, this flag is set
906  		 * only to notify events to try to wake up the queue
907  		 * using irq_work.
908  		 *
909  		 * We don't clear it even if the buffer is no longer
910  		 * empty. The flag only causes the next event to run
911  		 * irq_work to do the work queue wake up. The worse
912  		 * that can happen if we race with !trace_empty() is that
913  		 * an event will cause an irq_work to try to wake up
914  		 * an empty queue.
915  		 *
916  		 * There's no reason to protect this flag either, as
917  		 * the work queue and irq_work logic will do the necessary
918  		 * synchronization for the wake ups. The only thing
919  		 * that is necessary is that the wake up happens after
920  		 * a task has been queued. It's OK for spurious wake ups.
921  		 */
922  		if (full)
923  			work->full_waiters_pending = true;
924  		else
925  			work->waiters_pending = true;
926  
927  		if (signal_pending(current)) {
928  			ret = -EINTR;
929  			break;
930  		}
931  
932  		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
933  			break;
934  
935  		if (cpu != RING_BUFFER_ALL_CPUS &&
936  		    !ring_buffer_empty_cpu(buffer, cpu)) {
937  			unsigned long flags;
938  			bool pagebusy;
939  			bool done;
940  
941  			if (!full)
942  				break;
943  
944  			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
945  			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
946  			done = !pagebusy && full_hit(buffer, cpu, full);
947  
948  			if (!cpu_buffer->shortest_full ||
949  			    cpu_buffer->shortest_full > full)
950  				cpu_buffer->shortest_full = full;
951  			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
952  			if (done)
953  				break;
954  		}
955  
956  		schedule();
957  
958  		/* Make sure to see the new wait index */
959  		smp_rmb();
960  		if (wait_index != work->wait_index)
961  			break;
962  	}
963  
964  	if (full)
965  		finish_wait(&work->full_waiters, &wait);
966  	else
967  		finish_wait(&work->waiters, &wait);
968  
969  	return ret;
970  }
971  
972  /**
973   * ring_buffer_poll_wait - poll on buffer input
974   * @buffer: buffer to wait on
975   * @cpu: the cpu buffer to wait on
976   * @filp: the file descriptor
977   * @poll_table: The poll descriptor
978   * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
979   *
980   * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
981   * as data is added to any of the @buffer's cpu buffers. Otherwise
982   * it will wait for data to be added to a specific cpu buffer.
983   *
984   * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
985   * zero otherwise.
986   */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)987  __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
988  			  struct file *filp, poll_table *poll_table, int full)
989  {
990  	struct ring_buffer_per_cpu *cpu_buffer;
991  	struct rb_irq_work *work;
992  
993  	if (cpu == RING_BUFFER_ALL_CPUS) {
994  		work = &buffer->irq_work;
995  		full = 0;
996  	} else {
997  		if (!cpumask_test_cpu(cpu, buffer->cpumask))
998  			return -EINVAL;
999  
1000  		cpu_buffer = buffer->buffers[cpu];
1001  		work = &cpu_buffer->irq_work;
1002  	}
1003  
1004  	if (full) {
1005  		poll_wait(filp, &work->full_waiters, poll_table);
1006  		work->full_waiters_pending = true;
1007  	} else {
1008  		poll_wait(filp, &work->waiters, poll_table);
1009  		work->waiters_pending = true;
1010  	}
1011  
1012  	/*
1013  	 * There's a tight race between setting the waiters_pending and
1014  	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1015  	 * is set, the next event will wake the task up, but we can get stuck
1016  	 * if there's only a single event in.
1017  	 *
1018  	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1019  	 * but adding a memory barrier to all events will cause too much of a
1020  	 * performance hit in the fast path.  We only need a memory barrier when
1021  	 * the buffer goes from empty to having content.  But as this race is
1022  	 * extremely small, and it's not a problem if another event comes in, we
1023  	 * will fix it later.
1024  	 */
1025  	smp_mb();
1026  
1027  	if (full)
1028  		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1029  
1030  	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1031  	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1032  		return EPOLLIN | EPOLLRDNORM;
1033  	return 0;
1034  }
1035  
1036  /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1037  #define RB_WARN_ON(b, cond)						\
1038  	({								\
1039  		int _____ret = unlikely(cond);				\
1040  		if (_____ret) {						\
1041  			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1042  				struct ring_buffer_per_cpu *__b =	\
1043  					(void *)b;			\
1044  				atomic_inc(&__b->buffer->record_disabled); \
1045  			} else						\
1046  				atomic_inc(&b->record_disabled);	\
1047  			WARN_ON(1);					\
1048  		}							\
1049  		_____ret;						\
1050  	})
1051  
1052  /* Up this if you want to test the TIME_EXTENTS and normalization */
1053  #define DEBUG_SHIFT 0
1054  
rb_time_stamp(struct trace_buffer * buffer)1055  static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1056  {
1057  	u64 ts;
1058  
1059  	/* Skip retpolines :-( */
1060  	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1061  		ts = trace_clock_local();
1062  	else
1063  		ts = buffer->clock();
1064  
1065  	/* shift to debug/test normalization and TIME_EXTENTS */
1066  	return ts << DEBUG_SHIFT;
1067  }
1068  
ring_buffer_time_stamp(struct trace_buffer * buffer,int cpu)1069  u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
1070  {
1071  	u64 time;
1072  
1073  	preempt_disable_notrace();
1074  	time = rb_time_stamp(buffer);
1075  	preempt_enable_notrace();
1076  
1077  	return time;
1078  }
1079  EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1080  
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1081  void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1082  				      int cpu, u64 *ts)
1083  {
1084  	/* Just stupid testing the normalize function and deltas */
1085  	*ts >>= DEBUG_SHIFT;
1086  }
1087  EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1088  
1089  /*
1090   * Making the ring buffer lockless makes things tricky.
1091   * Although writes only happen on the CPU that they are on,
1092   * and they only need to worry about interrupts. Reads can
1093   * happen on any CPU.
1094   *
1095   * The reader page is always off the ring buffer, but when the
1096   * reader finishes with a page, it needs to swap its page with
1097   * a new one from the buffer. The reader needs to take from
1098   * the head (writes go to the tail). But if a writer is in overwrite
1099   * mode and wraps, it must push the head page forward.
1100   *
1101   * Here lies the problem.
1102   *
1103   * The reader must be careful to replace only the head page, and
1104   * not another one. As described at the top of the file in the
1105   * ASCII art, the reader sets its old page to point to the next
1106   * page after head. It then sets the page after head to point to
1107   * the old reader page. But if the writer moves the head page
1108   * during this operation, the reader could end up with the tail.
1109   *
1110   * We use cmpxchg to help prevent this race. We also do something
1111   * special with the page before head. We set the LSB to 1.
1112   *
1113   * When the writer must push the page forward, it will clear the
1114   * bit that points to the head page, move the head, and then set
1115   * the bit that points to the new head page.
1116   *
1117   * We also don't want an interrupt coming in and moving the head
1118   * page on another writer. Thus we use the second LSB to catch
1119   * that too. Thus:
1120   *
1121   * head->list->prev->next        bit 1          bit 0
1122   *                              -------        -------
1123   * Normal page                     0              0
1124   * Points to head page             0              1
1125   * New head page                   1              0
1126   *
1127   * Note we can not trust the prev pointer of the head page, because:
1128   *
1129   * +----+       +-----+        +-----+
1130   * |    |------>|  T  |---X--->|  N  |
1131   * |    |<------|     |        |     |
1132   * +----+       +-----+        +-----+
1133   *   ^                           ^ |
1134   *   |          +-----+          | |
1135   *   +----------|  R  |----------+ |
1136   *              |     |<-----------+
1137   *              +-----+
1138   *
1139   * Key:  ---X-->  HEAD flag set in pointer
1140   *         T      Tail page
1141   *         R      Reader page
1142   *         N      Next page
1143   *
1144   * (see __rb_reserve_next() to see where this happens)
1145   *
1146   *  What the above shows is that the reader just swapped out
1147   *  the reader page with a page in the buffer, but before it
1148   *  could make the new header point back to the new page added
1149   *  it was preempted by a writer. The writer moved forward onto
1150   *  the new page added by the reader and is about to move forward
1151   *  again.
1152   *
1153   *  You can see, it is legitimate for the previous pointer of
1154   *  the head (or any page) not to point back to itself. But only
1155   *  temporarily.
1156   */
1157  
1158  #define RB_PAGE_NORMAL		0UL
1159  #define RB_PAGE_HEAD		1UL
1160  #define RB_PAGE_UPDATE		2UL
1161  
1162  
1163  #define RB_FLAG_MASK		3UL
1164  
1165  /* PAGE_MOVED is not part of the mask */
1166  #define RB_PAGE_MOVED		4UL
1167  
1168  /*
1169   * rb_list_head - remove any bit
1170   */
rb_list_head(struct list_head * list)1171  static struct list_head *rb_list_head(struct list_head *list)
1172  {
1173  	unsigned long val = (unsigned long)list;
1174  
1175  	return (struct list_head *)(val & ~RB_FLAG_MASK);
1176  }
1177  
1178  /*
1179   * rb_is_head_page - test if the given page is the head page
1180   *
1181   * Because the reader may move the head_page pointer, we can
1182   * not trust what the head page is (it may be pointing to
1183   * the reader page). But if the next page is a header page,
1184   * its flags will be non zero.
1185   */
1186  static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)1187  rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1188  		struct buffer_page *page, struct list_head *list)
1189  {
1190  	unsigned long val;
1191  
1192  	val = (unsigned long)list->next;
1193  
1194  	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1195  		return RB_PAGE_MOVED;
1196  
1197  	return val & RB_FLAG_MASK;
1198  }
1199  
1200  /*
1201   * rb_is_reader_page
1202   *
1203   * The unique thing about the reader page, is that, if the
1204   * writer is ever on it, the previous pointer never points
1205   * back to the reader page.
1206   */
rb_is_reader_page(struct buffer_page * page)1207  static bool rb_is_reader_page(struct buffer_page *page)
1208  {
1209  	struct list_head *list = page->list.prev;
1210  
1211  	return rb_list_head(list->next) != &page->list;
1212  }
1213  
1214  /*
1215   * rb_set_list_to_head - set a list_head to be pointing to head.
1216   */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1217  static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1218  				struct list_head *list)
1219  {
1220  	unsigned long *ptr;
1221  
1222  	ptr = (unsigned long *)&list->next;
1223  	*ptr |= RB_PAGE_HEAD;
1224  	*ptr &= ~RB_PAGE_UPDATE;
1225  }
1226  
1227  /*
1228   * rb_head_page_activate - sets up head page
1229   */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1230  static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1231  {
1232  	struct buffer_page *head;
1233  
1234  	head = cpu_buffer->head_page;
1235  	if (!head)
1236  		return;
1237  
1238  	/*
1239  	 * Set the previous list pointer to have the HEAD flag.
1240  	 */
1241  	rb_set_list_to_head(cpu_buffer, head->list.prev);
1242  }
1243  
rb_list_head_clear(struct list_head * list)1244  static void rb_list_head_clear(struct list_head *list)
1245  {
1246  	unsigned long *ptr = (unsigned long *)&list->next;
1247  
1248  	*ptr &= ~RB_FLAG_MASK;
1249  }
1250  
1251  /*
1252   * rb_head_page_deactivate - clears head page ptr (for free list)
1253   */
1254  static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1255  rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1256  {
1257  	struct list_head *hd;
1258  
1259  	/* Go through the whole list and clear any pointers found. */
1260  	rb_list_head_clear(cpu_buffer->pages);
1261  
1262  	list_for_each(hd, cpu_buffer->pages)
1263  		rb_list_head_clear(hd);
1264  }
1265  
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1266  static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1267  			    struct buffer_page *head,
1268  			    struct buffer_page *prev,
1269  			    int old_flag, int new_flag)
1270  {
1271  	struct list_head *list;
1272  	unsigned long val = (unsigned long)&head->list;
1273  	unsigned long ret;
1274  
1275  	list = &prev->list;
1276  
1277  	val &= ~RB_FLAG_MASK;
1278  
1279  	ret = cmpxchg((unsigned long *)&list->next,
1280  		      val | old_flag, val | new_flag);
1281  
1282  	/* check if the reader took the page */
1283  	if ((ret & ~RB_FLAG_MASK) != val)
1284  		return RB_PAGE_MOVED;
1285  
1286  	return ret & RB_FLAG_MASK;
1287  }
1288  
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1289  static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1290  				   struct buffer_page *head,
1291  				   struct buffer_page *prev,
1292  				   int old_flag)
1293  {
1294  	return rb_head_page_set(cpu_buffer, head, prev,
1295  				old_flag, RB_PAGE_UPDATE);
1296  }
1297  
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1298  static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1299  				 struct buffer_page *head,
1300  				 struct buffer_page *prev,
1301  				 int old_flag)
1302  {
1303  	return rb_head_page_set(cpu_buffer, head, prev,
1304  				old_flag, RB_PAGE_HEAD);
1305  }
1306  
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1307  static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1308  				   struct buffer_page *head,
1309  				   struct buffer_page *prev,
1310  				   int old_flag)
1311  {
1312  	return rb_head_page_set(cpu_buffer, head, prev,
1313  				old_flag, RB_PAGE_NORMAL);
1314  }
1315  
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)1316  static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1317  			       struct buffer_page **bpage)
1318  {
1319  	struct list_head *p = rb_list_head((*bpage)->list.next);
1320  
1321  	*bpage = list_entry(p, struct buffer_page, list);
1322  }
1323  
1324  static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1325  rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1326  {
1327  	struct buffer_page *head;
1328  	struct buffer_page *page;
1329  	struct list_head *list;
1330  	int i;
1331  
1332  	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1333  		return NULL;
1334  
1335  	/* sanity check */
1336  	list = cpu_buffer->pages;
1337  	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1338  		return NULL;
1339  
1340  	page = head = cpu_buffer->head_page;
1341  	/*
1342  	 * It is possible that the writer moves the header behind
1343  	 * where we started, and we miss in one loop.
1344  	 * A second loop should grab the header, but we'll do
1345  	 * three loops just because I'm paranoid.
1346  	 */
1347  	for (i = 0; i < 3; i++) {
1348  		do {
1349  			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1350  				cpu_buffer->head_page = page;
1351  				return page;
1352  			}
1353  			rb_inc_page(cpu_buffer, &page);
1354  		} while (page != head);
1355  	}
1356  
1357  	RB_WARN_ON(cpu_buffer, 1);
1358  
1359  	return NULL;
1360  }
1361  
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1362  static int rb_head_page_replace(struct buffer_page *old,
1363  				struct buffer_page *new)
1364  {
1365  	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1366  	unsigned long val;
1367  	unsigned long ret;
1368  
1369  	val = *ptr & ~RB_FLAG_MASK;
1370  	val |= RB_PAGE_HEAD;
1371  
1372  	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1373  
1374  	return ret == val;
1375  }
1376  
1377  /*
1378   * rb_tail_page_update - move the tail page forward
1379   */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1380  static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1381  			       struct buffer_page *tail_page,
1382  			       struct buffer_page *next_page)
1383  {
1384  	unsigned long old_entries;
1385  	unsigned long old_write;
1386  
1387  	/*
1388  	 * The tail page now needs to be moved forward.
1389  	 *
1390  	 * We need to reset the tail page, but without messing
1391  	 * with possible erasing of data brought in by interrupts
1392  	 * that have moved the tail page and are currently on it.
1393  	 *
1394  	 * We add a counter to the write field to denote this.
1395  	 */
1396  	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1397  	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1398  
1399  	local_inc(&cpu_buffer->pages_touched);
1400  	/*
1401  	 * Just make sure we have seen our old_write and synchronize
1402  	 * with any interrupts that come in.
1403  	 */
1404  	barrier();
1405  
1406  	/*
1407  	 * If the tail page is still the same as what we think
1408  	 * it is, then it is up to us to update the tail
1409  	 * pointer.
1410  	 */
1411  	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1412  		/* Zero the write counter */
1413  		unsigned long val = old_write & ~RB_WRITE_MASK;
1414  		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1415  
1416  		/*
1417  		 * This will only succeed if an interrupt did
1418  		 * not come in and change it. In which case, we
1419  		 * do not want to modify it.
1420  		 *
1421  		 * We add (void) to let the compiler know that we do not care
1422  		 * about the return value of these functions. We use the
1423  		 * cmpxchg to only update if an interrupt did not already
1424  		 * do it for us. If the cmpxchg fails, we don't care.
1425  		 */
1426  		(void)local_cmpxchg(&next_page->write, old_write, val);
1427  		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1428  
1429  		/*
1430  		 * No need to worry about races with clearing out the commit.
1431  		 * it only can increment when a commit takes place. But that
1432  		 * only happens in the outer most nested commit.
1433  		 */
1434  		local_set(&next_page->page->commit, 0);
1435  
1436  		/* Again, either we update tail_page or an interrupt does */
1437  		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1438  	}
1439  }
1440  
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1441  static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1442  			  struct buffer_page *bpage)
1443  {
1444  	unsigned long val = (unsigned long)bpage;
1445  
1446  	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1447  		return 1;
1448  
1449  	return 0;
1450  }
1451  
1452  /**
1453   * rb_check_list - make sure a pointer to a list has the last bits zero
1454   */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1455  static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1456  			 struct list_head *list)
1457  {
1458  	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1459  		return 1;
1460  	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1461  		return 1;
1462  	return 0;
1463  }
1464  
1465  /**
1466   * rb_check_pages - integrity check of buffer pages
1467   * @cpu_buffer: CPU buffer with pages to test
1468   *
1469   * As a safety measure we check to make sure the data pages have not
1470   * been corrupted.
1471   */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1472  static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1473  {
1474  	struct list_head *head = cpu_buffer->pages;
1475  	struct buffer_page *bpage, *tmp;
1476  
1477  	/* Reset the head page if it exists */
1478  	if (cpu_buffer->head_page)
1479  		rb_set_head_page(cpu_buffer);
1480  
1481  	rb_head_page_deactivate(cpu_buffer);
1482  
1483  	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1484  		return -1;
1485  	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1486  		return -1;
1487  
1488  	if (rb_check_list(cpu_buffer, head))
1489  		return -1;
1490  
1491  	list_for_each_entry_safe(bpage, tmp, head, list) {
1492  		if (RB_WARN_ON(cpu_buffer,
1493  			       bpage->list.next->prev != &bpage->list))
1494  			return -1;
1495  		if (RB_WARN_ON(cpu_buffer,
1496  			       bpage->list.prev->next != &bpage->list))
1497  			return -1;
1498  		if (rb_check_list(cpu_buffer, &bpage->list))
1499  			return -1;
1500  	}
1501  
1502  	rb_head_page_activate(cpu_buffer);
1503  
1504  	return 0;
1505  }
1506  
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1507  static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1508  {
1509  	struct buffer_page *bpage, *tmp;
1510  	bool user_thread = current->mm != NULL;
1511  	gfp_t mflags;
1512  	long i;
1513  
1514  	/*
1515  	 * Check if the available memory is there first.
1516  	 * Note, si_mem_available() only gives us a rough estimate of available
1517  	 * memory. It may not be accurate. But we don't care, we just want
1518  	 * to prevent doing any allocation when it is obvious that it is
1519  	 * not going to succeed.
1520  	 */
1521  	i = si_mem_available();
1522  	if (i < nr_pages)
1523  		return -ENOMEM;
1524  
1525  	/*
1526  	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1527  	 * gracefully without invoking oom-killer and the system is not
1528  	 * destabilized.
1529  	 */
1530  	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1531  
1532  	/*
1533  	 * If a user thread allocates too much, and si_mem_available()
1534  	 * reports there's enough memory, even though there is not.
1535  	 * Make sure the OOM killer kills this thread. This can happen
1536  	 * even with RETRY_MAYFAIL because another task may be doing
1537  	 * an allocation after this task has taken all memory.
1538  	 * This is the task the OOM killer needs to take out during this
1539  	 * loop, even if it was triggered by an allocation somewhere else.
1540  	 */
1541  	if (user_thread)
1542  		set_current_oom_origin();
1543  	for (i = 0; i < nr_pages; i++) {
1544  		struct page *page;
1545  
1546  		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1547  				    mflags, cpu_to_node(cpu));
1548  		if (!bpage)
1549  			goto free_pages;
1550  
1551  		list_add(&bpage->list, pages);
1552  
1553  		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1554  		if (!page)
1555  			goto free_pages;
1556  		bpage->page = page_address(page);
1557  		rb_init_page(bpage->page);
1558  
1559  		if (user_thread && fatal_signal_pending(current))
1560  			goto free_pages;
1561  	}
1562  	if (user_thread)
1563  		clear_current_oom_origin();
1564  
1565  	return 0;
1566  
1567  free_pages:
1568  	list_for_each_entry_safe(bpage, tmp, pages, list) {
1569  		list_del_init(&bpage->list);
1570  		free_buffer_page(bpage);
1571  	}
1572  	if (user_thread)
1573  		clear_current_oom_origin();
1574  
1575  	return -ENOMEM;
1576  }
1577  
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1578  static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1579  			     unsigned long nr_pages)
1580  {
1581  	LIST_HEAD(pages);
1582  
1583  	WARN_ON(!nr_pages);
1584  
1585  	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1586  		return -ENOMEM;
1587  
1588  	/*
1589  	 * The ring buffer page list is a circular list that does not
1590  	 * start and end with a list head. All page list items point to
1591  	 * other pages.
1592  	 */
1593  	cpu_buffer->pages = pages.next;
1594  	list_del(&pages);
1595  
1596  	cpu_buffer->nr_pages = nr_pages;
1597  
1598  	rb_check_pages(cpu_buffer);
1599  
1600  	return 0;
1601  }
1602  
1603  static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)1604  rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1605  {
1606  	struct ring_buffer_per_cpu *cpu_buffer;
1607  	struct buffer_page *bpage;
1608  	struct page *page;
1609  	int ret;
1610  
1611  	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1612  				  GFP_KERNEL, cpu_to_node(cpu));
1613  	if (!cpu_buffer)
1614  		return NULL;
1615  
1616  	cpu_buffer->cpu = cpu;
1617  	cpu_buffer->buffer = buffer;
1618  	raw_spin_lock_init(&cpu_buffer->reader_lock);
1619  	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1620  	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1621  	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1622  	init_completion(&cpu_buffer->update_done);
1623  	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1624  	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1625  	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1626  
1627  	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1628  			    GFP_KERNEL, cpu_to_node(cpu));
1629  	if (!bpage)
1630  		goto fail_free_buffer;
1631  
1632  	rb_check_bpage(cpu_buffer, bpage);
1633  
1634  	cpu_buffer->reader_page = bpage;
1635  	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1636  	if (!page)
1637  		goto fail_free_reader;
1638  	bpage->page = page_address(page);
1639  	rb_init_page(bpage->page);
1640  
1641  	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1642  	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1643  
1644  	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1645  	if (ret < 0)
1646  		goto fail_free_reader;
1647  
1648  	cpu_buffer->head_page
1649  		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1650  	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1651  
1652  	rb_head_page_activate(cpu_buffer);
1653  
1654  	return cpu_buffer;
1655  
1656   fail_free_reader:
1657  	free_buffer_page(cpu_buffer->reader_page);
1658  
1659   fail_free_buffer:
1660  	kfree(cpu_buffer);
1661  	return NULL;
1662  }
1663  
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1664  static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1665  {
1666  	struct list_head *head = cpu_buffer->pages;
1667  	struct buffer_page *bpage, *tmp;
1668  
1669  	free_buffer_page(cpu_buffer->reader_page);
1670  
1671  	if (head) {
1672  		rb_head_page_deactivate(cpu_buffer);
1673  
1674  		list_for_each_entry_safe(bpage, tmp, head, list) {
1675  			list_del_init(&bpage->list);
1676  			free_buffer_page(bpage);
1677  		}
1678  		bpage = list_entry(head, struct buffer_page, list);
1679  		free_buffer_page(bpage);
1680  	}
1681  
1682  	kfree(cpu_buffer);
1683  }
1684  
1685  /**
1686   * __ring_buffer_alloc - allocate a new ring_buffer
1687   * @size: the size in bytes per cpu that is needed.
1688   * @flags: attributes to set for the ring buffer.
1689   * @key: ring buffer reader_lock_key.
1690   *
1691   * Currently the only flag that is available is the RB_FL_OVERWRITE
1692   * flag. This flag means that the buffer will overwrite old data
1693   * when the buffer wraps. If this flag is not set, the buffer will
1694   * drop data when the tail hits the head.
1695   */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1696  struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1697  					struct lock_class_key *key)
1698  {
1699  	struct trace_buffer *buffer;
1700  	long nr_pages;
1701  	int bsize;
1702  	int cpu;
1703  	int ret;
1704  
1705  	/* keep it in its own cache line */
1706  	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1707  			 GFP_KERNEL);
1708  	if (!buffer)
1709  		return NULL;
1710  
1711  	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1712  		goto fail_free_buffer;
1713  
1714  	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1715  	buffer->flags = flags;
1716  	buffer->clock = trace_clock_local;
1717  	buffer->reader_lock_key = key;
1718  
1719  	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1720  	init_waitqueue_head(&buffer->irq_work.waiters);
1721  
1722  	/* need at least two pages */
1723  	if (nr_pages < 2)
1724  		nr_pages = 2;
1725  
1726  	buffer->cpus = nr_cpu_ids;
1727  
1728  	bsize = sizeof(void *) * nr_cpu_ids;
1729  	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1730  				  GFP_KERNEL);
1731  	if (!buffer->buffers)
1732  		goto fail_free_cpumask;
1733  
1734  	cpu = raw_smp_processor_id();
1735  	cpumask_set_cpu(cpu, buffer->cpumask);
1736  	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1737  	if (!buffer->buffers[cpu])
1738  		goto fail_free_buffers;
1739  
1740  	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1741  	if (ret < 0)
1742  		goto fail_free_buffers;
1743  
1744  	mutex_init(&buffer->mutex);
1745  
1746  	return buffer;
1747  
1748   fail_free_buffers:
1749  	for_each_buffer_cpu(buffer, cpu) {
1750  		if (buffer->buffers[cpu])
1751  			rb_free_cpu_buffer(buffer->buffers[cpu]);
1752  	}
1753  	kfree(buffer->buffers);
1754  
1755   fail_free_cpumask:
1756  	free_cpumask_var(buffer->cpumask);
1757  
1758   fail_free_buffer:
1759  	kfree(buffer);
1760  	return NULL;
1761  }
1762  EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1763  
1764  /**
1765   * ring_buffer_free - free a ring buffer.
1766   * @buffer: the buffer to free.
1767   */
1768  void
ring_buffer_free(struct trace_buffer * buffer)1769  ring_buffer_free(struct trace_buffer *buffer)
1770  {
1771  	int cpu;
1772  
1773  	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1774  
1775  	for_each_buffer_cpu(buffer, cpu)
1776  		rb_free_cpu_buffer(buffer->buffers[cpu]);
1777  
1778  	kfree(buffer->buffers);
1779  	free_cpumask_var(buffer->cpumask);
1780  
1781  	kfree(buffer);
1782  }
1783  EXPORT_SYMBOL_GPL(ring_buffer_free);
1784  
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))1785  void ring_buffer_set_clock(struct trace_buffer *buffer,
1786  			   u64 (*clock)(void))
1787  {
1788  	buffer->clock = clock;
1789  }
1790  
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)1791  void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1792  {
1793  	buffer->time_stamp_abs = abs;
1794  }
1795  
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)1796  bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1797  {
1798  	return buffer->time_stamp_abs;
1799  }
1800  
1801  static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1802  
rb_page_entries(struct buffer_page * bpage)1803  static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1804  {
1805  	return local_read(&bpage->entries) & RB_WRITE_MASK;
1806  }
1807  
rb_page_write(struct buffer_page * bpage)1808  static inline unsigned long rb_page_write(struct buffer_page *bpage)
1809  {
1810  	return local_read(&bpage->write) & RB_WRITE_MASK;
1811  }
1812  
1813  static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1814  rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1815  {
1816  	struct list_head *tail_page, *to_remove, *next_page;
1817  	struct buffer_page *to_remove_page, *tmp_iter_page;
1818  	struct buffer_page *last_page, *first_page;
1819  	unsigned long nr_removed;
1820  	unsigned long head_bit;
1821  	int page_entries;
1822  
1823  	head_bit = 0;
1824  
1825  	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1826  	atomic_inc(&cpu_buffer->record_disabled);
1827  	/*
1828  	 * We don't race with the readers since we have acquired the reader
1829  	 * lock. We also don't race with writers after disabling recording.
1830  	 * This makes it easy to figure out the first and the last page to be
1831  	 * removed from the list. We unlink all the pages in between including
1832  	 * the first and last pages. This is done in a busy loop so that we
1833  	 * lose the least number of traces.
1834  	 * The pages are freed after we restart recording and unlock readers.
1835  	 */
1836  	tail_page = &cpu_buffer->tail_page->list;
1837  
1838  	/*
1839  	 * tail page might be on reader page, we remove the next page
1840  	 * from the ring buffer
1841  	 */
1842  	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1843  		tail_page = rb_list_head(tail_page->next);
1844  	to_remove = tail_page;
1845  
1846  	/* start of pages to remove */
1847  	first_page = list_entry(rb_list_head(to_remove->next),
1848  				struct buffer_page, list);
1849  
1850  	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1851  		to_remove = rb_list_head(to_remove)->next;
1852  		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1853  	}
1854  
1855  	next_page = rb_list_head(to_remove)->next;
1856  
1857  	/*
1858  	 * Now we remove all pages between tail_page and next_page.
1859  	 * Make sure that we have head_bit value preserved for the
1860  	 * next page
1861  	 */
1862  	tail_page->next = (struct list_head *)((unsigned long)next_page |
1863  						head_bit);
1864  	next_page = rb_list_head(next_page);
1865  	next_page->prev = tail_page;
1866  
1867  	/* make sure pages points to a valid page in the ring buffer */
1868  	cpu_buffer->pages = next_page;
1869  
1870  	/* update head page */
1871  	if (head_bit)
1872  		cpu_buffer->head_page = list_entry(next_page,
1873  						struct buffer_page, list);
1874  
1875  	/*
1876  	 * change read pointer to make sure any read iterators reset
1877  	 * themselves
1878  	 */
1879  	cpu_buffer->read = 0;
1880  
1881  	/* pages are removed, resume tracing and then free the pages */
1882  	atomic_dec(&cpu_buffer->record_disabled);
1883  	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1884  
1885  	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1886  
1887  	/* last buffer page to remove */
1888  	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1889  				list);
1890  	tmp_iter_page = first_page;
1891  
1892  	do {
1893  		cond_resched();
1894  
1895  		to_remove_page = tmp_iter_page;
1896  		rb_inc_page(cpu_buffer, &tmp_iter_page);
1897  
1898  		/* update the counters */
1899  		page_entries = rb_page_entries(to_remove_page);
1900  		if (page_entries) {
1901  			/*
1902  			 * If something was added to this page, it was full
1903  			 * since it is not the tail page. So we deduct the
1904  			 * bytes consumed in ring buffer from here.
1905  			 * Increment overrun to account for the lost events.
1906  			 */
1907  			local_add(page_entries, &cpu_buffer->overrun);
1908  			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1909  			local_inc(&cpu_buffer->pages_lost);
1910  		}
1911  
1912  		/*
1913  		 * We have already removed references to this list item, just
1914  		 * free up the buffer_page and its page
1915  		 */
1916  		free_buffer_page(to_remove_page);
1917  		nr_removed--;
1918  
1919  	} while (to_remove_page != last_page);
1920  
1921  	RB_WARN_ON(cpu_buffer, nr_removed);
1922  
1923  	return nr_removed == 0;
1924  }
1925  
1926  static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1927  rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1928  {
1929  	struct list_head *pages = &cpu_buffer->new_pages;
1930  	int retries, success;
1931  
1932  	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1933  	/*
1934  	 * We are holding the reader lock, so the reader page won't be swapped
1935  	 * in the ring buffer. Now we are racing with the writer trying to
1936  	 * move head page and the tail page.
1937  	 * We are going to adapt the reader page update process where:
1938  	 * 1. We first splice the start and end of list of new pages between
1939  	 *    the head page and its previous page.
1940  	 * 2. We cmpxchg the prev_page->next to point from head page to the
1941  	 *    start of new pages list.
1942  	 * 3. Finally, we update the head->prev to the end of new list.
1943  	 *
1944  	 * We will try this process 10 times, to make sure that we don't keep
1945  	 * spinning.
1946  	 */
1947  	retries = 10;
1948  	success = 0;
1949  	while (retries--) {
1950  		struct list_head *head_page, *prev_page, *r;
1951  		struct list_head *last_page, *first_page;
1952  		struct list_head *head_page_with_bit;
1953  
1954  		head_page = &rb_set_head_page(cpu_buffer)->list;
1955  		if (!head_page)
1956  			break;
1957  		prev_page = head_page->prev;
1958  
1959  		first_page = pages->next;
1960  		last_page  = pages->prev;
1961  
1962  		head_page_with_bit = (struct list_head *)
1963  				     ((unsigned long)head_page | RB_PAGE_HEAD);
1964  
1965  		last_page->next = head_page_with_bit;
1966  		first_page->prev = prev_page;
1967  
1968  		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1969  
1970  		if (r == head_page_with_bit) {
1971  			/*
1972  			 * yay, we replaced the page pointer to our new list,
1973  			 * now, we just have to update to head page's prev
1974  			 * pointer to point to end of list
1975  			 */
1976  			head_page->prev = last_page;
1977  			success = 1;
1978  			break;
1979  		}
1980  	}
1981  
1982  	if (success)
1983  		INIT_LIST_HEAD(pages);
1984  	/*
1985  	 * If we weren't successful in adding in new pages, warn and stop
1986  	 * tracing
1987  	 */
1988  	RB_WARN_ON(cpu_buffer, !success);
1989  	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1990  
1991  	/* free pages if they weren't inserted */
1992  	if (!success) {
1993  		struct buffer_page *bpage, *tmp;
1994  		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1995  					 list) {
1996  			list_del_init(&bpage->list);
1997  			free_buffer_page(bpage);
1998  		}
1999  	}
2000  	return success;
2001  }
2002  
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2003  static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2004  {
2005  	int success;
2006  
2007  	if (cpu_buffer->nr_pages_to_update > 0)
2008  		success = rb_insert_pages(cpu_buffer);
2009  	else
2010  		success = rb_remove_pages(cpu_buffer,
2011  					-cpu_buffer->nr_pages_to_update);
2012  
2013  	if (success)
2014  		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2015  }
2016  
update_pages_handler(struct work_struct * work)2017  static void update_pages_handler(struct work_struct *work)
2018  {
2019  	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2020  			struct ring_buffer_per_cpu, update_pages_work);
2021  	rb_update_pages(cpu_buffer);
2022  	complete(&cpu_buffer->update_done);
2023  }
2024  
2025  /**
2026   * ring_buffer_resize - resize the ring buffer
2027   * @buffer: the buffer to resize.
2028   * @size: the new size.
2029   * @cpu_id: the cpu buffer to resize
2030   *
2031   * Minimum size is 2 * BUF_PAGE_SIZE.
2032   *
2033   * Returns 0 on success and < 0 on failure.
2034   */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2035  int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2036  			int cpu_id)
2037  {
2038  	struct ring_buffer_per_cpu *cpu_buffer;
2039  	unsigned long nr_pages;
2040  	int cpu, err;
2041  
2042  	/*
2043  	 * Always succeed at resizing a non-existent buffer:
2044  	 */
2045  	if (!buffer)
2046  		return 0;
2047  
2048  	/* Make sure the requested buffer exists */
2049  	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2050  	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2051  		return 0;
2052  
2053  	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2054  
2055  	/* we need a minimum of two pages */
2056  	if (nr_pages < 2)
2057  		nr_pages = 2;
2058  
2059  	size = nr_pages * BUF_PAGE_SIZE;
2060  
2061  	/* prevent another thread from changing buffer sizes */
2062  	mutex_lock(&buffer->mutex);
2063  
2064  
2065  	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2066  		/*
2067  		 * Don't succeed if resizing is disabled, as a reader might be
2068  		 * manipulating the ring buffer and is expecting a sane state while
2069  		 * this is true.
2070  		 */
2071  		for_each_buffer_cpu(buffer, cpu) {
2072  			cpu_buffer = buffer->buffers[cpu];
2073  			if (atomic_read(&cpu_buffer->resize_disabled)) {
2074  				err = -EBUSY;
2075  				goto out_err_unlock;
2076  			}
2077  		}
2078  
2079  		/* calculate the pages to update */
2080  		for_each_buffer_cpu(buffer, cpu) {
2081  			cpu_buffer = buffer->buffers[cpu];
2082  
2083  			cpu_buffer->nr_pages_to_update = nr_pages -
2084  							cpu_buffer->nr_pages;
2085  			/*
2086  			 * nothing more to do for removing pages or no update
2087  			 */
2088  			if (cpu_buffer->nr_pages_to_update <= 0)
2089  				continue;
2090  			/*
2091  			 * to add pages, make sure all new pages can be
2092  			 * allocated without receiving ENOMEM
2093  			 */
2094  			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2095  			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2096  						&cpu_buffer->new_pages, cpu)) {
2097  				/* not enough memory for new pages */
2098  				err = -ENOMEM;
2099  				goto out_err;
2100  			}
2101  		}
2102  
2103  		get_online_cpus();
2104  		/*
2105  		 * Fire off all the required work handlers
2106  		 * We can't schedule on offline CPUs, but it's not necessary
2107  		 * since we can change their buffer sizes without any race.
2108  		 */
2109  		for_each_buffer_cpu(buffer, cpu) {
2110  			cpu_buffer = buffer->buffers[cpu];
2111  			if (!cpu_buffer->nr_pages_to_update)
2112  				continue;
2113  
2114  			/* Can't run something on an offline CPU. */
2115  			if (!cpu_online(cpu)) {
2116  				rb_update_pages(cpu_buffer);
2117  				cpu_buffer->nr_pages_to_update = 0;
2118  			} else {
2119  				schedule_work_on(cpu,
2120  						&cpu_buffer->update_pages_work);
2121  			}
2122  		}
2123  
2124  		/* wait for all the updates to complete */
2125  		for_each_buffer_cpu(buffer, cpu) {
2126  			cpu_buffer = buffer->buffers[cpu];
2127  			if (!cpu_buffer->nr_pages_to_update)
2128  				continue;
2129  
2130  			if (cpu_online(cpu))
2131  				wait_for_completion(&cpu_buffer->update_done);
2132  			cpu_buffer->nr_pages_to_update = 0;
2133  		}
2134  
2135  		put_online_cpus();
2136  	} else {
2137  		/* Make sure this CPU has been initialized */
2138  		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2139  			goto out;
2140  
2141  		cpu_buffer = buffer->buffers[cpu_id];
2142  
2143  		if (nr_pages == cpu_buffer->nr_pages)
2144  			goto out;
2145  
2146  		/*
2147  		 * Don't succeed if resizing is disabled, as a reader might be
2148  		 * manipulating the ring buffer and is expecting a sane state while
2149  		 * this is true.
2150  		 */
2151  		if (atomic_read(&cpu_buffer->resize_disabled)) {
2152  			err = -EBUSY;
2153  			goto out_err_unlock;
2154  		}
2155  
2156  		cpu_buffer->nr_pages_to_update = nr_pages -
2157  						cpu_buffer->nr_pages;
2158  
2159  		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2160  		if (cpu_buffer->nr_pages_to_update > 0 &&
2161  			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2162  					    &cpu_buffer->new_pages, cpu_id)) {
2163  			err = -ENOMEM;
2164  			goto out_err;
2165  		}
2166  
2167  		get_online_cpus();
2168  
2169  		/* Can't run something on an offline CPU. */
2170  		if (!cpu_online(cpu_id))
2171  			rb_update_pages(cpu_buffer);
2172  		else {
2173  			schedule_work_on(cpu_id,
2174  					 &cpu_buffer->update_pages_work);
2175  			wait_for_completion(&cpu_buffer->update_done);
2176  		}
2177  
2178  		cpu_buffer->nr_pages_to_update = 0;
2179  		put_online_cpus();
2180  	}
2181  
2182   out:
2183  	/*
2184  	 * The ring buffer resize can happen with the ring buffer
2185  	 * enabled, so that the update disturbs the tracing as little
2186  	 * as possible. But if the buffer is disabled, we do not need
2187  	 * to worry about that, and we can take the time to verify
2188  	 * that the buffer is not corrupt.
2189  	 */
2190  	if (atomic_read(&buffer->record_disabled)) {
2191  		atomic_inc(&buffer->record_disabled);
2192  		/*
2193  		 * Even though the buffer was disabled, we must make sure
2194  		 * that it is truly disabled before calling rb_check_pages.
2195  		 * There could have been a race between checking
2196  		 * record_disable and incrementing it.
2197  		 */
2198  		synchronize_rcu();
2199  		for_each_buffer_cpu(buffer, cpu) {
2200  			cpu_buffer = buffer->buffers[cpu];
2201  			rb_check_pages(cpu_buffer);
2202  		}
2203  		atomic_dec(&buffer->record_disabled);
2204  	}
2205  
2206  	mutex_unlock(&buffer->mutex);
2207  	return 0;
2208  
2209   out_err:
2210  	for_each_buffer_cpu(buffer, cpu) {
2211  		struct buffer_page *bpage, *tmp;
2212  
2213  		cpu_buffer = buffer->buffers[cpu];
2214  		cpu_buffer->nr_pages_to_update = 0;
2215  
2216  		if (list_empty(&cpu_buffer->new_pages))
2217  			continue;
2218  
2219  		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2220  					list) {
2221  			list_del_init(&bpage->list);
2222  			free_buffer_page(bpage);
2223  		}
2224  	}
2225   out_err_unlock:
2226  	mutex_unlock(&buffer->mutex);
2227  	return err;
2228  }
2229  EXPORT_SYMBOL_GPL(ring_buffer_resize);
2230  
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2231  void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2232  {
2233  	mutex_lock(&buffer->mutex);
2234  	if (val)
2235  		buffer->flags |= RB_FL_OVERWRITE;
2236  	else
2237  		buffer->flags &= ~RB_FL_OVERWRITE;
2238  	mutex_unlock(&buffer->mutex);
2239  }
2240  EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2241  
__rb_page_index(struct buffer_page * bpage,unsigned index)2242  static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2243  {
2244  	return bpage->page->data + index;
2245  }
2246  
2247  static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)2248  rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2249  {
2250  	return __rb_page_index(cpu_buffer->reader_page,
2251  			       cpu_buffer->reader_page->read);
2252  }
2253  
rb_page_commit(struct buffer_page * bpage)2254  static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2255  {
2256  	return local_read(&bpage->page->commit);
2257  }
2258  
2259  static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)2260  rb_iter_head_event(struct ring_buffer_iter *iter)
2261  {
2262  	struct ring_buffer_event *event;
2263  	struct buffer_page *iter_head_page = iter->head_page;
2264  	unsigned long commit;
2265  	unsigned length;
2266  
2267  	if (iter->head != iter->next_event)
2268  		return iter->event;
2269  
2270  	/*
2271  	 * When the writer goes across pages, it issues a cmpxchg which
2272  	 * is a mb(), which will synchronize with the rmb here.
2273  	 * (see rb_tail_page_update() and __rb_reserve_next())
2274  	 */
2275  	commit = rb_page_commit(iter_head_page);
2276  	smp_rmb();
2277  	event = __rb_page_index(iter_head_page, iter->head);
2278  	length = rb_event_length(event);
2279  
2280  	/*
2281  	 * READ_ONCE() doesn't work on functions and we don't want the
2282  	 * compiler doing any crazy optimizations with length.
2283  	 */
2284  	barrier();
2285  
2286  	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2287  		/* Writer corrupted the read? */
2288  		goto reset;
2289  
2290  	memcpy(iter->event, event, length);
2291  	/*
2292  	 * If the page stamp is still the same after this rmb() then the
2293  	 * event was safely copied without the writer entering the page.
2294  	 */
2295  	smp_rmb();
2296  
2297  	/* Make sure the page didn't change since we read this */
2298  	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2299  	    commit > rb_page_commit(iter_head_page))
2300  		goto reset;
2301  
2302  	iter->next_event = iter->head + length;
2303  	return iter->event;
2304   reset:
2305  	/* Reset to the beginning */
2306  	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2307  	iter->head = 0;
2308  	iter->next_event = 0;
2309  	iter->missed_events = 1;
2310  	return NULL;
2311  }
2312  
2313  /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)2314  static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2315  {
2316  	return rb_page_commit(bpage);
2317  }
2318  
2319  static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)2320  rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2321  {
2322  	return rb_page_commit(cpu_buffer->commit_page);
2323  }
2324  
2325  static __always_inline unsigned
rb_event_index(struct ring_buffer_event * event)2326  rb_event_index(struct ring_buffer_event *event)
2327  {
2328  	unsigned long addr = (unsigned long)event;
2329  
2330  	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2331  }
2332  
rb_inc_iter(struct ring_buffer_iter * iter)2333  static void rb_inc_iter(struct ring_buffer_iter *iter)
2334  {
2335  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2336  
2337  	/*
2338  	 * The iterator could be on the reader page (it starts there).
2339  	 * But the head could have moved, since the reader was
2340  	 * found. Check for this case and assign the iterator
2341  	 * to the head page instead of next.
2342  	 */
2343  	if (iter->head_page == cpu_buffer->reader_page)
2344  		iter->head_page = rb_set_head_page(cpu_buffer);
2345  	else
2346  		rb_inc_page(cpu_buffer, &iter->head_page);
2347  
2348  	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2349  	iter->head = 0;
2350  	iter->next_event = 0;
2351  }
2352  
2353  /*
2354   * rb_handle_head_page - writer hit the head page
2355   *
2356   * Returns: +1 to retry page
2357   *           0 to continue
2358   *          -1 on error
2359   */
2360  static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)2361  rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2362  		    struct buffer_page *tail_page,
2363  		    struct buffer_page *next_page)
2364  {
2365  	struct buffer_page *new_head;
2366  	int entries;
2367  	int type;
2368  	int ret;
2369  
2370  	entries = rb_page_entries(next_page);
2371  
2372  	/*
2373  	 * The hard part is here. We need to move the head
2374  	 * forward, and protect against both readers on
2375  	 * other CPUs and writers coming in via interrupts.
2376  	 */
2377  	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2378  				       RB_PAGE_HEAD);
2379  
2380  	/*
2381  	 * type can be one of four:
2382  	 *  NORMAL - an interrupt already moved it for us
2383  	 *  HEAD   - we are the first to get here.
2384  	 *  UPDATE - we are the interrupt interrupting
2385  	 *           a current move.
2386  	 *  MOVED  - a reader on another CPU moved the next
2387  	 *           pointer to its reader page. Give up
2388  	 *           and try again.
2389  	 */
2390  
2391  	switch (type) {
2392  	case RB_PAGE_HEAD:
2393  		/*
2394  		 * We changed the head to UPDATE, thus
2395  		 * it is our responsibility to update
2396  		 * the counters.
2397  		 */
2398  		local_add(entries, &cpu_buffer->overrun);
2399  		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2400  		local_inc(&cpu_buffer->pages_lost);
2401  
2402  		/*
2403  		 * The entries will be zeroed out when we move the
2404  		 * tail page.
2405  		 */
2406  
2407  		/* still more to do */
2408  		break;
2409  
2410  	case RB_PAGE_UPDATE:
2411  		/*
2412  		 * This is an interrupt that interrupt the
2413  		 * previous update. Still more to do.
2414  		 */
2415  		break;
2416  	case RB_PAGE_NORMAL:
2417  		/*
2418  		 * An interrupt came in before the update
2419  		 * and processed this for us.
2420  		 * Nothing left to do.
2421  		 */
2422  		return 1;
2423  	case RB_PAGE_MOVED:
2424  		/*
2425  		 * The reader is on another CPU and just did
2426  		 * a swap with our next_page.
2427  		 * Try again.
2428  		 */
2429  		return 1;
2430  	default:
2431  		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2432  		return -1;
2433  	}
2434  
2435  	/*
2436  	 * Now that we are here, the old head pointer is
2437  	 * set to UPDATE. This will keep the reader from
2438  	 * swapping the head page with the reader page.
2439  	 * The reader (on another CPU) will spin till
2440  	 * we are finished.
2441  	 *
2442  	 * We just need to protect against interrupts
2443  	 * doing the job. We will set the next pointer
2444  	 * to HEAD. After that, we set the old pointer
2445  	 * to NORMAL, but only if it was HEAD before.
2446  	 * otherwise we are an interrupt, and only
2447  	 * want the outer most commit to reset it.
2448  	 */
2449  	new_head = next_page;
2450  	rb_inc_page(cpu_buffer, &new_head);
2451  
2452  	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2453  				    RB_PAGE_NORMAL);
2454  
2455  	/*
2456  	 * Valid returns are:
2457  	 *  HEAD   - an interrupt came in and already set it.
2458  	 *  NORMAL - One of two things:
2459  	 *            1) We really set it.
2460  	 *            2) A bunch of interrupts came in and moved
2461  	 *               the page forward again.
2462  	 */
2463  	switch (ret) {
2464  	case RB_PAGE_HEAD:
2465  	case RB_PAGE_NORMAL:
2466  		/* OK */
2467  		break;
2468  	default:
2469  		RB_WARN_ON(cpu_buffer, 1);
2470  		return -1;
2471  	}
2472  
2473  	/*
2474  	 * It is possible that an interrupt came in,
2475  	 * set the head up, then more interrupts came in
2476  	 * and moved it again. When we get back here,
2477  	 * the page would have been set to NORMAL but we
2478  	 * just set it back to HEAD.
2479  	 *
2480  	 * How do you detect this? Well, if that happened
2481  	 * the tail page would have moved.
2482  	 */
2483  	if (ret == RB_PAGE_NORMAL) {
2484  		struct buffer_page *buffer_tail_page;
2485  
2486  		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2487  		/*
2488  		 * If the tail had moved passed next, then we need
2489  		 * to reset the pointer.
2490  		 */
2491  		if (buffer_tail_page != tail_page &&
2492  		    buffer_tail_page != next_page)
2493  			rb_head_page_set_normal(cpu_buffer, new_head,
2494  						next_page,
2495  						RB_PAGE_HEAD);
2496  	}
2497  
2498  	/*
2499  	 * If this was the outer most commit (the one that
2500  	 * changed the original pointer from HEAD to UPDATE),
2501  	 * then it is up to us to reset it to NORMAL.
2502  	 */
2503  	if (type == RB_PAGE_HEAD) {
2504  		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2505  					      tail_page,
2506  					      RB_PAGE_UPDATE);
2507  		if (RB_WARN_ON(cpu_buffer,
2508  			       ret != RB_PAGE_UPDATE))
2509  			return -1;
2510  	}
2511  
2512  	return 0;
2513  }
2514  
2515  static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2516  rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2517  	      unsigned long tail, struct rb_event_info *info)
2518  {
2519  	struct buffer_page *tail_page = info->tail_page;
2520  	struct ring_buffer_event *event;
2521  	unsigned long length = info->length;
2522  
2523  	/*
2524  	 * Only the event that crossed the page boundary
2525  	 * must fill the old tail_page with padding.
2526  	 */
2527  	if (tail >= BUF_PAGE_SIZE) {
2528  		/*
2529  		 * If the page was filled, then we still need
2530  		 * to update the real_end. Reset it to zero
2531  		 * and the reader will ignore it.
2532  		 */
2533  		if (tail == BUF_PAGE_SIZE)
2534  			tail_page->real_end = 0;
2535  
2536  		local_sub(length, &tail_page->write);
2537  		return;
2538  	}
2539  
2540  	event = __rb_page_index(tail_page, tail);
2541  
2542  	/* account for padding bytes */
2543  	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2544  
2545  	/*
2546  	 * Save the original length to the meta data.
2547  	 * This will be used by the reader to add lost event
2548  	 * counter.
2549  	 */
2550  	tail_page->real_end = tail;
2551  
2552  	/*
2553  	 * If this event is bigger than the minimum size, then
2554  	 * we need to be careful that we don't subtract the
2555  	 * write counter enough to allow another writer to slip
2556  	 * in on this page.
2557  	 * We put in a discarded commit instead, to make sure
2558  	 * that this space is not used again.
2559  	 *
2560  	 * If we are less than the minimum size, we don't need to
2561  	 * worry about it.
2562  	 */
2563  	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2564  		/* No room for any events */
2565  
2566  		/* Mark the rest of the page with padding */
2567  		rb_event_set_padding(event);
2568  
2569  		/* Make sure the padding is visible before the write update */
2570  		smp_wmb();
2571  
2572  		/* Set the write back to the previous setting */
2573  		local_sub(length, &tail_page->write);
2574  		return;
2575  	}
2576  
2577  	/* Put in a discarded event */
2578  	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2579  	event->type_len = RINGBUF_TYPE_PADDING;
2580  	/* time delta must be non zero */
2581  	event->time_delta = 1;
2582  
2583  	/* Make sure the padding is visible before the tail_page->write update */
2584  	smp_wmb();
2585  
2586  	/* Set write to end of buffer */
2587  	length = (tail + length) - BUF_PAGE_SIZE;
2588  	local_sub(length, &tail_page->write);
2589  }
2590  
2591  static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2592  
2593  /*
2594   * This is the slow path, force gcc not to inline it.
2595   */
2596  static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2597  rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2598  	     unsigned long tail, struct rb_event_info *info)
2599  {
2600  	struct buffer_page *tail_page = info->tail_page;
2601  	struct buffer_page *commit_page = cpu_buffer->commit_page;
2602  	struct trace_buffer *buffer = cpu_buffer->buffer;
2603  	struct buffer_page *next_page;
2604  	int ret;
2605  
2606  	next_page = tail_page;
2607  
2608  	rb_inc_page(cpu_buffer, &next_page);
2609  
2610  	/*
2611  	 * If for some reason, we had an interrupt storm that made
2612  	 * it all the way around the buffer, bail, and warn
2613  	 * about it.
2614  	 */
2615  	if (unlikely(next_page == commit_page)) {
2616  		local_inc(&cpu_buffer->commit_overrun);
2617  		goto out_reset;
2618  	}
2619  
2620  	/*
2621  	 * This is where the fun begins!
2622  	 *
2623  	 * We are fighting against races between a reader that
2624  	 * could be on another CPU trying to swap its reader
2625  	 * page with the buffer head.
2626  	 *
2627  	 * We are also fighting against interrupts coming in and
2628  	 * moving the head or tail on us as well.
2629  	 *
2630  	 * If the next page is the head page then we have filled
2631  	 * the buffer, unless the commit page is still on the
2632  	 * reader page.
2633  	 */
2634  	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2635  
2636  		/*
2637  		 * If the commit is not on the reader page, then
2638  		 * move the header page.
2639  		 */
2640  		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2641  			/*
2642  			 * If we are not in overwrite mode,
2643  			 * this is easy, just stop here.
2644  			 */
2645  			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2646  				local_inc(&cpu_buffer->dropped_events);
2647  				goto out_reset;
2648  			}
2649  
2650  			ret = rb_handle_head_page(cpu_buffer,
2651  						  tail_page,
2652  						  next_page);
2653  			if (ret < 0)
2654  				goto out_reset;
2655  			if (ret)
2656  				goto out_again;
2657  		} else {
2658  			/*
2659  			 * We need to be careful here too. The
2660  			 * commit page could still be on the reader
2661  			 * page. We could have a small buffer, and
2662  			 * have filled up the buffer with events
2663  			 * from interrupts and such, and wrapped.
2664  			 *
2665  			 * Note, if the tail page is also the on the
2666  			 * reader_page, we let it move out.
2667  			 */
2668  			if (unlikely((cpu_buffer->commit_page !=
2669  				      cpu_buffer->tail_page) &&
2670  				     (cpu_buffer->commit_page ==
2671  				      cpu_buffer->reader_page))) {
2672  				local_inc(&cpu_buffer->commit_overrun);
2673  				goto out_reset;
2674  			}
2675  		}
2676  	}
2677  
2678  	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2679  
2680   out_again:
2681  
2682  	rb_reset_tail(cpu_buffer, tail, info);
2683  
2684  	/* Commit what we have for now. */
2685  	rb_end_commit(cpu_buffer);
2686  	/* rb_end_commit() decs committing */
2687  	local_inc(&cpu_buffer->committing);
2688  
2689  	/* fail and let the caller try again */
2690  	return ERR_PTR(-EAGAIN);
2691  
2692   out_reset:
2693  	/* reset write */
2694  	rb_reset_tail(cpu_buffer, tail, info);
2695  
2696  	return NULL;
2697  }
2698  
2699  /* Slow path */
2700  static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta,bool abs)2701  rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2702  {
2703  	if (abs)
2704  		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2705  	else
2706  		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2707  
2708  	/* Not the first event on the page, or not delta? */
2709  	if (abs || rb_event_index(event)) {
2710  		event->time_delta = delta & TS_MASK;
2711  		event->array[0] = delta >> TS_SHIFT;
2712  	} else {
2713  		/* nope, just zero it */
2714  		event->time_delta = 0;
2715  		event->array[0] = 0;
2716  	}
2717  
2718  	return skip_time_extend(event);
2719  }
2720  
2721  static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2722  				     struct ring_buffer_event *event);
2723  
2724  #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)2725  static inline bool sched_clock_stable(void)
2726  {
2727  	return true;
2728  }
2729  #endif
2730  
2731  static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2732  rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2733  		   struct rb_event_info *info)
2734  {
2735  	u64 write_stamp;
2736  
2737  	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2738  		  (unsigned long long)info->delta,
2739  		  (unsigned long long)info->ts,
2740  		  (unsigned long long)info->before,
2741  		  (unsigned long long)info->after,
2742  		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2743  		  sched_clock_stable() ? "" :
2744  		  "If you just came from a suspend/resume,\n"
2745  		  "please switch to the trace global clock:\n"
2746  		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2747  		  "or add trace_clock=global to the kernel command line\n");
2748  }
2749  
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)2750  static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2751  				      struct ring_buffer_event **event,
2752  				      struct rb_event_info *info,
2753  				      u64 *delta,
2754  				      unsigned int *length)
2755  {
2756  	bool abs = info->add_timestamp &
2757  		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2758  
2759  	if (unlikely(info->delta > (1ULL << 59))) {
2760  		/* did the clock go backwards */
2761  		if (info->before == info->after && info->before > info->ts) {
2762  			/* not interrupted */
2763  			static int once;
2764  
2765  			/*
2766  			 * This is possible with a recalibrating of the TSC.
2767  			 * Do not produce a call stack, but just report it.
2768  			 */
2769  			if (!once) {
2770  				once++;
2771  				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2772  					info->before, info->ts);
2773  			}
2774  		} else
2775  			rb_check_timestamp(cpu_buffer, info);
2776  		if (!abs)
2777  			info->delta = 0;
2778  	}
2779  	*event = rb_add_time_stamp(*event, info->delta, abs);
2780  	*length -= RB_LEN_TIME_EXTEND;
2781  	*delta = 0;
2782  }
2783  
2784  /**
2785   * rb_update_event - update event type and data
2786   * @cpu_buffer: The per cpu buffer of the @event
2787   * @event: the event to update
2788   * @info: The info to update the @event with (contains length and delta)
2789   *
2790   * Update the type and data fields of the @event. The length
2791   * is the actual size that is written to the ring buffer,
2792   * and with this, we can determine what to place into the
2793   * data field.
2794   */
2795  static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)2796  rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2797  		struct ring_buffer_event *event,
2798  		struct rb_event_info *info)
2799  {
2800  	unsigned length = info->length;
2801  	u64 delta = info->delta;
2802  
2803  	/*
2804  	 * If we need to add a timestamp, then we
2805  	 * add it to the start of the reserved space.
2806  	 */
2807  	if (unlikely(info->add_timestamp))
2808  		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2809  
2810  	event->time_delta = delta;
2811  	length -= RB_EVNT_HDR_SIZE;
2812  	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2813  		event->type_len = 0;
2814  		event->array[0] = length;
2815  	} else
2816  		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2817  }
2818  
rb_calculate_event_length(unsigned length)2819  static unsigned rb_calculate_event_length(unsigned length)
2820  {
2821  	struct ring_buffer_event event; /* Used only for sizeof array */
2822  
2823  	/* zero length can cause confusions */
2824  	if (!length)
2825  		length++;
2826  
2827  	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2828  		length += sizeof(event.array[0]);
2829  
2830  	length += RB_EVNT_HDR_SIZE;
2831  	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2832  
2833  	/*
2834  	 * In case the time delta is larger than the 27 bits for it
2835  	 * in the header, we need to add a timestamp. If another
2836  	 * event comes in when trying to discard this one to increase
2837  	 * the length, then the timestamp will be added in the allocated
2838  	 * space of this event. If length is bigger than the size needed
2839  	 * for the TIME_EXTEND, then padding has to be used. The events
2840  	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2841  	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2842  	 * As length is a multiple of 4, we only need to worry if it
2843  	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2844  	 */
2845  	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2846  		length += RB_ALIGNMENT;
2847  
2848  	return length;
2849  }
2850  
2851  static __always_inline bool
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2852  rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2853  		   struct ring_buffer_event *event)
2854  {
2855  	unsigned long addr = (unsigned long)event;
2856  	unsigned long index;
2857  
2858  	index = rb_event_index(event);
2859  	addr &= PAGE_MASK;
2860  
2861  	return cpu_buffer->commit_page->page == (void *)addr &&
2862  		rb_commit_index(cpu_buffer) == index;
2863  }
2864  
rb_time_delta(struct ring_buffer_event * event)2865  static u64 rb_time_delta(struct ring_buffer_event *event)
2866  {
2867  	switch (event->type_len) {
2868  	case RINGBUF_TYPE_PADDING:
2869  		return 0;
2870  
2871  	case RINGBUF_TYPE_TIME_EXTEND:
2872  		return ring_buffer_event_time_stamp(event);
2873  
2874  	case RINGBUF_TYPE_TIME_STAMP:
2875  		return 0;
2876  
2877  	case RINGBUF_TYPE_DATA:
2878  		return event->time_delta;
2879  	default:
2880  		return 0;
2881  	}
2882  }
2883  
2884  static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2885  rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2886  		  struct ring_buffer_event *event)
2887  {
2888  	unsigned long new_index, old_index;
2889  	struct buffer_page *bpage;
2890  	unsigned long index;
2891  	unsigned long addr;
2892  	u64 write_stamp;
2893  	u64 delta;
2894  
2895  	new_index = rb_event_index(event);
2896  	old_index = new_index + rb_event_ts_length(event);
2897  	addr = (unsigned long)event;
2898  	addr &= PAGE_MASK;
2899  
2900  	bpage = READ_ONCE(cpu_buffer->tail_page);
2901  
2902  	delta = rb_time_delta(event);
2903  
2904  	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2905  		return 0;
2906  
2907  	/* Make sure the write stamp is read before testing the location */
2908  	barrier();
2909  
2910  	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2911  		unsigned long write_mask =
2912  			local_read(&bpage->write) & ~RB_WRITE_MASK;
2913  		unsigned long event_length = rb_event_length(event);
2914  
2915  		/* Something came in, can't discard */
2916  		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2917  				       write_stamp, write_stamp - delta))
2918  			return 0;
2919  
2920  		/*
2921  		 * It's possible that the event time delta is zero
2922  		 * (has the same time stamp as the previous event)
2923  		 * in which case write_stamp and before_stamp could
2924  		 * be the same. In such a case, force before_stamp
2925  		 * to be different than write_stamp. It doesn't
2926  		 * matter what it is, as long as its different.
2927  		 */
2928  		if (!delta)
2929  			rb_time_set(&cpu_buffer->before_stamp, 0);
2930  
2931  		/*
2932  		 * If an event were to come in now, it would see that the
2933  		 * write_stamp and the before_stamp are different, and assume
2934  		 * that this event just added itself before updating
2935  		 * the write stamp. The interrupting event will fix the
2936  		 * write stamp for us, and use the before stamp as its delta.
2937  		 */
2938  
2939  		/*
2940  		 * This is on the tail page. It is possible that
2941  		 * a write could come in and move the tail page
2942  		 * and write to the next page. That is fine
2943  		 * because we just shorten what is on this page.
2944  		 */
2945  		old_index += write_mask;
2946  		new_index += write_mask;
2947  		index = local_cmpxchg(&bpage->write, old_index, new_index);
2948  		if (index == old_index) {
2949  			/* update counters */
2950  			local_sub(event_length, &cpu_buffer->entries_bytes);
2951  			return 1;
2952  		}
2953  	}
2954  
2955  	/* could not discard */
2956  	return 0;
2957  }
2958  
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2959  static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2960  {
2961  	local_inc(&cpu_buffer->committing);
2962  	local_inc(&cpu_buffer->commits);
2963  }
2964  
2965  static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)2966  rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2967  {
2968  	unsigned long max_count;
2969  
2970  	/*
2971  	 * We only race with interrupts and NMIs on this CPU.
2972  	 * If we own the commit event, then we can commit
2973  	 * all others that interrupted us, since the interruptions
2974  	 * are in stack format (they finish before they come
2975  	 * back to us). This allows us to do a simple loop to
2976  	 * assign the commit to the tail.
2977  	 */
2978   again:
2979  	max_count = cpu_buffer->nr_pages * 100;
2980  
2981  	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2982  		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2983  			return;
2984  		if (RB_WARN_ON(cpu_buffer,
2985  			       rb_is_reader_page(cpu_buffer->tail_page)))
2986  			return;
2987  		local_set(&cpu_buffer->commit_page->page->commit,
2988  			  rb_page_write(cpu_buffer->commit_page));
2989  		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2990  		/* add barrier to keep gcc from optimizing too much */
2991  		barrier();
2992  	}
2993  	while (rb_commit_index(cpu_buffer) !=
2994  	       rb_page_write(cpu_buffer->commit_page)) {
2995  
2996  		local_set(&cpu_buffer->commit_page->page->commit,
2997  			  rb_page_write(cpu_buffer->commit_page));
2998  		RB_WARN_ON(cpu_buffer,
2999  			   local_read(&cpu_buffer->commit_page->page->commit) &
3000  			   ~RB_WRITE_MASK);
3001  		barrier();
3002  	}
3003  
3004  	/* again, keep gcc from optimizing */
3005  	barrier();
3006  
3007  	/*
3008  	 * If an interrupt came in just after the first while loop
3009  	 * and pushed the tail page forward, we will be left with
3010  	 * a dangling commit that will never go forward.
3011  	 */
3012  	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3013  		goto again;
3014  }
3015  
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3016  static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3017  {
3018  	unsigned long commits;
3019  
3020  	if (RB_WARN_ON(cpu_buffer,
3021  		       !local_read(&cpu_buffer->committing)))
3022  		return;
3023  
3024   again:
3025  	commits = local_read(&cpu_buffer->commits);
3026  	/* synchronize with interrupts */
3027  	barrier();
3028  	if (local_read(&cpu_buffer->committing) == 1)
3029  		rb_set_commit_to_write(cpu_buffer);
3030  
3031  	local_dec(&cpu_buffer->committing);
3032  
3033  	/* synchronize with interrupts */
3034  	barrier();
3035  
3036  	/*
3037  	 * Need to account for interrupts coming in between the
3038  	 * updating of the commit page and the clearing of the
3039  	 * committing counter.
3040  	 */
3041  	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3042  	    !local_read(&cpu_buffer->committing)) {
3043  		local_inc(&cpu_buffer->committing);
3044  		goto again;
3045  	}
3046  }
3047  
rb_event_discard(struct ring_buffer_event * event)3048  static inline void rb_event_discard(struct ring_buffer_event *event)
3049  {
3050  	if (extended_time(event))
3051  		event = skip_time_extend(event);
3052  
3053  	/* array[0] holds the actual length for the discarded event */
3054  	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3055  	event->type_len = RINGBUF_TYPE_PADDING;
3056  	/* time delta must be non zero */
3057  	if (!event->time_delta)
3058  		event->time_delta = 1;
3059  }
3060  
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3061  static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
3062  		      struct ring_buffer_event *event)
3063  {
3064  	local_inc(&cpu_buffer->entries);
3065  	rb_end_commit(cpu_buffer);
3066  }
3067  
3068  static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3069  rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3070  {
3071  	if (buffer->irq_work.waiters_pending) {
3072  		buffer->irq_work.waiters_pending = false;
3073  		/* irq_work_queue() supplies it's own memory barriers */
3074  		irq_work_queue(&buffer->irq_work.work);
3075  	}
3076  
3077  	if (cpu_buffer->irq_work.waiters_pending) {
3078  		cpu_buffer->irq_work.waiters_pending = false;
3079  		/* irq_work_queue() supplies it's own memory barriers */
3080  		irq_work_queue(&cpu_buffer->irq_work.work);
3081  	}
3082  
3083  	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3084  		return;
3085  
3086  	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3087  		return;
3088  
3089  	if (!cpu_buffer->irq_work.full_waiters_pending)
3090  		return;
3091  
3092  	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3093  
3094  	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3095  		return;
3096  
3097  	cpu_buffer->irq_work.wakeup_full = true;
3098  	cpu_buffer->irq_work.full_waiters_pending = false;
3099  	/* irq_work_queue() supplies it's own memory barriers */
3100  	irq_work_queue(&cpu_buffer->irq_work.work);
3101  }
3102  
3103  /*
3104   * The lock and unlock are done within a preempt disable section.
3105   * The current_context per_cpu variable can only be modified
3106   * by the current task between lock and unlock. But it can
3107   * be modified more than once via an interrupt. To pass this
3108   * information from the lock to the unlock without having to
3109   * access the 'in_interrupt()' functions again (which do show
3110   * a bit of overhead in something as critical as function tracing,
3111   * we use a bitmask trick.
3112   *
3113   *  bit 1 =  NMI context
3114   *  bit 2 =  IRQ context
3115   *  bit 3 =  SoftIRQ context
3116   *  bit 4 =  normal context.
3117   *
3118   * This works because this is the order of contexts that can
3119   * preempt other contexts. A SoftIRQ never preempts an IRQ
3120   * context.
3121   *
3122   * When the context is determined, the corresponding bit is
3123   * checked and set (if it was set, then a recursion of that context
3124   * happened).
3125   *
3126   * On unlock, we need to clear this bit. To do so, just subtract
3127   * 1 from the current_context and AND it to itself.
3128   *
3129   * (binary)
3130   *  101 - 1 = 100
3131   *  101 & 100 = 100 (clearing bit zero)
3132   *
3133   *  1010 - 1 = 1001
3134   *  1010 & 1001 = 1000 (clearing bit 1)
3135   *
3136   * The least significant bit can be cleared this way, and it
3137   * just so happens that it is the same bit corresponding to
3138   * the current context.
3139   *
3140   * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3141   * is set when a recursion is detected at the current context, and if
3142   * the TRANSITION bit is already set, it will fail the recursion.
3143   * This is needed because there's a lag between the changing of
3144   * interrupt context and updating the preempt count. In this case,
3145   * a false positive will be found. To handle this, one extra recursion
3146   * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3147   * bit is already set, then it is considered a recursion and the function
3148   * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3149   *
3150   * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3151   * to be cleared. Even if it wasn't the context that set it. That is,
3152   * if an interrupt comes in while NORMAL bit is set and the ring buffer
3153   * is called before preempt_count() is updated, since the check will
3154   * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3155   * NMI then comes in, it will set the NMI bit, but when the NMI code
3156   * does the trace_recursive_unlock() it will clear the TRANSTION bit
3157   * and leave the NMI bit set. But this is fine, because the interrupt
3158   * code that set the TRANSITION bit will then clear the NMI bit when it
3159   * calls trace_recursive_unlock(). If another NMI comes in, it will
3160   * set the TRANSITION bit and continue.
3161   *
3162   * Note: The TRANSITION bit only handles a single transition between context.
3163   */
3164  
3165  static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3166  trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3167  {
3168  	unsigned int val = cpu_buffer->current_context;
3169  	unsigned long pc = preempt_count();
3170  	int bit;
3171  
3172  	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3173  		bit = RB_CTX_NORMAL;
3174  	else
3175  		bit = pc & NMI_MASK ? RB_CTX_NMI :
3176  			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3177  
3178  	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3179  		/*
3180  		 * It is possible that this was called by transitioning
3181  		 * between interrupt context, and preempt_count() has not
3182  		 * been updated yet. In this case, use the TRANSITION bit.
3183  		 */
3184  		bit = RB_CTX_TRANSITION;
3185  		if (val & (1 << (bit + cpu_buffer->nest)))
3186  			return 1;
3187  	}
3188  
3189  	val |= (1 << (bit + cpu_buffer->nest));
3190  	cpu_buffer->current_context = val;
3191  
3192  	return 0;
3193  }
3194  
3195  static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3196  trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3197  {
3198  	cpu_buffer->current_context &=
3199  		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3200  }
3201  
3202  /* The recursive locking above uses 5 bits */
3203  #define NESTED_BITS 5
3204  
3205  /**
3206   * ring_buffer_nest_start - Allow to trace while nested
3207   * @buffer: The ring buffer to modify
3208   *
3209   * The ring buffer has a safety mechanism to prevent recursion.
3210   * But there may be a case where a trace needs to be done while
3211   * tracing something else. In this case, calling this function
3212   * will allow this function to nest within a currently active
3213   * ring_buffer_lock_reserve().
3214   *
3215   * Call this function before calling another ring_buffer_lock_reserve() and
3216   * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3217   */
ring_buffer_nest_start(struct trace_buffer * buffer)3218  void ring_buffer_nest_start(struct trace_buffer *buffer)
3219  {
3220  	struct ring_buffer_per_cpu *cpu_buffer;
3221  	int cpu;
3222  
3223  	/* Enabled by ring_buffer_nest_end() */
3224  	preempt_disable_notrace();
3225  	cpu = raw_smp_processor_id();
3226  	cpu_buffer = buffer->buffers[cpu];
3227  	/* This is the shift value for the above recursive locking */
3228  	cpu_buffer->nest += NESTED_BITS;
3229  }
3230  
3231  /**
3232   * ring_buffer_nest_end - Allow to trace while nested
3233   * @buffer: The ring buffer to modify
3234   *
3235   * Must be called after ring_buffer_nest_start() and after the
3236   * ring_buffer_unlock_commit().
3237   */
ring_buffer_nest_end(struct trace_buffer * buffer)3238  void ring_buffer_nest_end(struct trace_buffer *buffer)
3239  {
3240  	struct ring_buffer_per_cpu *cpu_buffer;
3241  	int cpu;
3242  
3243  	/* disabled by ring_buffer_nest_start() */
3244  	cpu = raw_smp_processor_id();
3245  	cpu_buffer = buffer->buffers[cpu];
3246  	/* This is the shift value for the above recursive locking */
3247  	cpu_buffer->nest -= NESTED_BITS;
3248  	preempt_enable_notrace();
3249  }
3250  
3251  /**
3252   * ring_buffer_unlock_commit - commit a reserved
3253   * @buffer: The buffer to commit to
3254   * @event: The event pointer to commit.
3255   *
3256   * This commits the data to the ring buffer, and releases any locks held.
3257   *
3258   * Must be paired with ring_buffer_lock_reserve.
3259   */
ring_buffer_unlock_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3260  int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3261  			      struct ring_buffer_event *event)
3262  {
3263  	struct ring_buffer_per_cpu *cpu_buffer;
3264  	int cpu = raw_smp_processor_id();
3265  
3266  	cpu_buffer = buffer->buffers[cpu];
3267  
3268  	rb_commit(cpu_buffer, event);
3269  
3270  	rb_wakeups(buffer, cpu_buffer);
3271  
3272  	trace_recursive_unlock(cpu_buffer);
3273  
3274  	preempt_enable_notrace();
3275  
3276  	return 0;
3277  }
3278  EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3279  
3280  static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3281  __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3282  		  struct rb_event_info *info)
3283  {
3284  	struct ring_buffer_event *event;
3285  	struct buffer_page *tail_page;
3286  	unsigned long tail, write, w;
3287  	bool a_ok;
3288  	bool b_ok;
3289  
3290  	/* Don't let the compiler play games with cpu_buffer->tail_page */
3291  	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3292  
3293   /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3294  	barrier();
3295  	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3296  	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3297  	barrier();
3298  	info->ts = rb_time_stamp(cpu_buffer->buffer);
3299  
3300  	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3301  		info->delta = info->ts;
3302  	} else {
3303  		/*
3304  		 * If interrupting an event time update, we may need an
3305  		 * absolute timestamp.
3306  		 * Don't bother if this is the start of a new page (w == 0).
3307  		 */
3308  		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3309  			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3310  			info->length += RB_LEN_TIME_EXTEND;
3311  		} else {
3312  			info->delta = info->ts - info->after;
3313  			if (unlikely(test_time_stamp(info->delta))) {
3314  				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3315  				info->length += RB_LEN_TIME_EXTEND;
3316  			}
3317  		}
3318  	}
3319  
3320   /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3321  
3322   /*C*/	write = local_add_return(info->length, &tail_page->write);
3323  
3324  	/* set write to only the index of the write */
3325  	write &= RB_WRITE_MASK;
3326  
3327  	tail = write - info->length;
3328  
3329  	/* See if we shot pass the end of this buffer page */
3330  	if (unlikely(write > BUF_PAGE_SIZE)) {
3331  		/* before and after may now different, fix it up*/
3332  		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3333  		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3334  		if (a_ok && b_ok && info->before != info->after)
3335  			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3336  					      info->before, info->after);
3337  		return rb_move_tail(cpu_buffer, tail, info);
3338  	}
3339  
3340  	if (likely(tail == w)) {
3341  		u64 save_before;
3342  		bool s_ok;
3343  
3344  		/* Nothing interrupted us between A and C */
3345   /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3346  		barrier();
3347   /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3348  		RB_WARN_ON(cpu_buffer, !s_ok);
3349  		if (likely(!(info->add_timestamp &
3350  			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3351  			/* This did not interrupt any time update */
3352  			info->delta = info->ts - info->after;
3353  		else
3354  			/* Just use full timestamp for inerrupting event */
3355  			info->delta = info->ts;
3356  		barrier();
3357  		if (unlikely(info->ts != save_before)) {
3358  			/* SLOW PATH - Interrupted between C and E */
3359  
3360  			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3361  			RB_WARN_ON(cpu_buffer, !a_ok);
3362  
3363  			/* Write stamp must only go forward */
3364  			if (save_before > info->after) {
3365  				/*
3366  				 * We do not care about the result, only that
3367  				 * it gets updated atomically.
3368  				 */
3369  				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3370  						      info->after, save_before);
3371  			}
3372  		}
3373  	} else {
3374  		u64 ts;
3375  		/* SLOW PATH - Interrupted between A and C */
3376  		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3377  		/* Was interrupted before here, write_stamp must be valid */
3378  		RB_WARN_ON(cpu_buffer, !a_ok);
3379  		ts = rb_time_stamp(cpu_buffer->buffer);
3380  		barrier();
3381   /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3382  		    info->after < ts &&
3383  		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3384  				    info->after, ts)) {
3385  			/* Nothing came after this event between C and E */
3386  			info->delta = ts - info->after;
3387  			info->ts = ts;
3388  		} else {
3389  			/*
3390  			 * Interrupted beween C and E:
3391  			 * Lost the previous events time stamp. Just set the
3392  			 * delta to zero, and this will be the same time as
3393  			 * the event this event interrupted. And the events that
3394  			 * came after this will still be correct (as they would
3395  			 * have built their delta on the previous event.
3396  			 */
3397  			info->delta = 0;
3398  		}
3399  		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3400  	}
3401  
3402  	/*
3403  	 * If this is the first commit on the page, then it has the same
3404  	 * timestamp as the page itself.
3405  	 */
3406  	if (unlikely(!tail && !(info->add_timestamp &
3407  				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3408  		info->delta = 0;
3409  
3410  	/* We reserved something on the buffer */
3411  
3412  	event = __rb_page_index(tail_page, tail);
3413  	rb_update_event(cpu_buffer, event, info);
3414  
3415  	local_inc(&tail_page->entries);
3416  
3417  	/*
3418  	 * If this is the first commit on the page, then update
3419  	 * its timestamp.
3420  	 */
3421  	if (unlikely(!tail))
3422  		tail_page->page->time_stamp = info->ts;
3423  
3424  	/* account for these added bytes */
3425  	local_add(info->length, &cpu_buffer->entries_bytes);
3426  
3427  	return event;
3428  }
3429  
3430  static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)3431  rb_reserve_next_event(struct trace_buffer *buffer,
3432  		      struct ring_buffer_per_cpu *cpu_buffer,
3433  		      unsigned long length)
3434  {
3435  	struct ring_buffer_event *event;
3436  	struct rb_event_info info;
3437  	int nr_loops = 0;
3438  	int add_ts_default;
3439  
3440  	rb_start_commit(cpu_buffer);
3441  	/* The commit page can not change after this */
3442  
3443  #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3444  	/*
3445  	 * Due to the ability to swap a cpu buffer from a buffer
3446  	 * it is possible it was swapped before we committed.
3447  	 * (committing stops a swap). We check for it here and
3448  	 * if it happened, we have to fail the write.
3449  	 */
3450  	barrier();
3451  	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3452  		local_dec(&cpu_buffer->committing);
3453  		local_dec(&cpu_buffer->commits);
3454  		return NULL;
3455  	}
3456  #endif
3457  
3458  	info.length = rb_calculate_event_length(length);
3459  
3460  	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3461  		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3462  		info.length += RB_LEN_TIME_EXTEND;
3463  	} else {
3464  		add_ts_default = RB_ADD_STAMP_NONE;
3465  	}
3466  
3467   again:
3468  	info.add_timestamp = add_ts_default;
3469  	info.delta = 0;
3470  
3471  	/*
3472  	 * We allow for interrupts to reenter here and do a trace.
3473  	 * If one does, it will cause this original code to loop
3474  	 * back here. Even with heavy interrupts happening, this
3475  	 * should only happen a few times in a row. If this happens
3476  	 * 1000 times in a row, there must be either an interrupt
3477  	 * storm or we have something buggy.
3478  	 * Bail!
3479  	 */
3480  	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3481  		goto out_fail;
3482  
3483  	event = __rb_reserve_next(cpu_buffer, &info);
3484  
3485  	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3486  		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3487  			info.length -= RB_LEN_TIME_EXTEND;
3488  		goto again;
3489  	}
3490  
3491  	if (likely(event))
3492  		return event;
3493   out_fail:
3494  	rb_end_commit(cpu_buffer);
3495  	return NULL;
3496  }
3497  
3498  /**
3499   * ring_buffer_lock_reserve - reserve a part of the buffer
3500   * @buffer: the ring buffer to reserve from
3501   * @length: the length of the data to reserve (excluding event header)
3502   *
3503   * Returns a reserved event on the ring buffer to copy directly to.
3504   * The user of this interface will need to get the body to write into
3505   * and can use the ring_buffer_event_data() interface.
3506   *
3507   * The length is the length of the data needed, not the event length
3508   * which also includes the event header.
3509   *
3510   * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3511   * If NULL is returned, then nothing has been allocated or locked.
3512   */
3513  struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)3514  ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3515  {
3516  	struct ring_buffer_per_cpu *cpu_buffer;
3517  	struct ring_buffer_event *event;
3518  	int cpu;
3519  
3520  	/* If we are tracing schedule, we don't want to recurse */
3521  	preempt_disable_notrace();
3522  
3523  	if (unlikely(atomic_read(&buffer->record_disabled)))
3524  		goto out;
3525  
3526  	cpu = raw_smp_processor_id();
3527  
3528  	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3529  		goto out;
3530  
3531  	cpu_buffer = buffer->buffers[cpu];
3532  
3533  	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3534  		goto out;
3535  
3536  	if (unlikely(length > BUF_MAX_DATA_SIZE))
3537  		goto out;
3538  
3539  	if (unlikely(trace_recursive_lock(cpu_buffer)))
3540  		goto out;
3541  
3542  	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3543  	if (!event)
3544  		goto out_unlock;
3545  
3546  	return event;
3547  
3548   out_unlock:
3549  	trace_recursive_unlock(cpu_buffer);
3550   out:
3551  	preempt_enable_notrace();
3552  	return NULL;
3553  }
3554  EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3555  
3556  /*
3557   * Decrement the entries to the page that an event is on.
3558   * The event does not even need to exist, only the pointer
3559   * to the page it is on. This may only be called before the commit
3560   * takes place.
3561   */
3562  static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3563  rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3564  		   struct ring_buffer_event *event)
3565  {
3566  	unsigned long addr = (unsigned long)event;
3567  	struct buffer_page *bpage = cpu_buffer->commit_page;
3568  	struct buffer_page *start;
3569  
3570  	addr &= PAGE_MASK;
3571  
3572  	/* Do the likely case first */
3573  	if (likely(bpage->page == (void *)addr)) {
3574  		local_dec(&bpage->entries);
3575  		return;
3576  	}
3577  
3578  	/*
3579  	 * Because the commit page may be on the reader page we
3580  	 * start with the next page and check the end loop there.
3581  	 */
3582  	rb_inc_page(cpu_buffer, &bpage);
3583  	start = bpage;
3584  	do {
3585  		if (bpage->page == (void *)addr) {
3586  			local_dec(&bpage->entries);
3587  			return;
3588  		}
3589  		rb_inc_page(cpu_buffer, &bpage);
3590  	} while (bpage != start);
3591  
3592  	/* commit not part of this buffer?? */
3593  	RB_WARN_ON(cpu_buffer, 1);
3594  }
3595  
3596  /**
3597   * ring_buffer_commit_discard - discard an event that has not been committed
3598   * @buffer: the ring buffer
3599   * @event: non committed event to discard
3600   *
3601   * Sometimes an event that is in the ring buffer needs to be ignored.
3602   * This function lets the user discard an event in the ring buffer
3603   * and then that event will not be read later.
3604   *
3605   * This function only works if it is called before the item has been
3606   * committed. It will try to free the event from the ring buffer
3607   * if another event has not been added behind it.
3608   *
3609   * If another event has been added behind it, it will set the event
3610   * up as discarded, and perform the commit.
3611   *
3612   * If this function is called, do not call ring_buffer_unlock_commit on
3613   * the event.
3614   */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3615  void ring_buffer_discard_commit(struct trace_buffer *buffer,
3616  				struct ring_buffer_event *event)
3617  {
3618  	struct ring_buffer_per_cpu *cpu_buffer;
3619  	int cpu;
3620  
3621  	/* The event is discarded regardless */
3622  	rb_event_discard(event);
3623  
3624  	cpu = smp_processor_id();
3625  	cpu_buffer = buffer->buffers[cpu];
3626  
3627  	/*
3628  	 * This must only be called if the event has not been
3629  	 * committed yet. Thus we can assume that preemption
3630  	 * is still disabled.
3631  	 */
3632  	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3633  
3634  	rb_decrement_entry(cpu_buffer, event);
3635  	if (rb_try_to_discard(cpu_buffer, event))
3636  		goto out;
3637  
3638   out:
3639  	rb_end_commit(cpu_buffer);
3640  
3641  	trace_recursive_unlock(cpu_buffer);
3642  
3643  	preempt_enable_notrace();
3644  
3645  }
3646  EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3647  
3648  /**
3649   * ring_buffer_write - write data to the buffer without reserving
3650   * @buffer: The ring buffer to write to.
3651   * @length: The length of the data being written (excluding the event header)
3652   * @data: The data to write to the buffer.
3653   *
3654   * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3655   * one function. If you already have the data to write to the buffer, it
3656   * may be easier to simply call this function.
3657   *
3658   * Note, like ring_buffer_lock_reserve, the length is the length of the data
3659   * and not the length of the event which would hold the header.
3660   */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)3661  int ring_buffer_write(struct trace_buffer *buffer,
3662  		      unsigned long length,
3663  		      void *data)
3664  {
3665  	struct ring_buffer_per_cpu *cpu_buffer;
3666  	struct ring_buffer_event *event;
3667  	void *body;
3668  	int ret = -EBUSY;
3669  	int cpu;
3670  
3671  	preempt_disable_notrace();
3672  
3673  	if (atomic_read(&buffer->record_disabled))
3674  		goto out;
3675  
3676  	cpu = raw_smp_processor_id();
3677  
3678  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3679  		goto out;
3680  
3681  	cpu_buffer = buffer->buffers[cpu];
3682  
3683  	if (atomic_read(&cpu_buffer->record_disabled))
3684  		goto out;
3685  
3686  	if (length > BUF_MAX_DATA_SIZE)
3687  		goto out;
3688  
3689  	if (unlikely(trace_recursive_lock(cpu_buffer)))
3690  		goto out;
3691  
3692  	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3693  	if (!event)
3694  		goto out_unlock;
3695  
3696  	body = rb_event_data(event);
3697  
3698  	memcpy(body, data, length);
3699  
3700  	rb_commit(cpu_buffer, event);
3701  
3702  	rb_wakeups(buffer, cpu_buffer);
3703  
3704  	ret = 0;
3705  
3706   out_unlock:
3707  	trace_recursive_unlock(cpu_buffer);
3708  
3709   out:
3710  	preempt_enable_notrace();
3711  
3712  	return ret;
3713  }
3714  EXPORT_SYMBOL_GPL(ring_buffer_write);
3715  
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3716  static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3717  {
3718  	struct buffer_page *reader = cpu_buffer->reader_page;
3719  	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3720  	struct buffer_page *commit = cpu_buffer->commit_page;
3721  
3722  	/* In case of error, head will be NULL */
3723  	if (unlikely(!head))
3724  		return true;
3725  
3726  	/* Reader should exhaust content in reader page */
3727  	if (reader->read != rb_page_commit(reader))
3728  		return false;
3729  
3730  	/*
3731  	 * If writers are committing on the reader page, knowing all
3732  	 * committed content has been read, the ring buffer is empty.
3733  	 */
3734  	if (commit == reader)
3735  		return true;
3736  
3737  	/*
3738  	 * If writers are committing on a page other than reader page
3739  	 * and head page, there should always be content to read.
3740  	 */
3741  	if (commit != head)
3742  		return false;
3743  
3744  	/*
3745  	 * Writers are committing on the head page, we just need
3746  	 * to care about there're committed data, and the reader will
3747  	 * swap reader page with head page when it is to read data.
3748  	 */
3749  	return rb_page_commit(commit) == 0;
3750  }
3751  
3752  /**
3753   * ring_buffer_record_disable - stop all writes into the buffer
3754   * @buffer: The ring buffer to stop writes to.
3755   *
3756   * This prevents all writes to the buffer. Any attempt to write
3757   * to the buffer after this will fail and return NULL.
3758   *
3759   * The caller should call synchronize_rcu() after this.
3760   */
ring_buffer_record_disable(struct trace_buffer * buffer)3761  void ring_buffer_record_disable(struct trace_buffer *buffer)
3762  {
3763  	atomic_inc(&buffer->record_disabled);
3764  }
3765  EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3766  
3767  /**
3768   * ring_buffer_record_enable - enable writes to the buffer
3769   * @buffer: The ring buffer to enable writes
3770   *
3771   * Note, multiple disables will need the same number of enables
3772   * to truly enable the writing (much like preempt_disable).
3773   */
ring_buffer_record_enable(struct trace_buffer * buffer)3774  void ring_buffer_record_enable(struct trace_buffer *buffer)
3775  {
3776  	atomic_dec(&buffer->record_disabled);
3777  }
3778  EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3779  
3780  /**
3781   * ring_buffer_record_off - stop all writes into the buffer
3782   * @buffer: The ring buffer to stop writes to.
3783   *
3784   * This prevents all writes to the buffer. Any attempt to write
3785   * to the buffer after this will fail and return NULL.
3786   *
3787   * This is different than ring_buffer_record_disable() as
3788   * it works like an on/off switch, where as the disable() version
3789   * must be paired with a enable().
3790   */
ring_buffer_record_off(struct trace_buffer * buffer)3791  void ring_buffer_record_off(struct trace_buffer *buffer)
3792  {
3793  	unsigned int rd;
3794  	unsigned int new_rd;
3795  
3796  	do {
3797  		rd = atomic_read(&buffer->record_disabled);
3798  		new_rd = rd | RB_BUFFER_OFF;
3799  	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3800  }
3801  EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3802  
3803  /**
3804   * ring_buffer_record_on - restart writes into the buffer
3805   * @buffer: The ring buffer to start writes to.
3806   *
3807   * This enables all writes to the buffer that was disabled by
3808   * ring_buffer_record_off().
3809   *
3810   * This is different than ring_buffer_record_enable() as
3811   * it works like an on/off switch, where as the enable() version
3812   * must be paired with a disable().
3813   */
ring_buffer_record_on(struct trace_buffer * buffer)3814  void ring_buffer_record_on(struct trace_buffer *buffer)
3815  {
3816  	unsigned int rd;
3817  	unsigned int new_rd;
3818  
3819  	do {
3820  		rd = atomic_read(&buffer->record_disabled);
3821  		new_rd = rd & ~RB_BUFFER_OFF;
3822  	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3823  }
3824  EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3825  
3826  /**
3827   * ring_buffer_record_is_on - return true if the ring buffer can write
3828   * @buffer: The ring buffer to see if write is enabled
3829   *
3830   * Returns true if the ring buffer is in a state that it accepts writes.
3831   */
ring_buffer_record_is_on(struct trace_buffer * buffer)3832  bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3833  {
3834  	return !atomic_read(&buffer->record_disabled);
3835  }
3836  
3837  /**
3838   * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3839   * @buffer: The ring buffer to see if write is set enabled
3840   *
3841   * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3842   * Note that this does NOT mean it is in a writable state.
3843   *
3844   * It may return true when the ring buffer has been disabled by
3845   * ring_buffer_record_disable(), as that is a temporary disabling of
3846   * the ring buffer.
3847   */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)3848  bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3849  {
3850  	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3851  }
3852  
3853  /**
3854   * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3855   * @buffer: The ring buffer to stop writes to.
3856   * @cpu: The CPU buffer to stop
3857   *
3858   * This prevents all writes to the buffer. Any attempt to write
3859   * to the buffer after this will fail and return NULL.
3860   *
3861   * The caller should call synchronize_rcu() after this.
3862   */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)3863  void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3864  {
3865  	struct ring_buffer_per_cpu *cpu_buffer;
3866  
3867  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3868  		return;
3869  
3870  	cpu_buffer = buffer->buffers[cpu];
3871  	atomic_inc(&cpu_buffer->record_disabled);
3872  }
3873  EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3874  
3875  /**
3876   * ring_buffer_record_enable_cpu - enable writes to the buffer
3877   * @buffer: The ring buffer to enable writes
3878   * @cpu: The CPU to enable.
3879   *
3880   * Note, multiple disables will need the same number of enables
3881   * to truly enable the writing (much like preempt_disable).
3882   */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)3883  void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3884  {
3885  	struct ring_buffer_per_cpu *cpu_buffer;
3886  
3887  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3888  		return;
3889  
3890  	cpu_buffer = buffer->buffers[cpu];
3891  	atomic_dec(&cpu_buffer->record_disabled);
3892  }
3893  EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3894  
3895  /*
3896   * The total entries in the ring buffer is the running counter
3897   * of entries entered into the ring buffer, minus the sum of
3898   * the entries read from the ring buffer and the number of
3899   * entries that were overwritten.
3900   */
3901  static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3902  rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3903  {
3904  	return local_read(&cpu_buffer->entries) -
3905  		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3906  }
3907  
3908  /**
3909   * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3910   * @buffer: The ring buffer
3911   * @cpu: The per CPU buffer to read from.
3912   */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)3913  u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3914  {
3915  	unsigned long flags;
3916  	struct ring_buffer_per_cpu *cpu_buffer;
3917  	struct buffer_page *bpage;
3918  	u64 ret = 0;
3919  
3920  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3921  		return 0;
3922  
3923  	cpu_buffer = buffer->buffers[cpu];
3924  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3925  	/*
3926  	 * if the tail is on reader_page, oldest time stamp is on the reader
3927  	 * page
3928  	 */
3929  	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3930  		bpage = cpu_buffer->reader_page;
3931  	else
3932  		bpage = rb_set_head_page(cpu_buffer);
3933  	if (bpage)
3934  		ret = bpage->page->time_stamp;
3935  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3936  
3937  	return ret;
3938  }
3939  EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3940  
3941  /**
3942   * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3943   * @buffer: The ring buffer
3944   * @cpu: The per CPU buffer to read from.
3945   */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)3946  unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3947  {
3948  	struct ring_buffer_per_cpu *cpu_buffer;
3949  	unsigned long ret;
3950  
3951  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3952  		return 0;
3953  
3954  	cpu_buffer = buffer->buffers[cpu];
3955  	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3956  
3957  	return ret;
3958  }
3959  EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3960  
3961  /**
3962   * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3963   * @buffer: The ring buffer
3964   * @cpu: The per CPU buffer to get the entries from.
3965   */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)3966  unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3967  {
3968  	struct ring_buffer_per_cpu *cpu_buffer;
3969  
3970  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3971  		return 0;
3972  
3973  	cpu_buffer = buffer->buffers[cpu];
3974  
3975  	return rb_num_of_entries(cpu_buffer);
3976  }
3977  EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3978  
3979  /**
3980   * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3981   * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3982   * @buffer: The ring buffer
3983   * @cpu: The per CPU buffer to get the number of overruns from
3984   */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)3985  unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3986  {
3987  	struct ring_buffer_per_cpu *cpu_buffer;
3988  	unsigned long ret;
3989  
3990  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3991  		return 0;
3992  
3993  	cpu_buffer = buffer->buffers[cpu];
3994  	ret = local_read(&cpu_buffer->overrun);
3995  
3996  	return ret;
3997  }
3998  EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3999  
4000  /**
4001   * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4002   * commits failing due to the buffer wrapping around while there are uncommitted
4003   * events, such as during an interrupt storm.
4004   * @buffer: The ring buffer
4005   * @cpu: The per CPU buffer to get the number of overruns from
4006   */
4007  unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)4008  ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4009  {
4010  	struct ring_buffer_per_cpu *cpu_buffer;
4011  	unsigned long ret;
4012  
4013  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4014  		return 0;
4015  
4016  	cpu_buffer = buffer->buffers[cpu];
4017  	ret = local_read(&cpu_buffer->commit_overrun);
4018  
4019  	return ret;
4020  }
4021  EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4022  
4023  /**
4024   * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4025   * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4026   * @buffer: The ring buffer
4027   * @cpu: The per CPU buffer to get the number of overruns from
4028   */
4029  unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)4030  ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4031  {
4032  	struct ring_buffer_per_cpu *cpu_buffer;
4033  	unsigned long ret;
4034  
4035  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4036  		return 0;
4037  
4038  	cpu_buffer = buffer->buffers[cpu];
4039  	ret = local_read(&cpu_buffer->dropped_events);
4040  
4041  	return ret;
4042  }
4043  EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4044  
4045  /**
4046   * ring_buffer_read_events_cpu - get the number of events successfully read
4047   * @buffer: The ring buffer
4048   * @cpu: The per CPU buffer to get the number of events read
4049   */
4050  unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)4051  ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4052  {
4053  	struct ring_buffer_per_cpu *cpu_buffer;
4054  
4055  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4056  		return 0;
4057  
4058  	cpu_buffer = buffer->buffers[cpu];
4059  	return cpu_buffer->read;
4060  }
4061  EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4062  
4063  /**
4064   * ring_buffer_entries - get the number of entries in a buffer
4065   * @buffer: The ring buffer
4066   *
4067   * Returns the total number of entries in the ring buffer
4068   * (all CPU entries)
4069   */
ring_buffer_entries(struct trace_buffer * buffer)4070  unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4071  {
4072  	struct ring_buffer_per_cpu *cpu_buffer;
4073  	unsigned long entries = 0;
4074  	int cpu;
4075  
4076  	/* if you care about this being correct, lock the buffer */
4077  	for_each_buffer_cpu(buffer, cpu) {
4078  		cpu_buffer = buffer->buffers[cpu];
4079  		entries += rb_num_of_entries(cpu_buffer);
4080  	}
4081  
4082  	return entries;
4083  }
4084  EXPORT_SYMBOL_GPL(ring_buffer_entries);
4085  
4086  /**
4087   * ring_buffer_overruns - get the number of overruns in buffer
4088   * @buffer: The ring buffer
4089   *
4090   * Returns the total number of overruns in the ring buffer
4091   * (all CPU entries)
4092   */
ring_buffer_overruns(struct trace_buffer * buffer)4093  unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4094  {
4095  	struct ring_buffer_per_cpu *cpu_buffer;
4096  	unsigned long overruns = 0;
4097  	int cpu;
4098  
4099  	/* if you care about this being correct, lock the buffer */
4100  	for_each_buffer_cpu(buffer, cpu) {
4101  		cpu_buffer = buffer->buffers[cpu];
4102  		overruns += local_read(&cpu_buffer->overrun);
4103  	}
4104  
4105  	return overruns;
4106  }
4107  EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4108  
rb_iter_reset(struct ring_buffer_iter * iter)4109  static void rb_iter_reset(struct ring_buffer_iter *iter)
4110  {
4111  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4112  
4113  	/* Iterator usage is expected to have record disabled */
4114  	iter->head_page = cpu_buffer->reader_page;
4115  	iter->head = cpu_buffer->reader_page->read;
4116  	iter->next_event = iter->head;
4117  
4118  	iter->cache_reader_page = iter->head_page;
4119  	iter->cache_read = cpu_buffer->read;
4120  
4121  	if (iter->head) {
4122  		iter->read_stamp = cpu_buffer->read_stamp;
4123  		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4124  	} else {
4125  		iter->read_stamp = iter->head_page->page->time_stamp;
4126  		iter->page_stamp = iter->read_stamp;
4127  	}
4128  }
4129  
4130  /**
4131   * ring_buffer_iter_reset - reset an iterator
4132   * @iter: The iterator to reset
4133   *
4134   * Resets the iterator, so that it will start from the beginning
4135   * again.
4136   */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)4137  void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4138  {
4139  	struct ring_buffer_per_cpu *cpu_buffer;
4140  	unsigned long flags;
4141  
4142  	if (!iter)
4143  		return;
4144  
4145  	cpu_buffer = iter->cpu_buffer;
4146  
4147  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4148  	rb_iter_reset(iter);
4149  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4150  }
4151  EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4152  
4153  /**
4154   * ring_buffer_iter_empty - check if an iterator has no more to read
4155   * @iter: The iterator to check
4156   */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)4157  int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4158  {
4159  	struct ring_buffer_per_cpu *cpu_buffer;
4160  	struct buffer_page *reader;
4161  	struct buffer_page *head_page;
4162  	struct buffer_page *commit_page;
4163  	struct buffer_page *curr_commit_page;
4164  	unsigned commit;
4165  	u64 curr_commit_ts;
4166  	u64 commit_ts;
4167  
4168  	cpu_buffer = iter->cpu_buffer;
4169  	reader = cpu_buffer->reader_page;
4170  	head_page = cpu_buffer->head_page;
4171  	commit_page = cpu_buffer->commit_page;
4172  	commit_ts = commit_page->page->time_stamp;
4173  
4174  	/*
4175  	 * When the writer goes across pages, it issues a cmpxchg which
4176  	 * is a mb(), which will synchronize with the rmb here.
4177  	 * (see rb_tail_page_update())
4178  	 */
4179  	smp_rmb();
4180  	commit = rb_page_commit(commit_page);
4181  	/* We want to make sure that the commit page doesn't change */
4182  	smp_rmb();
4183  
4184  	/* Make sure commit page didn't change */
4185  	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4186  	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4187  
4188  	/* If the commit page changed, then there's more data */
4189  	if (curr_commit_page != commit_page ||
4190  	    curr_commit_ts != commit_ts)
4191  		return 0;
4192  
4193  	/* Still racy, as it may return a false positive, but that's OK */
4194  	return ((iter->head_page == commit_page && iter->head >= commit) ||
4195  		(iter->head_page == reader && commit_page == head_page &&
4196  		 head_page->read == commit &&
4197  		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4198  }
4199  EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4200  
4201  static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4202  rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4203  		     struct ring_buffer_event *event)
4204  {
4205  	u64 delta;
4206  
4207  	switch (event->type_len) {
4208  	case RINGBUF_TYPE_PADDING:
4209  		return;
4210  
4211  	case RINGBUF_TYPE_TIME_EXTEND:
4212  		delta = ring_buffer_event_time_stamp(event);
4213  		cpu_buffer->read_stamp += delta;
4214  		return;
4215  
4216  	case RINGBUF_TYPE_TIME_STAMP:
4217  		delta = ring_buffer_event_time_stamp(event);
4218  		cpu_buffer->read_stamp = delta;
4219  		return;
4220  
4221  	case RINGBUF_TYPE_DATA:
4222  		cpu_buffer->read_stamp += event->time_delta;
4223  		return;
4224  
4225  	default:
4226  		RB_WARN_ON(cpu_buffer, 1);
4227  	}
4228  	return;
4229  }
4230  
4231  static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)4232  rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4233  			  struct ring_buffer_event *event)
4234  {
4235  	u64 delta;
4236  
4237  	switch (event->type_len) {
4238  	case RINGBUF_TYPE_PADDING:
4239  		return;
4240  
4241  	case RINGBUF_TYPE_TIME_EXTEND:
4242  		delta = ring_buffer_event_time_stamp(event);
4243  		iter->read_stamp += delta;
4244  		return;
4245  
4246  	case RINGBUF_TYPE_TIME_STAMP:
4247  		delta = ring_buffer_event_time_stamp(event);
4248  		iter->read_stamp = delta;
4249  		return;
4250  
4251  	case RINGBUF_TYPE_DATA:
4252  		iter->read_stamp += event->time_delta;
4253  		return;
4254  
4255  	default:
4256  		RB_WARN_ON(iter->cpu_buffer, 1);
4257  	}
4258  	return;
4259  }
4260  
4261  static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)4262  rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4263  {
4264  	struct buffer_page *reader = NULL;
4265  	unsigned long overwrite;
4266  	unsigned long flags;
4267  	int nr_loops = 0;
4268  	int ret;
4269  
4270  	local_irq_save(flags);
4271  	arch_spin_lock(&cpu_buffer->lock);
4272  
4273   again:
4274  	/*
4275  	 * This should normally only loop twice. But because the
4276  	 * start of the reader inserts an empty page, it causes
4277  	 * a case where we will loop three times. There should be no
4278  	 * reason to loop four times (that I know of).
4279  	 */
4280  	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4281  		reader = NULL;
4282  		goto out;
4283  	}
4284  
4285  	reader = cpu_buffer->reader_page;
4286  
4287  	/* If there's more to read, return this page */
4288  	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4289  		goto out;
4290  
4291  	/* Never should we have an index greater than the size */
4292  	if (RB_WARN_ON(cpu_buffer,
4293  		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4294  		goto out;
4295  
4296  	/* check if we caught up to the tail */
4297  	reader = NULL;
4298  	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4299  		goto out;
4300  
4301  	/* Don't bother swapping if the ring buffer is empty */
4302  	if (rb_num_of_entries(cpu_buffer) == 0)
4303  		goto out;
4304  
4305  	/*
4306  	 * Reset the reader page to size zero.
4307  	 */
4308  	local_set(&cpu_buffer->reader_page->write, 0);
4309  	local_set(&cpu_buffer->reader_page->entries, 0);
4310  	local_set(&cpu_buffer->reader_page->page->commit, 0);
4311  	cpu_buffer->reader_page->real_end = 0;
4312  
4313   spin:
4314  	/*
4315  	 * Splice the empty reader page into the list around the head.
4316  	 */
4317  	reader = rb_set_head_page(cpu_buffer);
4318  	if (!reader)
4319  		goto out;
4320  	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4321  	cpu_buffer->reader_page->list.prev = reader->list.prev;
4322  
4323  	/*
4324  	 * cpu_buffer->pages just needs to point to the buffer, it
4325  	 *  has no specific buffer page to point to. Lets move it out
4326  	 *  of our way so we don't accidentally swap it.
4327  	 */
4328  	cpu_buffer->pages = reader->list.prev;
4329  
4330  	/* The reader page will be pointing to the new head */
4331  	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4332  
4333  	/*
4334  	 * We want to make sure we read the overruns after we set up our
4335  	 * pointers to the next object. The writer side does a
4336  	 * cmpxchg to cross pages which acts as the mb on the writer
4337  	 * side. Note, the reader will constantly fail the swap
4338  	 * while the writer is updating the pointers, so this
4339  	 * guarantees that the overwrite recorded here is the one we
4340  	 * want to compare with the last_overrun.
4341  	 */
4342  	smp_mb();
4343  	overwrite = local_read(&(cpu_buffer->overrun));
4344  
4345  	/*
4346  	 * Here's the tricky part.
4347  	 *
4348  	 * We need to move the pointer past the header page.
4349  	 * But we can only do that if a writer is not currently
4350  	 * moving it. The page before the header page has the
4351  	 * flag bit '1' set if it is pointing to the page we want.
4352  	 * but if the writer is in the process of moving it
4353  	 * than it will be '2' or already moved '0'.
4354  	 */
4355  
4356  	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4357  
4358  	/*
4359  	 * If we did not convert it, then we must try again.
4360  	 */
4361  	if (!ret)
4362  		goto spin;
4363  
4364  	/*
4365  	 * Yay! We succeeded in replacing the page.
4366  	 *
4367  	 * Now make the new head point back to the reader page.
4368  	 */
4369  	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4370  	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4371  
4372  	local_inc(&cpu_buffer->pages_read);
4373  
4374  	/* Finally update the reader page to the new head */
4375  	cpu_buffer->reader_page = reader;
4376  	cpu_buffer->reader_page->read = 0;
4377  
4378  	if (overwrite != cpu_buffer->last_overrun) {
4379  		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4380  		cpu_buffer->last_overrun = overwrite;
4381  	}
4382  
4383  	goto again;
4384  
4385   out:
4386  	/* Update the read_stamp on the first event */
4387  	if (reader && reader->read == 0)
4388  		cpu_buffer->read_stamp = reader->page->time_stamp;
4389  
4390  	arch_spin_unlock(&cpu_buffer->lock);
4391  	local_irq_restore(flags);
4392  
4393  	/*
4394  	 * The writer has preempt disable, wait for it. But not forever
4395  	 * Although, 1 second is pretty much "forever"
4396  	 */
4397  #define USECS_WAIT	1000000
4398          for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4399  		/* If the write is past the end of page, a writer is still updating it */
4400  		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4401  			break;
4402  
4403  		udelay(1);
4404  
4405  		/* Get the latest version of the reader write value */
4406  		smp_rmb();
4407  	}
4408  
4409  	/* The writer is not moving forward? Something is wrong */
4410  	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4411  		reader = NULL;
4412  
4413  	/*
4414  	 * Make sure we see any padding after the write update
4415  	 * (see rb_reset_tail())
4416  	 */
4417  	smp_rmb();
4418  
4419  
4420  	return reader;
4421  }
4422  
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)4423  static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4424  {
4425  	struct ring_buffer_event *event;
4426  	struct buffer_page *reader;
4427  	unsigned length;
4428  
4429  	reader = rb_get_reader_page(cpu_buffer);
4430  
4431  	/* This function should not be called when buffer is empty */
4432  	if (RB_WARN_ON(cpu_buffer, !reader))
4433  		return;
4434  
4435  	event = rb_reader_event(cpu_buffer);
4436  
4437  	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4438  		cpu_buffer->read++;
4439  
4440  	rb_update_read_stamp(cpu_buffer, event);
4441  
4442  	length = rb_event_length(event);
4443  	cpu_buffer->reader_page->read += length;
4444  }
4445  
rb_advance_iter(struct ring_buffer_iter * iter)4446  static void rb_advance_iter(struct ring_buffer_iter *iter)
4447  {
4448  	struct ring_buffer_per_cpu *cpu_buffer;
4449  
4450  	cpu_buffer = iter->cpu_buffer;
4451  
4452  	/* If head == next_event then we need to jump to the next event */
4453  	if (iter->head == iter->next_event) {
4454  		/* If the event gets overwritten again, there's nothing to do */
4455  		if (rb_iter_head_event(iter) == NULL)
4456  			return;
4457  	}
4458  
4459  	iter->head = iter->next_event;
4460  
4461  	/*
4462  	 * Check if we are at the end of the buffer.
4463  	 */
4464  	if (iter->next_event >= rb_page_size(iter->head_page)) {
4465  		/* discarded commits can make the page empty */
4466  		if (iter->head_page == cpu_buffer->commit_page)
4467  			return;
4468  		rb_inc_iter(iter);
4469  		return;
4470  	}
4471  
4472  	rb_update_iter_read_stamp(iter, iter->event);
4473  }
4474  
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)4475  static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4476  {
4477  	return cpu_buffer->lost_events;
4478  }
4479  
4480  static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)4481  rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4482  	       unsigned long *lost_events)
4483  {
4484  	struct ring_buffer_event *event;
4485  	struct buffer_page *reader;
4486  	int nr_loops = 0;
4487  
4488  	if (ts)
4489  		*ts = 0;
4490   again:
4491  	/*
4492  	 * We repeat when a time extend is encountered.
4493  	 * Since the time extend is always attached to a data event,
4494  	 * we should never loop more than once.
4495  	 * (We never hit the following condition more than twice).
4496  	 */
4497  	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4498  		return NULL;
4499  
4500  	reader = rb_get_reader_page(cpu_buffer);
4501  	if (!reader)
4502  		return NULL;
4503  
4504  	event = rb_reader_event(cpu_buffer);
4505  
4506  	switch (event->type_len) {
4507  	case RINGBUF_TYPE_PADDING:
4508  		if (rb_null_event(event))
4509  			RB_WARN_ON(cpu_buffer, 1);
4510  		/*
4511  		 * Because the writer could be discarding every
4512  		 * event it creates (which would probably be bad)
4513  		 * if we were to go back to "again" then we may never
4514  		 * catch up, and will trigger the warn on, or lock
4515  		 * the box. Return the padding, and we will release
4516  		 * the current locks, and try again.
4517  		 */
4518  		return event;
4519  
4520  	case RINGBUF_TYPE_TIME_EXTEND:
4521  		/* Internal data, OK to advance */
4522  		rb_advance_reader(cpu_buffer);
4523  		goto again;
4524  
4525  	case RINGBUF_TYPE_TIME_STAMP:
4526  		if (ts) {
4527  			*ts = ring_buffer_event_time_stamp(event);
4528  			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4529  							 cpu_buffer->cpu, ts);
4530  		}
4531  		/* Internal data, OK to advance */
4532  		rb_advance_reader(cpu_buffer);
4533  		goto again;
4534  
4535  	case RINGBUF_TYPE_DATA:
4536  		if (ts && !(*ts)) {
4537  			*ts = cpu_buffer->read_stamp + event->time_delta;
4538  			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4539  							 cpu_buffer->cpu, ts);
4540  		}
4541  		if (lost_events)
4542  			*lost_events = rb_lost_events(cpu_buffer);
4543  		return event;
4544  
4545  	default:
4546  		RB_WARN_ON(cpu_buffer, 1);
4547  	}
4548  
4549  	return NULL;
4550  }
4551  EXPORT_SYMBOL_GPL(ring_buffer_peek);
4552  
4553  static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4554  rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4555  {
4556  	struct trace_buffer *buffer;
4557  	struct ring_buffer_per_cpu *cpu_buffer;
4558  	struct ring_buffer_event *event;
4559  	int nr_loops = 0;
4560  
4561  	if (ts)
4562  		*ts = 0;
4563  
4564  	cpu_buffer = iter->cpu_buffer;
4565  	buffer = cpu_buffer->buffer;
4566  
4567  	/*
4568  	 * Check if someone performed a consuming read to
4569  	 * the buffer. A consuming read invalidates the iterator
4570  	 * and we need to reset the iterator in this case.
4571  	 */
4572  	if (unlikely(iter->cache_read != cpu_buffer->read ||
4573  		     iter->cache_reader_page != cpu_buffer->reader_page))
4574  		rb_iter_reset(iter);
4575  
4576   again:
4577  	if (ring_buffer_iter_empty(iter))
4578  		return NULL;
4579  
4580  	/*
4581  	 * As the writer can mess with what the iterator is trying
4582  	 * to read, just give up if we fail to get an event after
4583  	 * three tries. The iterator is not as reliable when reading
4584  	 * the ring buffer with an active write as the consumer is.
4585  	 * Do not warn if the three failures is reached.
4586  	 */
4587  	if (++nr_loops > 3)
4588  		return NULL;
4589  
4590  	if (rb_per_cpu_empty(cpu_buffer))
4591  		return NULL;
4592  
4593  	if (iter->head >= rb_page_size(iter->head_page)) {
4594  		rb_inc_iter(iter);
4595  		goto again;
4596  	}
4597  
4598  	event = rb_iter_head_event(iter);
4599  	if (!event)
4600  		goto again;
4601  
4602  	switch (event->type_len) {
4603  	case RINGBUF_TYPE_PADDING:
4604  		if (rb_null_event(event)) {
4605  			rb_inc_iter(iter);
4606  			goto again;
4607  		}
4608  		rb_advance_iter(iter);
4609  		return event;
4610  
4611  	case RINGBUF_TYPE_TIME_EXTEND:
4612  		/* Internal data, OK to advance */
4613  		rb_advance_iter(iter);
4614  		goto again;
4615  
4616  	case RINGBUF_TYPE_TIME_STAMP:
4617  		if (ts) {
4618  			*ts = ring_buffer_event_time_stamp(event);
4619  			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4620  							 cpu_buffer->cpu, ts);
4621  		}
4622  		/* Internal data, OK to advance */
4623  		rb_advance_iter(iter);
4624  		goto again;
4625  
4626  	case RINGBUF_TYPE_DATA:
4627  		if (ts && !(*ts)) {
4628  			*ts = iter->read_stamp + event->time_delta;
4629  			ring_buffer_normalize_time_stamp(buffer,
4630  							 cpu_buffer->cpu, ts);
4631  		}
4632  		return event;
4633  
4634  	default:
4635  		RB_WARN_ON(cpu_buffer, 1);
4636  	}
4637  
4638  	return NULL;
4639  }
4640  EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4641  
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)4642  static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4643  {
4644  	if (likely(!in_nmi())) {
4645  		raw_spin_lock(&cpu_buffer->reader_lock);
4646  		return true;
4647  	}
4648  
4649  	/*
4650  	 * If an NMI die dumps out the content of the ring buffer
4651  	 * trylock must be used to prevent a deadlock if the NMI
4652  	 * preempted a task that holds the ring buffer locks. If
4653  	 * we get the lock then all is fine, if not, then continue
4654  	 * to do the read, but this can corrupt the ring buffer,
4655  	 * so it must be permanently disabled from future writes.
4656  	 * Reading from NMI is a oneshot deal.
4657  	 */
4658  	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4659  		return true;
4660  
4661  	/* Continue without locking, but disable the ring buffer */
4662  	atomic_inc(&cpu_buffer->record_disabled);
4663  	return false;
4664  }
4665  
4666  static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)4667  rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4668  {
4669  	if (likely(locked))
4670  		raw_spin_unlock(&cpu_buffer->reader_lock);
4671  	return;
4672  }
4673  
4674  /**
4675   * ring_buffer_peek - peek at the next event to be read
4676   * @buffer: The ring buffer to read
4677   * @cpu: The cpu to peak at
4678   * @ts: The timestamp counter of this event.
4679   * @lost_events: a variable to store if events were lost (may be NULL)
4680   *
4681   * This will return the event that will be read next, but does
4682   * not consume the data.
4683   */
4684  struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4685  ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4686  		 unsigned long *lost_events)
4687  {
4688  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4689  	struct ring_buffer_event *event;
4690  	unsigned long flags;
4691  	bool dolock;
4692  
4693  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4694  		return NULL;
4695  
4696   again:
4697  	local_irq_save(flags);
4698  	dolock = rb_reader_lock(cpu_buffer);
4699  	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4700  	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4701  		rb_advance_reader(cpu_buffer);
4702  	rb_reader_unlock(cpu_buffer, dolock);
4703  	local_irq_restore(flags);
4704  
4705  	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4706  		goto again;
4707  
4708  	return event;
4709  }
4710  
4711  /** ring_buffer_iter_dropped - report if there are dropped events
4712   * @iter: The ring buffer iterator
4713   *
4714   * Returns true if there was dropped events since the last peek.
4715   */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)4716  bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4717  {
4718  	bool ret = iter->missed_events != 0;
4719  
4720  	iter->missed_events = 0;
4721  	return ret;
4722  }
4723  EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4724  
4725  /**
4726   * ring_buffer_iter_peek - peek at the next event to be read
4727   * @iter: The ring buffer iterator
4728   * @ts: The timestamp counter of this event.
4729   *
4730   * This will return the event that will be read next, but does
4731   * not increment the iterator.
4732   */
4733  struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4734  ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4735  {
4736  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4737  	struct ring_buffer_event *event;
4738  	unsigned long flags;
4739  
4740   again:
4741  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4742  	event = rb_iter_peek(iter, ts);
4743  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4744  
4745  	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4746  		goto again;
4747  
4748  	return event;
4749  }
4750  
4751  /**
4752   * ring_buffer_consume - return an event and consume it
4753   * @buffer: The ring buffer to get the next event from
4754   * @cpu: the cpu to read the buffer from
4755   * @ts: a variable to store the timestamp (may be NULL)
4756   * @lost_events: a variable to store if events were lost (may be NULL)
4757   *
4758   * Returns the next event in the ring buffer, and that event is consumed.
4759   * Meaning, that sequential reads will keep returning a different event,
4760   * and eventually empty the ring buffer if the producer is slower.
4761   */
4762  struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4763  ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4764  		    unsigned long *lost_events)
4765  {
4766  	struct ring_buffer_per_cpu *cpu_buffer;
4767  	struct ring_buffer_event *event = NULL;
4768  	unsigned long flags;
4769  	bool dolock;
4770  
4771   again:
4772  	/* might be called in atomic */
4773  	preempt_disable();
4774  
4775  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4776  		goto out;
4777  
4778  	cpu_buffer = buffer->buffers[cpu];
4779  	local_irq_save(flags);
4780  	dolock = rb_reader_lock(cpu_buffer);
4781  
4782  	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4783  	if (event) {
4784  		cpu_buffer->lost_events = 0;
4785  		rb_advance_reader(cpu_buffer);
4786  	}
4787  
4788  	rb_reader_unlock(cpu_buffer, dolock);
4789  	local_irq_restore(flags);
4790  
4791   out:
4792  	preempt_enable();
4793  
4794  	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4795  		goto again;
4796  
4797  	return event;
4798  }
4799  EXPORT_SYMBOL_GPL(ring_buffer_consume);
4800  
4801  /**
4802   * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4803   * @buffer: The ring buffer to read from
4804   * @cpu: The cpu buffer to iterate over
4805   * @flags: gfp flags to use for memory allocation
4806   *
4807   * This performs the initial preparations necessary to iterate
4808   * through the buffer.  Memory is allocated, buffer recording
4809   * is disabled, and the iterator pointer is returned to the caller.
4810   *
4811   * Disabling buffer recording prevents the reading from being
4812   * corrupted. This is not a consuming read, so a producer is not
4813   * expected.
4814   *
4815   * After a sequence of ring_buffer_read_prepare calls, the user is
4816   * expected to make at least one call to ring_buffer_read_prepare_sync.
4817   * Afterwards, ring_buffer_read_start is invoked to get things going
4818   * for real.
4819   *
4820   * This overall must be paired with ring_buffer_read_finish.
4821   */
4822  struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)4823  ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4824  {
4825  	struct ring_buffer_per_cpu *cpu_buffer;
4826  	struct ring_buffer_iter *iter;
4827  
4828  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4829  		return NULL;
4830  
4831  	iter = kzalloc(sizeof(*iter), flags);
4832  	if (!iter)
4833  		return NULL;
4834  
4835  	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4836  	if (!iter->event) {
4837  		kfree(iter);
4838  		return NULL;
4839  	}
4840  
4841  	cpu_buffer = buffer->buffers[cpu];
4842  
4843  	iter->cpu_buffer = cpu_buffer;
4844  
4845  	atomic_inc(&cpu_buffer->resize_disabled);
4846  
4847  	return iter;
4848  }
4849  EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4850  
4851  /**
4852   * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4853   *
4854   * All previously invoked ring_buffer_read_prepare calls to prepare
4855   * iterators will be synchronized.  Afterwards, read_buffer_read_start
4856   * calls on those iterators are allowed.
4857   */
4858  void
ring_buffer_read_prepare_sync(void)4859  ring_buffer_read_prepare_sync(void)
4860  {
4861  	synchronize_rcu();
4862  }
4863  EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4864  
4865  /**
4866   * ring_buffer_read_start - start a non consuming read of the buffer
4867   * @iter: The iterator returned by ring_buffer_read_prepare
4868   *
4869   * This finalizes the startup of an iteration through the buffer.
4870   * The iterator comes from a call to ring_buffer_read_prepare and
4871   * an intervening ring_buffer_read_prepare_sync must have been
4872   * performed.
4873   *
4874   * Must be paired with ring_buffer_read_finish.
4875   */
4876  void
ring_buffer_read_start(struct ring_buffer_iter * iter)4877  ring_buffer_read_start(struct ring_buffer_iter *iter)
4878  {
4879  	struct ring_buffer_per_cpu *cpu_buffer;
4880  	unsigned long flags;
4881  
4882  	if (!iter)
4883  		return;
4884  
4885  	cpu_buffer = iter->cpu_buffer;
4886  
4887  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4888  	arch_spin_lock(&cpu_buffer->lock);
4889  	rb_iter_reset(iter);
4890  	arch_spin_unlock(&cpu_buffer->lock);
4891  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4892  }
4893  EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4894  
4895  /**
4896   * ring_buffer_read_finish - finish reading the iterator of the buffer
4897   * @iter: The iterator retrieved by ring_buffer_start
4898   *
4899   * This re-enables the recording to the buffer, and frees the
4900   * iterator.
4901   */
4902  void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4903  ring_buffer_read_finish(struct ring_buffer_iter *iter)
4904  {
4905  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4906  	unsigned long flags;
4907  
4908  	/*
4909  	 * Ring buffer is disabled from recording, here's a good place
4910  	 * to check the integrity of the ring buffer.
4911  	 * Must prevent readers from trying to read, as the check
4912  	 * clears the HEAD page and readers require it.
4913  	 */
4914  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4915  	rb_check_pages(cpu_buffer);
4916  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4917  
4918  	atomic_dec(&cpu_buffer->resize_disabled);
4919  	kfree(iter->event);
4920  	kfree(iter);
4921  }
4922  EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4923  
4924  /**
4925   * ring_buffer_iter_advance - advance the iterator to the next location
4926   * @iter: The ring buffer iterator
4927   *
4928   * Move the location of the iterator such that the next read will
4929   * be the next location of the iterator.
4930   */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)4931  void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4932  {
4933  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4934  	unsigned long flags;
4935  
4936  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4937  
4938  	rb_advance_iter(iter);
4939  
4940  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4941  }
4942  EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4943  
4944  /**
4945   * ring_buffer_size - return the size of the ring buffer (in bytes)
4946   * @buffer: The ring buffer.
4947   * @cpu: The CPU to get ring buffer size from.
4948   */
ring_buffer_size(struct trace_buffer * buffer,int cpu)4949  unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4950  {
4951  	/*
4952  	 * Earlier, this method returned
4953  	 *	BUF_PAGE_SIZE * buffer->nr_pages
4954  	 * Since the nr_pages field is now removed, we have converted this to
4955  	 * return the per cpu buffer value.
4956  	 */
4957  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4958  		return 0;
4959  
4960  	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4961  }
4962  EXPORT_SYMBOL_GPL(ring_buffer_size);
4963  
4964  static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4965  rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4966  {
4967  	rb_head_page_deactivate(cpu_buffer);
4968  
4969  	cpu_buffer->head_page
4970  		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4971  	local_set(&cpu_buffer->head_page->write, 0);
4972  	local_set(&cpu_buffer->head_page->entries, 0);
4973  	local_set(&cpu_buffer->head_page->page->commit, 0);
4974  
4975  	cpu_buffer->head_page->read = 0;
4976  
4977  	cpu_buffer->tail_page = cpu_buffer->head_page;
4978  	cpu_buffer->commit_page = cpu_buffer->head_page;
4979  
4980  	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4981  	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4982  	local_set(&cpu_buffer->reader_page->write, 0);
4983  	local_set(&cpu_buffer->reader_page->entries, 0);
4984  	local_set(&cpu_buffer->reader_page->page->commit, 0);
4985  	cpu_buffer->reader_page->read = 0;
4986  
4987  	local_set(&cpu_buffer->entries_bytes, 0);
4988  	local_set(&cpu_buffer->overrun, 0);
4989  	local_set(&cpu_buffer->commit_overrun, 0);
4990  	local_set(&cpu_buffer->dropped_events, 0);
4991  	local_set(&cpu_buffer->entries, 0);
4992  	local_set(&cpu_buffer->committing, 0);
4993  	local_set(&cpu_buffer->commits, 0);
4994  	local_set(&cpu_buffer->pages_touched, 0);
4995  	local_set(&cpu_buffer->pages_lost, 0);
4996  	local_set(&cpu_buffer->pages_read, 0);
4997  	cpu_buffer->last_pages_touch = 0;
4998  	cpu_buffer->shortest_full = 0;
4999  	cpu_buffer->read = 0;
5000  	cpu_buffer->read_bytes = 0;
5001  
5002  	rb_time_set(&cpu_buffer->write_stamp, 0);
5003  	rb_time_set(&cpu_buffer->before_stamp, 0);
5004  
5005  	cpu_buffer->lost_events = 0;
5006  	cpu_buffer->last_overrun = 0;
5007  
5008  	rb_head_page_activate(cpu_buffer);
5009  }
5010  
5011  /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)5012  static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5013  {
5014  	unsigned long flags;
5015  
5016  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5017  
5018  	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5019  		goto out;
5020  
5021  	arch_spin_lock(&cpu_buffer->lock);
5022  
5023  	rb_reset_cpu(cpu_buffer);
5024  
5025  	arch_spin_unlock(&cpu_buffer->lock);
5026  
5027   out:
5028  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5029  }
5030  
5031  /**
5032   * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5033   * @buffer: The ring buffer to reset a per cpu buffer of
5034   * @cpu: The CPU buffer to be reset
5035   */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)5036  void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5037  {
5038  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5039  
5040  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5041  		return;
5042  
5043  	/* prevent another thread from changing buffer sizes */
5044  	mutex_lock(&buffer->mutex);
5045  
5046  	atomic_inc(&cpu_buffer->resize_disabled);
5047  	atomic_inc(&cpu_buffer->record_disabled);
5048  
5049  	/* Make sure all commits have finished */
5050  	synchronize_rcu();
5051  
5052  	reset_disabled_cpu_buffer(cpu_buffer);
5053  
5054  	atomic_dec(&cpu_buffer->record_disabled);
5055  	atomic_dec(&cpu_buffer->resize_disabled);
5056  
5057  	mutex_unlock(&buffer->mutex);
5058  }
5059  EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5060  
5061  /**
5062   * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5063   * @buffer: The ring buffer to reset a per cpu buffer of
5064   * @cpu: The CPU buffer to be reset
5065   */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)5066  void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5067  {
5068  	struct ring_buffer_per_cpu *cpu_buffer;
5069  	int cpu;
5070  
5071  	/* prevent another thread from changing buffer sizes */
5072  	mutex_lock(&buffer->mutex);
5073  
5074  	for_each_online_buffer_cpu(buffer, cpu) {
5075  		cpu_buffer = buffer->buffers[cpu];
5076  
5077  		atomic_inc(&cpu_buffer->resize_disabled);
5078  		atomic_inc(&cpu_buffer->record_disabled);
5079  	}
5080  
5081  	/* Make sure all commits have finished */
5082  	synchronize_rcu();
5083  
5084  	for_each_online_buffer_cpu(buffer, cpu) {
5085  		cpu_buffer = buffer->buffers[cpu];
5086  
5087  		reset_disabled_cpu_buffer(cpu_buffer);
5088  
5089  		atomic_dec(&cpu_buffer->record_disabled);
5090  		atomic_dec(&cpu_buffer->resize_disabled);
5091  	}
5092  
5093  	mutex_unlock(&buffer->mutex);
5094  }
5095  
5096  /**
5097   * ring_buffer_reset - reset a ring buffer
5098   * @buffer: The ring buffer to reset all cpu buffers
5099   */
ring_buffer_reset(struct trace_buffer * buffer)5100  void ring_buffer_reset(struct trace_buffer *buffer)
5101  {
5102  	struct ring_buffer_per_cpu *cpu_buffer;
5103  	int cpu;
5104  
5105  	/* prevent another thread from changing buffer sizes */
5106  	mutex_lock(&buffer->mutex);
5107  
5108  	for_each_buffer_cpu(buffer, cpu) {
5109  		cpu_buffer = buffer->buffers[cpu];
5110  
5111  		atomic_inc(&cpu_buffer->resize_disabled);
5112  		atomic_inc(&cpu_buffer->record_disabled);
5113  	}
5114  
5115  	/* Make sure all commits have finished */
5116  	synchronize_rcu();
5117  
5118  	for_each_buffer_cpu(buffer, cpu) {
5119  		cpu_buffer = buffer->buffers[cpu];
5120  
5121  		reset_disabled_cpu_buffer(cpu_buffer);
5122  
5123  		atomic_dec(&cpu_buffer->record_disabled);
5124  		atomic_dec(&cpu_buffer->resize_disabled);
5125  	}
5126  
5127  	mutex_unlock(&buffer->mutex);
5128  }
5129  EXPORT_SYMBOL_GPL(ring_buffer_reset);
5130  
5131  /**
5132   * rind_buffer_empty - is the ring buffer empty?
5133   * @buffer: The ring buffer to test
5134   */
ring_buffer_empty(struct trace_buffer * buffer)5135  bool ring_buffer_empty(struct trace_buffer *buffer)
5136  {
5137  	struct ring_buffer_per_cpu *cpu_buffer;
5138  	unsigned long flags;
5139  	bool dolock;
5140  	int cpu;
5141  	int ret;
5142  
5143  	/* yes this is racy, but if you don't like the race, lock the buffer */
5144  	for_each_buffer_cpu(buffer, cpu) {
5145  		cpu_buffer = buffer->buffers[cpu];
5146  		local_irq_save(flags);
5147  		dolock = rb_reader_lock(cpu_buffer);
5148  		ret = rb_per_cpu_empty(cpu_buffer);
5149  		rb_reader_unlock(cpu_buffer, dolock);
5150  		local_irq_restore(flags);
5151  
5152  		if (!ret)
5153  			return false;
5154  	}
5155  
5156  	return true;
5157  }
5158  EXPORT_SYMBOL_GPL(ring_buffer_empty);
5159  
5160  /**
5161   * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5162   * @buffer: The ring buffer
5163   * @cpu: The CPU buffer to test
5164   */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)5165  bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5166  {
5167  	struct ring_buffer_per_cpu *cpu_buffer;
5168  	unsigned long flags;
5169  	bool dolock;
5170  	int ret;
5171  
5172  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5173  		return true;
5174  
5175  	cpu_buffer = buffer->buffers[cpu];
5176  	local_irq_save(flags);
5177  	dolock = rb_reader_lock(cpu_buffer);
5178  	ret = rb_per_cpu_empty(cpu_buffer);
5179  	rb_reader_unlock(cpu_buffer, dolock);
5180  	local_irq_restore(flags);
5181  
5182  	return ret;
5183  }
5184  EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5185  
5186  #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5187  /**
5188   * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5189   * @buffer_a: One buffer to swap with
5190   * @buffer_b: The other buffer to swap with
5191   * @cpu: the CPU of the buffers to swap
5192   *
5193   * This function is useful for tracers that want to take a "snapshot"
5194   * of a CPU buffer and has another back up buffer lying around.
5195   * it is expected that the tracer handles the cpu buffer not being
5196   * used at the moment.
5197   */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)5198  int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5199  			 struct trace_buffer *buffer_b, int cpu)
5200  {
5201  	struct ring_buffer_per_cpu *cpu_buffer_a;
5202  	struct ring_buffer_per_cpu *cpu_buffer_b;
5203  	int ret = -EINVAL;
5204  
5205  	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5206  	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5207  		goto out;
5208  
5209  	cpu_buffer_a = buffer_a->buffers[cpu];
5210  	cpu_buffer_b = buffer_b->buffers[cpu];
5211  
5212  	/* At least make sure the two buffers are somewhat the same */
5213  	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5214  		goto out;
5215  
5216  	ret = -EAGAIN;
5217  
5218  	if (atomic_read(&buffer_a->record_disabled))
5219  		goto out;
5220  
5221  	if (atomic_read(&buffer_b->record_disabled))
5222  		goto out;
5223  
5224  	if (atomic_read(&cpu_buffer_a->record_disabled))
5225  		goto out;
5226  
5227  	if (atomic_read(&cpu_buffer_b->record_disabled))
5228  		goto out;
5229  
5230  	/*
5231  	 * We can't do a synchronize_rcu here because this
5232  	 * function can be called in atomic context.
5233  	 * Normally this will be called from the same CPU as cpu.
5234  	 * If not it's up to the caller to protect this.
5235  	 */
5236  	atomic_inc(&cpu_buffer_a->record_disabled);
5237  	atomic_inc(&cpu_buffer_b->record_disabled);
5238  
5239  	ret = -EBUSY;
5240  	if (local_read(&cpu_buffer_a->committing))
5241  		goto out_dec;
5242  	if (local_read(&cpu_buffer_b->committing))
5243  		goto out_dec;
5244  
5245  	buffer_a->buffers[cpu] = cpu_buffer_b;
5246  	buffer_b->buffers[cpu] = cpu_buffer_a;
5247  
5248  	cpu_buffer_b->buffer = buffer_a;
5249  	cpu_buffer_a->buffer = buffer_b;
5250  
5251  	ret = 0;
5252  
5253  out_dec:
5254  	atomic_dec(&cpu_buffer_a->record_disabled);
5255  	atomic_dec(&cpu_buffer_b->record_disabled);
5256  out:
5257  	return ret;
5258  }
5259  EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5260  #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5261  
5262  /**
5263   * ring_buffer_alloc_read_page - allocate a page to read from buffer
5264   * @buffer: the buffer to allocate for.
5265   * @cpu: the cpu buffer to allocate.
5266   *
5267   * This function is used in conjunction with ring_buffer_read_page.
5268   * When reading a full page from the ring buffer, these functions
5269   * can be used to speed up the process. The calling function should
5270   * allocate a few pages first with this function. Then when it
5271   * needs to get pages from the ring buffer, it passes the result
5272   * of this function into ring_buffer_read_page, which will swap
5273   * the page that was allocated, with the read page of the buffer.
5274   *
5275   * Returns:
5276   *  The page allocated, or ERR_PTR
5277   */
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)5278  void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5279  {
5280  	struct ring_buffer_per_cpu *cpu_buffer;
5281  	struct buffer_data_page *bpage = NULL;
5282  	unsigned long flags;
5283  	struct page *page;
5284  
5285  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5286  		return ERR_PTR(-ENODEV);
5287  
5288  	cpu_buffer = buffer->buffers[cpu];
5289  	local_irq_save(flags);
5290  	arch_spin_lock(&cpu_buffer->lock);
5291  
5292  	if (cpu_buffer->free_page) {
5293  		bpage = cpu_buffer->free_page;
5294  		cpu_buffer->free_page = NULL;
5295  	}
5296  
5297  	arch_spin_unlock(&cpu_buffer->lock);
5298  	local_irq_restore(flags);
5299  
5300  	if (bpage)
5301  		goto out;
5302  
5303  	page = alloc_pages_node(cpu_to_node(cpu),
5304  				GFP_KERNEL | __GFP_NORETRY, 0);
5305  	if (!page)
5306  		return ERR_PTR(-ENOMEM);
5307  
5308  	bpage = page_address(page);
5309  
5310   out:
5311  	rb_init_page(bpage);
5312  
5313  	return bpage;
5314  }
5315  EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5316  
5317  /**
5318   * ring_buffer_free_read_page - free an allocated read page
5319   * @buffer: the buffer the page was allocate for
5320   * @cpu: the cpu buffer the page came from
5321   * @data: the page to free
5322   *
5323   * Free a page allocated from ring_buffer_alloc_read_page.
5324   */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,void * data)5325  void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5326  {
5327  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5328  	struct buffer_data_page *bpage = data;
5329  	struct page *page = virt_to_page(bpage);
5330  	unsigned long flags;
5331  
5332  	/* If the page is still in use someplace else, we can't reuse it */
5333  	if (page_ref_count(page) > 1)
5334  		goto out;
5335  
5336  	local_irq_save(flags);
5337  	arch_spin_lock(&cpu_buffer->lock);
5338  
5339  	if (!cpu_buffer->free_page) {
5340  		cpu_buffer->free_page = bpage;
5341  		bpage = NULL;
5342  	}
5343  
5344  	arch_spin_unlock(&cpu_buffer->lock);
5345  	local_irq_restore(flags);
5346  
5347   out:
5348  	free_page((unsigned long)bpage);
5349  }
5350  EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5351  
5352  /**
5353   * ring_buffer_read_page - extract a page from the ring buffer
5354   * @buffer: buffer to extract from
5355   * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5356   * @len: amount to extract
5357   * @cpu: the cpu of the buffer to extract
5358   * @full: should the extraction only happen when the page is full.
5359   *
5360   * This function will pull out a page from the ring buffer and consume it.
5361   * @data_page must be the address of the variable that was returned
5362   * from ring_buffer_alloc_read_page. This is because the page might be used
5363   * to swap with a page in the ring buffer.
5364   *
5365   * for example:
5366   *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5367   *	if (IS_ERR(rpage))
5368   *		return PTR_ERR(rpage);
5369   *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5370   *	if (ret >= 0)
5371   *		process_page(rpage, ret);
5372   *
5373   * When @full is set, the function will not return true unless
5374   * the writer is off the reader page.
5375   *
5376   * Note: it is up to the calling functions to handle sleeps and wakeups.
5377   *  The ring buffer can be used anywhere in the kernel and can not
5378   *  blindly call wake_up. The layer that uses the ring buffer must be
5379   *  responsible for that.
5380   *
5381   * Returns:
5382   *  >=0 if data has been transferred, returns the offset of consumed data.
5383   *  <0 if no data has been transferred.
5384   */
ring_buffer_read_page(struct trace_buffer * buffer,void ** data_page,size_t len,int cpu,int full)5385  int ring_buffer_read_page(struct trace_buffer *buffer,
5386  			  void **data_page, size_t len, int cpu, int full)
5387  {
5388  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5389  	struct ring_buffer_event *event;
5390  	struct buffer_data_page *bpage;
5391  	struct buffer_page *reader;
5392  	unsigned long missed_events;
5393  	unsigned long flags;
5394  	unsigned int commit;
5395  	unsigned int read;
5396  	u64 save_timestamp;
5397  	int ret = -1;
5398  
5399  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5400  		goto out;
5401  
5402  	/*
5403  	 * If len is not big enough to hold the page header, then
5404  	 * we can not copy anything.
5405  	 */
5406  	if (len <= BUF_PAGE_HDR_SIZE)
5407  		goto out;
5408  
5409  	len -= BUF_PAGE_HDR_SIZE;
5410  
5411  	if (!data_page)
5412  		goto out;
5413  
5414  	bpage = *data_page;
5415  	if (!bpage)
5416  		goto out;
5417  
5418  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5419  
5420  	reader = rb_get_reader_page(cpu_buffer);
5421  	if (!reader)
5422  		goto out_unlock;
5423  
5424  	event = rb_reader_event(cpu_buffer);
5425  
5426  	read = reader->read;
5427  	commit = rb_page_commit(reader);
5428  
5429  	/* Check if any events were dropped */
5430  	missed_events = cpu_buffer->lost_events;
5431  
5432  	/*
5433  	 * If this page has been partially read or
5434  	 * if len is not big enough to read the rest of the page or
5435  	 * a writer is still on the page, then
5436  	 * we must copy the data from the page to the buffer.
5437  	 * Otherwise, we can simply swap the page with the one passed in.
5438  	 */
5439  	if (read || (len < (commit - read)) ||
5440  	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5441  		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5442  		unsigned int rpos = read;
5443  		unsigned int pos = 0;
5444  		unsigned int size;
5445  
5446  		/*
5447  		 * If a full page is expected, this can still be returned
5448  		 * if there's been a previous partial read and the
5449  		 * rest of the page can be read and the commit page is off
5450  		 * the reader page.
5451  		 */
5452  		if (full &&
5453  		    (!read || (len < (commit - read)) ||
5454  		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5455  			goto out_unlock;
5456  
5457  		if (len > (commit - read))
5458  			len = (commit - read);
5459  
5460  		/* Always keep the time extend and data together */
5461  		size = rb_event_ts_length(event);
5462  
5463  		if (len < size)
5464  			goto out_unlock;
5465  
5466  		/* save the current timestamp, since the user will need it */
5467  		save_timestamp = cpu_buffer->read_stamp;
5468  
5469  		/* Need to copy one event at a time */
5470  		do {
5471  			/* We need the size of one event, because
5472  			 * rb_advance_reader only advances by one event,
5473  			 * whereas rb_event_ts_length may include the size of
5474  			 * one or two events.
5475  			 * We have already ensured there's enough space if this
5476  			 * is a time extend. */
5477  			size = rb_event_length(event);
5478  			memcpy(bpage->data + pos, rpage->data + rpos, size);
5479  
5480  			len -= size;
5481  
5482  			rb_advance_reader(cpu_buffer);
5483  			rpos = reader->read;
5484  			pos += size;
5485  
5486  			if (rpos >= commit)
5487  				break;
5488  
5489  			event = rb_reader_event(cpu_buffer);
5490  			/* Always keep the time extend and data together */
5491  			size = rb_event_ts_length(event);
5492  		} while (len >= size);
5493  
5494  		/* update bpage */
5495  		local_set(&bpage->commit, pos);
5496  		bpage->time_stamp = save_timestamp;
5497  
5498  		/* we copied everything to the beginning */
5499  		read = 0;
5500  	} else {
5501  		/* update the entry counter */
5502  		cpu_buffer->read += rb_page_entries(reader);
5503  		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5504  
5505  		/* swap the pages */
5506  		rb_init_page(bpage);
5507  		bpage = reader->page;
5508  		reader->page = *data_page;
5509  		local_set(&reader->write, 0);
5510  		local_set(&reader->entries, 0);
5511  		reader->read = 0;
5512  		*data_page = bpage;
5513  
5514  		/*
5515  		 * Use the real_end for the data size,
5516  		 * This gives us a chance to store the lost events
5517  		 * on the page.
5518  		 */
5519  		if (reader->real_end)
5520  			local_set(&bpage->commit, reader->real_end);
5521  	}
5522  	ret = read;
5523  
5524  	cpu_buffer->lost_events = 0;
5525  
5526  	commit = local_read(&bpage->commit);
5527  	/*
5528  	 * Set a flag in the commit field if we lost events
5529  	 */
5530  	if (missed_events) {
5531  		/* If there is room at the end of the page to save the
5532  		 * missed events, then record it there.
5533  		 */
5534  		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5535  			memcpy(&bpage->data[commit], &missed_events,
5536  			       sizeof(missed_events));
5537  			local_add(RB_MISSED_STORED, &bpage->commit);
5538  			commit += sizeof(missed_events);
5539  		}
5540  		local_add(RB_MISSED_EVENTS, &bpage->commit);
5541  	}
5542  
5543  	/*
5544  	 * This page may be off to user land. Zero it out here.
5545  	 */
5546  	if (commit < BUF_PAGE_SIZE)
5547  		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5548  
5549   out_unlock:
5550  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5551  
5552   out:
5553  	return ret;
5554  }
5555  EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5556  
5557  /*
5558   * We only allocate new buffers, never free them if the CPU goes down.
5559   * If we were to free the buffer, then the user would lose any trace that was in
5560   * the buffer.
5561   */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)5562  int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5563  {
5564  	struct trace_buffer *buffer;
5565  	long nr_pages_same;
5566  	int cpu_i;
5567  	unsigned long nr_pages;
5568  
5569  	buffer = container_of(node, struct trace_buffer, node);
5570  	if (cpumask_test_cpu(cpu, buffer->cpumask))
5571  		return 0;
5572  
5573  	nr_pages = 0;
5574  	nr_pages_same = 1;
5575  	/* check if all cpu sizes are same */
5576  	for_each_buffer_cpu(buffer, cpu_i) {
5577  		/* fill in the size from first enabled cpu */
5578  		if (nr_pages == 0)
5579  			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5580  		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5581  			nr_pages_same = 0;
5582  			break;
5583  		}
5584  	}
5585  	/* allocate minimum pages, user can later expand it */
5586  	if (!nr_pages_same)
5587  		nr_pages = 2;
5588  	buffer->buffers[cpu] =
5589  		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5590  	if (!buffer->buffers[cpu]) {
5591  		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5592  		     cpu);
5593  		return -ENOMEM;
5594  	}
5595  	smp_wmb();
5596  	cpumask_set_cpu(cpu, buffer->cpumask);
5597  	return 0;
5598  }
5599  
5600  #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5601  /*
5602   * This is a basic integrity check of the ring buffer.
5603   * Late in the boot cycle this test will run when configured in.
5604   * It will kick off a thread per CPU that will go into a loop
5605   * writing to the per cpu ring buffer various sizes of data.
5606   * Some of the data will be large items, some small.
5607   *
5608   * Another thread is created that goes into a spin, sending out
5609   * IPIs to the other CPUs to also write into the ring buffer.
5610   * this is to test the nesting ability of the buffer.
5611   *
5612   * Basic stats are recorded and reported. If something in the
5613   * ring buffer should happen that's not expected, a big warning
5614   * is displayed and all ring buffers are disabled.
5615   */
5616  static struct task_struct *rb_threads[NR_CPUS] __initdata;
5617  
5618  struct rb_test_data {
5619  	struct trace_buffer *buffer;
5620  	unsigned long		events;
5621  	unsigned long		bytes_written;
5622  	unsigned long		bytes_alloc;
5623  	unsigned long		bytes_dropped;
5624  	unsigned long		events_nested;
5625  	unsigned long		bytes_written_nested;
5626  	unsigned long		bytes_alloc_nested;
5627  	unsigned long		bytes_dropped_nested;
5628  	int			min_size_nested;
5629  	int			max_size_nested;
5630  	int			max_size;
5631  	int			min_size;
5632  	int			cpu;
5633  	int			cnt;
5634  };
5635  
5636  static struct rb_test_data rb_data[NR_CPUS] __initdata;
5637  
5638  /* 1 meg per cpu */
5639  #define RB_TEST_BUFFER_SIZE	1048576
5640  
5641  static char rb_string[] __initdata =
5642  	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5643  	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5644  	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5645  
5646  static bool rb_test_started __initdata;
5647  
5648  struct rb_item {
5649  	int size;
5650  	char str[];
5651  };
5652  
rb_write_something(struct rb_test_data * data,bool nested)5653  static __init int rb_write_something(struct rb_test_data *data, bool nested)
5654  {
5655  	struct ring_buffer_event *event;
5656  	struct rb_item *item;
5657  	bool started;
5658  	int event_len;
5659  	int size;
5660  	int len;
5661  	int cnt;
5662  
5663  	/* Have nested writes different that what is written */
5664  	cnt = data->cnt + (nested ? 27 : 0);
5665  
5666  	/* Multiply cnt by ~e, to make some unique increment */
5667  	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5668  
5669  	len = size + sizeof(struct rb_item);
5670  
5671  	started = rb_test_started;
5672  	/* read rb_test_started before checking buffer enabled */
5673  	smp_rmb();
5674  
5675  	event = ring_buffer_lock_reserve(data->buffer, len);
5676  	if (!event) {
5677  		/* Ignore dropped events before test starts. */
5678  		if (started) {
5679  			if (nested)
5680  				data->bytes_dropped += len;
5681  			else
5682  				data->bytes_dropped_nested += len;
5683  		}
5684  		return len;
5685  	}
5686  
5687  	event_len = ring_buffer_event_length(event);
5688  
5689  	if (RB_WARN_ON(data->buffer, event_len < len))
5690  		goto out;
5691  
5692  	item = ring_buffer_event_data(event);
5693  	item->size = size;
5694  	memcpy(item->str, rb_string, size);
5695  
5696  	if (nested) {
5697  		data->bytes_alloc_nested += event_len;
5698  		data->bytes_written_nested += len;
5699  		data->events_nested++;
5700  		if (!data->min_size_nested || len < data->min_size_nested)
5701  			data->min_size_nested = len;
5702  		if (len > data->max_size_nested)
5703  			data->max_size_nested = len;
5704  	} else {
5705  		data->bytes_alloc += event_len;
5706  		data->bytes_written += len;
5707  		data->events++;
5708  		if (!data->min_size || len < data->min_size)
5709  			data->max_size = len;
5710  		if (len > data->max_size)
5711  			data->max_size = len;
5712  	}
5713  
5714   out:
5715  	ring_buffer_unlock_commit(data->buffer, event);
5716  
5717  	return 0;
5718  }
5719  
rb_test(void * arg)5720  static __init int rb_test(void *arg)
5721  {
5722  	struct rb_test_data *data = arg;
5723  
5724  	while (!kthread_should_stop()) {
5725  		rb_write_something(data, false);
5726  		data->cnt++;
5727  
5728  		set_current_state(TASK_INTERRUPTIBLE);
5729  		/* Now sleep between a min of 100-300us and a max of 1ms */
5730  		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5731  	}
5732  
5733  	return 0;
5734  }
5735  
rb_ipi(void * ignore)5736  static __init void rb_ipi(void *ignore)
5737  {
5738  	struct rb_test_data *data;
5739  	int cpu = smp_processor_id();
5740  
5741  	data = &rb_data[cpu];
5742  	rb_write_something(data, true);
5743  }
5744  
rb_hammer_test(void * arg)5745  static __init int rb_hammer_test(void *arg)
5746  {
5747  	while (!kthread_should_stop()) {
5748  
5749  		/* Send an IPI to all cpus to write data! */
5750  		smp_call_function(rb_ipi, NULL, 1);
5751  		/* No sleep, but for non preempt, let others run */
5752  		schedule();
5753  	}
5754  
5755  	return 0;
5756  }
5757  
test_ringbuffer(void)5758  static __init int test_ringbuffer(void)
5759  {
5760  	struct task_struct *rb_hammer;
5761  	struct trace_buffer *buffer;
5762  	int cpu;
5763  	int ret = 0;
5764  
5765  	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5766  		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5767  		return 0;
5768  	}
5769  
5770  	pr_info("Running ring buffer tests...\n");
5771  
5772  	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5773  	if (WARN_ON(!buffer))
5774  		return 0;
5775  
5776  	/* Disable buffer so that threads can't write to it yet */
5777  	ring_buffer_record_off(buffer);
5778  
5779  	for_each_online_cpu(cpu) {
5780  		rb_data[cpu].buffer = buffer;
5781  		rb_data[cpu].cpu = cpu;
5782  		rb_data[cpu].cnt = cpu;
5783  		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5784  						 "rbtester/%d", cpu);
5785  		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5786  			pr_cont("FAILED\n");
5787  			ret = PTR_ERR(rb_threads[cpu]);
5788  			goto out_free;
5789  		}
5790  
5791  		kthread_bind(rb_threads[cpu], cpu);
5792   		wake_up_process(rb_threads[cpu]);
5793  	}
5794  
5795  	/* Now create the rb hammer! */
5796  	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5797  	if (WARN_ON(IS_ERR(rb_hammer))) {
5798  		pr_cont("FAILED\n");
5799  		ret = PTR_ERR(rb_hammer);
5800  		goto out_free;
5801  	}
5802  
5803  	ring_buffer_record_on(buffer);
5804  	/*
5805  	 * Show buffer is enabled before setting rb_test_started.
5806  	 * Yes there's a small race window where events could be
5807  	 * dropped and the thread wont catch it. But when a ring
5808  	 * buffer gets enabled, there will always be some kind of
5809  	 * delay before other CPUs see it. Thus, we don't care about
5810  	 * those dropped events. We care about events dropped after
5811  	 * the threads see that the buffer is active.
5812  	 */
5813  	smp_wmb();
5814  	rb_test_started = true;
5815  
5816  	set_current_state(TASK_INTERRUPTIBLE);
5817  	/* Just run for 10 seconds */;
5818  	schedule_timeout(10 * HZ);
5819  
5820  	kthread_stop(rb_hammer);
5821  
5822   out_free:
5823  	for_each_online_cpu(cpu) {
5824  		if (!rb_threads[cpu])
5825  			break;
5826  		kthread_stop(rb_threads[cpu]);
5827  	}
5828  	if (ret) {
5829  		ring_buffer_free(buffer);
5830  		return ret;
5831  	}
5832  
5833  	/* Report! */
5834  	pr_info("finished\n");
5835  	for_each_online_cpu(cpu) {
5836  		struct ring_buffer_event *event;
5837  		struct rb_test_data *data = &rb_data[cpu];
5838  		struct rb_item *item;
5839  		unsigned long total_events;
5840  		unsigned long total_dropped;
5841  		unsigned long total_written;
5842  		unsigned long total_alloc;
5843  		unsigned long total_read = 0;
5844  		unsigned long total_size = 0;
5845  		unsigned long total_len = 0;
5846  		unsigned long total_lost = 0;
5847  		unsigned long lost;
5848  		int big_event_size;
5849  		int small_event_size;
5850  
5851  		ret = -1;
5852  
5853  		total_events = data->events + data->events_nested;
5854  		total_written = data->bytes_written + data->bytes_written_nested;
5855  		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5856  		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5857  
5858  		big_event_size = data->max_size + data->max_size_nested;
5859  		small_event_size = data->min_size + data->min_size_nested;
5860  
5861  		pr_info("CPU %d:\n", cpu);
5862  		pr_info("              events:    %ld\n", total_events);
5863  		pr_info("       dropped bytes:    %ld\n", total_dropped);
5864  		pr_info("       alloced bytes:    %ld\n", total_alloc);
5865  		pr_info("       written bytes:    %ld\n", total_written);
5866  		pr_info("       biggest event:    %d\n", big_event_size);
5867  		pr_info("      smallest event:    %d\n", small_event_size);
5868  
5869  		if (RB_WARN_ON(buffer, total_dropped))
5870  			break;
5871  
5872  		ret = 0;
5873  
5874  		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5875  			total_lost += lost;
5876  			item = ring_buffer_event_data(event);
5877  			total_len += ring_buffer_event_length(event);
5878  			total_size += item->size + sizeof(struct rb_item);
5879  			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5880  				pr_info("FAILED!\n");
5881  				pr_info("buffer had: %.*s\n", item->size, item->str);
5882  				pr_info("expected:   %.*s\n", item->size, rb_string);
5883  				RB_WARN_ON(buffer, 1);
5884  				ret = -1;
5885  				break;
5886  			}
5887  			total_read++;
5888  		}
5889  		if (ret)
5890  			break;
5891  
5892  		ret = -1;
5893  
5894  		pr_info("         read events:   %ld\n", total_read);
5895  		pr_info("         lost events:   %ld\n", total_lost);
5896  		pr_info("        total events:   %ld\n", total_lost + total_read);
5897  		pr_info("  recorded len bytes:   %ld\n", total_len);
5898  		pr_info(" recorded size bytes:   %ld\n", total_size);
5899  		if (total_lost)
5900  			pr_info(" With dropped events, record len and size may not match\n"
5901  				" alloced and written from above\n");
5902  		if (!total_lost) {
5903  			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5904  				       total_size != total_written))
5905  				break;
5906  		}
5907  		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5908  			break;
5909  
5910  		ret = 0;
5911  	}
5912  	if (!ret)
5913  		pr_info("Ring buffer PASSED!\n");
5914  
5915  	ring_buffer_free(buffer);
5916  	return 0;
5917  }
5918  
5919  late_initcall(test_ringbuffer);
5920  #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5921