1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24 #include "walt.h"
25 #include "rtg/rtg.h"
26
27 #ifdef CONFIG_SCHED_WALT
28 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p, u16 updated_demand_scaled);
29 #endif
30
31 #if defined(CONFIG_SCHED_WALT) && defined(CONFIG_CFS_BANDWIDTH)
32 static void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq);
33 static void walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p);
34 static void walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p);
35 static void walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats *stats, struct cfs_rq *cfs_rq);
36 static void walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats *stats, struct cfs_rq *cfs_rq);
37 #else
walt_init_cfs_rq_stats(struct cfs_rq * cfs_rq)38 static inline void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq)
39 {
40 }
walt_inc_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)41 static inline void walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p)
42 {
43 }
walt_dec_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)44 static inline void walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p)
45 {
46 }
47
48 #define walt_inc_throttled_cfs_rq_stats(...)
49 #define walt_dec_throttled_cfs_rq_stats(...)
50
51 #endif
52
53 #define FAIR_THREE 3
54 #define FAIR_FOUR 4
55 #define FAIR_TWENTY 20
56 #define FAIR_ONEHUNDRED 100
57 #define FAIR_TWOHUNDREDFIFTYTHREE 253
58 #define FAIR_TWOHUNDREDFIFTYSIX 256
59 #define FAIR_ONETHOUSAND 1000
60 #define FAIR_SIXTYTHOUSAND 60000
61
62 /*
63 * Targeted preemption latency for CPU-bound tasks:
64 *
65 * NOTE: this latency value is not the same as the concept of
66 * 'timeslice length' - timeslices in CFS are of variable length
67 * and have no persistent notion like in traditional, time-slice
68 * based scheduling concepts.
69 *
70 * (to see the precise effective timeslice length of your workload,
71 * run vmstat and monitor the context-switches (cs) field)
72 *
73 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
74 */
75 unsigned int sysctl_sched_latency = 6000000ULL;
76 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
77
78 /*
79 * The initial- and re-scaling of tunables is configurable
80 *
81 * Options are:
82 *
83 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
84 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
85 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
86 *
87 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
88 */
89 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
90
91 /*
92 * Minimal preemption granularity for CPU-bound tasks:
93 *
94 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
95 */
96 unsigned int sysctl_sched_min_granularity = 750000ULL;
97 EXPORT_SYMBOL_GPL(sysctl_sched_min_granularity);
98 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
99
100 /*
101 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
102 */
103 static unsigned int sched_nr_latency = 8;
104
105 /*
106 * After fork, child runs first. If set to 0 (default) then
107 * parent will (try to) run first.
108 */
109 unsigned int sysctl_sched_child_runs_first __read_mostly;
110
111 /*
112 * SCHED_OTHER wake-up granularity.
113 *
114 * This option delays the preemption effects of decoupled workloads
115 * and reduces their over-scheduling. Synchronous workloads will still
116 * have immediate wakeup/sleep latencies.
117 *
118 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
119 */
120 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
121 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
122
123 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
124
125 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)126 static int __init setup_sched_thermal_decay_shift(char *str)
127 {
128 int _shift = 0;
129
130 if (kstrtoint(str, 0, &_shift)) {
131 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
132 }
133
134 sched_thermal_decay_shift = clamp(_shift, 0, 10);
135 return 1;
136 }
137 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
138
139 #ifdef CONFIG_SMP
140 /*
141 * For asym packing, by default the lower numbered CPU has higher priority.
142 */
arch_asym_cpu_priority(int cpu)143 int __weak arch_asym_cpu_priority(int cpu)
144 {
145 return -cpu;
146 }
147
148 /*
149 * The margin used when comparing utilization with CPU capacity.
150 *
151 * (default: ~20%)
152 */
153 #define fits_capacity(cap, max) ((cap)*1280 < (max)*1024)
154
155 #endif
156
157 #ifdef CONFIG_CFS_BANDWIDTH
158 /*
159 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
160 * each time a cfs_rq requests quota.
161 *
162 * Note: in the case that the slice exceeds the runtime remaining (either due
163 * to consumption or the quota being specified to be smaller than the slice)
164 * we will always only issue the remaining available time.
165 *
166 * (default: 5 msec, units: microseconds)
167 */
168 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
169 #endif
170
update_load_add(struct load_weight * lw,unsigned long inc)171 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
172 {
173 lw->weight += inc;
174 lw->inv_weight = 0;
175 }
176
update_load_sub(struct load_weight * lw,unsigned long dec)177 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
178 {
179 lw->weight -= dec;
180 lw->inv_weight = 0;
181 }
182
update_load_set(struct load_weight * lw,unsigned long w)183 static inline void update_load_set(struct load_weight *lw, unsigned long w)
184 {
185 lw->weight = w;
186 lw->inv_weight = 0;
187 }
188
189 /*
190 * Increase the granularity value when there are more CPUs,
191 * because with more CPUs the 'effective latency' as visible
192 * to users decreases. But the relationship is not linear,
193 * so pick a second-best guess by going with the log2 of the
194 * number of CPUs.
195 *
196 * This idea comes from the SD scheduler of Con Kolivas:
197 */
get_update_sysctl_factor(void)198 static unsigned int get_update_sysctl_factor(void)
199 {
200 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
201 unsigned int factor;
202
203 switch (sysctl_sched_tunable_scaling) {
204 case SCHED_TUNABLESCALING_NONE:
205 factor = 1;
206 break;
207 case SCHED_TUNABLESCALING_LINEAR:
208 factor = cpus;
209 break;
210 case SCHED_TUNABLESCALING_LOG:
211 default:
212 factor = 1 + ilog2(cpus);
213 break;
214 }
215
216 return factor;
217 }
218
update_sysctl(void)219 static void update_sysctl(void)
220 {
221 unsigned int factor = get_update_sysctl_factor();
222
223 #define SET_SYSCTL(name) \
224 (sysctl_##name = (factor) * normalized_sysctl_##name)
225 SET_SYSCTL(sched_min_granularity);
226 SET_SYSCTL(sched_latency);
227 SET_SYSCTL(sched_wakeup_granularity);
228 #undef SET_SYSCTL
229 }
230
sched_init_granularity(void)231 void __init sched_init_granularity(void)
232 {
233 update_sysctl();
234 }
235
236 #define WMULT_CONST (~0U)
237 #define WMULT_SHIFT 32
238
fair_update_inv_weight(struct load_weight * lw)239 static void fair_update_inv_weight(struct load_weight *lw)
240 {
241 unsigned long w;
242
243 if (likely(lw->inv_weight)) {
244 return;
245 }
246
247 w = scale_load_down(lw->weight);
248 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) {
249 lw->inv_weight = 1;
250 } else if (unlikely(!w)) {
251 lw->inv_weight = WMULT_CONST;
252 } else {
253 lw->inv_weight = WMULT_CONST / w;
254 }
255 }
256
257 /*
258 * delta_exec * weight / lw.weight
259 * OR
260 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
261 *
262 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
263 * we're guaranteed shift stays positive because inv_weight is guaranteed to
264 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
265 *
266 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
267 * weight/lw.weight <= 1, and therefore our shift will also be positive.
268 */
fair_calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)269 static u64 fair_calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
270 {
271 u64 fact = scale_load_down(weight);
272 int shift = WMULT_SHIFT;
273
274 fair_update_inv_weight(lw);
275
276 if (unlikely(fact >> 32)) {
277 while (fact >> 32) {
278 fact >>= 1;
279 shift--;
280 }
281 }
282
283 fact = mul_u32_u32(fact, lw->inv_weight);
284
285 while (fact >> 32) {
286 fact >>= 1;
287 shift--;
288 }
289
290 return mul_u64_u32_shr(delta_exec, fact, shift);
291 }
292
293 const struct sched_class fair_sched_class;
294
295 /**************************************************************
296 * CFS operations on generic schedulable entities:
297 */
298
299 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)300 static inline struct task_struct *task_of(struct sched_entity *se)
301 {
302 SCHED_WARN_ON(!entity_is_task(se));
303 return container_of(se, struct task_struct, se);
304 }
305
306 /* Walk up scheduling entities hierarchy */
307 #define for_each_sched_entity(se) for (; se; se = se->parent)
308
task_cfs_rq(struct task_struct * p)309 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
310 {
311 return p->se.cfs_rq;
312 }
313
314 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)315 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
316 {
317 return se->cfs_rq;
318 }
319
320 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)321 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
322 {
323 return grp->my_q;
324 }
325
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)326 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
327 {
328 if (!path) {
329 return;
330 }
331
332 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) {
333 autogroup_path(cfs_rq->tg, path, len);
334 } else if (cfs_rq && cfs_rq->tg->css.cgroup) {
335 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
336 } else {
337 strlcpy(path, "(null)", len);
338 }
339 }
340
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)341 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
342 {
343 struct rq *rq = rq_of(cfs_rq);
344 int cpu = cpu_of(rq);
345
346 if (cfs_rq->on_list) {
347 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
348 }
349
350 cfs_rq->on_list = 1;
351
352 /*
353 * Ensure we either appear before our parent (if already
354 * enqueued) or force our parent to appear after us when it is
355 * enqueued. The fact that we always enqueue bottom-up
356 * reduces this to two cases and a special case for the root
357 * cfs_rq. Furthermore, it also means that we will always reset
358 * tmp_alone_branch either when the branch is connected
359 * to a tree or when we reach the top of the tree
360 */
361 if (cfs_rq->tg->parent && cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
362 /*
363 * If parent is already on the list, we add the child
364 * just before. Thanks to circular linked property of
365 * the list, this means to put the child at the tail
366 * of the list that starts by parent.
367 */
368 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
369 /*
370 * The branch is now connected to its tree so we can
371 * reset tmp_alone_branch to the beginning of the
372 * list.
373 */
374 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
375 return true;
376 }
377
378 if (!cfs_rq->tg->parent) {
379 /*
380 * cfs rq without parent should be put
381 * at the tail of the list.
382 */
383 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
384 /*
385 * We have reach the top of a tree so we can reset
386 * tmp_alone_branch to the beginning of the list.
387 */
388 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
389 return true;
390 }
391
392 /*
393 * The parent has not already been added so we want to
394 * make sure that it will be put after us.
395 * tmp_alone_branch points to the begin of the branch
396 * where we will add parent.
397 */
398 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
399 /*
400 * update tmp_alone_branch to points to the new begin
401 * of the branch
402 */
403 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
404 return false;
405 }
406
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 if (cfs_rq->on_list) {
410 struct rq *rq = rq_of(cfs_rq);
411
412 /*
413 * With cfs_rq being unthrottled/throttled during an enqueue,
414 * it can happen the tmp_alone_branch points the a leaf that
415 * we finally want to del. In this case, tmp_alone_branch moves
416 * to the prev element but it will point to rq->leaf_cfs_rq_list
417 * at the end of the enqueue.
418 */
419 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) {
420 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
421 }
422
423 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
424 cfs_rq->on_list = 0;
425 }
426 }
427
assert_list_leaf_cfs_rq(struct rq * rq)428 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
429 {
430 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
431 }
432
433 /* Iterate thr' all leaf cfs_rq's on a runqueue */
434 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
435 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
436
437 /* Do the two (enqueued) entities belong to the same group ? */
is_same_group(struct sched_entity * se,struct sched_entity * pse)438 static inline struct cfs_rq *is_same_group(struct sched_entity *se, struct sched_entity *pse)
439 {
440 if (se->cfs_rq == pse->cfs_rq) {
441 return se->cfs_rq;
442 }
443
444 return NULL;
445 }
446
parent_entity(struct sched_entity * se)447 static inline struct sched_entity *parent_entity(struct sched_entity *se)
448 {
449 return se->parent;
450 }
451
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)452 static void find_matching_se(struct sched_entity **se, struct sched_entity **pse)
453 {
454 int se_depth, pse_depth;
455
456 /*
457 * preemption test can be made between sibling entities who are in the
458 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
459 * both tasks until we find their ancestors who are siblings of common
460 * parent.
461 */
462
463 /* First walk up until both entities are at same depth */
464 se_depth = (*se)->depth;
465 pse_depth = (*pse)->depth;
466
467 while (se_depth > pse_depth) {
468 se_depth--;
469 *se = parent_entity(*se);
470 }
471
472 while (pse_depth > se_depth) {
473 pse_depth--;
474 *pse = parent_entity(*pse);
475 }
476
477 while (!is_same_group(*se, *pse)) {
478 *se = parent_entity(*se);
479 *pse = parent_entity(*pse);
480 }
481 }
482
483 #else /* !CONFIG_FAIR_GROUP_SCHED */
484
task_of(struct sched_entity * se)485 static inline struct task_struct *task_of(struct sched_entity *se)
486 {
487 return container_of(se, struct task_struct, se);
488 }
489
490 #define for_each_sched_entity(se) (for (; se; se = NULL))
491
task_cfs_rq(struct task_struct * p)492 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
493 {
494 return &task_rq(p)->cfs;
495 }
496
cfs_rq_of(struct sched_entity * se)497 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
498 {
499 struct task_struct *p = task_of(se);
500 struct rq *rq = task_rq(p);
501
502 return &rq->cfs;
503 }
504
505 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)506 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
507 {
508 return NULL;
509 }
510
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)511 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
512 {
513 if (path) {
514 strlcpy(path, "(null)", len);
515 }
516 }
517
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)518 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
519 {
520 return true;
521 }
522
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)523 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
524 {
525 }
526
assert_list_leaf_cfs_rq(struct rq * rq)527 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
528 {
529 }
530
531 #define for_each_leaf_cfs_rq_safe(rq, cfs, pos) (for ((cfs) = &(rq)->cfs, (pos) = NULL; (cfs); (cfs) = (pos)))
532
parent_entity(struct sched_entity * se)533 static inline struct sched_entity *parent_entity(struct sched_entity *se)
534 {
535 return NULL;
536 }
537
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)538 static inline void find_matching_se(struct sched_entity **se, struct sched_entity **pse)
539 {
540 }
541
542 #endif /* CONFIG_FAIR_GROUP_SCHED */
543
544 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
545
546 /**************************************************************
547 * Scheduling class tree data structure manipulation methods:
548 */
549
max_vruntime(u64 max_vruntime,u64 vruntime)550 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
551 {
552 s64 delta = (s64)(vruntime - max_vruntime);
553 if (delta > 0) {
554 max_vruntime = vruntime;
555 }
556
557 return max_vruntime;
558 }
559
min_vruntime(u64 min_vruntime,u64 vruntime)560 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
561 {
562 s64 delta = (s64)(vruntime - min_vruntime);
563 if (delta < 0) {
564 min_vruntime = vruntime;
565 }
566
567 return min_vruntime;
568 }
569
entity_before(struct sched_entity * a,struct sched_entity * b)570 static inline int entity_before(struct sched_entity *a, struct sched_entity *b)
571 {
572 return (s64)(a->vruntime - b->vruntime) < 0;
573 }
574
update_min_vruntime(struct cfs_rq * cfs_rq)575 static void update_min_vruntime(struct cfs_rq *cfs_rq)
576 {
577 struct sched_entity *curr = cfs_rq->curr;
578 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
579
580 u64 vruntime = cfs_rq->min_vruntime;
581
582 if (curr) {
583 if (curr->on_rq) {
584 vruntime = curr->vruntime;
585 } else {
586 curr = NULL;
587 }
588 }
589
590 if (leftmost) { /* non-empty tree */
591 struct sched_entity *se;
592 se = rb_entry(leftmost, struct sched_entity, run_node);
593
594 if (!curr) {
595 vruntime = se->vruntime;
596 } else {
597 vruntime = min_vruntime(vruntime, se->vruntime);
598 }
599 }
600
601 /* ensure we never gain time by being placed backwards. */
602 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
603 #ifndef CONFIG_64BIT
604 smp_wmb();
605 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
606 #endif
607 }
608
609 /*
610 * Enqueue an entity into the rb-tree:
611 */
fair_enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)612 static void fair_enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
613 {
614 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
615 struct rb_node *parent = NULL;
616 struct sched_entity *entry;
617 bool leftmost = true;
618
619 /*
620 * Find the right place in the rbtree:
621 */
622 while (*link) {
623 parent = *link;
624 entry = rb_entry(parent, struct sched_entity, run_node);
625 /*
626 * We dont care about collisions. Nodes with
627 * the same key stay together.
628 */
629 if (entity_before(se, entry)) {
630 link = &parent->rb_left;
631 } else {
632 link = &parent->rb_right;
633 leftmost = false;
634 }
635 }
636
637 rb_link_node(&se->run_node, parent, link);
638 rb_insert_color_cached(&se->run_node, &cfs_rq->tasks_timeline, leftmost);
639 }
640
fair_dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)641 static void fair_dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
642 {
643 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
644 }
645
__pick_first_entity(struct cfs_rq * cfs_rq)646 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
647 {
648 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
649
650 if (!left) {
651 return NULL;
652 }
653
654 return rb_entry(left, struct sched_entity, run_node);
655 }
656
fair_pick_next_entity(struct sched_entity * se)657 static struct sched_entity *fair_pick_next_entity(struct sched_entity *se)
658 {
659 struct rb_node *next = rb_next(&se->run_node);
660
661 if (!next) {
662 return NULL;
663 }
664
665 return rb_entry(next, struct sched_entity, run_node);
666 }
667
668 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)669 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
670 {
671 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
672
673 if (!last) {
674 return NULL;
675 }
676
677 return rb_entry(last, struct sched_entity, run_node);
678 }
679
680 /**************************************************************
681 * Scheduling class statistics methods
682 */
683
sched_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)684 int sched_proc_update_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)
685 {
686 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
687 unsigned int factor = get_update_sysctl_factor();
688
689 if (ret || !write) {
690 return ret;
691 }
692
693 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, sysctl_sched_min_granularity);
694
695 #define WRT_SYSCTL(name) (normalized_sysctl_##name = sysctl_##name / (factor))
696 WRT_SYSCTL(sched_min_granularity);
697 WRT_SYSCTL(sched_latency);
698 WRT_SYSCTL(sched_wakeup_granularity);
699 #undef WRT_SYSCTL
700
701 return 0;
702 }
703 #endif
704
705 /*
706 * delta /= w
707 */
calc_delta_fair(u64 delta,struct sched_entity * se)708 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
709 {
710 if (unlikely(se->load.weight != NICE_0_LOAD)) {
711 delta = fair_calc_delta(delta, NICE_0_LOAD, &se->load);
712 }
713
714 return delta;
715 }
716
717 /*
718 * The idea is to set a period in which each task runs once.
719 *
720 * When there are too many tasks (sched_nr_latency) we have to stretch
721 * this period because otherwise the slices get too small.
722 *
723 * p = (nr <= nl) ? l : l*nr/nl
724 */
fair_sched_period(unsigned long nr_running)725 static u64 fair_sched_period(unsigned long nr_running)
726 {
727 if (unlikely(nr_running > sched_nr_latency)) {
728 return nr_running * sysctl_sched_min_granularity;
729 } else {
730 return sysctl_sched_latency;
731 }
732 }
733
734 /*
735 * We calculate the wall-time slice from the period by taking a part
736 * proportional to the weight.
737 *
738 * s = p*P[w/rw]
739 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)740 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
741 {
742 unsigned int nr_running = cfs_rq->nr_running;
743 u64 slice;
744
745 if (sched_feat(ALT_PERIOD)) {
746 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
747 }
748
749 slice = fair_sched_period(nr_running + !se->on_rq);
750
751 for_each_sched_entity(se) {
752 struct load_weight *load;
753 struct load_weight lw;
754
755 cfs_rq = cfs_rq_of(se);
756 load = &cfs_rq->load;
757
758 if (unlikely(!se->on_rq)) {
759 lw = cfs_rq->load;
760
761 update_load_add(&lw, se->load.weight);
762 load = &lw;
763 }
764 slice = fair_calc_delta(slice, se->load.weight, load);
765 }
766
767 if (sched_feat(BASE_SLICE)) {
768 slice = max(slice, (u64)sysctl_sched_min_granularity);
769 }
770
771 return slice;
772 }
773
774 /*
775 * We calculate the vruntime slice of a to-be-inserted task.
776 *
777 * vs = s/w
778 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)779 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
780 {
781 return calc_delta_fair(sched_slice(cfs_rq, se), se);
782 }
783
784 #include "pelt.h"
785 #ifdef CONFIG_SMP
786
787 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
788 static unsigned long task_h_load(struct task_struct *p);
789
790 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)791 void init_entity_runnable_average(struct sched_entity *se)
792 {
793 struct sched_avg *sa = &se->avg;
794
795 memset(sa, 0, sizeof(*sa));
796
797 /*
798 * Tasks are initialized with full load to be seen as heavy tasks until
799 * they get a chance to stabilize to their real load level.
800 * Group entities are initialized with zero load to reflect the fact that
801 * nothing has been attached to the task group yet.
802 */
803 if (entity_is_task(se)) {
804 sa->load_avg = scale_load_down(se->load.weight);
805 }
806
807 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
808 }
809
810 static void attach_entity_cfs_rq(struct sched_entity *se);
811
812 /*
813 * With new tasks being created, their initial util_avgs are extrapolated
814 * based on the cfs_rq's current util_avg:
815 *
816 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
817 *
818 * However, in many cases, the above util_avg does not give a desired
819 * value. Moreover, the sum of the util_avgs may be divergent, such
820 * as when the series is a harmonic series.
821 *
822 * To solve this problem, we also cap the util_avg of successive tasks to
823 * only 1/2 of the left utilization budget:
824 *
825 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
826 *
827 * where n denotes the nth task and cpu_scale the CPU capacity.
828 *
829 * For example, for a CPU with 1024 of capacity, a simplest series from
830 * the beginning would be like
831 *
832 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
833 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
834 *
835 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
836 * if util_avg > util_avg_cap.
837 */
post_init_entity_util_avg(struct task_struct * p)838 void post_init_entity_util_avg(struct task_struct *p)
839 {
840 struct sched_entity *se = &p->se;
841 struct cfs_rq *cfs_rq = cfs_rq_of(se);
842 struct sched_avg *sa = &se->avg;
843 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
844 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
845
846 if (cap > 0) {
847 if (cfs_rq->avg.util_avg != 0) {
848 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
849 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
850
851 if (sa->util_avg > cap) {
852 sa->util_avg = cap;
853 }
854 } else {
855 sa->util_avg = cap;
856 }
857 }
858
859 sa->runnable_avg = sa->util_avg;
860
861 if (p->sched_class != &fair_sched_class) {
862 /*
863 * For !fair tasks do:
864 *
865 update_cfs_rq_load_avg(now, cfs_rq);
866 attach_entity_load_avg(cfs_rq, se);
867 switched_from_fair(rq, p);
868 *
869 * such that the next switched_to_fair() has the
870 * expected state.
871 */
872 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
873 return;
874 }
875
876 attach_entity_cfs_rq(se);
877 }
878
879 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)880 void init_entity_runnable_average(struct sched_entity *se)
881 {
882 }
post_init_entity_util_avg(struct task_struct * p)883 void post_init_entity_util_avg(struct task_struct *p)
884 {
885 }
update_tg_load_avg(struct cfs_rq * cfs_rq)886 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
887 {
888 }
889 #endif /* CONFIG_SMP */
890
891 /*
892 * Update the current task's runtime statistics.
893 */
update_curr(struct cfs_rq * cfs_rq)894 static void update_curr(struct cfs_rq *cfs_rq)
895 {
896 struct sched_entity *curr = cfs_rq->curr;
897 u64 now = rq_clock_task(rq_of(cfs_rq));
898 u64 delta_exec;
899
900 if (unlikely(!curr)) {
901 return;
902 }
903
904 delta_exec = now - curr->exec_start;
905 if (unlikely((s64)delta_exec <= 0)) {
906 return;
907 }
908
909 curr->exec_start = now;
910
911 schedstat_set(curr->statistics.exec_max, max(delta_exec, curr->statistics.exec_max));
912
913 curr->sum_exec_runtime += delta_exec;
914 schedstat_add(cfs_rq->exec_clock, delta_exec);
915
916 curr->vruntime += calc_delta_fair(delta_exec, curr);
917 update_min_vruntime(cfs_rq);
918
919 if (entity_is_task(curr)) {
920 struct task_struct *curtask = task_of(curr);
921
922 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
923 cgroup_account_cputime(curtask, delta_exec);
924 account_group_exec_runtime(curtask, delta_exec);
925 }
926
927 account_cfs_rq_runtime(cfs_rq, delta_exec);
928 }
929
update_curr_fair(struct rq * rq)930 static void update_curr_fair(struct rq *rq)
931 {
932 update_curr(cfs_rq_of(&rq->curr->se));
933 }
934
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)935 static inline void update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
936 {
937 u64 wait_start, prev_wait_start;
938
939 if (!schedstat_enabled()) {
940 return;
941 }
942
943 wait_start = rq_clock(rq_of(cfs_rq));
944 prev_wait_start = schedstat_val(se->statistics.wait_start);
945 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && likely(wait_start > prev_wait_start)) {
946 wait_start -= prev_wait_start;
947 }
948
949 __schedstat_set(se->statistics.wait_start, wait_start);
950 }
951
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)952 static inline void update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
953 {
954 struct task_struct *p;
955 u64 delta;
956
957 if (!schedstat_enabled()) {
958 return;
959 }
960
961 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
962
963 if (entity_is_task(se)) {
964 p = task_of(se);
965 if (task_on_rq_migrating(p)) {
966 /*
967 * Preserve migrating task's wait time so wait_start
968 * time stamp can be adjusted to accumulate wait time
969 * prior to migration.
970 */
971 __schedstat_set(se->statistics.wait_start, delta);
972 return;
973 }
974 trace_sched_stat_wait(p, delta);
975 }
976
977 __schedstat_set(se->statistics.wait_max, max(schedstat_val(se->statistics.wait_max), delta));
978 __schedstat_inc(se->statistics.wait_count);
979 __schedstat_add(se->statistics.wait_sum, delta);
980 __schedstat_set(se->statistics.wait_start, 0);
981 }
982
update_stats_enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)983 static inline void update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
984 {
985 struct task_struct *tsk = NULL;
986 u64 sleep_start, block_start;
987
988 if (!schedstat_enabled()) {
989 return;
990 }
991
992 sleep_start = schedstat_val(se->statistics.sleep_start);
993 block_start = schedstat_val(se->statistics.block_start);
994
995 if (entity_is_task(se)) {
996 tsk = task_of(se);
997 }
998
999 if (sleep_start) {
1000 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1001 if ((s64)delta < 0) {
1002 delta = 0;
1003 }
1004
1005 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) {
1006 __schedstat_set(se->statistics.sleep_max, delta);
1007 }
1008
1009 __schedstat_set(se->statistics.sleep_start, 0);
1010 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1011
1012 if (tsk) {
1013 account_scheduler_latency(tsk, delta >> 10, 1);
1014 trace_sched_stat_sleep(tsk, delta);
1015 }
1016 }
1017 if (block_start) {
1018 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1019 if ((s64)delta < 0) {
1020 delta = 0;
1021 }
1022
1023 if (unlikely(delta > schedstat_val(se->statistics.block_max))) {
1024 __schedstat_set(se->statistics.block_max, delta);
1025 }
1026
1027 __schedstat_set(se->statistics.block_start, 0);
1028 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1029
1030 if (tsk) {
1031 if (tsk->in_iowait) {
1032 __schedstat_add(se->statistics.iowait_sum, delta);
1033 __schedstat_inc(se->statistics.iowait_count);
1034 trace_sched_stat_iowait(tsk, delta);
1035 }
1036
1037 trace_sched_stat_blocked(tsk, delta);
1038
1039 /*
1040 * Blocking time is in units of nanosecs, so shift by
1041 * 20 to get a milliseconds-range estimation of the
1042 * amount of time that the task spent sleeping:
1043 */
1044 if (unlikely(prof_on == SLEEP_PROFILING)) {
1045 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk), delta >> FAIR_TWENTY);
1046 }
1047 account_scheduler_latency(tsk, delta >> 10, 0);
1048 }
1049 }
1050 }
1051
1052 /*
1053 * Task is being enqueued - update stats:
1054 */
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1055 static inline void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1056 {
1057 if (!schedstat_enabled()) {
1058 return;
1059 }
1060
1061 /*
1062 * Are we enqueueing a waiting task? (for current tasks
1063 * a dequeue/enqueue event is a NOP)
1064 */
1065 if (se != cfs_rq->curr) {
1066 update_stats_wait_start(cfs_rq, se);
1067 }
1068
1069 if (flags & ENQUEUE_WAKEUP) {
1070 update_stats_enqueue_sleeper(cfs_rq, se);
1071 }
1072 }
1073
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1074 static inline void update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1075 {
1076 if (!schedstat_enabled()) {
1077 return;
1078 }
1079
1080 /*
1081 * Mark the end of the wait period if dequeueing a
1082 * waiting task:
1083 */
1084 if (se != cfs_rq->curr) {
1085 update_stats_wait_end(cfs_rq, se);
1086 }
1087
1088 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1089 struct task_struct *tsk = task_of(se);
1090
1091 if (tsk->state & TASK_INTERRUPTIBLE) {
1092 __schedstat_set(se->statistics.sleep_start, rq_clock(rq_of(cfs_rq)));
1093 }
1094 if (tsk->state & TASK_UNINTERRUPTIBLE) {
1095 __schedstat_set(se->statistics.block_start, rq_clock(rq_of(cfs_rq)));
1096 }
1097 }
1098 }
1099
1100 /*
1101 * We are picking a new current task - update its stats:
1102 */
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1103 static inline void update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1104 {
1105 /*
1106 * We are starting a new run period:
1107 */
1108 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1109 }
1110
1111 /**************************************************
1112 * Scheduling class queueing methods:
1113 */
1114
1115 #ifdef CONFIG_NUMA_BALANCING
1116 /*
1117 * Approximate time to scan a full NUMA task in ms. The task scan period is
1118 * calculated based on the tasks virtual memory size and
1119 * numa_balancing_scan_size.
1120 */
1121 unsigned int sysctl_numa_balancing_scan_period_min = FAIR_ONETHOUSAND;
1122 unsigned int sysctl_numa_balancing_scan_period_max = FAIR_SIXTYTHOUSAND;
1123
1124 /* Portion of address space to scan in MB */
1125 unsigned int sysctl_numa_balancing_scan_size = FAIR_TWOHUNDREDFIFTYSIX;
1126
1127 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1128 unsigned int sysctl_numa_balancing_scan_delay = FAIR_ONETHOUSAND;
1129
1130 struct numa_group {
1131 refcount_t refcount;
1132
1133 spinlock_t lock; /* nr_tasks, tasks */
1134 int nr_tasks;
1135 pid_t gid;
1136 int active_nodes;
1137
1138 struct rcu_head rcu;
1139 unsigned long total_faults;
1140 unsigned long max_faults_cpu;
1141 /*
1142 * Faults_cpu is used to decide whether memory should move
1143 * towards the CPU. As a consequence, these stats are weighted
1144 * more by CPU use than by memory faults.
1145 */
1146 unsigned long *faults_cpu;
1147 unsigned long faults[];
1148 };
1149
1150 /*
1151 * For functions that can be called in multiple contexts that permit reading
1152 * ->numa_group (see struct task_struct for locking rules).
1153 */
deref_task_numa_group(struct task_struct * p)1154 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1155 {
1156 return rcu_dereference_check(p->numa_group,
1157 p == current || (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1158 }
1159
deref_curr_numa_group(struct task_struct * p)1160 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1161 {
1162 return rcu_dereference_protected(p->numa_group, p == current);
1163 }
1164
1165 static inline unsigned long group_faults_priv(struct numa_group *ng);
1166 static inline unsigned long group_faults_shared(struct numa_group *ng);
1167
task_nr_scan_windows(struct task_struct * p)1168 static unsigned int task_nr_scan_windows(struct task_struct *p)
1169 {
1170 unsigned long rss = 0;
1171 unsigned long nr_scan_pages;
1172
1173 /*
1174 * Calculations based on RSS as non-present and empty pages are skipped
1175 * by the PTE scanner and NUMA hinting faults should be trapped based
1176 * on resident pages
1177 */
1178 nr_scan_pages = sysctl_numa_balancing_scan_size << (FAIR_TWENTY - PAGE_SHIFT);
1179 rss = get_mm_rss(p->mm);
1180 if (!rss) {
1181 rss = nr_scan_pages;
1182 }
1183
1184 rss = round_up(rss, nr_scan_pages);
1185 return rss / nr_scan_pages;
1186 }
1187
1188 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1189 #define MAX_SCAN_WINDOW 2560
1190
task_scan_min(struct task_struct * p)1191 static unsigned int task_scan_min(struct task_struct *p)
1192 {
1193 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1194 unsigned int scan, floor;
1195 unsigned int windows = 1;
1196
1197 if (scan_size < MAX_SCAN_WINDOW) {
1198 windows = MAX_SCAN_WINDOW / scan_size;
1199 }
1200 floor = FAIR_ONETHOUSAND / windows;
1201
1202 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1203 return max_t(unsigned int, floor, scan);
1204 }
1205
task_scan_start(struct task_struct * p)1206 static unsigned int task_scan_start(struct task_struct *p)
1207 {
1208 unsigned long smin = task_scan_min(p);
1209 unsigned long period = smin;
1210 struct numa_group *ng;
1211
1212 /* Scale the maximum scan period with the amount of shared memory. */
1213 rcu_read_lock();
1214 ng = rcu_dereference(p->numa_group);
1215 if (ng) {
1216 unsigned long shared = group_faults_shared(ng);
1217 unsigned long private = group_faults_priv(ng);
1218
1219 period *= refcount_read(&ng->refcount);
1220 period *= shared + 1;
1221 period /= private + shared + 1;
1222 }
1223 rcu_read_unlock();
1224
1225 return max(smin, period);
1226 }
1227
task_scan_max(struct task_struct * p)1228 static unsigned int task_scan_max(struct task_struct *p)
1229 {
1230 unsigned long smin = task_scan_min(p);
1231 unsigned long smax;
1232 struct numa_group *ng;
1233
1234 /* Watch for min being lower than max due to floor calculations */
1235 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1236
1237 /* Scale the maximum scan period with the amount of shared memory. */
1238 ng = deref_curr_numa_group(p);
1239 if (ng) {
1240 unsigned long shared = group_faults_shared(ng);
1241 unsigned long private = group_faults_priv(ng);
1242 unsigned long period = smax;
1243
1244 period *= refcount_read(&ng->refcount);
1245 period *= shared + 1;
1246 period /= private + shared + 1;
1247
1248 smax = max(smax, period);
1249 }
1250
1251 return max(smin, smax);
1252 }
1253
account_numa_enqueue(struct rq * rq,struct task_struct * p)1254 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1255 {
1256 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1257 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1258 }
1259
account_numa_dequeue(struct rq * rq,struct task_struct * p)1260 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1261 {
1262 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1263 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1264 }
1265
1266 /* Shared or private faults. */
1267 #define NR_NUMA_HINT_FAULT_TYPES 2
1268
1269 /* Memory and CPU locality */
1270 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1271
1272 /* Averaged statistics, and temporary buffers. */
1273 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1274
task_numa_group_id(struct task_struct * p)1275 pid_t task_numa_group_id(struct task_struct *p)
1276 {
1277 struct numa_group *ng;
1278 pid_t gid = 0;
1279
1280 rcu_read_lock();
1281 ng = rcu_dereference(p->numa_group);
1282 if (ng) {
1283 gid = ng->gid;
1284 }
1285 rcu_read_unlock();
1286
1287 return gid;
1288 }
1289
1290 /*
1291 * The averaged statistics, shared & private, memory & CPU,
1292 * occupy the first half of the array. The second half of the
1293 * array is for current counters, which are averaged into the
1294 * first set by task_numa_placement.
1295 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1296 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1297 {
1298 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1299 }
1300
task_faults(struct task_struct * p,int nid)1301 static inline unsigned long task_faults(struct task_struct *p, int nid)
1302 {
1303 if (!p->numa_faults) {
1304 return 0;
1305 }
1306
1307 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1308 }
1309
group_faults(struct task_struct * p,int nid)1310 static inline unsigned long group_faults(struct task_struct *p, int nid)
1311 {
1312 struct numa_group *ng = deref_task_numa_group(p);
1313
1314 if (!ng) {
1315 return 0;
1316 }
1317
1318 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1319 }
1320
group_faults_cpu(struct numa_group * group,int nid)1321 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1322 {
1323 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1324 }
1325
group_faults_priv(struct numa_group * ng)1326 static inline unsigned long group_faults_priv(struct numa_group *ng)
1327 {
1328 unsigned long faults = 0;
1329 int node;
1330
1331 for_each_online_node(node)
1332 {
1333 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1334 }
1335
1336 return faults;
1337 }
1338
group_faults_shared(struct numa_group * ng)1339 static inline unsigned long group_faults_shared(struct numa_group *ng)
1340 {
1341 unsigned long faults = 0;
1342 int node;
1343
1344 for_each_online_node(node)
1345 {
1346 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1347 }
1348
1349 return faults;
1350 }
1351
1352 /*
1353 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1354 * considered part of a numa group's pseudo-interleaving set. Migrations
1355 * between these nodes are slowed down, to allow things to settle down.
1356 */
1357 #define ACTIVE_NODE_FRACTION 3
1358
numa_is_active_node(int nid,struct numa_group * ng)1359 static bool numa_is_active_node(int nid, struct numa_group *ng)
1360 {
1361 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1362 }
1363
1364 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int maxdist,bool task)1365 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, int maxdist, bool task)
1366 {
1367 unsigned long score = 0;
1368 int node;
1369
1370 /*
1371 * All nodes are directly connected, and the same distance
1372 * from each other. No need for fancy placement algorithms.
1373 */
1374 if (sched_numa_topology_type == NUMA_DIRECT) {
1375 return 0;
1376 }
1377
1378 /*
1379 * This code is called for each node, introducing N^2 complexity,
1380 * which should be ok given the number of nodes rarely exceeds 8.
1381 */
1382 for_each_online_node(node)
1383 {
1384 unsigned long faults;
1385 int dist = node_distance(nid, node);
1386 /*
1387 * The furthest away nodes in the system are not interesting
1388 * for placement; nid was already counted.
1389 */
1390 if (dist == sched_max_numa_distance || node == nid) {
1391 continue;
1392 }
1393
1394 /*
1395 * On systems with a backplane NUMA topology, compare groups
1396 * of nodes, and move tasks towards the group with the most
1397 * memory accesses. When comparing two nodes at distance
1398 * "hoplimit", only nodes closer by than "hoplimit" are part
1399 * of each group. Skip other nodes.
1400 */
1401 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= maxdist) {
1402 continue;
1403 }
1404
1405 /* Add up the faults from nearby nodes. */
1406 if (task) {
1407 faults = task_faults(p, node);
1408 } else {
1409 faults = group_faults(p, node);
1410 }
1411
1412 /*
1413 * On systems with a glueless mesh NUMA topology, there are
1414 * no fixed "groups of nodes". Instead, nodes that are not
1415 * directly connected bounce traffic through intermediate
1416 * nodes; a numa_group can occupy any set of nodes.
1417 * The further away a node is, the less the faults count.
1418 * This seems to result in good task placement.
1419 */
1420 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1421 faults *= (sched_max_numa_distance - dist);
1422 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1423 }
1424
1425 score += faults;
1426 }
1427
1428 return score;
1429 }
1430
1431 /*
1432 * These return the fraction of accesses done by a particular task, or
1433 * task group, on a particular numa node. The group weight is given a
1434 * larger multiplier, in order to group tasks together that are almost
1435 * evenly spread out between numa nodes.
1436 */
task_weight(struct task_struct * p,int nid,int dist)1437 static inline unsigned long task_weight(struct task_struct *p, int nid, int dist)
1438 {
1439 unsigned long faults, total_faults;
1440
1441 if (!p->numa_faults) {
1442 return 0;
1443 }
1444
1445 total_faults = p->total_numa_faults;
1446
1447 if (!total_faults) {
1448 return 0;
1449 }
1450
1451 faults = task_faults(p, nid);
1452 faults += score_nearby_nodes(p, nid, dist, true);
1453
1454 return FAIR_ONETHOUSAND * faults / total_faults;
1455 }
1456
group_weight(struct task_struct * p,int nid,int dist)1457 static inline unsigned long group_weight(struct task_struct *p, int nid, int dist)
1458 {
1459 struct numa_group *ng = deref_task_numa_group(p);
1460 unsigned long faults, total_faults;
1461
1462 if (!ng) {
1463 return 0;
1464 }
1465
1466 total_faults = ng->total_faults;
1467
1468 if (!total_faults) {
1469 return 0;
1470 }
1471
1472 faults = group_faults(p, nid);
1473 faults += score_nearby_nodes(p, nid, dist, false);
1474
1475 return FAIR_ONETHOUSAND * faults / total_faults;
1476 }
1477
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1478 bool should_numa_migrate_memory(struct task_struct *p, struct page *page, int src_nid, int dst_cpu)
1479 {
1480 struct numa_group *ng = deref_curr_numa_group(p);
1481 int dst_nid = cpu_to_node(dst_cpu);
1482 int last_cpupid, this_cpupid;
1483
1484 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1485 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1486 /*
1487 * Allow first faults or private faults to migrate immediately early in
1488 * the lifetime of a task. The magic number 4 is based on waiting for
1489 * two full passes of the "multi-stage node selection" test that is
1490 * executed below.
1491 */
1492 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= FAIR_FOUR) &&
1493 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) {
1494 return true;
1495 }
1496
1497 /*
1498 * Multi-stage node selection is used in conjunction with a periodic
1499 * migration fault to build a temporal task<->page relation. By using
1500 * a two-stage filter we remove short/unlikely relations.
1501 *
1502 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1503 * a task's usage of a particular page (n_p) per total usage of this
1504 * page (n_t) (in a given time-span) to a probability.
1505 *
1506 * Our periodic faults will sample this probability and getting the
1507 * same result twice in a row, given these samples are fully
1508 * independent, is then given by P(n)^2, provided our sample period
1509 * is sufficiently short compared to the usage pattern.
1510 *
1511 * This quadric squishes small probabilities, making it less likely we
1512 * act on an unlikely task<->page relation.
1513 */
1514 if (!cpupid_pid_unset(last_cpupid) && cpupid_to_nid(last_cpupid) != dst_nid) {
1515 return false;
1516 }
1517
1518 /* Always allow migrate on private faults */
1519 if (cpupid_match_pid(p, last_cpupid)) {
1520 return true;
1521 }
1522
1523 /* A shared fault, but p->numa_group has not been set up yet. */
1524 if (!ng) {
1525 return true;
1526 }
1527
1528 /*
1529 * Destination node is much more heavily used than the source
1530 * node? Allow migration.
1531 */
1532 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * ACTIVE_NODE_FRACTION) {
1533 return true;
1534 }
1535
1536 /*
1537 * Distribute memory according to CPU & memory use on each node,
1538 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1539 *
1540 * faults_cpu(dst) 3 faults_cpu(src)
1541 * --------------- * - > ---------------
1542 * faults_mem(dst) 4 faults_mem(src)
1543 */
1544 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * FAIR_THREE >
1545 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * FAIR_FOUR;
1546 }
1547
1548 /*
1549 * 'numa_type' describes the node at the moment of load balancing.
1550 */
1551 enum numa_type {
1552 /* The node has spare capacity that can be used to run more tasks. */
1553 node_has_spare = 0,
1554 /*
1555 * The node is fully used and the tasks don't compete for more CPU
1556 * cycles. Nevertheless, some tasks might wait before running.
1557 */
1558 node_fully_busy,
1559 /*
1560 * The node is overloaded and can't provide expected CPU cycles to all
1561 * tasks.
1562 */
1563 node_overloaded
1564 };
1565
1566 /* Cached statistics for all CPUs within a node */
1567 struct numa_stats {
1568 unsigned long load;
1569 unsigned long runnable;
1570 unsigned long util;
1571 /* Total compute capacity of CPUs on a node */
1572 unsigned long compute_capacity;
1573 unsigned int nr_running;
1574 unsigned int weight;
1575 enum numa_type node_type;
1576 int idle_cpu;
1577 };
1578
is_core_idle(int cpu)1579 static inline bool is_core_idle(int cpu)
1580 {
1581 #ifdef CONFIG_SCHED_SMT
1582 int sibling;
1583
1584 for_each_cpu(sibling, cpu_smt_mask(cpu))
1585 {
1586 if (cpu == sibling) {
1587 continue;
1588 }
1589
1590 if (!idle_cpu(sibling)) {
1591 return false;
1592 }
1593 }
1594 #endif
1595
1596 return true;
1597 }
1598
1599 struct task_numa_env {
1600 struct task_struct *p;
1601
1602 int src_cpu, src_nid;
1603 int dst_cpu, dst_nid;
1604
1605 struct numa_stats src_stats, dst_stats;
1606
1607 int imbalance_pct;
1608 int dist;
1609
1610 struct task_struct *best_task;
1611 long best_imp;
1612 int best_cpu;
1613 };
1614
1615 static unsigned long cpu_load(struct rq *rq);
1616 static unsigned long cpu_runnable(struct rq *rq);
1617 static inline long adjust_numa_imbalance(int imbalance, int nr_running);
1618
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)1619 static inline enum numa_type numa_classify(unsigned int imbalance_pct, struct numa_stats *ns)
1620 {
1621 if ((ns->nr_running > ns->weight) &&
1622 (((ns->compute_capacity * FAIR_ONEHUNDRED) < (ns->util * imbalance_pct)) ||
1623 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * FAIR_ONEHUNDRED)))) {
1624 return node_overloaded;
1625 }
1626
1627 if ((ns->nr_running < ns->weight) ||
1628 (((ns->compute_capacity * FAIR_ONEHUNDRED) > (ns->util * imbalance_pct)) &&
1629 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * FAIR_ONEHUNDRED)))) {
1630 return node_has_spare;
1631 }
1632
1633 return node_fully_busy;
1634 }
1635
1636 #ifdef CONFIG_SCHED_SMT
1637 /* Forward declarations of select_idle_sibling helpers */
1638 static inline bool test_idle_cores(int cpu, bool def);
numa_idle_core(int idle_core,int cpu)1639 static inline int numa_idle_core(int idle_core, int cpu)
1640 {
1641 if (!static_branch_likely(&sched_smt_present) || idle_core >= 0 || !test_idle_cores(cpu, false)) {
1642 return idle_core;
1643 }
1644
1645 /*
1646 * Prefer cores instead of packing HT siblings
1647 * and triggering future load balancing.
1648 */
1649 if (is_core_idle(cpu)) {
1650 idle_core = cpu;
1651 }
1652
1653 return idle_core;
1654 }
1655 #else
numa_idle_core(int idle_core,int cpu)1656 static inline int numa_idle_core(int idle_core, int cpu)
1657 {
1658 return idle_core;
1659 }
1660 #endif
1661
1662 /*
1663 * Gather all necessary information to make NUMA balancing placement
1664 * decisions that are compatible with standard load balancer. This
1665 * borrows code and logic from update_sg_lb_stats but sharing a
1666 * common implementation is impractical.
1667 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)1668 static void update_numa_stats(struct task_numa_env *env, struct numa_stats *ns, int nid, bool find_idle)
1669 {
1670 int cpu, idle_core = -1;
1671
1672 memset(ns, 0, sizeof(*ns));
1673 ns->idle_cpu = -1;
1674
1675 rcu_read_lock();
1676 for_each_cpu(cpu, cpumask_of_node(nid))
1677 {
1678 struct rq *rq = cpu_rq(cpu);
1679
1680 ns->load += cpu_load(rq);
1681 ns->runnable += cpu_runnable(rq);
1682 ns->util += cpu_util(cpu);
1683 ns->nr_running += rq->cfs.h_nr_running;
1684 ns->compute_capacity += capacity_of(cpu);
1685
1686 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1687 if (READ_ONCE(rq->numa_migrate_on) || !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1688 continue;
1689 }
1690
1691 if (ns->idle_cpu == -1) {
1692 ns->idle_cpu = cpu;
1693 }
1694
1695 idle_core = numa_idle_core(idle_core, cpu);
1696 }
1697 }
1698 rcu_read_unlock();
1699
1700 ns->weight = cpumask_weight(cpumask_of_node(nid));
1701
1702 ns->node_type = numa_classify(env->imbalance_pct, ns);
1703
1704 if (idle_core >= 0) {
1705 ns->idle_cpu = idle_core;
1706 }
1707 }
1708
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1709 static void task_numa_assign(struct task_numa_env *env, struct task_struct *p, long imp)
1710 {
1711 struct rq *rq = cpu_rq(env->dst_cpu);
1712
1713 /* Check if run-queue part of active NUMA balance. */
1714 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1715 int cpu;
1716 int start = env->dst_cpu;
1717
1718 /* Find alternative idle CPU. */
1719 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start)
1720 {
1721 if (cpu == env->best_cpu || !idle_cpu(cpu) || !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1722 continue;
1723 }
1724
1725 env->dst_cpu = cpu;
1726 rq = cpu_rq(env->dst_cpu);
1727 if (!xchg(&rq->numa_migrate_on, 1)) {
1728 goto assign;
1729 }
1730 }
1731
1732 /* Failed to find an alternative idle CPU */
1733 return;
1734 }
1735
1736 assign:
1737 /*
1738 * Clear previous best_cpu/rq numa-migrate flag, since task now
1739 * found a better CPU to move/swap.
1740 */
1741 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1742 rq = cpu_rq(env->best_cpu);
1743 WRITE_ONCE(rq->numa_migrate_on, 0);
1744 }
1745
1746 if (env->best_task) {
1747 put_task_struct(env->best_task);
1748 }
1749 if (p) {
1750 get_task_struct(p);
1751 }
1752
1753 env->best_task = p;
1754 env->best_imp = imp;
1755 env->best_cpu = env->dst_cpu;
1756 }
1757
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1758 static bool load_too_imbalanced(long src_load, long dst_load, struct task_numa_env *env)
1759 {
1760 long imb, old_imb;
1761 long orig_src_load, orig_dst_load;
1762 long src_capacity, dst_capacity;
1763
1764 /*
1765 * The load is corrected for the CPU capacity available on each node.
1766 *
1767 * src_load dst_load
1768 * ------------ vs ---------
1769 * src_capacity dst_capacity
1770 */
1771 src_capacity = env->src_stats.compute_capacity;
1772 dst_capacity = env->dst_stats.compute_capacity;
1773
1774 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1775
1776 orig_src_load = env->src_stats.load;
1777 orig_dst_load = env->dst_stats.load;
1778
1779 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1780
1781 /* Would this change make things worse? */
1782 return (imb > old_imb);
1783 }
1784
1785 /*
1786 * Maximum NUMA importance can be 1998 (2*999);
1787 * SMALLIMP @ 30 would be close to 1998/64.
1788 * Used to deter task migration.
1789 */
1790 #define SMALLIMP 30
1791
1792 /*
1793 * This checks if the overall compute and NUMA accesses of the system would
1794 * be improved if the source tasks was migrated to the target dst_cpu taking
1795 * into account that it might be best if task running on the dst_cpu should
1796 * be exchanged with the source task
1797 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)1798 static bool task_numa_compare(struct task_numa_env *env, long taskimp, long groupimp, bool maymove)
1799 {
1800 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1801 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1802 long imp = p_ng ? groupimp : taskimp;
1803 struct task_struct *cur;
1804 long src_load, dst_load;
1805 int dist = env->dist;
1806 long moveimp = imp;
1807 long load;
1808 bool stopsearch = false;
1809
1810 if (READ_ONCE(dst_rq->numa_migrate_on)) {
1811 return false;
1812 }
1813
1814 rcu_read_lock();
1815 cur = rcu_dereference(dst_rq->curr);
1816 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) {
1817 cur = NULL;
1818 }
1819
1820 /*
1821 * Because we have preemption enabled we can get migrated around and
1822 * end try selecting ourselves (current == env->p) as a swap candidate.
1823 */
1824 if (cur == env->p) {
1825 stopsearch = true;
1826 goto unlock;
1827 }
1828
1829 if (!cur) {
1830 if (maymove && moveimp >= env->best_imp) {
1831 goto assign;
1832 } else {
1833 goto unlock;
1834 }
1835 }
1836
1837 /* Skip this swap candidate if cannot move to the source cpu. */
1838 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) {
1839 goto unlock;
1840 }
1841
1842 /*
1843 * Skip this swap candidate if it is not moving to its preferred
1844 * node and the best task is.
1845 */
1846 if (env->best_task && env->best_task->numa_preferred_nid == env->src_nid &&
1847 cur->numa_preferred_nid != env->src_nid) {
1848 goto unlock;
1849 }
1850
1851 /*
1852 * "imp" is the fault differential for the source task between the
1853 * source and destination node. Calculate the total differential for
1854 * the source task and potential destination task. The more negative
1855 * the value is, the more remote accesses that would be expected to
1856 * be incurred if the tasks were swapped.
1857 *
1858 * If dst and source tasks are in the same NUMA group, or not
1859 * in any group then look only at task weights.
1860 */
1861 cur_ng = rcu_dereference(cur->numa_group);
1862 if (cur_ng == p_ng) {
1863 imp = taskimp + task_weight(cur, env->src_nid, dist) - task_weight(cur, env->dst_nid, dist);
1864 /*
1865 * Add some hysteresis to prevent swapping the
1866 * tasks within a group over tiny differences.
1867 */
1868 if (cur_ng) {
1869 imp -= imp / 0x10;
1870 }
1871 } else {
1872 /*
1873 * Compare the group weights. If a task is all by itself
1874 * (not part of a group), use the task weight instead.
1875 */
1876 if (cur_ng && p_ng) {
1877 imp += group_weight(cur, env->src_nid, dist) - group_weight(cur, env->dst_nid, dist);
1878 } else {
1879 imp += task_weight(cur, env->src_nid, dist) - task_weight(cur, env->dst_nid, dist);
1880 }
1881 }
1882
1883 /* Discourage picking a task already on its preferred node */
1884 if (cur->numa_preferred_nid == env->dst_nid) {
1885 imp -= imp / 0x10;
1886 }
1887
1888 /*
1889 * Encourage picking a task that moves to its preferred node.
1890 * This potentially makes imp larger than it's maximum of
1891 * 1998 (see SMALLIMP and task_weight for why) but in this
1892 * case, it does not matter.
1893 */
1894 if (cur->numa_preferred_nid == env->src_nid) {
1895 imp += imp / 0x8;
1896 }
1897
1898 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1899 imp = moveimp;
1900 cur = NULL;
1901 goto assign;
1902 }
1903
1904 /*
1905 * Prefer swapping with a task moving to its preferred node over a
1906 * task that is not.
1907 */
1908 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1909 env->best_task->numa_preferred_nid != env->src_nid) {
1910 goto assign;
1911 }
1912
1913 /*
1914 * If the NUMA importance is less than SMALLIMP,
1915 * task migration might only result in ping pong
1916 * of tasks and also hurt performance due to cache
1917 * misses.
1918 */
1919 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 0x2) {
1920 goto unlock;
1921 }
1922
1923 /*
1924 * In the overloaded case, try and keep the load balanced.
1925 */
1926 load = task_h_load(env->p) - task_h_load(cur);
1927 if (!load) {
1928 goto assign;
1929 }
1930
1931 dst_load = env->dst_stats.load + load;
1932 src_load = env->src_stats.load - load;
1933
1934 if (load_too_imbalanced(src_load, dst_load, env)) {
1935 goto unlock;
1936 }
1937
1938 assign:
1939 /* Evaluate an idle CPU for a task numa move. */
1940 if (!cur) {
1941 int cpu = env->dst_stats.idle_cpu;
1942
1943 /* Nothing cached so current CPU went idle since the search. */
1944 if (cpu < 0) {
1945 cpu = env->dst_cpu;
1946 }
1947
1948 /*
1949 * If the CPU is no longer truly idle and the previous best CPU
1950 * is, keep using it.
1951 */
1952 if (!idle_cpu(cpu) && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) {
1953 cpu = env->best_cpu;
1954 }
1955
1956 env->dst_cpu = cpu;
1957 }
1958
1959 task_numa_assign(env, cur, imp);
1960
1961 /*
1962 * If a move to idle is allowed because there is capacity or load
1963 * balance improves then stop the search. While a better swap
1964 * candidate may exist, a search is not free.
1965 */
1966 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) {
1967 stopsearch = true;
1968 }
1969
1970 /*
1971 * If a swap candidate must be identified and the current best task
1972 * moves its preferred node then stop the search.
1973 */
1974 if (!maymove && env->best_task && env->best_task->numa_preferred_nid == env->src_nid) {
1975 stopsearch = true;
1976 }
1977 unlock:
1978 rcu_read_unlock();
1979
1980 return stopsearch;
1981 }
1982
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1983 static void task_numa_find_cpu(struct task_numa_env *env, long taskimp, long groupimp)
1984 {
1985 bool maymove = false;
1986 int cpu;
1987
1988 /*
1989 * If dst node has spare capacity, then check if there is an
1990 * imbalance that would be overruled by the load balancer.
1991 */
1992 if (env->dst_stats.node_type == node_has_spare) {
1993 unsigned int imbalance;
1994 int src_running, dst_running;
1995
1996 /*
1997 * Would movement cause an imbalance? Note that if src has
1998 * more running tasks that the imbalance is ignored as the
1999 * move improves the imbalance from the perspective of the
2000 * CPU load balancer.
2001 * */
2002 src_running = env->src_stats.nr_running - 1;
2003 dst_running = env->dst_stats.nr_running + 1;
2004 imbalance = max(0, dst_running - src_running);
2005 imbalance = adjust_numa_imbalance(imbalance, dst_running);
2006 /* Use idle CPU if there is no imbalance */
2007 if (!imbalance) {
2008 maymove = true;
2009 if (env->dst_stats.idle_cpu >= 0) {
2010 env->dst_cpu = env->dst_stats.idle_cpu;
2011 task_numa_assign(env, NULL, 0);
2012 return;
2013 }
2014 }
2015 } else {
2016 long src_load, dst_load, load;
2017 /*
2018 * If the improvement from just moving env->p direction is better
2019 * than swapping tasks around, check if a move is possible.
2020 */
2021 load = task_h_load(env->p);
2022 dst_load = env->dst_stats.load + load;
2023 src_load = env->src_stats.load - load;
2024 maymove = !load_too_imbalanced(src_load, dst_load, env);
2025 }
2026
2027 for_each_cpu(cpu, cpumask_of_node(env->dst_nid))
2028 {
2029 /* Skip this CPU if the source task cannot migrate */
2030 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2031 continue;
2032 }
2033
2034 env->dst_cpu = cpu;
2035 if (task_numa_compare(env, taskimp, groupimp, maymove)) {
2036 break;
2037 }
2038 }
2039 }
2040
task_numa_migrate(struct task_struct * p)2041 static int task_numa_migrate(struct task_struct *p)
2042 {
2043 struct task_numa_env env = {
2044 .p = p,
2045
2046 .src_cpu = task_cpu(p),
2047 .src_nid = task_node(p),
2048
2049 .imbalance_pct = 112,
2050
2051 .best_task = NULL,
2052 .best_imp = 0,
2053 .best_cpu = -1,
2054 };
2055 unsigned long taskweight, groupweight;
2056 struct sched_domain *sd;
2057 long taskimp, groupimp;
2058 struct numa_group *ng;
2059 struct rq *best_rq;
2060 int nid, ret, dist;
2061
2062 /*
2063 * Pick the lowest SD_NUMA domain, as that would have the smallest
2064 * imbalance and would be the first to start moving tasks about.
2065 *
2066 * And we want to avoid any moving of tasks about, as that would create
2067 * random movement of tasks -- counter the numa conditions we're trying
2068 * to satisfy here.
2069 */
2070 rcu_read_lock();
2071 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2072 if (sd) {
2073 env.imbalance_pct = FAIR_ONEHUNDRED + (sd->imbalance_pct - FAIR_ONEHUNDRED) / 0x2;
2074 }
2075 rcu_read_unlock();
2076
2077 /*
2078 * Cpusets can break the scheduler domain tree into smaller
2079 * balance domains, some of which do not cross NUMA boundaries.
2080 * Tasks that are "trapped" in such domains cannot be migrated
2081 * elsewhere, so there is no point in (re)trying.
2082 */
2083 if (unlikely(!sd)) {
2084 sched_setnuma(p, task_node(p));
2085 return -EINVAL;
2086 }
2087
2088 env.dst_nid = p->numa_preferred_nid;
2089 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2090 taskweight = task_weight(p, env.src_nid, dist);
2091 groupweight = group_weight(p, env.src_nid, dist);
2092 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2093 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2094 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2095 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2096
2097 /* Try to find a spot on the preferred nid. */
2098 task_numa_find_cpu(&env, taskimp, groupimp);
2099
2100 /*
2101 * Look at other nodes in these cases:
2102 * - there is no space available on the preferred_nid
2103 * - the task is part of a numa_group that is interleaved across
2104 * multiple NUMA nodes; in order to better consolidate the group,
2105 * we need to check other locations.
2106 */
2107 ng = deref_curr_numa_group(p);
2108 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2109 for_each_online_node(nid)
2110 {
2111 if (nid == env.src_nid || nid == p->numa_preferred_nid) {
2112 continue;
2113 }
2114
2115 dist = node_distance(env.src_nid, env.dst_nid);
2116 if (sched_numa_topology_type == NUMA_BACKPLANE && dist != env.dist) {
2117 taskweight = task_weight(p, env.src_nid, dist);
2118 groupweight = group_weight(p, env.src_nid, dist);
2119 }
2120
2121 /* Only consider nodes where both task and groups benefit */
2122 taskimp = task_weight(p, nid, dist) - taskweight;
2123 groupimp = group_weight(p, nid, dist) - groupweight;
2124 if (taskimp < 0 && groupimp < 0) {
2125 continue;
2126 }
2127
2128 env.dist = dist;
2129 env.dst_nid = nid;
2130 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2131 task_numa_find_cpu(&env, taskimp, groupimp);
2132 }
2133 }
2134
2135 /*
2136 * If the task is part of a workload that spans multiple NUMA nodes,
2137 * and is migrating into one of the workload's active nodes, remember
2138 * this node as the task's preferred numa node, so the workload can
2139 * settle down.
2140 * A task that migrated to a second choice node will be better off
2141 * trying for a better one later. Do not set the preferred node here.
2142 */
2143 if (ng) {
2144 if (env.best_cpu == -1) {
2145 nid = env.src_nid;
2146 } else {
2147 nid = cpu_to_node(env.best_cpu);
2148 }
2149
2150 if (nid != p->numa_preferred_nid) {
2151 sched_setnuma(p, nid);
2152 }
2153 }
2154
2155 /* No better CPU than the current one was found. */
2156 if (env.best_cpu == -1) {
2157 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2158 return -EAGAIN;
2159 }
2160
2161 best_rq = cpu_rq(env.best_cpu);
2162 if (env.best_task == NULL) {
2163 ret = migrate_task_to(p, env.best_cpu);
2164 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2165 if (ret != 0) {
2166 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2167 }
2168 return ret;
2169 }
2170
2171 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2172 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2173
2174 if (ret != 0) {
2175 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2176 }
2177 put_task_struct(env.best_task);
2178 return ret;
2179 }
2180
2181 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2182 static void numa_migrate_preferred(struct task_struct *p)
2183 {
2184 unsigned long interval = HZ;
2185
2186 /* This task has no NUMA fault statistics yet */
2187 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) {
2188 return;
2189 }
2190
2191 /* Periodically retry migrating the task to the preferred node */
2192 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 0x10);
2193 p->numa_migrate_retry = jiffies + interval;
2194
2195 /* Success if task is already running on preferred CPU */
2196 if (task_node(p) == p->numa_preferred_nid) {
2197 return;
2198 }
2199
2200 /* Otherwise, try migrate to a CPU on the preferred node */
2201 task_numa_migrate(p);
2202 }
2203
2204 /*
2205 * Find out how many nodes on the workload is actively running on. Do this by
2206 * tracking the nodes from which NUMA hinting faults are triggered. This can
2207 * be different from the set of nodes where the workload's memory is currently
2208 * located.
2209 */
numa_group_count_active_nodes(struct numa_group * numa_group)2210 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2211 {
2212 unsigned long faults, max_faults = 0;
2213 int nid, active_nodes = 0;
2214
2215 for_each_online_node(nid)
2216 {
2217 faults = group_faults_cpu(numa_group, nid);
2218 if (faults > max_faults) {
2219 max_faults = faults;
2220 }
2221 }
2222
2223 for_each_online_node(nid)
2224 {
2225 faults = group_faults_cpu(numa_group, nid);
2226 if (faults * ACTIVE_NODE_FRACTION > max_faults) {
2227 active_nodes++;
2228 }
2229 }
2230
2231 numa_group->max_faults_cpu = max_faults;
2232 numa_group->active_nodes = active_nodes;
2233 }
2234
2235 /*
2236 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2237 * increments. The more local the fault statistics are, the higher the scan
2238 * period will be for the next scan window. If local/(local+remote) ratio is
2239 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2240 * the scan period will decrease. Aim for 70% local accesses.
2241 */
2242 #define NUMA_PERIOD_SLOTS 10
2243 #define NUMA_PERIOD_THRESHOLD 7
2244
2245 /*
2246 * Increase the scan period (slow down scanning) if the majority of
2247 * our memory is already on our local node, or if the majority of
2248 * the page accesses are shared with other processes.
2249 * Otherwise, decrease the scan period.
2250 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2251 static void update_task_scan_period(struct task_struct *p, unsigned long shared, unsigned long private)
2252 {
2253 unsigned int period_slot;
2254 int lr_ratio, ps_ratio;
2255 int diff;
2256
2257 unsigned long remote = p->numa_faults_locality[0];
2258 unsigned long local = p->numa_faults_locality[1];
2259
2260 /*
2261 * If there were no record hinting faults then either the task is
2262 * completely idle or all activity is areas that are not of interest
2263 * to automatic numa balancing. Related to that, if there were failed
2264 * migration then it implies we are migrating too quickly or the local
2265 * node is overloaded. In either case, scan slower
2266 */
2267 if (local + shared == 0 || p->numa_faults_locality[0x2]) {
2268 p->numa_scan_period = min(p->numa_scan_period_max, p->numa_scan_period << 1);
2269
2270 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(p->numa_scan_period);
2271
2272 return;
2273 }
2274
2275 /*
2276 * Prepare to scale scan period relative to the current period.
2277 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2278 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2279 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2280 */
2281 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2282 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2283 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2284
2285 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2286 /*
2287 * Most memory accesses are local. There is no need to
2288 * do fast NUMA scanning, since memory is already local.
2289 */
2290 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2291 if (!slot) {
2292 slot = 1;
2293 }
2294 diff = slot * period_slot;
2295 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2296 /*
2297 * Most memory accesses are shared with other tasks.
2298 * There is no point in continuing fast NUMA scanning,
2299 * since other tasks may just move the memory elsewhere.
2300 */
2301 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2302 if (!slot) {
2303 slot = 1;
2304 }
2305 diff = slot * period_slot;
2306 } else {
2307 /*
2308 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2309 * yet they are not on the local NUMA node. Speed up
2310 * NUMA scanning to get the memory moved over.
2311 */
2312 int ratio = max(lr_ratio, ps_ratio);
2313 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2314 }
2315
2316 p->numa_scan_period = clamp(p->numa_scan_period + diff, task_scan_min(p), task_scan_max(p));
2317 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2318 }
2319
2320 /*
2321 * Get the fraction of time the task has been running since the last
2322 * NUMA placement cycle. The scheduler keeps similar statistics, but
2323 * decays those on a 32ms period, which is orders of magnitude off
2324 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2325 * stats only if the task is so new there are no NUMA statistics yet.
2326 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2327 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2328 {
2329 u64 runtime, delta, now;
2330 /* Use the start of this time slice to avoid calculations. */
2331 now = p->se.exec_start;
2332 runtime = p->se.sum_exec_runtime;
2333
2334 if (p->last_task_numa_placement) {
2335 delta = runtime - p->last_sum_exec_runtime;
2336 *period = now - p->last_task_numa_placement;
2337
2338 /* Avoid time going backwards, prevent potential divide error: */
2339 if (unlikely((s64)*period < 0)) {
2340 *period = 0;
2341 }
2342 } else {
2343 delta = p->se.avg.load_sum;
2344 *period = LOAD_AVG_MAX;
2345 }
2346
2347 p->last_sum_exec_runtime = runtime;
2348 p->last_task_numa_placement = now;
2349
2350 return delta;
2351 }
2352
2353 /*
2354 * Determine the preferred nid for a task in a numa_group. This needs to
2355 * be done in a way that produces consistent results with group_weight,
2356 * otherwise workloads might not converge.
2357 */
preferred_group_nid(struct task_struct * p,int nid)2358 static int preferred_group_nid(struct task_struct *p, int nid)
2359 {
2360 nodemask_t nodes;
2361 int dist;
2362
2363 /* Direct connections between all NUMA nodes. */
2364 if (sched_numa_topology_type == NUMA_DIRECT) {
2365 return nid;
2366 }
2367
2368 /*
2369 * On a system with glueless mesh NUMA topology, group_weight
2370 * scores nodes according to the number of NUMA hinting faults on
2371 * both the node itself, and on nearby nodes.
2372 */
2373 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2374 unsigned long score, max_score = 0;
2375 int node, max_node = nid;
2376
2377 dist = sched_max_numa_distance;
2378
2379 for_each_online_node(node)
2380 {
2381 score = group_weight(p, node, dist);
2382 if (score > max_score) {
2383 max_score = score;
2384 max_node = node;
2385 }
2386 }
2387 return max_node;
2388 }
2389
2390 /*
2391 * Finding the preferred nid in a system with NUMA backplane
2392 * interconnect topology is more involved. The goal is to locate
2393 * tasks from numa_groups near each other in the system, and
2394 * untangle workloads from different sides of the system. This requires
2395 * searching down the hierarchy of node groups, recursively searching
2396 * inside the highest scoring group of nodes. The nodemask tricks
2397 * keep the complexity of the search down.
2398 */
2399 nodes = node_online_map;
2400 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2401 unsigned long max_faults = 0;
2402 nodemask_t max_group = NODE_MASK_NONE;
2403 int a, b;
2404
2405 /* Are there nodes at this distance from each other? */
2406 if (!find_numa_distance(dist)) {
2407 continue;
2408 }
2409
2410 for_each_node_mask(a, nodes)
2411 {
2412 unsigned long faults = 0;
2413 nodemask_t this_group;
2414 nodes_clear(this_group);
2415
2416 /* Sum group's NUMA faults; includes a==b case. */
2417 for_each_node_mask(b, nodes)
2418 {
2419 if (node_distance(a, b) < dist) {
2420 faults += group_faults(p, b);
2421 node_set(b, this_group);
2422 node_clear(b, nodes);
2423 }
2424 }
2425
2426 /* Remember the top group. */
2427 if (faults > max_faults) {
2428 max_faults = faults;
2429 max_group = this_group;
2430 /*
2431 * subtle: at the smallest distance there is
2432 * just one node left in each "group", the
2433 * winner is the preferred nid.
2434 */
2435 nid = a;
2436 }
2437 }
2438 /* Next round, evaluate the nodes within max_group. */
2439 if (!max_faults) {
2440 break;
2441 }
2442 nodes = max_group;
2443 }
2444 return nid;
2445 }
2446
task_numa_placement(struct task_struct * p)2447 static void task_numa_placement(struct task_struct *p)
2448 {
2449 int seq, nid, max_nid = NUMA_NO_NODE;
2450 unsigned long max_faults = 0;
2451 unsigned long fault_types[2] = {0, 0};
2452 unsigned long total_faults;
2453 u64 runtime, period;
2454 spinlock_t *group_lock = NULL;
2455 struct numa_group *ng;
2456
2457 /*
2458 * The p->mm->numa_scan_seq field gets updated without
2459 * exclusive access. Use READ_ONCE() here to ensure
2460 * that the field is read in a single access:
2461 */
2462 seq = READ_ONCE(p->mm->numa_scan_seq);
2463 if (p->numa_scan_seq == seq) {
2464 return;
2465 }
2466 p->numa_scan_seq = seq;
2467 p->numa_scan_period_max = task_scan_max(p);
2468
2469 total_faults = p->numa_faults_locality[0] + p->numa_faults_locality[1];
2470 runtime = numa_get_avg_runtime(p, &period);
2471
2472 /* If the task is part of a group prevent parallel updates to group stats */
2473 ng = deref_curr_numa_group(p);
2474 if (ng) {
2475 group_lock = &ng->lock;
2476 spin_lock_irq(group_lock);
2477 }
2478
2479 /* Find the node with the highest number of faults */
2480 for_each_online_node(nid)
2481 {
2482 /* Keep track of the offsets in numa_faults array */
2483 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2484 unsigned long faults = 0, group_faults = 0;
2485 int priv;
2486
2487 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2488 long diff, f_diff, f_weight;
2489
2490 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2491 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2492 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2493 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2494
2495 /* Decay existing window, copy faults since last scan */
2496 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 0x2;
2497 fault_types[priv] += p->numa_faults[membuf_idx];
2498 p->numa_faults[membuf_idx] = 0;
2499
2500 /*
2501 * Normalize the faults_from, so all tasks in a group
2502 * count according to CPU use, instead of by the raw
2503 * number of faults. Tasks with little runtime have
2504 * little over-all impact on throughput, and thus their
2505 * faults are less important.
2506 */
2507 f_weight = div64_u64(runtime << 0x10, period + 1);
2508 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / (total_faults + 1);
2509 f_diff = f_weight - p->numa_faults[cpu_idx] / 0x2;
2510 p->numa_faults[cpubuf_idx] = 0;
2511
2512 p->numa_faults[mem_idx] += diff;
2513 p->numa_faults[cpu_idx] += f_diff;
2514 faults += p->numa_faults[mem_idx];
2515 p->total_numa_faults += diff;
2516 if (ng) {
2517 /*
2518 * safe because we can only change our own group
2519 *
2520 * mem_idx represents the offset for a given
2521 * nid and priv in a specific region because it
2522 * is at the beginning of the numa_faults array.
2523 */
2524 ng->faults[mem_idx] += diff;
2525 ng->faults_cpu[mem_idx] += f_diff;
2526 ng->total_faults += diff;
2527 group_faults += ng->faults[mem_idx];
2528 }
2529 }
2530
2531 if (!ng) {
2532 if (faults > max_faults) {
2533 max_faults = faults;
2534 max_nid = nid;
2535 }
2536 } else if (group_faults > max_faults) {
2537 max_faults = group_faults;
2538 max_nid = nid;
2539 }
2540 }
2541
2542 if (ng) {
2543 numa_group_count_active_nodes(ng);
2544 spin_unlock_irq(group_lock);
2545 max_nid = preferred_group_nid(p, max_nid);
2546 }
2547
2548 if (max_faults) {
2549 /* Set the new preferred node */
2550 if (max_nid != p->numa_preferred_nid) {
2551 sched_setnuma(p, max_nid);
2552 }
2553 }
2554
2555 update_task_scan_period(p, fault_types[0], fault_types[1]);
2556 }
2557
get_numa_group(struct numa_group * grp)2558 static inline int get_numa_group(struct numa_group *grp)
2559 {
2560 return refcount_inc_not_zero(&grp->refcount);
2561 }
2562
put_numa_group(struct numa_group * grp)2563 static inline void put_numa_group(struct numa_group *grp)
2564 {
2565 if (refcount_dec_and_test(&grp->refcount)) {
2566 kfree_rcu(grp, rcu);
2567 }
2568 }
2569
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2570 static void task_numa_group(struct task_struct *p, int cpupid, int flags, int *priv)
2571 {
2572 struct numa_group *grp, *my_grp;
2573 struct task_struct *tsk;
2574 bool join = false;
2575 int cpu = cpupid_to_cpu(cpupid);
2576 int i;
2577
2578 if (unlikely(!deref_curr_numa_group(p))) {
2579 unsigned int size = sizeof(struct numa_group) + 0x4 * nr_node_ids * sizeof(unsigned long);
2580
2581 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2582 if (!grp) {
2583 return;
2584 }
2585
2586 refcount_set(&grp->refcount, 1);
2587 grp->active_nodes = 1;
2588 grp->max_faults_cpu = 0;
2589 spin_lock_init(&grp->lock);
2590 grp->gid = p->pid;
2591 /* Second half of the array tracks nids where faults happen */
2592 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * nr_node_ids;
2593
2594 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2595 grp->faults[i] = p->numa_faults[i];
2596 }
2597
2598 grp->total_faults = p->total_numa_faults;
2599
2600 grp->nr_tasks++;
2601 rcu_assign_pointer(p->numa_group, grp);
2602 }
2603
2604 rcu_read_lock();
2605 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2606 if (!cpupid_match_pid(tsk, cpupid)) {
2607 goto no_join;
2608 }
2609
2610 grp = rcu_dereference(tsk->numa_group);
2611 if (!grp) {
2612 goto no_join;
2613 }
2614
2615 my_grp = deref_curr_numa_group(p);
2616 if (grp == my_grp) {
2617 goto no_join;
2618 }
2619
2620 /*
2621 * Only join the other group if its bigger; if we're the bigger group,
2622 * the other task will join us.
2623 */
2624 if (my_grp->nr_tasks > grp->nr_tasks) {
2625 goto no_join;
2626 }
2627
2628 /*
2629 * Tie-break on the grp address.
2630 */
2631 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) {
2632 goto no_join;
2633 }
2634
2635 /* Always join threads in the same process. */
2636 if (tsk->mm == current->mm) {
2637 join = true;
2638 }
2639
2640 /* Simple filter to avoid false positives due to PID collisions */
2641 if (flags & TNF_SHARED) {
2642 join = true;
2643 }
2644
2645 /* Update priv based on whether false sharing was detected */
2646 *priv = !join;
2647
2648 if (join && !get_numa_group(grp)) {
2649 goto no_join;
2650 }
2651
2652 rcu_read_unlock();
2653
2654 if (!join) {
2655 return;
2656 }
2657
2658 BUG_ON(irqs_disabled());
2659 double_lock_irq(&my_grp->lock, &grp->lock);
2660
2661 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2662 my_grp->faults[i] -= p->numa_faults[i];
2663 grp->faults[i] += p->numa_faults[i];
2664 }
2665 my_grp->total_faults -= p->total_numa_faults;
2666 grp->total_faults += p->total_numa_faults;
2667
2668 my_grp->nr_tasks--;
2669 grp->nr_tasks++;
2670
2671 spin_unlock(&my_grp->lock);
2672 spin_unlock_irq(&grp->lock);
2673
2674 rcu_assign_pointer(p->numa_group, grp);
2675
2676 put_numa_group(my_grp);
2677 return;
2678
2679 no_join:
2680 rcu_read_unlock();
2681 return;
2682 }
2683
2684 /*
2685 * Get rid of NUMA staticstics associated with a task (either current or dead).
2686 * If @final is set, the task is dead and has reached refcount zero, so we can
2687 * safely free all relevant data structures. Otherwise, there might be
2688 * concurrent reads from places like load balancing and procfs, and we should
2689 * reset the data back to default state without freeing ->numa_faults.
2690 */
task_numa_free(struct task_struct * p,bool final)2691 void task_numa_free(struct task_struct *p, bool final)
2692 {
2693 /* safe: p either is current or is being freed by current */
2694 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2695 unsigned long *numa_faults = p->numa_faults;
2696 unsigned long flags;
2697 int i;
2698
2699 if (!numa_faults) {
2700 return;
2701 }
2702
2703 if (grp) {
2704 spin_lock_irqsave(&grp->lock, flags);
2705 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2706 grp->faults[i] -= p->numa_faults[i];
2707 }
2708 grp->total_faults -= p->total_numa_faults;
2709
2710 grp->nr_tasks--;
2711 spin_unlock_irqrestore(&grp->lock, flags);
2712 RCU_INIT_POINTER(p->numa_group, NULL);
2713 put_numa_group(grp);
2714 }
2715
2716 if (final) {
2717 p->numa_faults = NULL;
2718 kfree(numa_faults);
2719 } else {
2720 p->total_numa_faults = 0;
2721 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2722 numa_faults[i] = 0;
2723 }
2724 }
2725 }
2726
2727 /*
2728 * Got a PROT_NONE fault for a page on @node.
2729 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2730 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2731 {
2732 struct task_struct *p = current;
2733 bool migrated = flags & TNF_MIGRATED;
2734 int cpu_node = task_node(current);
2735 int local = !!(flags & TNF_FAULT_LOCAL);
2736 struct numa_group *ng;
2737 int priv;
2738
2739 if (!static_branch_likely(&sched_numa_balancing)) {
2740 return;
2741 }
2742
2743 /* for example, ksmd faulting in a user's mm */
2744 if (!p->mm) {
2745 return;
2746 }
2747
2748 /* Allocate buffer to track faults on a per-node basis */
2749 if (unlikely(!p->numa_faults)) {
2750 int size = sizeof(*p->numa_faults) * NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2751
2752 p->numa_faults = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2753 if (!p->numa_faults) {
2754 return;
2755 }
2756
2757 p->total_numa_faults = 0;
2758 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2759 }
2760
2761 /*
2762 * First accesses are treated as private, otherwise consider accesses
2763 * to be private if the accessing pid has not changed
2764 */
2765 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2766 priv = 1;
2767 } else {
2768 priv = cpupid_match_pid(p, last_cpupid);
2769 if (!priv && !(flags & TNF_NO_GROUP)) {
2770 task_numa_group(p, last_cpupid, flags, &priv);
2771 }
2772 }
2773
2774 /*
2775 * If a workload spans multiple NUMA nodes, a shared fault that
2776 * occurs wholly within the set of nodes that the workload is
2777 * actively using should be counted as local. This allows the
2778 * scan rate to slow down when a workload has settled down.
2779 */
2780 ng = deref_curr_numa_group(p);
2781 if (!priv && !local && ng && ng->active_nodes > 1 && numa_is_active_node(cpu_node, ng) &&
2782 numa_is_active_node(mem_node, ng)) {
2783 local = 1;
2784 }
2785
2786 /*
2787 * Retry to migrate task to preferred node periodically, in case it
2788 * previously failed, or the scheduler moved us.
2789 */
2790 if (time_after(jiffies, p->numa_migrate_retry)) {
2791 task_numa_placement(p);
2792 numa_migrate_preferred(p);
2793 }
2794
2795 if (migrated) {
2796 p->numa_pages_migrated += pages;
2797 }
2798 if (flags & TNF_MIGRATE_FAIL) {
2799 p->numa_faults_locality[0x2] += pages;
2800 }
2801
2802 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2803 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2804 p->numa_faults_locality[local] += pages;
2805 }
2806
reset_ptenuma_scan(struct task_struct * p)2807 static void reset_ptenuma_scan(struct task_struct *p)
2808 {
2809 /*
2810 * We only did a read acquisition of the mmap sem, so
2811 * p->mm->numa_scan_seq is written to without exclusive access
2812 * and the update is not guaranteed to be atomic. That's not
2813 * much of an issue though, since this is just used for
2814 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2815 * expensive, to avoid any form of compiler optimizations:
2816 */
2817 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2818 p->mm->numa_scan_offset = 0;
2819 }
2820
2821 /*
2822 * The expensive part of numa migration is done from task_work context.
2823 * Triggered from task_tick_numa().
2824 */
task_numa_work(struct callback_head * work)2825 static void task_numa_work(struct callback_head *work)
2826 {
2827 unsigned long migrate, next_scan, now = jiffies;
2828 struct task_struct *p = current;
2829 struct mm_struct *mm = p->mm;
2830 u64 runtime = p->se.sum_exec_runtime;
2831 struct vm_area_struct *vma;
2832 unsigned long start, end;
2833 unsigned long nr_pte_updates = 0;
2834 long pages, virtpages;
2835
2836 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2837
2838 work->next = work;
2839 /*
2840 * Who cares about NUMA placement when they're dying.
2841 *
2842 * NOTE: make sure not to dereference p->mm before this check,
2843 * exit_task_work() happens _after_ exit_mm() so we could be called
2844 * without p->mm even though we still had it when we enqueued this
2845 * work.
2846 */
2847 if (p->flags & PF_EXITING) {
2848 return;
2849 }
2850
2851 if (!mm->numa_next_scan) {
2852 mm->numa_next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2853 }
2854
2855 /*
2856 * Enforce maximal scan/migration frequency..
2857 */
2858 migrate = mm->numa_next_scan;
2859 if (time_before(now, migrate)) {
2860 return;
2861 }
2862
2863 if (p->numa_scan_period == 0) {
2864 p->numa_scan_period_max = task_scan_max(p);
2865 p->numa_scan_period = task_scan_start(p);
2866 }
2867
2868 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2869 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) {
2870 return;
2871 }
2872
2873 /*
2874 * Delay this task enough that another task of this mm will likely win
2875 * the next time around.
2876 */
2877 p->node_stamp += 0x2 * TICK_NSEC;
2878
2879 start = mm->numa_scan_offset;
2880 pages = sysctl_numa_balancing_scan_size;
2881 pages <<= FAIR_TWENTY - PAGE_SHIFT; /* MB in pages */
2882 virtpages = pages * 0x8; /* Scan up to this much virtual space */
2883 if (!pages) {
2884 return;
2885 }
2886
2887 if (!mmap_read_trylock(mm)) {
2888 return;
2889 }
2890 vma = find_vma(mm, start);
2891 if (!vma) {
2892 reset_ptenuma_scan(p);
2893 start = 0;
2894 vma = mm->mmap;
2895 }
2896 for (; vma; vma = vma->vm_next) {
2897 if (!vma_migratable(vma) || !vma_policy_mof(vma) || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2898 continue;
2899 }
2900
2901 /*
2902 * Shared library pages mapped by multiple processes are not
2903 * migrated as it is expected they are cache replicated. Avoid
2904 * hinting faults in read-only file-backed mappings or the vdso
2905 * as migrating the pages will be of marginal benefit.
2906 */
2907 if (!vma->vm_mm || (vma->vm_file && (vma->vm_flags & (VM_READ | VM_WRITE)) == (VM_READ))) {
2908 continue;
2909 }
2910
2911 /*
2912 * Skip inaccessible VMAs to avoid any confusion between
2913 * PROT_NONE and NUMA hinting ptes
2914 */
2915 if (!vma_is_accessible(vma)) {
2916 continue;
2917 }
2918
2919 do {
2920 start = max(start, vma->vm_start);
2921 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2922 end = min(end, vma->vm_end);
2923 nr_pte_updates = change_prot_numa(vma, start, end);
2924 /*
2925 * Try to scan sysctl_numa_balancing_size worth of
2926 * hpages that have at least one present PTE that
2927 * is not already pte-numa. If the VMA contains
2928 * areas that are unused or already full of prot_numa
2929 * PTEs, scan up to virtpages, to skip through those
2930 * areas faster.
2931 */
2932 if (nr_pte_updates) {
2933 pages -= (end - start) >> PAGE_SHIFT;
2934 }
2935 virtpages -= (end - start) >> PAGE_SHIFT;
2936
2937 start = end;
2938 if (pages <= 0 || virtpages <= 0) {
2939 goto out;
2940 }
2941
2942 cond_resched();
2943 } while (end != vma->vm_end);
2944 }
2945
2946 out:
2947 /*
2948 * It is possible to reach the end of the VMA list but the last few
2949 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2950 * would find the !migratable VMA on the next scan but not reset the
2951 * scanner to the start so check it now.
2952 */
2953 if (vma) {
2954 mm->numa_scan_offset = start;
2955 } else {
2956 reset_ptenuma_scan(p);
2957 }
2958 mmap_read_unlock(mm);
2959
2960 /*
2961 * Make sure tasks use at least 32x as much time to run other code
2962 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2963 * Usually update_task_scan_period slows down scanning enough; on an
2964 * overloaded system we need to limit overhead on a per task basis.
2965 */
2966 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2967 u64 diff = p->se.sum_exec_runtime - runtime;
2968 p->node_stamp += 0x20 * diff;
2969 }
2970 }
2971
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)2972 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2973 {
2974 int mm_users = 0;
2975 struct mm_struct *mm = p->mm;
2976
2977 if (mm) {
2978 mm_users = atomic_read(&mm->mm_users);
2979 if (mm_users == 1) {
2980 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2981 mm->numa_scan_seq = 0;
2982 }
2983 }
2984 p->node_stamp = 0;
2985 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2986 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2987 /* Protect against double add, see task_tick_numa and task_numa_work */
2988 p->numa_work.next = &p->numa_work;
2989 p->numa_faults = NULL;
2990 RCU_INIT_POINTER(p->numa_group, NULL);
2991 p->last_task_numa_placement = 0;
2992 p->last_sum_exec_runtime = 0;
2993
2994 init_task_work(&p->numa_work, task_numa_work);
2995
2996 /* New address space, reset the preferred nid */
2997 if (!(clone_flags & CLONE_VM)) {
2998 p->numa_preferred_nid = NUMA_NO_NODE;
2999 return;
3000 }
3001
3002 /*
3003 * New thread, keep existing numa_preferred_nid which should be copied
3004 * already by arch_dup_task_struct but stagger when scans start.
3005 */
3006 if (mm) {
3007 unsigned int delay;
3008
3009 delay = min_t(unsigned int, task_scan_max(current), current->numa_scan_period *mm_users *NSEC_PER_MSEC);
3010 delay += 0x2 * TICK_NSEC;
3011 p->node_stamp = delay;
3012 }
3013 }
3014
3015 /*
3016 * Drive the periodic memory faults..
3017 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3018 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3019 {
3020 struct callback_head *work = &curr->numa_work;
3021 u64 period, now;
3022
3023 /*
3024 * We don't care about NUMA placement if we don't have memory.
3025 */
3026 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) {
3027 return;
3028 }
3029
3030 /*
3031 * Using runtime rather than walltime has the dual advantage that
3032 * we (mostly) drive the selection from busy threads and that the
3033 * task needs to have done some actual work before we bother with
3034 * NUMA placement.
3035 */
3036 now = curr->se.sum_exec_runtime;
3037 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3038
3039 if (now > curr->node_stamp + period) {
3040 if (!curr->node_stamp) {
3041 curr->numa_scan_period = task_scan_start(curr);
3042 }
3043 curr->node_stamp += period;
3044
3045 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
3046 task_work_add(curr, work, TWA_RESUME);
3047 }
3048 }
3049 }
3050
update_scan_period(struct task_struct * p,int new_cpu)3051 static void update_scan_period(struct task_struct *p, int new_cpu)
3052 {
3053 int src_nid = cpu_to_node(task_cpu(p));
3054 int dst_nid = cpu_to_node(new_cpu);
3055
3056 if (!static_branch_likely(&sched_numa_balancing)) {
3057 return;
3058 }
3059
3060 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) {
3061 return;
3062 }
3063
3064 if (src_nid == dst_nid) {
3065 return;
3066 }
3067
3068 /*
3069 * Allow resets if faults have been trapped before one scan
3070 * has completed. This is most likely due to a new task that
3071 * is pulled cross-node due to wakeups or load balancing.
3072 */
3073 if (p->numa_scan_seq) {
3074 /*
3075 * Avoid scan adjustments if moving to the preferred
3076 * node or if the task was not previously running on
3077 * the preferred node.
3078 */
3079 if (dst_nid == p->numa_preferred_nid ||
3080 (p->numa_preferred_nid != NUMA_NO_NODE && src_nid != p->numa_preferred_nid)) {
3081 return;
3082 }
3083 }
3084
3085 p->numa_scan_period = task_scan_start(p);
3086 }
3087
3088 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3089 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3090 {
3091 }
3092
account_numa_enqueue(struct rq * rq,struct task_struct * p)3093 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3094 {
3095 }
3096
account_numa_dequeue(struct rq * rq,struct task_struct * p)3097 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3098 {
3099 }
3100
update_scan_period(struct task_struct * p,int new_cpu)3101 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3102 {
3103 }
3104
3105 #endif /* CONFIG_NUMA_BALANCING */
3106
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3107 static void account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3108 {
3109 update_load_add(&cfs_rq->load, se->load.weight);
3110 #ifdef CONFIG_SMP
3111 if (entity_is_task(se)) {
3112 struct rq *rq = rq_of(cfs_rq);
3113
3114 account_numa_enqueue(rq, task_of(se));
3115 list_add(&se->group_node, &rq->cfs_tasks);
3116 }
3117 #endif
3118 cfs_rq->nr_running++;
3119 }
3120
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3121 static void account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3122 {
3123 update_load_sub(&cfs_rq->load, se->load.weight);
3124 #ifdef CONFIG_SMP
3125 if (entity_is_task(se)) {
3126 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3127 list_del_init(&se->group_node);
3128 }
3129 #endif
3130 cfs_rq->nr_running--;
3131 }
3132
3133 /*
3134 * Signed add and clamp on underflow.
3135 *
3136 * Explicitly do a load-store to ensure the intermediate value never hits
3137 * memory. This allows lockless observations without ever seeing the negative
3138 * values.
3139 */
3140 #define add_positive(_ptr, _val) \
3141 do { \
3142 typeof(_ptr) ptr = (_ptr); \
3143 typeof(_val) val = (_val); \
3144 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3145 \
3146 res = var + val; \
3147 \
3148 if (val < 0 && res > var) \
3149 res = 0; \
3150 \
3151 WRITE_ONCE(*ptr, res); \
3152 } while (0)
3153
3154 /*
3155 * Unsigned subtract and clamp on underflow.
3156 *
3157 * Explicitly do a load-store to ensure the intermediate value never hits
3158 * memory. This allows lockless observations without ever seeing the negative
3159 * values.
3160 */
3161 #define sub_positive(_ptr, _val) \
3162 do { \
3163 typeof(_ptr) ptr = (_ptr); \
3164 typeof(*ptr) val = (_val); \
3165 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3166 res = var - val; \
3167 if (res > var) \
3168 res = 0; \
3169 WRITE_ONCE(*ptr, res); \
3170 } while (0)
3171
3172 /*
3173 * Remove and clamp on negative, from a local variable.
3174 *
3175 * A variant of sub_positive(), which does not use explicit load-store
3176 * and is thus optimized for local variable updates.
3177 */
3178 #define lsub_positive(_ptr, _val) \
3179 do { \
3180 typeof(_ptr) ptr = (_ptr); \
3181 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3182 } while (0)
3183
3184 #ifdef CONFIG_SMP
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3185 static inline void enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3186 {
3187 cfs_rq->avg.load_avg += se->avg.load_avg;
3188 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3189 }
3190
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3191 static inline void dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3192 {
3193 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3194 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3195 }
3196 #else
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3197 static inline void enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3198 {
3199 }
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3200 static inline void dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3201 {
3202 }
3203 #endif
3204
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3205 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, unsigned long weight)
3206 {
3207 if (se->on_rq) {
3208 /* commit outstanding execution time */
3209 if (cfs_rq->curr == se) {
3210 update_curr(cfs_rq);
3211 }
3212 update_load_sub(&cfs_rq->load, se->load.weight);
3213 }
3214 dequeue_load_avg(cfs_rq, se);
3215
3216 update_load_set(&se->load, weight);
3217
3218 #ifdef CONFIG_SMP
3219 do {
3220 u32 divider = get_pelt_divider(&se->avg);
3221
3222 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3223 } while (0);
3224 #endif
3225
3226 enqueue_load_avg(cfs_rq, se);
3227 if (se->on_rq) {
3228 update_load_add(&cfs_rq->load, se->load.weight);
3229 }
3230 }
3231
reweight_task(struct task_struct * p,int prio)3232 void reweight_task(struct task_struct *p, int prio)
3233 {
3234 struct sched_entity *se = &p->se;
3235 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3236 struct load_weight *load = &se->load;
3237 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3238
3239 reweight_entity(cfs_rq, se, weight);
3240 load->inv_weight = sched_prio_to_wmult[prio];
3241 }
3242
3243 #ifdef CONFIG_FAIR_GROUP_SCHED
3244 #ifdef CONFIG_SMP
3245 /*
3246 * All this does is approximate the hierarchical proportion which includes that
3247 * global sum we all love to hate.
3248 *
3249 * That is, the weight of a group entity, is the proportional share of the
3250 * group weight based on the group runqueue weights. That is:
3251 *
3252 * tg->weight * grq->load.weight
3253 * ge->load.weight = ----------------------------- (1)
3254 * \Sum grq->load.weight
3255 *
3256 * Now, because computing that sum is prohibitively expensive to compute (been
3257 * there, done that) we approximate it with this average stuff. The average
3258 * moves slower and therefore the approximation is cheaper and more stable.
3259 *
3260 * So instead of the above, we substitute:
3261 *
3262 * grq->load.weight -> grq->avg.load_avg (2)
3263 *
3264 * which yields the following
3265 *
3266 * tg->weight * grq->avg.load_avg
3267 * ge->load.weight = ------------------------------ (3)
3268 * tg->load_avg
3269 *
3270 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3271 *
3272 * That is shares_avg, and it is right (given the approximation (2)).
3273 *
3274 * The problem with it is that because the average is slow -- it was designed
3275 * to be exactly that of course -- this leads to transients in boundary
3276 * conditions. In specific, the case where the group was idle and we start the
3277 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3278 * yielding bad latency etc..
3279 *
3280 * Now, in that special case (1) reduces to:
3281 *
3282 * tg->weight * grq->load.weight
3283 * ge->load.weight = ----------------------------- = tg->weight (4)
3284 * grp->load.weight
3285 *
3286 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3287 *
3288 * So what we do is modify our approximation (3) to approach (4) in the (near)
3289 * UP case, like
3290 *
3291 * ge->load.weight =
3292 *
3293 * tg->weight * grq->load.weight
3294 * --------------------------------------------------- (5)
3295 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3296 *
3297 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3298 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3299 *
3300 *
3301 * tg->weight * grq->load.weight
3302 * ge->load.weight = ----------------------------- (6)
3303 * tg_load_avg'
3304 *
3305 * Where
3306 *
3307 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3308 * max(grq->load.weight, grq->avg.load_avg)
3309 *
3310 * And that is shares_weight and is icky. In the (near) UP case it approaches
3311 * (4) while in the normal case it approaches (3). It consistently
3312 * overestimates the ge->load.weight and therefore:
3313 *
3314 * \Sum ge->load.weight >= tg->weight
3315 *
3316 * hence icky!
3317 */
calc_group_shares(struct cfs_rq * cfs_rq)3318 static long calc_group_shares(struct cfs_rq *cfs_rq)
3319 {
3320 long tg_weight, tg_shares, load, shares;
3321 struct task_group *tg = cfs_rq->tg;
3322
3323 tg_shares = READ_ONCE(tg->shares);
3324
3325 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3326
3327 tg_weight = atomic_long_read(&tg->load_avg);
3328
3329 /* Ensure tg_weight >= load */
3330 tg_weight -= cfs_rq->tg_load_avg_contrib;
3331 tg_weight += load;
3332
3333 shares = (tg_shares * load);
3334 if (tg_weight) {
3335 shares /= tg_weight;
3336 }
3337
3338 /*
3339 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3340 * of a group with small tg->shares value. It is a floor value which is
3341 * assigned as a minimum load.weight to the sched_entity representing
3342 * the group on a CPU.
3343 *
3344 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3345 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3346 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3347 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3348 * instead of 0.
3349 */
3350 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3351 }
3352 #endif /* CONFIG_SMP */
3353
3354 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3355
3356 /*
3357 * Recomputes the group entity based on the current state of its group
3358 * runqueue.
3359 */
update_cfs_group(struct sched_entity * se)3360 static void update_cfs_group(struct sched_entity *se)
3361 {
3362 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3363 long shares;
3364
3365 if (!gcfs_rq) {
3366 return;
3367 }
3368
3369 if (throttled_hierarchy(gcfs_rq)) {
3370 return;
3371 }
3372
3373 #ifndef CONFIG_SMP
3374 shares = READ_ONCE(gcfs_rq->tg->shares);
3375 if (likely(se->load.weight == shares)) {
3376 return;
3377 }
3378 #else
3379 shares = calc_group_shares(gcfs_rq);
3380 #endif
3381
3382 reweight_entity(cfs_rq_of(se), se, shares);
3383 }
3384
3385 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3386 static inline void update_cfs_group(struct sched_entity *se)
3387 {
3388 }
3389 #endif /* CONFIG_FAIR_GROUP_SCHED */
3390
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3391 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3392 {
3393 struct rq *rq = rq_of(cfs_rq);
3394
3395 if (&rq->cfs == cfs_rq) {
3396 /*
3397 * There are a few boundary cases this might miss but it should
3398 * get called often enough that that should (hopefully) not be
3399 * a real problem.
3400 *
3401 * It will not get called when we go idle, because the idle
3402 * thread is a different class (!fair), nor will the utilization
3403 * number include things like RT tasks.
3404 *
3405 * As is, the util number is not freq-invariant (we'd have to
3406 * implement arch_scale_freq_capacity() for that).
3407 *
3408 * See cpu_util().
3409 */
3410 cpufreq_update_util(rq, flags);
3411 }
3412 }
3413
3414 #ifdef CONFIG_SMP
3415 #ifdef CONFIG_FAIR_GROUP_SCHED
3416 /**
3417 * update_tg_load_avg - update the tg's load avg
3418 * @cfs_rq: the cfs_rq whose avg changed
3419 *
3420 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3421 * However, because tg->load_avg is a global value there are performance
3422 * considerations.
3423 *
3424 * In order to avoid having to look at the other cfs_rq's, we use a
3425 * differential update where we store the last value we propagated. This in
3426 * turn allows skipping updates if the differential is 'small'.
3427 *
3428 * Updating tg's load_avg is necessary before update_cfs_share().
3429 */
update_tg_load_avg(struct cfs_rq * cfs_rq)3430 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3431 {
3432 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3433
3434 /*
3435 * No need to update load_avg for root_task_group as it is not used.
3436 */
3437 if (cfs_rq->tg == &root_task_group) {
3438 return;
3439 }
3440
3441 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 0x40) {
3442 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3443 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3444 }
3445 }
3446
3447 /*
3448 * Called within set_task_rq() right before setting a task's CPU. The
3449 * caller only guarantees p->pi_lock is held; no other assumptions,
3450 * including the state of rq->lock, should be made.
3451 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3452 void set_task_rq_fair(struct sched_entity *se, struct cfs_rq *prev, struct cfs_rq *next)
3453 {
3454 u64 p_last_update_time;
3455 u64 n_last_update_time;
3456
3457 if (!sched_feat(ATTACH_AGE_LOAD)) {
3458 return;
3459 }
3460
3461 /*
3462 * We are supposed to update the task to "current" time, then its up to
3463 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3464 * getting what current time is, so simply throw away the out-of-date
3465 * time. This will result in the wakee task is less decayed, but giving
3466 * the wakee more load sounds not bad.
3467 */
3468 if (!(se->avg.last_update_time && prev)) {
3469 return;
3470 }
3471
3472 #ifndef CONFIG_64BIT
3473 {
3474 u64 p_last_update_time_copy;
3475 u64 n_last_update_time_copy;
3476
3477 do {
3478 p_last_update_time_copy = prev->load_last_update_time_copy;
3479 n_last_update_time_copy = next->load_last_update_time_copy;
3480
3481 smp_rmb();
3482
3483 p_last_update_time = prev->avg.last_update_time;
3484 n_last_update_time = next->avg.last_update_time;
3485 } while (p_last_update_time != p_last_update_time_copy || n_last_update_time != n_last_update_time_copy);
3486 }
3487 #else
3488 p_last_update_time = prev->avg.last_update_time;
3489 n_last_update_time = next->avg.last_update_time;
3490 #endif
3491 __update_load_avg_blocked_se(p_last_update_time, se);
3492 se->avg.last_update_time = n_last_update_time;
3493 }
3494
3495 /*
3496 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3497 * propagate its contribution. The key to this propagation is the invariant
3498 * that for each group
3499 *
3500 * ge->avg == grq->avg (1)
3501 *
3502 * _IFF_ we look at the pure running and runnable sums. Because they
3503 * represent the very same entity, just at different points in the hierarchy.
3504 *
3505 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3506 * and simply copies the running/runnable sum over (but still wrong, because
3507 * the group entity and group rq do not have their PELT windows aligned).
3508 *
3509 * However, update_tg_cfs_load() is more complex. So we have:
3510 *
3511 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3512 *
3513 * And since, like util, the runnable part should be directly transferable,
3514 * the following would _appear_ to be the straight forward approach:
3515 *
3516 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3517 *
3518 * And per (1) we have
3519 *
3520 * ge->avg.runnable_avg == grq->avg.runnable_avg
3521 *
3522 * Which gives
3523 *
3524 * ge->load.weight * grq->avg.load_avg
3525 * ge->avg.load_avg = ----------------------------------- (4)
3526 * grq->load.weight
3527 *
3528 * Except that is wrong!
3529 *
3530 * Because while for entities historical weight is not important and we
3531 * really only care about our future and therefore can consider a pure
3532 * runnable sum, runqueues can NOT do this.
3533 *
3534 * We specifically want runqueues to have a load_avg that includes
3535 * historical weights. Those represent the blocked load, the load we expect
3536 * to (shortly) return to us. This only works by keeping the weights as
3537 * integral part of the sum. We therefore cannot decompose as per (3).
3538 *
3539 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3540 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3541 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3542 * runnable section of these tasks overlap (or not). If they were to perfectly
3543 * align the rq as a whole would be runnable 2/3 of the time. If however we
3544 * always have at least 1 runnable task, the rq as a whole is always runnable.
3545 *
3546 * So we'll have to approximate.. :/
3547 *
3548 * Given the constraint
3549 *
3550 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3551 *
3552 * We can construct a rule that adds runnable to a rq by assuming minimal
3553 * overlap.
3554 *
3555 * On removal, we'll assume each task is equally runnable; which yields:
3556 *
3557 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3558 *
3559 * XXX: only do this for the part of runnable > running ?
3560 *
3561 */
3562
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3563 static inline void update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3564 {
3565 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3566 u32 divider;
3567
3568 /* Nothing to update */
3569 if (!delta) {
3570 return;
3571 }
3572
3573 /*
3574 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3575 * See ___update_load_avg() for details.
3576 */
3577 divider = get_pelt_divider(&cfs_rq->avg);
3578
3579 /* Set new sched_entity's utilization */
3580 se->avg.util_avg = gcfs_rq->avg.util_avg;
3581 se->avg.util_sum = se->avg.util_avg * divider;
3582
3583 /* Update parent cfs_rq utilization */
3584 add_positive(&cfs_rq->avg.util_avg, delta);
3585 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3586 }
3587
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3588 static inline void update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3589 {
3590 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3591 u32 divider;
3592
3593 /* Nothing to update */
3594 if (!delta) {
3595 return;
3596 }
3597
3598 /*
3599 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3600 * See ___update_load_avg() for details.
3601 */
3602 divider = get_pelt_divider(&cfs_rq->avg);
3603
3604 /* Set new sched_entity's runnable */
3605 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3606 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3607
3608 /* Update parent cfs_rq runnable */
3609 add_positive(&cfs_rq->avg.runnable_avg, delta);
3610 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3611 }
3612
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3613 static inline void update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3614 {
3615 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3616 unsigned long load_avg;
3617 u64 load_sum = 0;
3618 u32 divider;
3619
3620 if (!runnable_sum) {
3621 return;
3622 }
3623
3624 gcfs_rq->prop_runnable_sum = 0;
3625
3626 /*
3627 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3628 * See ___update_load_avg() for details.
3629 */
3630 divider = get_pelt_divider(&cfs_rq->avg);
3631
3632 if (runnable_sum >= 0) {
3633 /*
3634 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3635 * the CPU is saturated running == runnable.
3636 */
3637 runnable_sum += se->avg.load_sum;
3638 runnable_sum = min_t(long, runnable_sum, divider);
3639 } else {
3640 /*
3641 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3642 * assuming all tasks are equally runnable.
3643 */
3644 if (scale_load_down(gcfs_rq->load.weight)) {
3645 load_sum = div_s64(gcfs_rq->avg.load_sum, scale_load_down(gcfs_rq->load.weight));
3646 }
3647
3648 /* But make sure to not inflate se's runnable */
3649 runnable_sum = min(se->avg.load_sum, load_sum);
3650 }
3651
3652 /*
3653 * runnable_sum can't be lower than running_sum
3654 * Rescale running sum to be in the same range as runnable sum
3655 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3656 * runnable_sum is in [0 : LOAD_AVG_MAX]
3657 */
3658 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3659 runnable_sum = max(runnable_sum, running_sum);
3660
3661 load_sum = (s64)se_weight(se) * runnable_sum;
3662 load_avg = div_s64(load_sum, divider);
3663
3664 delta = load_avg - se->avg.load_avg;
3665
3666 se->avg.load_sum = runnable_sum;
3667 se->avg.load_avg = load_avg;
3668
3669 add_positive(&cfs_rq->avg.load_avg, delta);
3670 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3671 }
3672
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3673 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3674 {
3675 cfs_rq->propagate = 1;
3676 cfs_rq->prop_runnable_sum += runnable_sum;
3677 }
3678
3679 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3680 static inline int propagate_entity_load_avg(struct sched_entity *se)
3681 {
3682 struct cfs_rq *cfs_rq, *gcfs_rq;
3683
3684 if (entity_is_task(se)) {
3685 return 0;
3686 }
3687
3688 gcfs_rq = group_cfs_rq(se);
3689 if (!gcfs_rq->propagate) {
3690 return 0;
3691 }
3692
3693 gcfs_rq->propagate = 0;
3694
3695 cfs_rq = cfs_rq_of(se);
3696
3697 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3698
3699 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3700 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3701 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3702
3703 trace_pelt_cfs_tp(cfs_rq);
3704 trace_pelt_se_tp(se);
3705
3706 return 1;
3707 }
3708
3709 /*
3710 * Check if we need to update the load and the utilization of a blocked
3711 * group_entity
3712 */
skip_blocked_update(struct sched_entity * se)3713 static inline bool skip_blocked_update(struct sched_entity *se)
3714 {
3715 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3716
3717 /*
3718 * If sched_entity still have not zero load or utilization, we have to
3719 * decay it:
3720 */
3721 if (se->avg.load_avg || se->avg.util_avg) {
3722 return false;
3723 }
3724
3725 /*
3726 * If there is a pending propagation, we have to update the load and
3727 * the utilization of the sched_entity:
3728 */
3729 if (gcfs_rq->propagate) {
3730 return false;
3731 }
3732
3733 /*
3734 * Otherwise, the load and the utilization of the sched_entity is
3735 * already zero and there is no pending propagation, so it will be a
3736 * waste of time to try to decay it:
3737 */
3738 return true;
3739 }
3740
3741 #else /* CONFIG_FAIR_GROUP_SCHED */
3742
update_tg_load_avg(struct cfs_rq * cfs_rq)3743 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3744 {
3745 }
3746
propagate_entity_load_avg(struct sched_entity * se)3747 static inline int propagate_entity_load_avg(struct sched_entity *se)
3748 {
3749 return 0;
3750 }
3751
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3752 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3753 {
3754 }
3755
3756 #endif /* CONFIG_FAIR_GROUP_SCHED */
3757
3758 /**
3759 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3760 * @now: current time, as per cfs_rq_clock_pelt()
3761 * @cfs_rq: cfs_rq to update
3762 *
3763 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3764 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3765 * post_init_entity_util_avg().
3766 *
3767 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3768 *
3769 * Returns true if the load decayed or we removed load.
3770 *
3771 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3772 * call update_tg_load_avg() when this function returns true.
3773 */
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)3774 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3775 {
3776 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3777 struct sched_avg *sa = &cfs_rq->avg;
3778 int decayed = 0;
3779
3780 if (cfs_rq->removed.nr) {
3781 unsigned long r;
3782 u32 divider = get_pelt_divider(&cfs_rq->avg);
3783
3784 raw_spin_lock(&cfs_rq->removed.lock);
3785 swap(cfs_rq->removed.util_avg, removed_util);
3786 swap(cfs_rq->removed.load_avg, removed_load);
3787 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3788 cfs_rq->removed.nr = 0;
3789 raw_spin_unlock(&cfs_rq->removed.lock);
3790
3791 r = removed_load;
3792 sub_positive(&sa->load_avg, r);
3793 sa->load_sum = sa->load_avg * divider;
3794
3795 r = removed_util;
3796 sub_positive(&sa->util_avg, r);
3797 sub_positive(&sa->util_sum, r * divider);
3798 /*
3799 * Because of rounding, se->util_sum might ends up being +1 more than
3800 * cfs->util_sum. Although this is not a problem by itself, detaching
3801 * a lot of tasks with the rounding problem between 2 updates of
3802 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3803 * cfs_util_avg is not.
3804 * Check that util_sum is still above its lower bound for the new
3805 * util_avg. Given that period_contrib might have moved since the last
3806 * sync, we are only sure that util_sum must be above or equal to
3807 * util_avg * minimum possible divider
3808 */
3809 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
3810
3811 r = removed_runnable;
3812 sub_positive(&sa->runnable_avg, r);
3813 sa->runnable_sum = sa->runnable_avg * divider;
3814
3815 /*
3816 * removed_runnable is the unweighted version of removed_load so we
3817 * can use it to estimate removed_load_sum.
3818 */
3819 add_tg_cfs_propagate(cfs_rq, -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3820
3821 decayed = 1;
3822 }
3823
3824 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3825
3826 #ifndef CONFIG_64BIT
3827 smp_wmb();
3828 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3829 #endif
3830
3831 return decayed;
3832 }
3833
3834 /**
3835 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3836 * @cfs_rq: cfs_rq to attach to
3837 * @se: sched_entity to attach
3838 *
3839 * Must call update_cfs_rq_load_avg() before this, since we rely on
3840 * cfs_rq->avg.last_update_time being current.
3841 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3842 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3843 {
3844 /*
3845 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3846 * See ___update_load_avg() for details.
3847 */
3848 u32 divider = get_pelt_divider(&cfs_rq->avg);
3849
3850 /*
3851 * When we attach the @se to the @cfs_rq, we must align the decay
3852 * window because without that, really weird and wonderful things can
3853 * happen.
3854 *
3855 * XXX illustrate
3856 */
3857 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3858 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3859
3860 /*
3861 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3862 * period_contrib. This isn't strictly correct, but since we're
3863 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3864 * _sum a little.
3865 */
3866 se->avg.util_sum = se->avg.util_avg * divider;
3867
3868 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3869
3870 se->avg.load_sum = se->avg.load_avg * divider;
3871 if (se_weight(se) < se->avg.load_sum)
3872 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
3873 else
3874 se->avg.load_sum = 1;
3875
3876 enqueue_load_avg(cfs_rq, se);
3877 cfs_rq->avg.util_avg += se->avg.util_avg;
3878 cfs_rq->avg.util_sum += se->avg.util_sum;
3879 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3880 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3881
3882 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3883
3884 cfs_rq_util_change(cfs_rq, 0);
3885
3886 trace_pelt_cfs_tp(cfs_rq);
3887 }
3888
3889 /**
3890 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3891 * @cfs_rq: cfs_rq to detach from
3892 * @se: sched_entity to detach
3893 *
3894 * Must call update_cfs_rq_load_avg() before this, since we rely on
3895 * cfs_rq->avg.last_update_time being current.
3896 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3897 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3898 {
3899 /*
3900 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3901 * See ___update_load_avg() for details.
3902 */
3903 u32 divider = get_pelt_divider(&cfs_rq->avg);
3904
3905 dequeue_load_avg(cfs_rq, se);
3906 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3907 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3908 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3909 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3910
3911 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3912
3913 cfs_rq_util_change(cfs_rq, 0);
3914
3915 trace_pelt_cfs_tp(cfs_rq);
3916 }
3917
3918 /*
3919 * Optional action to be done while updating the load average
3920 */
3921 #define UPDATE_TG 0x1
3922 #define SKIP_AGE_LOAD 0x2
3923 #define DO_ATTACH 0x4
3924
3925 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3926 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3927 {
3928 u64 now = cfs_rq_clock_pelt(cfs_rq);
3929 int decayed;
3930
3931 /*
3932 * Track task load average for carrying it to new CPU after migrated, and
3933 * track group sched_entity load average for task_h_load calc in migration
3934 */
3935 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
3936 __update_load_avg_se(now, cfs_rq, se);
3937 }
3938
3939 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3940 decayed |= propagate_entity_load_avg(se);
3941
3942 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3943 /*
3944 * DO_ATTACH means we're here from enqueue_entity().
3945 * !last_update_time means we've passed through
3946 * migrate_task_rq_fair() indicating we migrated.
3947 *
3948 * IOW we're enqueueing a task on a new CPU.
3949 */
3950 attach_entity_load_avg(cfs_rq, se);
3951 update_tg_load_avg(cfs_rq);
3952 } else if (decayed) {
3953 cfs_rq_util_change(cfs_rq, 0);
3954
3955 if (flags & UPDATE_TG) {
3956 update_tg_load_avg(cfs_rq);
3957 }
3958 }
3959 }
3960
3961 #ifndef CONFIG_64BIT
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3962 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3963 {
3964 u64 last_update_time_copy;
3965 u64 last_update_time;
3966
3967 do {
3968 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3969 smp_rmb();
3970 last_update_time = cfs_rq->avg.last_update_time;
3971 } while (last_update_time != last_update_time_copy);
3972
3973 return last_update_time;
3974 }
3975 #else
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3976 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3977 {
3978 return cfs_rq->avg.last_update_time;
3979 }
3980 #endif
3981
3982 /*
3983 * Synchronize entity load avg of dequeued entity without locking
3984 * the previous rq.
3985 */
sync_entity_load_avg(struct sched_entity * se)3986 static void sync_entity_load_avg(struct sched_entity *se)
3987 {
3988 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3989 u64 last_update_time;
3990
3991 last_update_time = cfs_rq_last_update_time(cfs_rq);
3992 __update_load_avg_blocked_se(last_update_time, se);
3993 }
3994
3995 /*
3996 * Task first catches up with cfs_rq, and then subtract
3997 * itself from the cfs_rq (task must be off the queue now).
3998 */
remove_entity_load_avg(struct sched_entity * se)3999 static void remove_entity_load_avg(struct sched_entity *se)
4000 {
4001 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4002 unsigned long flags;
4003
4004 /*
4005 * tasks cannot exit without having gone through wake_up_new_task() ->
4006 * post_init_entity_util_avg() which will have added things to the
4007 * cfs_rq, so we can remove unconditionally.
4008 */
4009
4010 sync_entity_load_avg(se);
4011
4012 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4013 ++cfs_rq->removed.nr;
4014 cfs_rq->removed.util_avg += se->avg.util_avg;
4015 cfs_rq->removed.load_avg += se->avg.load_avg;
4016 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4017 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4018 }
4019
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4020 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4021 {
4022 return cfs_rq->avg.runnable_avg;
4023 }
4024
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4025 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4026 {
4027 return cfs_rq->avg.load_avg;
4028 }
4029
4030 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4031
task_util(struct task_struct * p)4032 static inline unsigned long task_util(struct task_struct *p)
4033 {
4034 #ifdef CONFIG_SCHED_WALT
4035 if (likely(!walt_disabled && sysctl_sched_use_walt_task_util)) {
4036 return p->ravg.demand_scaled;
4037 }
4038 #endif
4039 return READ_ONCE(p->se.avg.util_avg);
4040 }
4041
_task_util_est(struct task_struct * p)4042 static inline unsigned long _task_util_est(struct task_struct *p)
4043 {
4044 struct util_est ue = READ_ONCE(p->se.avg.util_est);
4045
4046 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4047 }
4048
task_util_est(struct task_struct * p)4049 static inline unsigned long task_util_est(struct task_struct *p)
4050 {
4051 #ifdef CONFIG_SCHED_WALT
4052 if (likely(!walt_disabled && sysctl_sched_use_walt_task_util)) {
4053 return p->ravg.demand_scaled;
4054 }
4055 #endif
4056 return max(task_util(p), _task_util_est(p));
4057 }
4058
4059 #ifdef CONFIG_UCLAMP_TASK
4060 #ifdef CONFIG_SCHED_RT_CAS
uclamp_task_util(struct task_struct * p)4061 unsigned long uclamp_task_util(struct task_struct *p)
4062 #else
4063 static inline unsigned long uclamp_task_util(struct task_struct *p)
4064 #endif
4065 {
4066 return clamp(task_util_est(p), uclamp_eff_value(p, UCLAMP_MIN), uclamp_eff_value(p, UCLAMP_MAX));
4067 }
4068 #else
4069 #ifdef CONFIG_SCHED_RT_CAS
uclamp_task_util(struct task_struct * p)4070 unsigned long uclamp_task_util(struct task_struct *p)
4071 #else
4072 static inline unsigned long uclamp_task_util(struct task_struct *p)
4073 #endif
4074 {
4075 return task_util_est(p);
4076 }
4077 #endif
4078
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4079 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p)
4080 {
4081 unsigned int enqueued;
4082
4083 if (!sched_feat(UTIL_EST)) {
4084 return;
4085 }
4086
4087 /* Update root cfs_rq's estimated utilization */
4088 enqueued = cfs_rq->avg.util_est.enqueued;
4089 enqueued += _task_util_est(p);
4090 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4091
4092 trace_sched_util_est_cfs_tp(cfs_rq);
4093 }
4094
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4095 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p)
4096 {
4097 unsigned int enqueued;
4098
4099 if (!sched_feat(UTIL_EST)) {
4100 return;
4101 }
4102
4103 /* Update root cfs_rq's estimated utilization */
4104 enqueued = cfs_rq->avg.util_est.enqueued;
4105 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4106 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4107
4108 trace_sched_util_est_cfs_tp(cfs_rq);
4109 }
4110
4111 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / FAIR_ONEHUNDRED)
4112
4113 /*
4114 * Check if a (signed) value is within a specified (unsigned) margin,
4115 * based on the observation that
4116 *
4117 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4118 *
4119 * NOTE: this only works when value + maring < INT_MAX.
4120 */
within_margin(int value,int margin)4121 static inline bool within_margin(int value, int margin)
4122 {
4123 return ((unsigned int)(value + margin - 1) < (0x2 * margin - 1));
4124 }
4125
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4126 static inline void util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
4127 {
4128 long last_ewma_diff, last_enqueued_diff;
4129 struct util_est ue;
4130
4131 if (!sched_feat(UTIL_EST)) {
4132 return;
4133 }
4134
4135 /*
4136 * Skip update of task's estimated utilization when the task has not
4137 * yet completed an activation, e.g. being migrated.
4138 */
4139 if (!task_sleep) {
4140 return;
4141 }
4142
4143 /*
4144 * If the PELT values haven't changed since enqueue time,
4145 * skip the util_est update.
4146 */
4147 ue = p->se.avg.util_est;
4148 if (ue.enqueued & UTIL_AVG_UNCHANGED) {
4149 return;
4150 }
4151
4152 last_enqueued_diff = ue.enqueued;
4153
4154 /*
4155 * Reset EWMA on utilization increases, the moving average is used only
4156 * to smooth utilization decreases.
4157 */
4158 ue.enqueued = task_util(p);
4159 if (sched_feat(UTIL_EST_FASTUP)) {
4160 if (ue.ewma < ue.enqueued) {
4161 ue.ewma = ue.enqueued;
4162 goto done;
4163 }
4164 }
4165
4166 /*
4167 * Skip update of task's estimated utilization when its members are
4168 * already ~1% close to its last activation value.
4169 */
4170 last_ewma_diff = ue.enqueued - ue.ewma;
4171 last_enqueued_diff -= ue.enqueued;
4172 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4173 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) {
4174 goto done;
4175 }
4176
4177 return;
4178 }
4179
4180 /*
4181 * To avoid overestimation of actual task utilization, skip updates if
4182 * we cannot grant there is idle time in this CPU.
4183 */
4184 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) {
4185 return;
4186 }
4187
4188 /*
4189 * Update Task's estimated utilization
4190 *
4191 * When *p completes an activation we can consolidate another sample
4192 * of the task size. This is done by storing the current PELT value
4193 * as ue.enqueued and by using this value to update the Exponential
4194 * Weighted Moving Average (EWMA):
4195 *
4196 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4197 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4198 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4199 * = w * ( last_ewma_diff ) + ewma(t-1)
4200 * = w * (last_ewma_diff + ewma(t-1) / w)
4201 *
4202 * Where 'w' is the weight of new samples, which is configured to be
4203 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4204 */
4205 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4206 ue.ewma += last_ewma_diff;
4207 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4208 done:
4209 ue.enqueued |= UTIL_AVG_UNCHANGED;
4210 WRITE_ONCE(p->se.avg.util_est, ue);
4211
4212 trace_sched_util_est_se_tp(&p->se);
4213 }
4214
task_fits_capacity(struct task_struct * p,long capacity)4215 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4216 {
4217 return fits_capacity(uclamp_task_util(p), capacity);
4218 }
4219
4220 #ifdef CONFIG_SCHED_RTG
task_fits_max(struct task_struct * p,int cpu)4221 bool task_fits_max(struct task_struct *p, int cpu)
4222 {
4223 unsigned long capacity = capacity_orig_of(cpu);
4224 unsigned long max_capacity = cpu_rq(cpu)->rd->max_cpu_capacity;
4225 if (capacity == max_capacity) {
4226 return true;
4227 }
4228
4229 return task_fits_capacity(p, capacity);
4230 }
4231 #endif
4232
update_misfit_status(struct task_struct * p,struct rq * rq)4233 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4234 {
4235 bool task_fits = false;
4236 #ifdef CONFIG_SCHED_RTG
4237 int cpu = cpu_of(rq);
4238 struct cpumask *rtg_target = NULL;
4239 #endif
4240
4241 if (!static_branch_unlikely(&sched_asym_cpucapacity)) {
4242 return;
4243 }
4244
4245 if (!p || p->nr_cpus_allowed == 1) {
4246 rq->misfit_task_load = 0;
4247 return;
4248 }
4249
4250 #ifdef CONFIG_SCHED_RTG
4251 rtg_target = find_rtg_target(p);
4252 if (rtg_target) {
4253 task_fits = capacity_orig_of(cpu) >= capacity_orig_of(cpumask_first(rtg_target));
4254 } else {
4255 task_fits = task_fits_capacity(p, capacity_of(cpu_of(rq)));
4256 }
4257 #else
4258 task_fits = task_fits_capacity(p, capacity_of(cpu_of(rq)));
4259 #endif
4260 if (task_fits) {
4261 rq->misfit_task_load = 0;
4262 return;
4263 }
4264
4265 /*
4266 * Make sure that misfit_task_load will not be null even if
4267 * task_h_load() returns 0.
4268 */
4269 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4270 }
4271
4272 #else /* CONFIG_SMP */
4273
4274 #define UPDATE_TG 0x0
4275 #define SKIP_AGE_LOAD 0x0
4276 #define DO_ATTACH 0x0
4277
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)4278 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4279 {
4280 cfs_rq_util_change(cfs_rq, 0);
4281 }
4282
remove_entity_load_avg(struct sched_entity * se)4283 static inline void remove_entity_load_avg(struct sched_entity *se)
4284 {
4285 }
4286
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4287 static inline void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4288 {
4289 }
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4290 static inline void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4291 {
4292 }
4293
newidle_balance(struct rq * rq,struct rq_flags * rf)4294 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4295 {
4296 return 0;
4297 }
4298
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4299 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p)
4300 {
4301 }
4302
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4303 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p)
4304 {
4305 }
4306
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4307 static inline void util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
4308 {
4309 }
update_misfit_status(struct task_struct * p,struct rq * rq)4310 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4311 {
4312 }
4313
4314 #endif /* CONFIG_SMP */
4315
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)4316 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4317 {
4318 #ifdef CONFIG_SCHED_DEBUG
4319 s64 d = se->vruntime - cfs_rq->min_vruntime;
4320
4321 if (d < 0) {
4322 d = -d;
4323 }
4324
4325 if (d > 0x3 * sysctl_sched_latency) {
4326 schedstat_inc(cfs_rq->nr_spread_over);
4327 }
4328 #endif
4329 }
4330
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)4331 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4332 {
4333 u64 vruntime = cfs_rq->min_vruntime;
4334
4335 /*
4336 * The 'current' period is already promised to the current tasks,
4337 * however the extra weight of the new task will slow them down a
4338 * little, place the new task so that it fits in the slot that
4339 * stays open at the end.
4340 */
4341 if (initial && sched_feat(START_DEBIT)) {
4342 vruntime += sched_vslice(cfs_rq, se);
4343 }
4344
4345 /* sleeps up to a single latency don't count. */
4346 if (!initial) {
4347 unsigned long thresh = sysctl_sched_latency;
4348
4349 /*
4350 * Halve their sleep time's effect, to allow
4351 * for a gentler effect of sleepers:
4352 */
4353 if (sched_feat(GENTLE_FAIR_SLEEPERS)) {
4354 thresh >>= 1;
4355 }
4356
4357 vruntime -= thresh;
4358 }
4359
4360 /* ensure we never gain time by being placed backwards. */
4361 se->vruntime = max_vruntime(se->vruntime, vruntime);
4362 }
4363
4364 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4365
check_schedstat_required(void)4366 static inline void check_schedstat_required(void)
4367 {
4368 #ifdef CONFIG_SCHEDSTATS
4369 if (schedstat_enabled()) {
4370 return;
4371 }
4372
4373 /* Force schedstat enabled if a dependent tracepoint is active */
4374 if (trace_sched_stat_wait_enabled() || trace_sched_stat_sleep_enabled() || trace_sched_stat_iowait_enabled() ||
4375 trace_sched_stat_blocked_enabled() || trace_sched_stat_runtime_enabled()) {
4376 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4377 "stat_blocked and stat_runtime require the "
4378 "kernel parameter schedstats=enable or "
4379 "kernel.sched_schedstats=1\n");
4380 }
4381 #endif
4382 }
4383
4384 static inline bool cfs_bandwidth_used(void);
4385
4386 /*
4387 * MIGRATION
4388 *
4389 * dequeue
4390 * update_curr()
4391 * update_min_vruntime()
4392 * vruntime -= min_vruntime
4393 *
4394 * enqueue
4395 * update_curr()
4396 * update_min_vruntime()
4397 * vruntime += min_vruntime
4398 *
4399 * this way the vruntime transition between RQs is done when both
4400 * min_vruntime are up-to-date.
4401 *
4402 * WAKEUP (remote)
4403 *
4404 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4405 * vruntime -= min_vruntime
4406 *
4407 * enqueue
4408 * update_curr()
4409 * update_min_vruntime()
4410 * vruntime += min_vruntime
4411 *
4412 * this way we don't have the most up-to-date min_vruntime on the originating
4413 * CPU and an up-to-date min_vruntime on the destination CPU.
4414 */
4415
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4416 static void enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4417 {
4418 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4419 bool curr = cfs_rq->curr == se;
4420
4421 /*
4422 * If we're the current task, we must renormalise before calling
4423 * update_curr().
4424 */
4425 if (renorm && curr) {
4426 se->vruntime += cfs_rq->min_vruntime;
4427 }
4428
4429 update_curr(cfs_rq);
4430
4431 /*
4432 * Otherwise, renormalise after, such that we're placed at the current
4433 * moment in time, instead of some random moment in the past. Being
4434 * placed in the past could significantly boost this task to the
4435 * fairness detriment of existing tasks.
4436 */
4437 if (renorm && !curr) {
4438 se->vruntime += cfs_rq->min_vruntime;
4439 }
4440
4441 /*
4442 * When enqueuing a sched_entity, we must:
4443 * - Update loads to have both entity and cfs_rq synced with now.
4444 * - Add its load to cfs_rq->runnable_avg
4445 * - For group_entity, update its weight to reflect the new share of
4446 * its group cfs_rq
4447 * - Add its new weight to cfs_rq->load.weight
4448 */
4449 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4450 se_update_runnable(se);
4451 update_cfs_group(se);
4452 account_entity_enqueue(cfs_rq, se);
4453
4454 if (flags & ENQUEUE_WAKEUP) {
4455 place_entity(cfs_rq, se, 0);
4456 }
4457
4458 check_schedstat_required();
4459 update_stats_enqueue(cfs_rq, se, flags);
4460 check_spread(cfs_rq, se);
4461 if (!curr) {
4462 fair_enqueue_entity(cfs_rq, se);
4463 }
4464 se->on_rq = 1;
4465
4466 /*
4467 * When bandwidth control is enabled, cfs might have been removed
4468 * because of a parent been throttled but cfs->nr_running > 1. Try to
4469 * add it unconditionnally.
4470 */
4471 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) {
4472 list_add_leaf_cfs_rq(cfs_rq);
4473 }
4474
4475 if (cfs_rq->nr_running == 1) {
4476 check_enqueue_throttle(cfs_rq);
4477 }
4478 }
4479
fair_clear_buddies_last(struct sched_entity * se)4480 static void fair_clear_buddies_last(struct sched_entity *se)
4481 {
4482 for_each_sched_entity(se) {
4483 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4484 if (cfs_rq->last != se) {
4485 break;
4486 }
4487
4488 cfs_rq->last = NULL;
4489 }
4490 }
4491
fair_clear_buddies_next(struct sched_entity * se)4492 static void fair_clear_buddies_next(struct sched_entity *se)
4493 {
4494 for_each_sched_entity(se) {
4495 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4496 if (cfs_rq->next != se) {
4497 break;
4498 }
4499
4500 cfs_rq->next = NULL;
4501 }
4502 }
4503
fair_clear_buddies_skip(struct sched_entity * se)4504 static void fair_clear_buddies_skip(struct sched_entity *se)
4505 {
4506 for_each_sched_entity(se) {
4507 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4508 if (cfs_rq->skip != se) {
4509 break;
4510 }
4511
4512 cfs_rq->skip = NULL;
4513 }
4514 }
4515
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4516 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4517 {
4518 if (cfs_rq->last == se) {
4519 fair_clear_buddies_last(se);
4520 }
4521
4522 if (cfs_rq->next == se) {
4523 fair_clear_buddies_next(se);
4524 }
4525
4526 if (cfs_rq->skip == se) {
4527 fair_clear_buddies_skip(se);
4528 }
4529 }
4530
4531 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4532
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4533 static void dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4534 {
4535 /*
4536 * Update run-time statistics of the 'current'.
4537 */
4538 update_curr(cfs_rq);
4539
4540 /*
4541 * When dequeuing a sched_entity, we must:
4542 * - Update loads to have both entity and cfs_rq synced with now.
4543 * - Subtract its load from the cfs_rq->runnable_avg.
4544 * - Subtract its previous weight from cfs_rq->load.weight.
4545 * - For group entity, update its weight to reflect the new share
4546 * of its group cfs_rq.
4547 */
4548 update_load_avg(cfs_rq, se, UPDATE_TG);
4549 se_update_runnable(se);
4550
4551 update_stats_dequeue(cfs_rq, se, flags);
4552
4553 clear_buddies(cfs_rq, se);
4554
4555 if (se != cfs_rq->curr) {
4556 fair_dequeue_entity(cfs_rq, se);
4557 }
4558 se->on_rq = 0;
4559 account_entity_dequeue(cfs_rq, se);
4560
4561 /*
4562 * Normalize after update_curr(); which will also have moved
4563 * min_vruntime if @se is the one holding it back. But before doing
4564 * update_min_vruntime() again, which will discount @se's position and
4565 * can move min_vruntime forward still more.
4566 */
4567 if (!(flags & DEQUEUE_SLEEP)) {
4568 se->vruntime -= cfs_rq->min_vruntime;
4569 }
4570
4571 /* return excess runtime on last dequeue */
4572 return_cfs_rq_runtime(cfs_rq);
4573
4574 update_cfs_group(se);
4575
4576 /*
4577 * Now advance min_vruntime if @se was the entity holding it back,
4578 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4579 * put back on, and if we advance min_vruntime, we'll be placed back
4580 * further than we started -- ie. we'll be penalized.
4581 */
4582 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) {
4583 update_min_vruntime(cfs_rq);
4584 }
4585 }
4586
4587 /*
4588 * Preempt the current task with a newly woken task if needed:
4589 */
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4590 static void check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4591 {
4592 unsigned long ideal_runtime, delta_exec;
4593 struct sched_entity *se;
4594 s64 delta;
4595
4596 ideal_runtime = sched_slice(cfs_rq, curr);
4597 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4598 if (delta_exec > ideal_runtime) {
4599 resched_curr(rq_of(cfs_rq));
4600 /*
4601 * The current task ran long enough, ensure it doesn't get
4602 * re-elected due to buddy favours.
4603 */
4604 clear_buddies(cfs_rq, curr);
4605 return;
4606 }
4607
4608 /*
4609 * Ensure that a task that missed wakeup preemption by a
4610 * narrow margin doesn't have to wait for a full slice.
4611 * This also mitigates buddy induced latencies under load.
4612 */
4613 if (delta_exec < (unsigned long)sysctl_sched_min_granularity) {
4614 return;
4615 }
4616
4617 se = __pick_first_entity(cfs_rq);
4618 delta = curr->vruntime - se->vruntime;
4619
4620 if (delta < 0) {
4621 return;
4622 }
4623
4624 if (delta > ideal_runtime) {
4625 resched_curr(rq_of(cfs_rq));
4626 }
4627 }
4628
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4629 static void set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4630 {
4631 /* 'current' is not kept within the tree. */
4632 if (se->on_rq) {
4633 /*
4634 * Any task has to be enqueued before it get to execute on
4635 * a CPU. So account for the time it spent waiting on the
4636 * runqueue.
4637 */
4638 update_stats_wait_end(cfs_rq, se);
4639 fair_dequeue_entity(cfs_rq, se);
4640 update_load_avg(cfs_rq, se, UPDATE_TG);
4641 }
4642
4643 update_stats_curr_start(cfs_rq, se);
4644 cfs_rq->curr = se;
4645
4646 /*
4647 * Track our maximum slice length, if the CPU's load is at
4648 * least twice that of our own weight (i.e. dont track it
4649 * when there are only lesser-weight tasks around):
4650 */
4651 if (schedstat_enabled() && rq_of(cfs_rq)->cfs.load.weight >= 0x2 * se->load.weight) {
4652 schedstat_set(se->statistics.slice_max, max((u64)schedstat_val(se->statistics.slice_max),
4653 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4654 }
4655
4656 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4657 }
4658
4659 static int wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4660
4661 /*
4662 * Pick the next process, keeping these things in mind, in this order:
4663 * 1) keep things fair between processes/task groups
4664 * 2) pick the "next" process, since someone really wants that to run
4665 * 3) pick the "last" process, for cache locality
4666 * 4) do not run the "skip" process, if something else is available
4667 */
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)4668 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4669 {
4670 struct sched_entity *left = __pick_first_entity(cfs_rq);
4671 struct sched_entity *se;
4672
4673 /*
4674 * If curr is set we have to see if its left of the leftmost entity
4675 * still in the tree, provided there was anything in the tree at all.
4676 */
4677 if (!left || (curr && entity_before(curr, left))) {
4678 left = curr;
4679 }
4680
4681 se = left; /* ideally we run the leftmost entity */
4682
4683 /*
4684 * Avoid running the skip buddy, if running something else can
4685 * be done without getting too unfair.
4686 */
4687 if (cfs_rq->skip == se) {
4688 struct sched_entity *second;
4689
4690 if (se == curr) {
4691 second = __pick_first_entity(cfs_rq);
4692 } else {
4693 second = fair_pick_next_entity(se);
4694 if (!second || (curr && entity_before(curr, second))) {
4695 second = curr;
4696 }
4697 }
4698
4699 if (second && wakeup_preempt_entity(second, left) < 1) {
4700 se = second;
4701 }
4702 }
4703
4704 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4705 /*
4706 * Someone really wants this to run. If it's not unfair, run it.
4707 */
4708 se = cfs_rq->next;
4709 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4710 /*
4711 * Prefer last buddy, try to return the CPU to a preempted task.
4712 */
4713 se = cfs_rq->last;
4714 }
4715
4716 clear_buddies(cfs_rq, se);
4717
4718 return se;
4719 }
4720
4721 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4722
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)4723 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4724 {
4725 /*
4726 * If still on the runqueue then deactivate_task()
4727 * was not called and update_curr() has to be done:
4728 */
4729 if (prev->on_rq) {
4730 update_curr(cfs_rq);
4731 }
4732
4733 /* throttle cfs_rqs exceeding runtime */
4734 check_cfs_rq_runtime(cfs_rq);
4735
4736 check_spread(cfs_rq, prev);
4737
4738 if (prev->on_rq) {
4739 update_stats_wait_start(cfs_rq, prev);
4740 /* Put 'current' back into the tree. */
4741 fair_enqueue_entity(cfs_rq, prev);
4742 /* in !on_rq case, update occurred at dequeue */
4743 update_load_avg(cfs_rq, prev, 0);
4744 }
4745 cfs_rq->curr = NULL;
4746 }
4747
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)4748 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4749 {
4750 /*
4751 * Update run-time statistics of the 'current'.
4752 */
4753 update_curr(cfs_rq);
4754
4755 /*
4756 * Ensure that runnable average is periodically updated.
4757 */
4758 update_load_avg(cfs_rq, curr, UPDATE_TG);
4759 update_cfs_group(curr);
4760
4761 #ifdef CONFIG_SCHED_HRTICK
4762 /*
4763 * queued ticks are scheduled to match the slice, so don't bother
4764 * validating it and just reschedule.
4765 */
4766 if (queued) {
4767 resched_curr(rq_of(cfs_rq));
4768 return;
4769 }
4770 /*
4771 * don't let the period tick interfere with the hrtick preemption
4772 */
4773 if (!sched_feat(DOUBLE_TICK) && hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) {
4774 return;
4775 }
4776 #endif
4777
4778 if (cfs_rq->nr_running > 1) {
4779 check_preempt_tick(cfs_rq, curr);
4780 }
4781 }
4782
4783 /**************************************************
4784 * CFS bandwidth control machinery
4785 */
4786
4787 #ifdef CONFIG_CFS_BANDWIDTH
4788
4789 #ifdef CONFIG_JUMP_LABEL
4790 static struct static_key fair_cfs_bandwidth_used;
4791
cfs_bandwidth_used(void)4792 static inline bool cfs_bandwidth_used(void)
4793 {
4794 return static_key_false(&fair_cfs_bandwidth_used);
4795 }
4796
cfs_bandwidth_usage_inc(void)4797 void cfs_bandwidth_usage_inc(void)
4798 {
4799 static_key_slow_inc_cpuslocked(&fair_cfs_bandwidth_used);
4800 }
4801
cfs_bandwidth_usage_dec(void)4802 void cfs_bandwidth_usage_dec(void)
4803 {
4804 static_key_slow_dec_cpuslocked(&fair_cfs_bandwidth_used);
4805 }
4806 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)4807 static bool cfs_bandwidth_used(void)
4808 {
4809 return true;
4810 }
4811
cfs_bandwidth_usage_inc(void)4812 void cfs_bandwidth_usage_inc(void)
4813 {
4814 }
cfs_bandwidth_usage_dec(void)4815 void cfs_bandwidth_usage_dec(void)
4816 {
4817 }
4818 #endif /* CONFIG_JUMP_LABEL */
4819
4820 /*
4821 * default period for cfs group bandwidth.
4822 * default: 0.1s, units: nanoseconds
4823 */
default_cfs_period(void)4824 static inline u64 default_cfs_period(void)
4825 {
4826 return 100000000ULL;
4827 }
4828
sched_cfs_bandwidth_slice(void)4829 static inline u64 sched_cfs_bandwidth_slice(void)
4830 {
4831 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4832 }
4833
4834 /*
4835 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4836 * directly instead of rq->clock to avoid adding additional synchronization
4837 * around rq->lock.
4838 *
4839 * requires cfs_b->lock
4840 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)4841 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4842 {
4843 if (cfs_b->quota != RUNTIME_INF) {
4844 cfs_b->runtime = cfs_b->quota;
4845 }
4846 }
4847
tg_cfs_bandwidth(struct task_group * tg)4848 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4849 {
4850 return &tg->cfs_bandwidth;
4851 }
4852
4853 /* returns 0 on failure to allocate runtime */
fair_assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)4854 static int fair_assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, struct cfs_rq *cfs_rq, u64 target_runtime)
4855 {
4856 u64 min_amount, amount = 0;
4857
4858 lockdep_assert_held(&cfs_b->lock);
4859
4860 /* note: this is a positive sum as runtime_remaining <= 0 */
4861 min_amount = target_runtime - cfs_rq->runtime_remaining;
4862
4863 if (cfs_b->quota == RUNTIME_INF) {
4864 amount = min_amount;
4865 } else {
4866 start_cfs_bandwidth(cfs_b);
4867
4868 if (cfs_b->runtime > 0) {
4869 amount = min(cfs_b->runtime, min_amount);
4870 cfs_b->runtime -= amount;
4871 cfs_b->idle = 0;
4872 }
4873 }
4874
4875 cfs_rq->runtime_remaining += amount;
4876
4877 return cfs_rq->runtime_remaining > 0;
4878 }
4879
4880 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)4881 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4882 {
4883 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4884 int ret;
4885
4886 raw_spin_lock(&cfs_b->lock);
4887 ret = fair_assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4888 raw_spin_unlock(&cfs_b->lock);
4889
4890 return ret;
4891 }
4892
fair_account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4893 static void fair_account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4894 {
4895 /* dock delta_exec before expiring quota (as it could span periods) */
4896 cfs_rq->runtime_remaining -= delta_exec;
4897
4898 if (likely(cfs_rq->runtime_remaining > 0)) {
4899 return;
4900 }
4901
4902 if (cfs_rq->throttled) {
4903 return;
4904 }
4905 /*
4906 * if we're unable to extend our runtime we resched so that the active
4907 * hierarchy can be throttled
4908 */
4909 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) {
4910 resched_curr(rq_of(cfs_rq));
4911 }
4912 }
4913
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4914 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4915 {
4916 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) {
4917 return;
4918 }
4919
4920 fair_account_cfs_rq_runtime(cfs_rq, delta_exec);
4921 }
4922
cfs_rq_throttled(struct cfs_rq * cfs_rq)4923 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4924 {
4925 return cfs_bandwidth_used() && cfs_rq->throttled;
4926 }
4927
4928 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)4929 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4930 {
4931 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4932 }
4933
4934 /*
4935 * Ensure that neither of the group entities corresponding to src_cpu or
4936 * dest_cpu are members of a throttled hierarchy when performing group
4937 * load-balance operations.
4938 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)4939 static inline int throttled_lb_pair(struct task_group *tg, int src_cpu, int dest_cpu)
4940 {
4941 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4942
4943 src_cfs_rq = tg->cfs_rq[src_cpu];
4944 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4945
4946 return throttled_hierarchy(src_cfs_rq) || throttled_hierarchy(dest_cfs_rq);
4947 }
4948
tg_unthrottle_up(struct task_group * tg,void * data)4949 static int tg_unthrottle_up(struct task_group *tg, void *data)
4950 {
4951 struct rq *rq = data;
4952 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4953
4954 cfs_rq->throttle_count--;
4955 if (!cfs_rq->throttle_count) {
4956 cfs_rq->throttled_clock_pelt_time += rq_clock_task(rq) - cfs_rq->throttled_clock_pelt;
4957
4958 /* Add cfs_rq with already running entity in the list */
4959 if (cfs_rq->nr_running >= 1) {
4960 list_add_leaf_cfs_rq(cfs_rq);
4961 }
4962 }
4963
4964 return 0;
4965 }
4966
tg_throttle_down(struct task_group * tg,void * data)4967 static int tg_throttle_down(struct task_group *tg, void *data)
4968 {
4969 struct rq *rq = data;
4970 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4971
4972 /* group is entering throttled state, stop time */
4973 if (!cfs_rq->throttle_count) {
4974 cfs_rq->throttled_clock_pelt = rq_clock_task(rq);
4975 list_del_leaf_cfs_rq(cfs_rq);
4976 }
4977 cfs_rq->throttle_count++;
4978
4979 return 0;
4980 }
4981
throttle_cfs_rq(struct cfs_rq * cfs_rq)4982 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4983 {
4984 struct rq *rq = rq_of(cfs_rq);
4985 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4986 struct sched_entity *se;
4987 long task_delta, idle_task_delta, dequeue = 1;
4988
4989 raw_spin_lock(&cfs_b->lock);
4990 /* This will start the period timer if necessary */
4991 if (fair_assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4992 /*
4993 * We have raced with bandwidth becoming available, and if we
4994 * actually throttled the timer might not unthrottle us for an
4995 * entire period. We additionally needed to make sure that any
4996 * subsequent check_cfs_rq_runtime calls agree not to throttle
4997 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4998 * for 1ns of runtime rather than just check cfs_b.
4999 */
5000 dequeue = 0;
5001 } else {
5002 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
5003 }
5004 raw_spin_unlock(&cfs_b->lock);
5005
5006 if (!dequeue) {
5007 return false; /* Throttle no longer required. */
5008 }
5009
5010 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5011
5012 /* freeze hierarchy runnable averages while throttled */
5013 rcu_read_lock();
5014 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5015 rcu_read_unlock();
5016
5017 task_delta = cfs_rq->h_nr_running;
5018 idle_task_delta = cfs_rq->idle_h_nr_running;
5019 for_each_sched_entity(se) {
5020 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5021 /* throttled entity or throttle-on-deactivate */
5022 if (!se->on_rq) {
5023 break;
5024 }
5025
5026 if (dequeue) {
5027 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5028 } else {
5029 update_load_avg(qcfs_rq, se, 0);
5030 se_update_runnable(se);
5031 }
5032
5033 qcfs_rq->h_nr_running -= task_delta;
5034 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5035 walt_dec_throttled_cfs_rq_stats(&qcfs_rq->walt_stats, cfs_rq);
5036
5037 if (qcfs_rq->load.weight) {
5038 dequeue = 0;
5039 }
5040 }
5041
5042 if (!se) {
5043 sub_nr_running(rq, task_delta);
5044 walt_dec_throttled_cfs_rq_stats(&rq->walt_stats, cfs_rq);
5045 }
5046
5047 /*
5048 * Note: distribution will already see us throttled via the
5049 * throttled-list. rq->lock protects completion.
5050 */
5051 cfs_rq->throttled = 1;
5052 cfs_rq->throttled_clock = rq_clock(rq);
5053 return true;
5054 }
5055
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5056 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5057 {
5058 struct rq *rq = rq_of(cfs_rq);
5059 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5060 struct sched_entity *se;
5061 long task_delta, idle_task_delta;
5062 struct cfs_rq *tcfs_rq __maybe_unused = cfs_rq;
5063
5064 se = cfs_rq->tg->se[cpu_of(rq)];
5065
5066 cfs_rq->throttled = 0;
5067
5068 update_rq_clock(rq);
5069
5070 raw_spin_lock(&cfs_b->lock);
5071 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5072 list_del_rcu(&cfs_rq->throttled_list);
5073 raw_spin_unlock(&cfs_b->lock);
5074
5075 /* update hierarchical throttle state */
5076 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5077
5078 if (!cfs_rq->load.weight) {
5079 return;
5080 }
5081
5082 task_delta = cfs_rq->h_nr_running;
5083 idle_task_delta = cfs_rq->idle_h_nr_running;
5084 for_each_sched_entity(se) {
5085 if (se->on_rq) {
5086 break;
5087 }
5088 cfs_rq = cfs_rq_of(se);
5089 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
5090
5091 cfs_rq->h_nr_running += task_delta;
5092 cfs_rq->idle_h_nr_running += idle_task_delta;
5093 walt_inc_throttled_cfs_rq_stats(&cfs_rq->walt_stats, tcfs_rq);
5094
5095 /* end evaluation on encountering a throttled cfs_rq */
5096 if (cfs_rq_throttled(cfs_rq)) {
5097 goto unthrottle_throttle;
5098 }
5099 }
5100
5101 for_each_sched_entity(se) {
5102 cfs_rq = cfs_rq_of(se);
5103
5104 update_load_avg(cfs_rq, se, UPDATE_TG);
5105 se_update_runnable(se);
5106
5107 cfs_rq->h_nr_running += task_delta;
5108 cfs_rq->idle_h_nr_running += idle_task_delta;
5109 walt_inc_throttled_cfs_rq_stats(&cfs_rq->walt_stats, tcfs_rq);
5110
5111 /* end evaluation on encountering a throttled cfs_rq */
5112 if (cfs_rq_throttled(cfs_rq)) {
5113 goto unthrottle_throttle;
5114 }
5115
5116 /*
5117 * One parent has been throttled and cfs_rq removed from the
5118 * list. Add it back to not break the leaf list.
5119 */
5120 if (throttled_hierarchy(cfs_rq)) {
5121 list_add_leaf_cfs_rq(cfs_rq);
5122 }
5123 }
5124
5125 /* At this point se is NULL and we are at root level */
5126 add_nr_running(rq, task_delta);
5127 walt_inc_throttled_cfs_rq_stats(&rq->walt_stats, tcfs_rq);
5128
5129 unthrottle_throttle:
5130 /*
5131 * The cfs_rq_throttled() breaks in the above iteration can result in
5132 * incomplete leaf list maintenance, resulting in triggering the
5133 * assertion below.
5134 */
5135 for_each_sched_entity(se) {
5136 cfs_rq = cfs_rq_of(se);
5137 if (list_add_leaf_cfs_rq(cfs_rq)) {
5138 break;
5139 }
5140 }
5141
5142 assert_list_leaf_cfs_rq(rq);
5143
5144 /* Determine whether we need to wake up potentially idle CPU: */
5145 if (rq->curr == rq->idle && rq->cfs.nr_running) {
5146 resched_curr(rq);
5147 }
5148 }
5149
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5150 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5151 {
5152 struct cfs_rq *cfs_rq;
5153 u64 runtime, remaining = 1;
5154
5155 rcu_read_lock();
5156 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, throttled_list)
5157 {
5158 struct rq *rq = rq_of(cfs_rq);
5159 struct rq_flags rf;
5160
5161 rq_lock_irqsave(rq, &rf);
5162 if (!cfs_rq_throttled(cfs_rq)) {
5163 goto next;
5164 }
5165
5166 /* By the above check, this should never be true */
5167 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5168
5169 raw_spin_lock(&cfs_b->lock);
5170 runtime = -cfs_rq->runtime_remaining + 1;
5171 if (runtime > cfs_b->runtime) {
5172 runtime = cfs_b->runtime;
5173 }
5174 cfs_b->runtime -= runtime;
5175 remaining = cfs_b->runtime;
5176 raw_spin_unlock(&cfs_b->lock);
5177
5178 cfs_rq->runtime_remaining += runtime;
5179
5180 /* we check whether we're throttled above */
5181 if (cfs_rq->runtime_remaining > 0) {
5182 unthrottle_cfs_rq(cfs_rq);
5183 }
5184
5185 next:
5186 rq_unlock_irqrestore(rq, &rf);
5187
5188 if (!remaining) {
5189 break;
5190 }
5191 }
5192 rcu_read_unlock();
5193 }
5194
5195 /*
5196 * Responsible for refilling a task_group's bandwidth and unthrottling its
5197 * cfs_rqs as appropriate. If there has been no activity within the last
5198 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5199 * used to track this state.
5200 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)5201 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5202 {
5203 int throttled;
5204
5205 /* no need to continue the timer with no bandwidth constraint */
5206 if (cfs_b->quota == RUNTIME_INF) {
5207 goto out_deactivate;
5208 }
5209
5210 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5211 cfs_b->nr_periods += overrun;
5212
5213 /*
5214 * idle depends on !throttled (for the case of a large deficit), and if
5215 * we're going inactive then everything else can be deferred
5216 */
5217 if (cfs_b->idle && !throttled) {
5218 goto out_deactivate;
5219 }
5220
5221 __refill_cfs_bandwidth_runtime(cfs_b);
5222
5223 if (!throttled) {
5224 /* mark as potentially idle for the upcoming period */
5225 cfs_b->idle = 1;
5226 return 0;
5227 }
5228
5229 /* account preceding periods in which throttling occurred */
5230 cfs_b->nr_throttled += overrun;
5231
5232 /*
5233 * This check is repeated as we release cfs_b->lock while we unthrottle.
5234 */
5235 while (throttled && cfs_b->runtime > 0) {
5236 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5237 /* we can't nest cfs_b->lock while distributing bandwidth */
5238 distribute_cfs_runtime(cfs_b);
5239 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5240
5241 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5242 }
5243
5244 /*
5245 * While we are ensured activity in the period following an
5246 * unthrottle, this also covers the case in which the new bandwidth is
5247 * insufficient to cover the existing bandwidth deficit. (Forcing the
5248 * timer to remain active while there are any throttled entities.)
5249 */
5250 cfs_b->idle = 0;
5251
5252 return 0;
5253
5254 out_deactivate:
5255 return 1;
5256 }
5257
5258 /* a cfs_rq won't donate quota below this amount */
5259 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5260 /* minimum remaining period time to redistribute slack quota */
5261 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5262 /* how long we wait to gather additional slack before distributing */
5263 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5264
5265 /*
5266 * Are we near the end of the current quota period?
5267 *
5268 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5269 * hrtimer base being cleared by hrtimer_start. In the case of
5270 * migrate_hrtimers, base is never cleared, so we are fine.
5271 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)5272 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5273 {
5274 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5275 s64 remaining;
5276
5277 /* if the call-back is running a quota refresh is already occurring */
5278 if (hrtimer_callback_running(refresh_timer)) {
5279 return 1;
5280 }
5281
5282 /* is a quota refresh about to occur? */
5283 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5284 if (remaining < (s64)min_expire) {
5285 return 1;
5286 }
5287
5288 return 0;
5289 }
5290
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)5291 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5292 {
5293 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5294
5295 /* if there's a quota refresh soon don't bother with slack */
5296 if (runtime_refresh_within(cfs_b, min_left)) {
5297 return;
5298 }
5299
5300 /* don't push forwards an existing deferred unthrottle */
5301 if (cfs_b->slack_started) {
5302 return;
5303 }
5304 cfs_b->slack_started = true;
5305
5306 hrtimer_start(&cfs_b->slack_timer, ns_to_ktime(cfs_bandwidth_slack_period), HRTIMER_MODE_REL);
5307 }
5308
5309 /* we know any runtime found here is valid as update_curr() precedes return */
fair_return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5310 static void fair_return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5311 {
5312 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5313 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5314
5315 if (slack_runtime <= 0) {
5316 return;
5317 }
5318
5319 raw_spin_lock(&cfs_b->lock);
5320 if (cfs_b->quota != RUNTIME_INF) {
5321 cfs_b->runtime += slack_runtime;
5322
5323 /* we are under rq->lock, defer unthrottling using a timer */
5324 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && !list_empty(&cfs_b->throttled_cfs_rq)) {
5325 start_cfs_slack_bandwidth(cfs_b);
5326 }
5327 }
5328 raw_spin_unlock(&cfs_b->lock);
5329
5330 /* even if it's not valid for return we don't want to try again */
5331 cfs_rq->runtime_remaining -= slack_runtime;
5332 }
5333
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5334 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5335 {
5336 if (!cfs_bandwidth_used()) {
5337 return;
5338 }
5339
5340 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) {
5341 return;
5342 }
5343
5344 fair_return_cfs_rq_runtime(cfs_rq);
5345 }
5346
5347 /*
5348 * This is done with a timer (instead of inline with bandwidth return) since
5349 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5350 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)5351 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5352 {
5353 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5354 unsigned long flags;
5355
5356 /* confirm we're still not at a refresh boundary */
5357 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5358 cfs_b->slack_started = false;
5359
5360 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5361 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5362 return;
5363 }
5364
5365 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
5366 runtime = cfs_b->runtime;
5367 }
5368
5369 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5370
5371 if (!runtime) {
5372 return;
5373 }
5374
5375 distribute_cfs_runtime(cfs_b);
5376
5377 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5378 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5379 }
5380
5381 /*
5382 * When a group wakes up we want to make sure that its quota is not already
5383 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5384 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5385 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)5386 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5387 {
5388 if (!cfs_bandwidth_used()) {
5389 return;
5390 }
5391
5392 /* an active group must be handled by the update_curr()->put() path */
5393 if (!cfs_rq->runtime_enabled || cfs_rq->curr) {
5394 return;
5395 }
5396
5397 /* ensure the group is not already throttled */
5398 if (cfs_rq_throttled(cfs_rq)) {
5399 return;
5400 }
5401
5402 /* update runtime allocation */
5403 account_cfs_rq_runtime(cfs_rq, 0);
5404 if (cfs_rq->runtime_remaining <= 0) {
5405 throttle_cfs_rq(cfs_rq);
5406 }
5407 }
5408
sync_throttle(struct task_group * tg,int cpu)5409 static void sync_throttle(struct task_group *tg, int cpu)
5410 {
5411 struct cfs_rq *pcfs_rq, *cfs_rq;
5412
5413 if (!cfs_bandwidth_used()) {
5414 return;
5415 }
5416
5417 if (!tg->parent) {
5418 return;
5419 }
5420
5421 cfs_rq = tg->cfs_rq[cpu];
5422 pcfs_rq = tg->parent->cfs_rq[cpu];
5423
5424 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5425 cfs_rq->throttled_clock_pelt = rq_clock_task(cpu_rq(cpu));
5426 }
5427
5428 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5429 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5430 {
5431 if (!cfs_bandwidth_used()) {
5432 return false;
5433 }
5434
5435 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) {
5436 return false;
5437 }
5438
5439 /*
5440 * it's possible for a throttled entity to be forced into a running
5441 * state (e.g. set_curr_task), in this case we're finished.
5442 */
5443 if (cfs_rq_throttled(cfs_rq)) {
5444 return true;
5445 }
5446
5447 return throttle_cfs_rq(cfs_rq);
5448 }
5449
sched_cfs_slack_timer(struct hrtimer * timer)5450 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5451 {
5452 struct cfs_bandwidth *cfs_b = container_of(timer, struct cfs_bandwidth, slack_timer);
5453
5454 do_sched_cfs_slack_timer(cfs_b);
5455
5456 return HRTIMER_NORESTART;
5457 }
5458
sched_cfs_period_timer(struct hrtimer * timer)5459 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5460 {
5461 struct cfs_bandwidth *cfs_b = container_of(timer, struct cfs_bandwidth, period_timer);
5462 unsigned long flags;
5463 int overrun;
5464 int idle = 0;
5465 int count = 0;
5466
5467 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5468 for (;;) {
5469 overrun = hrtimer_forward_now(timer, cfs_b->period);
5470 if (!overrun) {
5471 break;
5472 }
5473
5474 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5475
5476 if (++count > 0x3) {
5477 u64 new, old = ktime_to_ns(cfs_b->period);
5478
5479 /*
5480 * Grow period by a factor of 2 to avoid losing precision.
5481 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5482 * to fail.
5483 */
5484 new = old * 0x2;
5485 if (new < max_cfs_quota_period) {
5486 cfs_b->period = ns_to_ktime(new);
5487 cfs_b->quota *= 0x2;
5488
5489 pr_warn_ratelimited("cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, "
5490 "cfs_quota_us = %lld)\n",
5491 smp_processor_id(), div_u64(new, NSEC_PER_USEC),
5492 div_u64(cfs_b->quota, NSEC_PER_USEC));
5493 } else {
5494 pr_warn_ratelimited("cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing "
5495 "precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5496 smp_processor_id(), div_u64(old, NSEC_PER_USEC),
5497 div_u64(cfs_b->quota, NSEC_PER_USEC));
5498 }
5499
5500 /* reset count so we don't come right back in here */
5501 count = 0;
5502 }
5503 }
5504 if (idle) {
5505 cfs_b->period_active = 0;
5506 }
5507 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5508
5509 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5510 }
5511
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5512 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5513 {
5514 raw_spin_lock_init(&cfs_b->lock);
5515 cfs_b->runtime = 0;
5516 cfs_b->quota = RUNTIME_INF;
5517 cfs_b->period = ns_to_ktime(default_cfs_period());
5518
5519 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5520 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5521 cfs_b->period_timer.function = sched_cfs_period_timer;
5522 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5523 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5524 cfs_b->slack_started = false;
5525 }
5526
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5527 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5528 {
5529 cfs_rq->runtime_enabled = 0;
5530 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5531 walt_init_cfs_rq_stats(cfs_rq);
5532 }
5533
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5534 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5535 {
5536 lockdep_assert_held(&cfs_b->lock);
5537
5538 if (cfs_b->period_active) {
5539 return;
5540 }
5541
5542 cfs_b->period_active = 1;
5543 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5544 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5545 }
5546
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5547 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5548 {
5549 /* init_cfs_bandwidth() was not called */
5550 if (!cfs_b->throttled_cfs_rq.next) {
5551 return;
5552 }
5553
5554 hrtimer_cancel(&cfs_b->period_timer);
5555 hrtimer_cancel(&cfs_b->slack_timer);
5556 }
5557
5558 /*
5559 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5560 *
5561 * The race is harmless, since modifying bandwidth settings of unhooked group
5562 * bits doesn't do much.
5563 */
5564
5565 /* cpu online calback */
update_runtime_enabled(struct rq * rq)5566 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5567 {
5568 struct task_group *tg;
5569
5570 lockdep_assert_held(&rq->lock);
5571
5572 rcu_read_lock();
5573 list_for_each_entry_rcu(tg, &task_groups, list)
5574 {
5575 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5576 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5577
5578 raw_spin_lock(&cfs_b->lock);
5579 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5580 raw_spin_unlock(&cfs_b->lock);
5581 }
5582 rcu_read_unlock();
5583 }
5584
5585 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5586 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5587 {
5588 struct task_group *tg;
5589
5590 lockdep_assert_held(&rq->lock);
5591
5592 rcu_read_lock();
5593 list_for_each_entry_rcu(tg, &task_groups, list)
5594 {
5595 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5596
5597 if (!cfs_rq->runtime_enabled) {
5598 continue;
5599 }
5600
5601 /*
5602 * clock_task is not advancing so we just need to make sure
5603 * there's some valid quota amount
5604 */
5605 cfs_rq->runtime_remaining = 1;
5606 /*
5607 * Offline rq is schedulable till CPU is completely disabled
5608 * in take_cpu_down(), so we prevent new cfs throttling here.
5609 */
5610 cfs_rq->runtime_enabled = 0;
5611
5612 if (cfs_rq_throttled(cfs_rq)) {
5613 unthrottle_cfs_rq(cfs_rq);
5614 }
5615 }
5616 rcu_read_unlock();
5617 }
5618
5619 #else /* CONFIG_CFS_BANDWIDTH */
5620
cfs_bandwidth_used(void)5621 static inline bool cfs_bandwidth_used(void)
5622 {
5623 return false;
5624 }
5625
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5626 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5627 {
5628 }
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5629 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5630 {
5631 return false;
5632 }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5633 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5634 {
5635 }
sync_throttle(struct task_group * tg,int cpu)5636 static inline void sync_throttle(struct task_group *tg, int cpu)
5637 {
5638 }
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5639 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5640 {
5641 }
5642
cfs_rq_throttled(struct cfs_rq * cfs_rq)5643 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5644 {
5645 return 0;
5646 }
5647
throttled_hierarchy(struct cfs_rq * cfs_rq)5648 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5649 {
5650 return 0;
5651 }
5652
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5653 static inline int throttled_lb_pair(struct task_group *tg, int src_cpu, int dest_cpu)
5654 {
5655 return 0;
5656 }
5657
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5658 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5659 {
5660 }
5661
5662 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5663 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5664 {
5665 }
5666 #endif
5667
tg_cfs_bandwidth(struct task_group * tg)5668 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5669 {
5670 return NULL;
5671 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5672 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5673 {
5674 }
update_runtime_enabled(struct rq * rq)5675 static inline void update_runtime_enabled(struct rq *rq)
5676 {
5677 }
unthrottle_offline_cfs_rqs(struct rq * rq)5678 static inline void unthrottle_offline_cfs_rqs(struct rq *rq)
5679 {
5680 }
5681
5682 #endif /* CONFIG_CFS_BANDWIDTH */
5683
5684 /**************************************************
5685 * CFS operations on tasks:
5686 */
5687
5688 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)5689 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5690 {
5691 struct sched_entity *se = &p->se;
5692 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5693
5694 SCHED_WARN_ON(task_rq(p) != rq);
5695
5696 if (rq->cfs.h_nr_running > 1) {
5697 u64 slice = sched_slice(cfs_rq, se);
5698 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5699 s64 delta = slice - ran;
5700
5701 if (delta < 0) {
5702 if (rq->curr == p) {
5703 resched_curr(rq);
5704 }
5705 return;
5706 }
5707 hrtick_start(rq, delta);
5708 }
5709 }
5710
5711 /*
5712 * called from enqueue/dequeue and updates the hrtick when the
5713 * current task is from our class and nr_running is low enough
5714 * to matter.
5715 */
hrtick_update(struct rq * rq)5716 static void hrtick_update(struct rq *rq)
5717 {
5718 struct task_struct *curr = rq->curr;
5719
5720 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) {
5721 return;
5722 }
5723
5724 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) {
5725 hrtick_start_fair(rq, curr);
5726 }
5727 }
5728 #else /* !CONFIG_SCHED_HRTICK */
hrtick_start_fair(struct rq * rq,struct task_struct * p)5729 static inline void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5730 {
5731 }
5732
hrtick_update(struct rq * rq)5733 static inline void hrtick_update(struct rq *rq)
5734 {
5735 }
5736 #endif
5737
5738 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)5739 static inline bool cpu_overutilized(int cpu)
5740 {
5741 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5742 }
5743
update_overutilized_status(struct rq * rq)5744 static inline void update_overutilized_status(struct rq *rq)
5745 {
5746 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5747 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5748 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5749 }
5750 }
5751 #else
update_overutilized_status(struct rq * rq)5752 static inline void update_overutilized_status(struct rq *rq)
5753 {
5754 }
5755 #endif
5756
5757 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)5758 static int sched_idle_rq(struct rq *rq)
5759 {
5760 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && rq->nr_running);
5761 }
5762
5763 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)5764 static int sched_idle_cpu(int cpu)
5765 {
5766 return sched_idle_rq(cpu_rq(cpu));
5767 }
5768 #endif
5769
5770 static void set_next_buddy(struct sched_entity *se);
5771 #ifdef CONFIG_SCHED_LATENCY_NICE
check_preempt_from_idle(struct cfs_rq * cfs,struct sched_entity * se)5772 static void check_preempt_from_idle(struct cfs_rq *cfs, struct sched_entity *se)
5773 {
5774 struct sched_entity *next;
5775 if (se->latency_weight <= 0)
5776 return;
5777 if (cfs->nr_running <= 1)
5778 return;
5779 if (cfs->next)
5780 next = cfs->next;
5781 else
5782 next = __pick_first_entity(cfs);
5783 if (next && wakeup_preempt_entity(next, se) == 1)
5784 set_next_buddy(se);
5785 }
5786 #endif
5787 /*
5788 * The enqueue_task method is called before nr_running is
5789 * increased. Here we update the fair scheduling stats and
5790 * then put the task into the rbtree:
5791 */
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)5792 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5793 {
5794 struct cfs_rq *cfs_rq;
5795 struct sched_entity *se = &p->se;
5796 int idle_h_nr_running = task_has_idle_policy(p);
5797 int task_new = !(flags & ENQUEUE_WAKEUP);
5798
5799 /*
5800 * The code below (indirectly) updates schedutil which looks at
5801 * the cfs_rq utilization to select a frequency.
5802 * Let's add the task's estimated utilization to the cfs_rq's
5803 * estimated utilization, before we update schedutil.
5804 */
5805 util_est_enqueue(&rq->cfs, p);
5806
5807 /*
5808 * If in_iowait is set, the code below may not trigger any cpufreq
5809 * utilization updates, so do it here explicitly with the IOWAIT flag
5810 * passed.
5811 */
5812 if (p->in_iowait) {
5813 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5814 }
5815
5816 for_each_sched_entity(se) {
5817 if (se->on_rq) {
5818 break;
5819 }
5820 cfs_rq = cfs_rq_of(se);
5821 enqueue_entity(cfs_rq, se, flags);
5822
5823 cfs_rq->h_nr_running++;
5824 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5825 walt_inc_cfs_rq_stats(cfs_rq, p);
5826
5827 /* end evaluation on encountering a throttled cfs_rq */
5828 if (cfs_rq_throttled(cfs_rq)) {
5829 goto enqueue_throttle;
5830 }
5831
5832 flags = ENQUEUE_WAKEUP;
5833 }
5834
5835 for_each_sched_entity(se) {
5836 cfs_rq = cfs_rq_of(se);
5837
5838 update_load_avg(cfs_rq, se, UPDATE_TG);
5839 se_update_runnable(se);
5840 update_cfs_group(se);
5841
5842 cfs_rq->h_nr_running++;
5843 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5844 walt_inc_cfs_rq_stats(cfs_rq, p);
5845
5846 /* end evaluation on encountering a throttled cfs_rq */
5847 if (cfs_rq_throttled(cfs_rq)) {
5848 goto enqueue_throttle;
5849 }
5850
5851 /*
5852 * One parent has been throttled and cfs_rq removed from the
5853 * list. Add it back to not break the leaf list.
5854 */
5855 if (throttled_hierarchy(cfs_rq)) {
5856 list_add_leaf_cfs_rq(cfs_rq);
5857 }
5858 }
5859
5860 /* At this point se is NULL and we are at root level */
5861 add_nr_running(rq, 1);
5862 inc_rq_walt_stats(rq, p);
5863 /*
5864 * Since new tasks are assigned an initial util_avg equal to
5865 * half of the spare capacity of their CPU, tiny tasks have the
5866 * ability to cross the overutilized threshold, which will
5867 * result in the load balancer ruining all the task placement
5868 * done by EAS. As a way to mitigate that effect, do not account
5869 * for the first enqueue operation of new tasks during the
5870 * overutilized flag detection.
5871 *
5872 * A better way of solving this problem would be to wait for
5873 * the PELT signals of tasks to converge before taking them
5874 * into account, but that is not straightforward to implement,
5875 * and the following generally works well enough in practice.
5876 */
5877 if (!task_new) {
5878 update_overutilized_status(rq);
5879 }
5880 #ifdef CONFIG_SCHED_LATENCY_NICE
5881 if (rq->curr == rq->idle)
5882 check_preempt_from_idle(cfs_rq_of(&p->se), &p->se);
5883 #endif
5884
5885 enqueue_throttle:
5886 if (cfs_bandwidth_used()) {
5887 /*
5888 * When bandwidth control is enabled; the cfs_rq_throttled()
5889 * breaks in the above iteration can result in incomplete
5890 * leaf list maintenance, resulting in triggering the assertion
5891 * below.
5892 */
5893 for_each_sched_entity(se) {
5894 cfs_rq = cfs_rq_of(se);
5895 if (list_add_leaf_cfs_rq(cfs_rq)) {
5896 break;
5897 }
5898 }
5899 }
5900
5901 assert_list_leaf_cfs_rq(rq);
5902
5903 hrtick_update(rq);
5904 }
5905
5906
5907 /*
5908 * The dequeue_task method is called before nr_running is
5909 * decreased. We remove the task from the rbtree and
5910 * update the fair scheduling stats
5911 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)5912 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5913 {
5914 struct cfs_rq *cfs_rq;
5915 struct sched_entity *se = &p->se;
5916 int task_sleep = flags & DEQUEUE_SLEEP;
5917 int idle_h_nr_running = task_has_idle_policy(p);
5918 bool was_sched_idle = sched_idle_rq(rq);
5919
5920 util_est_dequeue(&rq->cfs, p);
5921
5922 for_each_sched_entity(se) {
5923 cfs_rq = cfs_rq_of(se);
5924 dequeue_entity(cfs_rq, se, flags);
5925
5926 cfs_rq->h_nr_running--;
5927 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5928 walt_dec_cfs_rq_stats(cfs_rq, p);
5929
5930 /* end evaluation on encountering a throttled cfs_rq */
5931 if (cfs_rq_throttled(cfs_rq)) {
5932 goto dequeue_throttle;
5933 }
5934
5935 /* Don't dequeue parent if it has other entities besides us */
5936 if (cfs_rq->load.weight) {
5937 /* Avoid re-evaluating load for this entity: */
5938 se = parent_entity(se);
5939 /*
5940 * Bias pick_next to pick a task from this cfs_rq, as
5941 * p is sleeping when it is within its sched_slice.
5942 */
5943 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) {
5944 set_next_buddy(se);
5945 }
5946 break;
5947 }
5948 flags |= DEQUEUE_SLEEP;
5949 }
5950
5951 for_each_sched_entity(se) {
5952 cfs_rq = cfs_rq_of(se);
5953
5954 update_load_avg(cfs_rq, se, UPDATE_TG);
5955 se_update_runnable(se);
5956 update_cfs_group(se);
5957
5958 cfs_rq->h_nr_running--;
5959 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5960 walt_dec_cfs_rq_stats(cfs_rq, p);
5961
5962 /* end evaluation on encountering a throttled cfs_rq */
5963 if (cfs_rq_throttled(cfs_rq)) {
5964 goto dequeue_throttle;
5965 }
5966 }
5967
5968 /* At this point se is NULL and we are at root level */
5969 sub_nr_running(rq, 1);
5970 dec_rq_walt_stats(rq, p);
5971
5972 /* balance early to pull high priority tasks */
5973 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) {
5974 rq->next_balance = jiffies;
5975 }
5976
5977 dequeue_throttle:
5978 util_est_update(&rq->cfs, p, task_sleep);
5979 hrtick_update(rq);
5980 }
5981
5982 #ifdef CONFIG_SMP
5983
5984 /* Working cpumask for: load_balance, load_balance_newidle. */
5985 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5986 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5987
5988 #ifdef CONFIG_NO_HZ_COMMON
5989
5990 static struct {
5991 cpumask_var_t idle_cpus_mask;
5992 atomic_t nr_cpus;
5993 int has_blocked; /* Idle CPUS has blocked load */
5994 unsigned long next_balance; /* in jiffy units */
5995 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5996 } nohz ____cacheline_aligned;
5997
5998 #endif /* CONFIG_NO_HZ_COMMON */
5999
cpu_load(struct rq * rq)6000 static unsigned long cpu_load(struct rq *rq)
6001 {
6002 return cfs_rq_load_avg(&rq->cfs);
6003 }
6004
6005 /*
6006 * cpu_load_without - compute CPU load without any contributions from *p
6007 * @cpu: the CPU which load is requested
6008 * @p: the task which load should be discounted
6009 *
6010 * The load of a CPU is defined by the load of tasks currently enqueued on that
6011 * CPU as well as tasks which are currently sleeping after an execution on that
6012 * CPU.
6013 *
6014 * This method returns the load of the specified CPU by discounting the load of
6015 * the specified task, whenever the task is currently contributing to the CPU
6016 * load.
6017 */
cpu_load_without(struct rq * rq,struct task_struct * p)6018 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6019 {
6020 struct cfs_rq *cfs_rq;
6021 unsigned int load;
6022
6023 /* Task has no contribution or is new */
6024 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) {
6025 return cpu_load(rq);
6026 }
6027
6028 cfs_rq = &rq->cfs;
6029 load = READ_ONCE(cfs_rq->avg.load_avg);
6030
6031 /* Discount task's util from CPU's util */
6032 lsub_positive(&load, task_h_load(p));
6033
6034 return load;
6035 }
6036
cpu_runnable(struct rq * rq)6037 static unsigned long cpu_runnable(struct rq *rq)
6038 {
6039 return cfs_rq_runnable_avg(&rq->cfs);
6040 }
6041
cpu_runnable_without(struct rq * rq,struct task_struct * p)6042 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6043 {
6044 struct cfs_rq *cfs_rq;
6045 unsigned int runnable;
6046
6047 /* Task has no contribution or is new */
6048 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) {
6049 return cpu_runnable(rq);
6050 }
6051
6052 cfs_rq = &rq->cfs;
6053 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6054
6055 /* Discount task's runnable from CPU's runnable */
6056 lsub_positive(&runnable, p->se.avg.runnable_avg);
6057
6058 return runnable;
6059 }
6060
record_wakee(struct task_struct * p)6061 static void record_wakee(struct task_struct *p)
6062 {
6063 /*
6064 * Only decay a single time; tasks that have less then 1 wakeup per
6065 * jiffy will not have built up many flips.
6066 */
6067 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6068 current->wakee_flips >>= 1;
6069 current->wakee_flip_decay_ts = jiffies;
6070 }
6071
6072 if (current->last_wakee != p) {
6073 current->last_wakee = p;
6074 current->wakee_flips++;
6075 }
6076 }
6077
6078 /*
6079 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6080 *
6081 * A waker of many should wake a different task than the one last awakened
6082 * at a frequency roughly N times higher than one of its wakees.
6083 *
6084 * In order to determine whether we should let the load spread vs consolidating
6085 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6086 * partner, and a factor of lls_size higher frequency in the other.
6087 *
6088 * With both conditions met, we can be relatively sure that the relationship is
6089 * non-monogamous, with partner count exceeding socket size.
6090 *
6091 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6092 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6093 * socket size.
6094 */
wake_wide(struct task_struct * p)6095 static int wake_wide(struct task_struct *p)
6096 {
6097 unsigned int master = current->wakee_flips;
6098 unsigned int slave = p->wakee_flips;
6099 int factor = __this_cpu_read(sd_llc_size);
6100
6101 if (master < slave) {
6102 swap(master, slave);
6103 }
6104 if (slave < factor || master < slave * factor) {
6105 return 0;
6106 }
6107 return 1;
6108 }
6109
6110 /*
6111 * The purpose of wake_affine() is to quickly determine on which CPU we can run
6112 * soonest. For the purpose of speed we only consider the waking and previous
6113 * CPU.
6114 *
6115 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6116 * cache-affine and is (or will be) idle.
6117 *
6118 * wake_affine_weight() - considers the weight to reflect the average
6119 * scheduling latency of the CPUs. This seems to work
6120 * for the overloaded case.
6121 */
wake_affine_idle(int this_cpu,int prev_cpu,int sync)6122 static int wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6123 {
6124 /*
6125 * If this_cpu is idle, it implies the wakeup is from interrupt
6126 * context. Only allow the move if cache is shared. Otherwise an
6127 * interrupt intensive workload could force all tasks onto one
6128 * node depending on the IO topology or IRQ affinity settings.
6129 *
6130 * If the prev_cpu is idle and cache affine then avoid a migration.
6131 * There is no guarantee that the cache hot data from an interrupt
6132 * is more important than cache hot data on the prev_cpu and from
6133 * a cpufreq perspective, it's better to have higher utilisation
6134 * on one CPU.
6135 */
6136 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) {
6137 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6138 }
6139
6140 if (sync && cpu_rq(this_cpu)->nr_running == 1) {
6141 return this_cpu;
6142 }
6143
6144 return nr_cpumask_bits;
6145 }
6146
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6147 static int wake_affine_weight(struct sched_domain *sd, struct task_struct *p, int this_cpu, int prev_cpu, int sync)
6148 {
6149 s64 this_eff_load, prev_eff_load;
6150 unsigned long task_load;
6151
6152 this_eff_load = cpu_load(cpu_rq(this_cpu));
6153
6154 if (sync) {
6155 unsigned long current_load = task_h_load(current);
6156 if (current_load > this_eff_load) {
6157 return this_cpu;
6158 }
6159
6160 this_eff_load -= current_load;
6161 }
6162
6163 task_load = task_h_load(p);
6164
6165 this_eff_load += task_load;
6166 if (sched_feat(WA_BIAS)) {
6167 this_eff_load *= FAIR_ONEHUNDRED;
6168 }
6169 this_eff_load *= capacity_of(prev_cpu);
6170
6171 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6172 prev_eff_load -= task_load;
6173 if (sched_feat(WA_BIAS)) {
6174 prev_eff_load *= FAIR_ONEHUNDRED + (sd->imbalance_pct - FAIR_ONEHUNDRED) / 0x2;
6175 }
6176 prev_eff_load *= capacity_of(this_cpu);
6177
6178 /*
6179 * If sync, adjust the weight of prev_eff_load such that if
6180 * prev_eff == this_eff that select_idle_sibling() will consider
6181 * stacking the wakee on top of the waker if no other CPU is
6182 * idle.
6183 */
6184 if (sync) {
6185 prev_eff_load += 1;
6186 }
6187
6188 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6189 }
6190
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6191 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int this_cpu, int prev_cpu, int sync)
6192 {
6193 int target = nr_cpumask_bits;
6194
6195 if (sched_feat(WA_IDLE)) {
6196 target = wake_affine_idle(this_cpu, prev_cpu, sync);
6197 }
6198
6199 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) {
6200 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6201 }
6202
6203 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
6204 if (target == nr_cpumask_bits) {
6205 return prev_cpu;
6206 }
6207
6208 schedstat_inc(sd->ttwu_move_affine);
6209 schedstat_inc(p->se.statistics.nr_wakeups_affine);
6210 return target;
6211 }
6212
6213 static struct sched_group *find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6214
6215 /*
6216 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6217 */
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)6218 static int find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6219 {
6220 unsigned long load, min_load = ULONG_MAX;
6221 unsigned int min_exit_latency = UINT_MAX;
6222 u64 latest_idle_timestamp = 0;
6223 int least_loaded_cpu = this_cpu;
6224 int shallowest_idle_cpu = -1;
6225 int i;
6226
6227 /* Check if we have any choice: */
6228 if (group->group_weight == 1) {
6229 return cpumask_first(sched_group_span(group));
6230 }
6231
6232 /* Traverse only the allowed CPUs */
6233 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr)
6234 {
6235 if (cpu_isolated(i)) {
6236 continue;
6237 }
6238
6239 if (sched_idle_cpu(i)) {
6240 return i;
6241 }
6242
6243 if (available_idle_cpu(i)) {
6244 struct rq *rq = cpu_rq(i);
6245 struct cpuidle_state *idle = idle_get_state(rq);
6246 if (idle && idle->exit_latency < min_exit_latency) {
6247 /*
6248 * We give priority to a CPU whose idle state
6249 * has the smallest exit latency irrespective
6250 * of any idle timestamp.
6251 */
6252 min_exit_latency = idle->exit_latency;
6253 latest_idle_timestamp = rq->idle_stamp;
6254 shallowest_idle_cpu = i;
6255 } else if ((!idle || idle->exit_latency == min_exit_latency) && rq->idle_stamp > latest_idle_timestamp) {
6256 /*
6257 * If equal or no active idle state, then
6258 * the most recently idled CPU might have
6259 * a warmer cache.
6260 */
6261 latest_idle_timestamp = rq->idle_stamp;
6262 shallowest_idle_cpu = i;
6263 }
6264 } else if (shallowest_idle_cpu == -1) {
6265 load = cpu_load(cpu_rq(i));
6266 if (load < min_load) {
6267 min_load = load;
6268 least_loaded_cpu = i;
6269 }
6270 }
6271 }
6272
6273 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6274 }
6275
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)6276 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, int cpu, int prev_cpu, int sd_flag)
6277 {
6278 int new_cpu = cpu;
6279
6280 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) {
6281 return prev_cpu;
6282 }
6283
6284 /*
6285 * We need task's util for cpu_util_without, sync it up to
6286 * prev_cpu's last_update_time.
6287 */
6288 if (!(sd_flag & SD_BALANCE_FORK)) {
6289 sync_entity_load_avg(&p->se);
6290 }
6291
6292 while (sd) {
6293 struct sched_group *group;
6294 struct sched_domain *tmp;
6295 int weight;
6296
6297 if (!(sd->flags & sd_flag)) {
6298 sd = sd->child;
6299 continue;
6300 }
6301
6302 group = find_idlest_group(sd, p, cpu);
6303 if (!group) {
6304 sd = sd->child;
6305 continue;
6306 }
6307
6308 new_cpu = find_idlest_group_cpu(group, p, cpu);
6309 if (new_cpu == cpu) {
6310 /* Now try balancing at a lower domain level of 'cpu': */
6311 sd = sd->child;
6312 continue;
6313 }
6314
6315 /* Now try balancing at a lower domain level of 'new_cpu': */
6316 cpu = new_cpu;
6317 weight = sd->span_weight;
6318 sd = NULL;
6319 for_each_domain(cpu, tmp)
6320 {
6321 if (weight <= tmp->span_weight) {
6322 break;
6323 }
6324 if (tmp->flags & sd_flag) {
6325 sd = tmp;
6326 }
6327 }
6328 }
6329
6330 return new_cpu;
6331 }
6332
6333 #ifdef CONFIG_SCHED_SMT
6334 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6335 EXPORT_SYMBOL_GPL(sched_smt_present);
6336
set_idle_cores(int cpu,int val)6337 static inline void set_idle_cores(int cpu, int val)
6338 {
6339 struct sched_domain_shared *sds;
6340
6341 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6342 if (sds) {
6343 WRITE_ONCE(sds->has_idle_cores, val);
6344 }
6345 }
6346
test_idle_cores(int cpu,bool def)6347 static inline bool test_idle_cores(int cpu, bool def)
6348 {
6349 struct sched_domain_shared *sds;
6350
6351 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6352 if (sds) {
6353 return READ_ONCE(sds->has_idle_cores);
6354 }
6355
6356 return def;
6357 }
6358
6359 /*
6360 * Scans the local SMT mask to see if the entire core is idle, and records this
6361 * information in sd_llc_shared->has_idle_cores.
6362 *
6363 * Since SMT siblings share all cache levels, inspecting this limited remote
6364 * state should be fairly cheap.
6365 */
fair_update_idle_core(struct rq * rq)6366 void fair_update_idle_core(struct rq *rq)
6367 {
6368 int core = cpu_of(rq);
6369 int cpu;
6370
6371 rcu_read_lock();
6372 if (test_idle_cores(core, true)) {
6373 goto unlock;
6374 }
6375
6376 for_each_cpu(cpu, cpu_smt_mask(core))
6377 {
6378 if (cpu == core) {
6379 continue;
6380 }
6381
6382 if (!available_idle_cpu(cpu)) {
6383 goto unlock;
6384 }
6385 }
6386
6387 set_idle_cores(core, 1);
6388 unlock:
6389 rcu_read_unlock();
6390 }
6391
6392 /*
6393 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6394 * there are no idle cores left in the system; tracked through
6395 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6396 */
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)6397 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6398 {
6399 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6400 int core, cpu;
6401
6402 if (!static_branch_likely(&sched_smt_present)) {
6403 return -1;
6404 }
6405
6406 if (!test_idle_cores(target, false)) {
6407 return -1;
6408 }
6409
6410 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6411 #ifdef CONFIG_CPU_ISOLATION_OPT
6412 cpumask_andnot(cpus, cpus, cpu_isolated_mask);
6413 #endif
6414
6415 for_each_cpu_wrap(core, cpus, target)
6416 {
6417 bool idle = true;
6418
6419 for_each_cpu(cpu, cpu_smt_mask(core))
6420 {
6421 if (!available_idle_cpu(cpu)) {
6422 idle = false;
6423 break;
6424 }
6425 }
6426 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6427
6428 if (idle) {
6429 return core;
6430 }
6431 }
6432
6433 /*
6434 * Failed to find an idle core; stop looking for one.
6435 */
6436 set_idle_cores(target, 0);
6437
6438 return -1;
6439 }
6440
6441 /*
6442 * Scan the local SMT mask for idle CPUs.
6443 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6444 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6445 {
6446 int cpu;
6447
6448 if (!static_branch_likely(&sched_smt_present)) {
6449 return -1;
6450 }
6451
6452 for_each_cpu(cpu, cpu_smt_mask(target))
6453 {
6454 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || !cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6455 continue;
6456 }
6457 if (cpu_isolated(cpu)) {
6458 continue;
6459 }
6460 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) {
6461 return cpu;
6462 }
6463 }
6464
6465 return -1;
6466 }
6467
6468 #else /* CONFIG_SCHED_SMT */
6469
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)6470 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6471 {
6472 return -1;
6473 }
6474
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6475 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6476 {
6477 return -1;
6478 }
6479
6480 #endif /* CONFIG_SCHED_SMT */
6481
6482 /*
6483 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6484 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6485 * average idle time for this rq (as found in rq->avg_idle).
6486 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,int target)6487 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6488 {
6489 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6490 struct sched_domain *this_sd;
6491 u64 avg_cost, avg_idle;
6492 u64 time;
6493 int this = smp_processor_id();
6494 int cpu, nr = INT_MAX;
6495
6496 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6497 if (!this_sd) {
6498 return -1;
6499 }
6500
6501 /*
6502 * Due to large variance we need a large fuzz factor; hackbench in
6503 * particularly is sensitive here.
6504 */
6505 avg_idle = this_rq()->avg_idle / 0x200;
6506 avg_cost = this_sd->avg_scan_cost + 1;
6507
6508 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) {
6509 return -1;
6510 }
6511
6512 if (sched_feat(SIS_PROP)) {
6513 u64 span_avg = sd->span_weight * avg_idle;
6514 if (span_avg > 0x4 * avg_cost) {
6515 nr = div_u64(span_avg, avg_cost);
6516 } else {
6517 nr = 0x4;
6518 }
6519 }
6520
6521 time = cpu_clock(this);
6522
6523 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6524
6525 for_each_cpu_wrap(cpu, cpus, target)
6526 {
6527 if (!--nr) {
6528 return -1;
6529 }
6530 if (cpu_isolated(cpu)) {
6531 continue;
6532 }
6533 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) {
6534 break;
6535 }
6536 }
6537
6538 time = cpu_clock(this) - time;
6539 update_avg(&this_sd->avg_scan_cost, time);
6540
6541 return cpu;
6542 }
6543
6544 /*
6545 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6546 * the task fits. If no CPU is big enough, but there are idle ones, try to
6547 * maximize capacity.
6548 */
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)6549 static int select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6550 {
6551 unsigned long task_util, best_cap = 0;
6552 int cpu, best_cpu = -1;
6553 struct cpumask *cpus;
6554
6555 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6556 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6557
6558 task_util = uclamp_task_util(p);
6559
6560 for_each_cpu_wrap(cpu, cpus, target)
6561 {
6562 unsigned long cpu_cap = capacity_of(cpu);
6563
6564 if (cpu_isolated(cpu)) {
6565 continue;
6566 }
6567
6568 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) {
6569 continue;
6570 }
6571 if (fits_capacity(task_util, cpu_cap)) {
6572 return cpu;
6573 }
6574
6575 if (cpu_cap > best_cap) {
6576 best_cap = cpu_cap;
6577 best_cpu = cpu;
6578 }
6579 }
6580
6581 return best_cpu;
6582 }
6583
asym_fits_capacity(int task_util,int cpu)6584 static inline bool asym_fits_capacity(int task_util, int cpu)
6585 {
6586 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6587 return fits_capacity(task_util, capacity_of(cpu));
6588 }
6589
6590 return true;
6591 }
6592
6593 /*
6594 * Try and locate an idle core/thread in the LLC cache domain.
6595 */
select_idle_sibling(struct task_struct * p,int prev,int target)6596 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6597 {
6598 struct sched_domain *sd;
6599 unsigned long task_util;
6600 int i, recent_used_cpu;
6601
6602 /*
6603 * On asymmetric system, update task utilization because we will check
6604 * that the task fits with cpu's capacity.
6605 */
6606 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6607 sync_entity_load_avg(&p->se);
6608 task_util = uclamp_task_util(p);
6609 }
6610
6611 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && !cpu_isolated(target) &&
6612 asym_fits_capacity(task_util, target)) {
6613 return target;
6614 }
6615
6616 /*
6617 * If the previous CPU is cache affine and idle, don't be stupid:
6618 */
6619 if (prev != target && cpus_share_cache(prev, target) &&
6620 ((available_idle_cpu(prev) || sched_idle_cpu(prev)) && !cpu_isolated(target) &&
6621 asym_fits_capacity(task_util, prev))) {
6622 return prev;
6623 }
6624
6625 if (is_per_cpu_kthread(current) &&
6626 in_task() &&
6627 prev == smp_processor_id() &&
6628 this_rq()->nr_running <= 1 &&
6629 asym_fits_capacity(task_util, prev)) {
6630 return prev;
6631 }
6632
6633 /* Check a recently used CPU as a potential idle candidate: */
6634 recent_used_cpu = p->recent_used_cpu;
6635 if (recent_used_cpu != prev && recent_used_cpu != target && cpus_share_cache(recent_used_cpu, target) &&
6636 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6637 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && asym_fits_capacity(task_util, recent_used_cpu)) {
6638 p->recent_used_cpu = prev;
6639 return recent_used_cpu;
6640 }
6641
6642 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6643 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6644 if (sd) {
6645 i = select_idle_capacity(p, sd, target);
6646 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6647 }
6648 }
6649
6650 sd = rcu_dereference(per_cpu(sd_llc, target));
6651 if (!sd) {
6652 return target;
6653 }
6654
6655 i = select_idle_core(p, sd, target);
6656 if ((unsigned)i < nr_cpumask_bits) {
6657 return i;
6658 }
6659
6660 i = select_idle_cpu(p, sd, target);
6661 if ((unsigned)i < nr_cpumask_bits) {
6662 return i;
6663 }
6664
6665 i = select_idle_smt(p, sd, target);
6666 if ((unsigned)i < nr_cpumask_bits) {
6667 return i;
6668 }
6669
6670 return target;
6671 }
6672
6673 /**
6674 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6675 * @cpu: the CPU to get the utilization of
6676 *
6677 * The unit of the return value must be the one of capacity so we can compare
6678 * the utilization with the capacity of the CPU that is available for CFS task
6679 * (ie cpu_capacity).
6680 *
6681 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6682 * recent utilization of currently non-runnable tasks on a CPU. It represents
6683 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6684 * capacity_orig is the cpu_capacity available at the highest frequency
6685 * (arch_scale_freq_capacity()).
6686 * The utilization of a CPU converges towards a sum equal to or less than the
6687 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6688 * the running time on this CPU scaled by capacity_curr.
6689 *
6690 * The estimated utilization of a CPU is defined to be the maximum between its
6691 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6692 * currently RUNNABLE on that CPU.
6693 * This allows to properly represent the expected utilization of a CPU which
6694 * has just got a big task running since a long sleep period. At the same time
6695 * however it preserves the benefits of the "blocked utilization" in
6696 * describing the potential for other tasks waking up on the same CPU.
6697 *
6698 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6699 * higher than capacity_orig because of unfortunate rounding in
6700 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6701 * the average stabilizes with the new running time. We need to check that the
6702 * utilization stays within the range of [0..capacity_orig] and cap it if
6703 * necessary. Without utilization capping, a group could be seen as overloaded
6704 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6705 * available capacity. We allow utilization to overshoot capacity_curr (but not
6706 * capacity_orig) as it useful for predicting the capacity required after task
6707 * migrations (scheduler-driven DVFS).
6708 *
6709 * Return: the (estimated) utilization for the specified CPU
6710 */
cpu_util(int cpu)6711 unsigned long cpu_util(int cpu)
6712 {
6713 struct cfs_rq *cfs_rq;
6714 unsigned int util;
6715
6716 #ifdef CONFIG_SCHED_WALT
6717 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util)) {
6718 u64 walt_cpu_util = cpu_rq(cpu)->walt_stats.cumulative_runnable_avg_scaled;
6719
6720 return min_t(unsigned long, walt_cpu_util, capacity_orig_of(cpu));
6721 }
6722 #endif
6723
6724 cfs_rq = &cpu_rq(cpu)->cfs;
6725 util = READ_ONCE(cfs_rq->avg.util_avg);
6726
6727 if (sched_feat(UTIL_EST)) {
6728 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6729 }
6730
6731 return min_t(unsigned long, util, capacity_orig_of(cpu));
6732 }
6733
6734 /*
6735 * cpu_util_without: compute cpu utilization without any contributions from *p
6736 * @cpu: the CPU which utilization is requested
6737 * @p: the task which utilization should be discounted
6738 *
6739 * The utilization of a CPU is defined by the utilization of tasks currently
6740 * enqueued on that CPU as well as tasks which are currently sleeping after an
6741 * execution on that CPU.
6742 *
6743 * This method returns the utilization of the specified CPU by discounting the
6744 * utilization of the specified task, whenever the task is currently
6745 * contributing to the CPU utilization.
6746 */
cpu_util_without(int cpu,struct task_struct * p)6747 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6748 {
6749 struct cfs_rq *cfs_rq;
6750 unsigned int util;
6751
6752 #ifdef CONFIG_SCHED_WALT
6753 /*
6754 * WALT does not decay idle tasks in the same manner
6755 * as PELT, so it makes little sense to subtract task
6756 * utilization from cpu utilization. Instead just use
6757 * cpu_util for this case.
6758 */
6759 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util) && p->state == TASK_WAKING) {
6760 return cpu_util(cpu);
6761 }
6762 #endif
6763
6764 /* Task has no contribution or is new */
6765 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) {
6766 return cpu_util(cpu);
6767 }
6768
6769 #ifdef CONFIG_SCHED_WALT
6770 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util)) {
6771 util = max_t(long, cpu_util(cpu) - task_util(p), 0);
6772 return min_t(unsigned long, util, capacity_orig_of(cpu));
6773 }
6774 #endif
6775
6776 cfs_rq = &cpu_rq(cpu)->cfs;
6777 util = READ_ONCE(cfs_rq->avg.util_avg);
6778
6779 /* Discount task's util from CPU's util */
6780 lsub_positive(&util, task_util(p));
6781
6782 /*
6783 * Covered cases:
6784 *
6785 * a) if *p is the only task sleeping on this CPU, then:
6786 * cpu_util (== task_util) > util_est (== 0)
6787 * and thus we return:
6788 * cpu_util_without = (cpu_util - task_util) = 0
6789 *
6790 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6791 * IDLE, then:
6792 * cpu_util >= task_util
6793 * cpu_util > util_est (== 0)
6794 * and thus we discount *p's blocked utilization to return:
6795 * cpu_util_without = (cpu_util - task_util) >= 0
6796 *
6797 * c) if other tasks are RUNNABLE on that CPU and
6798 * util_est > cpu_util
6799 * then we use util_est since it returns a more restrictive
6800 * estimation of the spare capacity on that CPU, by just
6801 * considering the expected utilization of tasks already
6802 * runnable on that CPU.
6803 *
6804 * Cases a) and b) are covered by the above code, while case c) is
6805 * covered by the following code when estimated utilization is
6806 * enabled.
6807 */
6808 if (sched_feat(UTIL_EST)) {
6809 unsigned int estimated = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6810
6811 /*
6812 * Despite the following checks we still have a small window
6813 * for a possible race, when an execl's select_task_rq_fair()
6814 * races with LB's detach_task():
6815 *
6816 * detach_task()
6817 * p->on_rq = TASK_ON_RQ_MIGRATING;
6818 * ---------------------------------- A
6819 * deactivate_task() \
6820 * dequeue_task() + RaceTime
6821 * util_est_dequeue() /
6822 * ---------------------------------- B
6823 *
6824 * The additional check on "current == p" it's required to
6825 * properly fix the execl regression and it helps in further
6826 * reducing the chances for the above race.
6827 */
6828 if (unlikely(task_on_rq_queued(p) || current == p)) {
6829 lsub_positive(&estimated, _task_util_est(p));
6830 }
6831
6832 util = max(util, estimated);
6833 }
6834
6835 /*
6836 * Utilization (estimated) can exceed the CPU capacity, thus let's
6837 * clamp to the maximum CPU capacity to ensure consistency with
6838 * the cpu_util call.
6839 */
6840 return min_t(unsigned long, util, capacity_orig_of(cpu));
6841 }
6842
6843 #ifdef CONFIG_SCHED_RTG
capacity_spare_without(int cpu,struct task_struct * p)6844 unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6845 {
6846 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6847 }
6848 #endif
6849 /*
6850 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6851 * to @dst_cpu.
6852 */
cpu_util_next(int cpu,struct task_struct * p,int dst_cpu)6853 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6854 {
6855 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6856 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6857
6858 /*
6859 * If @p migrates from @cpu to another, remove its contribution. Or,
6860 * if @p migrates from another CPU to @cpu, add its contribution. In
6861 * the other cases, @cpu is not impacted by the migration, so the
6862 * util_avg should already be correct.
6863 */
6864 if (task_cpu(p) == cpu && dst_cpu != cpu) {
6865 sub_positive(&util, task_util(p));
6866 } else if (task_cpu(p) != cpu && dst_cpu == cpu) {
6867 util += task_util(p);
6868 }
6869
6870 if (sched_feat(UTIL_EST)) {
6871 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6872
6873 /*
6874 * During wake-up, the task isn't enqueued yet and doesn't
6875 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6876 * so just add it (if needed) to "simulate" what will be
6877 * cpu_util() after the task has been enqueued.
6878 */
6879 if (dst_cpu == cpu) {
6880 util_est += _task_util_est(p);
6881 }
6882
6883 util = max(util, util_est);
6884 }
6885
6886 return min(util, capacity_orig_of(cpu));
6887 }
6888
6889 /*
6890 * Returns the current capacity of cpu after applying both
6891 * cpu and freq scaling.
6892 */
capacity_curr_of(int cpu)6893 unsigned long capacity_curr_of(int cpu)
6894 {
6895 unsigned long max_cap = cpu_rq(cpu)->cpu_capacity_orig;
6896 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
6897
6898 return cap_scale(max_cap, scale_freq);
6899 }
6900
6901 /*
6902 * compute_energy(): Estimates the energy that @pd would consume if @p was
6903 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6904 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6905 * to compute what would be the energy if we decided to actually migrate that
6906 * task.
6907 */
compute_energy(struct task_struct * p,int dst_cpu,struct perf_domain * pd)6908 static long compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6909 {
6910 struct cpumask *pd_mask = perf_domain_span(pd);
6911 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6912 unsigned long max_util = 0, sum_util = 0;
6913 int cpu;
6914
6915 /*
6916 * The capacity state of CPUs of the current rd can be driven by CPUs
6917 * of another rd if they belong to the same pd. So, account for the
6918 * utilization of these CPUs too by masking pd with cpu_online_mask
6919 * instead of the rd span.
6920 *
6921 * If an entire pd is outside of the current rd, it will not appear in
6922 * its pd list and will not be accounted by compute_energy().
6923 */
6924 for_each_cpu_and(cpu, pd_mask, cpu_online_mask)
6925 {
6926 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6927 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6928
6929 /*
6930 * Busy time computation: utilization clamping is not
6931 * required since the ratio (sum_util / cpu_capacity)
6932 * is already enough to scale the EM reported power
6933 * consumption at the (eventually clamped) cpu_capacity.
6934 */
6935 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, ENERGY_UTIL, NULL);
6936
6937 /*
6938 * Performance domain frequency: utilization clamping
6939 * must be considered since it affects the selection
6940 * of the performance domain frequency.
6941 * NOTE: in case RT tasks are running, by default the
6942 * FREQUENCY_UTIL's utilization can be max OPP.
6943 */
6944 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, FREQUENCY_UTIL, tsk);
6945 max_util = max(max_util, cpu_util);
6946 }
6947
6948 return em_cpu_energy(pd->em_pd, max_util, sum_util);
6949 }
6950
6951 /*
6952 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6953 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6954 * spare capacity in each performance domain and uses it as a potential
6955 * candidate to execute the task. Then, it uses the Energy Model to figure
6956 * out which of the CPU candidates is the most energy-efficient.
6957 *
6958 * The rationale for this heuristic is as follows. In a performance domain,
6959 * all the most energy efficient CPU candidates (according to the Energy
6960 * Model) are those for which we'll request a low frequency. When there are
6961 * several CPUs for which the frequency request will be the same, we don't
6962 * have enough data to break the tie between them, because the Energy Model
6963 * only includes active power costs. With this model, if we assume that
6964 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6965 * the maximum spare capacity in a performance domain is guaranteed to be among
6966 * the best candidates of the performance domain.
6967 *
6968 * In practice, it could be preferable from an energy standpoint to pack
6969 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6970 * but that could also hurt our chances to go cluster idle, and we have no
6971 * ways to tell with the current Energy Model if this is actually a good
6972 * idea or not. So, find_energy_efficient_cpu() basically favors
6973 * cluster-packing, and spreading inside a cluster. That should at least be
6974 * a good thing for latency, and this is consistent with the idea that most
6975 * of the energy savings of EAS come from the asymmetry of the system, and
6976 * not so much from breaking the tie between identical CPUs. That's also the
6977 * reason why EAS is enabled in the topology code only for systems where
6978 * SD_ASYM_CPUCAPACITY is set.
6979 *
6980 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6981 * they don't have any useful utilization data yet and it's not possible to
6982 * forecast their impact on energy consumption. Consequently, they will be
6983 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6984 * to be energy-inefficient in some use-cases. The alternative would be to
6985 * bias new tasks towards specific types of CPUs first, or to try to infer
6986 * their util_avg from the parent task, but those heuristics could hurt
6987 * other use-cases too. So, until someone finds a better way to solve this,
6988 * let's keep things simple by re-using the existing slow path.
6989 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)6990 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6991 {
6992 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6993 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6994 unsigned long cpu_cap, util, base_energy = 0;
6995 int cpu, best_energy_cpu = prev_cpu;
6996 struct sched_domain *sd;
6997 struct perf_domain *pd;
6998
6999 rcu_read_lock();
7000 pd = rcu_dereference(rd->pd);
7001 if (!pd || READ_ONCE(rd->overutilized)) {
7002 goto fail;
7003 }
7004
7005 /*
7006 * Energy-aware wake-up happens on the lowest sched_domain starting
7007 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7008 */
7009 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7010 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
7011 sd = sd->parent;
7012 }
7013 if (!sd) {
7014 goto fail;
7015 }
7016
7017 sync_entity_load_avg(&p->se);
7018 if (!task_util_est(p)) {
7019 goto unlock;
7020 }
7021
7022 for (; pd; pd = pd->next) {
7023 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
7024 unsigned long base_energy_pd;
7025 int max_spare_cap_cpu = -1;
7026
7027 /* Compute the 'base' energy of the pd, without @p */
7028 base_energy_pd = compute_energy(p, -1, pd);
7029 base_energy += base_energy_pd;
7030
7031 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd))
7032 {
7033 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) {
7034 continue;
7035 }
7036
7037 util = cpu_util_next(cpu, p, cpu);
7038 cpu_cap = capacity_of(cpu);
7039 spare_cap = cpu_cap;
7040 lsub_positive(&spare_cap, util);
7041
7042 /*
7043 * Skip CPUs that cannot satisfy the capacity request.
7044 * IOW, placing the task there would make the CPU
7045 * overutilized. Take uclamp into account to see how
7046 * much capacity we can get out of the CPU; this is
7047 * aligned with schedutil_cpu_util().
7048 */
7049 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
7050 if (!fits_capacity(util, cpu_cap)) {
7051 continue;
7052 }
7053
7054 /* Always use prev_cpu as a candidate. */
7055 if (cpu == prev_cpu) {
7056 prev_delta = compute_energy(p, prev_cpu, pd);
7057 prev_delta -= base_energy_pd;
7058 best_delta = min(best_delta, prev_delta);
7059 }
7060
7061 /*
7062 * Find the CPU with the maximum spare capacity in
7063 * the performance domain
7064 */
7065 if (spare_cap > max_spare_cap) {
7066 max_spare_cap = spare_cap;
7067 max_spare_cap_cpu = cpu;
7068 }
7069 }
7070
7071 /* Evaluate the energy impact of using this CPU. */
7072 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
7073 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
7074 cur_delta -= base_energy_pd;
7075 if (cur_delta < best_delta) {
7076 best_delta = cur_delta;
7077 best_energy_cpu = max_spare_cap_cpu;
7078 }
7079 }
7080 }
7081 unlock:
7082 rcu_read_unlock();
7083
7084 /*
7085 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
7086 * least 6% of the energy used by prev_cpu.
7087 */
7088 if (prev_delta == ULONG_MAX) {
7089 return best_energy_cpu;
7090 }
7091
7092 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 0x4)) {
7093 return best_energy_cpu;
7094 }
7095
7096 return prev_cpu;
7097
7098 fail:
7099 rcu_read_unlock();
7100
7101 return -1;
7102 }
7103
7104 /*
7105 * select_task_rq_fair: Select target runqueue for the waking task in domains
7106 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
7107 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7108 *
7109 * Balances load by selecting the idlest CPU in the idlest group, or under
7110 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7111 *
7112 * Returns the target CPU number.
7113 *
7114 * preempt must be disabled.
7115 */
select_task_rq_fair(struct task_struct * p,int prev_cpu,int sd_flag,int wake_flags)7116 static int select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
7117 {
7118 struct sched_domain *tmp, *sd = NULL;
7119 int cpu = smp_processor_id();
7120 int new_cpu = prev_cpu;
7121 int want_affine = 0;
7122 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7123 #ifdef CONFIG_SCHED_RTG
7124 int target_cpu = -1;
7125 target_cpu = find_rtg_cpu(p);
7126 if (target_cpu >= 0) {
7127 return target_cpu;
7128 }
7129 #endif
7130
7131 if (sd_flag & SD_BALANCE_WAKE) {
7132 record_wakee(p);
7133
7134 if (sched_energy_enabled()) {
7135 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7136 if (new_cpu >= 0) {
7137 return new_cpu;
7138 }
7139 new_cpu = prev_cpu;
7140 }
7141
7142 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7143 }
7144
7145 rcu_read_lock();
7146 for_each_domain(cpu, tmp)
7147 {
7148 /*
7149 * If both 'cpu' and 'prev_cpu' are part of this domain,
7150 * cpu is a valid SD_WAKE_AFFINE target.
7151 */
7152 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7153 if (cpu != prev_cpu) {
7154 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7155 }
7156
7157 sd = NULL; /* Prefer wake_affine over balance flags */
7158 break;
7159 }
7160
7161 if (tmp->flags & sd_flag) {
7162 sd = tmp;
7163 } else if (!want_affine) {
7164 break;
7165 }
7166 }
7167
7168 if (unlikely(sd)) {
7169 /* Slow path */
7170 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7171 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
7172 /* Fast path */
7173
7174 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7175
7176 if (want_affine) {
7177 current->recent_used_cpu = cpu;
7178 }
7179 }
7180 rcu_read_unlock();
7181
7182 return new_cpu;
7183 }
7184
7185 static void detach_entity_cfs_rq(struct sched_entity *se);
7186
7187 /*
7188 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7189 * cfs_rq_of(p) references at time of call are still valid and identify the
7190 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7191 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)7192 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7193 {
7194 /*
7195 * As blocked tasks retain absolute vruntime the migration needs to
7196 * deal with this by subtracting the old and adding the new
7197 * min_vruntime -- the latter is done by enqueue_entity() when placing
7198 * the task on the new runqueue.
7199 */
7200 if (p->state == TASK_WAKING) {
7201 struct sched_entity *se = &p->se;
7202 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7203 u64 min_vruntime;
7204
7205 #ifndef CONFIG_64BIT
7206 u64 min_vruntime_copy;
7207
7208 do {
7209 min_vruntime_copy = cfs_rq->min_vruntime_copy;
7210 smp_rmb();
7211 min_vruntime = cfs_rq->min_vruntime;
7212 } while (min_vruntime != min_vruntime_copy);
7213 #else
7214 min_vruntime = cfs_rq->min_vruntime;
7215 #endif
7216
7217 se->vruntime -= min_vruntime;
7218 }
7219
7220 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7221 /*
7222 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7223 * rq->lock and can modify state directly.
7224 */
7225 lockdep_assert_held(&task_rq(p)->lock);
7226 detach_entity_cfs_rq(&p->se);
7227 } else {
7228 /*
7229 * We are supposed to update the task to "current" time, then
7230 * its up to date and ready to go to new CPU/cfs_rq. But we
7231 * have difficulty in getting what current time is, so simply
7232 * throw away the out-of-date time. This will result in the
7233 * wakee task is less decayed, but giving the wakee more load
7234 * sounds not bad.
7235 */
7236 remove_entity_load_avg(&p->se);
7237 }
7238
7239 /* Tell new CPU we are migrated */
7240 p->se.avg.last_update_time = 0;
7241
7242 /* We have migrated, no longer consider this task hot */
7243 p->se.exec_start = 0;
7244
7245 update_scan_period(p, new_cpu);
7246 }
7247
task_dead_fair(struct task_struct * p)7248 static void task_dead_fair(struct task_struct *p)
7249 {
7250 remove_entity_load_avg(&p->se);
7251 }
7252
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7253 static int balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7254 {
7255 if (rq->nr_running) {
7256 return 1;
7257 }
7258 return newidle_balance(rq, rf) != 0;
7259 }
7260 #endif /* CONFIG_SMP */
7261
7262 #ifdef CONFIG_SCHED_LATENCY_NICE
wakeup_latency_gran(struct sched_entity * curr,struct sched_entity * se)7263 static long wakeup_latency_gran(struct sched_entity *curr, struct sched_entity *se)
7264 {
7265 int latency_weight = se->latency_weight;
7266 long thresh = sysctl_sched_latency;
7267 if ((se->latency_weight > 0) || (curr->latency_weight > 0))
7268 latency_weight -= curr->latency_weight;
7269 if (!latency_weight)
7270 return 0;
7271 if (sched_feat(GENTLE_FAIR_SLEEPERS))
7272 thresh >>= 1;
7273 latency_weight = clamp_t(long, latency_weight,
7274 -1 * NICE_LATENCY_WEIGHT_MAX,
7275 NICE_LATENCY_WEIGHT_MAX);
7276 return (thresh * latency_weight) >> NICE_LATENCY_SHIFT;
7277 }
7278 #endif /* CONFIG_SMP */
7279
wakeup_gran(struct sched_entity * se)7280 static unsigned long wakeup_gran(struct sched_entity *se)
7281 {
7282 unsigned long gran = sysctl_sched_wakeup_granularity;
7283
7284 /*
7285 * Since its curr running now, convert the gran from real-time
7286 * to virtual-time in his units.
7287 *
7288 * By using 'se' instead of 'curr' we penalize light tasks, so
7289 * they get preempted easier. That is, if 'se' < 'curr' then
7290 * the resulting gran will be larger, therefore penalizing the
7291 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7292 * be smaller, again penalizing the lighter task.
7293 *
7294 * This is especially important for buddies when the leftmost
7295 * task is higher priority than the buddy.
7296 */
7297 return calc_delta_fair(gran, se);
7298 }
7299
7300 /*
7301 * Should 'se' preempt 'curr'.
7302 *
7303 * |s1
7304 * |s2
7305 * |s3
7306 * g
7307 * |<--->|c
7308 *
7309 * w(c, s1) = -1
7310 * w(c, s2) = 0
7311 * w(c, s3) = 1
7312 *
7313 */
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)7314 static int wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7315 {
7316 s64 gran, vdiff = curr->vruntime - se->vruntime;
7317
7318 #ifdef CONFIG_SCHED_LATENCY_NICE
7319 vdiff += wakeup_latency_gran(curr, se);
7320 #endif
7321 if (vdiff <= 0) {
7322 return -1;
7323 }
7324
7325 gran = wakeup_gran(se);
7326 if (vdiff > gran) {
7327 return 1;
7328 }
7329
7330 return 0;
7331 }
7332
set_last_buddy(struct sched_entity * se)7333 static void set_last_buddy(struct sched_entity *se)
7334 {
7335 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) {
7336 return;
7337 }
7338
7339 for_each_sched_entity(se) {
7340 if (SCHED_WARN_ON(!se->on_rq)) {
7341 return;
7342 }
7343 cfs_rq_of(se)->last = se;
7344 }
7345 }
7346
set_next_buddy(struct sched_entity * se)7347 static void set_next_buddy(struct sched_entity *se)
7348 {
7349 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) {
7350 return;
7351 }
7352
7353 for_each_sched_entity(se) {
7354 if (SCHED_WARN_ON(!se->on_rq)) {
7355 return;
7356 }
7357 cfs_rq_of(se)->next = se;
7358 }
7359 }
7360
set_skip_buddy(struct sched_entity * se)7361 static void set_skip_buddy(struct sched_entity *se)
7362 {
7363 for_each_sched_entity(se) cfs_rq_of(se)->skip = se;
7364 }
7365
7366 /*
7367 * Preempt the current task with a newly woken task if needed:
7368 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)7369 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7370 {
7371 struct task_struct *curr = rq->curr;
7372 struct sched_entity *se = &curr->se, *pse = &p->se;
7373 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7374 int scale = cfs_rq->nr_running >= sched_nr_latency;
7375 int next_buddy_marked = 0;
7376
7377 if (unlikely(se == pse)) {
7378 return;
7379 }
7380
7381 /*
7382 * This is possible from callers such as attach_tasks(), in which we
7383 * unconditionally check_prempt_curr() after an enqueue (which may have
7384 * lead to a throttle). This both saves work and prevents false
7385 * next-buddy nomination below.
7386 */
7387 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) {
7388 return;
7389 }
7390
7391 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7392 set_next_buddy(pse);
7393 next_buddy_marked = 1;
7394 }
7395
7396 /*
7397 * We can come here with TIF_NEED_RESCHED already set from new task
7398 * wake up path.
7399 *
7400 * Note: this also catches the edge-case of curr being in a throttled
7401 * group (e.g. via set_curr_task), since update_curr() (in the
7402 * enqueue of curr) will have resulted in resched being set. This
7403 * prevents us from potentially nominating it as a false LAST_BUDDY
7404 * below.
7405 */
7406 if (test_tsk_need_resched(curr)) {
7407 return;
7408 }
7409
7410 /* Idle tasks are by definition preempted by non-idle tasks. */
7411 if (unlikely(task_has_idle_policy(curr)) && likely(!task_has_idle_policy(p))) {
7412 goto preempt;
7413 }
7414
7415 /*
7416 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7417 * is driven by the tick):
7418 */
7419 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) {
7420 return;
7421 }
7422
7423 find_matching_se(&se, &pse);
7424 update_curr(cfs_rq_of(se));
7425 BUG_ON(!pse);
7426 if (wakeup_preempt_entity(se, pse) == 1) {
7427 /*
7428 * Bias pick_next to pick the sched entity that is
7429 * triggering this preemption.
7430 */
7431 if (!next_buddy_marked) {
7432 set_next_buddy(pse);
7433 }
7434 goto preempt;
7435 }
7436
7437 return;
7438
7439 preempt:
7440 resched_curr(rq);
7441 /*
7442 * Only set the backward buddy when the current task is still
7443 * on the rq. This can happen when a wakeup gets interleaved
7444 * with schedule on the ->pre_schedule() or idle_balance()
7445 * point, either of which can * drop the rq lock.
7446 *
7447 * Also, during early boot the idle thread is in the fair class,
7448 * for obvious reasons its a bad idea to schedule back to it.
7449 */
7450 if (unlikely(!se->on_rq || curr == rq->idle)) {
7451 return;
7452 }
7453
7454 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) {
7455 set_last_buddy(se);
7456 }
7457 }
7458
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7459 struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7460 {
7461 struct cfs_rq *cfs_rq = &rq->cfs;
7462 struct sched_entity *se;
7463 struct task_struct *p;
7464 int new_tasks;
7465
7466 while (1) {
7467 if (!sched_fair_runnable(rq)) {
7468 goto idle;
7469 }
7470
7471 #ifdef CONFIG_FAIR_GROUP_SCHED
7472 if (!prev || prev->sched_class != &fair_sched_class) {
7473 goto simple;
7474 }
7475
7476 /*
7477 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7478 * likely that a next task is from the same cgroup as the current.
7479 *
7480 * Therefore attempt to avoid putting and setting the entire cgroup
7481 * hierarchy, only change the part that actually changes.
7482 */
7483
7484 do {
7485 struct sched_entity *curr = cfs_rq->curr;
7486
7487 /*
7488 * Since we got here without doing put_prev_entity() we also
7489 * have to consider cfs_rq->curr. If it is still a runnable
7490 * entity, update_curr() will update its vruntime, otherwise
7491 * forget we've ever seen it.
7492 */
7493 if (curr) {
7494 if (curr->on_rq) {
7495 update_curr(cfs_rq);
7496 } else {
7497 curr = NULL;
7498 }
7499
7500 /*
7501 * This call to check_cfs_rq_runtime() will do the
7502 * throttle and dequeue its entity in the parent(s).
7503 * Therefore the nr_running test will indeed
7504 * be correct.
7505 */
7506 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7507 cfs_rq = &rq->cfs;
7508
7509 if (!cfs_rq->nr_running) {
7510 goto idle;
7511 }
7512
7513 goto simple;
7514 }
7515 }
7516
7517 se = pick_next_entity(cfs_rq, curr);
7518 cfs_rq = group_cfs_rq(se);
7519 } while (cfs_rq);
7520
7521 p = task_of(se);
7522 /*
7523 * Since we haven't yet done put_prev_entity and if the selected task
7524 * is a different task than we started out with, try and touch the
7525 * least amount of cfs_rqs.
7526 */
7527 if (prev != p) {
7528 struct sched_entity *pse = &prev->se;
7529
7530 while (!(cfs_rq = is_same_group(se, pse))) {
7531 int se_depth = se->depth;
7532 int pse_depth = pse->depth;
7533
7534 if (se_depth <= pse_depth) {
7535 put_prev_entity(cfs_rq_of(pse), pse);
7536 pse = parent_entity(pse);
7537 }
7538 if (se_depth >= pse_depth) {
7539 set_next_entity(cfs_rq_of(se), se);
7540 se = parent_entity(se);
7541 }
7542 }
7543
7544 put_prev_entity(cfs_rq, pse);
7545 set_next_entity(cfs_rq, se);
7546 }
7547
7548 goto done;
7549 simple:
7550 #endif
7551 if (prev) {
7552 put_prev_task(rq, prev);
7553 }
7554
7555 do {
7556 se = pick_next_entity(cfs_rq, NULL);
7557 set_next_entity(cfs_rq, se);
7558 cfs_rq = group_cfs_rq(se);
7559 } while (cfs_rq);
7560
7561 p = task_of(se);
7562
7563 done:
7564 __maybe_unused;
7565 #ifdef CONFIG_SMP
7566 /*
7567 * Move the next running task to the front of
7568 * the list, so our cfs_tasks list becomes MRU
7569 * one.
7570 */
7571 list_move(&p->se.group_node, &rq->cfs_tasks);
7572 #endif
7573
7574 if (hrtick_enabled(rq)) {
7575 hrtick_start_fair(rq, p);
7576 }
7577
7578 update_misfit_status(p, rq);
7579
7580 return p;
7581
7582 idle:
7583 if (!rf) {
7584 return NULL;
7585 }
7586
7587 new_tasks = newidle_balance(rq, rf);
7588 /*
7589 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7590 * possible for any higher priority task to appear. In that case we
7591 * must re-start the pick_next_entity() loop.
7592 */
7593 if (new_tasks < 0) {
7594 return RETRY_TASK;
7595 }
7596
7597 if (new_tasks > 0) {
7598 continue;
7599 }
7600 break;
7601 }
7602
7603 /*
7604 * rq is about to be idle, check if we need to update the
7605 * lost_idle_time of clock_pelt
7606 */
7607 update_idle_rq_clock_pelt(rq);
7608
7609 return NULL;
7610 }
7611
fair_pick_next_task_fair(struct rq * rq)7612 static struct task_struct *fair_pick_next_task_fair(struct rq *rq)
7613 {
7614 return pick_next_task_fair(rq, NULL, NULL);
7615 }
7616
7617 /*
7618 * Account for a descheduled task
7619 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)7620 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7621 {
7622 struct sched_entity *se = &prev->se;
7623 struct cfs_rq *cfs_rq;
7624
7625 for_each_sched_entity(se) {
7626 cfs_rq = cfs_rq_of(se);
7627 put_prev_entity(cfs_rq, se);
7628 }
7629 }
7630
7631 /*
7632 * sched_yield() is very simple
7633 *
7634 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7635 */
yield_task_fair(struct rq * rq)7636 static void yield_task_fair(struct rq *rq)
7637 {
7638 struct task_struct *curr = rq->curr;
7639 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7640 struct sched_entity *se = &curr->se;
7641
7642 /*
7643 * Are we the only task in the tree?
7644 */
7645 if (unlikely(rq->nr_running == 1)) {
7646 return;
7647 }
7648
7649 clear_buddies(cfs_rq, se);
7650
7651 if (curr->policy != SCHED_BATCH) {
7652 update_rq_clock(rq);
7653 /*
7654 * Update run-time statistics of the 'current'.
7655 */
7656 update_curr(cfs_rq);
7657 /*
7658 * Tell update_rq_clock() that we've just updated,
7659 * so we don't do microscopic update in schedule()
7660 * and double the fastpath cost.
7661 */
7662 rq_clock_skip_update(rq);
7663 }
7664
7665 set_skip_buddy(se);
7666 }
7667
yield_to_task_fair(struct rq * rq,struct task_struct * p)7668 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7669 {
7670 struct sched_entity *se = &p->se;
7671
7672 /* throttled hierarchies are not runnable */
7673 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) {
7674 return false;
7675 }
7676
7677 /* Tell the scheduler that we'd really like pse to run next. */
7678 set_next_buddy(se);
7679
7680 yield_task_fair(rq);
7681
7682 return true;
7683 }
7684
7685 #ifdef CONFIG_SMP
7686 /**************************************************
7687 * Fair scheduling class load-balancing methods.
7688 *
7689 * BASICS
7690 *
7691 * The purpose of load-balancing is to achieve the same basic fairness the
7692 * per-CPU scheduler provides, namely provide a proportional amount of compute
7693 * time to each task. This is expressed in the following equation:
7694 *
7695 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7696 *
7697 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7698 * W_i,0 is defined as:
7699 *
7700 * W_i,0 = \Sum_j w_i,j (2)
7701 *
7702 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7703 * is derived from the nice value as per sched_prio_to_weight[].
7704 *
7705 * The weight average is an exponential decay average of the instantaneous
7706 * weight:
7707 *
7708 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7709 *
7710 * C_i is the compute capacity of CPU i, typically it is the
7711 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7712 * can also include other factors [XXX].
7713 *
7714 * To achieve this balance we define a measure of imbalance which follows
7715 * directly from (1):
7716 *
7717 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7718 *
7719 * We them move tasks around to minimize the imbalance. In the continuous
7720 * function space it is obvious this converges, in the discrete case we get
7721 * a few fun cases generally called infeasible weight scenarios.
7722 *
7723 * [XXX expand on:
7724 * - infeasible weights;
7725 * - local vs global optima in the discrete case. ]
7726 *
7727 *
7728 * SCHED DOMAINS
7729 *
7730 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7731 * for all i,j solution, we create a tree of CPUs that follows the hardware
7732 * topology where each level pairs two lower groups (or better). This results
7733 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7734 * tree to only the first of the previous level and we decrease the frequency
7735 * of load-balance at each level inv. proportional to the number of CPUs in
7736 * the groups.
7737 *
7738 * This yields:
7739 *
7740 * log_2 n 1 n
7741 * \Sum { --- * --- * 2^i } = O(n) (5)
7742 * i = 0 2^i 2^i
7743 * `- size of each group
7744 * | | `- number of CPUs doing load-balance
7745 * | `- freq
7746 * `- sum over all levels
7747 *
7748 * Coupled with a limit on how many tasks we can migrate every balance pass,
7749 * this makes (5) the runtime complexity of the balancer.
7750 *
7751 * An important property here is that each CPU is still (indirectly) connected
7752 * to every other CPU in at most O(log n) steps:
7753 *
7754 * The adjacency matrix of the resulting graph is given by:
7755 *
7756 * log_2 n
7757 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7758 * k = 0
7759 *
7760 * And you'll find that:
7761 *
7762 * A^(log_2 n)_i,j != 0 for all i,j (7)
7763 *
7764 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7765 * The task movement gives a factor of O(m), giving a convergence complexity
7766 * of:
7767 *
7768 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7769 *
7770 *
7771 * WORK CONSERVING
7772 *
7773 * In order to avoid CPUs going idle while there's still work to do, new idle
7774 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7775 * tree itself instead of relying on other CPUs to bring it work.
7776 *
7777 * This adds some complexity to both (5) and (8) but it reduces the total idle
7778 * time.
7779 *
7780 * [XXX more?]
7781 *
7782 *
7783 * CGROUPS
7784 *
7785 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7786 *
7787 * s_k,i
7788 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7789 * S_k
7790 *
7791 * Where
7792 *
7793 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7794 *
7795 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7796 *
7797 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7798 * property.
7799 *
7800 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7801 * rewrite all of this once again.]
7802 */
7803
7804 static unsigned long __read_mostly max_load_balance_interval = HZ / 10;
7805
7806 enum fbq_type { regular, remote, all };
7807
7808 /*
7809 * 'group_type' describes the group of CPUs at the moment of load balancing.
7810 *
7811 * The enum is ordered by pulling priority, with the group with lowest priority
7812 * first so the group_type can simply be compared when selecting the busiest
7813 * group. See update_sd_pick_busiest().
7814 */
7815 enum group_type {
7816 /* The group has spare capacity that can be used to run more tasks. */
7817 group_has_spare = 0,
7818 /*
7819 * The group is fully used and the tasks don't compete for more CPU
7820 * cycles. Nevertheless, some tasks might wait before running.
7821 */
7822 group_fully_busy,
7823 /*
7824 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7825 * and must be migrated to a more powerful CPU.
7826 */
7827 group_misfit_task,
7828 /*
7829 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7830 * and the task should be migrated to it instead of running on the
7831 * current CPU.
7832 */
7833 group_asym_packing,
7834 /*
7835 * The tasks' affinity constraints previously prevented the scheduler
7836 * from balancing the load across the system.
7837 */
7838 group_imbalanced,
7839 /*
7840 * The CPU is overloaded and can't provide expected CPU cycles to all
7841 * tasks.
7842 */
7843 group_overloaded
7844 };
7845
7846 enum migration_type { migrate_load = 0, migrate_util, migrate_task, migrate_misfit };
7847
7848 #define LBF_ALL_PINNED 0x01
7849 #define LBF_NEED_BREAK 0x02
7850 #define LBF_DST_PINNED 0x04
7851 #define LBF_SOME_PINNED 0x08
7852 #define LBF_NOHZ_STATS 0x10
7853 #define LBF_NOHZ_AGAIN 0x20
7854 #define LBF_IGNORE_PREFERRED_CLUSTER_TASKS 0x200
7855
7856 struct lb_env {
7857 struct sched_domain *sd;
7858
7859 struct rq *src_rq;
7860 int src_cpu;
7861
7862 int dst_cpu;
7863 struct rq *dst_rq;
7864
7865 struct cpumask *dst_grpmask;
7866 int new_dst_cpu;
7867 enum cpu_idle_type idle;
7868 long imbalance;
7869 /* The set of CPUs under consideration for load-balancing */
7870 struct cpumask *cpus;
7871
7872 unsigned int flags;
7873
7874 unsigned int loop;
7875 unsigned int loop_break;
7876 unsigned int loop_max;
7877
7878 enum fbq_type fbq_type;
7879 enum migration_type migration_type;
7880 struct list_head tasks;
7881 };
7882
7883 /*
7884 * Is this task likely cache-hot:
7885 */
task_hot(struct task_struct * p,struct lb_env * env)7886 static int task_hot(struct task_struct *p, struct lb_env *env)
7887 {
7888 s64 delta;
7889
7890 lockdep_assert_held(&env->src_rq->lock);
7891
7892 if (p->sched_class != &fair_sched_class) {
7893 return 0;
7894 }
7895
7896 if (unlikely(task_has_idle_policy(p))) {
7897 return 0;
7898 }
7899
7900 /* SMT siblings share cache */
7901 if (env->sd->flags & SD_SHARE_CPUCAPACITY) {
7902 return 0;
7903 }
7904
7905 /*
7906 * Buddy candidates are cache hot:
7907 */
7908 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7909 (&p->se == cfs_rq_of(&p->se)->next || &p->se == cfs_rq_of(&p->se)->last)) {
7910 return 1;
7911 }
7912
7913 if (sysctl_sched_migration_cost == -1) {
7914 return 1;
7915 }
7916 if (sysctl_sched_migration_cost == 0) {
7917 return 0;
7918 }
7919
7920 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7921
7922 return delta < (s64)sysctl_sched_migration_cost;
7923 }
7924
7925 #ifdef CONFIG_NUMA_BALANCING
7926 /*
7927 * Returns 1, if task migration degrades locality
7928 * Returns 0, if task migration improves locality i.e migration preferred.
7929 * Returns -1, if task migration is not affected by locality.
7930 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7931 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7932 {
7933 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7934 unsigned long src_weight, dst_weight;
7935 int src_nid, dst_nid, dist;
7936
7937 if (!static_branch_likely(&sched_numa_balancing)) {
7938 return -1;
7939 }
7940
7941 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) {
7942 return -1;
7943 }
7944
7945 src_nid = cpu_to_node(env->src_cpu);
7946 dst_nid = cpu_to_node(env->dst_cpu);
7947 if (src_nid == dst_nid) {
7948 return -1;
7949 }
7950
7951 /* Migrating away from the preferred node is always bad. */
7952 if (src_nid == p->numa_preferred_nid) {
7953 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) {
7954 return 1;
7955 } else {
7956 return -1;
7957 }
7958 }
7959
7960 /* Encourage migration to the preferred node. */
7961 if (dst_nid == p->numa_preferred_nid) {
7962 return 0;
7963 }
7964
7965 /* Leaving a core idle is often worse than degrading locality. */
7966 if (env->idle == CPU_IDLE) {
7967 return -1;
7968 }
7969
7970 dist = node_distance(src_nid, dst_nid);
7971 if (numa_group) {
7972 src_weight = group_weight(p, src_nid, dist);
7973 dst_weight = group_weight(p, dst_nid, dist);
7974 } else {
7975 src_weight = task_weight(p, src_nid, dist);
7976 dst_weight = task_weight(p, dst_nid, dist);
7977 }
7978
7979 return dst_weight < src_weight;
7980 }
7981
7982 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7983 static inline int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7984 {
7985 return -1;
7986 }
7987 #endif
7988
7989 /*
7990 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7991 */
can_migrate_task(struct task_struct * p,struct lb_env * env)7992 static int can_migrate_task(struct task_struct *p, struct lb_env *env)
7993 {
7994 int tsk_cache_hot;
7995
7996 lockdep_assert_held(&env->src_rq->lock);
7997
7998 /*
7999 * We do not migrate tasks that are:
8000 * 1) throttled_lb_pair, or
8001 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8002 * 3) running (obviously), or
8003 * 4) are cache-hot on their current CPU.
8004 */
8005 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) {
8006 return 0;
8007 }
8008
8009 /* Disregard pcpu kthreads; they are where they need to be. */
8010 if (kthread_is_per_cpu(p)) {
8011 return 0;
8012 }
8013
8014 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8015 int cpu;
8016
8017 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
8018
8019 env->flags |= LBF_SOME_PINNED;
8020
8021 /*
8022 * Remember if this task can be migrated to any other CPU in
8023 * our sched_group. We may want to revisit it if we couldn't
8024 * meet load balance goals by pulling other tasks on src_cpu.
8025 *
8026 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
8027 * already computed one in current iteration.
8028 */
8029 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) {
8030 return 0;
8031 }
8032
8033 /* Prevent to re-select dst_cpu via env's CPUs: */
8034 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus)
8035 {
8036 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8037 env->flags |= LBF_DST_PINNED;
8038 env->new_dst_cpu = cpu;
8039 break;
8040 }
8041 }
8042
8043 return 0;
8044 }
8045
8046 /* Record that we found atleast one task that could run on dst_cpu */
8047 env->flags &= ~LBF_ALL_PINNED;
8048
8049 #ifdef CONFIG_SCHED_RTG
8050 if (env->flags & LBF_IGNORE_PREFERRED_CLUSTER_TASKS && !preferred_cluster(cpu_rq(env->dst_cpu)->cluster, p)) {
8051 return 0;
8052 }
8053 #endif
8054
8055 if (task_running(env->src_rq, p)) {
8056 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
8057 return 0;
8058 }
8059
8060 /*
8061 * Aggressive migration if:
8062 * 1) destination numa is preferred
8063 * 2) task is cache cold, or
8064 * 3) too many balance attempts have failed.
8065 */
8066 tsk_cache_hot = migrate_degrades_locality(p, env);
8067 if (tsk_cache_hot == -1) {
8068 tsk_cache_hot = task_hot(p, env);
8069 }
8070
8071 if (tsk_cache_hot <= 0 || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8072 if (tsk_cache_hot == 1) {
8073 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8074 schedstat_inc(p->se.statistics.nr_forced_migrations);
8075 }
8076 return 1;
8077 }
8078
8079 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
8080 return 0;
8081 }
8082
8083 /*
8084 * detach_task() -- detach the task for the migration specified in env
8085 */
detach_task(struct task_struct * p,struct lb_env * env)8086 static void detach_task(struct task_struct *p, struct lb_env *env)
8087 {
8088 lockdep_assert_held(&env->src_rq->lock);
8089
8090 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8091 #ifdef CONFIG_SCHED_WALT
8092 double_lock_balance(env->src_rq, env->dst_rq);
8093 if (!(env->src_rq->clock_update_flags & RQCF_UPDATED)) {
8094 update_rq_clock(env->src_rq);
8095 }
8096 #endif
8097 set_task_cpu(p, env->dst_cpu);
8098 #ifdef CONFIG_SCHED_WALT
8099 double_unlock_balance(env->src_rq, env->dst_rq);
8100 #endif
8101 }
8102
8103 /*
8104 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8105 * part of active balancing operations within "domain".
8106 *
8107 * Returns a task if successful and NULL otherwise.
8108 */
detach_one_task(struct lb_env * env)8109 static struct task_struct *detach_one_task(struct lb_env *env)
8110 {
8111 struct task_struct *p;
8112
8113 lockdep_assert_held(&env->src_rq->lock);
8114
8115 list_for_each_entry_reverse(p, &env->src_rq->cfs_tasks, se.group_node)
8116 {
8117 if (!can_migrate_task(p, env)) {
8118 continue;
8119 }
8120
8121 detach_task(p, env);
8122
8123 /*
8124 * Right now, this is only the second place where
8125 * lb_gained[env->idle] is updated (other is detach_tasks)
8126 * so we can safely collect stats here rather than
8127 * inside detach_tasks().
8128 */
8129 schedstat_inc(env->sd->lb_gained[env->idle]);
8130 return p;
8131 }
8132 return NULL;
8133 }
8134
8135 static const unsigned int sched_nr_migrate_break = 32;
8136
8137 /*
8138 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8139 * busiest_rq, as part of a balancing operation within domain "sd".
8140 *
8141 * Returns number of detached tasks if successful and 0 otherwise.
8142 */
detach_tasks(struct lb_env * env)8143 static int detach_tasks(struct lb_env *env)
8144 {
8145 struct list_head *tasks = &env->src_rq->cfs_tasks;
8146 unsigned long util, load;
8147 struct task_struct *p;
8148 int detached = 0;
8149 #ifdef CONFIG_SCHED_RTG
8150 int orig_loop = env->loop;
8151 #endif
8152
8153 lockdep_assert_held(&env->src_rq->lock);
8154
8155 if (env->imbalance <= 0) {
8156 return 0;
8157 }
8158
8159 #ifdef CONFIG_SCHED_RTG
8160 if (!same_cluster(env->dst_cpu, env->src_cpu)) {
8161 env->flags |= LBF_IGNORE_PREFERRED_CLUSTER_TASKS;
8162 }
8163
8164 redo:
8165 #endif
8166 while (!list_empty(tasks)) {
8167 /*
8168 * We don't want to steal all, otherwise we may be treated likewise,
8169 * which could at worst lead to a livelock crash.
8170 */
8171 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) {
8172 break;
8173 }
8174
8175 p = list_last_entry(tasks, struct task_struct, se.group_node);
8176
8177 env->loop++;
8178 /* We've more or less seen every task there is, call it quits */
8179 if (env->loop > env->loop_max) {
8180 break;
8181 }
8182
8183 /* take a breather every nr_migrate tasks */
8184 if (env->loop > env->loop_break) {
8185 env->loop_break += sched_nr_migrate_break;
8186 env->flags |= LBF_NEED_BREAK;
8187 break;
8188 }
8189
8190 if (!can_migrate_task(p, env)) {
8191 goto next;
8192 }
8193
8194 switch (env->migration_type) {
8195 case migrate_load:
8196 /*
8197 * Depending of the number of CPUs and tasks and the
8198 * cgroup hierarchy, task_h_load() can return a null
8199 * value. Make sure that env->imbalance decreases
8200 * otherwise detach_tasks() will stop only after
8201 * detaching up to loop_max tasks.
8202 */
8203 load = max_t(unsigned long, task_h_load(p), 1);
8204
8205 if (sched_feat(LB_MIN) && load < 0x10 && !env->sd->nr_balance_failed) {
8206 goto next;
8207 }
8208
8209 /*
8210 * Make sure that we don't migrate too much load.
8211 * Nevertheless, let relax the constraint if
8212 * scheduler fails to find a good waiting task to
8213 * migrate.
8214 */
8215 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) {
8216 goto next;
8217 }
8218
8219 env->imbalance -= load;
8220 break;
8221
8222 case migrate_util:
8223 util = task_util_est(p);
8224 if (util > env->imbalance) {
8225 goto next;
8226 }
8227
8228 env->imbalance -= util;
8229 break;
8230
8231 case migrate_task:
8232 env->imbalance--;
8233 break;
8234
8235 case migrate_misfit:
8236 /* This is not a misfit task */
8237 if (task_fits_capacity(p, capacity_of(env->src_cpu))) {
8238 goto next;
8239 }
8240
8241 env->imbalance = 0;
8242 break;
8243 }
8244
8245 detach_task(p, env);
8246 list_add(&p->se.group_node, &env->tasks);
8247
8248 detached++;
8249
8250 #ifdef CONFIG_PREEMPTION
8251 /*
8252 * NEWIDLE balancing is a source of latency, so preemptible
8253 * kernels will stop after the first task is detached to minimize
8254 * the critical section.
8255 */
8256 if (env->idle == CPU_NEWLY_IDLE) {
8257 break;
8258 }
8259 #endif
8260
8261 /*
8262 * We only want to steal up to the prescribed amount of
8263 * load/util/tasks.
8264 */
8265 if (env->imbalance <= 0) {
8266 break;
8267 }
8268
8269 continue;
8270 next:
8271 list_move(&p->se.group_node, tasks);
8272 }
8273
8274 #ifdef CONFIG_SCHED_RTG
8275 if (env->flags & LBF_IGNORE_PREFERRED_CLUSTER_TASKS && !detached) {
8276 tasks = &env->src_rq->cfs_tasks;
8277 env->flags &= ~LBF_IGNORE_PREFERRED_CLUSTER_TASKS;
8278 env->loop = orig_loop;
8279 goto redo;
8280 }
8281 #endif
8282
8283 /*
8284 * Right now, this is one of only two places we collect this stat
8285 * so we can safely collect detach_one_task() stats here rather
8286 * than inside detach_one_task().
8287 */
8288 schedstat_add(env->sd->lb_gained[env->idle], detached);
8289
8290 return detached;
8291 }
8292
8293 /*
8294 * attach_task() -- attach the task detached by detach_task() to its new rq.
8295 */
attach_task(struct rq * rq,struct task_struct * p)8296 static void attach_task(struct rq *rq, struct task_struct *p)
8297 {
8298 lockdep_assert_held(&rq->lock);
8299
8300 BUG_ON(task_rq(p) != rq);
8301 activate_task(rq, p, ENQUEUE_NOCLOCK);
8302 check_preempt_curr(rq, p, 0);
8303 }
8304
8305 /*
8306 * attach_one_task() -- attaches the task returned from detach_one_task() to
8307 * its new rq.
8308 */
attach_one_task(struct rq * rq,struct task_struct * p)8309 static void attach_one_task(struct rq *rq, struct task_struct *p)
8310 {
8311 struct rq_flags rf;
8312
8313 rq_lock(rq, &rf);
8314 update_rq_clock(rq);
8315 attach_task(rq, p);
8316 rq_unlock(rq, &rf);
8317 }
8318
8319 /*
8320 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8321 * new rq.
8322 */
attach_tasks(struct lb_env * env)8323 static void attach_tasks(struct lb_env *env)
8324 {
8325 struct list_head *tasks = &env->tasks;
8326 struct task_struct *p;
8327 struct rq_flags rf;
8328
8329 rq_lock(env->dst_rq, &rf);
8330 update_rq_clock(env->dst_rq);
8331
8332 while (!list_empty(tasks)) {
8333 p = list_first_entry(tasks, struct task_struct, se.group_node);
8334 list_del_init(&p->se.group_node);
8335
8336 attach_task(env->dst_rq, p);
8337 }
8338
8339 rq_unlock(env->dst_rq, &rf);
8340 }
8341
8342 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8343 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8344 {
8345 if (cfs_rq->avg.load_avg) {
8346 return true;
8347 }
8348
8349 if (cfs_rq->avg.util_avg) {
8350 return true;
8351 }
8352
8353 return false;
8354 }
8355
others_have_blocked(struct rq * rq)8356 static inline bool others_have_blocked(struct rq *rq)
8357 {
8358 if (READ_ONCE(rq->avg_rt.util_avg)) {
8359 return true;
8360 }
8361
8362 if (READ_ONCE(rq->avg_dl.util_avg)) {
8363 return true;
8364 }
8365
8366 if (thermal_load_avg(rq)) {
8367 return true;
8368 }
8369
8370 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8371 if (READ_ONCE(rq->avg_irq.util_avg)) {
8372 return true;
8373 }
8374 #endif
8375
8376 return false;
8377 }
8378
update_blocked_load_status(struct rq * rq,bool has_blocked)8379 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8380 {
8381 rq->last_blocked_load_update_tick = jiffies;
8382
8383 if (!has_blocked) {
8384 rq->has_blocked_load = 0;
8385 }
8386 }
8387 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8388 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8389 {
8390 return false;
8391 }
others_have_blocked(struct rq * rq)8392 static inline bool others_have_blocked(struct rq *rq)
8393 {
8394 return false;
8395 }
update_blocked_load_status(struct rq * rq,bool has_blocked)8396 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8397 {
8398 }
8399 #endif
8400
fair_update_blocked_others(struct rq * rq,bool * done)8401 static bool fair_update_blocked_others(struct rq *rq, bool *done)
8402 {
8403 const struct sched_class *curr_class;
8404 u64 now = rq_clock_pelt(rq);
8405 unsigned long thermal_pressure;
8406 bool decayed;
8407
8408 /*
8409 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8410 * DL and IRQ signals have been updated before updating CFS.
8411 */
8412 curr_class = rq->curr->sched_class;
8413
8414 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8415
8416 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8417 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8418 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | update_irq_load_avg(rq, 0);
8419
8420 if (others_have_blocked(rq)) {
8421 *done = false;
8422 }
8423
8424 return decayed;
8425 }
8426
8427 #ifdef CONFIG_FAIR_GROUP_SCHED
8428
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)8429 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
8430 {
8431 if (cfs_rq->load.weight) {
8432 return false;
8433 }
8434
8435 if (cfs_rq->avg.load_sum) {
8436 return false;
8437 }
8438
8439 if (cfs_rq->avg.util_sum) {
8440 return false;
8441 }
8442
8443 if (cfs_rq->avg.runnable_sum) {
8444 return false;
8445 }
8446
8447 return true;
8448 }
8449
fair_update_blocked_fair(struct rq * rq,bool * done)8450 static bool fair_update_blocked_fair(struct rq *rq, bool *done)
8451 {
8452 struct cfs_rq *cfs_rq, *pos;
8453 bool decayed = false;
8454 int cpu = cpu_of(rq);
8455
8456 /*
8457 * Iterates the task_group tree in a bottom up fashion, see
8458 * list_add_leaf_cfs_rq() for details.
8459 */
8460 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8461 struct sched_entity *se;
8462
8463 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8464 update_tg_load_avg(cfs_rq);
8465
8466 if (cfs_rq == &rq->cfs) {
8467 decayed = true;
8468 }
8469 }
8470
8471 /* Propagate pending load changes to the parent, if any: */
8472 se = cfs_rq->tg->se[cpu];
8473 if (se && !skip_blocked_update(se)) {
8474 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8475 }
8476
8477 /*
8478 * There can be a lot of idle CPU cgroups. Don't let fully
8479 * decayed cfs_rqs linger on the list.
8480 */
8481 if (cfs_rq_is_decayed(cfs_rq)) {
8482 list_del_leaf_cfs_rq(cfs_rq);
8483 }
8484
8485 /* Don't need periodic decay once load/util_avg are null */
8486 if (cfs_rq_has_blocked(cfs_rq)) {
8487 *done = false;
8488 }
8489 }
8490
8491 return decayed;
8492 }
8493
8494 /*
8495 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8496 * This needs to be done in a top-down fashion because the load of a child
8497 * group is a fraction of its parents load.
8498 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)8499 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8500 {
8501 struct rq *rq = rq_of(cfs_rq);
8502 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8503 unsigned long now = jiffies;
8504 unsigned long load;
8505
8506 if (cfs_rq->last_h_load_update == now) {
8507 return;
8508 }
8509
8510 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8511 for_each_sched_entity(se) {
8512 cfs_rq = cfs_rq_of(se);
8513 WRITE_ONCE(cfs_rq->h_load_next, se);
8514 if (cfs_rq->last_h_load_update == now) {
8515 break;
8516 }
8517 }
8518
8519 if (!se) {
8520 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8521 cfs_rq->last_h_load_update = now;
8522 }
8523
8524 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8525 load = cfs_rq->h_load;
8526 load = div64_ul(load * se->avg.load_avg, cfs_rq_load_avg(cfs_rq) + 1);
8527 cfs_rq = group_cfs_rq(se);
8528 cfs_rq->h_load = load;
8529 cfs_rq->last_h_load_update = now;
8530 }
8531 }
8532
task_h_load(struct task_struct * p)8533 static unsigned long task_h_load(struct task_struct *p)
8534 {
8535 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8536
8537 update_cfs_rq_h_load(cfs_rq);
8538 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, cfs_rq_load_avg(cfs_rq) + 1);
8539 }
8540 #else
fair_update_blocked_fair(struct rq * rq,bool * done)8541 static bool fair_update_blocked_fair(struct rq *rq, bool *done)
8542 {
8543 struct cfs_rq *cfs_rq = &rq->cfs;
8544 bool decayed;
8545
8546 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8547 if (cfs_rq_has_blocked(cfs_rq)) {
8548 *done = false;
8549 }
8550
8551 return decayed;
8552 }
8553
task_h_load(struct task_struct * p)8554 static unsigned long task_h_load(struct task_struct *p)
8555 {
8556 return p->se.avg.load_avg;
8557 }
8558 #endif
8559
update_blocked_averages(int cpu)8560 static void update_blocked_averages(int cpu)
8561 {
8562 bool decayed = false, done = true;
8563 struct rq *rq = cpu_rq(cpu);
8564 struct rq_flags rf;
8565
8566 rq_lock_irqsave(rq, &rf);
8567 update_rq_clock(rq);
8568
8569 decayed |= fair_update_blocked_others(rq, &done);
8570 decayed |= fair_update_blocked_fair(rq, &done);
8571
8572 update_blocked_load_status(rq, !done);
8573 if (decayed) {
8574 cpufreq_update_util(rq, 0);
8575 }
8576 rq_unlock_irqrestore(rq, &rf);
8577 }
8578
8579 /********** Helpers for find_busiest_group ************************/
8580
8581 /*
8582 * sg_lb_stats - stats of a sched_group required for load_balancing
8583 */
8584 struct sg_lb_stats {
8585 unsigned long avg_load; /* Avg load across the CPUs of the group */
8586 unsigned long group_load; /* Total load over the CPUs of the group */
8587 unsigned long group_capacity;
8588 unsigned long group_util; /* Total utilization over the CPUs of the group */
8589 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8590 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8591 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8592 unsigned int idle_cpus;
8593 unsigned int group_weight;
8594 enum group_type group_type;
8595 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8596 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8597 #ifdef CONFIG_NUMA_BALANCING
8598 unsigned int nr_numa_running;
8599 unsigned int nr_preferred_running;
8600 #endif
8601 };
8602
8603 /*
8604 * sd_lb_stats - Structure to store the statistics of a sched_domain
8605 * during load balancing.
8606 */
8607 struct sd_lb_stats {
8608 struct sched_group *busiest; /* Busiest group in this sd */
8609 struct sched_group *local; /* Local group in this sd */
8610 unsigned long total_load; /* Total load of all groups in sd */
8611 unsigned long total_capacity; /* Total capacity of all groups in sd */
8612 unsigned long avg_load; /* Average load across all groups in sd */
8613 unsigned int prefer_sibling; /* tasks should go to sibling first */
8614
8615 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
8616 struct sg_lb_stats local_stat; /* Statistics of the local group */
8617 };
8618
init_sd_lb_stats(struct sd_lb_stats * sds)8619 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8620 {
8621 /*
8622 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8623 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8624 * We must however set busiest_stat::group_type and
8625 * busiest_stat::idle_cpus to the worst busiest group because
8626 * update_sd_pick_busiest() reads these before assignment.
8627 */
8628 *sds = (struct sd_lb_stats) {
8629 .busiest = NULL,
8630 .local = NULL,
8631 .total_load = 0UL,
8632 .total_capacity = 0UL,
8633 .busiest_stat =
8634 {
8635 .idle_cpus = UINT_MAX,
8636 .group_type = group_has_spare,
8637 },
8638 };
8639 }
8640
scale_rt_capacity(int cpu)8641 static unsigned long scale_rt_capacity(int cpu)
8642 {
8643 struct rq *rq = cpu_rq(cpu);
8644 unsigned long max = arch_scale_cpu_capacity(cpu);
8645 unsigned long used, free;
8646 unsigned long irq;
8647
8648 irq = cpu_util_irq(rq);
8649 if (unlikely(irq >= max)) {
8650 return 1;
8651 }
8652
8653 /*
8654 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8655 * (running and not running) with weights 0 and 1024 respectively.
8656 * avg_thermal.load_avg tracks thermal pressure and the weighted
8657 * average uses the actual delta max capacity(load).
8658 */
8659 used = READ_ONCE(rq->avg_rt.util_avg);
8660 used += READ_ONCE(rq->avg_dl.util_avg);
8661 used += thermal_load_avg(rq);
8662 if (unlikely(used >= max)) {
8663 return 1;
8664 }
8665
8666 free = max - used;
8667
8668 return scale_irq_capacity(free, irq, max);
8669 }
8670
update_cpu_capacity(struct sched_domain * sd,int cpu)8671 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8672 {
8673 unsigned long capacity = scale_rt_capacity(cpu);
8674 struct sched_group *sdg = sd->groups;
8675
8676 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8677
8678 if (!capacity) {
8679 capacity = 1;
8680 }
8681
8682 cpu_rq(cpu)->cpu_capacity = capacity;
8683 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8684
8685 sdg->sgc->capacity = capacity;
8686 sdg->sgc->min_capacity = capacity;
8687 sdg->sgc->max_capacity = capacity;
8688 }
8689
update_group_capacity(struct sched_domain * sd,int cpu)8690 void update_group_capacity(struct sched_domain *sd, int cpu)
8691 {
8692 struct sched_domain *child = sd->child;
8693 struct sched_group *group, *sdg = sd->groups;
8694 unsigned long capacity, min_capacity, max_capacity;
8695 unsigned long interval;
8696
8697 interval = msecs_to_jiffies(sd->balance_interval);
8698 interval = clamp(interval, 1UL, max_load_balance_interval);
8699 sdg->sgc->next_update = jiffies + interval;
8700
8701 if (!child) {
8702 update_cpu_capacity(sd, cpu);
8703 return;
8704 }
8705
8706 capacity = 0;
8707 min_capacity = ULONG_MAX;
8708 max_capacity = 0;
8709
8710 if (child->flags & SD_OVERLAP) {
8711 /*
8712 * SD_OVERLAP domains cannot assume that child groups
8713 * span the current group.
8714 */
8715
8716 for_each_cpu(cpu, sched_group_span(sdg))
8717 {
8718 unsigned long cpu_cap = capacity_of(cpu);
8719
8720 if (cpu_isolated(cpu)) {
8721 continue;
8722 }
8723
8724 capacity += cpu_cap;
8725 min_capacity = min(cpu_cap, min_capacity);
8726 max_capacity = max(cpu_cap, max_capacity);
8727 }
8728 } else {
8729 /*
8730 * !SD_OVERLAP domains can assume that child groups
8731 * span the current group.
8732 */
8733
8734 group = child->groups;
8735 do {
8736 struct sched_group_capacity *sgc = group->sgc;
8737 __maybe_unused cpumask_t *cpus = sched_group_span(group);
8738
8739 if (!cpu_isolated(cpumask_first(cpus))) {
8740 capacity += sgc->capacity;
8741 min_capacity = min(sgc->min_capacity, min_capacity);
8742 max_capacity = max(sgc->max_capacity, max_capacity);
8743 }
8744 group = group->next;
8745 } while (group != child->groups);
8746 }
8747
8748 sdg->sgc->capacity = capacity;
8749 sdg->sgc->min_capacity = min_capacity;
8750 sdg->sgc->max_capacity = max_capacity;
8751 }
8752
8753 /*
8754 * Check whether the capacity of the rq has been noticeably reduced by side
8755 * activity. The imbalance_pct is used for the threshold.
8756 * Return true is the capacity is reduced
8757 */
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)8758 static inline int check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8759 {
8760 return ((rq->cpu_capacity * sd->imbalance_pct) < (rq->cpu_capacity_orig * FAIR_ONEHUNDRED));
8761 }
8762
8763 /*
8764 * Check whether a rq has a misfit task and if it looks like we can actually
8765 * help that task: we can migrate the task to a CPU of higher capacity, or
8766 * the task's current CPU is heavily pressured.
8767 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)8768 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8769 {
8770 return rq->misfit_task_load && (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || check_cpu_capacity(rq, sd));
8771 }
8772
8773 /*
8774 * Group imbalance indicates (and tries to solve) the problem where balancing
8775 * groups is inadequate due to ->cpus_ptr constraints.
8776 *
8777 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8778 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8779 * Something like
8780 *
8781 * { 0 1 2 3 } { 4 5 6 7 }
8782 * * * * *
8783 *
8784 * If we were to balance group-wise we'd place two tasks in the first group and
8785 * two tasks in the second group. Clearly this is undesired as it will overload
8786 * cpu 3 and leave one of the CPUs in the second group unused.
8787 *
8788 * The current solution to this issue is detecting the skew in the first group
8789 * by noticing the lower domain failed to reach balance and had difficulty
8790 * moving tasks due to affinity constraints.
8791 *
8792 * When this is so detected; this group becomes a candidate for busiest; see
8793 * update_sd_pick_busiest(). And calculate_imbalance() and
8794 * find_busiest_group() avoid some of the usual balance conditions to allow it
8795 * to create an effective group imbalance.
8796 *
8797 * This is a somewhat tricky proposition since the next run might not find the
8798 * group imbalance and decide the groups need to be balanced again. A most
8799 * subtle and fragile situation.
8800 */
8801
sg_imbalanced(struct sched_group * group)8802 static inline int sg_imbalanced(struct sched_group *group)
8803 {
8804 return group->sgc->imbalance;
8805 }
8806
8807 /*
8808 * group_has_capacity returns true if the group has spare capacity that could
8809 * be used by some tasks.
8810 * We consider that a group has spare capacity if the * number of task is
8811 * smaller than the number of CPUs or if the utilization is lower than the
8812 * available capacity for CFS tasks.
8813 * For the latter, we use a threshold to stabilize the state, to take into
8814 * account the variance of the tasks' load and to return true if the available
8815 * capacity in meaningful for the load balancer.
8816 * As an example, an available capacity of 1% can appear but it doesn't make
8817 * any benefit for the load balance.
8818 */
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8819 static inline bool group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8820 {
8821 if (sgs->sum_nr_running < sgs->group_weight) {
8822 return true;
8823 }
8824
8825 if ((sgs->group_capacity * imbalance_pct) < (sgs->group_runnable * FAIR_ONEHUNDRED)) {
8826 return false;
8827 }
8828
8829 if ((sgs->group_capacity * FAIR_ONEHUNDRED) > (sgs->group_util * imbalance_pct)) {
8830 return true;
8831 }
8832
8833 return false;
8834 }
8835
8836 /*
8837 * group_is_overloaded returns true if the group has more tasks than it can
8838 * handle.
8839 * group_is_overloaded is not equals to !group_has_capacity because a group
8840 * with the exact right number of tasks, has no more spare capacity but is not
8841 * overloaded so both group_has_capacity and group_is_overloaded return
8842 * false.
8843 */
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8844 static inline bool group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8845 {
8846 if (sgs->sum_nr_running <= sgs->group_weight) {
8847 return false;
8848 }
8849
8850 if ((sgs->group_capacity * FAIR_ONEHUNDRED) < (sgs->group_util * imbalance_pct)) {
8851 return true;
8852 }
8853
8854 if ((sgs->group_capacity * imbalance_pct) < (sgs->group_runnable * 0x64)) {
8855 return true;
8856 }
8857
8858 return false;
8859 }
8860
8861 /*
8862 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8863 * per-CPU capacity than sched_group ref.
8864 */
group_smaller_min_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8865 static inline bool group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8866 {
8867 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8868 }
8869
8870 /*
8871 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8872 * per-CPU capacity_orig than sched_group ref.
8873 */
group_smaller_max_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8874 static inline bool group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8875 {
8876 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8877 }
8878
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)8879 static inline enum group_type group_classify(unsigned int imbalance_pct, struct sched_group *group,
8880 struct sg_lb_stats *sgs)
8881 {
8882 if (group_is_overloaded(imbalance_pct, sgs)) {
8883 return group_overloaded;
8884 }
8885
8886 if (sg_imbalanced(group)) {
8887 return group_imbalanced;
8888 }
8889
8890 if (sgs->group_asym_packing) {
8891 return group_asym_packing;
8892 }
8893
8894 if (sgs->group_misfit_task_load) {
8895 return group_misfit_task;
8896 }
8897
8898 if (!group_has_capacity(imbalance_pct, sgs)) {
8899 return group_fully_busy;
8900 }
8901
8902 return group_has_spare;
8903 }
8904
update_nohz_stats(struct rq * rq,bool force)8905 static bool update_nohz_stats(struct rq *rq, bool force)
8906 {
8907 #ifdef CONFIG_NO_HZ_COMMON
8908 unsigned int cpu = rq->cpu;
8909
8910 if (!rq->has_blocked_load) {
8911 return false;
8912 }
8913
8914 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) {
8915 return false;
8916 }
8917
8918 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) {
8919 return true;
8920 }
8921
8922 update_blocked_averages(cpu);
8923
8924 return rq->has_blocked_load;
8925 #else
8926 return false;
8927 #endif
8928 }
8929
8930 /**
8931 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8932 * @env: The load balancing environment.
8933 * @group: sched_group whose statistics are to be updated.
8934 * @sgs: variable to hold the statistics for this group.
8935 * @sg_status: Holds flag indicating the status of the sched_group
8936 */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)8937 static inline void update_sg_lb_stats(struct lb_env *env, struct sched_group *group, struct sg_lb_stats *sgs,
8938 int *sg_status)
8939 {
8940 int i, nr_running, local_group;
8941
8942 memset(sgs, 0, sizeof(*sgs));
8943
8944 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8945
8946 for_each_cpu_and(i, sched_group_span(group), env->cpus)
8947 {
8948 struct rq *rq = cpu_rq(i);
8949
8950 if (cpu_isolated(i)) {
8951 continue;
8952 }
8953
8954 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) {
8955 env->flags |= LBF_NOHZ_AGAIN;
8956 }
8957
8958 sgs->group_load += cpu_load(rq);
8959 sgs->group_util += cpu_util(i);
8960 sgs->group_runnable += cpu_runnable(rq);
8961 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8962
8963 nr_running = rq->nr_running;
8964 sgs->sum_nr_running += nr_running;
8965
8966 if (nr_running > 1) {
8967 *sg_status |= SG_OVERLOAD;
8968 }
8969
8970 if (cpu_overutilized(i)) {
8971 *sg_status |= SG_OVERUTILIZED;
8972 }
8973
8974 #ifdef CONFIG_NUMA_BALANCING
8975 sgs->nr_numa_running += rq->nr_numa_running;
8976 sgs->nr_preferred_running += rq->nr_preferred_running;
8977 #endif
8978 /*
8979 * No need to call idle_cpu() if nr_running is not 0
8980 */
8981 if (!nr_running && idle_cpu(i)) {
8982 sgs->idle_cpus++;
8983 /* Idle cpu can't have misfit task */
8984 continue;
8985 }
8986
8987 if (local_group) {
8988 continue;
8989 }
8990
8991 /* Check for a misfit task on the cpu */
8992 if (env->sd->flags & SD_ASYM_CPUCAPACITY && sgs->group_misfit_task_load < rq->misfit_task_load) {
8993 sgs->group_misfit_task_load = rq->misfit_task_load;
8994 *sg_status |= SG_OVERLOAD;
8995 }
8996 }
8997
8998 /* Isolated CPU has no weight */
8999 if (!group->group_weight) {
9000 sgs->group_capacity = 0;
9001 sgs->avg_load = 0;
9002 sgs->group_type = group_has_spare;
9003 sgs->group_weight = group->group_weight;
9004 return;
9005 }
9006
9007 /* Check if dst CPU is idle and preferred to this group */
9008 if (env->sd->flags & SD_ASYM_PACKING && env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9009 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
9010 sgs->group_asym_packing = 1;
9011 }
9012
9013 sgs->group_capacity = group->sgc->capacity;
9014
9015 sgs->group_weight = group->group_weight;
9016
9017 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9018
9019 /* Computing avg_load makes sense only when group is overloaded */
9020 if (sgs->group_type == group_overloaded) {
9021 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / sgs->group_capacity;
9022 }
9023 }
9024
9025 /**
9026 * update_sd_pick_busiest - return 1 on busiest group
9027 * @env: The load balancing environment.
9028 * @sds: sched_domain statistics
9029 * @sg: sched_group candidate to be checked for being the busiest
9030 * @sgs: sched_group statistics
9031 *
9032 * Determine if @sg is a busier group than the previously selected
9033 * busiest group.
9034 *
9035 * Return: %true if @sg is a busier group than the previously selected
9036 * busiest group. %false otherwise.
9037 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9038 static bool update_sd_pick_busiest(struct lb_env *env, struct sd_lb_stats *sds, struct sched_group *sg,
9039 struct sg_lb_stats *sgs)
9040 {
9041 struct sg_lb_stats *busiest = &sds->busiest_stat;
9042
9043 /* Make sure that there is at least one task to pull */
9044 if (!sgs->sum_h_nr_running) {
9045 return false;
9046 }
9047
9048 /*
9049 * Don't try to pull misfit tasks we can't help.
9050 * We can use max_capacity here as reduction in capacity on some
9051 * CPUs in the group should either be possible to resolve
9052 * internally or be covered by avg_load imbalance (eventually).
9053 */
9054 if (sgs->group_type == group_misfit_task &&
9055 (!group_smaller_max_cpu_capacity(sg, sds->local) || sds->local_stat.group_type != group_has_spare)) {
9056 return false;
9057 }
9058
9059 if (sgs->group_type > busiest->group_type) {
9060 return true;
9061 }
9062
9063 if (sgs->group_type < busiest->group_type) {
9064 return false;
9065 }
9066
9067 /*
9068 * The candidate and the current busiest group are the same type of
9069 * group. Let check which one is the busiest according to the type.
9070 */
9071
9072 switch (sgs->group_type) {
9073 case group_overloaded:
9074 /* Select the overloaded group with highest avg_load. */
9075 if (sgs->avg_load <= busiest->avg_load) {
9076 return false;
9077 }
9078 break;
9079
9080 case group_imbalanced:
9081 /*
9082 * Select the 1st imbalanced group as we don't have any way to
9083 * choose one more than another.
9084 */
9085 return false;
9086
9087 case group_asym_packing:
9088 /* Prefer to move from lowest priority CPU's work */
9089 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) {
9090 return false;
9091 }
9092 break;
9093
9094 case group_misfit_task:
9095 /*
9096 * If we have more than one misfit sg go with the biggest
9097 * misfit.
9098 */
9099 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) {
9100 return false;
9101 }
9102 break;
9103
9104 case group_fully_busy:
9105 /*
9106 * Select the fully busy group with highest avg_load. In
9107 * theory, there is no need to pull task from such kind of
9108 * group because tasks have all compute capacity that they need
9109 * but we can still improve the overall throughput by reducing
9110 * contention when accessing shared HW resources.
9111 *
9112 * XXX for now avg_load is not computed and always 0 so we
9113 * select the 1st one.
9114 */
9115 if (sgs->avg_load <= busiest->avg_load) {
9116 return false;
9117 }
9118 break;
9119
9120 case group_has_spare:
9121 /*
9122 * Select not overloaded group with lowest number of idle cpus
9123 * and highest number of running tasks. We could also compare
9124 * the spare capacity which is more stable but it can end up
9125 * that the group has less spare capacity but finally more idle
9126 * CPUs which means less opportunity to pull tasks.
9127 */
9128 if (sgs->idle_cpus > busiest->idle_cpus) {
9129 return false;
9130 } else if ((sgs->idle_cpus == busiest->idle_cpus) && (sgs->sum_nr_running <= busiest->sum_nr_running)) {
9131 return false;
9132 }
9133
9134 break;
9135 }
9136
9137 /*
9138 * Candidate sg has no more than one task per CPU and has higher
9139 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9140 * throughput. Maximize throughput, power/energy consequences are not
9141 * considered.
9142 */
9143 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && (sgs->group_type <= group_fully_busy) &&
9144 (group_smaller_min_cpu_capacity(sds->local, sg))) {
9145 return false;
9146 }
9147
9148 return true;
9149 }
9150
9151 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)9152 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9153 {
9154 if (sgs->sum_h_nr_running > sgs->nr_numa_running) {
9155 return regular;
9156 }
9157 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) {
9158 return remote;
9159 }
9160 return all;
9161 }
9162
fbq_classify_rq(struct rq * rq)9163 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9164 {
9165 if (rq->nr_running > rq->nr_numa_running) {
9166 return regular;
9167 }
9168 if (rq->nr_running > rq->nr_preferred_running) {
9169 return remote;
9170 }
9171 return all;
9172 }
9173 #else
fbq_classify_group(struct sg_lb_stats * sgs)9174 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9175 {
9176 return all;
9177 }
9178
fbq_classify_rq(struct rq * rq)9179 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9180 {
9181 return regular;
9182 }
9183 #endif /* CONFIG_NUMA_BALANCING */
9184
9185 struct sg_lb_stats;
9186
9187 /*
9188 * task_running_on_cpu - return 1 if @p is running on @cpu.
9189 */
9190
task_running_on_cpu(int cpu,struct task_struct * p)9191 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9192 {
9193 /* Task has no contribution or is new */
9194 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) {
9195 return 0;
9196 }
9197
9198 if (task_on_rq_queued(p)) {
9199 return 1;
9200 }
9201
9202 return 0;
9203 }
9204
9205 /**
9206 * idle_cpu_without - would a given CPU be idle without p ?
9207 * @cpu: the processor on which idleness is tested.
9208 * @p: task which should be ignored.
9209 *
9210 * Return: 1 if the CPU would be idle. 0 otherwise.
9211 */
idle_cpu_without(int cpu,struct task_struct * p)9212 static int idle_cpu_without(int cpu, struct task_struct *p)
9213 {
9214 struct rq *rq = cpu_rq(cpu);
9215
9216 if (rq->curr != rq->idle && rq->curr != p) {
9217 return 0;
9218 }
9219
9220 /*
9221 * rq->nr_running can't be used but an updated version without the
9222 * impact of p on cpu must be used instead. The updated nr_running
9223 * be computed and tested before calling idle_cpu_without().
9224 */
9225
9226 #ifdef CONFIG_SMP
9227 if (rq->ttwu_pending) {
9228 return 0;
9229 }
9230 #endif
9231
9232 return 1;
9233 }
9234
9235 /*
9236 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9237 * @sd: The sched_domain level to look for idlest group.
9238 * @group: sched_group whose statistics are to be updated.
9239 * @sgs: variable to hold the statistics for this group.
9240 * @p: The task for which we look for the idlest group/CPU.
9241 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)9242 static inline void update_sg_wakeup_stats(struct sched_domain *sd, struct sched_group *group, struct sg_lb_stats *sgs,
9243 struct task_struct *p)
9244 {
9245 int i, nr_running;
9246
9247 memset(sgs, 0, sizeof(*sgs));
9248
9249 for_each_cpu(i, sched_group_span(group))
9250 {
9251 struct rq *rq = cpu_rq(i);
9252 unsigned int local;
9253
9254 sgs->group_load += cpu_load_without(rq, p);
9255 sgs->group_util += cpu_util_without(i, p);
9256 sgs->group_runnable += cpu_runnable_without(rq, p);
9257 local = task_running_on_cpu(i, p);
9258 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9259
9260 nr_running = rq->nr_running - local;
9261 sgs->sum_nr_running += nr_running;
9262
9263 /*
9264 * No need to call idle_cpu_without() if nr_running is not 0
9265 */
9266 if (!nr_running && idle_cpu_without(i, p)) {
9267 sgs->idle_cpus++;
9268 }
9269 }
9270
9271 /* Check if task fits in the group */
9272 if (sd->flags & SD_ASYM_CPUCAPACITY && !task_fits_capacity(p, group->sgc->max_capacity)) {
9273 sgs->group_misfit_task_load = 1;
9274 }
9275
9276 sgs->group_capacity = group->sgc->capacity;
9277
9278 sgs->group_weight = group->group_weight;
9279
9280 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9281
9282 /*
9283 * Computing avg_load makes sense only when group is fully busy or
9284 * overloaded
9285 */
9286 if (sgs->group_type == group_fully_busy || sgs->group_type == group_overloaded) {
9287 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / sgs->group_capacity;
9288 }
9289 }
9290
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)9291 static bool update_pick_idlest(struct sched_group *idlest, struct sg_lb_stats *idlest_sgs, struct sched_group *group,
9292 struct sg_lb_stats *sgs)
9293 {
9294 if (sgs->group_type < idlest_sgs->group_type) {
9295 return true;
9296 }
9297
9298 if (sgs->group_type > idlest_sgs->group_type) {
9299 return false;
9300 }
9301
9302 /*
9303 * The candidate and the current idlest group are the same type of
9304 * group. Let check which one is the idlest according to the type.
9305 */
9306
9307 switch (sgs->group_type) {
9308 case group_overloaded:
9309 case group_fully_busy:
9310 /* Select the group with lowest avg_load. */
9311 if (idlest_sgs->avg_load <= sgs->avg_load) {
9312 return false;
9313 }
9314 break;
9315
9316 case group_imbalanced:
9317 case group_asym_packing:
9318 /* Those types are not used in the slow wakeup path */
9319 return false;
9320
9321 case group_misfit_task:
9322 /* Select group with the highest max capacity */
9323 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) {
9324 return false;
9325 }
9326 break;
9327
9328 case group_has_spare:
9329 /* Select group with most idle CPUs */
9330 if (idlest_sgs->idle_cpus > sgs->idle_cpus) {
9331 return false;
9332 }
9333
9334 /* Select group with lowest group_util */
9335 if (idlest_sgs->idle_cpus == sgs->idle_cpus && idlest_sgs->group_util <= sgs->group_util) {
9336 return false;
9337 }
9338
9339 break;
9340 }
9341
9342 return true;
9343 }
9344
9345 /*
9346 * find_idlest_group() finds and returns the least busy CPU group within the
9347 * domain.
9348 *
9349 * Assumes p is allowed on at least one CPU in sd.
9350 */
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)9351 static struct sched_group *find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9352 {
9353 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9354 struct sg_lb_stats local_sgs, tmp_sgs;
9355 struct sg_lb_stats *sgs;
9356 unsigned long imbalance;
9357 struct sg_lb_stats idlest_sgs = {
9358 .avg_load = UINT_MAX,
9359 .group_type = group_overloaded,
9360 };
9361 #ifdef CONFIG_CPU_ISOLATION_OPT
9362 cpumask_t allowed_cpus;
9363
9364 cpumask_andnot(&allowed_cpus, p->cpus_ptr, cpu_isolated_mask);
9365 #endif
9366
9367 imbalance = scale_load_down(NICE_0_LOAD) * (sd->imbalance_pct - FAIR_ONEHUNDRED) / FAIR_ONEHUNDRED;
9368
9369 do {
9370 int local_group;
9371
9372 /* Skip over this group if it has no CPUs allowed */
9373 #ifdef CONFIG_CPU_ISOLATION_OPT
9374 if (!cpumask_intersects(sched_group_span(group), &allowed_cpus))
9375 #else
9376 if (!cpumask_intersects(sched_group_span(group), p->cpus_ptr))
9377 #endif
9378 continue;
9379
9380 local_group = cpumask_test_cpu(this_cpu, sched_group_span(group));
9381 if (local_group) {
9382 sgs = &local_sgs;
9383 local = group;
9384 } else {
9385 sgs = &tmp_sgs;
9386 }
9387
9388 update_sg_wakeup_stats(sd, group, sgs, p);
9389
9390 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9391 idlest = group;
9392 idlest_sgs = *sgs;
9393 }
9394 } while (group = group->next, group != sd->groups);
9395
9396 /* There is no idlest group to push tasks to */
9397 if (!idlest) {
9398 return NULL;
9399 }
9400
9401 /* The local group has been skipped because of CPU affinity */
9402 if (!local) {
9403 return idlest;
9404 }
9405
9406 /*
9407 * If the local group is idler than the selected idlest group
9408 * don't try and push the task.
9409 */
9410 if (local_sgs.group_type < idlest_sgs.group_type) {
9411 return NULL;
9412 }
9413
9414 /*
9415 * If the local group is busier than the selected idlest group
9416 * try and push the task.
9417 */
9418 if (local_sgs.group_type > idlest_sgs.group_type) {
9419 return idlest;
9420 }
9421
9422 switch (local_sgs.group_type) {
9423 case group_overloaded:
9424 case group_fully_busy:
9425 /*
9426 * When comparing groups across NUMA domains, it's possible for
9427 * the local domain to be very lightly loaded relative to the
9428 * remote domains but "imbalance" skews the comparison making
9429 * remote CPUs look much more favourable. When considering
9430 * cross-domain, add imbalance to the load on the remote node
9431 * and consider staying local.
9432 */
9433
9434 if ((sd->flags & SD_NUMA) && ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) {
9435 return NULL;
9436 }
9437
9438 /*
9439 * If the local group is less loaded than the selected
9440 * idlest group don't try and push any tasks.
9441 */
9442 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) {
9443 return NULL;
9444 }
9445
9446 if (FAIR_ONEHUNDRED * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) {
9447 return NULL;
9448 }
9449 break;
9450
9451 case group_imbalanced:
9452 case group_asym_packing:
9453 /* Those type are not used in the slow wakeup path */
9454 return NULL;
9455
9456 case group_misfit_task:
9457 /* Select group with the highest max capacity */
9458 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) {
9459 return NULL;
9460 }
9461 break;
9462
9463 case group_has_spare:
9464 if (sd->flags & SD_NUMA) {
9465 #ifdef CONFIG_NUMA_BALANCING
9466 int idlest_cpu;
9467 /*
9468 * If there is spare capacity at NUMA, try to select
9469 * the preferred node
9470 */
9471 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) {
9472 return NULL;
9473 }
9474
9475 idlest_cpu = cpumask_first(sched_group_span(idlest));
9476 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) {
9477 return idlest;
9478 }
9479 #endif
9480 /*
9481 * Otherwise, keep the task on this node to stay close
9482 * its wakeup source and improve locality. If there is
9483 * a real need of migration, periodic load balance will
9484 * take care of it.
9485 */
9486 if (local_sgs.idle_cpus) {
9487 return NULL;
9488 }
9489 }
9490
9491 /*
9492 * Select group with highest number of idle CPUs. We could also
9493 * compare the utilization which is more stable but it can end
9494 * up that the group has less spare capacity but finally more
9495 * idle CPUs which means more opportunity to run task.
9496 */
9497 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) {
9498 return NULL;
9499 }
9500 break;
9501 }
9502
9503 return idlest;
9504 }
9505
9506 /**
9507 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9508 * @env: The load balancing environment.
9509 * @sds: variable to hold the statistics for this sched_domain.
9510 */
9511
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)9512 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9513 {
9514 struct sched_domain *child = env->sd->child;
9515 struct sched_group *sg = env->sd->groups;
9516 struct sg_lb_stats *local = &sds->local_stat;
9517 struct sg_lb_stats tmp_sgs;
9518 int sg_status = 0;
9519
9520 #ifdef CONFIG_NO_HZ_COMMON
9521 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) {
9522 env->flags |= LBF_NOHZ_STATS;
9523 }
9524 #endif
9525
9526 do {
9527 struct sg_lb_stats *sgs = &tmp_sgs;
9528 int local_group;
9529
9530 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9531 if (local_group) {
9532 sds->local = sg;
9533 sgs = local;
9534
9535 if (env->idle != CPU_NEWLY_IDLE || time_after_eq(jiffies, sg->sgc->next_update)) {
9536 update_group_capacity(env->sd, env->dst_cpu);
9537 }
9538 }
9539
9540 update_sg_lb_stats(env, sg, sgs, &sg_status);
9541
9542 if (local_group) {
9543 goto next_group;
9544 }
9545
9546 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9547 sds->busiest = sg;
9548 sds->busiest_stat = *sgs;
9549 }
9550
9551 next_group:
9552 /* Now, start updating sd_lb_stats */
9553 sds->total_load += sgs->group_load;
9554 sds->total_capacity += sgs->group_capacity;
9555
9556 sg = sg->next;
9557 } while (sg != env->sd->groups);
9558
9559 /* Tag domain that child domain prefers tasks go to siblings first */
9560 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9561
9562 #ifdef CONFIG_NO_HZ_COMMON
9563 if ((env->flags & LBF_NOHZ_AGAIN) && cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
9564 WRITE_ONCE(nohz.next_blocked, jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
9565 }
9566 #endif
9567
9568 if (env->sd->flags & SD_NUMA) {
9569 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9570 }
9571
9572 if (!env->sd->parent) {
9573 struct root_domain *rd = env->dst_rq->rd;
9574
9575 /* update overload indicator if we are at root domain */
9576 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9577
9578 /* Update over-utilization (tipping point, U >= 0) indicator */
9579 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9580 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9581 } else if (sg_status & SG_OVERUTILIZED) {
9582 struct root_domain *rd = env->dst_rq->rd;
9583
9584 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9585 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9586 }
9587 }
9588
adjust_numa_imbalance(int imbalance,int nr_running)9589 static inline long adjust_numa_imbalance(int imbalance, int nr_running)
9590 {
9591 unsigned int imbalance_min;
9592
9593 /*
9594 * Allow a small imbalance based on a simple pair of communicating
9595 * tasks that remain local when the source domain is almost idle.
9596 */
9597 imbalance_min = 0x2;
9598 if (nr_running <= imbalance_min) {
9599 return 0;
9600 }
9601
9602 return imbalance;
9603 }
9604
9605 /**
9606 * calculate_imbalance - Calculate the amount of imbalance present within the
9607 * groups of a given sched_domain during load balance.
9608 * @env: load balance environment
9609 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9610 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)9611 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9612 {
9613 struct sg_lb_stats *local, *busiest;
9614
9615 local = &sds->local_stat;
9616 busiest = &sds->busiest_stat;
9617
9618 if (busiest->group_type == group_misfit_task) {
9619 /* Set imbalance to allow misfit tasks to be balanced. */
9620 env->migration_type = migrate_misfit;
9621 env->imbalance = 1;
9622 return;
9623 }
9624
9625 if (busiest->group_type == group_asym_packing) {
9626 /*
9627 * In case of asym capacity, we will try to migrate all load to
9628 * the preferred CPU.
9629 */
9630 env->migration_type = migrate_task;
9631 env->imbalance = busiest->sum_h_nr_running;
9632 return;
9633 }
9634
9635 if (busiest->group_type == group_imbalanced) {
9636 /*
9637 * In the group_imb case we cannot rely on group-wide averages
9638 * to ensure CPU-load equilibrium, try to move any task to fix
9639 * the imbalance. The next load balance will take care of
9640 * balancing back the system.
9641 */
9642 env->migration_type = migrate_task;
9643 env->imbalance = 1;
9644 return;
9645 }
9646
9647 /*
9648 * Try to use spare capacity of local group without overloading it or
9649 * emptying busiest.
9650 */
9651 if (local->group_type == group_has_spare) {
9652 if ((busiest->group_type > group_fully_busy) && !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9653 /*
9654 * If busiest is overloaded, try to fill spare
9655 * capacity. This might end up creating spare capacity
9656 * in busiest or busiest still being overloaded but
9657 * there is no simple way to directly compute the
9658 * amount of load to migrate in order to balance the
9659 * system.
9660 */
9661 env->migration_type = migrate_util;
9662 env->imbalance = max(local->group_capacity, local->group_util) - local->group_util;
9663
9664 /*
9665 * In some cases, the group's utilization is max or even
9666 * higher than capacity because of migrations but the
9667 * local CPU is (newly) idle. There is at least one
9668 * waiting task in this overloaded busiest group. Let's
9669 * try to pull it.
9670 */
9671 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9672 env->migration_type = migrate_task;
9673 env->imbalance = 1;
9674 }
9675
9676 return;
9677 }
9678
9679 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9680 unsigned int nr_diff = busiest->sum_nr_running;
9681 /*
9682 * When prefer sibling, evenly spread running tasks on
9683 * groups.
9684 */
9685 env->migration_type = migrate_task;
9686 lsub_positive(&nr_diff, local->sum_nr_running);
9687 env->imbalance = nr_diff >> 1;
9688 } else {
9689 /*
9690 * If there is no overload, we just want to even the number of
9691 * idle cpus.
9692 */
9693 env->migration_type = migrate_task;
9694 env->imbalance = max_t(long, 0, (local->idle_cpus - busiest->idle_cpus) >> 1);
9695 }
9696
9697 /* Consider allowing a small imbalance between NUMA groups */
9698 if (env->sd->flags & SD_NUMA) {
9699 env->imbalance = adjust_numa_imbalance(env->imbalance, busiest->sum_nr_running);
9700 }
9701
9702 return;
9703 }
9704
9705 /*
9706 * Local is fully busy but has to take more load to relieve the
9707 * busiest group
9708 */
9709 if (local->group_type < group_overloaded) {
9710 /*
9711 * Local will become overloaded so the avg_load metrics are
9712 * finally needed.
9713 */
9714
9715 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / local->group_capacity;
9716
9717 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / sds->total_capacity;
9718 /*
9719 * If the local group is more loaded than the selected
9720 * busiest group don't try to pull any tasks.
9721 */
9722 if (local->avg_load >= busiest->avg_load) {
9723 env->imbalance = 0;
9724 return;
9725 }
9726 }
9727
9728 /*
9729 * Both group are or will become overloaded and we're trying to get all
9730 * the CPUs to the average_load, so we don't want to push ourselves
9731 * above the average load, nor do we wish to reduce the max loaded CPU
9732 * below the average load. At the same time, we also don't want to
9733 * reduce the group load below the group capacity. Thus we look for
9734 * the minimum possible imbalance.
9735 */
9736 env->migration_type = migrate_load;
9737 env->imbalance = min((busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9738 (sds->avg_load - local->avg_load) * local->group_capacity) /
9739 SCHED_CAPACITY_SCALE;
9740 }
9741
9742 /******* find_busiest_group() helpers end here *********************/
9743
9744 /*
9745 * Decision matrix according to the local and busiest group type:
9746 *
9747 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9748 * has_spare nr_idle balanced N/A N/A balanced balanced
9749 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9750 * misfit_task force N/A N/A N/A force force
9751 * asym_packing force force N/A N/A force force
9752 * imbalanced force force N/A N/A force force
9753 * overloaded force force N/A N/A force avg_load
9754 *
9755 * N/A : Not Applicable because already filtered while updating
9756 * statistics.
9757 * balanced : The system is balanced for these 2 groups.
9758 * force : Calculate the imbalance as load migration is probably needed.
9759 * avg_load : Only if imbalance is significant enough.
9760 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9761 * different in groups.
9762 */
9763
9764 /**
9765 * find_busiest_group - Returns the busiest group within the sched_domain
9766 * if there is an imbalance.
9767 *
9768 * Also calculates the amount of runnable load which should be moved
9769 * to restore balance.
9770 *
9771 * @env: The load balancing environment.
9772 *
9773 * Return: - The busiest group if imbalance exists.
9774 */
find_busiest_group(struct lb_env * env)9775 static struct sched_group *find_busiest_group(struct lb_env *env)
9776 {
9777 struct sg_lb_stats *local, *busiest;
9778 struct sd_lb_stats sds;
9779
9780 init_sd_lb_stats(&sds);
9781
9782 /*
9783 * Compute the various statistics relevant for load balancing at
9784 * this level.
9785 */
9786 update_sd_lb_stats(env, &sds);
9787
9788 if (sched_energy_enabled()) {
9789 struct root_domain *rd = env->dst_rq->rd;
9790
9791 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) {
9792 goto out_balanced;
9793 }
9794 }
9795
9796 local = &sds.local_stat;
9797 busiest = &sds.busiest_stat;
9798
9799 /* There is no busy sibling group to pull tasks from */
9800 if (!sds.busiest) {
9801 goto out_balanced;
9802 }
9803
9804 /* Misfit tasks should be dealt with regardless of the avg load */
9805 if (busiest->group_type == group_misfit_task) {
9806 goto force_balance;
9807 }
9808
9809 /* ASYM feature bypasses nice load balance check */
9810 if (busiest->group_type == group_asym_packing) {
9811 goto force_balance;
9812 }
9813
9814 /*
9815 * If the busiest group is imbalanced the below checks don't
9816 * work because they assume all things are equal, which typically
9817 * isn't true due to cpus_ptr constraints and the like.
9818 */
9819 if (busiest->group_type == group_imbalanced) {
9820 goto force_balance;
9821 }
9822
9823 /*
9824 * If the local group is busier than the selected busiest group
9825 * don't try and pull any tasks.
9826 */
9827 if (local->group_type > busiest->group_type) {
9828 goto out_balanced;
9829 }
9830
9831 /*
9832 * When groups are overloaded, use the avg_load to ensure fairness
9833 * between tasks.
9834 */
9835 if (local->group_type == group_overloaded) {
9836 /*
9837 * If the local group is more loaded than the selected
9838 * busiest group don't try to pull any tasks.
9839 */
9840 if (local->avg_load >= busiest->avg_load) {
9841 goto out_balanced;
9842 }
9843
9844 /* XXX broken for overlapping NUMA groups */
9845 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / sds.total_capacity;
9846
9847 /*
9848 * Don't pull any tasks if this group is already above the
9849 * domain average load.
9850 */
9851 if (local->avg_load >= sds.avg_load) {
9852 goto out_balanced;
9853 }
9854
9855 /*
9856 * If the busiest group is more loaded, use imbalance_pct to be
9857 * conservative.
9858 */
9859 if (FAIR_ONEHUNDRED * busiest->avg_load <= env->sd->imbalance_pct * local->avg_load) {
9860 goto out_balanced;
9861 }
9862 }
9863
9864 /* Try to move all excess tasks to child's sibling domain */
9865 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9866 busiest->sum_nr_running > local->sum_nr_running + 1) {
9867 goto force_balance;
9868 }
9869
9870 if (busiest->group_type != group_overloaded) {
9871 if (env->idle == CPU_NOT_IDLE) {
9872 /*
9873 * If the busiest group is not overloaded (and as a
9874 * result the local one too) but this CPU is already
9875 * busy, let another idle CPU try to pull task.
9876 */
9877 goto out_balanced;
9878 }
9879
9880 if (busiest->group_weight > 1 && local->idle_cpus <= (busiest->idle_cpus + 1)) {
9881 /*
9882 * If the busiest group is not overloaded
9883 * and there is no imbalance between this and busiest
9884 * group wrt idle CPUs, it is balanced. The imbalance
9885 * becomes significant if the diff is greater than 1
9886 * otherwise we might end up to just move the imbalance
9887 * on another group. Of course this applies only if
9888 * there is more than 1 CPU per group.
9889 */
9890 goto out_balanced;
9891 }
9892
9893 if (busiest->sum_h_nr_running == 1) {
9894 /*
9895 * busiest doesn't have any tasks waiting to run
9896 */
9897 goto out_balanced;
9898 }
9899 }
9900
9901 force_balance:
9902 /* Looks like there is an imbalance. Compute it */
9903 calculate_imbalance(env, &sds);
9904 return env->imbalance ? sds.busiest : NULL;
9905
9906 out_balanced:
9907 env->imbalance = 0;
9908 return NULL;
9909 }
9910
9911 /*
9912 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9913 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)9914 static struct rq *find_busiest_queue(struct lb_env *env, struct sched_group *group)
9915 {
9916 struct rq *busiest = NULL, *rq;
9917 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9918 unsigned int busiest_nr = 0;
9919 int i;
9920
9921 for_each_cpu_and(i, sched_group_span(group), env->cpus)
9922 {
9923 unsigned long capacity, load, util;
9924 unsigned int nr_running;
9925 enum fbq_type rt;
9926
9927 rq = cpu_rq(i);
9928 rt = fbq_classify_rq(rq);
9929 /*
9930 * We classify groups/runqueues into three groups:
9931 * - regular: there are !numa tasks
9932 * - remote: there are numa tasks that run on the 'wrong' node
9933 * - all: there is no distinction
9934 *
9935 * In order to avoid migrating ideally placed numa tasks,
9936 * ignore those when there's better options.
9937 *
9938 * If we ignore the actual busiest queue to migrate another
9939 * task, the next balance pass can still reduce the busiest
9940 * queue by moving tasks around inside the node.
9941 *
9942 * If we cannot move enough load due to this classification
9943 * the next pass will adjust the group classification and
9944 * allow migration of more tasks.
9945 *
9946 * Both cases only affect the total convergence complexity.
9947 */
9948 if (rt > env->fbq_type) {
9949 continue;
9950 }
9951
9952 if (cpu_isolated(i)) {
9953 continue;
9954 }
9955
9956 capacity = capacity_of(i);
9957 nr_running = rq->cfs.h_nr_running;
9958
9959 /*
9960 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9961 * eventually lead to active_balancing high->low capacity.
9962 * Higher per-CPU capacity is considered better than balancing
9963 * average load.
9964 */
9965 if (env->sd->flags & SD_ASYM_CPUCAPACITY && capacity_of(env->dst_cpu) < capacity && nr_running == 1) {
9966 continue;
9967 }
9968
9969 switch (env->migration_type) {
9970 case migrate_load:
9971 /*
9972 * When comparing with load imbalance, use cpu_load()
9973 * which is not scaled with the CPU capacity.
9974 */
9975 load = cpu_load(rq);
9976 if (nr_running == 1 && load > env->imbalance && !check_cpu_capacity(rq, env->sd)) {
9977 break;
9978 }
9979
9980 /*
9981 * For the load comparisons with the other CPUs,
9982 * consider the cpu_load() scaled with the CPU
9983 * capacity, so that the load can be moved away
9984 * from the CPU that is potentially running at a
9985 * lower capacity.
9986 *
9987 * Thus we're looking for max(load_i / capacity_i),
9988 * crosswise multiplication to rid ourselves of the
9989 * division works out to:
9990 * load_i * capacity_j > load_j * capacity_i;
9991 * where j is our previous maximum.
9992 */
9993 if (load * busiest_capacity > busiest_load * capacity) {
9994 busiest_load = load;
9995 busiest_capacity = capacity;
9996 busiest = rq;
9997 }
9998 break;
9999
10000 case migrate_util:
10001 util = cpu_util(cpu_of(rq));
10002
10003 /*
10004 * Don't try to pull utilization from a CPU with one
10005 * running task. Whatever its utilization, we will fail
10006 * detach the task.
10007 */
10008 if (nr_running <= 1) {
10009 continue;
10010 }
10011
10012 if (busiest_util < util) {
10013 busiest_util = util;
10014 busiest = rq;
10015 }
10016 break;
10017
10018 case migrate_task:
10019 if (busiest_nr < nr_running) {
10020 busiest_nr = nr_running;
10021 busiest = rq;
10022 }
10023 break;
10024
10025 case migrate_misfit:
10026 /*
10027 * For ASYM_CPUCAPACITY domains with misfit tasks we
10028 * simply seek the "biggest" misfit task.
10029 */
10030 if (rq->misfit_task_load > busiest_load) {
10031 busiest_load = rq->misfit_task_load;
10032 busiest = rq;
10033 }
10034
10035 break;
10036 }
10037 }
10038
10039 return busiest;
10040 }
10041
10042 /*
10043 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10044 * so long as it is large enough.
10045 */
10046 #define MAX_PINNED_INTERVAL 512
10047
asym_active_balance(struct lb_env * env)10048 static inline bool asym_active_balance(struct lb_env *env)
10049 {
10050 /*
10051 * ASYM_PACKING needs to force migrate tasks from busy but
10052 * lower priority CPUs in order to pack all tasks in the
10053 * highest priority CPUs.
10054 */
10055 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10056 sched_asym_prefer(env->dst_cpu, env->src_cpu);
10057 }
10058
voluntary_active_balance(struct lb_env * env)10059 static inline bool voluntary_active_balance(struct lb_env *env)
10060 {
10061 struct sched_domain *sd = env->sd;
10062
10063 if (asym_active_balance(env)) {
10064 return 1;
10065 }
10066
10067 /*
10068 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10069 * It's worth migrating the task if the src_cpu's capacity is reduced
10070 * because of other sched_class or IRQs if more capacity stays
10071 * available on dst_cpu.
10072 */
10073 if ((env->idle != CPU_NOT_IDLE) && (env->src_rq->cfs.h_nr_running == 1)) {
10074 if ((check_cpu_capacity(env->src_rq, sd)) &&
10075 (capacity_of(env->src_cpu) * sd->imbalance_pct < capacity_of(env->dst_cpu) * FAIR_ONEHUNDRED)) {
10076 return 1;
10077 }
10078 }
10079
10080 if (env->migration_type == migrate_misfit) {
10081 return 1;
10082 }
10083
10084 return 0;
10085 }
10086
need_active_balance(struct lb_env * env)10087 static int need_active_balance(struct lb_env *env)
10088 {
10089 struct sched_domain *sd = env->sd;
10090
10091 if (voluntary_active_balance(env)) {
10092 return 1;
10093 }
10094
10095 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries + 2);
10096 }
10097
10098 #ifdef CONFIG_CPU_ISOLATION_OPT
group_balance_cpu_not_isolated(struct sched_group * sg)10099 int group_balance_cpu_not_isolated(struct sched_group *sg)
10100 {
10101 cpumask_t cpus;
10102
10103 cpumask_and(&cpus, sched_group_span(sg), group_balance_mask(sg));
10104 cpumask_andnot(&cpus, &cpus, cpu_isolated_mask);
10105 return cpumask_first(&cpus);
10106 }
10107 #endif
10108
10109 static int active_load_balance_cpu_stop(void *data);
10110
should_we_balance(struct lb_env * env)10111 static int should_we_balance(struct lb_env *env)
10112 {
10113 struct sched_group *sg = env->sd->groups;
10114 int cpu;
10115
10116 /*
10117 * Ensure the balancing environment is consistent; can happen
10118 * when the softirq triggers 'during' hotplug.
10119 */
10120 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) {
10121 return 0;
10122 }
10123
10124 /*
10125 * In the newly idle case, we will allow all the CPUs
10126 * to do the newly idle load balance.
10127 */
10128 if (env->idle == CPU_NEWLY_IDLE) {
10129 return 1;
10130 }
10131
10132 /* Try to find first idle CPU */
10133 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus)
10134 {
10135 if (!idle_cpu(cpu) || cpu_isolated(cpu)) {
10136 continue;
10137 }
10138
10139 /* Are we the first idle CPU? */
10140 return cpu == env->dst_cpu;
10141 }
10142
10143 /* Are we the first CPU of this group ? */
10144 return group_balance_cpu_not_isolated(sg) == env->dst_cpu;
10145 }
10146
10147 /*
10148 * Check this_cpu to ensure it is balanced within domain. Attempt to move
10149 * tasks if there is an imbalance.
10150 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)10151 static int load_balance(int this_cpu, struct rq *this_rq, struct sched_domain *sd, enum cpu_idle_type idle,
10152 int *continue_balancing)
10153 {
10154 int ld_moved, cur_ld_moved, active_balance = 0;
10155 struct sched_domain *sd_parent = sd->parent;
10156 struct sched_group *group;
10157 struct rq *busiest;
10158 struct rq_flags rf;
10159 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10160
10161 struct lb_env env = {
10162 .sd = sd,
10163 .dst_cpu = this_cpu,
10164 .dst_rq = this_rq,
10165 .dst_grpmask = sched_group_span(sd->groups),
10166 .idle = idle,
10167 .loop_break = sched_nr_migrate_break,
10168 .cpus = cpus,
10169 .fbq_type = all,
10170 .tasks = LIST_HEAD_INIT(env.tasks),
10171 };
10172
10173 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10174
10175 schedstat_inc(sd->lb_count[idle]);
10176
10177 redo:
10178 if (!should_we_balance(&env)) {
10179 *continue_balancing = 0;
10180 goto out_balanced;
10181 }
10182
10183 group = find_busiest_group(&env);
10184 if (!group) {
10185 schedstat_inc(sd->lb_nobusyg[idle]);
10186 goto out_balanced;
10187 }
10188
10189 busiest = find_busiest_queue(&env, group);
10190 if (!busiest) {
10191 schedstat_inc(sd->lb_nobusyq[idle]);
10192 goto out_balanced;
10193 }
10194
10195 BUG_ON(busiest == env.dst_rq);
10196
10197 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10198
10199 env.src_cpu = busiest->cpu;
10200 env.src_rq = busiest;
10201
10202 ld_moved = 0;
10203 if (busiest->nr_running > 1) {
10204 /*
10205 * Attempt to move tasks. If find_busiest_group has found
10206 * an imbalance but busiest->nr_running <= 1, the group is
10207 * still unbalanced. ld_moved simply stays zero, so it is
10208 * correctly treated as an imbalance.
10209 */
10210 env.flags |= LBF_ALL_PINNED;
10211 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
10212
10213 more_balance:
10214 rq_lock_irqsave(busiest, &rf);
10215 update_rq_clock(busiest);
10216
10217 /*
10218 * cur_ld_moved - load moved in current iteration
10219 * ld_moved - cumulative load moved across iterations
10220 */
10221 cur_ld_moved = detach_tasks(&env);
10222
10223 /*
10224 * We've detached some tasks from busiest_rq. Every
10225 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10226 * unlock busiest->lock, and we are able to be sure
10227 * that nobody can manipulate the tasks in parallel.
10228 * See task_rq_lock() family for the details.
10229 */
10230
10231 rq_unlock(busiest, &rf);
10232
10233 if (cur_ld_moved) {
10234 attach_tasks(&env);
10235 ld_moved += cur_ld_moved;
10236 }
10237
10238 local_irq_restore(rf.flags);
10239
10240 if (env.flags & LBF_NEED_BREAK) {
10241 env.flags &= ~LBF_NEED_BREAK;
10242 goto more_balance;
10243 }
10244
10245 /*
10246 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10247 * us and move them to an alternate dst_cpu in our sched_group
10248 * where they can run. The upper limit on how many times we
10249 * iterate on same src_cpu is dependent on number of CPUs in our
10250 * sched_group.
10251 *
10252 * This changes load balance semantics a bit on who can move
10253 * load to a given_cpu. In addition to the given_cpu itself
10254 * (or a ilb_cpu acting on its behalf where given_cpu is
10255 * nohz-idle), we now have balance_cpu in a position to move
10256 * load to given_cpu. In rare situations, this may cause
10257 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10258 * _independently_ and at _same_ time to move some load to
10259 * given_cpu) causing exceess load to be moved to given_cpu.
10260 * This however should not happen so much in practice and
10261 * moreover subsequent load balance cycles should correct the
10262 * excess load moved.
10263 */
10264 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10265 /* Prevent to re-select dst_cpu via env's CPUs */
10266 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
10267
10268 env.dst_rq = cpu_rq(env.new_dst_cpu);
10269 env.dst_cpu = env.new_dst_cpu;
10270 env.flags &= ~LBF_DST_PINNED;
10271 env.loop = 0;
10272 env.loop_break = sched_nr_migrate_break;
10273
10274 /*
10275 * Go back to "more_balance" rather than "redo" since we
10276 * need to continue with same src_cpu.
10277 */
10278 goto more_balance;
10279 }
10280
10281 /*
10282 * We failed to reach balance because of affinity.
10283 */
10284 if (sd_parent) {
10285 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10286
10287 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
10288 *group_imbalance = 1;
10289 }
10290 }
10291
10292 /* All tasks on this runqueue were pinned by CPU affinity */
10293 if (unlikely(env.flags & LBF_ALL_PINNED)) {
10294 __cpumask_clear_cpu(cpu_of(busiest), cpus);
10295 /*
10296 * Attempting to continue load balancing at the current
10297 * sched_domain level only makes sense if there are
10298 * active CPUs remaining as possible busiest CPUs to
10299 * pull load from which are not contained within the
10300 * destination group that is receiving any migrated
10301 * load.
10302 */
10303 if (!cpumask_subset(cpus, env.dst_grpmask)) {
10304 env.loop = 0;
10305 env.loop_break = sched_nr_migrate_break;
10306 goto redo;
10307 }
10308 goto out_all_pinned;
10309 }
10310 }
10311
10312 if (!ld_moved) {
10313 schedstat_inc(sd->lb_failed[idle]);
10314 /*
10315 * Increment the failure counter only on periodic balance.
10316 * We do not want newidle balance, which can be very
10317 * frequent, pollute the failure counter causing
10318 * excessive cache_hot migrations and active balances.
10319 */
10320 if (idle != CPU_NEWLY_IDLE) {
10321 sd->nr_balance_failed++;
10322 }
10323
10324 if (need_active_balance(&env)) {
10325 unsigned long flags;
10326
10327 raw_spin_lock_irqsave(&busiest->lock, flags);
10328
10329 /*
10330 * Don't kick the active_load_balance_cpu_stop,
10331 * if the curr task on busiest CPU can't be
10332 * moved to this_cpu:
10333 */
10334 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10335 raw_spin_unlock_irqrestore(&busiest->lock, flags);
10336 env.flags |= LBF_ALL_PINNED;
10337 goto out_one_pinned;
10338 }
10339
10340 /*
10341 * ->active_balance synchronizes accesses to
10342 * ->active_balance_work. Once set, it's cleared
10343 * only after active load balance is finished.
10344 */
10345 if (!busiest->active_balance && !cpu_isolated(cpu_of(busiest))) {
10346 busiest->active_balance = 1;
10347 busiest->push_cpu = this_cpu;
10348 active_balance = 1;
10349 }
10350 raw_spin_unlock_irqrestore(&busiest->lock, flags);
10351
10352 if (active_balance) {
10353 stop_one_cpu_nowait(cpu_of(busiest), active_load_balance_cpu_stop, busiest,
10354 &busiest->active_balance_work);
10355 }
10356
10357 /* We've kicked active balancing, force task migration. */
10358 sd->nr_balance_failed = sd->cache_nice_tries + 1;
10359 }
10360 } else {
10361 sd->nr_balance_failed = 0;
10362 }
10363
10364 if (likely(!active_balance) || voluntary_active_balance(&env)) {
10365 /* We were unbalanced, so reset the balancing interval */
10366 sd->balance_interval = sd->min_interval;
10367 } else {
10368 /*
10369 * If we've begun active balancing, start to back off. This
10370 * case may not be covered by the all_pinned logic if there
10371 * is only 1 task on the busy runqueue (because we don't call
10372 * detach_tasks).
10373 */
10374 if (sd->balance_interval < sd->max_interval) {
10375 sd->balance_interval *= 0x2;
10376 }
10377 }
10378
10379 goto out;
10380
10381 out_balanced:
10382 /*
10383 * We reach balance although we may have faced some affinity
10384 * constraints. Clear the imbalance flag only if other tasks got
10385 * a chance to move and fix the imbalance.
10386 */
10387 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10388 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10389
10390 if (*group_imbalance) {
10391 *group_imbalance = 0;
10392 }
10393 }
10394
10395 out_all_pinned:
10396 /*
10397 * We reach balance because all tasks are pinned at this level so
10398 * we can't migrate them. Let the imbalance flag set so parent level
10399 * can try to migrate them.
10400 */
10401 schedstat_inc(sd->lb_balanced[idle]);
10402
10403 sd->nr_balance_failed = 0;
10404
10405 out_one_pinned:
10406 ld_moved = 0;
10407
10408 /*
10409 * newidle_balance() disregards balance intervals, so we could
10410 * repeatedly reach this code, which would lead to balance_interval
10411 * skyrocketting in a short amount of time. Skip the balance_interval
10412 * increase logic to avoid that.
10413 */
10414 if (env.idle == CPU_NEWLY_IDLE) {
10415 goto out;
10416 }
10417
10418 /* tune up the balancing interval */
10419 if ((env.flags & LBF_ALL_PINNED && sd->balance_interval < MAX_PINNED_INTERVAL) ||
10420 sd->balance_interval < sd->max_interval) {
10421 sd->balance_interval *= 0x2;
10422 }
10423 out:
10424 return ld_moved;
10425 }
10426
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)10427 static inline unsigned long get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10428 {
10429 unsigned long interval = sd->balance_interval;
10430
10431 if (cpu_busy) {
10432 interval *= sd->busy_factor;
10433 }
10434
10435 /* scale ms to jiffies */
10436 interval = msecs_to_jiffies(interval);
10437
10438 /*
10439 * Reduce likelihood of busy balancing at higher domains racing with
10440 * balancing at lower domains by preventing their balancing periods
10441 * from being multiples of each other.
10442 */
10443 if (cpu_busy) {
10444 interval -= 1;
10445 }
10446
10447 interval = clamp(interval, 1UL, max_load_balance_interval);
10448
10449 return interval;
10450 }
10451
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)10452 static inline void update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10453 {
10454 unsigned long interval, next;
10455
10456 /* used by idle balance, so cpu_busy = 0 */
10457 interval = get_sd_balance_interval(sd, 0);
10458 next = sd->last_balance + interval;
10459
10460 if (time_after(*next_balance, next)) {
10461 *next_balance = next;
10462 }
10463 }
10464
10465 /*
10466 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10467 * running tasks off the busiest CPU onto idle CPUs. It requires at
10468 * least 1 task to be running on each physical CPU where possible, and
10469 * avoids physical / logical imbalances.
10470 */
active_load_balance_cpu_stop(void * data)10471 static int active_load_balance_cpu_stop(void *data)
10472 {
10473 struct rq *busiest_rq = data;
10474 int busiest_cpu = cpu_of(busiest_rq);
10475 int target_cpu = busiest_rq->push_cpu;
10476 struct rq *target_rq = cpu_rq(target_cpu);
10477 struct sched_domain *sd = NULL;
10478 struct task_struct *p = NULL;
10479 struct rq_flags rf;
10480 #ifdef CONFIG_SCHED_EAS
10481 struct task_struct *push_task;
10482 int push_task_detached = 0;
10483 #endif
10484
10485 rq_lock_irq(busiest_rq, &rf);
10486 /*
10487 * Between queueing the stop-work and running it is a hole in which
10488 * CPUs can become inactive. We should not move tasks from or to
10489 * inactive CPUs.
10490 */
10491 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) {
10492 goto out_unlock;
10493 }
10494
10495 /* Make sure the requested CPU hasn't gone down in the meantime: */
10496 if (unlikely(busiest_cpu != smp_processor_id() || !busiest_rq->active_balance)) {
10497 goto out_unlock;
10498 }
10499
10500 /* Is there any task to move? */
10501 if (busiest_rq->nr_running <= 1) {
10502 goto out_unlock;
10503 }
10504
10505 /*
10506 * This condition is "impossible", if it occurs
10507 * we need to fix it. Originally reported by
10508 * Bjorn Helgaas on a 128-CPU setup.
10509 */
10510 BUG_ON(busiest_rq == target_rq);
10511
10512 #ifdef CONFIG_SCHED_EAS
10513 push_task = busiest_rq->push_task;
10514 target_cpu = busiest_rq->push_cpu;
10515 if (push_task) {
10516 struct lb_env env = {
10517 .sd = sd,
10518 .dst_cpu = target_cpu,
10519 .dst_rq = target_rq,
10520 .src_cpu = busiest_rq->cpu,
10521 .src_rq = busiest_rq,
10522 .idle = CPU_IDLE,
10523 .flags = 0,
10524 .loop = 0,
10525 };
10526 if (task_on_rq_queued(push_task) && push_task->state == TASK_RUNNING && task_cpu(push_task) == busiest_cpu &&
10527 cpu_online(target_cpu)) {
10528 update_rq_clock(busiest_rq);
10529 detach_task(push_task, &env);
10530 push_task_detached = 1;
10531 }
10532 goto out_unlock;
10533 }
10534 #endif
10535
10536 /* Search for an sd spanning us and the target CPU. */
10537 rcu_read_lock();
10538 for_each_domain(target_cpu, sd)
10539 {
10540 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) {
10541 break;
10542 }
10543 }
10544
10545 if (likely(sd)) {
10546 struct lb_env env = {
10547 .sd = sd,
10548 .dst_cpu = target_cpu,
10549 .dst_rq = target_rq,
10550 .src_cpu = busiest_rq->cpu,
10551 .src_rq = busiest_rq,
10552 .idle = CPU_IDLE,
10553 /*
10554 * can_migrate_task() doesn't need to compute new_dst_cpu
10555 * for active balancing. Since we have CPU_IDLE, but no
10556 * @dst_grpmask we need to make that test go away with lying
10557 * about DST_PINNED.
10558 */
10559 .flags = LBF_DST_PINNED,
10560 };
10561
10562 schedstat_inc(sd->alb_count);
10563 update_rq_clock(busiest_rq);
10564
10565 p = detach_one_task(&env);
10566 if (p) {
10567 schedstat_inc(sd->alb_pushed);
10568 /* Active balancing done, reset the failure counter. */
10569 sd->nr_balance_failed = 0;
10570 } else {
10571 schedstat_inc(sd->alb_failed);
10572 }
10573 }
10574 rcu_read_unlock();
10575 out_unlock:
10576 busiest_rq->active_balance = 0;
10577
10578 #ifdef CONFIG_SCHED_EAS
10579 push_task = busiest_rq->push_task;
10580 if (push_task) {
10581 busiest_rq->push_task = NULL;
10582 }
10583 #endif
10584 rq_unlock(busiest_rq, &rf);
10585
10586 #ifdef CONFIG_SCHED_EAS
10587 if (push_task) {
10588 if (push_task_detached) {
10589 attach_one_task(target_rq, push_task);
10590 }
10591
10592 put_task_struct(push_task);
10593 }
10594 #endif
10595
10596 if (p) {
10597 attach_one_task(target_rq, p);
10598 }
10599
10600 local_irq_enable();
10601
10602 return 0;
10603 }
10604
10605 static DEFINE_SPINLOCK(balancing);
10606
10607 /*
10608 * Scale the max load_balance interval with the number of CPUs in the system.
10609 * This trades load-balance latency on larger machines for less cross talk.
10610 */
update_max_interval(void)10611 void update_max_interval(void)
10612 {
10613 unsigned int available_cpus;
10614 #ifdef CONFIG_CPU_ISOLATION_OPT
10615 cpumask_t avail_mask;
10616
10617 cpumask_andnot(&avail_mask, cpu_online_mask, cpu_isolated_mask);
10618 available_cpus = cpumask_weight(&avail_mask);
10619 #else
10620 available_cpus = num_online_cpus();
10621 #endif
10622
10623 max_load_balance_interval = HZ * available_cpus / 0xa;
10624 }
10625
10626 /*
10627 * It checks each scheduling domain to see if it is due to be balanced,
10628 * and initiates a balancing operation if so.
10629 *
10630 * Balancing parameters are set up in init_sched_domains.
10631 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)10632 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10633 {
10634 int continue_balancing = 1;
10635 int cpu = rq->cpu;
10636 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10637 unsigned long interval;
10638 struct sched_domain *sd;
10639 /* Earliest time when we have to do rebalance again */
10640 unsigned long next_balance = jiffies + 60 * HZ;
10641 int update_next_balance = 0;
10642 int need_serialize, need_decay = 0;
10643 u64 max_cost = 0;
10644
10645 rcu_read_lock();
10646 for_each_domain(cpu, sd)
10647 {
10648 /*
10649 * Decay the newidle max times here because this is a regular
10650 * visit to all the domains. Decay ~1% per second.
10651 */
10652 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10653 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * FAIR_TWOHUNDREDFIFTYTHREE) / FAIR_TWOHUNDREDFIFTYSIX;
10654 sd->next_decay_max_lb_cost = jiffies + HZ;
10655 need_decay = 1;
10656 }
10657 max_cost += sd->max_newidle_lb_cost;
10658
10659 /*
10660 * Stop the load balance at this level. There is another
10661 * CPU in our sched group which is doing load balancing more
10662 * actively.
10663 */
10664 if (!continue_balancing) {
10665 if (need_decay) {
10666 continue;
10667 }
10668 break;
10669 }
10670
10671 interval = get_sd_balance_interval(sd, busy);
10672
10673 need_serialize = sd->flags & SD_SERIALIZE;
10674 if (need_serialize) {
10675 if (!spin_trylock(&balancing)) {
10676 goto out;
10677 }
10678 }
10679
10680 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10681 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10682 /*
10683 * The LBF_DST_PINNED logic could have changed
10684 * env->dst_cpu, so we can't know our idle
10685 * state even if we migrated tasks. Update it.
10686 */
10687 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10688 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10689 }
10690 sd->last_balance = jiffies;
10691 interval = get_sd_balance_interval(sd, busy);
10692 }
10693 if (need_serialize) {
10694 spin_unlock(&balancing);
10695 }
10696 out:
10697 if (time_after(next_balance, sd->last_balance + interval)) {
10698 next_balance = sd->last_balance + interval;
10699 update_next_balance = 1;
10700 }
10701 }
10702 if (need_decay) {
10703 /*
10704 * Ensure the rq-wide value also decays but keep it at a
10705 * reasonable floor to avoid funnies with rq->avg_idle.
10706 */
10707 rq->max_idle_balance_cost = max((u64)sysctl_sched_migration_cost, max_cost);
10708 }
10709 rcu_read_unlock();
10710
10711 /*
10712 * next_balance will be updated only when there is a need.
10713 * When the cpu is attached to null domain for ex, it will not be
10714 * updated.
10715 */
10716 if (likely(update_next_balance)) {
10717 rq->next_balance = next_balance;
10718
10719 #ifdef CONFIG_NO_HZ_COMMON
10720 /*
10721 * If this CPU has been elected to perform the nohz idle
10722 * balance. Other idle CPUs have already rebalanced with
10723 * nohz_idle_balance() and nohz.next_balance has been
10724 * updated accordingly. This CPU is now running the idle load
10725 * balance for itself and we need to update the
10726 * nohz.next_balance accordingly.
10727 */
10728 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) {
10729 nohz.next_balance = rq->next_balance;
10730 }
10731 #endif
10732 }
10733 }
10734
on_null_domain(struct rq * rq)10735 static inline int on_null_domain(struct rq *rq)
10736 {
10737 return unlikely(!rcu_dereference_sched(rq->sd));
10738 }
10739
10740 #ifdef CONFIG_NO_HZ_COMMON
10741 /*
10742 * idle load balancing details
10743 * - When one of the busy CPUs notice that there may be an idle rebalancing
10744 * needed, they will kick the idle load balancer, which then does idle
10745 * load balancing for all the idle CPUs.
10746 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10747 * anywhere yet.
10748 */
10749
find_new_ilb(void)10750 static inline int find_new_ilb(void)
10751 {
10752 int ilb;
10753
10754 for_each_cpu_and(ilb, nohz.idle_cpus_mask, housekeeping_cpumask(HK_FLAG_MISC))
10755 {
10756 if (cpu_isolated(ilb)) {
10757 continue;
10758 }
10759
10760 if (idle_cpu(ilb)) {
10761 return ilb;
10762 }
10763 }
10764
10765 return nr_cpu_ids;
10766 }
10767
10768 /*
10769 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10770 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10771 */
kick_ilb(unsigned int flags)10772 static void kick_ilb(unsigned int flags)
10773 {
10774 int ilb_cpu;
10775
10776 /*
10777 * Increase nohz.next_balance only when if full ilb is triggered but
10778 * not if we only update stats.
10779 */
10780 if (flags & NOHZ_BALANCE_KICK) {
10781 nohz.next_balance = jiffies + 1;
10782 }
10783
10784 ilb_cpu = find_new_ilb();
10785 if (ilb_cpu >= nr_cpu_ids) {
10786 return;
10787 }
10788
10789 /*
10790 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10791 * the first flag owns it; cleared by nohz_csd_func().
10792 */
10793 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10794 if (flags & NOHZ_KICK_MASK) {
10795 return;
10796 }
10797
10798 /*
10799 * This way we generate an IPI on the target CPU which
10800 * is idle. And the softirq performing nohz idle load balance
10801 * will be run before returning from the IPI.
10802 */
10803 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10804 }
10805
10806 /*
10807 * Current decision point for kicking the idle load balancer in the presence
10808 * of idle CPUs in the system.
10809 */
nohz_balancer_kick(struct rq * rq)10810 static void nohz_balancer_kick(struct rq *rq)
10811 {
10812 unsigned long now = jiffies;
10813 struct sched_domain_shared *sds;
10814 struct sched_domain *sd;
10815 int nr_busy, i, cpu = rq->cpu;
10816 unsigned int flags = 0;
10817 cpumask_t cpumask;
10818
10819 if (unlikely(rq->idle_balance)) {
10820 return;
10821 }
10822
10823 /*
10824 * We may be recently in ticked or tickless idle mode. At the first
10825 * busy tick after returning from idle, we will update the busy stats.
10826 */
10827 nohz_balance_exit_idle(rq);
10828
10829 /*
10830 * None are in tickless mode and hence no need for NOHZ idle load
10831 * balancing.
10832 */
10833 #ifdef CONFIG_CPU_ISOLATION_OPT
10834 cpumask_andnot(&cpumask, nohz.idle_cpus_mask, cpu_isolated_mask);
10835 if (cpumask_empty(&cpumask)) {
10836 return;
10837 }
10838 #else
10839 cpumask_copy(&cpumask, nohz.idle_cpus_mask);
10840 if (likely(!atomic_read(&nohz.nr_cpus))) {
10841 return;
10842 }
10843 #endif
10844
10845 if (READ_ONCE(nohz.has_blocked) && time_after(now, READ_ONCE(nohz.next_blocked))) {
10846 flags = NOHZ_STATS_KICK;
10847 }
10848
10849 if (time_before(now, nohz.next_balance)) {
10850 goto out;
10851 }
10852
10853 if (rq->nr_running >= 0x2) {
10854 flags = NOHZ_KICK_MASK;
10855 goto out;
10856 }
10857
10858 rcu_read_lock();
10859
10860 sd = rcu_dereference(rq->sd);
10861 if (sd) {
10862 /*
10863 * If there's a CFS task and the current CPU has reduced
10864 * capacity; kick the ILB to see if there's a better CPU to run
10865 * on.
10866 */
10867 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10868 flags = NOHZ_KICK_MASK;
10869 goto unlock;
10870 }
10871 }
10872
10873 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10874 if (sd) {
10875 /*
10876 * When ASYM_PACKING; see if there's a more preferred CPU
10877 * currently idle; in which case, kick the ILB to move tasks
10878 * around.
10879 */
10880 for_each_cpu_and(i, sched_domain_span(sd), &cpumask)
10881 {
10882 if (sched_asym_prefer(i, cpu)) {
10883 flags = NOHZ_KICK_MASK;
10884 goto unlock;
10885 }
10886 }
10887 }
10888
10889 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10890 if (sd) {
10891 /*
10892 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10893 * to run the misfit task on.
10894 */
10895 if (check_misfit_status(rq, sd)) {
10896 flags = NOHZ_KICK_MASK;
10897 goto unlock;
10898 }
10899
10900 /*
10901 * For asymmetric systems, we do not want to nicely balance
10902 * cache use, instead we want to embrace asymmetry and only
10903 * ensure tasks have enough CPU capacity.
10904 *
10905 * Skip the LLC logic because it's not relevant in that case.
10906 */
10907 goto unlock;
10908 }
10909
10910 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10911 if (sds) {
10912 /*
10913 * If there is an imbalance between LLC domains (IOW we could
10914 * increase the overall cache use), we need some less-loaded LLC
10915 * domain to pull some load. Likewise, we may need to spread
10916 * load within the current LLC domain (e.g. packed SMT cores but
10917 * other CPUs are idle). We can't really know from here how busy
10918 * the others are - so just get a nohz balance going if it looks
10919 * like this LLC domain has tasks we could move.
10920 */
10921 nr_busy = atomic_read(&sds->nr_busy_cpus);
10922 if (nr_busy > 1) {
10923 flags = NOHZ_KICK_MASK;
10924 goto unlock;
10925 }
10926 }
10927 unlock:
10928 rcu_read_unlock();
10929 out:
10930 if (flags) {
10931 kick_ilb(flags);
10932 }
10933 }
10934
set_cpu_sd_state_busy(int cpu)10935 static void set_cpu_sd_state_busy(int cpu)
10936 {
10937 struct sched_domain *sd;
10938
10939 rcu_read_lock();
10940 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10941 if (!sd || !sd->nohz_idle) {
10942 goto unlock;
10943 }
10944 sd->nohz_idle = 0;
10945
10946 atomic_inc(&sd->shared->nr_busy_cpus);
10947 unlock:
10948 rcu_read_unlock();
10949 }
10950
nohz_balance_exit_idle(struct rq * rq)10951 void nohz_balance_exit_idle(struct rq *rq)
10952 {
10953 SCHED_WARN_ON(rq != this_rq());
10954
10955 if (likely(!rq->nohz_tick_stopped)) {
10956 return;
10957 }
10958
10959 rq->nohz_tick_stopped = 0;
10960 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10961 atomic_dec(&nohz.nr_cpus);
10962
10963 set_cpu_sd_state_busy(rq->cpu);
10964 }
10965
set_cpu_sd_state_idle(int cpu)10966 static void set_cpu_sd_state_idle(int cpu)
10967 {
10968 struct sched_domain *sd;
10969
10970 rcu_read_lock();
10971 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10972 if (!sd || sd->nohz_idle) {
10973 goto unlock;
10974 }
10975 sd->nohz_idle = 1;
10976
10977 atomic_dec(&sd->shared->nr_busy_cpus);
10978 unlock:
10979 rcu_read_unlock();
10980 }
10981
10982 /*
10983 * This routine will record that the CPU is going idle with tick stopped.
10984 * This info will be used in performing idle load balancing in the future.
10985 */
nohz_balance_enter_idle(int cpu)10986 void nohz_balance_enter_idle(int cpu)
10987 {
10988 struct rq *rq = cpu_rq(cpu);
10989
10990 SCHED_WARN_ON(cpu != smp_processor_id());
10991
10992 if (!cpu_active(cpu)) {
10993 /*
10994 * A CPU can be paused while it is idle with it's tick
10995 * stopped. nohz_balance_exit_idle() should be called
10996 * from the local CPU, so it can't be called during
10997 * pause. This results in paused CPU participating in
10998 * the nohz idle balance, which should be avoided.
10999 *
11000 * When the paused CPU exits idle and enters again,
11001 * exempt the paused CPU from nohz_balance_exit_idle.
11002 */
11003 nohz_balance_exit_idle(rq);
11004 return;
11005 }
11006
11007 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
11008 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) {
11009 return;
11010 }
11011
11012 /*
11013 * Can be set safely without rq->lock held
11014 * If a clear happens, it will have evaluated last additions because
11015 * rq->lock is held during the check and the clear
11016 */
11017 rq->has_blocked_load = 1;
11018
11019 /*
11020 * The tick is still stopped but load could have been added in the
11021 * meantime. We set the nohz.has_blocked flag to trig a check of the
11022 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11023 * of nohz.has_blocked can only happen after checking the new load
11024 */
11025 if (rq->nohz_tick_stopped) {
11026 goto out;
11027 }
11028
11029 /* If we're a completely isolated CPU, we don't play: */
11030 if (on_null_domain(rq)) {
11031 return;
11032 }
11033
11034 rq->nohz_tick_stopped = 1;
11035
11036 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11037 atomic_inc(&nohz.nr_cpus);
11038
11039 /*
11040 * Ensures that if nohz_idle_balance() fails to observe our
11041 * @idle_cpus_mask store, it must observe the @has_blocked
11042 * store.
11043 */
11044 smp_mb__after_atomic();
11045
11046 set_cpu_sd_state_idle(cpu);
11047
11048 out:
11049 /*
11050 * Each time a cpu enter idle, we assume that it has blocked load and
11051 * enable the periodic update of the load of idle cpus
11052 */
11053 WRITE_ONCE(nohz.has_blocked, 1);
11054 }
11055
11056 /*
11057 * Internal function that runs load balance for all idle cpus. The load balance
11058 * can be a simple update of blocked load or a complete load balance with
11059 * tasks movement depending of flags.
11060 * The function returns false if the loop has stopped before running
11061 * through all idle CPUs.
11062 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags,enum cpu_idle_type idle)11063 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, enum cpu_idle_type idle)
11064 {
11065 /* Earliest time when we have to do rebalance again */
11066 unsigned long now = jiffies;
11067 unsigned long next_balance = now + 60 * HZ;
11068 bool has_blocked_load = false;
11069 int update_next_balance = 0;
11070 int this_cpu = this_rq->cpu;
11071 int balance_cpu;
11072 int ret = false;
11073 struct rq *rq;
11074 cpumask_t cpus;
11075
11076 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11077
11078 /*
11079 * We assume there will be no idle load after this update and clear
11080 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11081 * set the has_blocked flag and trig another update of idle load.
11082 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11083 * setting the flag, we are sure to not clear the state and not
11084 * check the load of an idle cpu.
11085 */
11086 WRITE_ONCE(nohz.has_blocked, 0);
11087
11088 /*
11089 * Ensures that if we miss the CPU, we must see the has_blocked
11090 * store from nohz_balance_enter_idle().
11091 */
11092 smp_mb();
11093
11094 #ifdef CONFIG_CPU_ISOLATION_OPT
11095 cpumask_andnot(&cpus, nohz.idle_cpus_mask, cpu_isolated_mask);
11096 #else
11097 cpumask_copy(&cpus, nohz.idle_cpus_mask);
11098 #endif
11099
11100 for_each_cpu(balance_cpu, &cpus)
11101 {
11102 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) {
11103 continue;
11104 }
11105
11106 /*
11107 * If this CPU gets work to do, stop the load balancing
11108 * work being done for other CPUs. Next load
11109 * balancing owner will pick it up.
11110 */
11111 if (need_resched()) {
11112 has_blocked_load = true;
11113 goto abort;
11114 }
11115
11116 rq = cpu_rq(balance_cpu);
11117
11118 has_blocked_load |= update_nohz_stats(rq, true);
11119
11120 /*
11121 * If time for next balance is due,
11122 * do the balance.
11123 */
11124 if (time_after_eq(jiffies, rq->next_balance)) {
11125 struct rq_flags rf;
11126
11127 rq_lock_irqsave(rq, &rf);
11128 update_rq_clock(rq);
11129 rq_unlock_irqrestore(rq, &rf);
11130
11131 if (flags & NOHZ_BALANCE_KICK) {
11132 rebalance_domains(rq, CPU_IDLE);
11133 }
11134 }
11135
11136 if (time_after(next_balance, rq->next_balance)) {
11137 next_balance = rq->next_balance;
11138 update_next_balance = 1;
11139 }
11140 }
11141
11142 /*
11143 * next_balance will be updated only when there is a need.
11144 * When the CPU is attached to null domain for ex, it will not be
11145 * updated.
11146 */
11147 if (likely(update_next_balance)) {
11148 nohz.next_balance = next_balance;
11149 }
11150
11151 /* Newly idle CPU doesn't need an update */
11152 if (idle != CPU_NEWLY_IDLE) {
11153 update_blocked_averages(this_cpu);
11154 has_blocked_load |= this_rq->has_blocked_load;
11155 }
11156
11157 if (flags & NOHZ_BALANCE_KICK) {
11158 rebalance_domains(this_rq, CPU_IDLE);
11159 }
11160
11161 WRITE_ONCE(nohz.next_blocked, now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11162
11163 /* The full idle balance loop has been done */
11164 ret = true;
11165
11166 abort:
11167 /* There is still blocked load, enable periodic update */
11168 if (has_blocked_load) {
11169 WRITE_ONCE(nohz.has_blocked, 1);
11170 }
11171
11172 return ret;
11173 }
11174
11175 /*
11176 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11177 * rebalancing for all the cpus for whom scheduler ticks are stopped.
11178 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11179 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11180 {
11181 unsigned int flags = this_rq->nohz_idle_balance;
11182
11183 if (!flags) {
11184 return false;
11185 }
11186
11187 this_rq->nohz_idle_balance = 0;
11188
11189 if (idle != CPU_IDLE) {
11190 return false;
11191 }
11192
11193 _nohz_idle_balance(this_rq, flags, idle);
11194
11195 return true;
11196 }
11197
nohz_newidle_balance(struct rq * this_rq)11198 static void nohz_newidle_balance(struct rq *this_rq)
11199 {
11200 int this_cpu = this_rq->cpu;
11201
11202 /*
11203 * This CPU doesn't want to be disturbed by scheduler
11204 * housekeeping
11205 */
11206 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) {
11207 return;
11208 }
11209
11210 /* Will wake up very soon. No time for doing anything else */
11211 if (this_rq->avg_idle < sysctl_sched_migration_cost) {
11212 return;
11213 }
11214
11215 /* Don't need to update blocked load of idle CPUs */
11216 if (!READ_ONCE(nohz.has_blocked) || time_before(jiffies, READ_ONCE(nohz.next_blocked))) {
11217 return;
11218 }
11219
11220 raw_spin_unlock(&this_rq->lock);
11221 /*
11222 * This CPU is going to be idle and blocked load of idle CPUs
11223 * need to be updated. Run the ilb locally as it is a good
11224 * candidate for ilb instead of waking up another idle CPU.
11225 * Kick an normal ilb if we failed to do the update.
11226 */
11227 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) {
11228 kick_ilb(NOHZ_STATS_KICK);
11229 }
11230 raw_spin_lock(&this_rq->lock);
11231 }
11232
11233 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)11234 static inline void nohz_balancer_kick(struct rq *rq)
11235 {
11236 }
11237
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11238 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11239 {
11240 return false;
11241 }
11242
nohz_newidle_balance(struct rq * this_rq)11243 static inline void nohz_newidle_balance(struct rq *this_rq)
11244 {
11245 }
11246 #endif /* CONFIG_NO_HZ_COMMON */
11247
11248 /*
11249 * idle_balance is called by schedule() if this_cpu is about to become
11250 * idle. Attempts to pull tasks from other CPUs.
11251 *
11252 * Returns:
11253 * < 0 - we released the lock and there are !fair tasks present
11254 * 0 - failed, no new tasks
11255 * > 0 - success, new (fair) tasks present
11256 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)11257 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11258 {
11259 unsigned long next_balance = jiffies + HZ;
11260 int this_cpu = this_rq->cpu;
11261 struct sched_domain *sd;
11262 int pulled_task = 0;
11263 u64 curr_cost = 0;
11264
11265 if (cpu_isolated(this_cpu)) {
11266 return 0;
11267 }
11268
11269 update_misfit_status(NULL, this_rq);
11270 /*
11271 * We must set idle_stamp _before_ calling idle_balance(), such that we
11272 * measure the duration of idle_balance() as idle time.
11273 */
11274 this_rq->idle_stamp = rq_clock(this_rq);
11275
11276 /*
11277 * Do not pull tasks towards !active CPUs...
11278 */
11279 if (!cpu_active(this_cpu)) {
11280 return 0;
11281 }
11282
11283 /*
11284 * This is OK, because current is on_cpu, which avoids it being picked
11285 * for load-balance and preemption/IRQs are still disabled avoiding
11286 * further scheduler activity on it and we're being very careful to
11287 * re-start the picking loop.
11288 */
11289 rq_unpin_lock(this_rq, rf);
11290
11291 if (this_rq->avg_idle < sysctl_sched_migration_cost || !READ_ONCE(this_rq->rd->overload)) {
11292 rcu_read_lock();
11293 sd = rcu_dereference_check_sched_domain(this_rq->sd);
11294 if (sd) {
11295 update_next_balance(sd, &next_balance);
11296 }
11297 rcu_read_unlock();
11298
11299 nohz_newidle_balance(this_rq);
11300
11301 goto out;
11302 }
11303
11304 raw_spin_unlock(&this_rq->lock);
11305
11306 update_blocked_averages(this_cpu);
11307 rcu_read_lock();
11308 for_each_domain(this_cpu, sd)
11309 {
11310 int continue_balancing = 1;
11311 u64 t0, domain_cost;
11312
11313 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
11314 update_next_balance(sd, &next_balance);
11315 break;
11316 }
11317
11318 if (sd->flags & SD_BALANCE_NEWIDLE) {
11319 t0 = sched_clock_cpu(this_cpu);
11320
11321 pulled_task = load_balance(this_cpu, this_rq, sd, CPU_NEWLY_IDLE, &continue_balancing);
11322
11323 domain_cost = sched_clock_cpu(this_cpu) - t0;
11324 if (domain_cost > sd->max_newidle_lb_cost) {
11325 sd->max_newidle_lb_cost = domain_cost;
11326 }
11327
11328 curr_cost += domain_cost;
11329 }
11330
11331 update_next_balance(sd, &next_balance);
11332
11333 /*
11334 * Stop searching for tasks to pull if there are
11335 * now runnable tasks on this rq.
11336 */
11337 if (pulled_task || this_rq->nr_running > 0) {
11338 break;
11339 }
11340 }
11341 rcu_read_unlock();
11342
11343 raw_spin_lock(&this_rq->lock);
11344
11345 if (curr_cost > this_rq->max_idle_balance_cost) {
11346 this_rq->max_idle_balance_cost = curr_cost;
11347 }
11348
11349 out:
11350 /*
11351 * While browsing the domains, we released the rq lock, a task could
11352 * have been enqueued in the meantime. Since we're not going idle,
11353 * pretend we pulled a task.
11354 */
11355 if (this_rq->cfs.h_nr_running && !pulled_task) {
11356 pulled_task = 1;
11357 }
11358
11359 /* Move the next balance forward */
11360 if (time_after(this_rq->next_balance, next_balance)) {
11361 this_rq->next_balance = next_balance;
11362 }
11363
11364 /* Is there a task of a high priority class? */
11365 if (this_rq->nr_running != this_rq->cfs.h_nr_running) {
11366 pulled_task = -1;
11367 }
11368
11369 if (pulled_task) {
11370 this_rq->idle_stamp = 0;
11371 }
11372
11373 rq_repin_lock(this_rq, rf);
11374
11375 return pulled_task;
11376 }
11377
11378 /*
11379 * run_rebalance_domains is triggered when needed from the scheduler tick.
11380 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11381 */
run_rebalance_domains(struct softirq_action * h)11382 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11383 {
11384 struct rq *this_rq = this_rq();
11385 enum cpu_idle_type idle = this_rq->idle_balance ? CPU_IDLE : CPU_NOT_IDLE;
11386
11387 /*
11388 * Since core isolation doesn't update nohz.idle_cpus_mask, there
11389 * is a possibility this nohz kicked cpu could be isolated. Hence
11390 * return if the cpu is isolated.
11391 */
11392 if (cpu_isolated(this_rq->cpu)) {
11393 return;
11394 }
11395
11396 /*
11397 * If this CPU has a pending nohz_balance_kick, then do the
11398 * balancing on behalf of the other idle CPUs whose ticks are
11399 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11400 * give the idle CPUs a chance to load balance. Else we may
11401 * load balance only within the local sched_domain hierarchy
11402 * and abort nohz_idle_balance altogether if we pull some load.
11403 */
11404 if (nohz_idle_balance(this_rq, idle)) {
11405 return;
11406 }
11407
11408 /* normal load balance */
11409 update_blocked_averages(this_rq->cpu);
11410 rebalance_domains(this_rq, idle);
11411 }
11412
11413 /*
11414 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11415 */
trigger_load_balance(struct rq * rq)11416 void trigger_load_balance(struct rq *rq)
11417 {
11418 /* Don't need to rebalance while attached to NULL domain or
11419 * cpu is isolated.
11420 */
11421 if (unlikely(on_null_domain(rq)) || cpu_isolated(cpu_of(rq))) {
11422 return;
11423 }
11424
11425 if (time_after_eq(jiffies, rq->next_balance)) {
11426 raise_softirq(SCHED_SOFTIRQ);
11427 }
11428
11429 nohz_balancer_kick(rq);
11430 }
11431
rq_online_fair(struct rq * rq)11432 static void rq_online_fair(struct rq *rq)
11433 {
11434 update_sysctl();
11435
11436 update_runtime_enabled(rq);
11437 }
11438
rq_offline_fair(struct rq * rq)11439 static void rq_offline_fair(struct rq *rq)
11440 {
11441 update_sysctl();
11442
11443 /* Ensure any throttled groups are reachable by pick_next_task */
11444 unthrottle_offline_cfs_rqs(rq);
11445 }
11446
11447 #ifdef CONFIG_SCHED_EAS
kick_active_balance(struct rq * rq,struct task_struct * p,int new_cpu)11448 static inline int kick_active_balance(struct rq *rq, struct task_struct *p, int new_cpu)
11449 {
11450 unsigned long flags;
11451 int rc = 0;
11452
11453 if (cpu_of(rq) == new_cpu) {
11454 return rc;
11455 }
11456
11457 /* Invoke active balance to force migrate currently running task */
11458 raw_spin_lock_irqsave(&rq->lock, flags);
11459 if (!rq->active_balance) {
11460 rq->active_balance = 1;
11461 rq->push_cpu = new_cpu;
11462 get_task_struct(p);
11463 rq->push_task = p;
11464 rc = 1;
11465 }
11466 raw_spin_unlock_irqrestore(&rq->lock, flags);
11467 return rc;
11468 }
11469
11470 DEFINE_RAW_SPINLOCK(migration_lock);
check_for_migration_fair(struct rq * rq,struct task_struct * p)11471 static void check_for_migration_fair(struct rq *rq, struct task_struct *p)
11472 {
11473 int active_balance;
11474 int new_cpu = -1;
11475 int prev_cpu = task_cpu(p);
11476 int ret;
11477
11478 #ifdef CONFIG_SCHED_RTG
11479 bool need_down_migrate = false;
11480 struct cpumask *rtg_target = find_rtg_target(p);
11481
11482 if (rtg_target && (capacity_orig_of(prev_cpu) > capacity_orig_of(cpumask_first(rtg_target)))) {
11483 need_down_migrate = true;
11484 }
11485 #endif
11486
11487 if (rq->misfit_task_load) {
11488 if (rq->curr->state != TASK_RUNNING || rq->curr->nr_cpus_allowed == 1) {
11489 return;
11490 }
11491
11492 raw_spin_lock(&migration_lock);
11493 #ifdef CONFIG_SCHED_RTG
11494 if (rtg_target) {
11495 new_cpu = find_rtg_cpu(p);
11496 if (new_cpu != -1 && need_down_migrate && cpumask_test_cpu(new_cpu, rtg_target) && idle_cpu(new_cpu)) {
11497 goto do_active_balance;
11498 }
11499
11500 if (new_cpu != -1 && capacity_orig_of(new_cpu) > capacity_orig_of(prev_cpu)) {
11501 goto do_active_balance;
11502 }
11503
11504 goto out_unlock;
11505 }
11506 #endif
11507 rcu_read_lock();
11508 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
11509 rcu_read_unlock();
11510
11511 if (new_cpu == -1 || capacity_orig_of(new_cpu) <= capacity_orig_of(prev_cpu)) {
11512 goto out_unlock;
11513 }
11514 #ifdef CONFIG_SCHED_RTG
11515 do_active_balance:
11516 #endif
11517 active_balance = kick_active_balance(rq, p, new_cpu);
11518 if (active_balance) {
11519 mark_reserved(new_cpu);
11520 raw_spin_unlock(&migration_lock);
11521 ret = stop_one_cpu_nowait(prev_cpu, active_load_balance_cpu_stop, rq, &rq->active_balance_work);
11522 if (!ret) {
11523 clear_reserved(new_cpu);
11524 } else {
11525 wake_up_if_idle(new_cpu);
11526 }
11527 return;
11528 }
11529 out_unlock:
11530 raw_spin_unlock(&migration_lock);
11531 }
11532 }
11533 #endif /* CONFIG_SCHED_EAS */
11534 #endif /* CONFIG_SMP */
11535
11536 /*
11537 * scheduler tick hitting a task of our scheduling class.
11538 *
11539 * NOTE: This function can be called remotely by the tick offload that
11540 * goes along full dynticks. Therefore no local assumption can be made
11541 * and everything must be accessed through the @rq and @curr passed in
11542 * parameters.
11543 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)11544 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11545 {
11546 struct cfs_rq *cfs_rq;
11547 struct sched_entity *se = &curr->se;
11548
11549 for_each_sched_entity(se) {
11550 cfs_rq = cfs_rq_of(se);
11551 entity_tick(cfs_rq, se, queued);
11552 }
11553
11554 if (static_branch_unlikely(&sched_numa_balancing)) {
11555 task_tick_numa(rq, curr);
11556 }
11557
11558 update_misfit_status(curr, rq);
11559 update_overutilized_status(task_rq(curr));
11560 }
11561
11562 /*
11563 * called on fork with the child task as argument from the parent's context
11564 * - child not yet on the tasklist
11565 * - preemption disabled
11566 */
task_fork_fair(struct task_struct * p)11567 static void task_fork_fair(struct task_struct *p)
11568 {
11569 struct cfs_rq *cfs_rq;
11570 struct sched_entity *se = &p->se, *curr;
11571 struct rq *rq = this_rq();
11572 struct rq_flags rf;
11573
11574 rq_lock(rq, &rf);
11575 update_rq_clock(rq);
11576
11577 cfs_rq = task_cfs_rq(current);
11578 curr = cfs_rq->curr;
11579 if (curr) {
11580 update_curr(cfs_rq);
11581 se->vruntime = curr->vruntime;
11582 }
11583 place_entity(cfs_rq, se, 1);
11584
11585 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11586 /*
11587 * Upon rescheduling, sched_class::put_prev_task() will place
11588 * 'current' within the tree based on its new key value.
11589 */
11590 swap(curr->vruntime, se->vruntime);
11591 resched_curr(rq);
11592 }
11593
11594 se->vruntime -= cfs_rq->min_vruntime;
11595 rq_unlock(rq, &rf);
11596 }
11597
11598 /*
11599 * Priority of the task has changed. Check to see if we preempt
11600 * the current task.
11601 */
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)11602 static void prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11603 {
11604 if (!task_on_rq_queued(p)) {
11605 return;
11606 }
11607
11608 if (rq->cfs.nr_running == 1) {
11609 return;
11610 }
11611
11612 /*
11613 * Reschedule if we are currently running on this runqueue and
11614 * our priority decreased, or if we are not currently running on
11615 * this runqueue and our priority is higher than the current's
11616 */
11617 if (rq->curr == p) {
11618 if (p->prio > oldprio) {
11619 resched_curr(rq);
11620 }
11621 } else {
11622 check_preempt_curr(rq, p, 0);
11623 }
11624 }
11625
vruntime_normalized(struct task_struct * p)11626 static inline bool vruntime_normalized(struct task_struct *p)
11627 {
11628 struct sched_entity *se = &p->se;
11629
11630 /*
11631 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11632 * the dequeue_entity(.flags=0) will already have normalized the
11633 * vruntime.
11634 */
11635 if (p->on_rq) {
11636 return true;
11637 }
11638
11639 /*
11640 * When !on_rq, vruntime of the task has usually NOT been normalized.
11641 * But there are some cases where it has already been normalized:
11642 *
11643 * - A forked child which is waiting for being woken up by
11644 * wake_up_new_task().
11645 * - A task which has been woken up by try_to_wake_up() and
11646 * waiting for actually being woken up by sched_ttwu_pending().
11647 */
11648 if (!se->sum_exec_runtime || (p->state == TASK_WAKING && p->sched_remote_wakeup)) {
11649 return true;
11650 }
11651
11652 return false;
11653 }
11654
11655 #ifdef CONFIG_FAIR_GROUP_SCHED
11656 /*
11657 * Propagate the changes of the sched_entity across the tg tree to make it
11658 * visible to the root
11659 */
propagate_entity_cfs_rq(struct sched_entity * se)11660 static void propagate_entity_cfs_rq(struct sched_entity *se)
11661 {
11662 struct cfs_rq *cfs_rq;
11663
11664 list_add_leaf_cfs_rq(cfs_rq_of(se));
11665
11666 /* Start to propagate at parent */
11667 se = se->parent;
11668
11669 for_each_sched_entity(se) {
11670 cfs_rq = cfs_rq_of(se);
11671 if (!cfs_rq_throttled(cfs_rq)) {
11672 update_load_avg(cfs_rq, se, UPDATE_TG);
11673 list_add_leaf_cfs_rq(cfs_rq);
11674 continue;
11675 }
11676
11677 if (list_add_leaf_cfs_rq(cfs_rq)) {
11678 break;
11679 }
11680 }
11681 }
11682 #else
propagate_entity_cfs_rq(struct sched_entity * se)11683 static void propagate_entity_cfs_rq(struct sched_entity *se)
11684 {
11685 }
11686 #endif
11687
detach_entity_cfs_rq(struct sched_entity * se)11688 static void detach_entity_cfs_rq(struct sched_entity *se)
11689 {
11690 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11691
11692 /* Catch up with the cfs_rq and remove our load when we leave */
11693 update_load_avg(cfs_rq, se, 0);
11694 detach_entity_load_avg(cfs_rq, se);
11695 update_tg_load_avg(cfs_rq);
11696 propagate_entity_cfs_rq(se);
11697 }
11698
attach_entity_cfs_rq(struct sched_entity * se)11699 static void attach_entity_cfs_rq(struct sched_entity *se)
11700 {
11701 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11702
11703 #ifdef CONFIG_FAIR_GROUP_SCHED
11704 /*
11705 * Since the real-depth could have been changed (only FAIR
11706 * class maintain depth value), reset depth properly.
11707 */
11708 se->depth = se->parent ? se->parent->depth + 1 : 0;
11709 #endif
11710
11711 /* Synchronize entity with its cfs_rq */
11712 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11713 attach_entity_load_avg(cfs_rq, se);
11714 update_tg_load_avg(cfs_rq);
11715 propagate_entity_cfs_rq(se);
11716 }
11717
detach_task_cfs_rq(struct task_struct * p)11718 static void detach_task_cfs_rq(struct task_struct *p)
11719 {
11720 struct sched_entity *se = &p->se;
11721 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11722
11723 if (!vruntime_normalized(p)) {
11724 /*
11725 * Fix up our vruntime so that the current sleep doesn't
11726 * cause 'unlimited' sleep bonus.
11727 */
11728 place_entity(cfs_rq, se, 0);
11729 se->vruntime -= cfs_rq->min_vruntime;
11730 }
11731
11732 detach_entity_cfs_rq(se);
11733 }
11734
attach_task_cfs_rq(struct task_struct * p)11735 static void attach_task_cfs_rq(struct task_struct *p)
11736 {
11737 struct sched_entity *se = &p->se;
11738 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11739
11740 attach_entity_cfs_rq(se);
11741
11742 if (!vruntime_normalized(p)) {
11743 se->vruntime += cfs_rq->min_vruntime;
11744 }
11745 }
11746
switched_from_fair(struct rq * rq,struct task_struct * p)11747 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11748 {
11749 detach_task_cfs_rq(p);
11750 }
11751
switched_to_fair(struct rq * rq,struct task_struct * p)11752 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11753 {
11754 attach_task_cfs_rq(p);
11755
11756 if (task_on_rq_queued(p)) {
11757 /*
11758 * We were most likely switched from sched_rt, so
11759 * kick off the schedule if running, otherwise just see
11760 * if we can still preempt the current task.
11761 */
11762 if (rq->curr == p) {
11763 resched_curr(rq);
11764 } else {
11765 check_preempt_curr(rq, p, 0);
11766 }
11767 }
11768 }
11769
11770 /* Account for a task changing its policy or group.
11771 *
11772 * This routine is mostly called to set cfs_rq->curr field when a task
11773 * migrates between groups/classes.
11774 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)11775 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11776 {
11777 struct sched_entity *se = &p->se;
11778
11779 #ifdef CONFIG_SMP
11780 if (task_on_rq_queued(p)) {
11781 /*
11782 * Move the next running task to the front of the list, so our
11783 * cfs_tasks list becomes MRU one.
11784 */
11785 list_move(&se->group_node, &rq->cfs_tasks);
11786 }
11787 #endif
11788
11789 for_each_sched_entity(se) {
11790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11791
11792 set_next_entity(cfs_rq, se);
11793 /* ensure bandwidth has been allocated on our new cfs_rq */
11794 account_cfs_rq_runtime(cfs_rq, 0);
11795 }
11796 }
11797
init_cfs_rq(struct cfs_rq * cfs_rq)11798 void init_cfs_rq(struct cfs_rq *cfs_rq)
11799 {
11800 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11801 cfs_rq->min_vruntime = (u64)(-(1LL << FAIR_TWENTY));
11802 #ifndef CONFIG_64BIT
11803 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11804 #endif
11805 #ifdef CONFIG_SMP
11806 raw_spin_lock_init(&cfs_rq->removed.lock);
11807 #endif
11808 }
11809
11810 #ifdef CONFIG_FAIR_GROUP_SCHED
task_set_group_fair(struct task_struct * p)11811 static void task_set_group_fair(struct task_struct *p)
11812 {
11813 struct sched_entity *se = &p->se;
11814
11815 set_task_rq(p, task_cpu(p));
11816 se->depth = se->parent ? se->parent->depth + 1 : 0;
11817 }
11818
task_move_group_fair(struct task_struct * p)11819 static void task_move_group_fair(struct task_struct *p)
11820 {
11821 detach_task_cfs_rq(p);
11822 set_task_rq(p, task_cpu(p));
11823
11824 #ifdef CONFIG_SMP
11825 /* Tell se's cfs_rq has been changed -- migrated */
11826 p->se.avg.last_update_time = 0;
11827 #endif
11828 attach_task_cfs_rq(p);
11829 }
11830
task_change_group_fair(struct task_struct * p,int type)11831 static void task_change_group_fair(struct task_struct *p, int type)
11832 {
11833 switch (type) {
11834 case TASK_SET_GROUP:
11835 task_set_group_fair(p);
11836 break;
11837
11838 case TASK_MOVE_GROUP:
11839 task_move_group_fair(p);
11840 break;
11841 }
11842 }
11843
free_fair_sched_group(struct task_group * tg)11844 void free_fair_sched_group(struct task_group *tg)
11845 {
11846 int i;
11847
11848 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11849
11850 for_each_possible_cpu(i)
11851 {
11852 if (tg->cfs_rq) {
11853 kfree(tg->cfs_rq[i]);
11854 }
11855 if (tg->se) {
11856 kfree(tg->se[i]);
11857 }
11858 }
11859
11860 kfree(tg->cfs_rq);
11861 kfree(tg->se);
11862 }
11863
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11864 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11865 {
11866 struct sched_entity *se;
11867 struct cfs_rq *cfs_rq;
11868 int i;
11869
11870 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11871 if (!tg->cfs_rq) {
11872 goto err;
11873 }
11874 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11875 if (!tg->se) {
11876 goto err;
11877 }
11878
11879 tg->shares = NICE_0_LOAD;
11880
11881 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11882
11883 for_each_possible_cpu(i)
11884 {
11885 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), GFP_KERNEL, cpu_to_node(i));
11886 if (!cfs_rq) {
11887 goto err;
11888 }
11889
11890 se = kzalloc_node(sizeof(struct sched_entity), GFP_KERNEL, cpu_to_node(i));
11891 if (!se) {
11892 goto err_free_rq;
11893 }
11894
11895 init_cfs_rq(cfs_rq);
11896 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11897 init_entity_runnable_average(se);
11898 }
11899
11900 return 1;
11901
11902 err_free_rq:
11903 kfree(cfs_rq);
11904 err:
11905 return 0;
11906 }
11907
online_fair_sched_group(struct task_group * tg)11908 void online_fair_sched_group(struct task_group *tg)
11909 {
11910 struct sched_entity *se;
11911 struct rq_flags rf;
11912 struct rq *rq;
11913 int i;
11914
11915 for_each_possible_cpu(i)
11916 {
11917 rq = cpu_rq(i);
11918 se = tg->se[i];
11919 rq_lock_irq(rq, &rf);
11920 update_rq_clock(rq);
11921 attach_entity_cfs_rq(se);
11922 sync_throttle(tg, i);
11923 rq_unlock_irq(rq, &rf);
11924 }
11925 }
11926
unregister_fair_sched_group(struct task_group * tg)11927 void unregister_fair_sched_group(struct task_group *tg)
11928 {
11929 unsigned long flags;
11930 struct rq *rq;
11931 int cpu;
11932
11933 for_each_possible_cpu(cpu)
11934 {
11935 if (tg->se[cpu]) {
11936 remove_entity_load_avg(tg->se[cpu]);
11937 }
11938
11939 /*
11940 * Only empty task groups can be destroyed; so we can speculatively
11941 * check on_list without danger of it being re-added.
11942 */
11943 if (!tg->cfs_rq[cpu]->on_list) {
11944 continue;
11945 }
11946
11947 rq = cpu_rq(cpu);
11948
11949 raw_spin_lock_irqsave(&rq->lock, flags);
11950 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11951 raw_spin_unlock_irqrestore(&rq->lock, flags);
11952 }
11953 }
11954
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)11955 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, struct sched_entity *se, int cpu,
11956 struct sched_entity *parent)
11957 {
11958 struct rq *rq = cpu_rq(cpu);
11959
11960 cfs_rq->tg = tg;
11961 cfs_rq->rq = rq;
11962 init_cfs_rq_runtime(cfs_rq);
11963
11964 tg->cfs_rq[cpu] = cfs_rq;
11965 tg->se[cpu] = se;
11966
11967 /* se could be NULL for root_task_group */
11968 if (!se) {
11969 return;
11970 }
11971
11972 if (!parent) {
11973 se->cfs_rq = &rq->cfs;
11974 se->depth = 0;
11975 } else {
11976 se->cfs_rq = parent->my_q;
11977 se->depth = parent->depth + 1;
11978 }
11979
11980 se->my_q = cfs_rq;
11981 /* guarantee group entities always have weight */
11982 update_load_set(&se->load, NICE_0_LOAD);
11983 se->parent = parent;
11984 }
11985
11986 static DEFINE_MUTEX(shares_mutex);
11987
sched_group_set_shares(struct task_group * tg,unsigned long shares)11988 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11989 {
11990 int i;
11991
11992 /*
11993 * We can't change the weight of the root cgroup.
11994 */
11995 if (!tg->se[0]) {
11996 return -EINVAL;
11997 }
11998
11999 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12000
12001 mutex_lock(&shares_mutex);
12002 if (tg->shares == shares) {
12003 goto done;
12004 }
12005
12006 tg->shares = shares;
12007 for_each_possible_cpu(i) {
12008 struct rq *rq = cpu_rq(i);
12009 struct sched_entity *se = tg->se[i];
12010 struct rq_flags rf;
12011
12012 /* Propagate contribution to hierarchy */
12013 rq_lock_irqsave(rq, &rf);
12014 update_rq_clock(rq);
12015 for_each_sched_entity(se) {
12016 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12017 update_cfs_group(se);
12018 }
12019 rq_unlock_irqrestore(rq, &rf);
12020 }
12021
12022 done:
12023 mutex_unlock(&shares_mutex);
12024 return 0;
12025 }
12026 #else /* CONFIG_FAIR_GROUP_SCHED */
12027
free_fair_sched_group(struct task_group * tg)12028 void free_fair_sched_group(struct task_group *tg)
12029 {
12030 }
12031
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12032 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12033 {
12034 return 1;
12035 }
12036
online_fair_sched_group(struct task_group * tg)12037 void online_fair_sched_group(struct task_group *tg)
12038 {
12039 }
12040
unregister_fair_sched_group(struct task_group * tg)12041 void unregister_fair_sched_group(struct task_group *tg)
12042 {
12043 }
12044
12045 #endif /* CONFIG_FAIR_GROUP_SCHED */
12046
get_rr_interval_fair(struct rq * rq,struct task_struct * task)12047 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12048 {
12049 struct sched_entity *se = &task->se;
12050 unsigned int rr_interval = 0;
12051
12052 /*
12053 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12054 * idle runqueue:
12055 */
12056 if (rq->cfs.load.weight) {
12057 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
12058 }
12059
12060 return rr_interval;
12061 }
12062
12063 /*
12064 * All the scheduling class methods:
12065 */
12066 const struct sched_class fair_sched_class __section("__fair_sched_class") = {
12067 .enqueue_task = enqueue_task_fair,
12068 .dequeue_task = dequeue_task_fair,
12069 .yield_task = yield_task_fair,
12070 .yield_to_task = yield_to_task_fair,
12071
12072 .check_preempt_curr = check_preempt_wakeup,
12073
12074 .pick_next_task = fair_pick_next_task_fair,
12075 .put_prev_task = put_prev_task_fair,
12076 .set_next_task = set_next_task_fair,
12077
12078 #ifdef CONFIG_SMP
12079 .balance = balance_fair,
12080 .select_task_rq = select_task_rq_fair,
12081 .migrate_task_rq = migrate_task_rq_fair,
12082
12083 .rq_online = rq_online_fair,
12084 .rq_offline = rq_offline_fair,
12085
12086 .task_dead = task_dead_fair,
12087 .set_cpus_allowed = set_cpus_allowed_common,
12088 #endif
12089
12090 .task_tick = task_tick_fair,
12091 .task_fork = task_fork_fair,
12092
12093 .prio_changed = prio_changed_fair,
12094 .switched_from = switched_from_fair,
12095 .switched_to = switched_to_fair,
12096
12097 .get_rr_interval = get_rr_interval_fair,
12098
12099 .update_curr = update_curr_fair,
12100
12101 #ifdef CONFIG_FAIR_GROUP_SCHED
12102 .task_change_group = task_change_group_fair,
12103 #endif
12104
12105 #ifdef CONFIG_UCLAMP_TASK
12106 .uclamp_enabled = 1,
12107 #endif
12108 #ifdef CONFIG_SCHED_WALT
12109 .fixup_walt_sched_stats = walt_fixup_sched_stats_fair,
12110 #endif
12111 #ifdef CONFIG_SCHED_EAS
12112 .check_for_migration = check_for_migration_fair,
12113 #endif
12114 };
12115
12116 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)12117 void print_cfs_stats(struct seq_file *m, int cpu)
12118 {
12119 struct cfs_rq *cfs_rq, *pos;
12120
12121 rcu_read_lock();
12122 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) print_cfs_rq(m, cpu, cfs_rq);
12123 rcu_read_unlock();
12124 }
12125
12126 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)12127 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12128 {
12129 int node;
12130 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12131 struct numa_group *ng;
12132
12133 rcu_read_lock();
12134 ng = rcu_dereference(p->numa_group);
12135 for_each_online_node(node)
12136 {
12137 if (p->numa_faults) {
12138 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12139 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12140 }
12141 if (ng) {
12142 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12143 }
12144 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12145 }
12146 rcu_read_unlock();
12147 }
12148 #endif /* CONFIG_NUMA_BALANCING */
12149 #endif /* CONFIG_SCHED_DEBUG */
12150
init_sched_fair_class(void)12151 __init void init_sched_fair_class(void)
12152 {
12153 #ifdef CONFIG_SMP
12154 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12155
12156 #ifdef CONFIG_NO_HZ_COMMON
12157 nohz.next_balance = jiffies;
12158 nohz.next_blocked = jiffies;
12159 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12160 #endif
12161 #endif /* SMP */
12162 }
12163
12164 /* WALT sched implementation begins here */
12165 #ifdef CONFIG_SCHED_WALT
12166
12167 #ifdef CONFIG_CFS_BANDWIDTH
12168
walt_init_cfs_rq_stats(struct cfs_rq * cfs_rq)12169 static void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq)
12170 {
12171 cfs_rq->walt_stats.cumulative_runnable_avg_scaled = 0;
12172 }
12173
walt_inc_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)12174 static void walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p)
12175 {
12176 fixup_cumulative_runnable_avg(&cfs_rq->walt_stats, p->ravg.demand_scaled);
12177 }
12178
walt_dec_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)12179 static void walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p)
12180 {
12181 fixup_cumulative_runnable_avg(&cfs_rq->walt_stats, -(s64)p->ravg.demand_scaled);
12182 }
12183
walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats * stats,struct cfs_rq * tcfs_rq)12184 static void walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats *stats, struct cfs_rq *tcfs_rq)
12185 {
12186 struct rq *rq = rq_of(tcfs_rq);
12187
12188 fixup_cumulative_runnable_avg(stats, tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
12189
12190 if (stats == &rq->walt_stats) {
12191 walt_fixup_cum_window_demand(rq, tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
12192 }
12193 }
12194
walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats * stats,struct cfs_rq * tcfs_rq)12195 static void walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats *stats, struct cfs_rq *tcfs_rq)
12196 {
12197 struct rq *rq = rq_of(tcfs_rq);
12198
12199 fixup_cumulative_runnable_avg(stats, -tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
12200
12201 /*
12202 * We remove the throttled cfs_rq's tasks's contribution from the
12203 * cumulative window demand so that the same can be added
12204 * unconditionally when the cfs_rq is unthrottled.
12205 */
12206 if (stats == &rq->walt_stats) {
12207 walt_fixup_cum_window_demand(rq, -tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
12208 }
12209 }
12210
walt_fixup_sched_stats_fair(struct rq * rq,struct task_struct * p,u16 updated_demand_scaled)12211 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p, u16 updated_demand_scaled)
12212 {
12213 struct cfs_rq *cfs_rq;
12214 struct sched_entity *se = &p->se;
12215 s64 task_load_delta = (s64)updated_demand_scaled - p->ravg.demand_scaled;
12216
12217 for_each_sched_entity(se) {
12218 cfs_rq = cfs_rq_of(se);
12219
12220 fixup_cumulative_runnable_avg(&cfs_rq->walt_stats, task_load_delta);
12221 if (cfs_rq_throttled(cfs_rq)) {
12222 break;
12223 }
12224 }
12225
12226 /* Fix up rq->walt_stats only if we didn't find any throttled cfs_rq */
12227 if (!se) {
12228 fixup_cumulative_runnable_avg(&rq->walt_stats, task_load_delta);
12229 walt_fixup_cum_window_demand(rq, task_load_delta);
12230 }
12231 }
12232
12233 #else /* CONFIG_CFS_BANDWIDTH */
walt_fixup_sched_stats_fair(struct rq * rq,struct task_struct * p,u16 updated_demand_scaled)12234 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p, u16 updated_demand_scaled)
12235 {
12236 fixup_walt_sched_stats_common(rq, p, updated_demand_scaled);
12237 }
12238 #endif /* CONFIG_CFS_BANDWIDTH */
12239 #endif /* CONFIG_SCHED_WALT */
12240
12241 /*
12242 * Helper functions to facilitate extracting info from tracepoints.
12243 */
12244
sched_trace_cfs_rq_avg(struct cfs_rq * cfs_rq)12245 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
12246 {
12247 #ifdef CONFIG_SMP
12248 return cfs_rq ? &cfs_rq->avg : NULL;
12249 #else
12250 return NULL;
12251 #endif
12252 }
12253 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
12254
sched_trace_cfs_rq_path(struct cfs_rq * cfs_rq,char * str,int len)12255 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
12256 {
12257 if (!cfs_rq) {
12258 if (str) {
12259 strlcpy(str, "(null)", len);
12260 } else {
12261 return NULL;
12262 }
12263 }
12264
12265 cfs_rq_tg_path(cfs_rq, str, len);
12266 return str;
12267 }
12268 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
12269
sched_trace_cfs_rq_cpu(struct cfs_rq * cfs_rq)12270 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
12271 {
12272 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
12273 }
12274 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
12275
sched_trace_rq_avg_rt(struct rq * rq)12276 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
12277 {
12278 #ifdef CONFIG_SMP
12279 return rq ? &rq->avg_rt : NULL;
12280 #else
12281 return NULL;
12282 #endif
12283 }
12284 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
12285
sched_trace_rq_avg_dl(struct rq * rq)12286 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
12287 {
12288 #ifdef CONFIG_SMP
12289 return rq ? &rq->avg_dl : NULL;
12290 #else
12291 return NULL;
12292 #endif
12293 }
12294 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
12295
sched_trace_rq_avg_irq(struct rq * rq)12296 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
12297 {
12298 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
12299 return rq ? &rq->avg_irq : NULL;
12300 #else
12301 return NULL;
12302 #endif
12303 }
12304 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
12305
sched_trace_rq_cpu(struct rq * rq)12306 int sched_trace_rq_cpu(struct rq *rq)
12307 {
12308 return rq ? cpu_of(rq) : -1;
12309 }
12310 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
12311
sched_trace_rq_cpu_capacity(struct rq * rq)12312 int sched_trace_rq_cpu_capacity(struct rq *rq)
12313 {
12314 return rq ?
12315 #ifdef CONFIG_SMP
12316 rq->cpu_capacity
12317 #else
12318 SCHED_CAPACITY_SCALE
12319 #endif
12320 : -1;
12321 }
12322 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
12323
sched_trace_rd_span(struct root_domain * rd)12324 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
12325 {
12326 #ifdef CONFIG_SMP
12327 return rd ? rd->span : NULL;
12328 #else
12329 return NULL;
12330 #endif
12331 }
12332 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
12333
sched_trace_rq_nr_running(struct rq * rq)12334 int sched_trace_rq_nr_running(struct rq *rq)
12335 {
12336 return rq ? rq->nr_running : -1;
12337 }
12338 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
12339