• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
5  * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
6  * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * a) Redistributions of source code must retain the above copyright notice,
12  *    this list of conditions and the following disclaimer.
13  *
14  * b) Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the distribution.
17  *
18  * c) Neither the name of Cisco Systems, Inc. nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #if defined(__FreeBSD__) && !defined(__Userspace__)
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD: head/sys/netinet/sctp_auth.c 362054 2020-06-11 13:34:09Z tuexen $");
38 #endif
39 
40 #include <netinet/sctp_os.h>
41 #include <netinet/sctp.h>
42 #include <netinet/sctp_header.h>
43 #include <netinet/sctp_pcb.h>
44 #include <netinet/sctp_var.h>
45 #include <netinet/sctp_sysctl.h>
46 #include <netinet/sctputil.h>
47 #include <netinet/sctp_indata.h>
48 #include <netinet/sctp_output.h>
49 #include <netinet/sctp_auth.h>
50 
51 #ifdef SCTP_DEBUG
52 #define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
53 #define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
54 #endif /* SCTP_DEBUG */
55 
56 
57 void
sctp_clear_chunklist(sctp_auth_chklist_t * chklist)58 sctp_clear_chunklist(sctp_auth_chklist_t *chklist)
59 {
60 	memset(chklist, 0, sizeof(*chklist));
61 	/* chklist->num_chunks = 0; */
62 }
63 
64 sctp_auth_chklist_t *
sctp_alloc_chunklist(void)65 sctp_alloc_chunklist(void)
66 {
67 	sctp_auth_chklist_t *chklist;
68 
69 	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
70 		    SCTP_M_AUTH_CL);
71 	if (chklist == NULL) {
72 		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
73 	} else {
74 		sctp_clear_chunklist(chklist);
75 	}
76 	return (chklist);
77 }
78 
79 void
sctp_free_chunklist(sctp_auth_chklist_t * list)80 sctp_free_chunklist(sctp_auth_chklist_t *list)
81 {
82 	if (list != NULL)
83 		SCTP_FREE(list, SCTP_M_AUTH_CL);
84 }
85 
86 sctp_auth_chklist_t *
sctp_copy_chunklist(sctp_auth_chklist_t * list)87 sctp_copy_chunklist(sctp_auth_chklist_t *list)
88 {
89 	sctp_auth_chklist_t *new_list;
90 
91 	if (list == NULL)
92 		return (NULL);
93 
94 	/* get a new list */
95 	new_list = sctp_alloc_chunklist();
96 	if (new_list == NULL)
97 		return (NULL);
98 	/* copy it */
99 	memcpy(new_list, list, sizeof(*new_list));
100 
101 	return (new_list);
102 }
103 
104 
105 /*
106  * add a chunk to the required chunks list
107  */
108 int
sctp_auth_add_chunk(uint8_t chunk,sctp_auth_chklist_t * list)109 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
110 {
111 	if (list == NULL)
112 		return (-1);
113 
114 	/* is chunk restricted? */
115 	if ((chunk == SCTP_INITIATION) ||
116 	    (chunk == SCTP_INITIATION_ACK) ||
117 	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
118 	    (chunk == SCTP_AUTHENTICATION)) {
119 		return (-1);
120 	}
121 	if (list->chunks[chunk] == 0) {
122 		list->chunks[chunk] = 1;
123 		list->num_chunks++;
124 		SCTPDBG(SCTP_DEBUG_AUTH1,
125 			"SCTP: added chunk %u (0x%02x) to Auth list\n",
126 			chunk, chunk);
127 	}
128 	return (0);
129 }
130 
131 /*
132  * delete a chunk from the required chunks list
133  */
134 int
sctp_auth_delete_chunk(uint8_t chunk,sctp_auth_chklist_t * list)135 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
136 {
137 	if (list == NULL)
138 		return (-1);
139 
140 	if (list->chunks[chunk] == 1) {
141 		list->chunks[chunk] = 0;
142 		list->num_chunks--;
143 		SCTPDBG(SCTP_DEBUG_AUTH1,
144 			"SCTP: deleted chunk %u (0x%02x) from Auth list\n",
145 			chunk, chunk);
146 	}
147 	return (0);
148 }
149 
150 size_t
sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list)151 sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list)
152 {
153 	if (list == NULL)
154 		return (0);
155 	else
156 		return (list->num_chunks);
157 }
158 
159 /*
160  * return the current number and list of required chunks caller must
161  * guarantee ptr has space for up to 256 bytes
162  */
163 int
sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list,uint8_t * ptr)164 sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
165 {
166 	int i, count = 0;
167 
168 	if (list == NULL)
169 		return (0);
170 
171 	for (i = 0; i < 256; i++) {
172 		if (list->chunks[i] != 0) {
173 			*ptr++ = i;
174 			count++;
175 		}
176 	}
177 	return (count);
178 }
179 
180 int
sctp_pack_auth_chunks(const sctp_auth_chklist_t * list,uint8_t * ptr)181 sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
182 {
183 	int i, size = 0;
184 
185 	if (list == NULL)
186 		return (0);
187 
188 	if (list->num_chunks <= 32) {
189 		/* just list them, one byte each */
190 		for (i = 0; i < 256; i++) {
191 			if (list->chunks[i] != 0) {
192 				*ptr++ = i;
193 				size++;
194 			}
195 		}
196 	} else {
197 		int index, offset;
198 
199 		/* pack into a 32 byte bitfield */
200 		for (i = 0; i < 256; i++) {
201 			if (list->chunks[i] != 0) {
202 				index = i / 8;
203 				offset = i % 8;
204 				ptr[index] |= (1 << offset);
205 			}
206 		}
207 		size = 32;
208 	}
209 	return (size);
210 }
211 
212 int
sctp_unpack_auth_chunks(const uint8_t * ptr,uint8_t num_chunks,sctp_auth_chklist_t * list)213 sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks,
214     sctp_auth_chklist_t *list)
215 {
216 	int i;
217 	int size;
218 
219 	if (list == NULL)
220 		return (0);
221 
222 	if (num_chunks <= 32) {
223 		/* just pull them, one byte each */
224 		for (i = 0; i < num_chunks; i++) {
225 			(void)sctp_auth_add_chunk(*ptr++, list);
226 		}
227 		size = num_chunks;
228 	} else {
229 		int index, offset;
230 
231 		/* unpack from a 32 byte bitfield */
232 		for (index = 0; index < 32; index++) {
233 			for (offset = 0; offset < 8; offset++) {
234 				if (ptr[index] & (1 << offset)) {
235 					(void)sctp_auth_add_chunk((index * 8) + offset, list);
236 				}
237 			}
238 		}
239 		size = 32;
240 	}
241 	return (size);
242 }
243 
244 
245 /*
246  * allocate structure space for a key of length keylen
247  */
248 sctp_key_t *
sctp_alloc_key(uint32_t keylen)249 sctp_alloc_key(uint32_t keylen)
250 {
251 	sctp_key_t *new_key;
252 
253 	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
254 		    SCTP_M_AUTH_KY);
255 	if (new_key == NULL) {
256 		/* out of memory */
257 		return (NULL);
258 	}
259 	new_key->keylen = keylen;
260 	return (new_key);
261 }
262 
263 void
sctp_free_key(sctp_key_t * key)264 sctp_free_key(sctp_key_t *key)
265 {
266 	if (key != NULL)
267 		SCTP_FREE(key,SCTP_M_AUTH_KY);
268 }
269 
270 void
sctp_print_key(sctp_key_t * key,const char * str)271 sctp_print_key(sctp_key_t *key, const char *str)
272 {
273 	uint32_t i;
274 
275 	if (key == NULL) {
276 		SCTP_PRINTF("%s: [Null key]\n", str);
277 		return;
278 	}
279 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
280 	if (key->keylen) {
281 		for (i = 0; i < key->keylen; i++)
282 			SCTP_PRINTF("%02x", key->key[i]);
283 		SCTP_PRINTF("\n");
284 	} else {
285 		SCTP_PRINTF("[Null key]\n");
286 	}
287 }
288 
289 void
sctp_show_key(sctp_key_t * key,const char * str)290 sctp_show_key(sctp_key_t *key, const char *str)
291 {
292 	uint32_t i;
293 
294 	if (key == NULL) {
295 		SCTP_PRINTF("%s: [Null key]\n", str);
296 		return;
297 	}
298 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
299 	if (key->keylen) {
300 		for (i = 0; i < key->keylen; i++)
301 			SCTP_PRINTF("%02x", key->key[i]);
302 		SCTP_PRINTF("\n");
303 	} else {
304 		SCTP_PRINTF("[Null key]\n");
305 	}
306 }
307 
308 static uint32_t
sctp_get_keylen(sctp_key_t * key)309 sctp_get_keylen(sctp_key_t *key)
310 {
311 	if (key != NULL)
312 		return (key->keylen);
313 	else
314 		return (0);
315 }
316 
317 /*
318  * generate a new random key of length 'keylen'
319  */
320 sctp_key_t *
sctp_generate_random_key(uint32_t keylen)321 sctp_generate_random_key(uint32_t keylen)
322 {
323 	sctp_key_t *new_key;
324 
325 	new_key = sctp_alloc_key(keylen);
326 	if (new_key == NULL) {
327 		/* out of memory */
328 		return (NULL);
329 	}
330 	SCTP_READ_RANDOM(new_key->key, keylen);
331 	new_key->keylen = keylen;
332 	return (new_key);
333 }
334 
335 sctp_key_t *
sctp_set_key(uint8_t * key,uint32_t keylen)336 sctp_set_key(uint8_t *key, uint32_t keylen)
337 {
338 	sctp_key_t *new_key;
339 
340 	new_key = sctp_alloc_key(keylen);
341 	if (new_key == NULL) {
342 		/* out of memory */
343 		return (NULL);
344 	}
345 	memcpy(new_key->key, key, keylen);
346 	return (new_key);
347 }
348 
349 /*-
350  * given two keys of variable size, compute which key is "larger/smaller"
351  * returns:  1 if key1 > key2
352  *          -1 if key1 < key2
353  *           0 if key1 = key2
354  */
355 static int
sctp_compare_key(sctp_key_t * key1,sctp_key_t * key2)356 sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2)
357 {
358 	uint32_t maxlen;
359 	uint32_t i;
360 	uint32_t key1len, key2len;
361 	uint8_t *key_1, *key_2;
362 	uint8_t val1, val2;
363 
364 	/* sanity/length check */
365 	key1len = sctp_get_keylen(key1);
366 	key2len = sctp_get_keylen(key2);
367 	if ((key1len == 0) && (key2len == 0))
368 		return (0);
369 	else if (key1len == 0)
370 		return (-1);
371 	else if (key2len == 0)
372 		return (1);
373 
374 	if (key1len < key2len) {
375 		maxlen = key2len;
376 	} else {
377 		maxlen = key1len;
378 	}
379 	key_1 = key1->key;
380 	key_2 = key2->key;
381 	/* check for numeric equality */
382 	for (i = 0; i < maxlen; i++) {
383 		/* left-pad with zeros */
384 		val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++);
385 		val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++);
386 		if (val1 > val2) {
387 			return (1);
388 		} else if (val1 < val2) {
389 			return (-1);
390 		}
391 	}
392 	/* keys are equal value, so check lengths */
393 	if (key1len == key2len)
394 		return (0);
395 	else if (key1len < key2len)
396 		return (-1);
397 	else
398 		return (1);
399 }
400 
401 /*
402  * generate the concatenated keying material based on the two keys and the
403  * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
404  * order for concatenation
405  */
406 sctp_key_t *
sctp_compute_hashkey(sctp_key_t * key1,sctp_key_t * key2,sctp_key_t * shared)407 sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared)
408 {
409 	uint32_t keylen;
410 	sctp_key_t *new_key;
411 	uint8_t *key_ptr;
412 
413 	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
414 	    sctp_get_keylen(shared);
415 
416 	if (keylen > 0) {
417 		/* get space for the new key */
418 		new_key = sctp_alloc_key(keylen);
419 		if (new_key == NULL) {
420 			/* out of memory */
421 			return (NULL);
422 		}
423 		new_key->keylen = keylen;
424 		key_ptr = new_key->key;
425 	} else {
426 		/* all keys empty/null?! */
427 		return (NULL);
428 	}
429 
430 	/* concatenate the keys */
431 	if (sctp_compare_key(key1, key2) <= 0) {
432 		/* key is shared + key1 + key2 */
433 		if (sctp_get_keylen(shared)) {
434 			memcpy(key_ptr, shared->key, shared->keylen);
435 			key_ptr += shared->keylen;
436 		}
437 		if (sctp_get_keylen(key1)) {
438 			memcpy(key_ptr, key1->key, key1->keylen);
439 			key_ptr += key1->keylen;
440 		}
441 		if (sctp_get_keylen(key2)) {
442 			memcpy(key_ptr, key2->key, key2->keylen);
443 		}
444 	} else {
445 		/* key is shared + key2 + key1 */
446 		if (sctp_get_keylen(shared)) {
447 			memcpy(key_ptr, shared->key, shared->keylen);
448 			key_ptr += shared->keylen;
449 		}
450 		if (sctp_get_keylen(key2)) {
451 			memcpy(key_ptr, key2->key, key2->keylen);
452 			key_ptr += key2->keylen;
453 		}
454 		if (sctp_get_keylen(key1)) {
455 			memcpy(key_ptr, key1->key, key1->keylen);
456 		}
457 	}
458 	return (new_key);
459 }
460 
461 
462 sctp_sharedkey_t *
sctp_alloc_sharedkey(void)463 sctp_alloc_sharedkey(void)
464 {
465 	sctp_sharedkey_t *new_key;
466 
467 	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
468 		    SCTP_M_AUTH_KY);
469 	if (new_key == NULL) {
470 		/* out of memory */
471 		return (NULL);
472 	}
473 	new_key->keyid = 0;
474 	new_key->key = NULL;
475 	new_key->refcount = 1;
476 	new_key->deactivated = 0;
477 	return (new_key);
478 }
479 
480 void
sctp_free_sharedkey(sctp_sharedkey_t * skey)481 sctp_free_sharedkey(sctp_sharedkey_t *skey)
482 {
483 	if (skey == NULL)
484 		return;
485 
486 	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
487 		if (skey->key != NULL)
488 			sctp_free_key(skey->key);
489 		SCTP_FREE(skey, SCTP_M_AUTH_KY);
490 	}
491 }
492 
493 sctp_sharedkey_t *
sctp_find_sharedkey(struct sctp_keyhead * shared_keys,uint16_t key_id)494 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
495 {
496 	sctp_sharedkey_t *skey;
497 
498 	LIST_FOREACH(skey, shared_keys, next) {
499 		if (skey->keyid == key_id)
500 			return (skey);
501 	}
502 	return (NULL);
503 }
504 
505 int
sctp_insert_sharedkey(struct sctp_keyhead * shared_keys,sctp_sharedkey_t * new_skey)506 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
507 		      sctp_sharedkey_t *new_skey)
508 {
509 	sctp_sharedkey_t *skey;
510 
511 	if ((shared_keys == NULL) || (new_skey == NULL))
512 		return (EINVAL);
513 
514 	/* insert into an empty list? */
515 	if (LIST_EMPTY(shared_keys)) {
516 		LIST_INSERT_HEAD(shared_keys, new_skey, next);
517 		return (0);
518 	}
519 	/* insert into the existing list, ordered by key id */
520 	LIST_FOREACH(skey, shared_keys, next) {
521 		if (new_skey->keyid < skey->keyid) {
522 			/* insert it before here */
523 			LIST_INSERT_BEFORE(skey, new_skey, next);
524 			return (0);
525 		} else if (new_skey->keyid == skey->keyid) {
526 			/* replace the existing key */
527 			/* verify this key *can* be replaced */
528 			if ((skey->deactivated) || (skey->refcount > 1)) {
529 				SCTPDBG(SCTP_DEBUG_AUTH1,
530 					"can't replace shared key id %u\n",
531 					new_skey->keyid);
532 				return (EBUSY);
533 			}
534 			SCTPDBG(SCTP_DEBUG_AUTH1,
535 				"replacing shared key id %u\n",
536 				new_skey->keyid);
537 			LIST_INSERT_BEFORE(skey, new_skey, next);
538 			LIST_REMOVE(skey, next);
539 			sctp_free_sharedkey(skey);
540 			return (0);
541 		}
542 		if (LIST_NEXT(skey, next) == NULL) {
543 			/* belongs at the end of the list */
544 			LIST_INSERT_AFTER(skey, new_skey, next);
545 			return (0);
546 		}
547 	}
548 	/* shouldn't reach here */
549 	return (EINVAL);
550 }
551 
552 void
sctp_auth_key_acquire(struct sctp_tcb * stcb,uint16_t key_id)553 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
554 {
555 	sctp_sharedkey_t *skey;
556 
557 	/* find the shared key */
558 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
559 
560 	/* bump the ref count */
561 	if (skey) {
562 		atomic_add_int(&skey->refcount, 1);
563 		SCTPDBG(SCTP_DEBUG_AUTH2,
564 			"%s: stcb %p key %u refcount acquire to %d\n",
565 			__func__, (void *)stcb, key_id, skey->refcount);
566 	}
567 }
568 
569 void
sctp_auth_key_release(struct sctp_tcb * stcb,uint16_t key_id,int so_locked)570 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked)
571 {
572 	sctp_sharedkey_t *skey;
573 
574 	/* find the shared key */
575 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
576 
577 	/* decrement the ref count */
578 	if (skey) {
579 		SCTPDBG(SCTP_DEBUG_AUTH2,
580 			"%s: stcb %p key %u refcount release to %d\n",
581 			__func__, (void *)stcb, key_id, skey->refcount);
582 
583 		/* see if a notification should be generated */
584 		if ((skey->refcount <= 2) && (skey->deactivated)) {
585 			/* notify ULP that key is no longer used */
586 			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
587 					key_id, 0, so_locked);
588 			SCTPDBG(SCTP_DEBUG_AUTH2,
589 				"%s: stcb %p key %u no longer used, %d\n",
590 				__func__, (void *)stcb, key_id, skey->refcount);
591 		}
592 		sctp_free_sharedkey(skey);
593 	}
594 }
595 
596 static sctp_sharedkey_t *
sctp_copy_sharedkey(const sctp_sharedkey_t * skey)597 sctp_copy_sharedkey(const sctp_sharedkey_t *skey)
598 {
599 	sctp_sharedkey_t *new_skey;
600 
601 	if (skey == NULL)
602 		return (NULL);
603 	new_skey = sctp_alloc_sharedkey();
604 	if (new_skey == NULL)
605 		return (NULL);
606 	if (skey->key != NULL)
607 		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
608 	else
609 		new_skey->key = NULL;
610 	new_skey->keyid = skey->keyid;
611 	return (new_skey);
612 }
613 
614 int
sctp_copy_skeylist(const struct sctp_keyhead * src,struct sctp_keyhead * dest)615 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
616 {
617 	sctp_sharedkey_t *skey, *new_skey;
618 	int count = 0;
619 
620 	if ((src == NULL) || (dest == NULL))
621 		return (0);
622 	LIST_FOREACH(skey, src, next) {
623 		new_skey = sctp_copy_sharedkey(skey);
624 		if (new_skey != NULL) {
625 			if (sctp_insert_sharedkey(dest, new_skey)) {
626 				sctp_free_sharedkey(new_skey);
627 			} else {
628 				count++;
629 			}
630 		}
631 	}
632 	return (count);
633 }
634 
635 
636 sctp_hmaclist_t *
sctp_alloc_hmaclist(uint16_t num_hmacs)637 sctp_alloc_hmaclist(uint16_t num_hmacs)
638 {
639 	sctp_hmaclist_t *new_list;
640 	int alloc_size;
641 
642 	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
643 	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
644 		    SCTP_M_AUTH_HL);
645 	if (new_list == NULL) {
646 		/* out of memory */
647 		return (NULL);
648 	}
649 	new_list->max_algo = num_hmacs;
650 	new_list->num_algo = 0;
651 	return (new_list);
652 }
653 
654 void
sctp_free_hmaclist(sctp_hmaclist_t * list)655 sctp_free_hmaclist(sctp_hmaclist_t *list)
656 {
657 	if (list != NULL) {
658 		SCTP_FREE(list,SCTP_M_AUTH_HL);
659 	}
660 }
661 
662 int
sctp_auth_add_hmacid(sctp_hmaclist_t * list,uint16_t hmac_id)663 sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id)
664 {
665 	int i;
666 	if (list == NULL)
667 		return (-1);
668 	if (list->num_algo == list->max_algo) {
669 		SCTPDBG(SCTP_DEBUG_AUTH1,
670 			"SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
671 		return (-1);
672 	}
673 #if defined(SCTP_SUPPORT_HMAC_SHA256)
674 	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
675 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) {
676 #else
677 	if (hmac_id != SCTP_AUTH_HMAC_ID_SHA1) {
678 #endif
679 		return (-1);
680 	}
681 	/* Now is it already in the list */
682 	for (i = 0; i < list->num_algo; i++) {
683 		if (list->hmac[i] == hmac_id) {
684 			/* already in list */
685 			return (-1);
686 		}
687 	}
688 	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
689 	list->hmac[list->num_algo++] = hmac_id;
690 	return (0);
691 }
692 
693 sctp_hmaclist_t *
694 sctp_copy_hmaclist(sctp_hmaclist_t *list)
695 {
696 	sctp_hmaclist_t *new_list;
697 	int i;
698 
699 	if (list == NULL)
700 		return (NULL);
701 	/* get a new list */
702 	new_list = sctp_alloc_hmaclist(list->max_algo);
703 	if (new_list == NULL)
704 		return (NULL);
705 	/* copy it */
706 	new_list->max_algo = list->max_algo;
707 	new_list->num_algo = list->num_algo;
708 	for (i = 0; i < list->num_algo; i++)
709 		new_list->hmac[i] = list->hmac[i];
710 	return (new_list);
711 }
712 
713 sctp_hmaclist_t *
714 sctp_default_supported_hmaclist(void)
715 {
716 	sctp_hmaclist_t *new_list;
717 
718 #if defined(SCTP_SUPPORT_HMAC_SHA256)
719 	new_list = sctp_alloc_hmaclist(2);
720 #else
721 	new_list = sctp_alloc_hmaclist(1);
722 #endif
723 	if (new_list == NULL)
724 		return (NULL);
725 #if defined(SCTP_SUPPORT_HMAC_SHA256)
726 	/* We prefer SHA256, so list it first */
727 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
728 #endif
729 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
730 	return (new_list);
731 }
732 
733 /*-
734  * HMAC algos are listed in priority/preference order
735  * find the best HMAC id to use for the peer based on local support
736  */
737 uint16_t
738 sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local)
739 {
740 	int i, j;
741 
742 	if ((local == NULL) || (peer == NULL))
743 		return (SCTP_AUTH_HMAC_ID_RSVD);
744 
745 	for (i = 0; i < peer->num_algo; i++) {
746 		for (j = 0; j < local->num_algo; j++) {
747 			if (peer->hmac[i] == local->hmac[j]) {
748 				/* found the "best" one */
749 				SCTPDBG(SCTP_DEBUG_AUTH1,
750 					"SCTP: negotiated peer HMAC id %u\n",
751 					peer->hmac[i]);
752 				return (peer->hmac[i]);
753 			}
754 		}
755 	}
756 	/* didn't find one! */
757 	return (SCTP_AUTH_HMAC_ID_RSVD);
758 }
759 
760 /*-
761  * serialize the HMAC algo list and return space used
762  * caller must guarantee ptr has appropriate space
763  */
764 int
765 sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr)
766 {
767 	int i;
768 	uint16_t hmac_id;
769 
770 	if (list == NULL)
771 		return (0);
772 
773 	for (i = 0; i < list->num_algo; i++) {
774 		hmac_id = htons(list->hmac[i]);
775 		memcpy(ptr, &hmac_id, sizeof(hmac_id));
776 		ptr += sizeof(hmac_id);
777 	}
778 	return (list->num_algo * sizeof(hmac_id));
779 }
780 
781 int
782 sctp_verify_hmac_param (struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
783 {
784 	uint32_t i;
785 
786 	for (i = 0; i < num_hmacs; i++) {
787 		if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) {
788 			return (0);
789 		}
790 	}
791 	return (-1);
792 }
793 
794 sctp_authinfo_t *
795 sctp_alloc_authinfo(void)
796 {
797 	sctp_authinfo_t *new_authinfo;
798 
799 	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
800 		    SCTP_M_AUTH_IF);
801 
802 	if (new_authinfo == NULL) {
803 		/* out of memory */
804 		return (NULL);
805 	}
806 	memset(new_authinfo, 0, sizeof(*new_authinfo));
807 	return (new_authinfo);
808 }
809 
810 void
811 sctp_free_authinfo(sctp_authinfo_t *authinfo)
812 {
813 	if (authinfo == NULL)
814 		return;
815 
816 	if (authinfo->random != NULL)
817 		sctp_free_key(authinfo->random);
818 	if (authinfo->peer_random != NULL)
819 		sctp_free_key(authinfo->peer_random);
820 	if (authinfo->assoc_key != NULL)
821 		sctp_free_key(authinfo->assoc_key);
822 	if (authinfo->recv_key != NULL)
823 		sctp_free_key(authinfo->recv_key);
824 
825 	/* We are NOT dynamically allocating authinfo's right now... */
826 	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
827 }
828 
829 
830 uint32_t
831 sctp_get_auth_chunk_len(uint16_t hmac_algo)
832 {
833 	int size;
834 
835 	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
836 	return (SCTP_SIZE32(size));
837 }
838 
839 uint32_t
840 sctp_get_hmac_digest_len(uint16_t hmac_algo)
841 {
842 	switch (hmac_algo) {
843 	case SCTP_AUTH_HMAC_ID_SHA1:
844 		return (SCTP_AUTH_DIGEST_LEN_SHA1);
845 #if defined(SCTP_SUPPORT_HMAC_SHA256)
846 	case SCTP_AUTH_HMAC_ID_SHA256:
847 		return (SCTP_AUTH_DIGEST_LEN_SHA256);
848 #endif
849 	default:
850 		/* unknown HMAC algorithm: can't do anything */
851 		return (0);
852 	} /* end switch */
853 }
854 
855 static inline int
856 sctp_get_hmac_block_len(uint16_t hmac_algo)
857 {
858 	switch (hmac_algo) {
859 	case SCTP_AUTH_HMAC_ID_SHA1:
860 		return (64);
861 #if defined(SCTP_SUPPORT_HMAC_SHA256)
862 	case SCTP_AUTH_HMAC_ID_SHA256:
863 		return (64);
864 #endif
865 	case SCTP_AUTH_HMAC_ID_RSVD:
866 	default:
867 		/* unknown HMAC algorithm: can't do anything */
868 		return (0);
869 	} /* end switch */
870 }
871 
872 #if defined(__Userspace__)
873 /* __Userspace__ SHA1_Init is defined in libcrypto.a (libssl-dev on Ubuntu) */
874 #endif
875 static void
876 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx)
877 {
878 	switch (hmac_algo) {
879 	case SCTP_AUTH_HMAC_ID_SHA1:
880 		SCTP_SHA1_INIT(&ctx->sha1);
881 		break;
882 #if defined(SCTP_SUPPORT_HMAC_SHA256)
883 	case SCTP_AUTH_HMAC_ID_SHA256:
884 		SCTP_SHA256_INIT(&ctx->sha256);
885 		break;
886 #endif
887 	case SCTP_AUTH_HMAC_ID_RSVD:
888 	default:
889 		/* unknown HMAC algorithm: can't do anything */
890 		return;
891 	} /* end switch */
892 }
893 
894 static void
895 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx,
896     uint8_t *text, uint32_t textlen)
897 {
898 	switch (hmac_algo) {
899 	case SCTP_AUTH_HMAC_ID_SHA1:
900 		SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen);
901 		break;
902 #if defined(SCTP_SUPPORT_HMAC_SHA256)
903 	case SCTP_AUTH_HMAC_ID_SHA256:
904 		SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen);
905 		break;
906 #endif
907 	case SCTP_AUTH_HMAC_ID_RSVD:
908 	default:
909 		/* unknown HMAC algorithm: can't do anything */
910 		return;
911 	} /* end switch */
912 }
913 
914 static void
915 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx,
916     uint8_t *digest)
917 {
918 	switch (hmac_algo) {
919 	case SCTP_AUTH_HMAC_ID_SHA1:
920 		SCTP_SHA1_FINAL(digest, &ctx->sha1);
921 		break;
922 #if defined(SCTP_SUPPORT_HMAC_SHA256)
923 	case SCTP_AUTH_HMAC_ID_SHA256:
924 		SCTP_SHA256_FINAL(digest, &ctx->sha256);
925 		break;
926 #endif
927 	case SCTP_AUTH_HMAC_ID_RSVD:
928 	default:
929 		/* unknown HMAC algorithm: can't do anything */
930 		return;
931 	} /* end switch */
932 }
933 
934 /*-
935  * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
936  *
937  * Compute the HMAC digest using the desired hash key, text, and HMAC
938  * algorithm.  Resulting digest is placed in 'digest' and digest length
939  * is returned, if the HMAC was performed.
940  *
941  * WARNING: it is up to the caller to supply sufficient space to hold the
942  * resultant digest.
943  */
944 uint32_t
945 sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
946     uint8_t *text, uint32_t textlen, uint8_t *digest)
947 {
948 	uint32_t digestlen;
949 	uint32_t blocklen;
950 	sctp_hash_context_t ctx;
951 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
952 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
953 	uint32_t i;
954 
955 	/* sanity check the material and length */
956 	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
957 	    (textlen == 0) || (digest == NULL)) {
958 		/* can't do HMAC with empty key or text or digest store */
959 		return (0);
960 	}
961 	/* validate the hmac algo and get the digest length */
962 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
963 	if (digestlen == 0)
964 		return (0);
965 
966 	/* hash the key if it is longer than the hash block size */
967 	blocklen = sctp_get_hmac_block_len(hmac_algo);
968 	if (keylen > blocklen) {
969 		sctp_hmac_init(hmac_algo, &ctx);
970 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
971 		sctp_hmac_final(hmac_algo, &ctx, temp);
972 		/* set the hashed key as the key */
973 		keylen = digestlen;
974 		key = temp;
975 	}
976 	/* initialize the inner/outer pads with the key and "append" zeroes */
977 	memset(ipad, 0, blocklen);
978 	memset(opad, 0, blocklen);
979 	memcpy(ipad, key, keylen);
980 	memcpy(opad, key, keylen);
981 
982 	/* XOR the key with ipad and opad values */
983 	for (i = 0; i < blocklen; i++) {
984 		ipad[i] ^= 0x36;
985 		opad[i] ^= 0x5c;
986 	}
987 
988 	/* perform inner hash */
989 	sctp_hmac_init(hmac_algo, &ctx);
990 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
991 	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
992 	sctp_hmac_final(hmac_algo, &ctx, temp);
993 
994 	/* perform outer hash */
995 	sctp_hmac_init(hmac_algo, &ctx);
996 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
997 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
998 	sctp_hmac_final(hmac_algo, &ctx, digest);
999 
1000 	return (digestlen);
1001 }
1002 
1003 /* mbuf version */
1004 uint32_t
1005 sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
1006     struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer)
1007 {
1008 	uint32_t digestlen;
1009 	uint32_t blocklen;
1010 	sctp_hash_context_t ctx;
1011 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1012 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1013 	uint32_t i;
1014 	struct mbuf *m_tmp;
1015 
1016 	/* sanity check the material and length */
1017 	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
1018 		/* can't do HMAC with empty key or text or digest store */
1019 		return (0);
1020 	}
1021 	/* validate the hmac algo and get the digest length */
1022 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1023 	if (digestlen == 0)
1024 		return (0);
1025 
1026 	/* hash the key if it is longer than the hash block size */
1027 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1028 	if (keylen > blocklen) {
1029 		sctp_hmac_init(hmac_algo, &ctx);
1030 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1031 		sctp_hmac_final(hmac_algo, &ctx, temp);
1032 		/* set the hashed key as the key */
1033 		keylen = digestlen;
1034 		key = temp;
1035 	}
1036 	/* initialize the inner/outer pads with the key and "append" zeroes */
1037 	memset(ipad, 0, blocklen);
1038 	memset(opad, 0, blocklen);
1039 	memcpy(ipad, key, keylen);
1040 	memcpy(opad, key, keylen);
1041 
1042 	/* XOR the key with ipad and opad values */
1043 	for (i = 0; i < blocklen; i++) {
1044 		ipad[i] ^= 0x36;
1045 		opad[i] ^= 0x5c;
1046 	}
1047 
1048 	/* perform inner hash */
1049 	sctp_hmac_init(hmac_algo, &ctx);
1050 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1051 	/* find the correct starting mbuf and offset (get start of text) */
1052 	m_tmp = m;
1053 	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1054 		m_offset -= SCTP_BUF_LEN(m_tmp);
1055 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1056 	}
1057 	/* now use the rest of the mbuf chain for the text */
1058 	while (m_tmp != NULL) {
1059 		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1060 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1061 					 SCTP_BUF_LEN(m_tmp) - (trailer+m_offset));
1062 		} else {
1063 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1064 					 SCTP_BUF_LEN(m_tmp) - m_offset);
1065 		}
1066 
1067 		/* clear the offset since it's only for the first mbuf */
1068 		m_offset = 0;
1069 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1070 	}
1071 	sctp_hmac_final(hmac_algo, &ctx, temp);
1072 
1073 	/* perform outer hash */
1074 	sctp_hmac_init(hmac_algo, &ctx);
1075 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1076 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1077 	sctp_hmac_final(hmac_algo, &ctx, digest);
1078 
1079 	return (digestlen);
1080 }
1081 
1082 /*
1083  * computes the requested HMAC using a key struct (which may be modified if
1084  * the keylen exceeds the HMAC block len).
1085  */
1086 uint32_t
1087 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text,
1088     uint32_t textlen, uint8_t *digest)
1089 {
1090 	uint32_t digestlen;
1091 	uint32_t blocklen;
1092 	sctp_hash_context_t ctx;
1093 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1094 
1095 	/* sanity check */
1096 	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1097 	    (digest == NULL)) {
1098 		/* can't do HMAC with empty key or text or digest store */
1099 		return (0);
1100 	}
1101 	/* validate the hmac algo and get the digest length */
1102 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1103 	if (digestlen == 0)
1104 		return (0);
1105 
1106 	/* hash the key if it is longer than the hash block size */
1107 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1108 	if (key->keylen > blocklen) {
1109 		sctp_hmac_init(hmac_algo, &ctx);
1110 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1111 		sctp_hmac_final(hmac_algo, &ctx, temp);
1112 		/* save the hashed key as the new key */
1113 		key->keylen = digestlen;
1114 		memcpy(key->key, temp, key->keylen);
1115 	}
1116 	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1117 	    digest));
1118 }
1119 
1120 /* mbuf version */
1121 uint32_t
1122 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m,
1123     uint32_t m_offset, uint8_t *digest)
1124 {
1125 	uint32_t digestlen;
1126 	uint32_t blocklen;
1127 	sctp_hash_context_t ctx;
1128 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1129 
1130 	/* sanity check */
1131 	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1132 		/* can't do HMAC with empty key or text or digest store */
1133 		return (0);
1134 	}
1135 	/* validate the hmac algo and get the digest length */
1136 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1137 	if (digestlen == 0)
1138 		return (0);
1139 
1140 	/* hash the key if it is longer than the hash block size */
1141 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1142 	if (key->keylen > blocklen) {
1143 		sctp_hmac_init(hmac_algo, &ctx);
1144 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1145 		sctp_hmac_final(hmac_algo, &ctx, temp);
1146 		/* save the hashed key as the new key */
1147 		key->keylen = digestlen;
1148 		memcpy(key->key, temp, key->keylen);
1149 	}
1150 	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1151 }
1152 
1153 int
1154 sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id)
1155 {
1156 	int i;
1157 
1158 	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1159 		return (0);
1160 
1161 	for (i = 0; i < list->num_algo; i++)
1162 		if (list->hmac[i] == id)
1163 			return (1);
1164 
1165 	/* not in the list */
1166 	return (0);
1167 }
1168 
1169 
1170 /*-
1171  * clear any cached key(s) if they match the given key id on an association.
1172  * the cached key(s) will be recomputed and re-cached at next use.
1173  * ASSUMES TCB_LOCK is already held
1174  */
1175 void
1176 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1177 {
1178 	if (stcb == NULL)
1179 		return;
1180 
1181 	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1182 		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1183 		stcb->asoc.authinfo.assoc_key = NULL;
1184 	}
1185 	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1186 		sctp_free_key(stcb->asoc.authinfo.recv_key);
1187 		stcb->asoc.authinfo.recv_key = NULL;
1188 	}
1189 }
1190 
1191 /*-
1192  * clear any cached key(s) if they match the given key id for all assocs on
1193  * an endpoint.
1194  * ASSUMES INP_WLOCK is already held
1195  */
1196 void
1197 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1198 {
1199 	struct sctp_tcb *stcb;
1200 
1201 	if (inp == NULL)
1202 		return;
1203 
1204 	/* clear the cached keys on all assocs on this instance */
1205 	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1206 		SCTP_TCB_LOCK(stcb);
1207 		sctp_clear_cachedkeys(stcb, keyid);
1208 		SCTP_TCB_UNLOCK(stcb);
1209 	}
1210 }
1211 
1212 /*-
1213  * delete a shared key from an association
1214  * ASSUMES TCB_LOCK is already held
1215  */
1216 int
1217 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1218 {
1219 	sctp_sharedkey_t *skey;
1220 
1221 	if (stcb == NULL)
1222 		return (-1);
1223 
1224 	/* is the keyid the assoc active sending key */
1225 	if (keyid == stcb->asoc.authinfo.active_keyid)
1226 		return (-1);
1227 
1228 	/* does the key exist? */
1229 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1230 	if (skey == NULL)
1231 		return (-1);
1232 
1233 	/* are there other refcount holders on the key? */
1234 	if (skey->refcount > 1)
1235 		return (-1);
1236 
1237 	/* remove it */
1238 	LIST_REMOVE(skey, next);
1239 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1240 
1241 	/* clear any cached keys */
1242 	sctp_clear_cachedkeys(stcb, keyid);
1243 	return (0);
1244 }
1245 
1246 /*-
1247  * deletes a shared key from the endpoint
1248  * ASSUMES INP_WLOCK is already held
1249  */
1250 int
1251 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1252 {
1253 	sctp_sharedkey_t *skey;
1254 
1255 	if (inp == NULL)
1256 		return (-1);
1257 
1258 	/* is the keyid the active sending key on the endpoint */
1259 	if (keyid == inp->sctp_ep.default_keyid)
1260 		return (-1);
1261 
1262 	/* does the key exist? */
1263 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1264 	if (skey == NULL)
1265 		return (-1);
1266 
1267 	/* endpoint keys are not refcounted */
1268 
1269 	/* remove it */
1270 	LIST_REMOVE(skey, next);
1271 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1272 
1273 	/* clear any cached keys */
1274 	sctp_clear_cachedkeys_ep(inp, keyid);
1275 	return (0);
1276 }
1277 
1278 /*-
1279  * set the active key on an association
1280  * ASSUMES TCB_LOCK is already held
1281  */
1282 int
1283 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1284 {
1285 	sctp_sharedkey_t *skey = NULL;
1286 
1287 	/* find the key on the assoc */
1288 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1289 	if (skey == NULL) {
1290 		/* that key doesn't exist */
1291 		return (-1);
1292 	}
1293 	if ((skey->deactivated) && (skey->refcount > 1)) {
1294 		/* can't reactivate a deactivated key with other refcounts */
1295 		return (-1);
1296 	}
1297 
1298 	/* set the (new) active key */
1299 	stcb->asoc.authinfo.active_keyid = keyid;
1300 	/* reset the deactivated flag */
1301 	skey->deactivated = 0;
1302 
1303 	return (0);
1304 }
1305 
1306 /*-
1307  * set the active key on an endpoint
1308  * ASSUMES INP_WLOCK is already held
1309  */
1310 int
1311 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1312 {
1313 	sctp_sharedkey_t *skey;
1314 
1315 	/* find the key */
1316 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1317 	if (skey == NULL) {
1318 		/* that key doesn't exist */
1319 		return (-1);
1320 	}
1321 	inp->sctp_ep.default_keyid = keyid;
1322 	return (0);
1323 }
1324 
1325 /*-
1326  * deactivates a shared key from the association
1327  * ASSUMES INP_WLOCK is already held
1328  */
1329 int
1330 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1331 {
1332 	sctp_sharedkey_t *skey;
1333 
1334 	if (stcb == NULL)
1335 		return (-1);
1336 
1337 	/* is the keyid the assoc active sending key */
1338 	if (keyid == stcb->asoc.authinfo.active_keyid)
1339 		return (-1);
1340 
1341 	/* does the key exist? */
1342 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1343 	if (skey == NULL)
1344 		return (-1);
1345 
1346 	/* are there other refcount holders on the key? */
1347 	if (skey->refcount == 1) {
1348 		/* no other users, send a notification for this key */
1349 		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1350 				SCTP_SO_LOCKED);
1351 	}
1352 
1353 	/* mark the key as deactivated */
1354 	skey->deactivated = 1;
1355 
1356 	return (0);
1357 }
1358 
1359 /*-
1360  * deactivates a shared key from the endpoint
1361  * ASSUMES INP_WLOCK is already held
1362  */
1363 int
1364 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1365 {
1366 	sctp_sharedkey_t *skey;
1367 
1368 	if (inp == NULL)
1369 		return (-1);
1370 
1371 	/* is the keyid the active sending key on the endpoint */
1372 	if (keyid == inp->sctp_ep.default_keyid)
1373 		return (-1);
1374 
1375 	/* does the key exist? */
1376 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1377 	if (skey == NULL)
1378 		return (-1);
1379 
1380 	/* endpoint keys are not refcounted */
1381 
1382 	/* remove it */
1383 	LIST_REMOVE(skey, next);
1384 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1385 
1386 	return (0);
1387 }
1388 
1389 /*
1390  * get local authentication parameters from cookie (from INIT-ACK)
1391  */
1392 void
1393 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1394     uint32_t offset, uint32_t length)
1395 {
1396 	struct sctp_paramhdr *phdr, tmp_param;
1397 	uint16_t plen, ptype;
1398 	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1399 	struct sctp_auth_random *p_random = NULL;
1400 	uint16_t random_len = 0;
1401 	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1402 	struct sctp_auth_hmac_algo *hmacs = NULL;
1403 	uint16_t hmacs_len = 0;
1404 	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1405 	struct sctp_auth_chunk_list *chunks = NULL;
1406 	uint16_t num_chunks = 0;
1407 	sctp_key_t *new_key;
1408 	uint32_t keylen;
1409 
1410 	/* convert to upper bound */
1411 	length += offset;
1412 
1413 	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1414 	    sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param);
1415 	while (phdr != NULL) {
1416 		ptype = ntohs(phdr->param_type);
1417 		plen = ntohs(phdr->param_length);
1418 
1419 		if ((plen < sizeof(struct sctp_paramhdr)) ||
1420 		    (offset + plen > length))
1421 			break;
1422 
1423 		if (ptype == SCTP_RANDOM) {
1424 			if (plen > sizeof(random_store))
1425 				break;
1426 			phdr = sctp_get_next_param(m, offset,
1427 			    (struct sctp_paramhdr *)random_store, plen);
1428 			if (phdr == NULL)
1429 				return;
1430 			/* save the random and length for the key */
1431 			p_random = (struct sctp_auth_random *)phdr;
1432 			random_len = plen - sizeof(*p_random);
1433 		} else if (ptype == SCTP_HMAC_LIST) {
1434 			uint16_t num_hmacs;
1435 			uint16_t i;
1436 
1437 			if (plen > sizeof(hmacs_store))
1438 				break;
1439 			phdr = sctp_get_next_param(m, offset,
1440 			    (struct sctp_paramhdr *)hmacs_store, plen);
1441 			if (phdr == NULL)
1442 				return;
1443 			/* save the hmacs list and num for the key */
1444 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1445 			hmacs_len = plen - sizeof(*hmacs);
1446 			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1447 			if (stcb->asoc.local_hmacs != NULL)
1448 				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1449 			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1450 			if (stcb->asoc.local_hmacs != NULL) {
1451 				for (i = 0; i < num_hmacs; i++) {
1452 					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1453 					    ntohs(hmacs->hmac_ids[i]));
1454 				}
1455 			}
1456 		} else if (ptype == SCTP_CHUNK_LIST) {
1457 			int i;
1458 
1459 			if (plen > sizeof(chunks_store))
1460 				break;
1461 			phdr = sctp_get_next_param(m, offset,
1462 			    (struct sctp_paramhdr *)chunks_store, plen);
1463 			if (phdr == NULL)
1464 				return;
1465 			chunks = (struct sctp_auth_chunk_list *)phdr;
1466 			num_chunks = plen - sizeof(*chunks);
1467 			/* save chunks list and num for the key */
1468 			if (stcb->asoc.local_auth_chunks != NULL)
1469 				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1470 			else
1471 				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1472 			for (i = 0; i < num_chunks; i++) {
1473 				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1474 				    stcb->asoc.local_auth_chunks);
1475 			}
1476 		}
1477 		/* get next parameter */
1478 		offset += SCTP_SIZE32(plen);
1479 		if (offset + sizeof(struct sctp_paramhdr) > length)
1480 			break;
1481 		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1482 		    (uint8_t *)&tmp_param);
1483 	}
1484 	/* concatenate the full random key */
1485 	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1486 	if (chunks != NULL) {
1487 		keylen += sizeof(*chunks) + num_chunks;
1488 	}
1489 	new_key = sctp_alloc_key(keylen);
1490 	if (new_key != NULL) {
1491 		/* copy in the RANDOM */
1492 		if (p_random != NULL) {
1493 			keylen = sizeof(*p_random) + random_len;
1494 			memcpy(new_key->key, p_random, keylen);
1495 		} else {
1496 			keylen = 0;
1497 		}
1498 		/* append in the AUTH chunks */
1499 		if (chunks != NULL) {
1500 			memcpy(new_key->key + keylen, chunks,
1501 			       sizeof(*chunks) + num_chunks);
1502 			keylen += sizeof(*chunks) + num_chunks;
1503 		}
1504 		/* append in the HMACs */
1505 		if (hmacs != NULL) {
1506 			memcpy(new_key->key + keylen, hmacs,
1507 			       sizeof(*hmacs) + hmacs_len);
1508 		}
1509 	}
1510 	if (stcb->asoc.authinfo.random != NULL)
1511 		sctp_free_key(stcb->asoc.authinfo.random);
1512 	stcb->asoc.authinfo.random = new_key;
1513 	stcb->asoc.authinfo.random_len = random_len;
1514 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1515 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1516 
1517 	/* negotiate what HMAC to use for the peer */
1518 	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1519 	    stcb->asoc.local_hmacs);
1520 
1521 	/* copy defaults from the endpoint */
1522 	/* FIX ME: put in cookie? */
1523 	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1524 	/* copy out the shared key list (by reference) from the endpoint */
1525 	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1526 				 &stcb->asoc.shared_keys);
1527 }
1528 
1529 /*
1530  * compute and fill in the HMAC digest for a packet
1531  */
1532 void
1533 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1534     struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1535 {
1536 	uint32_t digestlen;
1537 	sctp_sharedkey_t *skey;
1538 	sctp_key_t *key;
1539 
1540 	if ((stcb == NULL) || (auth == NULL))
1541 		return;
1542 
1543 	/* zero the digest + chunk padding */
1544 	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1545 	memset(auth->hmac, 0, SCTP_SIZE32(digestlen));
1546 
1547 	/* is the desired key cached? */
1548 	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1549 	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1550 		if (stcb->asoc.authinfo.assoc_key != NULL) {
1551 			/* free the old cached key */
1552 			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1553 		}
1554 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1555 		/* the only way skey is NULL is if null key id 0 is used */
1556 		if (skey != NULL)
1557 			key = skey->key;
1558 		else
1559 			key = NULL;
1560 		/* compute a new assoc key and cache it */
1561 		stcb->asoc.authinfo.assoc_key =
1562 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1563 					 stcb->asoc.authinfo.peer_random, key);
1564 		stcb->asoc.authinfo.assoc_keyid = keyid;
1565 		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1566 			stcb->asoc.authinfo.assoc_keyid);
1567 #ifdef SCTP_DEBUG
1568 		if (SCTP_AUTH_DEBUG)
1569 			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1570 				       "Assoc Key");
1571 #endif
1572 	}
1573 
1574 	/* set in the active key id */
1575 	auth->shared_key_id = htons(keyid);
1576 
1577 	/* compute and fill in the digest */
1578 	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1579 				  m, auth_offset, auth->hmac);
1580 }
1581 
1582 
1583 static void
1584 sctp_zero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1585 {
1586 	struct mbuf *m_tmp;
1587 	uint8_t *data;
1588 
1589 	/* sanity check */
1590 	if (m == NULL)
1591 		return;
1592 
1593 	/* find the correct starting mbuf and offset (get start position) */
1594 	m_tmp = m;
1595 	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1596 		m_offset -= SCTP_BUF_LEN(m_tmp);
1597 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1598 	}
1599 	/* now use the rest of the mbuf chain */
1600 	while ((m_tmp != NULL) && (size > 0)) {
1601 		data = mtod(m_tmp, uint8_t *) + m_offset;
1602 		if (size > (uint32_t)(SCTP_BUF_LEN(m_tmp) - m_offset)) {
1603 			memset(data, 0, SCTP_BUF_LEN(m_tmp) - m_offset);
1604 			size -= SCTP_BUF_LEN(m_tmp) - m_offset;
1605 		} else {
1606 			memset(data, 0, size);
1607 			size = 0;
1608 		}
1609 		/* clear the offset since it's only for the first mbuf */
1610 		m_offset = 0;
1611 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1612 	}
1613 }
1614 
1615 /*-
1616  * process the incoming Authentication chunk
1617  * return codes:
1618  *   -1 on any authentication error
1619  *    0 on authentication verification
1620  */
1621 int
1622 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1623     struct mbuf *m, uint32_t offset)
1624 {
1625 	uint16_t chunklen;
1626 	uint16_t shared_key_id;
1627 	uint16_t hmac_id;
1628 	sctp_sharedkey_t *skey;
1629 	uint32_t digestlen;
1630 	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1631 	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1632 
1633 	/* auth is checked for NULL by caller */
1634 	chunklen = ntohs(auth->ch.chunk_length);
1635 	if (chunklen < sizeof(*auth)) {
1636 		SCTP_STAT_INCR(sctps_recvauthfailed);
1637 		return (-1);
1638 	}
1639 	SCTP_STAT_INCR(sctps_recvauth);
1640 
1641 	/* get the auth params */
1642 	shared_key_id = ntohs(auth->shared_key_id);
1643 	hmac_id = ntohs(auth->hmac_id);
1644 	SCTPDBG(SCTP_DEBUG_AUTH1,
1645 		"SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1646 		shared_key_id, hmac_id);
1647 
1648 #if defined(__Userspace__)
1649 #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1650 	return (0);
1651 #endif
1652 #endif
1653 	/* is the indicated HMAC supported? */
1654 	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1655 		struct mbuf *op_err;
1656 		struct sctp_error_auth_invalid_hmac *cause;
1657 
1658 		SCTP_STAT_INCR(sctps_recvivalhmacid);
1659 		SCTPDBG(SCTP_DEBUG_AUTH1,
1660 			"SCTP Auth: unsupported HMAC id %u\n",
1661 			hmac_id);
1662 		/*
1663 		 * report this in an Error Chunk: Unsupported HMAC
1664 		 * Identifier
1665 		 */
1666 		op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac),
1667 		                               0, M_NOWAIT, 1, MT_HEADER);
1668 		if (op_err != NULL) {
1669 			/* pre-reserve some space */
1670 			SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr));
1671 			/* fill in the error */
1672 			cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *);
1673 			cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1674 			cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac));
1675 			cause->hmac_id = ntohs(hmac_id);
1676 			SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac);
1677 			/* queue it */
1678 			sctp_queue_op_err(stcb, op_err);
1679 		}
1680 		return (-1);
1681 	}
1682 	/* get the indicated shared key, if available */
1683 	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1684 	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1685 		/* find the shared key on the assoc first */
1686 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1687 					   shared_key_id);
1688 		/* if the shared key isn't found, discard the chunk */
1689 		if (skey == NULL) {
1690 			SCTP_STAT_INCR(sctps_recvivalkeyid);
1691 			SCTPDBG(SCTP_DEBUG_AUTH1,
1692 				"SCTP Auth: unknown key id %u\n",
1693 				shared_key_id);
1694 			return (-1);
1695 		}
1696 		/* generate a notification if this is a new key id */
1697 		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1698 			/*
1699 			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1700 			 * shared_key_id, (void
1701 			 * *)stcb->asoc.authinfo.recv_keyid);
1702 			 */
1703 			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1704 			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1705 			    SCTP_SO_NOT_LOCKED);
1706 		/* compute a new recv assoc key and cache it */
1707 		if (stcb->asoc.authinfo.recv_key != NULL)
1708 			sctp_free_key(stcb->asoc.authinfo.recv_key);
1709 		stcb->asoc.authinfo.recv_key =
1710 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1711 		    stcb->asoc.authinfo.peer_random, skey->key);
1712 		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1713 #ifdef SCTP_DEBUG
1714 		if (SCTP_AUTH_DEBUG)
1715 			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1716 #endif
1717 	}
1718 	/* validate the digest length */
1719 	digestlen = sctp_get_hmac_digest_len(hmac_id);
1720 	if (chunklen < (sizeof(*auth) + digestlen)) {
1721 		/* invalid digest length */
1722 		SCTP_STAT_INCR(sctps_recvauthfailed);
1723 		SCTPDBG(SCTP_DEBUG_AUTH1,
1724 			"SCTP Auth: chunk too short for HMAC\n");
1725 		return (-1);
1726 	}
1727 	/* save a copy of the digest, zero the pseudo header, and validate */
1728 	memcpy(digest, auth->hmac, digestlen);
1729 	sctp_zero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1730 	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1731 	    m, offset, computed_digest);
1732 
1733 	/* compare the computed digest with the one in the AUTH chunk */
1734 	if (timingsafe_bcmp(digest, computed_digest, digestlen) != 0) {
1735 		SCTP_STAT_INCR(sctps_recvauthfailed);
1736 		SCTPDBG(SCTP_DEBUG_AUTH1,
1737 			"SCTP Auth: HMAC digest check failed\n");
1738 		return (-1);
1739 	}
1740 	return (0);
1741 }
1742 
1743 /*
1744  * Generate NOTIFICATION
1745  */
1746 void
1747 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1748 			   uint16_t keyid, uint16_t alt_keyid, int so_locked)
1749 {
1750 	struct mbuf *m_notify;
1751 	struct sctp_authkey_event *auth;
1752 	struct sctp_queued_to_read *control;
1753 
1754 	if ((stcb == NULL) ||
1755 	   (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1756 	   (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1757 	   (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1758 		) {
1759 		/* If the socket is gone we are out of here */
1760 		return;
1761 	}
1762 
1763 	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1764 		/* event not enabled */
1765 		return;
1766 
1767 	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1768 					  0, M_NOWAIT, 1, MT_HEADER);
1769 	if (m_notify == NULL)
1770 		/* no space left */
1771 		return;
1772 
1773 	SCTP_BUF_LEN(m_notify) = 0;
1774 	auth = mtod(m_notify, struct sctp_authkey_event *);
1775 	memset(auth, 0, sizeof(struct sctp_authkey_event));
1776 	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1777 	auth->auth_flags = 0;
1778 	auth->auth_length = sizeof(*auth);
1779 	auth->auth_keynumber = keyid;
1780 	auth->auth_altkeynumber = alt_keyid;
1781 	auth->auth_indication = indication;
1782 	auth->auth_assoc_id = sctp_get_associd(stcb);
1783 
1784 	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1785 	SCTP_BUF_NEXT(m_notify) = NULL;
1786 
1787 	/* append to socket */
1788 	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1789 	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1790 	if (control == NULL) {
1791 		/* no memory */
1792 		sctp_m_freem(m_notify);
1793 		return;
1794 	}
1795 	control->length = SCTP_BUF_LEN(m_notify);
1796 	control->spec_flags = M_NOTIFICATION;
1797 	/* not that we need this */
1798 	control->tail_mbuf = m_notify;
1799 	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1800 	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1801 }
1802 
1803 
1804 /*-
1805  * validates the AUTHentication related parameters in an INIT/INIT-ACK
1806  * Note: currently only used for INIT as INIT-ACK is handled inline
1807  * with sctp_load_addresses_from_init()
1808  */
1809 int
1810 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1811 {
1812 	struct sctp_paramhdr *phdr, param_buf;
1813 	uint16_t ptype, plen;
1814 	int peer_supports_asconf = 0;
1815 	int peer_supports_auth = 0;
1816 	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1817 	uint8_t saw_asconf = 0;
1818 	uint8_t saw_asconf_ack = 0;
1819 
1820 	/* go through each of the params. */
1821 	phdr = sctp_get_next_param(m, offset, &param_buf, sizeof(param_buf));
1822 	while (phdr) {
1823 		ptype = ntohs(phdr->param_type);
1824 		plen = ntohs(phdr->param_length);
1825 
1826 		if (offset + plen > limit) {
1827 			break;
1828 		}
1829 		if (plen < sizeof(struct sctp_paramhdr)) {
1830 			break;
1831 		}
1832 		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1833 			/* A supported extension chunk */
1834 			struct sctp_supported_chunk_types_param *pr_supported;
1835 			uint8_t local_store[SCTP_SMALL_CHUNK_STORE];
1836 			int num_ent, i;
1837 
1838 			if (plen > sizeof(local_store)) {
1839 				break;
1840 			}
1841 			phdr = sctp_get_next_param(m, offset,
1842 			                           (struct sctp_paramhdr *)&local_store,
1843 			                           plen);
1844 			if (phdr == NULL) {
1845 				return (-1);
1846 			}
1847 			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1848 			num_ent = plen - sizeof(struct sctp_paramhdr);
1849 			for (i = 0; i < num_ent; i++) {
1850 				switch (pr_supported->chunk_types[i]) {
1851 				case SCTP_ASCONF:
1852 				case SCTP_ASCONF_ACK:
1853 					peer_supports_asconf = 1;
1854 					break;
1855 				default:
1856 					/* one we don't care about */
1857 					break;
1858 				}
1859 			}
1860 		} else if (ptype == SCTP_RANDOM) {
1861 			/* enforce the random length */
1862 			if (plen != (sizeof(struct sctp_auth_random) +
1863 				     SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1864 				SCTPDBG(SCTP_DEBUG_AUTH1,
1865 					"SCTP: invalid RANDOM len\n");
1866 				return (-1);
1867 			}
1868 			got_random = 1;
1869 		} else if (ptype == SCTP_HMAC_LIST) {
1870 			struct sctp_auth_hmac_algo *hmacs;
1871 			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1872 			int num_hmacs;
1873 
1874 			if (plen > sizeof(store)) {
1875 				break;
1876 			}
1877 			phdr = sctp_get_next_param(m, offset,
1878 			                           (struct sctp_paramhdr *)store,
1879 			                           plen);
1880 			if (phdr == NULL) {
1881 				return (-1);
1882 			}
1883 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1884 			num_hmacs = (plen - sizeof(*hmacs)) / sizeof(hmacs->hmac_ids[0]);
1885 			/* validate the hmac list */
1886 			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1887 				SCTPDBG(SCTP_DEBUG_AUTH1,
1888 					"SCTP: invalid HMAC param\n");
1889 				return (-1);
1890 			}
1891 			got_hmacs = 1;
1892 		} else if (ptype == SCTP_CHUNK_LIST) {
1893 			struct sctp_auth_chunk_list *chunks;
1894 			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1895 			int i, num_chunks;
1896 
1897 			if (plen > sizeof(chunks_store)) {
1898 				break;
1899 			}
1900 			phdr = sctp_get_next_param(m, offset,
1901 						   (struct sctp_paramhdr *)chunks_store,
1902 						   plen);
1903 			if (phdr == NULL) {
1904 				return (-1);
1905 			}
1906 			/*-
1907 			 * Flip through the list and mark that the
1908 			 * peer supports asconf/asconf_ack.
1909 			 */
1910 			chunks = (struct sctp_auth_chunk_list *)phdr;
1911 			num_chunks = plen - sizeof(*chunks);
1912 			for (i = 0; i < num_chunks; i++) {
1913 				/* record asconf/asconf-ack if listed */
1914 				if (chunks->chunk_types[i] == SCTP_ASCONF)
1915 					saw_asconf = 1;
1916 				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
1917 					saw_asconf_ack = 1;
1918 
1919 			}
1920 			if (num_chunks)
1921 				got_chklist = 1;
1922 		}
1923 
1924 		offset += SCTP_SIZE32(plen);
1925 		if (offset >= limit) {
1926 			break;
1927 		}
1928 		phdr = sctp_get_next_param(m, offset, &param_buf,
1929 		    sizeof(param_buf));
1930 	}
1931 	/* validate authentication required parameters */
1932 	if (got_random && got_hmacs) {
1933 		peer_supports_auth = 1;
1934 	} else {
1935 		peer_supports_auth = 0;
1936 	}
1937 	if (!peer_supports_auth && got_chklist) {
1938 		SCTPDBG(SCTP_DEBUG_AUTH1,
1939 			"SCTP: peer sent chunk list w/o AUTH\n");
1940 		return (-1);
1941 	}
1942 	if (peer_supports_asconf && !peer_supports_auth) {
1943 		SCTPDBG(SCTP_DEBUG_AUTH1,
1944 			"SCTP: peer supports ASCONF but not AUTH\n");
1945 		return (-1);
1946 	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
1947 		   ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
1948 		return (-2);
1949 	}
1950 	return (0);
1951 }
1952 
1953 void
1954 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
1955 {
1956 	uint16_t chunks_len = 0;
1957 	uint16_t hmacs_len = 0;
1958 	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
1959 	sctp_key_t *new_key;
1960 	uint16_t keylen;
1961 
1962 	/* initialize hmac list from endpoint */
1963 	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
1964 	if (stcb->asoc.local_hmacs != NULL) {
1965 		hmacs_len = stcb->asoc.local_hmacs->num_algo *
1966 		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
1967 	}
1968 	/* initialize auth chunks list from endpoint */
1969 	stcb->asoc.local_auth_chunks =
1970 	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
1971 	if (stcb->asoc.local_auth_chunks != NULL) {
1972 		int i;
1973 		for (i = 0; i < 256; i++) {
1974 			if (stcb->asoc.local_auth_chunks->chunks[i])
1975 				chunks_len++;
1976 		}
1977 	}
1978 	/* copy defaults from the endpoint */
1979 	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
1980 
1981 	/* copy out the shared key list (by reference) from the endpoint */
1982 	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
1983 				 &stcb->asoc.shared_keys);
1984 
1985 	/* now set the concatenated key (random + chunks + hmacs) */
1986 	/* key includes parameter headers */
1987 	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
1988 	    hmacs_len;
1989 	new_key = sctp_alloc_key(keylen);
1990 	if (new_key != NULL) {
1991 		struct sctp_paramhdr *ph;
1992 		int plen;
1993 		/* generate and copy in the RANDOM */
1994 		ph = (struct sctp_paramhdr *)new_key->key;
1995 		ph->param_type = htons(SCTP_RANDOM);
1996 		plen = sizeof(*ph) + random_len;
1997 		ph->param_length = htons(plen);
1998 		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
1999 		keylen = plen;
2000 
2001 		/* append in the AUTH chunks */
2002 		/* NOTE: currently we always have chunks to list */
2003 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2004 		ph->param_type = htons(SCTP_CHUNK_LIST);
2005 		plen = sizeof(*ph) + chunks_len;
2006 		ph->param_length = htons(plen);
2007 		keylen += sizeof(*ph);
2008 		if (stcb->asoc.local_auth_chunks) {
2009 			int i;
2010 			for (i = 0; i < 256; i++) {
2011 				if (stcb->asoc.local_auth_chunks->chunks[i])
2012 					new_key->key[keylen++] = i;
2013 			}
2014 		}
2015 
2016 		/* append in the HMACs */
2017 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2018 		ph->param_type = htons(SCTP_HMAC_LIST);
2019 		plen = sizeof(*ph) + hmacs_len;
2020 		ph->param_length = htons(plen);
2021 		keylen += sizeof(*ph);
2022 		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
2023 					new_key->key + keylen);
2024 	}
2025 	if (stcb->asoc.authinfo.random != NULL)
2026 	    sctp_free_key(stcb->asoc.authinfo.random);
2027 	stcb->asoc.authinfo.random = new_key;
2028 	stcb->asoc.authinfo.random_len = random_len;
2029 }
2030 
2031 
2032 #ifdef SCTP_HMAC_TEST
2033 /*
2034  * HMAC and key concatenation tests
2035  */
2036 static void
2037 sctp_print_digest(uint8_t *digest, uint32_t digestlen, const char *str)
2038 {
2039 	uint32_t i;
2040 
2041 	SCTP_PRINTF("\n%s: 0x", str);
2042 	if (digest == NULL)
2043 		return;
2044 
2045 	for (i = 0; i < digestlen; i++)
2046 		SCTP_PRINTF("%02x", digest[i]);
2047 }
2048 
2049 static int
2050 sctp_test_hmac(const char *str, uint16_t hmac_id, uint8_t *key,
2051     uint32_t keylen, uint8_t *text, uint32_t textlen,
2052     uint8_t *digest, uint32_t digestlen)
2053 {
2054 	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
2055 
2056 	SCTP_PRINTF("\n%s:", str);
2057 	sctp_hmac(hmac_id, key, keylen, text, textlen, computed_digest);
2058 	sctp_print_digest(digest, digestlen, "Expected digest");
2059 	sctp_print_digest(computed_digest, digestlen, "Computed digest");
2060 	if (memcmp(digest, computed_digest, digestlen) != 0) {
2061 		SCTP_PRINTF("\nFAILED");
2062 		return (-1);
2063 	} else {
2064 		SCTP_PRINTF("\nPASSED");
2065 		return (0);
2066 	}
2067 }
2068 
2069 
2070 /*
2071  * RFC 2202: HMAC-SHA1 test cases
2072  */
2073 void
2074 sctp_test_hmac_sha1(void)
2075 {
2076 	uint8_t *digest;
2077 	uint8_t key[128];
2078 	uint32_t keylen;
2079 	uint8_t text[128];
2080 	uint32_t textlen;
2081 	uint32_t digestlen = 20;
2082 	int failed = 0;
2083 
2084 	/*-
2085 	 * test_case =     1
2086 	 * key =           0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
2087 	 * key_len =       20
2088 	 * data =          "Hi There"
2089 	 * data_len =      8
2090 	 * digest =        0xb617318655057264e28bc0b6fb378c8ef146be00
2091 	 */
2092 	keylen = 20;
2093 	memset(key, 0x0b, keylen);
2094 	textlen = 8;
2095 	strcpy(text, "Hi There");
2096 	digest = "\xb6\x17\x31\x86\x55\x05\x72\x64\xe2\x8b\xc0\xb6\xfb\x37\x8c\x8e\xf1\x46\xbe\x00";
2097 	if (sctp_test_hmac("SHA1 test case 1", SCTP_AUTH_HMAC_ID_SHA1, key, keylen,
2098 	    text, textlen, digest, digestlen) < 0)
2099 		failed++;
2100 
2101 	/*-
2102 	 * test_case =     2
2103 	 * key =           "Jefe"
2104 	 * key_len =       4
2105 	 * data =          "what do ya want for nothing?"
2106 	 * data_len =      28
2107 	 * digest =        0xeffcdf6ae5eb2fa2d27416d5f184df9c259a7c79
2108 	 */
2109 	keylen = 4;
2110 	strcpy(key, "Jefe");
2111 	textlen = 28;
2112 	strcpy(text, "what do ya want for nothing?");
2113 	digest = "\xef\xfc\xdf\x6a\xe5\xeb\x2f\xa2\xd2\x74\x16\xd5\xf1\x84\xdf\x9c\x25\x9a\x7c\x79";
2114 	if (sctp_test_hmac("SHA1 test case 2", SCTP_AUTH_HMAC_ID_SHA1, key, keylen,
2115 	    text, textlen, digest, digestlen) < 0)
2116 		failed++;
2117 
2118 	/*-
2119 	 * test_case =     3
2120 	 * key =           0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
2121 	 * key_len =       20
2122 	 * data =          0xdd repeated 50 times
2123 	 * data_len =      50
2124 	 * digest =        0x125d7342b9ac11cd91a39af48aa17b4f63f175d3
2125 	 */
2126 	keylen = 20;
2127 	memset(key, 0xaa, keylen);
2128 	textlen = 50;
2129 	memset(text, 0xdd, textlen);
2130 	digest = "\x12\x5d\x73\x42\xb9\xac\x11\xcd\x91\xa3\x9a\xf4\x8a\xa1\x7b\x4f\x63\xf1\x75\xd3";
2131 	if (sctp_test_hmac("SHA1 test case 3", SCTP_AUTH_HMAC_ID_SHA1, key, keylen,
2132 	    text, textlen, digest, digestlen) < 0)
2133 		failed++;
2134 
2135 	/*-
2136 	 * test_case =     4
2137 	 * key =           0x0102030405060708090a0b0c0d0e0f10111213141516171819
2138 	 * key_len =       25
2139 	 * data =          0xcd repeated 50 times
2140 	 * data_len =      50
2141 	 * digest =        0x4c9007f4026250c6bc8414f9bf50c86c2d7235da
2142 	 */
2143 	keylen = 25;
2144 	memcpy(key, "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", keylen);
2145 	textlen = 50;
2146 	memset(text, 0xcd, textlen);
2147 	digest = "\x4c\x90\x07\xf4\x02\x62\x50\xc6\xbc\x84\x14\xf9\xbf\x50\xc8\x6c\x2d\x72\x35\xda";
2148 	if (sctp_test_hmac("SHA1 test case 4", SCTP_AUTH_HMAC_ID_SHA1, key, keylen,
2149 	    text, textlen, digest, digestlen) < 0)
2150 		failed++;
2151 
2152 	/*-
2153 	 * test_case =     5
2154 	 * key =           0x0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
2155 	 * key_len =       20
2156 	 * data =          "Test With Truncation"
2157 	 * data_len =      20
2158 	 * digest =        0x4c1a03424b55e07fe7f27be1d58bb9324a9a5a04
2159 	 * digest-96 =     0x4c1a03424b55e07fe7f27be1
2160 	 */
2161 	keylen = 20;
2162 	memset(key, 0x0c, keylen);
2163 	textlen = 20;
2164 	strcpy(text, "Test With Truncation");
2165 	digest = "\x4c\x1a\x03\x42\x4b\x55\xe0\x7f\xe7\xf2\x7b\xe1\xd5\x8b\xb9\x32\x4a\x9a\x5a\x04";
2166 	if (sctp_test_hmac("SHA1 test case 5", SCTP_AUTH_HMAC_ID_SHA1, key, keylen,
2167 	    text, textlen, digest, digestlen) < 0)
2168 		failed++;
2169 
2170 	/*-
2171 	 * test_case =     6
2172 	 * key =           0xaa repeated 80 times
2173 	 * key_len =       80
2174 	 * data =          "Test Using Larger Than Block-Size Key - Hash Key First"
2175 	 * data_len =      54
2176 	 * digest =        0xaa4ae5e15272d00e95705637ce8a3b55ed402112
2177 	 */
2178 	keylen = 80;
2179 	memset(key, 0xaa, keylen);
2180 	textlen = 54;
2181 	strcpy(text, "Test Using Larger Than Block-Size Key - Hash Key First");
2182 	digest = "\xaa\x4a\xe5\xe1\x52\x72\xd0\x0e\x95\x70\x56\x37\xce\x8a\x3b\x55\xed\x40\x21\x12";
2183 	if (sctp_test_hmac("SHA1 test case 6", SCTP_AUTH_HMAC_ID_SHA1, key, keylen,
2184 	    text, textlen, digest, digestlen) < 0)
2185 		failed++;
2186 
2187 	/*-
2188 	 * test_case =     7
2189 	 * key =           0xaa repeated 80 times
2190 	 * key_len =       80
2191 	 * data =          "Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data"
2192 	 * data_len =      73
2193 	 * digest =        0xe8e99d0f45237d786d6bbaa7965c7808bbff1a91
2194 	 */
2195 	keylen = 80;
2196 	memset(key, 0xaa, keylen);
2197 	textlen = 73;
2198 	strcpy(text, "Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data");
2199 	digest = "\xe8\xe9\x9d\x0f\x45\x23\x7d\x78\x6d\x6b\xba\xa7\x96\x5c\x78\x08\xbb\xff\x1a\x91";
2200 	if (sctp_test_hmac("SHA1 test case 7", SCTP_AUTH_HMAC_ID_SHA1, key, keylen,
2201 	    text, textlen, digest, digestlen) < 0)
2202 		failed++;
2203 
2204 	/* done with all tests */
2205 	if (failed)
2206 		SCTP_PRINTF("\nSHA1 test results: %d cases failed", failed);
2207 	else
2208 		SCTP_PRINTF("\nSHA1 test results: all test cases passed");
2209 }
2210 
2211 /*
2212  * test assoc key concatenation
2213  */
2214 static int
2215 sctp_test_key_concatenation(sctp_key_t *key1, sctp_key_t *key2,
2216     sctp_key_t *expected_key)
2217 {
2218 	sctp_key_t *key;
2219 	int ret_val;
2220 
2221 	sctp_show_key(key1, "\nkey1");
2222 	sctp_show_key(key2, "\nkey2");
2223 	key = sctp_compute_hashkey(key1, key2, NULL);
2224 	sctp_show_key(expected_key, "\nExpected");
2225 	sctp_show_key(key, "\nComputed");
2226 	if (memcmp(key, expected_key, expected_key->keylen) != 0) {
2227 		SCTP_PRINTF("\nFAILED");
2228 		ret_val = -1;
2229 	} else {
2230 		SCTP_PRINTF("\nPASSED");
2231 		ret_val = 0;
2232 	}
2233 	sctp_free_key(key1);
2234 	sctp_free_key(key2);
2235 	sctp_free_key(expected_key);
2236 	sctp_free_key(key);
2237 	return (ret_val);
2238 }
2239 
2240 
2241 void
2242 sctp_test_authkey(void)
2243 {
2244 	sctp_key_t *key1, *key2, *expected_key;
2245 	int failed = 0;
2246 
2247 	/* test case 1 */
2248 	key1 = sctp_set_key("\x01\x01\x01\x01", 4);
2249 	key2 = sctp_set_key("\x01\x02\x03\x04", 4);
2250 	expected_key = sctp_set_key("\x01\x01\x01\x01\x01\x02\x03\x04", 8);
2251 	if (sctp_test_key_concatenation(key1, key2, expected_key) < 0)
2252 		failed++;
2253 
2254 	/* test case 2 */
2255 	key1 = sctp_set_key("\x00\x00\x00\x01", 4);
2256 	key2 = sctp_set_key("\x02", 1);
2257 	expected_key = sctp_set_key("\x00\x00\x00\x01\x02", 5);
2258 	if (sctp_test_key_concatenation(key1, key2, expected_key) < 0)
2259 		failed++;
2260 
2261 	/* test case 3 */
2262 	key1 = sctp_set_key("\x01", 1);
2263 	key2 = sctp_set_key("\x00\x00\x00\x02", 4);
2264 	expected_key = sctp_set_key("\x01\x00\x00\x00\x02", 5);
2265 	if (sctp_test_key_concatenation(key1, key2, expected_key) < 0)
2266 		failed++;
2267 
2268 	/* test case 4 */
2269 	key1 = sctp_set_key("\x00\x00\x00\x01", 4);
2270 	key2 = sctp_set_key("\x01", 1);
2271 	expected_key = sctp_set_key("\x01\x00\x00\x00\x01", 5);
2272 	if (sctp_test_key_concatenation(key1, key2, expected_key) < 0)
2273 		failed++;
2274 
2275 	/* test case 5 */
2276 	key1 = sctp_set_key("\x01", 1);
2277 	key2 = sctp_set_key("\x00\x00\x00\x01", 4);
2278 	expected_key = sctp_set_key("\x01\x00\x00\x00\x01", 5);
2279 	if (sctp_test_key_concatenation(key1, key2, expected_key) < 0)
2280 		failed++;
2281 
2282 	/* test case 6 */
2283 	key1 = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07", 11);
2284 	key2 = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x08", 11);
2285 	expected_key = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x08", 22);
2286 	if (sctp_test_key_concatenation(key1, key2, expected_key) < 0)
2287 		failed++;
2288 
2289 	/* test case 7 */
2290 	key1 = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x08", 11);
2291 	key2 = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07", 11);
2292 	expected_key = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x08", 22);
2293 	if (sctp_test_key_concatenation(key1, key2, expected_key) < 0)
2294 		failed++;
2295 
2296 	/* done with all tests */
2297 	if (failed)
2298 		SCTP_PRINTF("\nKey concatenation test results: %d cases failed", failed);
2299 	else
2300 		SCTP_PRINTF("\nKey concatenation test results: all test cases passed");
2301 }
2302 
2303 
2304 #if defined(STANDALONE_HMAC_TEST)
2305 int
2306 main(void)
2307 {
2308 	sctp_test_hmac_sha1();
2309 	sctp_test_authkey();
2310 }
2311 
2312 #endif /* STANDALONE_HMAC_TEST */
2313 
2314 #endif /* SCTP_HMAC_TEST */
2315