• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The file defines the MachineFrameInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
14 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
15 
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Support/Alignment.h"
18 #include "llvm/Support/DataTypes.h"
19 #include <cassert>
20 #include <vector>
21 
22 namespace llvm {
23 class raw_ostream;
24 class MachineFunction;
25 class MachineBasicBlock;
26 class BitVector;
27 class AllocaInst;
28 
29 /// The CalleeSavedInfo class tracks the information need to locate where a
30 /// callee saved register is in the current frame.
31 /// Callee saved reg can also be saved to a different register rather than
32 /// on the stack by setting DstReg instead of FrameIdx.
33 class CalleeSavedInfo {
34   unsigned Reg;
35   union {
36     int FrameIdx;
37     unsigned DstReg;
38   };
39   /// Flag indicating whether the register is actually restored in the epilog.
40   /// In most cases, if a register is saved, it is also restored. There are
41   /// some situations, though, when this is not the case. For example, the
42   /// LR register on ARM is usually saved, but on exit from the function its
43   /// saved value may be loaded directly into PC. Since liveness tracking of
44   /// physical registers treats callee-saved registers are live outside of
45   /// the function, LR would be treated as live-on-exit, even though in these
46   /// scenarios it is not. This flag is added to indicate that the saved
47   /// register described by this object is not restored in the epilog.
48   /// The long-term solution is to model the liveness of callee-saved registers
49   /// by implicit uses on the return instructions, however, the required
50   /// changes in the ARM backend would be quite extensive.
51   bool Restored;
52   /// Flag indicating whether the register is spilled to stack or another
53   /// register.
54   bool SpilledToReg;
55 
56 public:
57   explicit CalleeSavedInfo(unsigned R, int FI = 0)
Reg(R)58   : Reg(R), FrameIdx(FI), Restored(true), SpilledToReg(false) {}
59 
60   // Accessors.
getReg()61   unsigned getReg()                        const { return Reg; }
getFrameIdx()62   int getFrameIdx()                        const { return FrameIdx; }
getDstReg()63   unsigned getDstReg()                     const { return DstReg; }
setFrameIdx(int FI)64   void setFrameIdx(int FI) {
65     FrameIdx = FI;
66     SpilledToReg = false;
67   }
setDstReg(unsigned SpillReg)68   void setDstReg(unsigned SpillReg) {
69     DstReg = SpillReg;
70     SpilledToReg = true;
71   }
isRestored()72   bool isRestored()                        const { return Restored; }
setRestored(bool R)73   void setRestored(bool R)                       { Restored = R; }
isSpilledToReg()74   bool isSpilledToReg()                    const { return SpilledToReg; }
75 };
76 
77 /// The MachineFrameInfo class represents an abstract stack frame until
78 /// prolog/epilog code is inserted.  This class is key to allowing stack frame
79 /// representation optimizations, such as frame pointer elimination.  It also
80 /// allows more mundane (but still important) optimizations, such as reordering
81 /// of abstract objects on the stack frame.
82 ///
83 /// To support this, the class assigns unique integer identifiers to stack
84 /// objects requested clients.  These identifiers are negative integers for
85 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
86 /// for objects that may be reordered.  Instructions which refer to stack
87 /// objects use a special MO_FrameIndex operand to represent these frame
88 /// indexes.
89 ///
90 /// Because this class keeps track of all references to the stack frame, it
91 /// knows when a variable sized object is allocated on the stack.  This is the
92 /// sole condition which prevents frame pointer elimination, which is an
93 /// important optimization on register-poor architectures.  Because original
94 /// variable sized alloca's in the source program are the only source of
95 /// variable sized stack objects, it is safe to decide whether there will be
96 /// any variable sized objects before all stack objects are known (for
97 /// example, register allocator spill code never needs variable sized
98 /// objects).
99 ///
100 /// When prolog/epilog code emission is performed, the final stack frame is
101 /// built and the machine instructions are modified to refer to the actual
102 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
103 /// the program.
104 ///
105 /// Abstract Stack Frame Information
106 class MachineFrameInfo {
107 public:
108   /// Stack Smashing Protection (SSP) rules require that vulnerable stack
109   /// allocations are located close the stack protector.
110   enum SSPLayoutKind {
111     SSPLK_None,       ///< Did not trigger a stack protector.  No effect on data
112                       ///< layout.
113     SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size.  Closest
114                       ///< to the stack protector.
115     SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest
116                       ///< to the stack protector.
117     SSPLK_AddrOf      ///< The address of this allocation is exposed and
118                       ///< triggered protection.  3rd closest to the protector.
119   };
120 
121 private:
122   // Represent a single object allocated on the stack.
123   struct StackObject {
124     // The offset of this object from the stack pointer on entry to
125     // the function.  This field has no meaning for a variable sized element.
126     int64_t SPOffset;
127 
128     // The size of this object on the stack. 0 means a variable sized object,
129     // ~0ULL means a dead object.
130     uint64_t Size;
131 
132     // The required alignment of this stack slot.
133     Align Alignment;
134 
135     // If true, the value of the stack object is set before
136     // entering the function and is not modified inside the function. By
137     // default, fixed objects are immutable unless marked otherwise.
138     bool isImmutable;
139 
140     // If true the stack object is used as spill slot. It
141     // cannot alias any other memory objects.
142     bool isSpillSlot;
143 
144     /// If true, this stack slot is used to spill a value (could be deopt
145     /// and/or GC related) over a statepoint. We know that the address of the
146     /// slot can't alias any LLVM IR value.  This is very similar to a Spill
147     /// Slot, but is created by statepoint lowering is SelectionDAG, not the
148     /// register allocator.
149     bool isStatepointSpillSlot = false;
150 
151     /// Identifier for stack memory type analagous to address space. If this is
152     /// non-0, the meaning is target defined. Offsets cannot be directly
153     /// compared between objects with different stack IDs. The object may not
154     /// necessarily reside in the same contiguous memory block as other stack
155     /// objects. Objects with differing stack IDs should not be merged or
156     /// replaced substituted for each other.
157     //
158     /// It is assumed a target uses consecutive, increasing stack IDs starting
159     /// from 1.
160     uint8_t StackID;
161 
162     /// If this stack object is originated from an Alloca instruction
163     /// this value saves the original IR allocation. Can be NULL.
164     const AllocaInst *Alloca;
165 
166     // If true, the object was mapped into the local frame
167     // block and doesn't need additional handling for allocation beyond that.
168     bool PreAllocated = false;
169 
170     // If true, an LLVM IR value might point to this object.
171     // Normally, spill slots and fixed-offset objects don't alias IR-accessible
172     // objects, but there are exceptions (on PowerPC, for example, some byval
173     // arguments have ABI-prescribed offsets).
174     bool isAliased;
175 
176     /// If true, the object has been zero-extended.
177     bool isZExt = false;
178 
179     /// If true, the object has been zero-extended.
180     bool isSExt = false;
181 
182     uint8_t SSPLayout;
183 
184     StackObject(uint64_t Size, Align Alignment, int64_t SPOffset,
185                 bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca,
186                 bool IsAliased, uint8_t StackID = 0)
SPOffsetStackObject187         : SPOffset(SPOffset), Size(Size), Alignment(Alignment),
188           isImmutable(IsImmutable), isSpillSlot(IsSpillSlot), StackID(StackID),
189           Alloca(Alloca), isAliased(IsAliased), SSPLayout(SSPLK_None) {}
190   };
191 
192   /// The alignment of the stack.
193   Align StackAlignment;
194 
195   /// Can the stack be realigned. This can be false if the target does not
196   /// support stack realignment, or if the user asks us not to realign the
197   /// stack. In this situation, overaligned allocas are all treated as dynamic
198   /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
199   /// lowering. All non-alloca stack objects have their alignment clamped to the
200   /// base ABI stack alignment.
201   /// FIXME: There is room for improvement in this case, in terms of
202   /// grouping overaligned allocas into a "secondary stack frame" and
203   /// then only use a single alloca to allocate this frame and only a
204   /// single virtual register to access it. Currently, without such an
205   /// optimization, each such alloca gets its own dynamic realignment.
206   bool StackRealignable;
207 
208   /// Whether the function has the \c alignstack attribute.
209   bool ForcedRealign;
210 
211   /// The list of stack objects allocated.
212   std::vector<StackObject> Objects;
213 
214   /// This contains the number of fixed objects contained on
215   /// the stack.  Because fixed objects are stored at a negative index in the
216   /// Objects list, this is also the index to the 0th object in the list.
217   unsigned NumFixedObjects = 0;
218 
219   /// This boolean keeps track of whether any variable
220   /// sized objects have been allocated yet.
221   bool HasVarSizedObjects = false;
222 
223   /// This boolean keeps track of whether there is a call
224   /// to builtin \@llvm.frameaddress.
225   bool FrameAddressTaken = false;
226 
227   /// This boolean keeps track of whether there is a call
228   /// to builtin \@llvm.returnaddress.
229   bool ReturnAddressTaken = false;
230 
231   /// This boolean keeps track of whether there is a call
232   /// to builtin \@llvm.experimental.stackmap.
233   bool HasStackMap = false;
234 
235   /// This boolean keeps track of whether there is a call
236   /// to builtin \@llvm.experimental.patchpoint.
237   bool HasPatchPoint = false;
238 
239   /// The prolog/epilog code inserter calculates the final stack
240   /// offsets for all of the fixed size objects, updating the Objects list
241   /// above.  It then updates StackSize to contain the number of bytes that need
242   /// to be allocated on entry to the function.
243   uint64_t StackSize = 0;
244 
245   /// The amount that a frame offset needs to be adjusted to
246   /// have the actual offset from the stack/frame pointer.  The exact usage of
247   /// this is target-dependent, but it is typically used to adjust between
248   /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
249   /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
250   /// to the distance between the initial SP and the value in FP.  For many
251   /// targets, this value is only used when generating debug info (via
252   /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
253   /// corresponding adjustments are performed directly.
254   int OffsetAdjustment = 0;
255 
256   /// The prolog/epilog code inserter may process objects that require greater
257   /// alignment than the default alignment the target provides.
258   /// To handle this, MaxAlignment is set to the maximum alignment
259   /// needed by the objects on the current frame.  If this is greater than the
260   /// native alignment maintained by the compiler, dynamic alignment code will
261   /// be needed.
262   ///
263   Align MaxAlignment;
264 
265   /// Set to true if this function adjusts the stack -- e.g.,
266   /// when calling another function. This is only valid during and after
267   /// prolog/epilog code insertion.
268   bool AdjustsStack = false;
269 
270   /// Set to true if this function has any function calls.
271   bool HasCalls = false;
272 
273   /// The frame index for the stack protector.
274   int StackProtectorIdx = -1;
275 
276   /// The frame index for the function context. Used for SjLj exceptions.
277   int FunctionContextIdx = -1;
278 
279   /// This contains the size of the largest call frame if the target uses frame
280   /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
281   /// class).  This information is important for frame pointer elimination.
282   /// It is only valid during and after prolog/epilog code insertion.
283   unsigned MaxCallFrameSize = ~0u;
284 
285   /// The number of bytes of callee saved registers that the target wants to
286   /// report for the current function in the CodeView S_FRAMEPROC record.
287   unsigned CVBytesOfCalleeSavedRegisters = 0;
288 
289   /// The prolog/epilog code inserter fills in this vector with each
290   /// callee saved register saved in either the frame or a different
291   /// register.  Beyond its use by the prolog/ epilog code inserter,
292   /// this data is used for debug info and exception handling.
293   std::vector<CalleeSavedInfo> CSInfo;
294 
295   /// Has CSInfo been set yet?
296   bool CSIValid = false;
297 
298   /// References to frame indices which are mapped
299   /// into the local frame allocation block. <FrameIdx, LocalOffset>
300   SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
301 
302   /// Size of the pre-allocated local frame block.
303   int64_t LocalFrameSize = 0;
304 
305   /// Required alignment of the local object blob, which is the strictest
306   /// alignment of any object in it.
307   Align LocalFrameMaxAlign;
308 
309   /// Whether the local object blob needs to be allocated together. If not,
310   /// PEI should ignore the isPreAllocated flags on the stack objects and
311   /// just allocate them normally.
312   bool UseLocalStackAllocationBlock = false;
313 
314   /// True if the function dynamically adjusts the stack pointer through some
315   /// opaque mechanism like inline assembly or Win32 EH.
316   bool HasOpaqueSPAdjustment = false;
317 
318   /// True if the function contains operations which will lower down to
319   /// instructions which manipulate the stack pointer.
320   bool HasCopyImplyingStackAdjustment = false;
321 
322   /// True if the function contains a call to the llvm.vastart intrinsic.
323   bool HasVAStart = false;
324 
325   /// True if this is a varargs function that contains a musttail call.
326   bool HasMustTailInVarArgFunc = false;
327 
328   /// True if this function contains a tail call. If so immutable objects like
329   /// function arguments are no longer so. A tail call *can* override fixed
330   /// stack objects like arguments so we can't treat them as immutable.
331   bool HasTailCall = false;
332 
333   /// Not null, if shrink-wrapping found a better place for the prologue.
334   MachineBasicBlock *Save = nullptr;
335   /// Not null, if shrink-wrapping found a better place for the epilogue.
336   MachineBasicBlock *Restore = nullptr;
337 
338 public:
MachineFrameInfo(unsigned StackAlignment,bool StackRealignable,bool ForcedRealign)339   explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
340                             bool ForcedRealign)
341       : StackAlignment(assumeAligned(StackAlignment)),
342         StackRealignable(StackRealignable), ForcedRealign(ForcedRealign) {}
343 
344   /// Return true if there are any stack objects in this function.
hasStackObjects()345   bool hasStackObjects() const { return !Objects.empty(); }
346 
347   /// This method may be called any time after instruction
348   /// selection is complete to determine if the stack frame for this function
349   /// contains any variable sized objects.
hasVarSizedObjects()350   bool hasVarSizedObjects() const { return HasVarSizedObjects; }
351 
352   /// Return the index for the stack protector object.
getStackProtectorIndex()353   int getStackProtectorIndex() const { return StackProtectorIdx; }
setStackProtectorIndex(int I)354   void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
hasStackProtectorIndex()355   bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
356 
357   /// Return the index for the function context object.
358   /// This object is used for SjLj exceptions.
getFunctionContextIndex()359   int getFunctionContextIndex() const { return FunctionContextIdx; }
setFunctionContextIndex(int I)360   void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
361 
362   /// This method may be called any time after instruction
363   /// selection is complete to determine if there is a call to
364   /// \@llvm.frameaddress in this function.
isFrameAddressTaken()365   bool isFrameAddressTaken() const { return FrameAddressTaken; }
setFrameAddressIsTaken(bool T)366   void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
367 
368   /// This method may be called any time after
369   /// instruction selection is complete to determine if there is a call to
370   /// \@llvm.returnaddress in this function.
isReturnAddressTaken()371   bool isReturnAddressTaken() const { return ReturnAddressTaken; }
setReturnAddressIsTaken(bool s)372   void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
373 
374   /// This method may be called any time after instruction
375   /// selection is complete to determine if there is a call to builtin
376   /// \@llvm.experimental.stackmap.
hasStackMap()377   bool hasStackMap() const { return HasStackMap; }
378   void setHasStackMap(bool s = true) { HasStackMap = s; }
379 
380   /// This method may be called any time after instruction
381   /// selection is complete to determine if there is a call to builtin
382   /// \@llvm.experimental.patchpoint.
hasPatchPoint()383   bool hasPatchPoint() const { return HasPatchPoint; }
384   void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
385 
386   /// Return the minimum frame object index.
getObjectIndexBegin()387   int getObjectIndexBegin() const { return -NumFixedObjects; }
388 
389   /// Return one past the maximum frame object index.
getObjectIndexEnd()390   int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
391 
392   /// Return the number of fixed objects.
getNumFixedObjects()393   unsigned getNumFixedObjects() const { return NumFixedObjects; }
394 
395   /// Return the number of objects.
getNumObjects()396   unsigned getNumObjects() const { return Objects.size(); }
397 
398   /// Map a frame index into the local object block
mapLocalFrameObject(int ObjectIndex,int64_t Offset)399   void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
400     LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
401     Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
402   }
403 
404   /// Get the local offset mapping for a for an object.
getLocalFrameObjectMap(int i)405   std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
406     assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
407             "Invalid local object reference!");
408     return LocalFrameObjects[i];
409   }
410 
411   /// Return the number of objects allocated into the local object block.
getLocalFrameObjectCount()412   int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
413 
414   /// Set the size of the local object blob.
setLocalFrameSize(int64_t sz)415   void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
416 
417   /// Get the size of the local object blob.
getLocalFrameSize()418   int64_t getLocalFrameSize() const { return LocalFrameSize; }
419 
420   /// Required alignment of the local object blob,
421   /// which is the strictest alignment of any object in it.
setLocalFrameMaxAlign(Align Alignment)422   void setLocalFrameMaxAlign(Align Alignment) {
423     LocalFrameMaxAlign = Alignment;
424   }
425 
426   /// Return the required alignment of the local object blob.
getLocalFrameMaxAlign()427   Align getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
428 
429   /// Get whether the local allocation blob should be allocated together or
430   /// let PEI allocate the locals in it directly.
getUseLocalStackAllocationBlock()431   bool getUseLocalStackAllocationBlock() const {
432     return UseLocalStackAllocationBlock;
433   }
434 
435   /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
436   /// should be allocated together or let PEI allocate the locals in it
437   /// directly.
setUseLocalStackAllocationBlock(bool v)438   void setUseLocalStackAllocationBlock(bool v) {
439     UseLocalStackAllocationBlock = v;
440   }
441 
442   /// Return true if the object was pre-allocated into the local block.
isObjectPreAllocated(int ObjectIdx)443   bool isObjectPreAllocated(int ObjectIdx) const {
444     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
445            "Invalid Object Idx!");
446     return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
447   }
448 
449   /// Return the size of the specified object.
getObjectSize(int ObjectIdx)450   int64_t getObjectSize(int ObjectIdx) const {
451     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
452            "Invalid Object Idx!");
453     return Objects[ObjectIdx+NumFixedObjects].Size;
454   }
455 
456   /// Change the size of the specified stack object.
setObjectSize(int ObjectIdx,int64_t Size)457   void setObjectSize(int ObjectIdx, int64_t Size) {
458     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
459            "Invalid Object Idx!");
460     Objects[ObjectIdx+NumFixedObjects].Size = Size;
461   }
462 
463   /// Return the alignment of the specified stack object.
getObjectAlignment(int ObjectIdx)464   unsigned getObjectAlignment(int ObjectIdx) const {
465     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
466            "Invalid Object Idx!");
467     return Objects[ObjectIdx + NumFixedObjects].Alignment.value();
468   }
469 
470   /// setObjectAlignment - Change the alignment of the specified stack object.
setObjectAlignment(int ObjectIdx,unsigned Align)471   void setObjectAlignment(int ObjectIdx, unsigned Align) {
472     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
473            "Invalid Object Idx!");
474     Objects[ObjectIdx + NumFixedObjects].Alignment = assumeAligned(Align);
475 
476     // Only ensure max alignment for the default stack.
477     if (getStackID(ObjectIdx) == 0)
478       ensureMaxAlignment(Align);
479   }
480 
481   /// Return the underlying Alloca of the specified
482   /// stack object if it exists. Returns 0 if none exists.
getObjectAllocation(int ObjectIdx)483   const AllocaInst* getObjectAllocation(int ObjectIdx) const {
484     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
485            "Invalid Object Idx!");
486     return Objects[ObjectIdx+NumFixedObjects].Alloca;
487   }
488 
489   /// Return the assigned stack offset of the specified object
490   /// from the incoming stack pointer.
getObjectOffset(int ObjectIdx)491   int64_t getObjectOffset(int ObjectIdx) const {
492     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
493            "Invalid Object Idx!");
494     assert(!isDeadObjectIndex(ObjectIdx) &&
495            "Getting frame offset for a dead object?");
496     return Objects[ObjectIdx+NumFixedObjects].SPOffset;
497   }
498 
isObjectZExt(int ObjectIdx)499   bool isObjectZExt(int ObjectIdx) const {
500     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
501            "Invalid Object Idx!");
502     return Objects[ObjectIdx+NumFixedObjects].isZExt;
503   }
504 
setObjectZExt(int ObjectIdx,bool IsZExt)505   void setObjectZExt(int ObjectIdx, bool IsZExt) {
506     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
507            "Invalid Object Idx!");
508     Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
509   }
510 
isObjectSExt(int ObjectIdx)511   bool isObjectSExt(int ObjectIdx) const {
512     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
513            "Invalid Object Idx!");
514     return Objects[ObjectIdx+NumFixedObjects].isSExt;
515   }
516 
setObjectSExt(int ObjectIdx,bool IsSExt)517   void setObjectSExt(int ObjectIdx, bool IsSExt) {
518     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
519            "Invalid Object Idx!");
520     Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
521   }
522 
523   /// Set the stack frame offset of the specified object. The
524   /// offset is relative to the stack pointer on entry to the function.
setObjectOffset(int ObjectIdx,int64_t SPOffset)525   void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
526     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
527            "Invalid Object Idx!");
528     assert(!isDeadObjectIndex(ObjectIdx) &&
529            "Setting frame offset for a dead object?");
530     Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
531   }
532 
getObjectSSPLayout(int ObjectIdx)533   SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const {
534     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
535            "Invalid Object Idx!");
536     return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout;
537   }
538 
setObjectSSPLayout(int ObjectIdx,SSPLayoutKind Kind)539   void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) {
540     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
541            "Invalid Object Idx!");
542     assert(!isDeadObjectIndex(ObjectIdx) &&
543            "Setting SSP layout for a dead object?");
544     Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind;
545   }
546 
547   /// Return the number of bytes that must be allocated to hold
548   /// all of the fixed size frame objects.  This is only valid after
549   /// Prolog/Epilog code insertion has finalized the stack frame layout.
getStackSize()550   uint64_t getStackSize() const { return StackSize; }
551 
552   /// Set the size of the stack.
setStackSize(uint64_t Size)553   void setStackSize(uint64_t Size) { StackSize = Size; }
554 
555   /// Estimate and return the size of the stack frame.
556   uint64_t estimateStackSize(const MachineFunction &MF) const;
557 
558   /// Return the correction for frame offsets.
getOffsetAdjustment()559   int getOffsetAdjustment() const { return OffsetAdjustment; }
560 
561   /// Set the correction for frame offsets.
setOffsetAdjustment(int Adj)562   void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
563 
564   /// Return the alignment in bytes that this function must be aligned to,
565   /// which is greater than the default stack alignment provided by the target.
getMaxAlignment()566   unsigned getMaxAlignment() const { return MaxAlignment.value(); }
567 
568   /// Make sure the function is at least Align bytes aligned.
569   void ensureMaxAlignment(Align Alignment);
570   /// FIXME: Remove this once transition to Align is over.
ensureMaxAlignment(unsigned Align)571   inline void ensureMaxAlignment(unsigned Align) {
572     ensureMaxAlignment(assumeAligned(Align));
573   }
574 
575   /// Return true if this function adjusts the stack -- e.g.,
576   /// when calling another function. This is only valid during and after
577   /// prolog/epilog code insertion.
adjustsStack()578   bool adjustsStack() const { return AdjustsStack; }
setAdjustsStack(bool V)579   void setAdjustsStack(bool V) { AdjustsStack = V; }
580 
581   /// Return true if the current function has any function calls.
hasCalls()582   bool hasCalls() const { return HasCalls; }
setHasCalls(bool V)583   void setHasCalls(bool V) { HasCalls = V; }
584 
585   /// Returns true if the function contains opaque dynamic stack adjustments.
hasOpaqueSPAdjustment()586   bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
setHasOpaqueSPAdjustment(bool B)587   void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
588 
589   /// Returns true if the function contains operations which will lower down to
590   /// instructions which manipulate the stack pointer.
hasCopyImplyingStackAdjustment()591   bool hasCopyImplyingStackAdjustment() const {
592     return HasCopyImplyingStackAdjustment;
593   }
setHasCopyImplyingStackAdjustment(bool B)594   void setHasCopyImplyingStackAdjustment(bool B) {
595     HasCopyImplyingStackAdjustment = B;
596   }
597 
598   /// Returns true if the function calls the llvm.va_start intrinsic.
hasVAStart()599   bool hasVAStart() const { return HasVAStart; }
setHasVAStart(bool B)600   void setHasVAStart(bool B) { HasVAStart = B; }
601 
602   /// Returns true if the function is variadic and contains a musttail call.
hasMustTailInVarArgFunc()603   bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
setHasMustTailInVarArgFunc(bool B)604   void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
605 
606   /// Returns true if the function contains a tail call.
hasTailCall()607   bool hasTailCall() const { return HasTailCall; }
setHasTailCall()608   void setHasTailCall() { HasTailCall = true; }
609 
610   /// Computes the maximum size of a callframe and the AdjustsStack property.
611   /// This only works for targets defining
612   /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
613   /// and getFrameSize().
614   /// This is usually computed by the prologue epilogue inserter but some
615   /// targets may call this to compute it earlier.
616   void computeMaxCallFrameSize(const MachineFunction &MF);
617 
618   /// Return the maximum size of a call frame that must be
619   /// allocated for an outgoing function call.  This is only available if
620   /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
621   /// then only during or after prolog/epilog code insertion.
622   ///
getMaxCallFrameSize()623   unsigned getMaxCallFrameSize() const {
624     // TODO: Enable this assert when targets are fixed.
625     //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
626     if (!isMaxCallFrameSizeComputed())
627       return 0;
628     return MaxCallFrameSize;
629   }
isMaxCallFrameSizeComputed()630   bool isMaxCallFrameSizeComputed() const {
631     return MaxCallFrameSize != ~0u;
632   }
setMaxCallFrameSize(unsigned S)633   void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
634 
635   /// Returns how many bytes of callee-saved registers the target pushed in the
636   /// prologue. Only used for debug info.
getCVBytesOfCalleeSavedRegisters()637   unsigned getCVBytesOfCalleeSavedRegisters() const {
638     return CVBytesOfCalleeSavedRegisters;
639   }
setCVBytesOfCalleeSavedRegisters(unsigned S)640   void setCVBytesOfCalleeSavedRegisters(unsigned S) {
641     CVBytesOfCalleeSavedRegisters = S;
642   }
643 
644   /// Create a new object at a fixed location on the stack.
645   /// All fixed objects should be created before other objects are created for
646   /// efficiency. By default, fixed objects are not pointed to by LLVM IR
647   /// values. This returns an index with a negative value.
648   int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable,
649                         bool isAliased = false);
650 
651   /// Create a spill slot at a fixed location on the stack.
652   /// Returns an index with a negative value.
653   int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
654                                   bool IsImmutable = false);
655 
656   /// Returns true if the specified index corresponds to a fixed stack object.
isFixedObjectIndex(int ObjectIdx)657   bool isFixedObjectIndex(int ObjectIdx) const {
658     return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
659   }
660 
661   /// Returns true if the specified index corresponds
662   /// to an object that might be pointed to by an LLVM IR value.
isAliasedObjectIndex(int ObjectIdx)663   bool isAliasedObjectIndex(int ObjectIdx) const {
664     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
665            "Invalid Object Idx!");
666     return Objects[ObjectIdx+NumFixedObjects].isAliased;
667   }
668 
669   /// Returns true if the specified index corresponds to an immutable object.
isImmutableObjectIndex(int ObjectIdx)670   bool isImmutableObjectIndex(int ObjectIdx) const {
671     // Tail calling functions can clobber their function arguments.
672     if (HasTailCall)
673       return false;
674     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
675            "Invalid Object Idx!");
676     return Objects[ObjectIdx+NumFixedObjects].isImmutable;
677   }
678 
679   /// Marks the immutability of an object.
setIsImmutableObjectIndex(int ObjectIdx,bool IsImmutable)680   void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) {
681     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
682            "Invalid Object Idx!");
683     Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable;
684   }
685 
686   /// Returns true if the specified index corresponds to a spill slot.
isSpillSlotObjectIndex(int ObjectIdx)687   bool isSpillSlotObjectIndex(int ObjectIdx) const {
688     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
689            "Invalid Object Idx!");
690     return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
691   }
692 
isStatepointSpillSlotObjectIndex(int ObjectIdx)693   bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
694     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
695            "Invalid Object Idx!");
696     return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
697   }
698 
699   /// \see StackID
getStackID(int ObjectIdx)700   uint8_t getStackID(int ObjectIdx) const {
701     return Objects[ObjectIdx+NumFixedObjects].StackID;
702   }
703 
704   /// \see StackID
setStackID(int ObjectIdx,uint8_t ID)705   void setStackID(int ObjectIdx, uint8_t ID) {
706     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
707            "Invalid Object Idx!");
708     Objects[ObjectIdx+NumFixedObjects].StackID = ID;
709     // If ID > 0, MaxAlignment may now be overly conservative.
710     // If ID == 0, MaxAlignment will need to be updated separately.
711   }
712 
713   /// Returns true if the specified index corresponds to a dead object.
isDeadObjectIndex(int ObjectIdx)714   bool isDeadObjectIndex(int ObjectIdx) const {
715     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
716            "Invalid Object Idx!");
717     return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
718   }
719 
720   /// Returns true if the specified index corresponds to a variable sized
721   /// object.
isVariableSizedObjectIndex(int ObjectIdx)722   bool isVariableSizedObjectIndex(int ObjectIdx) const {
723     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
724            "Invalid Object Idx!");
725     return Objects[ObjectIdx + NumFixedObjects].Size == 0;
726   }
727 
markAsStatepointSpillSlotObjectIndex(int ObjectIdx)728   void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
729     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
730            "Invalid Object Idx!");
731     Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
732     assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
733   }
734 
735   /// Create a new statically sized stack object, returning
736   /// a nonnegative identifier to represent it.
737   int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot,
738                         const AllocaInst *Alloca = nullptr, uint8_t ID = 0);
739   /// FIXME: Remove this function when transition to Align is over.
740   inline int CreateStackObject(uint64_t Size, unsigned Alignment,
741                                bool isSpillSlot,
742                                const AllocaInst *Alloca = nullptr,
743                                uint8_t ID = 0) {
744     return CreateStackObject(Size, assumeAligned(Alignment), isSpillSlot,
745                              Alloca, ID);
746   }
747 
748   /// Create a new statically sized stack object that represents a spill slot,
749   /// returning a nonnegative identifier to represent it.
750   int CreateSpillStackObject(uint64_t Size, Align Alignment);
751   /// FIXME: Remove this function when transition to Align is over.
CreateSpillStackObject(uint64_t Size,unsigned Alignment)752   inline int CreateSpillStackObject(uint64_t Size, unsigned Alignment) {
753     return CreateSpillStackObject(Size, assumeAligned(Alignment));
754   }
755 
756   /// Remove or mark dead a statically sized stack object.
RemoveStackObject(int ObjectIdx)757   void RemoveStackObject(int ObjectIdx) {
758     // Mark it dead.
759     Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
760   }
761 
762   /// Notify the MachineFrameInfo object that a variable sized object has been
763   /// created.  This must be created whenever a variable sized object is
764   /// created, whether or not the index returned is actually used.
765   int CreateVariableSizedObject(Align Alignment, const AllocaInst *Alloca);
766   /// FIXME: Remove this function when transition to Align is over.
CreateVariableSizedObject(unsigned Alignment,const AllocaInst * Alloca)767   int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca) {
768     return CreateVariableSizedObject(assumeAligned(Alignment), Alloca);
769   }
770 
771   /// Returns a reference to call saved info vector for the current function.
getCalleeSavedInfo()772   const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
773     return CSInfo;
774   }
775   /// \copydoc getCalleeSavedInfo()
getCalleeSavedInfo()776   std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; }
777 
778   /// Used by prolog/epilog inserter to set the function's callee saved
779   /// information.
setCalleeSavedInfo(const std::vector<CalleeSavedInfo> & CSI)780   void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
781     CSInfo = CSI;
782   }
783 
784   /// Has the callee saved info been calculated yet?
isCalleeSavedInfoValid()785   bool isCalleeSavedInfoValid() const { return CSIValid; }
786 
setCalleeSavedInfoValid(bool v)787   void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
788 
getSavePoint()789   MachineBasicBlock *getSavePoint() const { return Save; }
setSavePoint(MachineBasicBlock * NewSave)790   void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
getRestorePoint()791   MachineBasicBlock *getRestorePoint() const { return Restore; }
setRestorePoint(MachineBasicBlock * NewRestore)792   void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
793 
794   /// Return a set of physical registers that are pristine.
795   ///
796   /// Pristine registers hold a value that is useless to the current function,
797   /// but that must be preserved - they are callee saved registers that are not
798   /// saved.
799   ///
800   /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
801   /// method always returns an empty set.
802   BitVector getPristineRegs(const MachineFunction &MF) const;
803 
804   /// Used by the MachineFunction printer to print information about
805   /// stack objects. Implemented in MachineFunction.cpp.
806   void print(const MachineFunction &MF, raw_ostream &OS) const;
807 
808   /// dump - Print the function to stderr.
809   void dump(const MachineFunction &MF) const;
810 };
811 
812 } // End llvm namespace
813 
814 #endif
815