• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/tlbex.h>
71 #include <asm/uasm.h>
72 
73 #include <asm/mach-loongson64/cpucfg-emul.h>
74 
75 extern void check_wait(void);
76 extern asmlinkage void rollback_handle_int(void);
77 extern asmlinkage void handle_int(void);
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_gsexc(void);
94 extern asmlinkage void handle_msa(void);
95 extern asmlinkage void handle_mdmx(void);
96 extern asmlinkage void handle_watch(void);
97 extern asmlinkage void handle_mt(void);
98 extern asmlinkage void handle_dsp(void);
99 extern asmlinkage void handle_mcheck(void);
100 extern asmlinkage void handle_reserved(void);
101 extern void tlb_do_page_fault_0(void);
102 
103 void (*board_be_init)(void);
104 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
105 void (*board_nmi_handler_setup)(void);
106 void (*board_ejtag_handler_setup)(void);
107 void (*board_bind_eic_interrupt)(int irq, int regset);
108 void (*board_ebase_setup)(void);
109 void(*board_cache_error_setup)(void);
110 
show_raw_backtrace(unsigned long reg29,const char * loglvl)111 static void show_raw_backtrace(unsigned long reg29, const char *loglvl)
112 {
113 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
114 	unsigned long addr;
115 
116 	printk("%sCall Trace:", loglvl);
117 #ifdef CONFIG_KALLSYMS
118 	printk("%s\n", loglvl);
119 #endif
120 	while (!kstack_end(sp)) {
121 		unsigned long __user *p =
122 			(unsigned long __user *)(unsigned long)sp++;
123 		if (__get_user(addr, p)) {
124 			printk("%s (Bad stack address)", loglvl);
125 			break;
126 		}
127 		if (__kernel_text_address(addr))
128 			print_ip_sym(loglvl, addr);
129 	}
130 	printk("%s\n", loglvl);
131 }
132 
133 #ifdef CONFIG_KALLSYMS
134 int raw_show_trace;
set_raw_show_trace(char * str)135 static int __init set_raw_show_trace(char *str)
136 {
137 	raw_show_trace = 1;
138 	return 1;
139 }
140 __setup("raw_show_trace", set_raw_show_trace);
141 #endif
142 
show_backtrace(struct task_struct * task,const struct pt_regs * regs,const char * loglvl)143 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
144 			   const char *loglvl)
145 {
146 	unsigned long sp = regs->regs[29];
147 	unsigned long ra = regs->regs[31];
148 	unsigned long pc = regs->cp0_epc;
149 
150 	if (!task)
151 		task = current;
152 
153 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
154 		show_raw_backtrace(sp, loglvl);
155 		return;
156 	}
157 	printk("%sCall Trace:\n", loglvl);
158 	do {
159 		print_ip_sym(loglvl, pc);
160 		pc = unwind_stack(task, &sp, pc, &ra);
161 	} while (pc);
162 	pr_cont("\n");
163 }
164 
165 /*
166  * This routine abuses get_user()/put_user() to reference pointers
167  * with at least a bit of error checking ...
168  */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs,const char * loglvl)169 static void show_stacktrace(struct task_struct *task,
170 	const struct pt_regs *regs, const char *loglvl)
171 {
172 	const int field = 2 * sizeof(unsigned long);
173 	long stackdata;
174 	int i;
175 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
176 
177 	printk("%sStack :", loglvl);
178 	i = 0;
179 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
180 		if (i && ((i % (64 / field)) == 0)) {
181 			pr_cont("\n");
182 			printk("%s       ", loglvl);
183 		}
184 		if (i > 39) {
185 			pr_cont(" ...");
186 			break;
187 		}
188 
189 		if (__get_user(stackdata, sp++)) {
190 			pr_cont(" (Bad stack address)");
191 			break;
192 		}
193 
194 		pr_cont(" %0*lx", field, stackdata);
195 		i++;
196 	}
197 	pr_cont("\n");
198 	show_backtrace(task, regs, loglvl);
199 }
200 
show_stack(struct task_struct * task,unsigned long * sp,const char * loglvl)201 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
202 {
203 	struct pt_regs regs;
204 	mm_segment_t old_fs = get_fs();
205 
206 	regs.cp0_status = KSU_KERNEL;
207 	if (sp) {
208 		regs.regs[29] = (unsigned long)sp;
209 		regs.regs[31] = 0;
210 		regs.cp0_epc = 0;
211 	} else {
212 		if (task && task != current) {
213 			regs.regs[29] = task->thread.reg29;
214 			regs.regs[31] = 0;
215 			regs.cp0_epc = task->thread.reg31;
216 		} else {
217 			prepare_frametrace(&regs);
218 		}
219 	}
220 	/*
221 	 * show_stack() deals exclusively with kernel mode, so be sure to access
222 	 * the stack in the kernel (not user) address space.
223 	 */
224 	set_fs(KERNEL_DS);
225 	show_stacktrace(task, &regs, loglvl);
226 	set_fs(old_fs);
227 }
228 
show_code(unsigned int __user * pc)229 static void show_code(unsigned int __user *pc)
230 {
231 	long i;
232 	unsigned short __user *pc16 = NULL;
233 
234 	printk("Code:");
235 
236 	if ((unsigned long)pc & 1)
237 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
238 	for(i = -3 ; i < 6 ; i++) {
239 		unsigned int insn;
240 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
241 			pr_cont(" (Bad address in epc)\n");
242 			break;
243 		}
244 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
245 	}
246 	pr_cont("\n");
247 }
248 
__show_regs(const struct pt_regs * regs)249 static void __show_regs(const struct pt_regs *regs)
250 {
251 	const int field = 2 * sizeof(unsigned long);
252 	unsigned int cause = regs->cp0_cause;
253 	unsigned int exccode;
254 	int i;
255 
256 	show_regs_print_info(KERN_DEFAULT);
257 
258 	/*
259 	 * Saved main processor registers
260 	 */
261 	for (i = 0; i < 32; ) {
262 		if ((i % 4) == 0)
263 			printk("$%2d   :", i);
264 		if (i == 0)
265 			pr_cont(" %0*lx", field, 0UL);
266 		else if (i == 26 || i == 27)
267 			pr_cont(" %*s", field, "");
268 		else
269 			pr_cont(" %0*lx", field, regs->regs[i]);
270 
271 		i++;
272 		if ((i % 4) == 0)
273 			pr_cont("\n");
274 	}
275 
276 #ifdef CONFIG_CPU_HAS_SMARTMIPS
277 	printk("Acx    : %0*lx\n", field, regs->acx);
278 #endif
279 	if (MIPS_ISA_REV < 6) {
280 		printk("Hi    : %0*lx\n", field, regs->hi);
281 		printk("Lo    : %0*lx\n", field, regs->lo);
282 	}
283 
284 	/*
285 	 * Saved cp0 registers
286 	 */
287 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
288 	       (void *) regs->cp0_epc);
289 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
290 	       (void *) regs->regs[31]);
291 
292 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
293 
294 	if (cpu_has_3kex) {
295 		if (regs->cp0_status & ST0_KUO)
296 			pr_cont("KUo ");
297 		if (regs->cp0_status & ST0_IEO)
298 			pr_cont("IEo ");
299 		if (regs->cp0_status & ST0_KUP)
300 			pr_cont("KUp ");
301 		if (regs->cp0_status & ST0_IEP)
302 			pr_cont("IEp ");
303 		if (regs->cp0_status & ST0_KUC)
304 			pr_cont("KUc ");
305 		if (regs->cp0_status & ST0_IEC)
306 			pr_cont("IEc ");
307 	} else if (cpu_has_4kex) {
308 		if (regs->cp0_status & ST0_KX)
309 			pr_cont("KX ");
310 		if (regs->cp0_status & ST0_SX)
311 			pr_cont("SX ");
312 		if (regs->cp0_status & ST0_UX)
313 			pr_cont("UX ");
314 		switch (regs->cp0_status & ST0_KSU) {
315 		case KSU_USER:
316 			pr_cont("USER ");
317 			break;
318 		case KSU_SUPERVISOR:
319 			pr_cont("SUPERVISOR ");
320 			break;
321 		case KSU_KERNEL:
322 			pr_cont("KERNEL ");
323 			break;
324 		default:
325 			pr_cont("BAD_MODE ");
326 			break;
327 		}
328 		if (regs->cp0_status & ST0_ERL)
329 			pr_cont("ERL ");
330 		if (regs->cp0_status & ST0_EXL)
331 			pr_cont("EXL ");
332 		if (regs->cp0_status & ST0_IE)
333 			pr_cont("IE ");
334 	}
335 	pr_cont("\n");
336 
337 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
338 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
339 
340 	if (1 <= exccode && exccode <= 5)
341 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
342 
343 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
344 	       cpu_name_string());
345 }
346 
347 /*
348  * FIXME: really the generic show_regs should take a const pointer argument.
349  */
show_regs(struct pt_regs * regs)350 void show_regs(struct pt_regs *regs)
351 {
352 	__show_regs(regs);
353 	dump_stack();
354 }
355 
show_registers(struct pt_regs * regs)356 void show_registers(struct pt_regs *regs)
357 {
358 	const int field = 2 * sizeof(unsigned long);
359 	mm_segment_t old_fs = get_fs();
360 
361 	__show_regs(regs);
362 	print_modules();
363 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 	       current->comm, current->pid, current_thread_info(), current,
365 	      field, current_thread_info()->tp_value);
366 	if (cpu_has_userlocal) {
367 		unsigned long tls;
368 
369 		tls = read_c0_userlocal();
370 		if (tls != current_thread_info()->tp_value)
371 			printk("*HwTLS: %0*lx\n", field, tls);
372 	}
373 
374 	if (!user_mode(regs))
375 		/* Necessary for getting the correct stack content */
376 		set_fs(KERNEL_DS);
377 	show_stacktrace(current, regs, KERN_DEFAULT);
378 	show_code((unsigned int __user *) regs->cp0_epc);
379 	printk("\n");
380 	set_fs(old_fs);
381 }
382 
383 static DEFINE_RAW_SPINLOCK(die_lock);
384 
die(const char * str,struct pt_regs * regs)385 void __noreturn die(const char *str, struct pt_regs *regs)
386 {
387 	static int die_counter;
388 	int sig = SIGSEGV;
389 
390 	oops_enter();
391 
392 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
393 		       SIGSEGV) == NOTIFY_STOP)
394 		sig = 0;
395 
396 	console_verbose();
397 	raw_spin_lock_irq(&die_lock);
398 	bust_spinlocks(1);
399 
400 	printk("%s[#%d]:\n", str, ++die_counter);
401 	show_registers(regs);
402 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
403 	raw_spin_unlock_irq(&die_lock);
404 
405 	oops_exit();
406 
407 	if (in_interrupt())
408 		panic("Fatal exception in interrupt");
409 
410 	if (panic_on_oops)
411 		panic("Fatal exception");
412 
413 	if (regs && kexec_should_crash(current))
414 		crash_kexec(regs);
415 
416 	do_exit(sig);
417 }
418 
419 extern struct exception_table_entry __start___dbe_table[];
420 extern struct exception_table_entry __stop___dbe_table[];
421 
422 __asm__(
423 "	.section	__dbe_table, \"a\"\n"
424 "	.previous			\n");
425 
426 /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)427 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428 {
429 	const struct exception_table_entry *e;
430 
431 	e = search_extable(__start___dbe_table,
432 			   __stop___dbe_table - __start___dbe_table, addr);
433 	if (!e)
434 		e = search_module_dbetables(addr);
435 	return e;
436 }
437 
do_be(struct pt_regs * regs)438 asmlinkage void do_be(struct pt_regs *regs)
439 {
440 	const int field = 2 * sizeof(unsigned long);
441 	const struct exception_table_entry *fixup = NULL;
442 	int data = regs->cp0_cause & 4;
443 	int action = MIPS_BE_FATAL;
444 	enum ctx_state prev_state;
445 
446 	prev_state = exception_enter();
447 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
448 	if (data && !user_mode(regs))
449 		fixup = search_dbe_tables(exception_epc(regs));
450 
451 	if (fixup)
452 		action = MIPS_BE_FIXUP;
453 
454 	if (board_be_handler)
455 		action = board_be_handler(regs, fixup != NULL);
456 	else
457 		mips_cm_error_report();
458 
459 	switch (action) {
460 	case MIPS_BE_DISCARD:
461 		goto out;
462 	case MIPS_BE_FIXUP:
463 		if (fixup) {
464 			regs->cp0_epc = fixup->nextinsn;
465 			goto out;
466 		}
467 		break;
468 	default:
469 		break;
470 	}
471 
472 	/*
473 	 * Assume it would be too dangerous to continue ...
474 	 */
475 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
476 	       data ? "Data" : "Instruction",
477 	       field, regs->cp0_epc, field, regs->regs[31]);
478 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
479 		       SIGBUS) == NOTIFY_STOP)
480 		goto out;
481 
482 	die_if_kernel("Oops", regs);
483 	force_sig(SIGBUS);
484 
485 out:
486 	exception_exit(prev_state);
487 }
488 
489 /*
490  * ll/sc, rdhwr, sync emulation
491  */
492 
493 #define OPCODE 0xfc000000
494 #define BASE   0x03e00000
495 #define RT     0x001f0000
496 #define OFFSET 0x0000ffff
497 #define LL     0xc0000000
498 #define SC     0xe0000000
499 #define SPEC0  0x00000000
500 #define SPEC3  0x7c000000
501 #define RD     0x0000f800
502 #define FUNC   0x0000003f
503 #define SYNC   0x0000000f
504 #define RDHWR  0x0000003b
505 
506 /*  microMIPS definitions   */
507 #define MM_POOL32A_FUNC 0xfc00ffff
508 #define MM_RDHWR        0x00006b3c
509 #define MM_RS           0x001f0000
510 #define MM_RT           0x03e00000
511 
512 /*
513  * The ll_bit is cleared by r*_switch.S
514  */
515 
516 unsigned int ll_bit;
517 struct task_struct *ll_task;
518 
simulate_ll(struct pt_regs * regs,unsigned int opcode)519 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
520 {
521 	unsigned long value, __user *vaddr;
522 	long offset;
523 
524 	/*
525 	 * analyse the ll instruction that just caused a ri exception
526 	 * and put the referenced address to addr.
527 	 */
528 
529 	/* sign extend offset */
530 	offset = opcode & OFFSET;
531 	offset <<= 16;
532 	offset >>= 16;
533 
534 	vaddr = (unsigned long __user *)
535 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
536 
537 	if ((unsigned long)vaddr & 3)
538 		return SIGBUS;
539 	if (get_user(value, vaddr))
540 		return SIGSEGV;
541 
542 	preempt_disable();
543 
544 	if (ll_task == NULL || ll_task == current) {
545 		ll_bit = 1;
546 	} else {
547 		ll_bit = 0;
548 	}
549 	ll_task = current;
550 
551 	preempt_enable();
552 
553 	regs->regs[(opcode & RT) >> 16] = value;
554 
555 	return 0;
556 }
557 
simulate_sc(struct pt_regs * regs,unsigned int opcode)558 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
559 {
560 	unsigned long __user *vaddr;
561 	unsigned long reg;
562 	long offset;
563 
564 	/*
565 	 * analyse the sc instruction that just caused a ri exception
566 	 * and put the referenced address to addr.
567 	 */
568 
569 	/* sign extend offset */
570 	offset = opcode & OFFSET;
571 	offset <<= 16;
572 	offset >>= 16;
573 
574 	vaddr = (unsigned long __user *)
575 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
576 	reg = (opcode & RT) >> 16;
577 
578 	if ((unsigned long)vaddr & 3)
579 		return SIGBUS;
580 
581 	preempt_disable();
582 
583 	if (ll_bit == 0 || ll_task != current) {
584 		regs->regs[reg] = 0;
585 		preempt_enable();
586 		return 0;
587 	}
588 
589 	preempt_enable();
590 
591 	if (put_user(regs->regs[reg], vaddr))
592 		return SIGSEGV;
593 
594 	regs->regs[reg] = 1;
595 
596 	return 0;
597 }
598 
599 /*
600  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
601  * opcodes are supposed to result in coprocessor unusable exceptions if
602  * executed on ll/sc-less processors.  That's the theory.  In practice a
603  * few processors such as NEC's VR4100 throw reserved instruction exceptions
604  * instead, so we're doing the emulation thing in both exception handlers.
605  */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)606 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
607 {
608 	if ((opcode & OPCODE) == LL) {
609 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 				1, regs, 0);
611 		return simulate_ll(regs, opcode);
612 	}
613 	if ((opcode & OPCODE) == SC) {
614 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
615 				1, regs, 0);
616 		return simulate_sc(regs, opcode);
617 	}
618 
619 	return -1;			/* Must be something else ... */
620 }
621 
622 /*
623  * Simulate trapping 'rdhwr' instructions to provide user accessible
624  * registers not implemented in hardware.
625  */
simulate_rdhwr(struct pt_regs * regs,int rd,int rt)626 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
627 {
628 	struct thread_info *ti = task_thread_info(current);
629 
630 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
631 			1, regs, 0);
632 	switch (rd) {
633 	case MIPS_HWR_CPUNUM:		/* CPU number */
634 		regs->regs[rt] = smp_processor_id();
635 		return 0;
636 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
637 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
638 				     current_cpu_data.icache.linesz);
639 		return 0;
640 	case MIPS_HWR_CC:		/* Read count register */
641 		regs->regs[rt] = read_c0_count();
642 		return 0;
643 	case MIPS_HWR_CCRES:		/* Count register resolution */
644 		switch (current_cpu_type()) {
645 		case CPU_20KC:
646 		case CPU_25KF:
647 			regs->regs[rt] = 1;
648 			break;
649 		default:
650 			regs->regs[rt] = 2;
651 		}
652 		return 0;
653 	case MIPS_HWR_ULR:		/* Read UserLocal register */
654 		regs->regs[rt] = ti->tp_value;
655 		return 0;
656 	default:
657 		return -1;
658 	}
659 }
660 
simulate_rdhwr_normal(struct pt_regs * regs,unsigned int opcode)661 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
662 {
663 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
664 		int rd = (opcode & RD) >> 11;
665 		int rt = (opcode & RT) >> 16;
666 
667 		simulate_rdhwr(regs, rd, rt);
668 		return 0;
669 	}
670 
671 	/* Not ours.  */
672 	return -1;
673 }
674 
simulate_rdhwr_mm(struct pt_regs * regs,unsigned int opcode)675 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
676 {
677 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
678 		int rd = (opcode & MM_RS) >> 16;
679 		int rt = (opcode & MM_RT) >> 21;
680 		simulate_rdhwr(regs, rd, rt);
681 		return 0;
682 	}
683 
684 	/* Not ours.  */
685 	return -1;
686 }
687 
simulate_sync(struct pt_regs * regs,unsigned int opcode)688 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
689 {
690 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
691 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
692 				1, regs, 0);
693 		return 0;
694 	}
695 
696 	return -1;			/* Must be something else ... */
697 }
698 
699 /*
700  * Loongson-3 CSR instructions emulation
701  */
702 
703 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
704 
705 #define LWC2             0xc8000000
706 #define RS               BASE
707 #define CSR_OPCODE2      0x00000118
708 #define CSR_OPCODE2_MASK 0x000007ff
709 #define CSR_FUNC_MASK    RT
710 #define CSR_FUNC_CPUCFG  0x8
711 
simulate_loongson3_cpucfg(struct pt_regs * regs,unsigned int opcode)712 static int simulate_loongson3_cpucfg(struct pt_regs *regs,
713 				     unsigned int opcode)
714 {
715 	int op = opcode & OPCODE;
716 	int op2 = opcode & CSR_OPCODE2_MASK;
717 	int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
718 
719 	if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
720 		int rd = (opcode & RD) >> 11;
721 		int rs = (opcode & RS) >> 21;
722 		__u64 sel = regs->regs[rs];
723 
724 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
725 
726 		/* Do not emulate on unsupported core models. */
727 		preempt_disable();
728 		if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) {
729 			preempt_enable();
730 			return -1;
731 		}
732 		regs->regs[rd] = loongson3_cpucfg_read_synthesized(
733 			&current_cpu_data, sel);
734 		preempt_enable();
735 		return 0;
736 	}
737 
738 	/* Not ours.  */
739 	return -1;
740 }
741 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
742 
do_ov(struct pt_regs * regs)743 asmlinkage void do_ov(struct pt_regs *regs)
744 {
745 	enum ctx_state prev_state;
746 
747 	prev_state = exception_enter();
748 	die_if_kernel("Integer overflow", regs);
749 
750 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
751 	exception_exit(prev_state);
752 }
753 
754 #ifdef CONFIG_MIPS_FP_SUPPORT
755 
756 /*
757  * Send SIGFPE according to FCSR Cause bits, which must have already
758  * been masked against Enable bits.  This is impotant as Inexact can
759  * happen together with Overflow or Underflow, and `ptrace' can set
760  * any bits.
761  */
force_fcr31_sig(unsigned long fcr31,void __user * fault_addr,struct task_struct * tsk)762 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
763 		     struct task_struct *tsk)
764 {
765 	int si_code = FPE_FLTUNK;
766 
767 	if (fcr31 & FPU_CSR_INV_X)
768 		si_code = FPE_FLTINV;
769 	else if (fcr31 & FPU_CSR_DIV_X)
770 		si_code = FPE_FLTDIV;
771 	else if (fcr31 & FPU_CSR_OVF_X)
772 		si_code = FPE_FLTOVF;
773 	else if (fcr31 & FPU_CSR_UDF_X)
774 		si_code = FPE_FLTUND;
775 	else if (fcr31 & FPU_CSR_INE_X)
776 		si_code = FPE_FLTRES;
777 
778 	force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
779 }
780 
process_fpemu_return(int sig,void __user * fault_addr,unsigned long fcr31)781 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
782 {
783 	int si_code;
784 	struct vm_area_struct *vma;
785 
786 	switch (sig) {
787 	case 0:
788 		return 0;
789 
790 	case SIGFPE:
791 		force_fcr31_sig(fcr31, fault_addr, current);
792 		return 1;
793 
794 	case SIGBUS:
795 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
796 		return 1;
797 
798 	case SIGSEGV:
799 		mmap_read_lock(current->mm);
800 		vma = find_vma(current->mm, (unsigned long)fault_addr);
801 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
802 			si_code = SEGV_ACCERR;
803 		else
804 			si_code = SEGV_MAPERR;
805 		mmap_read_unlock(current->mm);
806 		force_sig_fault(SIGSEGV, si_code, fault_addr);
807 		return 1;
808 
809 	default:
810 		force_sig(sig);
811 		return 1;
812 	}
813 }
814 
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)815 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
816 		       unsigned long old_epc, unsigned long old_ra)
817 {
818 	union mips_instruction inst = { .word = opcode };
819 	void __user *fault_addr;
820 	unsigned long fcr31;
821 	int sig;
822 
823 	/* If it's obviously not an FP instruction, skip it */
824 	switch (inst.i_format.opcode) {
825 	case cop1_op:
826 	case cop1x_op:
827 	case lwc1_op:
828 	case ldc1_op:
829 	case swc1_op:
830 	case sdc1_op:
831 		break;
832 
833 	default:
834 		return -1;
835 	}
836 
837 	/*
838 	 * do_ri skipped over the instruction via compute_return_epc, undo
839 	 * that for the FPU emulator.
840 	 */
841 	regs->cp0_epc = old_epc;
842 	regs->regs[31] = old_ra;
843 
844 	/* Run the emulator */
845 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
846 				       &fault_addr);
847 
848 	/*
849 	 * We can't allow the emulated instruction to leave any
850 	 * enabled Cause bits set in $fcr31.
851 	 */
852 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
853 	current->thread.fpu.fcr31 &= ~fcr31;
854 
855 	/* Restore the hardware register state */
856 	own_fpu(1);
857 
858 	/* Send a signal if required.  */
859 	process_fpemu_return(sig, fault_addr, fcr31);
860 
861 	return 0;
862 }
863 
864 /*
865  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
866  */
do_fpe(struct pt_regs * regs,unsigned long fcr31)867 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
868 {
869 	enum ctx_state prev_state;
870 	void __user *fault_addr;
871 	int sig;
872 
873 	prev_state = exception_enter();
874 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
875 		       SIGFPE) == NOTIFY_STOP)
876 		goto out;
877 
878 	/* Clear FCSR.Cause before enabling interrupts */
879 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
880 	local_irq_enable();
881 
882 	die_if_kernel("FP exception in kernel code", regs);
883 
884 	if (fcr31 & FPU_CSR_UNI_X) {
885 		/*
886 		 * Unimplemented operation exception.  If we've got the full
887 		 * software emulator on-board, let's use it...
888 		 *
889 		 * Force FPU to dump state into task/thread context.  We're
890 		 * moving a lot of data here for what is probably a single
891 		 * instruction, but the alternative is to pre-decode the FP
892 		 * register operands before invoking the emulator, which seems
893 		 * a bit extreme for what should be an infrequent event.
894 		 */
895 
896 		/* Run the emulator */
897 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
898 					       &fault_addr);
899 
900 		/*
901 		 * We can't allow the emulated instruction to leave any
902 		 * enabled Cause bits set in $fcr31.
903 		 */
904 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
905 		current->thread.fpu.fcr31 &= ~fcr31;
906 
907 		/* Restore the hardware register state */
908 		own_fpu(1);	/* Using the FPU again.	 */
909 	} else {
910 		sig = SIGFPE;
911 		fault_addr = (void __user *) regs->cp0_epc;
912 	}
913 
914 	/* Send a signal if required.  */
915 	process_fpemu_return(sig, fault_addr, fcr31);
916 
917 out:
918 	exception_exit(prev_state);
919 }
920 
921 /*
922  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
923  * emulated more than some threshold number of instructions, force migration to
924  * a "CPU" that has FP support.
925  */
mt_ase_fp_affinity(void)926 static void mt_ase_fp_affinity(void)
927 {
928 #ifdef CONFIG_MIPS_MT_FPAFF
929 	if (mt_fpemul_threshold > 0 &&
930 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
931 		/*
932 		 * If there's no FPU present, or if the application has already
933 		 * restricted the allowed set to exclude any CPUs with FPUs,
934 		 * we'll skip the procedure.
935 		 */
936 		if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
937 			cpumask_t tmask;
938 
939 			current->thread.user_cpus_allowed
940 				= current->cpus_mask;
941 			cpumask_and(&tmask, &current->cpus_mask,
942 				    &mt_fpu_cpumask);
943 			set_cpus_allowed_ptr(current, &tmask);
944 			set_thread_flag(TIF_FPUBOUND);
945 		}
946 	}
947 #endif /* CONFIG_MIPS_MT_FPAFF */
948 }
949 
950 #else /* !CONFIG_MIPS_FP_SUPPORT */
951 
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)952 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
953 		       unsigned long old_epc, unsigned long old_ra)
954 {
955 	return -1;
956 }
957 
958 #endif /* !CONFIG_MIPS_FP_SUPPORT */
959 
do_trap_or_bp(struct pt_regs * regs,unsigned int code,int si_code,const char * str)960 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
961 	const char *str)
962 {
963 	char b[40];
964 
965 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
966 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
967 			 SIGTRAP) == NOTIFY_STOP)
968 		return;
969 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
970 
971 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
972 		       SIGTRAP) == NOTIFY_STOP)
973 		return;
974 
975 	/*
976 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
977 	 * insns, even for trap and break codes that indicate arithmetic
978 	 * failures.  Weird ...
979 	 * But should we continue the brokenness???  --macro
980 	 */
981 	switch (code) {
982 	case BRK_OVERFLOW:
983 	case BRK_DIVZERO:
984 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
985 		die_if_kernel(b, regs);
986 		force_sig_fault(SIGFPE,
987 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
988 				(void __user *) regs->cp0_epc);
989 		break;
990 	case BRK_BUG:
991 		die_if_kernel("Kernel bug detected", regs);
992 		force_sig(SIGTRAP);
993 		break;
994 	case BRK_MEMU:
995 		/*
996 		 * This breakpoint code is used by the FPU emulator to retake
997 		 * control of the CPU after executing the instruction from the
998 		 * delay slot of an emulated branch.
999 		 *
1000 		 * Terminate if exception was recognized as a delay slot return
1001 		 * otherwise handle as normal.
1002 		 */
1003 		if (do_dsemulret(regs))
1004 			return;
1005 
1006 		die_if_kernel("Math emu break/trap", regs);
1007 		force_sig(SIGTRAP);
1008 		break;
1009 	default:
1010 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1011 		die_if_kernel(b, regs);
1012 		if (si_code) {
1013 			force_sig_fault(SIGTRAP, si_code, NULL);
1014 		} else {
1015 			force_sig(SIGTRAP);
1016 		}
1017 	}
1018 }
1019 
do_bp(struct pt_regs * regs)1020 asmlinkage void do_bp(struct pt_regs *regs)
1021 {
1022 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1023 	unsigned int opcode, bcode;
1024 	enum ctx_state prev_state;
1025 	mm_segment_t seg;
1026 
1027 	seg = get_fs();
1028 	if (!user_mode(regs))
1029 		set_fs(KERNEL_DS);
1030 
1031 	prev_state = exception_enter();
1032 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1033 	if (get_isa16_mode(regs->cp0_epc)) {
1034 		u16 instr[2];
1035 
1036 		if (__get_user(instr[0], (u16 __user *)epc))
1037 			goto out_sigsegv;
1038 
1039 		if (!cpu_has_mmips) {
1040 			/* MIPS16e mode */
1041 			bcode = (instr[0] >> 5) & 0x3f;
1042 		} else if (mm_insn_16bit(instr[0])) {
1043 			/* 16-bit microMIPS BREAK */
1044 			bcode = instr[0] & 0xf;
1045 		} else {
1046 			/* 32-bit microMIPS BREAK */
1047 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1048 				goto out_sigsegv;
1049 			opcode = (instr[0] << 16) | instr[1];
1050 			bcode = (opcode >> 6) & ((1 << 20) - 1);
1051 		}
1052 	} else {
1053 		if (__get_user(opcode, (unsigned int __user *)epc))
1054 			goto out_sigsegv;
1055 		bcode = (opcode >> 6) & ((1 << 20) - 1);
1056 	}
1057 
1058 	/*
1059 	 * There is the ancient bug in the MIPS assemblers that the break
1060 	 * code starts left to bit 16 instead to bit 6 in the opcode.
1061 	 * Gas is bug-compatible, but not always, grrr...
1062 	 * We handle both cases with a simple heuristics.  --macro
1063 	 */
1064 	if (bcode >= (1 << 10))
1065 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1066 
1067 	/*
1068 	 * notify the kprobe handlers, if instruction is likely to
1069 	 * pertain to them.
1070 	 */
1071 	switch (bcode) {
1072 	case BRK_UPROBE:
1073 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1074 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1075 			goto out;
1076 		else
1077 			break;
1078 	case BRK_UPROBE_XOL:
1079 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1080 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1081 			goto out;
1082 		else
1083 			break;
1084 	case BRK_KPROBE_BP:
1085 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1086 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1087 			goto out;
1088 		else
1089 			break;
1090 	case BRK_KPROBE_SSTEPBP:
1091 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1092 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1093 			goto out;
1094 		else
1095 			break;
1096 	default:
1097 		break;
1098 	}
1099 
1100 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1101 
1102 out:
1103 	set_fs(seg);
1104 	exception_exit(prev_state);
1105 	return;
1106 
1107 out_sigsegv:
1108 	force_sig(SIGSEGV);
1109 	goto out;
1110 }
1111 
do_tr(struct pt_regs * regs)1112 asmlinkage void do_tr(struct pt_regs *regs)
1113 {
1114 	u32 opcode, tcode = 0;
1115 	enum ctx_state prev_state;
1116 	u16 instr[2];
1117 	mm_segment_t seg;
1118 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1119 
1120 	seg = get_fs();
1121 	if (!user_mode(regs))
1122 		set_fs(KERNEL_DS);
1123 
1124 	prev_state = exception_enter();
1125 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1126 	if (get_isa16_mode(regs->cp0_epc)) {
1127 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1128 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1129 			goto out_sigsegv;
1130 		opcode = (instr[0] << 16) | instr[1];
1131 		/* Immediate versions don't provide a code.  */
1132 		if (!(opcode & OPCODE))
1133 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1134 	} else {
1135 		if (__get_user(opcode, (u32 __user *)epc))
1136 			goto out_sigsegv;
1137 		/* Immediate versions don't provide a code.  */
1138 		if (!(opcode & OPCODE))
1139 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1140 	}
1141 
1142 	do_trap_or_bp(regs, tcode, 0, "Trap");
1143 
1144 out:
1145 	set_fs(seg);
1146 	exception_exit(prev_state);
1147 	return;
1148 
1149 out_sigsegv:
1150 	force_sig(SIGSEGV);
1151 	goto out;
1152 }
1153 
do_ri(struct pt_regs * regs)1154 asmlinkage void do_ri(struct pt_regs *regs)
1155 {
1156 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1157 	unsigned long old_epc = regs->cp0_epc;
1158 	unsigned long old31 = regs->regs[31];
1159 	enum ctx_state prev_state;
1160 	unsigned int opcode = 0;
1161 	int status = -1;
1162 
1163 	/*
1164 	 * Avoid any kernel code. Just emulate the R2 instruction
1165 	 * as quickly as possible.
1166 	 */
1167 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1168 	    likely(user_mode(regs)) &&
1169 	    likely(get_user(opcode, epc) >= 0)) {
1170 		unsigned long fcr31 = 0;
1171 
1172 		status = mipsr2_decoder(regs, opcode, &fcr31);
1173 		switch (status) {
1174 		case 0:
1175 		case SIGEMT:
1176 			return;
1177 		case SIGILL:
1178 			goto no_r2_instr;
1179 		default:
1180 			process_fpemu_return(status,
1181 					     &current->thread.cp0_baduaddr,
1182 					     fcr31);
1183 			return;
1184 		}
1185 	}
1186 
1187 no_r2_instr:
1188 
1189 	prev_state = exception_enter();
1190 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1191 
1192 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1193 		       SIGILL) == NOTIFY_STOP)
1194 		goto out;
1195 
1196 	die_if_kernel("Reserved instruction in kernel code", regs);
1197 
1198 	if (unlikely(compute_return_epc(regs) < 0))
1199 		goto out;
1200 
1201 	if (!get_isa16_mode(regs->cp0_epc)) {
1202 		if (unlikely(get_user(opcode, epc) < 0))
1203 			status = SIGSEGV;
1204 
1205 		if (!cpu_has_llsc && status < 0)
1206 			status = simulate_llsc(regs, opcode);
1207 
1208 		if (status < 0)
1209 			status = simulate_rdhwr_normal(regs, opcode);
1210 
1211 		if (status < 0)
1212 			status = simulate_sync(regs, opcode);
1213 
1214 		if (status < 0)
1215 			status = simulate_fp(regs, opcode, old_epc, old31);
1216 
1217 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1218 		if (status < 0)
1219 			status = simulate_loongson3_cpucfg(regs, opcode);
1220 #endif
1221 	} else if (cpu_has_mmips) {
1222 		unsigned short mmop[2] = { 0 };
1223 
1224 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1225 			status = SIGSEGV;
1226 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1227 			status = SIGSEGV;
1228 		opcode = mmop[0];
1229 		opcode = (opcode << 16) | mmop[1];
1230 
1231 		if (status < 0)
1232 			status = simulate_rdhwr_mm(regs, opcode);
1233 	}
1234 
1235 	if (status < 0)
1236 		status = SIGILL;
1237 
1238 	if (unlikely(status > 0)) {
1239 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1240 		regs->regs[31] = old31;
1241 		force_sig(status);
1242 	}
1243 
1244 out:
1245 	exception_exit(prev_state);
1246 }
1247 
1248 /*
1249  * No lock; only written during early bootup by CPU 0.
1250  */
1251 static RAW_NOTIFIER_HEAD(cu2_chain);
1252 
register_cu2_notifier(struct notifier_block * nb)1253 int __ref register_cu2_notifier(struct notifier_block *nb)
1254 {
1255 	return raw_notifier_chain_register(&cu2_chain, nb);
1256 }
1257 
cu2_notifier_call_chain(unsigned long val,void * v)1258 int cu2_notifier_call_chain(unsigned long val, void *v)
1259 {
1260 	return raw_notifier_call_chain(&cu2_chain, val, v);
1261 }
1262 
default_cu2_call(struct notifier_block * nfb,unsigned long action,void * data)1263 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1264 	void *data)
1265 {
1266 	struct pt_regs *regs = data;
1267 
1268 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1269 			      "instruction", regs);
1270 	force_sig(SIGILL);
1271 
1272 	return NOTIFY_OK;
1273 }
1274 
1275 #ifdef CONFIG_MIPS_FP_SUPPORT
1276 
enable_restore_fp_context(int msa)1277 static int enable_restore_fp_context(int msa)
1278 {
1279 	int err, was_fpu_owner, prior_msa;
1280 	bool first_fp;
1281 
1282 	/* Initialize context if it hasn't been used already */
1283 	first_fp = init_fp_ctx(current);
1284 
1285 	if (first_fp) {
1286 		preempt_disable();
1287 		err = own_fpu_inatomic(1);
1288 		if (msa && !err) {
1289 			enable_msa();
1290 			/*
1291 			 * with MSA enabled, userspace can see MSACSR
1292 			 * and MSA regs, but the values in them are from
1293 			 * other task before current task, restore them
1294 			 * from saved fp/msa context
1295 			 */
1296 			write_msa_csr(current->thread.fpu.msacsr);
1297 			/*
1298 			 * own_fpu_inatomic(1) just restore low 64bit,
1299 			 * fix the high 64bit
1300 			 */
1301 			init_msa_upper();
1302 			set_thread_flag(TIF_USEDMSA);
1303 			set_thread_flag(TIF_MSA_CTX_LIVE);
1304 		}
1305 		preempt_enable();
1306 		return err;
1307 	}
1308 
1309 	/*
1310 	 * This task has formerly used the FP context.
1311 	 *
1312 	 * If this thread has no live MSA vector context then we can simply
1313 	 * restore the scalar FP context. If it has live MSA vector context
1314 	 * (that is, it has or may have used MSA since last performing a
1315 	 * function call) then we'll need to restore the vector context. This
1316 	 * applies even if we're currently only executing a scalar FP
1317 	 * instruction. This is because if we were to later execute an MSA
1318 	 * instruction then we'd either have to:
1319 	 *
1320 	 *  - Restore the vector context & clobber any registers modified by
1321 	 *    scalar FP instructions between now & then.
1322 	 *
1323 	 * or
1324 	 *
1325 	 *  - Not restore the vector context & lose the most significant bits
1326 	 *    of all vector registers.
1327 	 *
1328 	 * Neither of those options is acceptable. We cannot restore the least
1329 	 * significant bits of the registers now & only restore the most
1330 	 * significant bits later because the most significant bits of any
1331 	 * vector registers whose aliased FP register is modified now will have
1332 	 * been zeroed. We'd have no way to know that when restoring the vector
1333 	 * context & thus may load an outdated value for the most significant
1334 	 * bits of a vector register.
1335 	 */
1336 	if (!msa && !thread_msa_context_live())
1337 		return own_fpu(1);
1338 
1339 	/*
1340 	 * This task is using or has previously used MSA. Thus we require
1341 	 * that Status.FR == 1.
1342 	 */
1343 	preempt_disable();
1344 	was_fpu_owner = is_fpu_owner();
1345 	err = own_fpu_inatomic(0);
1346 	if (err)
1347 		goto out;
1348 
1349 	enable_msa();
1350 	write_msa_csr(current->thread.fpu.msacsr);
1351 	set_thread_flag(TIF_USEDMSA);
1352 
1353 	/*
1354 	 * If this is the first time that the task is using MSA and it has
1355 	 * previously used scalar FP in this time slice then we already nave
1356 	 * FP context which we shouldn't clobber. We do however need to clear
1357 	 * the upper 64b of each vector register so that this task has no
1358 	 * opportunity to see data left behind by another.
1359 	 */
1360 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1361 	if (!prior_msa && was_fpu_owner) {
1362 		init_msa_upper();
1363 
1364 		goto out;
1365 	}
1366 
1367 	if (!prior_msa) {
1368 		/*
1369 		 * Restore the least significant 64b of each vector register
1370 		 * from the existing scalar FP context.
1371 		 */
1372 		_restore_fp(current);
1373 
1374 		/*
1375 		 * The task has not formerly used MSA, so clear the upper 64b
1376 		 * of each vector register such that it cannot see data left
1377 		 * behind by another task.
1378 		 */
1379 		init_msa_upper();
1380 	} else {
1381 		/* We need to restore the vector context. */
1382 		restore_msa(current);
1383 
1384 		/* Restore the scalar FP control & status register */
1385 		if (!was_fpu_owner)
1386 			write_32bit_cp1_register(CP1_STATUS,
1387 						 current->thread.fpu.fcr31);
1388 	}
1389 
1390 out:
1391 	preempt_enable();
1392 
1393 	return 0;
1394 }
1395 
1396 #else /* !CONFIG_MIPS_FP_SUPPORT */
1397 
enable_restore_fp_context(int msa)1398 static int enable_restore_fp_context(int msa)
1399 {
1400 	return SIGILL;
1401 }
1402 
1403 #endif /* CONFIG_MIPS_FP_SUPPORT */
1404 
do_cpu(struct pt_regs * regs)1405 asmlinkage void do_cpu(struct pt_regs *regs)
1406 {
1407 	enum ctx_state prev_state;
1408 	unsigned int __user *epc;
1409 	unsigned long old_epc, old31;
1410 	unsigned int opcode;
1411 	unsigned int cpid;
1412 	int status;
1413 
1414 	prev_state = exception_enter();
1415 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1416 
1417 	if (cpid != 2)
1418 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1419 
1420 	switch (cpid) {
1421 	case 0:
1422 		epc = (unsigned int __user *)exception_epc(regs);
1423 		old_epc = regs->cp0_epc;
1424 		old31 = regs->regs[31];
1425 		opcode = 0;
1426 		status = -1;
1427 
1428 		if (unlikely(compute_return_epc(regs) < 0))
1429 			break;
1430 
1431 		if (!get_isa16_mode(regs->cp0_epc)) {
1432 			if (unlikely(get_user(opcode, epc) < 0))
1433 				status = SIGSEGV;
1434 
1435 			if (!cpu_has_llsc && status < 0)
1436 				status = simulate_llsc(regs, opcode);
1437 		}
1438 
1439 		if (status < 0)
1440 			status = SIGILL;
1441 
1442 		if (unlikely(status > 0)) {
1443 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1444 			regs->regs[31] = old31;
1445 			force_sig(status);
1446 		}
1447 
1448 		break;
1449 
1450 #ifdef CONFIG_MIPS_FP_SUPPORT
1451 	case 3:
1452 		/*
1453 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1454 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1455 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1456 		 * up the space has been reused for COP1X instructions, that
1457 		 * are enabled by the CP0.Status.CU1 bit and consequently
1458 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1459 		 * exceptions.  Some FPU-less processors that implement one
1460 		 * of these ISAs however use this code erroneously for COP1X
1461 		 * instructions.  Therefore we redirect this trap to the FP
1462 		 * emulator too.
1463 		 */
1464 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1465 			force_sig(SIGILL);
1466 			break;
1467 		}
1468 		fallthrough;
1469 	case 1: {
1470 		void __user *fault_addr;
1471 		unsigned long fcr31;
1472 		int err, sig;
1473 
1474 		err = enable_restore_fp_context(0);
1475 
1476 		if (raw_cpu_has_fpu && !err)
1477 			break;
1478 
1479 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1480 					       &fault_addr);
1481 
1482 		/*
1483 		 * We can't allow the emulated instruction to leave
1484 		 * any enabled Cause bits set in $fcr31.
1485 		 */
1486 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1487 		current->thread.fpu.fcr31 &= ~fcr31;
1488 
1489 		/* Send a signal if required.  */
1490 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1491 			mt_ase_fp_affinity();
1492 
1493 		break;
1494 	}
1495 #else /* CONFIG_MIPS_FP_SUPPORT */
1496 	case 1:
1497 	case 3:
1498 		force_sig(SIGILL);
1499 		break;
1500 #endif /* CONFIG_MIPS_FP_SUPPORT */
1501 
1502 	case 2:
1503 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1504 		break;
1505 	}
1506 
1507 	exception_exit(prev_state);
1508 }
1509 
do_msa_fpe(struct pt_regs * regs,unsigned int msacsr)1510 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1511 {
1512 	enum ctx_state prev_state;
1513 
1514 	prev_state = exception_enter();
1515 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1516 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1517 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1518 		goto out;
1519 
1520 	/* Clear MSACSR.Cause before enabling interrupts */
1521 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1522 	local_irq_enable();
1523 
1524 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1525 	force_sig(SIGFPE);
1526 out:
1527 	exception_exit(prev_state);
1528 }
1529 
do_msa(struct pt_regs * regs)1530 asmlinkage void do_msa(struct pt_regs *regs)
1531 {
1532 	enum ctx_state prev_state;
1533 	int err;
1534 
1535 	prev_state = exception_enter();
1536 
1537 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1538 		force_sig(SIGILL);
1539 		goto out;
1540 	}
1541 
1542 	die_if_kernel("do_msa invoked from kernel context!", regs);
1543 
1544 	err = enable_restore_fp_context(1);
1545 	if (err)
1546 		force_sig(SIGILL);
1547 out:
1548 	exception_exit(prev_state);
1549 }
1550 
do_mdmx(struct pt_regs * regs)1551 asmlinkage void do_mdmx(struct pt_regs *regs)
1552 {
1553 	enum ctx_state prev_state;
1554 
1555 	prev_state = exception_enter();
1556 	force_sig(SIGILL);
1557 	exception_exit(prev_state);
1558 }
1559 
1560 /*
1561  * Called with interrupts disabled.
1562  */
do_watch(struct pt_regs * regs)1563 asmlinkage void do_watch(struct pt_regs *regs)
1564 {
1565 	enum ctx_state prev_state;
1566 
1567 	prev_state = exception_enter();
1568 	/*
1569 	 * Clear WP (bit 22) bit of cause register so we don't loop
1570 	 * forever.
1571 	 */
1572 	clear_c0_cause(CAUSEF_WP);
1573 
1574 	/*
1575 	 * If the current thread has the watch registers loaded, save
1576 	 * their values and send SIGTRAP.  Otherwise another thread
1577 	 * left the registers set, clear them and continue.
1578 	 */
1579 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1580 		mips_read_watch_registers();
1581 		local_irq_enable();
1582 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1583 	} else {
1584 		mips_clear_watch_registers();
1585 		local_irq_enable();
1586 	}
1587 	exception_exit(prev_state);
1588 }
1589 
do_mcheck(struct pt_regs * regs)1590 asmlinkage void do_mcheck(struct pt_regs *regs)
1591 {
1592 	int multi_match = regs->cp0_status & ST0_TS;
1593 	enum ctx_state prev_state;
1594 	mm_segment_t old_fs = get_fs();
1595 
1596 	prev_state = exception_enter();
1597 	show_regs(regs);
1598 
1599 	if (multi_match) {
1600 		dump_tlb_regs();
1601 		pr_info("\n");
1602 		dump_tlb_all();
1603 	}
1604 
1605 	if (!user_mode(regs))
1606 		set_fs(KERNEL_DS);
1607 
1608 	show_code((unsigned int __user *) regs->cp0_epc);
1609 
1610 	set_fs(old_fs);
1611 
1612 	/*
1613 	 * Some chips may have other causes of machine check (e.g. SB1
1614 	 * graduation timer)
1615 	 */
1616 	panic("Caught Machine Check exception - %scaused by multiple "
1617 	      "matching entries in the TLB.",
1618 	      (multi_match) ? "" : "not ");
1619 }
1620 
do_mt(struct pt_regs * regs)1621 asmlinkage void do_mt(struct pt_regs *regs)
1622 {
1623 	int subcode;
1624 
1625 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1626 			>> VPECONTROL_EXCPT_SHIFT;
1627 	switch (subcode) {
1628 	case 0:
1629 		printk(KERN_DEBUG "Thread Underflow\n");
1630 		break;
1631 	case 1:
1632 		printk(KERN_DEBUG "Thread Overflow\n");
1633 		break;
1634 	case 2:
1635 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1636 		break;
1637 	case 3:
1638 		printk(KERN_DEBUG "Gating Storage Exception\n");
1639 		break;
1640 	case 4:
1641 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1642 		break;
1643 	case 5:
1644 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1645 		break;
1646 	default:
1647 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1648 			subcode);
1649 		break;
1650 	}
1651 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1652 
1653 	force_sig(SIGILL);
1654 }
1655 
1656 
do_dsp(struct pt_regs * regs)1657 asmlinkage void do_dsp(struct pt_regs *regs)
1658 {
1659 	if (cpu_has_dsp)
1660 		panic("Unexpected DSP exception");
1661 
1662 	force_sig(SIGILL);
1663 }
1664 
do_reserved(struct pt_regs * regs)1665 asmlinkage void do_reserved(struct pt_regs *regs)
1666 {
1667 	/*
1668 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1669 	 * caused by a new unknown cpu type or after another deadly
1670 	 * hard/software error.
1671 	 */
1672 	show_regs(regs);
1673 	panic("Caught reserved exception %ld - should not happen.",
1674 	      (regs->cp0_cause & 0x7f) >> 2);
1675 }
1676 
1677 static int __initdata l1parity = 1;
nol1parity(char * s)1678 static int __init nol1parity(char *s)
1679 {
1680 	l1parity = 0;
1681 	return 1;
1682 }
1683 __setup("nol1par", nol1parity);
1684 static int __initdata l2parity = 1;
nol2parity(char * s)1685 static int __init nol2parity(char *s)
1686 {
1687 	l2parity = 0;
1688 	return 1;
1689 }
1690 __setup("nol2par", nol2parity);
1691 
1692 /*
1693  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1694  * it different ways.
1695  */
parity_protection_init(void)1696 static inline __init void parity_protection_init(void)
1697 {
1698 #define ERRCTL_PE	0x80000000
1699 #define ERRCTL_L2P	0x00800000
1700 
1701 	if (mips_cm_revision() >= CM_REV_CM3) {
1702 		ulong gcr_ectl, cp0_ectl;
1703 
1704 		/*
1705 		 * With CM3 systems we need to ensure that the L1 & L2
1706 		 * parity enables are set to the same value, since this
1707 		 * is presumed by the hardware engineers.
1708 		 *
1709 		 * If the user disabled either of L1 or L2 ECC checking,
1710 		 * disable both.
1711 		 */
1712 		l1parity &= l2parity;
1713 		l2parity &= l1parity;
1714 
1715 		/* Probe L1 ECC support */
1716 		cp0_ectl = read_c0_ecc();
1717 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1718 		back_to_back_c0_hazard();
1719 		cp0_ectl = read_c0_ecc();
1720 
1721 		/* Probe L2 ECC support */
1722 		gcr_ectl = read_gcr_err_control();
1723 
1724 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1725 		    !(cp0_ectl & ERRCTL_PE)) {
1726 			/*
1727 			 * One of L1 or L2 ECC checking isn't supported,
1728 			 * so we cannot enable either.
1729 			 */
1730 			l1parity = l2parity = 0;
1731 		}
1732 
1733 		/* Configure L1 ECC checking */
1734 		if (l1parity)
1735 			cp0_ectl |= ERRCTL_PE;
1736 		else
1737 			cp0_ectl &= ~ERRCTL_PE;
1738 		write_c0_ecc(cp0_ectl);
1739 		back_to_back_c0_hazard();
1740 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1741 
1742 		/* Configure L2 ECC checking */
1743 		if (l2parity)
1744 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1745 		else
1746 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1747 		write_gcr_err_control(gcr_ectl);
1748 		gcr_ectl = read_gcr_err_control();
1749 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1750 		WARN_ON(!!gcr_ectl != l2parity);
1751 
1752 		pr_info("Cache parity protection %sabled\n",
1753 			l1parity ? "en" : "dis");
1754 		return;
1755 	}
1756 
1757 	switch (current_cpu_type()) {
1758 	case CPU_24K:
1759 	case CPU_34K:
1760 	case CPU_74K:
1761 	case CPU_1004K:
1762 	case CPU_1074K:
1763 	case CPU_INTERAPTIV:
1764 	case CPU_PROAPTIV:
1765 	case CPU_P5600:
1766 	case CPU_QEMU_GENERIC:
1767 	case CPU_P6600:
1768 		{
1769 			unsigned long errctl;
1770 			unsigned int l1parity_present, l2parity_present;
1771 
1772 			errctl = read_c0_ecc();
1773 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1774 
1775 			/* probe L1 parity support */
1776 			write_c0_ecc(errctl | ERRCTL_PE);
1777 			back_to_back_c0_hazard();
1778 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1779 
1780 			/* probe L2 parity support */
1781 			write_c0_ecc(errctl|ERRCTL_L2P);
1782 			back_to_back_c0_hazard();
1783 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1784 
1785 			if (l1parity_present && l2parity_present) {
1786 				if (l1parity)
1787 					errctl |= ERRCTL_PE;
1788 				if (l1parity ^ l2parity)
1789 					errctl |= ERRCTL_L2P;
1790 			} else if (l1parity_present) {
1791 				if (l1parity)
1792 					errctl |= ERRCTL_PE;
1793 			} else if (l2parity_present) {
1794 				if (l2parity)
1795 					errctl |= ERRCTL_L2P;
1796 			} else {
1797 				/* No parity available */
1798 			}
1799 
1800 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1801 
1802 			write_c0_ecc(errctl);
1803 			back_to_back_c0_hazard();
1804 			errctl = read_c0_ecc();
1805 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1806 
1807 			if (l1parity_present)
1808 				printk(KERN_INFO "Cache parity protection %sabled\n",
1809 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1810 
1811 			if (l2parity_present) {
1812 				if (l1parity_present && l1parity)
1813 					errctl ^= ERRCTL_L2P;
1814 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1815 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1816 			}
1817 		}
1818 		break;
1819 
1820 	case CPU_5KC:
1821 	case CPU_5KE:
1822 	case CPU_LOONGSON32:
1823 		write_c0_ecc(0x80000000);
1824 		back_to_back_c0_hazard();
1825 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1826 		printk(KERN_INFO "Cache parity protection %sabled\n",
1827 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1828 		break;
1829 	case CPU_20KC:
1830 	case CPU_25KF:
1831 		/* Clear the DE bit (bit 16) in the c0_status register. */
1832 		printk(KERN_INFO "Enable cache parity protection for "
1833 		       "MIPS 20KC/25KF CPUs.\n");
1834 		clear_c0_status(ST0_DE);
1835 		break;
1836 	default:
1837 		break;
1838 	}
1839 }
1840 
cache_parity_error(void)1841 asmlinkage void cache_parity_error(void)
1842 {
1843 	const int field = 2 * sizeof(unsigned long);
1844 	unsigned int reg_val;
1845 
1846 	/* For the moment, report the problem and hang. */
1847 	printk("Cache error exception:\n");
1848 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1849 	reg_val = read_c0_cacheerr();
1850 	printk("c0_cacheerr == %08x\n", reg_val);
1851 
1852 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1853 	       reg_val & (1<<30) ? "secondary" : "primary",
1854 	       reg_val & (1<<31) ? "data" : "insn");
1855 	if ((cpu_has_mips_r2_r6) &&
1856 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1857 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1858 			reg_val & (1<<29) ? "ED " : "",
1859 			reg_val & (1<<28) ? "ET " : "",
1860 			reg_val & (1<<27) ? "ES " : "",
1861 			reg_val & (1<<26) ? "EE " : "",
1862 			reg_val & (1<<25) ? "EB " : "",
1863 			reg_val & (1<<24) ? "EI " : "",
1864 			reg_val & (1<<23) ? "E1 " : "",
1865 			reg_val & (1<<22) ? "E0 " : "");
1866 	} else {
1867 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1868 			reg_val & (1<<29) ? "ED " : "",
1869 			reg_val & (1<<28) ? "ET " : "",
1870 			reg_val & (1<<26) ? "EE " : "",
1871 			reg_val & (1<<25) ? "EB " : "",
1872 			reg_val & (1<<24) ? "EI " : "",
1873 			reg_val & (1<<23) ? "E1 " : "",
1874 			reg_val & (1<<22) ? "E0 " : "");
1875 	}
1876 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1877 
1878 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1879 	if (reg_val & (1<<22))
1880 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1881 
1882 	if (reg_val & (1<<23))
1883 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1884 #endif
1885 
1886 	panic("Can't handle the cache error!");
1887 }
1888 
do_ftlb(void)1889 asmlinkage void do_ftlb(void)
1890 {
1891 	const int field = 2 * sizeof(unsigned long);
1892 	unsigned int reg_val;
1893 
1894 	/* For the moment, report the problem and hang. */
1895 	if ((cpu_has_mips_r2_r6) &&
1896 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1897 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1898 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1899 		       read_c0_ecc());
1900 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1901 		reg_val = read_c0_cacheerr();
1902 		pr_err("c0_cacheerr == %08x\n", reg_val);
1903 
1904 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1905 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1906 		} else {
1907 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1908 			       reg_val & (1<<30) ? "secondary" : "primary",
1909 			       reg_val & (1<<31) ? "data" : "insn");
1910 		}
1911 	} else {
1912 		pr_err("FTLB error exception\n");
1913 	}
1914 	/* Just print the cacheerr bits for now */
1915 	cache_parity_error();
1916 }
1917 
do_gsexc(struct pt_regs * regs,u32 diag1)1918 asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1919 {
1920 	u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1921 			LOONGSON_DIAG1_EXCCODE_SHIFT;
1922 	enum ctx_state prev_state;
1923 
1924 	prev_state = exception_enter();
1925 
1926 	switch (exccode) {
1927 	case 0x08:
1928 		/* Undocumented exception, will trigger on certain
1929 		 * also-undocumented instructions accessible from userspace.
1930 		 * Processor state is not otherwise corrupted, but currently
1931 		 * we don't know how to proceed. Maybe there is some
1932 		 * undocumented control flag to enable the instructions?
1933 		 */
1934 		force_sig(SIGILL);
1935 		break;
1936 
1937 	default:
1938 		/* None of the other exceptions, documented or not, have
1939 		 * further details given; none are encountered in the wild
1940 		 * either. Panic in case some of them turn out to be fatal.
1941 		 */
1942 		show_regs(regs);
1943 		panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1944 	}
1945 
1946 	exception_exit(prev_state);
1947 }
1948 
1949 /*
1950  * SDBBP EJTAG debug exception handler.
1951  * We skip the instruction and return to the next instruction.
1952  */
ejtag_exception_handler(struct pt_regs * regs)1953 void ejtag_exception_handler(struct pt_regs *regs)
1954 {
1955 	const int field = 2 * sizeof(unsigned long);
1956 	unsigned long depc, old_epc, old_ra;
1957 	unsigned int debug;
1958 
1959 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1960 	depc = read_c0_depc();
1961 	debug = read_c0_debug();
1962 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1963 	if (debug & 0x80000000) {
1964 		/*
1965 		 * In branch delay slot.
1966 		 * We cheat a little bit here and use EPC to calculate the
1967 		 * debug return address (DEPC). EPC is restored after the
1968 		 * calculation.
1969 		 */
1970 		old_epc = regs->cp0_epc;
1971 		old_ra = regs->regs[31];
1972 		regs->cp0_epc = depc;
1973 		compute_return_epc(regs);
1974 		depc = regs->cp0_epc;
1975 		regs->cp0_epc = old_epc;
1976 		regs->regs[31] = old_ra;
1977 	} else
1978 		depc += 4;
1979 	write_c0_depc(depc);
1980 
1981 #if 0
1982 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1983 	write_c0_debug(debug | 0x100);
1984 #endif
1985 }
1986 
1987 /*
1988  * NMI exception handler.
1989  * No lock; only written during early bootup by CPU 0.
1990  */
1991 static RAW_NOTIFIER_HEAD(nmi_chain);
1992 
register_nmi_notifier(struct notifier_block * nb)1993 int register_nmi_notifier(struct notifier_block *nb)
1994 {
1995 	return raw_notifier_chain_register(&nmi_chain, nb);
1996 }
1997 
nmi_exception_handler(struct pt_regs * regs)1998 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1999 {
2000 	char str[100];
2001 
2002 	nmi_enter();
2003 	raw_notifier_call_chain(&nmi_chain, 0, regs);
2004 	bust_spinlocks(1);
2005 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
2006 		 smp_processor_id(), regs->cp0_epc);
2007 	regs->cp0_epc = read_c0_errorepc();
2008 	die(str, regs);
2009 	nmi_exit();
2010 }
2011 
2012 #define VECTORSPACING 0x100	/* for EI/VI mode */
2013 
2014 unsigned long ebase;
2015 EXPORT_SYMBOL_GPL(ebase);
2016 unsigned long exception_handlers[32];
2017 unsigned long vi_handlers[64];
2018 
set_except_vector(int n,void * addr)2019 void __init *set_except_vector(int n, void *addr)
2020 {
2021 	unsigned long handler = (unsigned long) addr;
2022 	unsigned long old_handler;
2023 
2024 #ifdef CONFIG_CPU_MICROMIPS
2025 	/*
2026 	 * Only the TLB handlers are cache aligned with an even
2027 	 * address. All other handlers are on an odd address and
2028 	 * require no modification. Otherwise, MIPS32 mode will
2029 	 * be entered when handling any TLB exceptions. That
2030 	 * would be bad...since we must stay in microMIPS mode.
2031 	 */
2032 	if (!(handler & 0x1))
2033 		handler |= 1;
2034 #endif
2035 	old_handler = xchg(&exception_handlers[n], handler);
2036 
2037 	if (n == 0 && cpu_has_divec) {
2038 #ifdef CONFIG_CPU_MICROMIPS
2039 		unsigned long jump_mask = ~((1 << 27) - 1);
2040 #else
2041 		unsigned long jump_mask = ~((1 << 28) - 1);
2042 #endif
2043 		u32 *buf = (u32 *)(ebase + 0x200);
2044 		unsigned int k0 = 26;
2045 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2046 			uasm_i_j(&buf, handler & ~jump_mask);
2047 			uasm_i_nop(&buf);
2048 		} else {
2049 			UASM_i_LA(&buf, k0, handler);
2050 			uasm_i_jr(&buf, k0);
2051 			uasm_i_nop(&buf);
2052 		}
2053 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2054 	}
2055 	return (void *)old_handler;
2056 }
2057 
do_default_vi(void)2058 static void do_default_vi(void)
2059 {
2060 	show_regs(get_irq_regs());
2061 	panic("Caught unexpected vectored interrupt.");
2062 }
2063 
set_vi_srs_handler(int n,vi_handler_t addr,int srs)2064 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2065 {
2066 	unsigned long handler;
2067 	unsigned long old_handler = vi_handlers[n];
2068 	int srssets = current_cpu_data.srsets;
2069 	u16 *h;
2070 	unsigned char *b;
2071 
2072 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
2073 
2074 	if (addr == NULL) {
2075 		handler = (unsigned long) do_default_vi;
2076 		srs = 0;
2077 	} else
2078 		handler = (unsigned long) addr;
2079 	vi_handlers[n] = handler;
2080 
2081 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2082 
2083 	if (srs >= srssets)
2084 		panic("Shadow register set %d not supported", srs);
2085 
2086 	if (cpu_has_veic) {
2087 		if (board_bind_eic_interrupt)
2088 			board_bind_eic_interrupt(n, srs);
2089 	} else if (cpu_has_vint) {
2090 		/* SRSMap is only defined if shadow sets are implemented */
2091 		if (srssets > 1)
2092 			change_c0_srsmap(0xf << n*4, srs << n*4);
2093 	}
2094 
2095 	if (srs == 0) {
2096 		/*
2097 		 * If no shadow set is selected then use the default handler
2098 		 * that does normal register saving and standard interrupt exit
2099 		 */
2100 		extern const u8 except_vec_vi[], except_vec_vi_lui[];
2101 		extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2102 		extern const u8 rollback_except_vec_vi[];
2103 		const u8 *vec_start = using_rollback_handler() ?
2104 				      rollback_except_vec_vi : except_vec_vi;
2105 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2106 		const int lui_offset = except_vec_vi_lui - vec_start + 2;
2107 		const int ori_offset = except_vec_vi_ori - vec_start + 2;
2108 #else
2109 		const int lui_offset = except_vec_vi_lui - vec_start;
2110 		const int ori_offset = except_vec_vi_ori - vec_start;
2111 #endif
2112 		const int handler_len = except_vec_vi_end - vec_start;
2113 
2114 		if (handler_len > VECTORSPACING) {
2115 			/*
2116 			 * Sigh... panicing won't help as the console
2117 			 * is probably not configured :(
2118 			 */
2119 			panic("VECTORSPACING too small");
2120 		}
2121 
2122 		set_handler(((unsigned long)b - ebase), vec_start,
2123 #ifdef CONFIG_CPU_MICROMIPS
2124 				(handler_len - 1));
2125 #else
2126 				handler_len);
2127 #endif
2128 		h = (u16 *)(b + lui_offset);
2129 		*h = (handler >> 16) & 0xffff;
2130 		h = (u16 *)(b + ori_offset);
2131 		*h = (handler & 0xffff);
2132 		local_flush_icache_range((unsigned long)b,
2133 					 (unsigned long)(b+handler_len));
2134 	}
2135 	else {
2136 		/*
2137 		 * In other cases jump directly to the interrupt handler. It
2138 		 * is the handler's responsibility to save registers if required
2139 		 * (eg hi/lo) and return from the exception using "eret".
2140 		 */
2141 		u32 insn;
2142 
2143 		h = (u16 *)b;
2144 		/* j handler */
2145 #ifdef CONFIG_CPU_MICROMIPS
2146 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2147 #else
2148 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2149 #endif
2150 		h[0] = (insn >> 16) & 0xffff;
2151 		h[1] = insn & 0xffff;
2152 		h[2] = 0;
2153 		h[3] = 0;
2154 		local_flush_icache_range((unsigned long)b,
2155 					 (unsigned long)(b+8));
2156 	}
2157 
2158 	return (void *)old_handler;
2159 }
2160 
set_vi_handler(int n,vi_handler_t addr)2161 void *set_vi_handler(int n, vi_handler_t addr)
2162 {
2163 	return set_vi_srs_handler(n, addr, 0);
2164 }
2165 
2166 extern void tlb_init(void);
2167 
2168 /*
2169  * Timer interrupt
2170  */
2171 int cp0_compare_irq;
2172 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2173 int cp0_compare_irq_shift;
2174 
2175 /*
2176  * Performance counter IRQ or -1 if shared with timer
2177  */
2178 int cp0_perfcount_irq;
2179 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2180 
2181 /*
2182  * Fast debug channel IRQ or -1 if not present
2183  */
2184 int cp0_fdc_irq;
2185 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2186 
2187 static int noulri;
2188 
ulri_disable(char * s)2189 static int __init ulri_disable(char *s)
2190 {
2191 	pr_info("Disabling ulri\n");
2192 	noulri = 1;
2193 
2194 	return 1;
2195 }
2196 __setup("noulri", ulri_disable);
2197 
2198 /* configure STATUS register */
configure_status(void)2199 static void configure_status(void)
2200 {
2201 	/*
2202 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2203 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2204 	 * flag that some firmware may have left set and the TS bit (for
2205 	 * IP27).  Set XX for ISA IV code to work.
2206 	 */
2207 	unsigned int status_set = ST0_KERNEL_CUMASK;
2208 #ifdef CONFIG_64BIT
2209 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2210 #endif
2211 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2212 		status_set |= ST0_XX;
2213 	if (cpu_has_dsp)
2214 		status_set |= ST0_MX;
2215 
2216 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2217 			 status_set);
2218 	back_to_back_c0_hazard();
2219 }
2220 
2221 unsigned int hwrena;
2222 EXPORT_SYMBOL_GPL(hwrena);
2223 
2224 /* configure HWRENA register */
configure_hwrena(void)2225 static void configure_hwrena(void)
2226 {
2227 	hwrena = cpu_hwrena_impl_bits;
2228 
2229 	if (cpu_has_mips_r2_r6)
2230 		hwrena |= MIPS_HWRENA_CPUNUM |
2231 			  MIPS_HWRENA_SYNCISTEP |
2232 			  MIPS_HWRENA_CC |
2233 			  MIPS_HWRENA_CCRES;
2234 
2235 	if (!noulri && cpu_has_userlocal)
2236 		hwrena |= MIPS_HWRENA_ULR;
2237 
2238 	if (hwrena)
2239 		write_c0_hwrena(hwrena);
2240 }
2241 
configure_exception_vector(void)2242 static void configure_exception_vector(void)
2243 {
2244 	if (cpu_has_mips_r2_r6) {
2245 		unsigned long sr = set_c0_status(ST0_BEV);
2246 		/* If available, use WG to set top bits of EBASE */
2247 		if (cpu_has_ebase_wg) {
2248 #ifdef CONFIG_64BIT
2249 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2250 #else
2251 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2252 #endif
2253 		}
2254 		write_c0_ebase(ebase);
2255 		write_c0_status(sr);
2256 	}
2257 	if (cpu_has_veic || cpu_has_vint) {
2258 		/* Setting vector spacing enables EI/VI mode  */
2259 		change_c0_intctl(0x3e0, VECTORSPACING);
2260 	}
2261 	if (cpu_has_divec) {
2262 		if (cpu_has_mipsmt) {
2263 			unsigned int vpflags = dvpe();
2264 			set_c0_cause(CAUSEF_IV);
2265 			evpe(vpflags);
2266 		} else
2267 			set_c0_cause(CAUSEF_IV);
2268 	}
2269 }
2270 
per_cpu_trap_init(bool is_boot_cpu)2271 void per_cpu_trap_init(bool is_boot_cpu)
2272 {
2273 	unsigned int cpu = smp_processor_id();
2274 
2275 	configure_status();
2276 	configure_hwrena();
2277 
2278 	configure_exception_vector();
2279 
2280 	/*
2281 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2282 	 *
2283 	 *  o read IntCtl.IPTI to determine the timer interrupt
2284 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2285 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2286 	 */
2287 	if (cpu_has_mips_r2_r6) {
2288 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2289 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2290 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2291 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2292 		if (!cp0_fdc_irq)
2293 			cp0_fdc_irq = -1;
2294 
2295 	} else {
2296 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2297 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2298 		cp0_perfcount_irq = -1;
2299 		cp0_fdc_irq = -1;
2300 	}
2301 
2302 	if (cpu_has_mmid)
2303 		cpu_data[cpu].asid_cache = 0;
2304 	else if (!cpu_data[cpu].asid_cache)
2305 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2306 
2307 	mmgrab(&init_mm);
2308 	current->active_mm = &init_mm;
2309 	BUG_ON(current->mm);
2310 	enter_lazy_tlb(&init_mm, current);
2311 
2312 	/* Boot CPU's cache setup in setup_arch(). */
2313 	if (!is_boot_cpu)
2314 		cpu_cache_init();
2315 	tlb_init();
2316 	TLBMISS_HANDLER_SETUP();
2317 }
2318 
2319 /* Install CPU exception handler */
set_handler(unsigned long offset,const void * addr,unsigned long size)2320 void set_handler(unsigned long offset, const void *addr, unsigned long size)
2321 {
2322 #ifdef CONFIG_CPU_MICROMIPS
2323 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2324 #else
2325 	memcpy((void *)(ebase + offset), addr, size);
2326 #endif
2327 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2328 }
2329 
2330 static const char panic_null_cerr[] =
2331 	"Trying to set NULL cache error exception handler\n";
2332 
2333 /*
2334  * Install uncached CPU exception handler.
2335  * This is suitable only for the cache error exception which is the only
2336  * exception handler that is being run uncached.
2337  */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)2338 void set_uncached_handler(unsigned long offset, void *addr,
2339 	unsigned long size)
2340 {
2341 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2342 
2343 	if (!addr)
2344 		panic(panic_null_cerr);
2345 
2346 	memcpy((void *)(uncached_ebase + offset), addr, size);
2347 }
2348 
2349 static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)2350 static int __init set_rdhwr_noopt(char *str)
2351 {
2352 	rdhwr_noopt = 1;
2353 	return 1;
2354 }
2355 
2356 __setup("rdhwr_noopt", set_rdhwr_noopt);
2357 
trap_init(void)2358 void __init trap_init(void)
2359 {
2360 	extern char except_vec3_generic;
2361 	extern char except_vec4;
2362 	extern char except_vec3_r4000;
2363 	unsigned long i, vec_size;
2364 	phys_addr_t ebase_pa;
2365 
2366 	check_wait();
2367 
2368 	if (!cpu_has_mips_r2_r6) {
2369 		ebase = CAC_BASE;
2370 		ebase_pa = virt_to_phys((void *)ebase);
2371 		vec_size = 0x400;
2372 
2373 		memblock_reserve(ebase_pa, vec_size);
2374 	} else {
2375 		if (cpu_has_veic || cpu_has_vint)
2376 			vec_size = 0x200 + VECTORSPACING*64;
2377 		else
2378 			vec_size = PAGE_SIZE;
2379 
2380 		ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2381 		if (!ebase_pa)
2382 			panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2383 			      __func__, vec_size, 1 << fls(vec_size));
2384 
2385 		/*
2386 		 * Try to ensure ebase resides in KSeg0 if possible.
2387 		 *
2388 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2389 		 * hitting a poorly defined exception base for Cache Errors.
2390 		 * The allocation is likely to be in the low 512MB of physical,
2391 		 * in which case we should be able to convert to KSeg0.
2392 		 *
2393 		 * EVA is special though as it allows segments to be rearranged
2394 		 * and to become uncached during cache error handling.
2395 		 */
2396 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2397 			ebase = CKSEG0ADDR(ebase_pa);
2398 		else
2399 			ebase = (unsigned long)phys_to_virt(ebase_pa);
2400 	}
2401 
2402 	if (cpu_has_mmips) {
2403 		unsigned int config3 = read_c0_config3();
2404 
2405 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2406 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2407 		else
2408 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2409 	}
2410 
2411 	if (board_ebase_setup)
2412 		board_ebase_setup();
2413 	per_cpu_trap_init(true);
2414 	memblock_set_bottom_up(false);
2415 
2416 	/*
2417 	 * Copy the generic exception handlers to their final destination.
2418 	 * This will be overridden later as suitable for a particular
2419 	 * configuration.
2420 	 */
2421 	set_handler(0x180, &except_vec3_generic, 0x80);
2422 
2423 	/*
2424 	 * Setup default vectors
2425 	 */
2426 	for (i = 0; i <= 31; i++)
2427 		set_except_vector(i, handle_reserved);
2428 
2429 	/*
2430 	 * Copy the EJTAG debug exception vector handler code to it's final
2431 	 * destination.
2432 	 */
2433 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2434 		board_ejtag_handler_setup();
2435 
2436 	/*
2437 	 * Only some CPUs have the watch exceptions.
2438 	 */
2439 	if (cpu_has_watch)
2440 		set_except_vector(EXCCODE_WATCH, handle_watch);
2441 
2442 	/*
2443 	 * Initialise interrupt handlers
2444 	 */
2445 	if (cpu_has_veic || cpu_has_vint) {
2446 		int nvec = cpu_has_veic ? 64 : 8;
2447 		for (i = 0; i < nvec; i++)
2448 			set_vi_handler(i, NULL);
2449 	}
2450 	else if (cpu_has_divec)
2451 		set_handler(0x200, &except_vec4, 0x8);
2452 
2453 	/*
2454 	 * Some CPUs can enable/disable for cache parity detection, but does
2455 	 * it different ways.
2456 	 */
2457 	parity_protection_init();
2458 
2459 	/*
2460 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2461 	 * by external hardware.  Therefore these two exceptions
2462 	 * may have board specific handlers.
2463 	 */
2464 	if (board_be_init)
2465 		board_be_init();
2466 
2467 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2468 					rollback_handle_int : handle_int);
2469 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2470 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2471 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2472 
2473 	set_except_vector(EXCCODE_ADEL, handle_adel);
2474 	set_except_vector(EXCCODE_ADES, handle_ades);
2475 
2476 	set_except_vector(EXCCODE_IBE, handle_ibe);
2477 	set_except_vector(EXCCODE_DBE, handle_dbe);
2478 
2479 	set_except_vector(EXCCODE_SYS, handle_sys);
2480 	set_except_vector(EXCCODE_BP, handle_bp);
2481 
2482 	if (rdhwr_noopt)
2483 		set_except_vector(EXCCODE_RI, handle_ri);
2484 	else {
2485 		if (cpu_has_vtag_icache)
2486 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2487 		else if (current_cpu_type() == CPU_LOONGSON64)
2488 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2489 		else
2490 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2491 	}
2492 
2493 	set_except_vector(EXCCODE_CPU, handle_cpu);
2494 	set_except_vector(EXCCODE_OV, handle_ov);
2495 	set_except_vector(EXCCODE_TR, handle_tr);
2496 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2497 
2498 	if (board_nmi_handler_setup)
2499 		board_nmi_handler_setup();
2500 
2501 	if (cpu_has_fpu && !cpu_has_nofpuex)
2502 		set_except_vector(EXCCODE_FPE, handle_fpe);
2503 
2504 	if (cpu_has_ftlbparex)
2505 		set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2506 
2507 	if (cpu_has_gsexcex)
2508 		set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2509 
2510 	if (cpu_has_rixiex) {
2511 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2512 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2513 	}
2514 
2515 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2516 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2517 
2518 	if (cpu_has_mcheck)
2519 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2520 
2521 	if (cpu_has_mipsmt)
2522 		set_except_vector(EXCCODE_THREAD, handle_mt);
2523 
2524 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2525 
2526 	if (board_cache_error_setup)
2527 		board_cache_error_setup();
2528 
2529 	if (cpu_has_vce)
2530 		/* Special exception: R4[04]00 uses also the divec space. */
2531 		set_handler(0x180, &except_vec3_r4000, 0x100);
2532 	else if (cpu_has_4kex)
2533 		set_handler(0x180, &except_vec3_generic, 0x80);
2534 	else
2535 		set_handler(0x080, &except_vec3_generic, 0x80);
2536 
2537 	local_flush_icache_range(ebase, ebase + vec_size);
2538 
2539 	sort_extable(__start___dbe_table, __stop___dbe_table);
2540 
2541 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2542 }
2543 
trap_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2544 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2545 			    void *v)
2546 {
2547 	switch (cmd) {
2548 	case CPU_PM_ENTER_FAILED:
2549 	case CPU_PM_EXIT:
2550 		configure_status();
2551 		configure_hwrena();
2552 		configure_exception_vector();
2553 
2554 		/* Restore register with CPU number for TLB handlers */
2555 		TLBMISS_HANDLER_RESTORE();
2556 
2557 		break;
2558 	}
2559 
2560 	return NOTIFY_OK;
2561 }
2562 
2563 static struct notifier_block trap_pm_notifier_block = {
2564 	.notifier_call = trap_pm_notifier,
2565 };
2566 
trap_pm_init(void)2567 static int __init trap_pm_init(void)
2568 {
2569 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2570 }
2571 arch_initcall(trap_pm_init);
2572