1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/tlbex.h>
71 #include <asm/uasm.h>
72
73 #include <asm/mach-loongson64/cpucfg-emul.h>
74
75 extern void check_wait(void);
76 extern asmlinkage void rollback_handle_int(void);
77 extern asmlinkage void handle_int(void);
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_gsexc(void);
94 extern asmlinkage void handle_msa(void);
95 extern asmlinkage void handle_mdmx(void);
96 extern asmlinkage void handle_watch(void);
97 extern asmlinkage void handle_mt(void);
98 extern asmlinkage void handle_dsp(void);
99 extern asmlinkage void handle_mcheck(void);
100 extern asmlinkage void handle_reserved(void);
101 extern void tlb_do_page_fault_0(void);
102
103 void (*board_be_init)(void);
104 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
105 void (*board_nmi_handler_setup)(void);
106 void (*board_ejtag_handler_setup)(void);
107 void (*board_bind_eic_interrupt)(int irq, int regset);
108 void (*board_ebase_setup)(void);
109 void(*board_cache_error_setup)(void);
110
show_raw_backtrace(unsigned long reg29,const char * loglvl)111 static void show_raw_backtrace(unsigned long reg29, const char *loglvl)
112 {
113 unsigned long *sp = (unsigned long *)(reg29 & ~3);
114 unsigned long addr;
115
116 printk("%sCall Trace:", loglvl);
117 #ifdef CONFIG_KALLSYMS
118 printk("%s\n", loglvl);
119 #endif
120 while (!kstack_end(sp)) {
121 unsigned long __user *p =
122 (unsigned long __user *)(unsigned long)sp++;
123 if (__get_user(addr, p)) {
124 printk("%s (Bad stack address)", loglvl);
125 break;
126 }
127 if (__kernel_text_address(addr))
128 print_ip_sym(loglvl, addr);
129 }
130 printk("%s\n", loglvl);
131 }
132
133 #ifdef CONFIG_KALLSYMS
134 int raw_show_trace;
set_raw_show_trace(char * str)135 static int __init set_raw_show_trace(char *str)
136 {
137 raw_show_trace = 1;
138 return 1;
139 }
140 __setup("raw_show_trace", set_raw_show_trace);
141 #endif
142
show_backtrace(struct task_struct * task,const struct pt_regs * regs,const char * loglvl)143 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
144 const char *loglvl)
145 {
146 unsigned long sp = regs->regs[29];
147 unsigned long ra = regs->regs[31];
148 unsigned long pc = regs->cp0_epc;
149
150 if (!task)
151 task = current;
152
153 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
154 show_raw_backtrace(sp, loglvl);
155 return;
156 }
157 printk("%sCall Trace:\n", loglvl);
158 do {
159 print_ip_sym(loglvl, pc);
160 pc = unwind_stack(task, &sp, pc, &ra);
161 } while (pc);
162 pr_cont("\n");
163 }
164
165 /*
166 * This routine abuses get_user()/put_user() to reference pointers
167 * with at least a bit of error checking ...
168 */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs,const char * loglvl)169 static void show_stacktrace(struct task_struct *task,
170 const struct pt_regs *regs, const char *loglvl)
171 {
172 const int field = 2 * sizeof(unsigned long);
173 long stackdata;
174 int i;
175 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
176
177 printk("%sStack :", loglvl);
178 i = 0;
179 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
180 if (i && ((i % (64 / field)) == 0)) {
181 pr_cont("\n");
182 printk("%s ", loglvl);
183 }
184 if (i > 39) {
185 pr_cont(" ...");
186 break;
187 }
188
189 if (__get_user(stackdata, sp++)) {
190 pr_cont(" (Bad stack address)");
191 break;
192 }
193
194 pr_cont(" %0*lx", field, stackdata);
195 i++;
196 }
197 pr_cont("\n");
198 show_backtrace(task, regs, loglvl);
199 }
200
show_stack(struct task_struct * task,unsigned long * sp,const char * loglvl)201 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
202 {
203 struct pt_regs regs;
204 mm_segment_t old_fs = get_fs();
205
206 regs.cp0_status = KSU_KERNEL;
207 if (sp) {
208 regs.regs[29] = (unsigned long)sp;
209 regs.regs[31] = 0;
210 regs.cp0_epc = 0;
211 } else {
212 if (task && task != current) {
213 regs.regs[29] = task->thread.reg29;
214 regs.regs[31] = 0;
215 regs.cp0_epc = task->thread.reg31;
216 } else {
217 prepare_frametrace(®s);
218 }
219 }
220 /*
221 * show_stack() deals exclusively with kernel mode, so be sure to access
222 * the stack in the kernel (not user) address space.
223 */
224 set_fs(KERNEL_DS);
225 show_stacktrace(task, ®s, loglvl);
226 set_fs(old_fs);
227 }
228
show_code(unsigned int __user * pc)229 static void show_code(unsigned int __user *pc)
230 {
231 long i;
232 unsigned short __user *pc16 = NULL;
233
234 printk("Code:");
235
236 if ((unsigned long)pc & 1)
237 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
238 for(i = -3 ; i < 6 ; i++) {
239 unsigned int insn;
240 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
241 pr_cont(" (Bad address in epc)\n");
242 break;
243 }
244 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
245 }
246 pr_cont("\n");
247 }
248
__show_regs(const struct pt_regs * regs)249 static void __show_regs(const struct pt_regs *regs)
250 {
251 const int field = 2 * sizeof(unsigned long);
252 unsigned int cause = regs->cp0_cause;
253 unsigned int exccode;
254 int i;
255
256 show_regs_print_info(KERN_DEFAULT);
257
258 /*
259 * Saved main processor registers
260 */
261 for (i = 0; i < 32; ) {
262 if ((i % 4) == 0)
263 printk("$%2d :", i);
264 if (i == 0)
265 pr_cont(" %0*lx", field, 0UL);
266 else if (i == 26 || i == 27)
267 pr_cont(" %*s", field, "");
268 else
269 pr_cont(" %0*lx", field, regs->regs[i]);
270
271 i++;
272 if ((i % 4) == 0)
273 pr_cont("\n");
274 }
275
276 #ifdef CONFIG_CPU_HAS_SMARTMIPS
277 printk("Acx : %0*lx\n", field, regs->acx);
278 #endif
279 if (MIPS_ISA_REV < 6) {
280 printk("Hi : %0*lx\n", field, regs->hi);
281 printk("Lo : %0*lx\n", field, regs->lo);
282 }
283
284 /*
285 * Saved cp0 registers
286 */
287 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
288 (void *) regs->cp0_epc);
289 printk("ra : %0*lx %pS\n", field, regs->regs[31],
290 (void *) regs->regs[31]);
291
292 printk("Status: %08x ", (uint32_t) regs->cp0_status);
293
294 if (cpu_has_3kex) {
295 if (regs->cp0_status & ST0_KUO)
296 pr_cont("KUo ");
297 if (regs->cp0_status & ST0_IEO)
298 pr_cont("IEo ");
299 if (regs->cp0_status & ST0_KUP)
300 pr_cont("KUp ");
301 if (regs->cp0_status & ST0_IEP)
302 pr_cont("IEp ");
303 if (regs->cp0_status & ST0_KUC)
304 pr_cont("KUc ");
305 if (regs->cp0_status & ST0_IEC)
306 pr_cont("IEc ");
307 } else if (cpu_has_4kex) {
308 if (regs->cp0_status & ST0_KX)
309 pr_cont("KX ");
310 if (regs->cp0_status & ST0_SX)
311 pr_cont("SX ");
312 if (regs->cp0_status & ST0_UX)
313 pr_cont("UX ");
314 switch (regs->cp0_status & ST0_KSU) {
315 case KSU_USER:
316 pr_cont("USER ");
317 break;
318 case KSU_SUPERVISOR:
319 pr_cont("SUPERVISOR ");
320 break;
321 case KSU_KERNEL:
322 pr_cont("KERNEL ");
323 break;
324 default:
325 pr_cont("BAD_MODE ");
326 break;
327 }
328 if (regs->cp0_status & ST0_ERL)
329 pr_cont("ERL ");
330 if (regs->cp0_status & ST0_EXL)
331 pr_cont("EXL ");
332 if (regs->cp0_status & ST0_IE)
333 pr_cont("IE ");
334 }
335 pr_cont("\n");
336
337 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
338 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
339
340 if (1 <= exccode && exccode <= 5)
341 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
342
343 printk("PrId : %08x (%s)\n", read_c0_prid(),
344 cpu_name_string());
345 }
346
347 /*
348 * FIXME: really the generic show_regs should take a const pointer argument.
349 */
show_regs(struct pt_regs * regs)350 void show_regs(struct pt_regs *regs)
351 {
352 __show_regs(regs);
353 dump_stack();
354 }
355
show_registers(struct pt_regs * regs)356 void show_registers(struct pt_regs *regs)
357 {
358 const int field = 2 * sizeof(unsigned long);
359 mm_segment_t old_fs = get_fs();
360
361 __show_regs(regs);
362 print_modules();
363 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 current->comm, current->pid, current_thread_info(), current,
365 field, current_thread_info()->tp_value);
366 if (cpu_has_userlocal) {
367 unsigned long tls;
368
369 tls = read_c0_userlocal();
370 if (tls != current_thread_info()->tp_value)
371 printk("*HwTLS: %0*lx\n", field, tls);
372 }
373
374 if (!user_mode(regs))
375 /* Necessary for getting the correct stack content */
376 set_fs(KERNEL_DS);
377 show_stacktrace(current, regs, KERN_DEFAULT);
378 show_code((unsigned int __user *) regs->cp0_epc);
379 printk("\n");
380 set_fs(old_fs);
381 }
382
383 static DEFINE_RAW_SPINLOCK(die_lock);
384
die(const char * str,struct pt_regs * regs)385 void __noreturn die(const char *str, struct pt_regs *regs)
386 {
387 static int die_counter;
388 int sig = SIGSEGV;
389
390 oops_enter();
391
392 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
393 SIGSEGV) == NOTIFY_STOP)
394 sig = 0;
395
396 console_verbose();
397 raw_spin_lock_irq(&die_lock);
398 bust_spinlocks(1);
399
400 printk("%s[#%d]:\n", str, ++die_counter);
401 show_registers(regs);
402 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
403 raw_spin_unlock_irq(&die_lock);
404
405 oops_exit();
406
407 if (in_interrupt())
408 panic("Fatal exception in interrupt");
409
410 if (panic_on_oops)
411 panic("Fatal exception");
412
413 if (regs && kexec_should_crash(current))
414 crash_kexec(regs);
415
416 do_exit(sig);
417 }
418
419 extern struct exception_table_entry __start___dbe_table[];
420 extern struct exception_table_entry __stop___dbe_table[];
421
422 __asm__(
423 " .section __dbe_table, \"a\"\n"
424 " .previous \n");
425
426 /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)427 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428 {
429 const struct exception_table_entry *e;
430
431 e = search_extable(__start___dbe_table,
432 __stop___dbe_table - __start___dbe_table, addr);
433 if (!e)
434 e = search_module_dbetables(addr);
435 return e;
436 }
437
do_be(struct pt_regs * regs)438 asmlinkage void do_be(struct pt_regs *regs)
439 {
440 const int field = 2 * sizeof(unsigned long);
441 const struct exception_table_entry *fixup = NULL;
442 int data = regs->cp0_cause & 4;
443 int action = MIPS_BE_FATAL;
444 enum ctx_state prev_state;
445
446 prev_state = exception_enter();
447 /* XXX For now. Fixme, this searches the wrong table ... */
448 if (data && !user_mode(regs))
449 fixup = search_dbe_tables(exception_epc(regs));
450
451 if (fixup)
452 action = MIPS_BE_FIXUP;
453
454 if (board_be_handler)
455 action = board_be_handler(regs, fixup != NULL);
456 else
457 mips_cm_error_report();
458
459 switch (action) {
460 case MIPS_BE_DISCARD:
461 goto out;
462 case MIPS_BE_FIXUP:
463 if (fixup) {
464 regs->cp0_epc = fixup->nextinsn;
465 goto out;
466 }
467 break;
468 default:
469 break;
470 }
471
472 /*
473 * Assume it would be too dangerous to continue ...
474 */
475 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
476 data ? "Data" : "Instruction",
477 field, regs->cp0_epc, field, regs->regs[31]);
478 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
479 SIGBUS) == NOTIFY_STOP)
480 goto out;
481
482 die_if_kernel("Oops", regs);
483 force_sig(SIGBUS);
484
485 out:
486 exception_exit(prev_state);
487 }
488
489 /*
490 * ll/sc, rdhwr, sync emulation
491 */
492
493 #define OPCODE 0xfc000000
494 #define BASE 0x03e00000
495 #define RT 0x001f0000
496 #define OFFSET 0x0000ffff
497 #define LL 0xc0000000
498 #define SC 0xe0000000
499 #define SPEC0 0x00000000
500 #define SPEC3 0x7c000000
501 #define RD 0x0000f800
502 #define FUNC 0x0000003f
503 #define SYNC 0x0000000f
504 #define RDHWR 0x0000003b
505
506 /* microMIPS definitions */
507 #define MM_POOL32A_FUNC 0xfc00ffff
508 #define MM_RDHWR 0x00006b3c
509 #define MM_RS 0x001f0000
510 #define MM_RT 0x03e00000
511
512 /*
513 * The ll_bit is cleared by r*_switch.S
514 */
515
516 unsigned int ll_bit;
517 struct task_struct *ll_task;
518
simulate_ll(struct pt_regs * regs,unsigned int opcode)519 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
520 {
521 unsigned long value, __user *vaddr;
522 long offset;
523
524 /*
525 * analyse the ll instruction that just caused a ri exception
526 * and put the referenced address to addr.
527 */
528
529 /* sign extend offset */
530 offset = opcode & OFFSET;
531 offset <<= 16;
532 offset >>= 16;
533
534 vaddr = (unsigned long __user *)
535 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
536
537 if ((unsigned long)vaddr & 3)
538 return SIGBUS;
539 if (get_user(value, vaddr))
540 return SIGSEGV;
541
542 preempt_disable();
543
544 if (ll_task == NULL || ll_task == current) {
545 ll_bit = 1;
546 } else {
547 ll_bit = 0;
548 }
549 ll_task = current;
550
551 preempt_enable();
552
553 regs->regs[(opcode & RT) >> 16] = value;
554
555 return 0;
556 }
557
simulate_sc(struct pt_regs * regs,unsigned int opcode)558 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
559 {
560 unsigned long __user *vaddr;
561 unsigned long reg;
562 long offset;
563
564 /*
565 * analyse the sc instruction that just caused a ri exception
566 * and put the referenced address to addr.
567 */
568
569 /* sign extend offset */
570 offset = opcode & OFFSET;
571 offset <<= 16;
572 offset >>= 16;
573
574 vaddr = (unsigned long __user *)
575 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
576 reg = (opcode & RT) >> 16;
577
578 if ((unsigned long)vaddr & 3)
579 return SIGBUS;
580
581 preempt_disable();
582
583 if (ll_bit == 0 || ll_task != current) {
584 regs->regs[reg] = 0;
585 preempt_enable();
586 return 0;
587 }
588
589 preempt_enable();
590
591 if (put_user(regs->regs[reg], vaddr))
592 return SIGSEGV;
593
594 regs->regs[reg] = 1;
595
596 return 0;
597 }
598
599 /*
600 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
601 * opcodes are supposed to result in coprocessor unusable exceptions if
602 * executed on ll/sc-less processors. That's the theory. In practice a
603 * few processors such as NEC's VR4100 throw reserved instruction exceptions
604 * instead, so we're doing the emulation thing in both exception handlers.
605 */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)606 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
607 {
608 if ((opcode & OPCODE) == LL) {
609 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 1, regs, 0);
611 return simulate_ll(regs, opcode);
612 }
613 if ((opcode & OPCODE) == SC) {
614 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
615 1, regs, 0);
616 return simulate_sc(regs, opcode);
617 }
618
619 return -1; /* Must be something else ... */
620 }
621
622 /*
623 * Simulate trapping 'rdhwr' instructions to provide user accessible
624 * registers not implemented in hardware.
625 */
simulate_rdhwr(struct pt_regs * regs,int rd,int rt)626 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
627 {
628 struct thread_info *ti = task_thread_info(current);
629
630 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
631 1, regs, 0);
632 switch (rd) {
633 case MIPS_HWR_CPUNUM: /* CPU number */
634 regs->regs[rt] = smp_processor_id();
635 return 0;
636 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
637 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
638 current_cpu_data.icache.linesz);
639 return 0;
640 case MIPS_HWR_CC: /* Read count register */
641 regs->regs[rt] = read_c0_count();
642 return 0;
643 case MIPS_HWR_CCRES: /* Count register resolution */
644 switch (current_cpu_type()) {
645 case CPU_20KC:
646 case CPU_25KF:
647 regs->regs[rt] = 1;
648 break;
649 default:
650 regs->regs[rt] = 2;
651 }
652 return 0;
653 case MIPS_HWR_ULR: /* Read UserLocal register */
654 regs->regs[rt] = ti->tp_value;
655 return 0;
656 default:
657 return -1;
658 }
659 }
660
simulate_rdhwr_normal(struct pt_regs * regs,unsigned int opcode)661 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
662 {
663 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
664 int rd = (opcode & RD) >> 11;
665 int rt = (opcode & RT) >> 16;
666
667 simulate_rdhwr(regs, rd, rt);
668 return 0;
669 }
670
671 /* Not ours. */
672 return -1;
673 }
674
simulate_rdhwr_mm(struct pt_regs * regs,unsigned int opcode)675 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
676 {
677 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
678 int rd = (opcode & MM_RS) >> 16;
679 int rt = (opcode & MM_RT) >> 21;
680 simulate_rdhwr(regs, rd, rt);
681 return 0;
682 }
683
684 /* Not ours. */
685 return -1;
686 }
687
simulate_sync(struct pt_regs * regs,unsigned int opcode)688 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
689 {
690 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
691 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
692 1, regs, 0);
693 return 0;
694 }
695
696 return -1; /* Must be something else ... */
697 }
698
699 /*
700 * Loongson-3 CSR instructions emulation
701 */
702
703 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
704
705 #define LWC2 0xc8000000
706 #define RS BASE
707 #define CSR_OPCODE2 0x00000118
708 #define CSR_OPCODE2_MASK 0x000007ff
709 #define CSR_FUNC_MASK RT
710 #define CSR_FUNC_CPUCFG 0x8
711
simulate_loongson3_cpucfg(struct pt_regs * regs,unsigned int opcode)712 static int simulate_loongson3_cpucfg(struct pt_regs *regs,
713 unsigned int opcode)
714 {
715 int op = opcode & OPCODE;
716 int op2 = opcode & CSR_OPCODE2_MASK;
717 int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
718
719 if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
720 int rd = (opcode & RD) >> 11;
721 int rs = (opcode & RS) >> 21;
722 __u64 sel = regs->regs[rs];
723
724 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
725
726 /* Do not emulate on unsupported core models. */
727 preempt_disable();
728 if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) {
729 preempt_enable();
730 return -1;
731 }
732 regs->regs[rd] = loongson3_cpucfg_read_synthesized(
733 ¤t_cpu_data, sel);
734 preempt_enable();
735 return 0;
736 }
737
738 /* Not ours. */
739 return -1;
740 }
741 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
742
do_ov(struct pt_regs * regs)743 asmlinkage void do_ov(struct pt_regs *regs)
744 {
745 enum ctx_state prev_state;
746
747 prev_state = exception_enter();
748 die_if_kernel("Integer overflow", regs);
749
750 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
751 exception_exit(prev_state);
752 }
753
754 #ifdef CONFIG_MIPS_FP_SUPPORT
755
756 /*
757 * Send SIGFPE according to FCSR Cause bits, which must have already
758 * been masked against Enable bits. This is impotant as Inexact can
759 * happen together with Overflow or Underflow, and `ptrace' can set
760 * any bits.
761 */
force_fcr31_sig(unsigned long fcr31,void __user * fault_addr,struct task_struct * tsk)762 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
763 struct task_struct *tsk)
764 {
765 int si_code = FPE_FLTUNK;
766
767 if (fcr31 & FPU_CSR_INV_X)
768 si_code = FPE_FLTINV;
769 else if (fcr31 & FPU_CSR_DIV_X)
770 si_code = FPE_FLTDIV;
771 else if (fcr31 & FPU_CSR_OVF_X)
772 si_code = FPE_FLTOVF;
773 else if (fcr31 & FPU_CSR_UDF_X)
774 si_code = FPE_FLTUND;
775 else if (fcr31 & FPU_CSR_INE_X)
776 si_code = FPE_FLTRES;
777
778 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
779 }
780
process_fpemu_return(int sig,void __user * fault_addr,unsigned long fcr31)781 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
782 {
783 int si_code;
784 struct vm_area_struct *vma;
785
786 switch (sig) {
787 case 0:
788 return 0;
789
790 case SIGFPE:
791 force_fcr31_sig(fcr31, fault_addr, current);
792 return 1;
793
794 case SIGBUS:
795 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
796 return 1;
797
798 case SIGSEGV:
799 mmap_read_lock(current->mm);
800 vma = find_vma(current->mm, (unsigned long)fault_addr);
801 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
802 si_code = SEGV_ACCERR;
803 else
804 si_code = SEGV_MAPERR;
805 mmap_read_unlock(current->mm);
806 force_sig_fault(SIGSEGV, si_code, fault_addr);
807 return 1;
808
809 default:
810 force_sig(sig);
811 return 1;
812 }
813 }
814
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)815 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
816 unsigned long old_epc, unsigned long old_ra)
817 {
818 union mips_instruction inst = { .word = opcode };
819 void __user *fault_addr;
820 unsigned long fcr31;
821 int sig;
822
823 /* If it's obviously not an FP instruction, skip it */
824 switch (inst.i_format.opcode) {
825 case cop1_op:
826 case cop1x_op:
827 case lwc1_op:
828 case ldc1_op:
829 case swc1_op:
830 case sdc1_op:
831 break;
832
833 default:
834 return -1;
835 }
836
837 /*
838 * do_ri skipped over the instruction via compute_return_epc, undo
839 * that for the FPU emulator.
840 */
841 regs->cp0_epc = old_epc;
842 regs->regs[31] = old_ra;
843
844 /* Run the emulator */
845 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
846 &fault_addr);
847
848 /*
849 * We can't allow the emulated instruction to leave any
850 * enabled Cause bits set in $fcr31.
851 */
852 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
853 current->thread.fpu.fcr31 &= ~fcr31;
854
855 /* Restore the hardware register state */
856 own_fpu(1);
857
858 /* Send a signal if required. */
859 process_fpemu_return(sig, fault_addr, fcr31);
860
861 return 0;
862 }
863
864 /*
865 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
866 */
do_fpe(struct pt_regs * regs,unsigned long fcr31)867 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
868 {
869 enum ctx_state prev_state;
870 void __user *fault_addr;
871 int sig;
872
873 prev_state = exception_enter();
874 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
875 SIGFPE) == NOTIFY_STOP)
876 goto out;
877
878 /* Clear FCSR.Cause before enabling interrupts */
879 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
880 local_irq_enable();
881
882 die_if_kernel("FP exception in kernel code", regs);
883
884 if (fcr31 & FPU_CSR_UNI_X) {
885 /*
886 * Unimplemented operation exception. If we've got the full
887 * software emulator on-board, let's use it...
888 *
889 * Force FPU to dump state into task/thread context. We're
890 * moving a lot of data here for what is probably a single
891 * instruction, but the alternative is to pre-decode the FP
892 * register operands before invoking the emulator, which seems
893 * a bit extreme for what should be an infrequent event.
894 */
895
896 /* Run the emulator */
897 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
898 &fault_addr);
899
900 /*
901 * We can't allow the emulated instruction to leave any
902 * enabled Cause bits set in $fcr31.
903 */
904 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
905 current->thread.fpu.fcr31 &= ~fcr31;
906
907 /* Restore the hardware register state */
908 own_fpu(1); /* Using the FPU again. */
909 } else {
910 sig = SIGFPE;
911 fault_addr = (void __user *) regs->cp0_epc;
912 }
913
914 /* Send a signal if required. */
915 process_fpemu_return(sig, fault_addr, fcr31);
916
917 out:
918 exception_exit(prev_state);
919 }
920
921 /*
922 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
923 * emulated more than some threshold number of instructions, force migration to
924 * a "CPU" that has FP support.
925 */
mt_ase_fp_affinity(void)926 static void mt_ase_fp_affinity(void)
927 {
928 #ifdef CONFIG_MIPS_MT_FPAFF
929 if (mt_fpemul_threshold > 0 &&
930 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
931 /*
932 * If there's no FPU present, or if the application has already
933 * restricted the allowed set to exclude any CPUs with FPUs,
934 * we'll skip the procedure.
935 */
936 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
937 cpumask_t tmask;
938
939 current->thread.user_cpus_allowed
940 = current->cpus_mask;
941 cpumask_and(&tmask, ¤t->cpus_mask,
942 &mt_fpu_cpumask);
943 set_cpus_allowed_ptr(current, &tmask);
944 set_thread_flag(TIF_FPUBOUND);
945 }
946 }
947 #endif /* CONFIG_MIPS_MT_FPAFF */
948 }
949
950 #else /* !CONFIG_MIPS_FP_SUPPORT */
951
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)952 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
953 unsigned long old_epc, unsigned long old_ra)
954 {
955 return -1;
956 }
957
958 #endif /* !CONFIG_MIPS_FP_SUPPORT */
959
do_trap_or_bp(struct pt_regs * regs,unsigned int code,int si_code,const char * str)960 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
961 const char *str)
962 {
963 char b[40];
964
965 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
966 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
967 SIGTRAP) == NOTIFY_STOP)
968 return;
969 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
970
971 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
972 SIGTRAP) == NOTIFY_STOP)
973 return;
974
975 /*
976 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
977 * insns, even for trap and break codes that indicate arithmetic
978 * failures. Weird ...
979 * But should we continue the brokenness??? --macro
980 */
981 switch (code) {
982 case BRK_OVERFLOW:
983 case BRK_DIVZERO:
984 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
985 die_if_kernel(b, regs);
986 force_sig_fault(SIGFPE,
987 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
988 (void __user *) regs->cp0_epc);
989 break;
990 case BRK_BUG:
991 die_if_kernel("Kernel bug detected", regs);
992 force_sig(SIGTRAP);
993 break;
994 case BRK_MEMU:
995 /*
996 * This breakpoint code is used by the FPU emulator to retake
997 * control of the CPU after executing the instruction from the
998 * delay slot of an emulated branch.
999 *
1000 * Terminate if exception was recognized as a delay slot return
1001 * otherwise handle as normal.
1002 */
1003 if (do_dsemulret(regs))
1004 return;
1005
1006 die_if_kernel("Math emu break/trap", regs);
1007 force_sig(SIGTRAP);
1008 break;
1009 default:
1010 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1011 die_if_kernel(b, regs);
1012 if (si_code) {
1013 force_sig_fault(SIGTRAP, si_code, NULL);
1014 } else {
1015 force_sig(SIGTRAP);
1016 }
1017 }
1018 }
1019
do_bp(struct pt_regs * regs)1020 asmlinkage void do_bp(struct pt_regs *regs)
1021 {
1022 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1023 unsigned int opcode, bcode;
1024 enum ctx_state prev_state;
1025 mm_segment_t seg;
1026
1027 seg = get_fs();
1028 if (!user_mode(regs))
1029 set_fs(KERNEL_DS);
1030
1031 prev_state = exception_enter();
1032 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1033 if (get_isa16_mode(regs->cp0_epc)) {
1034 u16 instr[2];
1035
1036 if (__get_user(instr[0], (u16 __user *)epc))
1037 goto out_sigsegv;
1038
1039 if (!cpu_has_mmips) {
1040 /* MIPS16e mode */
1041 bcode = (instr[0] >> 5) & 0x3f;
1042 } else if (mm_insn_16bit(instr[0])) {
1043 /* 16-bit microMIPS BREAK */
1044 bcode = instr[0] & 0xf;
1045 } else {
1046 /* 32-bit microMIPS BREAK */
1047 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1048 goto out_sigsegv;
1049 opcode = (instr[0] << 16) | instr[1];
1050 bcode = (opcode >> 6) & ((1 << 20) - 1);
1051 }
1052 } else {
1053 if (__get_user(opcode, (unsigned int __user *)epc))
1054 goto out_sigsegv;
1055 bcode = (opcode >> 6) & ((1 << 20) - 1);
1056 }
1057
1058 /*
1059 * There is the ancient bug in the MIPS assemblers that the break
1060 * code starts left to bit 16 instead to bit 6 in the opcode.
1061 * Gas is bug-compatible, but not always, grrr...
1062 * We handle both cases with a simple heuristics. --macro
1063 */
1064 if (bcode >= (1 << 10))
1065 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1066
1067 /*
1068 * notify the kprobe handlers, if instruction is likely to
1069 * pertain to them.
1070 */
1071 switch (bcode) {
1072 case BRK_UPROBE:
1073 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1074 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1075 goto out;
1076 else
1077 break;
1078 case BRK_UPROBE_XOL:
1079 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1080 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1081 goto out;
1082 else
1083 break;
1084 case BRK_KPROBE_BP:
1085 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1086 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1087 goto out;
1088 else
1089 break;
1090 case BRK_KPROBE_SSTEPBP:
1091 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1092 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1093 goto out;
1094 else
1095 break;
1096 default:
1097 break;
1098 }
1099
1100 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1101
1102 out:
1103 set_fs(seg);
1104 exception_exit(prev_state);
1105 return;
1106
1107 out_sigsegv:
1108 force_sig(SIGSEGV);
1109 goto out;
1110 }
1111
do_tr(struct pt_regs * regs)1112 asmlinkage void do_tr(struct pt_regs *regs)
1113 {
1114 u32 opcode, tcode = 0;
1115 enum ctx_state prev_state;
1116 u16 instr[2];
1117 mm_segment_t seg;
1118 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1119
1120 seg = get_fs();
1121 if (!user_mode(regs))
1122 set_fs(KERNEL_DS);
1123
1124 prev_state = exception_enter();
1125 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1126 if (get_isa16_mode(regs->cp0_epc)) {
1127 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1128 __get_user(instr[1], (u16 __user *)(epc + 2)))
1129 goto out_sigsegv;
1130 opcode = (instr[0] << 16) | instr[1];
1131 /* Immediate versions don't provide a code. */
1132 if (!(opcode & OPCODE))
1133 tcode = (opcode >> 12) & ((1 << 4) - 1);
1134 } else {
1135 if (__get_user(opcode, (u32 __user *)epc))
1136 goto out_sigsegv;
1137 /* Immediate versions don't provide a code. */
1138 if (!(opcode & OPCODE))
1139 tcode = (opcode >> 6) & ((1 << 10) - 1);
1140 }
1141
1142 do_trap_or_bp(regs, tcode, 0, "Trap");
1143
1144 out:
1145 set_fs(seg);
1146 exception_exit(prev_state);
1147 return;
1148
1149 out_sigsegv:
1150 force_sig(SIGSEGV);
1151 goto out;
1152 }
1153
do_ri(struct pt_regs * regs)1154 asmlinkage void do_ri(struct pt_regs *regs)
1155 {
1156 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1157 unsigned long old_epc = regs->cp0_epc;
1158 unsigned long old31 = regs->regs[31];
1159 enum ctx_state prev_state;
1160 unsigned int opcode = 0;
1161 int status = -1;
1162
1163 /*
1164 * Avoid any kernel code. Just emulate the R2 instruction
1165 * as quickly as possible.
1166 */
1167 if (mipsr2_emulation && cpu_has_mips_r6 &&
1168 likely(user_mode(regs)) &&
1169 likely(get_user(opcode, epc) >= 0)) {
1170 unsigned long fcr31 = 0;
1171
1172 status = mipsr2_decoder(regs, opcode, &fcr31);
1173 switch (status) {
1174 case 0:
1175 case SIGEMT:
1176 return;
1177 case SIGILL:
1178 goto no_r2_instr;
1179 default:
1180 process_fpemu_return(status,
1181 ¤t->thread.cp0_baduaddr,
1182 fcr31);
1183 return;
1184 }
1185 }
1186
1187 no_r2_instr:
1188
1189 prev_state = exception_enter();
1190 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1191
1192 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1193 SIGILL) == NOTIFY_STOP)
1194 goto out;
1195
1196 die_if_kernel("Reserved instruction in kernel code", regs);
1197
1198 if (unlikely(compute_return_epc(regs) < 0))
1199 goto out;
1200
1201 if (!get_isa16_mode(regs->cp0_epc)) {
1202 if (unlikely(get_user(opcode, epc) < 0))
1203 status = SIGSEGV;
1204
1205 if (!cpu_has_llsc && status < 0)
1206 status = simulate_llsc(regs, opcode);
1207
1208 if (status < 0)
1209 status = simulate_rdhwr_normal(regs, opcode);
1210
1211 if (status < 0)
1212 status = simulate_sync(regs, opcode);
1213
1214 if (status < 0)
1215 status = simulate_fp(regs, opcode, old_epc, old31);
1216
1217 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1218 if (status < 0)
1219 status = simulate_loongson3_cpucfg(regs, opcode);
1220 #endif
1221 } else if (cpu_has_mmips) {
1222 unsigned short mmop[2] = { 0 };
1223
1224 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1225 status = SIGSEGV;
1226 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1227 status = SIGSEGV;
1228 opcode = mmop[0];
1229 opcode = (opcode << 16) | mmop[1];
1230
1231 if (status < 0)
1232 status = simulate_rdhwr_mm(regs, opcode);
1233 }
1234
1235 if (status < 0)
1236 status = SIGILL;
1237
1238 if (unlikely(status > 0)) {
1239 regs->cp0_epc = old_epc; /* Undo skip-over. */
1240 regs->regs[31] = old31;
1241 force_sig(status);
1242 }
1243
1244 out:
1245 exception_exit(prev_state);
1246 }
1247
1248 /*
1249 * No lock; only written during early bootup by CPU 0.
1250 */
1251 static RAW_NOTIFIER_HEAD(cu2_chain);
1252
register_cu2_notifier(struct notifier_block * nb)1253 int __ref register_cu2_notifier(struct notifier_block *nb)
1254 {
1255 return raw_notifier_chain_register(&cu2_chain, nb);
1256 }
1257
cu2_notifier_call_chain(unsigned long val,void * v)1258 int cu2_notifier_call_chain(unsigned long val, void *v)
1259 {
1260 return raw_notifier_call_chain(&cu2_chain, val, v);
1261 }
1262
default_cu2_call(struct notifier_block * nfb,unsigned long action,void * data)1263 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1264 void *data)
1265 {
1266 struct pt_regs *regs = data;
1267
1268 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1269 "instruction", regs);
1270 force_sig(SIGILL);
1271
1272 return NOTIFY_OK;
1273 }
1274
1275 #ifdef CONFIG_MIPS_FP_SUPPORT
1276
enable_restore_fp_context(int msa)1277 static int enable_restore_fp_context(int msa)
1278 {
1279 int err, was_fpu_owner, prior_msa;
1280 bool first_fp;
1281
1282 /* Initialize context if it hasn't been used already */
1283 first_fp = init_fp_ctx(current);
1284
1285 if (first_fp) {
1286 preempt_disable();
1287 err = own_fpu_inatomic(1);
1288 if (msa && !err) {
1289 enable_msa();
1290 /*
1291 * with MSA enabled, userspace can see MSACSR
1292 * and MSA regs, but the values in them are from
1293 * other task before current task, restore them
1294 * from saved fp/msa context
1295 */
1296 write_msa_csr(current->thread.fpu.msacsr);
1297 /*
1298 * own_fpu_inatomic(1) just restore low 64bit,
1299 * fix the high 64bit
1300 */
1301 init_msa_upper();
1302 set_thread_flag(TIF_USEDMSA);
1303 set_thread_flag(TIF_MSA_CTX_LIVE);
1304 }
1305 preempt_enable();
1306 return err;
1307 }
1308
1309 /*
1310 * This task has formerly used the FP context.
1311 *
1312 * If this thread has no live MSA vector context then we can simply
1313 * restore the scalar FP context. If it has live MSA vector context
1314 * (that is, it has or may have used MSA since last performing a
1315 * function call) then we'll need to restore the vector context. This
1316 * applies even if we're currently only executing a scalar FP
1317 * instruction. This is because if we were to later execute an MSA
1318 * instruction then we'd either have to:
1319 *
1320 * - Restore the vector context & clobber any registers modified by
1321 * scalar FP instructions between now & then.
1322 *
1323 * or
1324 *
1325 * - Not restore the vector context & lose the most significant bits
1326 * of all vector registers.
1327 *
1328 * Neither of those options is acceptable. We cannot restore the least
1329 * significant bits of the registers now & only restore the most
1330 * significant bits later because the most significant bits of any
1331 * vector registers whose aliased FP register is modified now will have
1332 * been zeroed. We'd have no way to know that when restoring the vector
1333 * context & thus may load an outdated value for the most significant
1334 * bits of a vector register.
1335 */
1336 if (!msa && !thread_msa_context_live())
1337 return own_fpu(1);
1338
1339 /*
1340 * This task is using or has previously used MSA. Thus we require
1341 * that Status.FR == 1.
1342 */
1343 preempt_disable();
1344 was_fpu_owner = is_fpu_owner();
1345 err = own_fpu_inatomic(0);
1346 if (err)
1347 goto out;
1348
1349 enable_msa();
1350 write_msa_csr(current->thread.fpu.msacsr);
1351 set_thread_flag(TIF_USEDMSA);
1352
1353 /*
1354 * If this is the first time that the task is using MSA and it has
1355 * previously used scalar FP in this time slice then we already nave
1356 * FP context which we shouldn't clobber. We do however need to clear
1357 * the upper 64b of each vector register so that this task has no
1358 * opportunity to see data left behind by another.
1359 */
1360 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1361 if (!prior_msa && was_fpu_owner) {
1362 init_msa_upper();
1363
1364 goto out;
1365 }
1366
1367 if (!prior_msa) {
1368 /*
1369 * Restore the least significant 64b of each vector register
1370 * from the existing scalar FP context.
1371 */
1372 _restore_fp(current);
1373
1374 /*
1375 * The task has not formerly used MSA, so clear the upper 64b
1376 * of each vector register such that it cannot see data left
1377 * behind by another task.
1378 */
1379 init_msa_upper();
1380 } else {
1381 /* We need to restore the vector context. */
1382 restore_msa(current);
1383
1384 /* Restore the scalar FP control & status register */
1385 if (!was_fpu_owner)
1386 write_32bit_cp1_register(CP1_STATUS,
1387 current->thread.fpu.fcr31);
1388 }
1389
1390 out:
1391 preempt_enable();
1392
1393 return 0;
1394 }
1395
1396 #else /* !CONFIG_MIPS_FP_SUPPORT */
1397
enable_restore_fp_context(int msa)1398 static int enable_restore_fp_context(int msa)
1399 {
1400 return SIGILL;
1401 }
1402
1403 #endif /* CONFIG_MIPS_FP_SUPPORT */
1404
do_cpu(struct pt_regs * regs)1405 asmlinkage void do_cpu(struct pt_regs *regs)
1406 {
1407 enum ctx_state prev_state;
1408 unsigned int __user *epc;
1409 unsigned long old_epc, old31;
1410 unsigned int opcode;
1411 unsigned int cpid;
1412 int status;
1413
1414 prev_state = exception_enter();
1415 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1416
1417 if (cpid != 2)
1418 die_if_kernel("do_cpu invoked from kernel context!", regs);
1419
1420 switch (cpid) {
1421 case 0:
1422 epc = (unsigned int __user *)exception_epc(regs);
1423 old_epc = regs->cp0_epc;
1424 old31 = regs->regs[31];
1425 opcode = 0;
1426 status = -1;
1427
1428 if (unlikely(compute_return_epc(regs) < 0))
1429 break;
1430
1431 if (!get_isa16_mode(regs->cp0_epc)) {
1432 if (unlikely(get_user(opcode, epc) < 0))
1433 status = SIGSEGV;
1434
1435 if (!cpu_has_llsc && status < 0)
1436 status = simulate_llsc(regs, opcode);
1437 }
1438
1439 if (status < 0)
1440 status = SIGILL;
1441
1442 if (unlikely(status > 0)) {
1443 regs->cp0_epc = old_epc; /* Undo skip-over. */
1444 regs->regs[31] = old31;
1445 force_sig(status);
1446 }
1447
1448 break;
1449
1450 #ifdef CONFIG_MIPS_FP_SUPPORT
1451 case 3:
1452 /*
1453 * The COP3 opcode space and consequently the CP0.Status.CU3
1454 * bit and the CP0.Cause.CE=3 encoding have been removed as
1455 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1456 * up the space has been reused for COP1X instructions, that
1457 * are enabled by the CP0.Status.CU1 bit and consequently
1458 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1459 * exceptions. Some FPU-less processors that implement one
1460 * of these ISAs however use this code erroneously for COP1X
1461 * instructions. Therefore we redirect this trap to the FP
1462 * emulator too.
1463 */
1464 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1465 force_sig(SIGILL);
1466 break;
1467 }
1468 fallthrough;
1469 case 1: {
1470 void __user *fault_addr;
1471 unsigned long fcr31;
1472 int err, sig;
1473
1474 err = enable_restore_fp_context(0);
1475
1476 if (raw_cpu_has_fpu && !err)
1477 break;
1478
1479 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1480 &fault_addr);
1481
1482 /*
1483 * We can't allow the emulated instruction to leave
1484 * any enabled Cause bits set in $fcr31.
1485 */
1486 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1487 current->thread.fpu.fcr31 &= ~fcr31;
1488
1489 /* Send a signal if required. */
1490 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1491 mt_ase_fp_affinity();
1492
1493 break;
1494 }
1495 #else /* CONFIG_MIPS_FP_SUPPORT */
1496 case 1:
1497 case 3:
1498 force_sig(SIGILL);
1499 break;
1500 #endif /* CONFIG_MIPS_FP_SUPPORT */
1501
1502 case 2:
1503 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1504 break;
1505 }
1506
1507 exception_exit(prev_state);
1508 }
1509
do_msa_fpe(struct pt_regs * regs,unsigned int msacsr)1510 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1511 {
1512 enum ctx_state prev_state;
1513
1514 prev_state = exception_enter();
1515 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1516 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1517 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1518 goto out;
1519
1520 /* Clear MSACSR.Cause before enabling interrupts */
1521 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1522 local_irq_enable();
1523
1524 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1525 force_sig(SIGFPE);
1526 out:
1527 exception_exit(prev_state);
1528 }
1529
do_msa(struct pt_regs * regs)1530 asmlinkage void do_msa(struct pt_regs *regs)
1531 {
1532 enum ctx_state prev_state;
1533 int err;
1534
1535 prev_state = exception_enter();
1536
1537 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1538 force_sig(SIGILL);
1539 goto out;
1540 }
1541
1542 die_if_kernel("do_msa invoked from kernel context!", regs);
1543
1544 err = enable_restore_fp_context(1);
1545 if (err)
1546 force_sig(SIGILL);
1547 out:
1548 exception_exit(prev_state);
1549 }
1550
do_mdmx(struct pt_regs * regs)1551 asmlinkage void do_mdmx(struct pt_regs *regs)
1552 {
1553 enum ctx_state prev_state;
1554
1555 prev_state = exception_enter();
1556 force_sig(SIGILL);
1557 exception_exit(prev_state);
1558 }
1559
1560 /*
1561 * Called with interrupts disabled.
1562 */
do_watch(struct pt_regs * regs)1563 asmlinkage void do_watch(struct pt_regs *regs)
1564 {
1565 enum ctx_state prev_state;
1566
1567 prev_state = exception_enter();
1568 /*
1569 * Clear WP (bit 22) bit of cause register so we don't loop
1570 * forever.
1571 */
1572 clear_c0_cause(CAUSEF_WP);
1573
1574 /*
1575 * If the current thread has the watch registers loaded, save
1576 * their values and send SIGTRAP. Otherwise another thread
1577 * left the registers set, clear them and continue.
1578 */
1579 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1580 mips_read_watch_registers();
1581 local_irq_enable();
1582 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1583 } else {
1584 mips_clear_watch_registers();
1585 local_irq_enable();
1586 }
1587 exception_exit(prev_state);
1588 }
1589
do_mcheck(struct pt_regs * regs)1590 asmlinkage void do_mcheck(struct pt_regs *regs)
1591 {
1592 int multi_match = regs->cp0_status & ST0_TS;
1593 enum ctx_state prev_state;
1594 mm_segment_t old_fs = get_fs();
1595
1596 prev_state = exception_enter();
1597 show_regs(regs);
1598
1599 if (multi_match) {
1600 dump_tlb_regs();
1601 pr_info("\n");
1602 dump_tlb_all();
1603 }
1604
1605 if (!user_mode(regs))
1606 set_fs(KERNEL_DS);
1607
1608 show_code((unsigned int __user *) regs->cp0_epc);
1609
1610 set_fs(old_fs);
1611
1612 /*
1613 * Some chips may have other causes of machine check (e.g. SB1
1614 * graduation timer)
1615 */
1616 panic("Caught Machine Check exception - %scaused by multiple "
1617 "matching entries in the TLB.",
1618 (multi_match) ? "" : "not ");
1619 }
1620
do_mt(struct pt_regs * regs)1621 asmlinkage void do_mt(struct pt_regs *regs)
1622 {
1623 int subcode;
1624
1625 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1626 >> VPECONTROL_EXCPT_SHIFT;
1627 switch (subcode) {
1628 case 0:
1629 printk(KERN_DEBUG "Thread Underflow\n");
1630 break;
1631 case 1:
1632 printk(KERN_DEBUG "Thread Overflow\n");
1633 break;
1634 case 2:
1635 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1636 break;
1637 case 3:
1638 printk(KERN_DEBUG "Gating Storage Exception\n");
1639 break;
1640 case 4:
1641 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1642 break;
1643 case 5:
1644 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1645 break;
1646 default:
1647 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1648 subcode);
1649 break;
1650 }
1651 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1652
1653 force_sig(SIGILL);
1654 }
1655
1656
do_dsp(struct pt_regs * regs)1657 asmlinkage void do_dsp(struct pt_regs *regs)
1658 {
1659 if (cpu_has_dsp)
1660 panic("Unexpected DSP exception");
1661
1662 force_sig(SIGILL);
1663 }
1664
do_reserved(struct pt_regs * regs)1665 asmlinkage void do_reserved(struct pt_regs *regs)
1666 {
1667 /*
1668 * Game over - no way to handle this if it ever occurs. Most probably
1669 * caused by a new unknown cpu type or after another deadly
1670 * hard/software error.
1671 */
1672 show_regs(regs);
1673 panic("Caught reserved exception %ld - should not happen.",
1674 (regs->cp0_cause & 0x7f) >> 2);
1675 }
1676
1677 static int __initdata l1parity = 1;
nol1parity(char * s)1678 static int __init nol1parity(char *s)
1679 {
1680 l1parity = 0;
1681 return 1;
1682 }
1683 __setup("nol1par", nol1parity);
1684 static int __initdata l2parity = 1;
nol2parity(char * s)1685 static int __init nol2parity(char *s)
1686 {
1687 l2parity = 0;
1688 return 1;
1689 }
1690 __setup("nol2par", nol2parity);
1691
1692 /*
1693 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1694 * it different ways.
1695 */
parity_protection_init(void)1696 static inline __init void parity_protection_init(void)
1697 {
1698 #define ERRCTL_PE 0x80000000
1699 #define ERRCTL_L2P 0x00800000
1700
1701 if (mips_cm_revision() >= CM_REV_CM3) {
1702 ulong gcr_ectl, cp0_ectl;
1703
1704 /*
1705 * With CM3 systems we need to ensure that the L1 & L2
1706 * parity enables are set to the same value, since this
1707 * is presumed by the hardware engineers.
1708 *
1709 * If the user disabled either of L1 or L2 ECC checking,
1710 * disable both.
1711 */
1712 l1parity &= l2parity;
1713 l2parity &= l1parity;
1714
1715 /* Probe L1 ECC support */
1716 cp0_ectl = read_c0_ecc();
1717 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1718 back_to_back_c0_hazard();
1719 cp0_ectl = read_c0_ecc();
1720
1721 /* Probe L2 ECC support */
1722 gcr_ectl = read_gcr_err_control();
1723
1724 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1725 !(cp0_ectl & ERRCTL_PE)) {
1726 /*
1727 * One of L1 or L2 ECC checking isn't supported,
1728 * so we cannot enable either.
1729 */
1730 l1parity = l2parity = 0;
1731 }
1732
1733 /* Configure L1 ECC checking */
1734 if (l1parity)
1735 cp0_ectl |= ERRCTL_PE;
1736 else
1737 cp0_ectl &= ~ERRCTL_PE;
1738 write_c0_ecc(cp0_ectl);
1739 back_to_back_c0_hazard();
1740 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1741
1742 /* Configure L2 ECC checking */
1743 if (l2parity)
1744 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1745 else
1746 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1747 write_gcr_err_control(gcr_ectl);
1748 gcr_ectl = read_gcr_err_control();
1749 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1750 WARN_ON(!!gcr_ectl != l2parity);
1751
1752 pr_info("Cache parity protection %sabled\n",
1753 l1parity ? "en" : "dis");
1754 return;
1755 }
1756
1757 switch (current_cpu_type()) {
1758 case CPU_24K:
1759 case CPU_34K:
1760 case CPU_74K:
1761 case CPU_1004K:
1762 case CPU_1074K:
1763 case CPU_INTERAPTIV:
1764 case CPU_PROAPTIV:
1765 case CPU_P5600:
1766 case CPU_QEMU_GENERIC:
1767 case CPU_P6600:
1768 {
1769 unsigned long errctl;
1770 unsigned int l1parity_present, l2parity_present;
1771
1772 errctl = read_c0_ecc();
1773 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1774
1775 /* probe L1 parity support */
1776 write_c0_ecc(errctl | ERRCTL_PE);
1777 back_to_back_c0_hazard();
1778 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1779
1780 /* probe L2 parity support */
1781 write_c0_ecc(errctl|ERRCTL_L2P);
1782 back_to_back_c0_hazard();
1783 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1784
1785 if (l1parity_present && l2parity_present) {
1786 if (l1parity)
1787 errctl |= ERRCTL_PE;
1788 if (l1parity ^ l2parity)
1789 errctl |= ERRCTL_L2P;
1790 } else if (l1parity_present) {
1791 if (l1parity)
1792 errctl |= ERRCTL_PE;
1793 } else if (l2parity_present) {
1794 if (l2parity)
1795 errctl |= ERRCTL_L2P;
1796 } else {
1797 /* No parity available */
1798 }
1799
1800 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1801
1802 write_c0_ecc(errctl);
1803 back_to_back_c0_hazard();
1804 errctl = read_c0_ecc();
1805 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1806
1807 if (l1parity_present)
1808 printk(KERN_INFO "Cache parity protection %sabled\n",
1809 (errctl & ERRCTL_PE) ? "en" : "dis");
1810
1811 if (l2parity_present) {
1812 if (l1parity_present && l1parity)
1813 errctl ^= ERRCTL_L2P;
1814 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1815 (errctl & ERRCTL_L2P) ? "en" : "dis");
1816 }
1817 }
1818 break;
1819
1820 case CPU_5KC:
1821 case CPU_5KE:
1822 case CPU_LOONGSON32:
1823 write_c0_ecc(0x80000000);
1824 back_to_back_c0_hazard();
1825 /* Set the PE bit (bit 31) in the c0_errctl register. */
1826 printk(KERN_INFO "Cache parity protection %sabled\n",
1827 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1828 break;
1829 case CPU_20KC:
1830 case CPU_25KF:
1831 /* Clear the DE bit (bit 16) in the c0_status register. */
1832 printk(KERN_INFO "Enable cache parity protection for "
1833 "MIPS 20KC/25KF CPUs.\n");
1834 clear_c0_status(ST0_DE);
1835 break;
1836 default:
1837 break;
1838 }
1839 }
1840
cache_parity_error(void)1841 asmlinkage void cache_parity_error(void)
1842 {
1843 const int field = 2 * sizeof(unsigned long);
1844 unsigned int reg_val;
1845
1846 /* For the moment, report the problem and hang. */
1847 printk("Cache error exception:\n");
1848 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1849 reg_val = read_c0_cacheerr();
1850 printk("c0_cacheerr == %08x\n", reg_val);
1851
1852 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1853 reg_val & (1<<30) ? "secondary" : "primary",
1854 reg_val & (1<<31) ? "data" : "insn");
1855 if ((cpu_has_mips_r2_r6) &&
1856 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1857 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1858 reg_val & (1<<29) ? "ED " : "",
1859 reg_val & (1<<28) ? "ET " : "",
1860 reg_val & (1<<27) ? "ES " : "",
1861 reg_val & (1<<26) ? "EE " : "",
1862 reg_val & (1<<25) ? "EB " : "",
1863 reg_val & (1<<24) ? "EI " : "",
1864 reg_val & (1<<23) ? "E1 " : "",
1865 reg_val & (1<<22) ? "E0 " : "");
1866 } else {
1867 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1868 reg_val & (1<<29) ? "ED " : "",
1869 reg_val & (1<<28) ? "ET " : "",
1870 reg_val & (1<<26) ? "EE " : "",
1871 reg_val & (1<<25) ? "EB " : "",
1872 reg_val & (1<<24) ? "EI " : "",
1873 reg_val & (1<<23) ? "E1 " : "",
1874 reg_val & (1<<22) ? "E0 " : "");
1875 }
1876 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1877
1878 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1879 if (reg_val & (1<<22))
1880 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1881
1882 if (reg_val & (1<<23))
1883 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1884 #endif
1885
1886 panic("Can't handle the cache error!");
1887 }
1888
do_ftlb(void)1889 asmlinkage void do_ftlb(void)
1890 {
1891 const int field = 2 * sizeof(unsigned long);
1892 unsigned int reg_val;
1893
1894 /* For the moment, report the problem and hang. */
1895 if ((cpu_has_mips_r2_r6) &&
1896 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1897 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1898 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1899 read_c0_ecc());
1900 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1901 reg_val = read_c0_cacheerr();
1902 pr_err("c0_cacheerr == %08x\n", reg_val);
1903
1904 if ((reg_val & 0xc0000000) == 0xc0000000) {
1905 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1906 } else {
1907 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1908 reg_val & (1<<30) ? "secondary" : "primary",
1909 reg_val & (1<<31) ? "data" : "insn");
1910 }
1911 } else {
1912 pr_err("FTLB error exception\n");
1913 }
1914 /* Just print the cacheerr bits for now */
1915 cache_parity_error();
1916 }
1917
do_gsexc(struct pt_regs * regs,u32 diag1)1918 asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1919 {
1920 u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1921 LOONGSON_DIAG1_EXCCODE_SHIFT;
1922 enum ctx_state prev_state;
1923
1924 prev_state = exception_enter();
1925
1926 switch (exccode) {
1927 case 0x08:
1928 /* Undocumented exception, will trigger on certain
1929 * also-undocumented instructions accessible from userspace.
1930 * Processor state is not otherwise corrupted, but currently
1931 * we don't know how to proceed. Maybe there is some
1932 * undocumented control flag to enable the instructions?
1933 */
1934 force_sig(SIGILL);
1935 break;
1936
1937 default:
1938 /* None of the other exceptions, documented or not, have
1939 * further details given; none are encountered in the wild
1940 * either. Panic in case some of them turn out to be fatal.
1941 */
1942 show_regs(regs);
1943 panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1944 }
1945
1946 exception_exit(prev_state);
1947 }
1948
1949 /*
1950 * SDBBP EJTAG debug exception handler.
1951 * We skip the instruction and return to the next instruction.
1952 */
ejtag_exception_handler(struct pt_regs * regs)1953 void ejtag_exception_handler(struct pt_regs *regs)
1954 {
1955 const int field = 2 * sizeof(unsigned long);
1956 unsigned long depc, old_epc, old_ra;
1957 unsigned int debug;
1958
1959 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1960 depc = read_c0_depc();
1961 debug = read_c0_debug();
1962 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1963 if (debug & 0x80000000) {
1964 /*
1965 * In branch delay slot.
1966 * We cheat a little bit here and use EPC to calculate the
1967 * debug return address (DEPC). EPC is restored after the
1968 * calculation.
1969 */
1970 old_epc = regs->cp0_epc;
1971 old_ra = regs->regs[31];
1972 regs->cp0_epc = depc;
1973 compute_return_epc(regs);
1974 depc = regs->cp0_epc;
1975 regs->cp0_epc = old_epc;
1976 regs->regs[31] = old_ra;
1977 } else
1978 depc += 4;
1979 write_c0_depc(depc);
1980
1981 #if 0
1982 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1983 write_c0_debug(debug | 0x100);
1984 #endif
1985 }
1986
1987 /*
1988 * NMI exception handler.
1989 * No lock; only written during early bootup by CPU 0.
1990 */
1991 static RAW_NOTIFIER_HEAD(nmi_chain);
1992
register_nmi_notifier(struct notifier_block * nb)1993 int register_nmi_notifier(struct notifier_block *nb)
1994 {
1995 return raw_notifier_chain_register(&nmi_chain, nb);
1996 }
1997
nmi_exception_handler(struct pt_regs * regs)1998 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1999 {
2000 char str[100];
2001
2002 nmi_enter();
2003 raw_notifier_call_chain(&nmi_chain, 0, regs);
2004 bust_spinlocks(1);
2005 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
2006 smp_processor_id(), regs->cp0_epc);
2007 regs->cp0_epc = read_c0_errorepc();
2008 die(str, regs);
2009 nmi_exit();
2010 }
2011
2012 #define VECTORSPACING 0x100 /* for EI/VI mode */
2013
2014 unsigned long ebase;
2015 EXPORT_SYMBOL_GPL(ebase);
2016 unsigned long exception_handlers[32];
2017 unsigned long vi_handlers[64];
2018
set_except_vector(int n,void * addr)2019 void __init *set_except_vector(int n, void *addr)
2020 {
2021 unsigned long handler = (unsigned long) addr;
2022 unsigned long old_handler;
2023
2024 #ifdef CONFIG_CPU_MICROMIPS
2025 /*
2026 * Only the TLB handlers are cache aligned with an even
2027 * address. All other handlers are on an odd address and
2028 * require no modification. Otherwise, MIPS32 mode will
2029 * be entered when handling any TLB exceptions. That
2030 * would be bad...since we must stay in microMIPS mode.
2031 */
2032 if (!(handler & 0x1))
2033 handler |= 1;
2034 #endif
2035 old_handler = xchg(&exception_handlers[n], handler);
2036
2037 if (n == 0 && cpu_has_divec) {
2038 #ifdef CONFIG_CPU_MICROMIPS
2039 unsigned long jump_mask = ~((1 << 27) - 1);
2040 #else
2041 unsigned long jump_mask = ~((1 << 28) - 1);
2042 #endif
2043 u32 *buf = (u32 *)(ebase + 0x200);
2044 unsigned int k0 = 26;
2045 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2046 uasm_i_j(&buf, handler & ~jump_mask);
2047 uasm_i_nop(&buf);
2048 } else {
2049 UASM_i_LA(&buf, k0, handler);
2050 uasm_i_jr(&buf, k0);
2051 uasm_i_nop(&buf);
2052 }
2053 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2054 }
2055 return (void *)old_handler;
2056 }
2057
do_default_vi(void)2058 static void do_default_vi(void)
2059 {
2060 show_regs(get_irq_regs());
2061 panic("Caught unexpected vectored interrupt.");
2062 }
2063
set_vi_srs_handler(int n,vi_handler_t addr,int srs)2064 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2065 {
2066 unsigned long handler;
2067 unsigned long old_handler = vi_handlers[n];
2068 int srssets = current_cpu_data.srsets;
2069 u16 *h;
2070 unsigned char *b;
2071
2072 BUG_ON(!cpu_has_veic && !cpu_has_vint);
2073
2074 if (addr == NULL) {
2075 handler = (unsigned long) do_default_vi;
2076 srs = 0;
2077 } else
2078 handler = (unsigned long) addr;
2079 vi_handlers[n] = handler;
2080
2081 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2082
2083 if (srs >= srssets)
2084 panic("Shadow register set %d not supported", srs);
2085
2086 if (cpu_has_veic) {
2087 if (board_bind_eic_interrupt)
2088 board_bind_eic_interrupt(n, srs);
2089 } else if (cpu_has_vint) {
2090 /* SRSMap is only defined if shadow sets are implemented */
2091 if (srssets > 1)
2092 change_c0_srsmap(0xf << n*4, srs << n*4);
2093 }
2094
2095 if (srs == 0) {
2096 /*
2097 * If no shadow set is selected then use the default handler
2098 * that does normal register saving and standard interrupt exit
2099 */
2100 extern const u8 except_vec_vi[], except_vec_vi_lui[];
2101 extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2102 extern const u8 rollback_except_vec_vi[];
2103 const u8 *vec_start = using_rollback_handler() ?
2104 rollback_except_vec_vi : except_vec_vi;
2105 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2106 const int lui_offset = except_vec_vi_lui - vec_start + 2;
2107 const int ori_offset = except_vec_vi_ori - vec_start + 2;
2108 #else
2109 const int lui_offset = except_vec_vi_lui - vec_start;
2110 const int ori_offset = except_vec_vi_ori - vec_start;
2111 #endif
2112 const int handler_len = except_vec_vi_end - vec_start;
2113
2114 if (handler_len > VECTORSPACING) {
2115 /*
2116 * Sigh... panicing won't help as the console
2117 * is probably not configured :(
2118 */
2119 panic("VECTORSPACING too small");
2120 }
2121
2122 set_handler(((unsigned long)b - ebase), vec_start,
2123 #ifdef CONFIG_CPU_MICROMIPS
2124 (handler_len - 1));
2125 #else
2126 handler_len);
2127 #endif
2128 h = (u16 *)(b + lui_offset);
2129 *h = (handler >> 16) & 0xffff;
2130 h = (u16 *)(b + ori_offset);
2131 *h = (handler & 0xffff);
2132 local_flush_icache_range((unsigned long)b,
2133 (unsigned long)(b+handler_len));
2134 }
2135 else {
2136 /*
2137 * In other cases jump directly to the interrupt handler. It
2138 * is the handler's responsibility to save registers if required
2139 * (eg hi/lo) and return from the exception using "eret".
2140 */
2141 u32 insn;
2142
2143 h = (u16 *)b;
2144 /* j handler */
2145 #ifdef CONFIG_CPU_MICROMIPS
2146 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2147 #else
2148 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2149 #endif
2150 h[0] = (insn >> 16) & 0xffff;
2151 h[1] = insn & 0xffff;
2152 h[2] = 0;
2153 h[3] = 0;
2154 local_flush_icache_range((unsigned long)b,
2155 (unsigned long)(b+8));
2156 }
2157
2158 return (void *)old_handler;
2159 }
2160
set_vi_handler(int n,vi_handler_t addr)2161 void *set_vi_handler(int n, vi_handler_t addr)
2162 {
2163 return set_vi_srs_handler(n, addr, 0);
2164 }
2165
2166 extern void tlb_init(void);
2167
2168 /*
2169 * Timer interrupt
2170 */
2171 int cp0_compare_irq;
2172 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2173 int cp0_compare_irq_shift;
2174
2175 /*
2176 * Performance counter IRQ or -1 if shared with timer
2177 */
2178 int cp0_perfcount_irq;
2179 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2180
2181 /*
2182 * Fast debug channel IRQ or -1 if not present
2183 */
2184 int cp0_fdc_irq;
2185 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2186
2187 static int noulri;
2188
ulri_disable(char * s)2189 static int __init ulri_disable(char *s)
2190 {
2191 pr_info("Disabling ulri\n");
2192 noulri = 1;
2193
2194 return 1;
2195 }
2196 __setup("noulri", ulri_disable);
2197
2198 /* configure STATUS register */
configure_status(void)2199 static void configure_status(void)
2200 {
2201 /*
2202 * Disable coprocessors and select 32-bit or 64-bit addressing
2203 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2204 * flag that some firmware may have left set and the TS bit (for
2205 * IP27). Set XX for ISA IV code to work.
2206 */
2207 unsigned int status_set = ST0_KERNEL_CUMASK;
2208 #ifdef CONFIG_64BIT
2209 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2210 #endif
2211 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2212 status_set |= ST0_XX;
2213 if (cpu_has_dsp)
2214 status_set |= ST0_MX;
2215
2216 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2217 status_set);
2218 back_to_back_c0_hazard();
2219 }
2220
2221 unsigned int hwrena;
2222 EXPORT_SYMBOL_GPL(hwrena);
2223
2224 /* configure HWRENA register */
configure_hwrena(void)2225 static void configure_hwrena(void)
2226 {
2227 hwrena = cpu_hwrena_impl_bits;
2228
2229 if (cpu_has_mips_r2_r6)
2230 hwrena |= MIPS_HWRENA_CPUNUM |
2231 MIPS_HWRENA_SYNCISTEP |
2232 MIPS_HWRENA_CC |
2233 MIPS_HWRENA_CCRES;
2234
2235 if (!noulri && cpu_has_userlocal)
2236 hwrena |= MIPS_HWRENA_ULR;
2237
2238 if (hwrena)
2239 write_c0_hwrena(hwrena);
2240 }
2241
configure_exception_vector(void)2242 static void configure_exception_vector(void)
2243 {
2244 if (cpu_has_mips_r2_r6) {
2245 unsigned long sr = set_c0_status(ST0_BEV);
2246 /* If available, use WG to set top bits of EBASE */
2247 if (cpu_has_ebase_wg) {
2248 #ifdef CONFIG_64BIT
2249 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2250 #else
2251 write_c0_ebase(ebase | MIPS_EBASE_WG);
2252 #endif
2253 }
2254 write_c0_ebase(ebase);
2255 write_c0_status(sr);
2256 }
2257 if (cpu_has_veic || cpu_has_vint) {
2258 /* Setting vector spacing enables EI/VI mode */
2259 change_c0_intctl(0x3e0, VECTORSPACING);
2260 }
2261 if (cpu_has_divec) {
2262 if (cpu_has_mipsmt) {
2263 unsigned int vpflags = dvpe();
2264 set_c0_cause(CAUSEF_IV);
2265 evpe(vpflags);
2266 } else
2267 set_c0_cause(CAUSEF_IV);
2268 }
2269 }
2270
per_cpu_trap_init(bool is_boot_cpu)2271 void per_cpu_trap_init(bool is_boot_cpu)
2272 {
2273 unsigned int cpu = smp_processor_id();
2274
2275 configure_status();
2276 configure_hwrena();
2277
2278 configure_exception_vector();
2279
2280 /*
2281 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2282 *
2283 * o read IntCtl.IPTI to determine the timer interrupt
2284 * o read IntCtl.IPPCI to determine the performance counter interrupt
2285 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2286 */
2287 if (cpu_has_mips_r2_r6) {
2288 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2289 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2290 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2291 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2292 if (!cp0_fdc_irq)
2293 cp0_fdc_irq = -1;
2294
2295 } else {
2296 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2297 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2298 cp0_perfcount_irq = -1;
2299 cp0_fdc_irq = -1;
2300 }
2301
2302 if (cpu_has_mmid)
2303 cpu_data[cpu].asid_cache = 0;
2304 else if (!cpu_data[cpu].asid_cache)
2305 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2306
2307 mmgrab(&init_mm);
2308 current->active_mm = &init_mm;
2309 BUG_ON(current->mm);
2310 enter_lazy_tlb(&init_mm, current);
2311
2312 /* Boot CPU's cache setup in setup_arch(). */
2313 if (!is_boot_cpu)
2314 cpu_cache_init();
2315 tlb_init();
2316 TLBMISS_HANDLER_SETUP();
2317 }
2318
2319 /* Install CPU exception handler */
set_handler(unsigned long offset,const void * addr,unsigned long size)2320 void set_handler(unsigned long offset, const void *addr, unsigned long size)
2321 {
2322 #ifdef CONFIG_CPU_MICROMIPS
2323 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2324 #else
2325 memcpy((void *)(ebase + offset), addr, size);
2326 #endif
2327 local_flush_icache_range(ebase + offset, ebase + offset + size);
2328 }
2329
2330 static const char panic_null_cerr[] =
2331 "Trying to set NULL cache error exception handler\n";
2332
2333 /*
2334 * Install uncached CPU exception handler.
2335 * This is suitable only for the cache error exception which is the only
2336 * exception handler that is being run uncached.
2337 */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)2338 void set_uncached_handler(unsigned long offset, void *addr,
2339 unsigned long size)
2340 {
2341 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2342
2343 if (!addr)
2344 panic(panic_null_cerr);
2345
2346 memcpy((void *)(uncached_ebase + offset), addr, size);
2347 }
2348
2349 static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)2350 static int __init set_rdhwr_noopt(char *str)
2351 {
2352 rdhwr_noopt = 1;
2353 return 1;
2354 }
2355
2356 __setup("rdhwr_noopt", set_rdhwr_noopt);
2357
trap_init(void)2358 void __init trap_init(void)
2359 {
2360 extern char except_vec3_generic;
2361 extern char except_vec4;
2362 extern char except_vec3_r4000;
2363 unsigned long i, vec_size;
2364 phys_addr_t ebase_pa;
2365
2366 check_wait();
2367
2368 if (!cpu_has_mips_r2_r6) {
2369 ebase = CAC_BASE;
2370 ebase_pa = virt_to_phys((void *)ebase);
2371 vec_size = 0x400;
2372
2373 memblock_reserve(ebase_pa, vec_size);
2374 } else {
2375 if (cpu_has_veic || cpu_has_vint)
2376 vec_size = 0x200 + VECTORSPACING*64;
2377 else
2378 vec_size = PAGE_SIZE;
2379
2380 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2381 if (!ebase_pa)
2382 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2383 __func__, vec_size, 1 << fls(vec_size));
2384
2385 /*
2386 * Try to ensure ebase resides in KSeg0 if possible.
2387 *
2388 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2389 * hitting a poorly defined exception base for Cache Errors.
2390 * The allocation is likely to be in the low 512MB of physical,
2391 * in which case we should be able to convert to KSeg0.
2392 *
2393 * EVA is special though as it allows segments to be rearranged
2394 * and to become uncached during cache error handling.
2395 */
2396 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2397 ebase = CKSEG0ADDR(ebase_pa);
2398 else
2399 ebase = (unsigned long)phys_to_virt(ebase_pa);
2400 }
2401
2402 if (cpu_has_mmips) {
2403 unsigned int config3 = read_c0_config3();
2404
2405 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2406 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2407 else
2408 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2409 }
2410
2411 if (board_ebase_setup)
2412 board_ebase_setup();
2413 per_cpu_trap_init(true);
2414 memblock_set_bottom_up(false);
2415
2416 /*
2417 * Copy the generic exception handlers to their final destination.
2418 * This will be overridden later as suitable for a particular
2419 * configuration.
2420 */
2421 set_handler(0x180, &except_vec3_generic, 0x80);
2422
2423 /*
2424 * Setup default vectors
2425 */
2426 for (i = 0; i <= 31; i++)
2427 set_except_vector(i, handle_reserved);
2428
2429 /*
2430 * Copy the EJTAG debug exception vector handler code to it's final
2431 * destination.
2432 */
2433 if (cpu_has_ejtag && board_ejtag_handler_setup)
2434 board_ejtag_handler_setup();
2435
2436 /*
2437 * Only some CPUs have the watch exceptions.
2438 */
2439 if (cpu_has_watch)
2440 set_except_vector(EXCCODE_WATCH, handle_watch);
2441
2442 /*
2443 * Initialise interrupt handlers
2444 */
2445 if (cpu_has_veic || cpu_has_vint) {
2446 int nvec = cpu_has_veic ? 64 : 8;
2447 for (i = 0; i < nvec; i++)
2448 set_vi_handler(i, NULL);
2449 }
2450 else if (cpu_has_divec)
2451 set_handler(0x200, &except_vec4, 0x8);
2452
2453 /*
2454 * Some CPUs can enable/disable for cache parity detection, but does
2455 * it different ways.
2456 */
2457 parity_protection_init();
2458
2459 /*
2460 * The Data Bus Errors / Instruction Bus Errors are signaled
2461 * by external hardware. Therefore these two exceptions
2462 * may have board specific handlers.
2463 */
2464 if (board_be_init)
2465 board_be_init();
2466
2467 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2468 rollback_handle_int : handle_int);
2469 set_except_vector(EXCCODE_MOD, handle_tlbm);
2470 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2471 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2472
2473 set_except_vector(EXCCODE_ADEL, handle_adel);
2474 set_except_vector(EXCCODE_ADES, handle_ades);
2475
2476 set_except_vector(EXCCODE_IBE, handle_ibe);
2477 set_except_vector(EXCCODE_DBE, handle_dbe);
2478
2479 set_except_vector(EXCCODE_SYS, handle_sys);
2480 set_except_vector(EXCCODE_BP, handle_bp);
2481
2482 if (rdhwr_noopt)
2483 set_except_vector(EXCCODE_RI, handle_ri);
2484 else {
2485 if (cpu_has_vtag_icache)
2486 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2487 else if (current_cpu_type() == CPU_LOONGSON64)
2488 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2489 else
2490 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2491 }
2492
2493 set_except_vector(EXCCODE_CPU, handle_cpu);
2494 set_except_vector(EXCCODE_OV, handle_ov);
2495 set_except_vector(EXCCODE_TR, handle_tr);
2496 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2497
2498 if (board_nmi_handler_setup)
2499 board_nmi_handler_setup();
2500
2501 if (cpu_has_fpu && !cpu_has_nofpuex)
2502 set_except_vector(EXCCODE_FPE, handle_fpe);
2503
2504 if (cpu_has_ftlbparex)
2505 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2506
2507 if (cpu_has_gsexcex)
2508 set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2509
2510 if (cpu_has_rixiex) {
2511 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2512 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2513 }
2514
2515 set_except_vector(EXCCODE_MSADIS, handle_msa);
2516 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2517
2518 if (cpu_has_mcheck)
2519 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2520
2521 if (cpu_has_mipsmt)
2522 set_except_vector(EXCCODE_THREAD, handle_mt);
2523
2524 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2525
2526 if (board_cache_error_setup)
2527 board_cache_error_setup();
2528
2529 if (cpu_has_vce)
2530 /* Special exception: R4[04]00 uses also the divec space. */
2531 set_handler(0x180, &except_vec3_r4000, 0x100);
2532 else if (cpu_has_4kex)
2533 set_handler(0x180, &except_vec3_generic, 0x80);
2534 else
2535 set_handler(0x080, &except_vec3_generic, 0x80);
2536
2537 local_flush_icache_range(ebase, ebase + vec_size);
2538
2539 sort_extable(__start___dbe_table, __stop___dbe_table);
2540
2541 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2542 }
2543
trap_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2544 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2545 void *v)
2546 {
2547 switch (cmd) {
2548 case CPU_PM_ENTER_FAILED:
2549 case CPU_PM_EXIT:
2550 configure_status();
2551 configure_hwrena();
2552 configure_exception_vector();
2553
2554 /* Restore register with CPU number for TLB handlers */
2555 TLBMISS_HANDLER_RESTORE();
2556
2557 break;
2558 }
2559
2560 return NOTIFY_OK;
2561 }
2562
2563 static struct notifier_block trap_pm_notifier_block = {
2564 .notifier_call = trap_pm_notifier,
2565 };
2566
trap_pm_init(void)2567 static int __init trap_pm_init(void)
2568 {
2569 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2570 }
2571 arch_initcall(trap_pm_init);
2572