• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_SIGNAL_H
3 #define _LINUX_SCHED_SIGNAL_H
4 
5 #include <linux/rculist.h>
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/sched/jobctl.h>
9 #include <linux/sched/task.h>
10 #include <linux/cred.h>
11 #include <linux/refcount.h>
12 #include <linux/posix-timers.h>
13 #include <linux/mm_types.h>
14 #include <asm/ptrace.h>
15 #include <linux/android_kabi.h>
16 
17 /*
18  * Types defining task->signal and task->sighand and APIs using them:
19  */
20 
21 struct sighand_struct {
22     spinlock_t siglock;
23     refcount_t count;
24     wait_queue_head_t signalfd_wqh;
25     struct k_sigaction action[_NSIG];
26 };
27 
28 /*
29  * Per-process accounting stats:
30  */
31 struct pacct_struct {
32     int ac_flag;
33     long ac_exitcode;
34     unsigned long ac_mem;
35     u64 ac_utime, ac_stime;
36     unsigned long ac_minflt, ac_majflt;
37 };
38 
39 struct cpu_itimer {
40     u64 expires;
41     u64 incr;
42 };
43 
44 /*
45  * This is the atomic variant of task_cputime, which can be used for
46  * storing and updating task_cputime statistics without locking.
47  */
48 struct task_cputime_atomic {
49     atomic64_t utime;
50     atomic64_t stime;
51     atomic64_t sum_exec_runtime;
52 };
53 
54 #define INIT_CPUTIME_ATOMIC                                                                                            \
55     (struct task_cputime_atomic)                                                                                       \
56     {                                                                                                                  \
57         .utime = ATOMIC64_INIT(0), .stime = ATOMIC64_INIT(0), .sum_exec_runtime = ATOMIC64_INIT(0),                    \
58     }
59 /**
60  * struct thread_group_cputimer - thread group interval timer counts
61  * @cputime_atomic:    atomic thread group interval timers.
62  *
63  * This structure contains the version of task_cputime, above, that is
64  * used for thread group CPU timer calculations.
65  */
66 struct thread_group_cputimer {
67     struct task_cputime_atomic cputime_atomic;
68 };
69 
70 struct multiprocess_signals {
71     sigset_t signal;
72     struct hlist_node node;
73 };
74 
75 /*
76  * NOTE! "signal_struct" does not have its own
77  * locking, because a shared signal_struct always
78  * implies a shared sighand_struct, so locking
79  * sighand_struct is always a proper superset of
80  * the locking of signal_struct.
81  */
82 struct signal_struct {
83     refcount_t sigcnt;
84     atomic_t live;
85     int nr_threads;
86     struct list_head thread_head;
87 
88     wait_queue_head_t wait_chldexit; /* for wait4() */
89 
90     /* current thread group signal load-balancing target: */
91     struct task_struct *curr_target;
92 
93     /* shared signal handling: */
94     struct sigpending shared_pending;
95 
96     /* For collecting multiprocess signals during fork */
97     struct hlist_head multiprocess;
98 
99     /* thread group exit support */
100     int group_exit_code;
101     /* overloaded:
102      * - notify group_exit_task when ->count is equal to notify_count
103      * - everyone except group_exit_task is stopped during signal delivery
104      *   of fatal signals, group_exit_task processes the signal.
105      */
106     int notify_count;
107     struct task_struct *group_exit_task;
108 
109     /* thread group stop support, overloads group_exit_code too */
110     int group_stop_count;
111     unsigned int flags; /* see SIGNAL_* flags below */
112 
113     /*
114      * PR_SET_CHILD_SUBREAPER marks a process, like a service
115      * manager, to re-parent orphan (double-forking) child processes
116      * to this process instead of 'init'. The service manager is
117      * able to receive SIGCHLD signals and is able to investigate
118      * the process until it calls wait(). All children of this
119      * process will inherit a flag if they should look for a
120      * child_subreaper process at exit.
121      */
122     unsigned int is_child_subreaper : 1;
123     unsigned int has_child_subreaper : 1;
124 
125 #ifdef CONFIG_POSIX_TIMERS
126 
127     /* POSIX.1b Interval Timers */
128     int posix_timer_id;
129     struct list_head posix_timers;
130 
131     /* ITIMER_REAL timer for the process */
132     struct hrtimer real_timer;
133     ktime_t it_real_incr;
134 
135     /*
136      * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
137      * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
138      * values are defined to 0 and 1 respectively
139      */
140     struct cpu_itimer it[2];
141 
142     /*
143      * Thread group totals for process CPU timers.
144      * See thread_group_cputimer(), et al, for details.
145      */
146     struct thread_group_cputimer cputimer;
147 
148 #endif
149     /* Empty if CONFIG_POSIX_TIMERS=n */
150     struct posix_cputimers posix_cputimers;
151 
152     /* PID/PID hash table linkage. */
153     struct pid *pids[PIDTYPE_MAX];
154 
155 #ifdef CONFIG_NO_HZ_FULL
156     atomic_t tick_dep_mask;
157 #endif
158 
159     struct pid *tty_old_pgrp;
160 
161     /* boolean value for session group leader */
162     int leader;
163 
164     struct tty_struct *tty; /* NULL if no tty */
165 
166 #ifdef CONFIG_SCHED_AUTOGROUP
167     struct autogroup *autogroup;
168 #endif
169     /*
170      * Cumulative resource counters for dead threads in the group,
171      * and for reaped dead child processes forked by this group.
172      * Live threads maintain their own counters and add to these
173      * in __exit_signal, except for the group leader.
174      */
175     seqlock_t stats_lock;
176     u64 utime, stime, cutime, cstime;
177     u64 gtime;
178     u64 cgtime;
179     struct prev_cputime prev_cputime;
180     unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
181     unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
182     unsigned long inblock, oublock, cinblock, coublock;
183     unsigned long maxrss, cmaxrss;
184     struct task_io_accounting ioac;
185 
186     /*
187      * Cumulative ns of schedule CPU time fo dead threads in the
188      * group, not including a zombie group leader, (This only differs
189      * from jiffies_to_ns(utime + stime) if sched_clock uses something
190      * other than jiffies.)
191      */
192     unsigned long long sum_sched_runtime;
193 
194     /*
195      * We don't bother to synchronize most readers of this at all,
196      * because there is no reader checking a limit that actually needs
197      * to get both rlim_cur and rlim_max atomically, and either one
198      * alone is a single word that can safely be read normally.
199      * getrlimit/setrlimit use task_lock(current->group_leader) to
200      * protect this instead of the siglock, because they really
201      * have no need to disable irqs.
202      */
203     struct rlimit rlim[RLIM_NLIMITS];
204 
205 #ifdef CONFIG_BSD_PROCESS_ACCT
206     struct pacct_struct pacct; /* per-process accounting information */
207 #endif
208 #ifdef CONFIG_TASKSTATS
209     struct taskstats *stats;
210 #endif
211 #ifdef CONFIG_AUDIT
212     unsigned audit_tty;
213     struct tty_audit_buf *tty_audit_buf;
214 #endif
215 
216     /*
217      * Thread is the potential origin of an oom condition; kill first on
218      * oom
219      */
220     bool oom_flag_origin;
221     short oom_score_adj;      /* OOM kill score adjustment */
222     short oom_score_adj_min;  /* OOM kill score adjustment min value.
223                                * Only settable by CAP_SYS_RESOURCE. */
224     struct mm_struct *oom_mm; /* recorded mm when the thread group got
225                                * killed by the oom killer */
226 
227     struct mutex cred_guard_mutex;        /* guard against foreign influences on
228                                            * credential calculations
229                                            * (notably. ptrace)
230                                            * Deprecated do not use in new code.
231                                            * Use exec_update_lock instead.
232                                            */
233     struct rw_semaphore exec_update_lock; /* Held while task_struct is
234                                            * being updated during exec,
235                                            * and may have inconsistent
236                                            * permissions.
237                                            */
238 } __randomize_layout;
239 
240 /*
241  * Bits in flags field of signal_struct.
242  */
243 #define SIGNAL_STOP_STOPPED 0x00000001   /* job control stop in effect */
244 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
245 #define SIGNAL_GROUP_EXIT 0x00000004     /* group exit in progress */
246 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
247 /*
248  * Pending notifications to parent.
249  */
250 #define SIGNAL_CLD_STOPPED 0x00000010
251 #define SIGNAL_CLD_CONTINUED 0x00000020
252 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED | SIGNAL_CLD_CONTINUED)
253 
254 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
255 
256 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | SIGNAL_STOP_CONTINUED)
257 
signal_set_stop_flags(struct signal_struct * sig,unsigned int flags)258 static inline void signal_set_stop_flags(struct signal_struct *sig, unsigned int flags)
259 {
260     WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP));
261     sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
262 }
263 
264 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)265 static inline int signal_group_exit(const struct signal_struct *sig)
266 {
267     return (sig->flags & SIGNAL_GROUP_EXIT) || (sig->group_exit_task != NULL);
268 }
269 
270 extern void flush_signals(struct task_struct *);
271 extern void ignore_signals(struct task_struct *);
272 extern void flush_signal_handlers(struct task_struct *, int force_default);
273 extern int dequeue_signal(struct task_struct *task, sigset_t *mask, kernel_siginfo_t *info);
274 
kernel_dequeue_signal(void)275 static inline int kernel_dequeue_signal(void)
276 {
277     struct task_struct *task = current;
278     kernel_siginfo_t _info;
279     int ret;
280 
281     spin_lock_irq(&task->sighand->siglock);
282     ret = dequeue_signal(task, &task->blocked, &_info);
283     spin_unlock_irq(&task->sighand->siglock);
284 
285     return ret;
286 }
287 
kernel_signal_stop(void)288 static inline void kernel_signal_stop(void)
289 {
290     spin_lock_irq(&current->sighand->siglock);
291     if (current->jobctl & JOBCTL_STOP_DEQUEUED) {
292         set_special_state(TASK_STOPPED);
293     }
294     spin_unlock_irq(&current->sighand->siglock);
295 
296     schedule();
297 }
298 #ifdef __ARCH_SI_TRAPNO
299 #define ___ARCH_SI_TRAPNO(_a1) (, _a1)
300 #else
301 #define ___ARCH_SI_TRAPNO(_a1)
302 #endif
303 #ifdef __ia64__
304 #define ___ARCH_SI_IA64(_a1, _a2, _a3) (, _a1, _a2, _a3)
305 #else
306 #define ___ARCH_SI_IA64(_a1, _a2, _a3)
307 #endif
308 
309 int force_sig_fault_to_task(int sig, int code,
310                             void __user *addr ___ARCH_SI_TRAPNO(int trapno)
311                                 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr),
312                             struct task_struct *t);
313 int force_sig_fault(int sig, int code,
314                     void __user *addr ___ARCH_SI_TRAPNO(int trapno)
315                         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
316 int send_sig_fault(int sig, int code,
317                    void __user *addr ___ARCH_SI_TRAPNO(int trapno)
318                         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr),
319                    struct task_struct *t);
320 
321 int force_sig_mceerr(int code, void __user *, short);
322 int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
323 
324 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
325 int force_sig_pkuerr(void __user *addr, u32 pkey);
326 
327 int force_sig_ptrace_errno_trap(int errno, void __user *addr);
328 
329 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
330 extern void force_sigsegv(int sig);
331 extern int force_sig_info(struct kernel_siginfo *);
332 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
333 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
334 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, const struct cred *);
335 extern int kill_pgrp(struct pid *pid, int sig, int priv);
336 extern int kill_pid(struct pid *pid, int sig, int priv);
337 extern __must_check bool do_notify_parent(struct task_struct *, int);
338 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
339 extern void force_sig(int);
340 extern int send_sig(int, struct task_struct *, int);
341 extern int zap_other_threads(struct task_struct *p);
342 extern struct sigqueue *sigqueue_alloc(void);
343 extern void sigqueue_free(struct sigqueue *);
344 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
345 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
346 
restart_syscall(void)347 static inline int restart_syscall(void)
348 {
349     set_tsk_thread_flag(current, TIF_SIGPENDING);
350     return -ERESTARTNOINTR;
351 }
352 
task_sigpending(struct task_struct * p)353 static inline int task_sigpending(struct task_struct *p)
354 {
355     return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
356 }
357 
signal_pending(struct task_struct * p)358 static inline int signal_pending(struct task_struct *p)
359 {
360     /*
361      * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
362      * behavior in terms of ensuring that we break out of wait loops
363      * so that notify signal callbacks can be processed.
364      */
365     if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL))) {
366         return 1;
367     }
368 
369     return task_sigpending(p);
370 }
371 
__fatal_signal_pending(struct task_struct * p)372 static inline int __fatal_signal_pending(struct task_struct *p)
373 {
374     return unlikely(sigismember(&p->pending.signal, SIGKILL));
375 }
376 
fatal_signal_pending(struct task_struct * p)377 static inline int fatal_signal_pending(struct task_struct *p)
378 {
379     return task_sigpending(p) && __fatal_signal_pending(p);
380 }
381 
signal_pending_state(long state,struct task_struct * p)382 static inline int signal_pending_state(long state, struct task_struct *p)
383 {
384     if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) {
385         return 0;
386     }
387     if (!signal_pending(p)) {
388         return 0;
389     }
390 
391     return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
392 }
393 
394 /*
395  * This should only be used in fault handlers to decide whether we
396  * should stop the current fault routine to handle the signals
397  * instead, especially with the case where we've got interrupted with
398  * a VM_FAULT_RETRY.
399  */
fault_signal_pending(vm_fault_t fault_flags,struct pt_regs * regs)400 static inline bool fault_signal_pending(vm_fault_t fault_flags, struct pt_regs *regs)
401 {
402     return unlikely((fault_flags & VM_FAULT_RETRY) &&
403                     (fatal_signal_pending(current) || (user_mode(regs) && signal_pending(current))));
404 }
405 
406 /*
407  * Reevaluate whether the task has signals pending delivery.
408  * Wake the task if so.
409  * This is required every time the blocked sigset_t changes.
410  * callers must hold sighand->siglock.
411  */
412 extern void recalc_sigpending_and_wake(struct task_struct *t);
413 extern void recalc_sigpending(void);
414 extern void calculate_sigpending(void);
415 
416 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
417 
signal_wake_up(struct task_struct * t,bool resume)418 static inline void signal_wake_up(struct task_struct *t, bool resume)
419 {
420     signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
421 }
ptrace_signal_wake_up(struct task_struct * t,bool resume)422 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
423 {
424     signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
425 }
426 
427 void task_join_group_stop(struct task_struct *task);
428 
429 #ifdef TIF_RESTORE_SIGMASK
430 /*
431  * Legacy restore_sigmask accessors.  These are inefficient on
432  * SMP architectures because they require atomic operations.
433  */
434 
435 /**
436  * set_restore_sigmask() - make sure saved_sigmask processing gets done
437  *
438  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
439  * will run before returning to user mode, to process the flag.  For
440  * all callers, TIF_SIGPENDING is already set or it's no harm to set
441  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
442  * arch code will notice on return to user mode, in case those bits
443  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
444  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
445  */
set_restore_sigmask(void)446 static inline void set_restore_sigmask(void)
447 {
448     set_thread_flag(TIF_RESTORE_SIGMASK);
449 }
450 
clear_tsk_restore_sigmask(struct task_struct * task)451 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
452 {
453     clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
454 }
455 
clear_restore_sigmask(void)456 static inline void clear_restore_sigmask(void)
457 {
458     clear_thread_flag(TIF_RESTORE_SIGMASK);
459 }
test_tsk_restore_sigmask(struct task_struct * task)460 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
461 {
462     return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
463 }
test_restore_sigmask(void)464 static inline bool test_restore_sigmask(void)
465 {
466     return test_thread_flag(TIF_RESTORE_SIGMASK);
467 }
test_and_clear_restore_sigmask(void)468 static inline bool test_and_clear_restore_sigmask(void)
469 {
470     return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
471 }
472 
473 #else /* TIF_RESTORE_SIGMASK */
474 
475 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
set_restore_sigmask(void)476 static inline void set_restore_sigmask(void)
477 {
478     current->restore_sigmask = true;
479 }
clear_tsk_restore_sigmask(struct task_struct * task)480 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
481 {
482     task->restore_sigmask = false;
483 }
clear_restore_sigmask(void)484 static inline void clear_restore_sigmask(void)
485 {
486     current->restore_sigmask = false;
487 }
test_restore_sigmask(void)488 static inline bool test_restore_sigmask(void)
489 {
490     return current->restore_sigmask;
491 }
test_tsk_restore_sigmask(struct task_struct * task)492 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
493 {
494     return task->restore_sigmask;
495 }
test_and_clear_restore_sigmask(void)496 static inline bool test_and_clear_restore_sigmask(void)
497 {
498     if (!current->restore_sigmask) {
499         return false;
500     }
501     current->restore_sigmask = false;
502     return true;
503 }
504 #endif
505 
restore_saved_sigmask(void)506 static inline void restore_saved_sigmask(void)
507 {
508     if (test_and_clear_restore_sigmask()) {
509         __set_current_blocked(&current->saved_sigmask);
510     }
511 }
512 
513 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
514 
restore_saved_sigmask_unless(bool interrupted)515 static inline void restore_saved_sigmask_unless(bool interrupted)
516 {
517     if (interrupted) {
518         WARN_ON(!signal_pending(current));
519     } else {
520         restore_saved_sigmask();
521     }
522 }
523 
sigmask_to_save(void)524 static inline sigset_t *sigmask_to_save(void)
525 {
526     sigset_t *res = &current->blocked;
527     if (unlikely(test_restore_sigmask())) {
528         res = &current->saved_sigmask;
529     }
530     return res;
531 }
532 
kill_cad_pid(int sig,int priv)533 static inline int kill_cad_pid(int sig, int priv)
534 {
535     return kill_pid(cad_pid, sig, priv);
536 }
537 
538 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
539 #define SEND_SIG_NOINFO ((struct kernel_siginfo *)0)
540 #define SEND_SIG_PRIV ((struct kernel_siginfo *)1)
541 
__on_sig_stack(unsigned long sp)542 static inline int __on_sig_stack(unsigned long sp)
543 {
544 #ifdef CONFIG_STACK_GROWSUP
545     return sp >= current->sas_ss_sp && sp - current->sas_ss_sp < current->sas_ss_size;
546 #else
547     return sp > current->sas_ss_sp && sp - current->sas_ss_sp <= current->sas_ss_size;
548 #endif
549 }
550 
551 /*
552  * True if we are on the alternate signal stack.
553  */
on_sig_stack(unsigned long sp)554 static inline int on_sig_stack(unsigned long sp)
555 {
556     /*
557      * If the signal stack is SS_AUTODISARM then, by construction, we
558      * can't be on the signal stack unless user code deliberately set
559      * SS_AUTODISARM when we were already on it.
560      *
561      * This improves reliability: if user state gets corrupted such that
562      * the stack pointer points very close to the end of the signal stack,
563      * then this check will enable the signal to be handled anyway.
564      */
565     if (current->sas_ss_flags & SS_AUTODISARM) {
566         return 0;
567     }
568 
569     return __on_sig_stack(sp);
570 }
571 
sas_ss_flags(unsigned long sp)572 static inline int sas_ss_flags(unsigned long sp)
573 {
574     if (!current->sas_ss_size) {
575         return SS_DISABLE;
576     }
577 
578     return on_sig_stack(sp) ? SS_ONSTACK : 0;
579 }
580 
sas_ss_reset(struct task_struct * p)581 static inline void sas_ss_reset(struct task_struct *p)
582 {
583     p->sas_ss_sp = 0;
584     p->sas_ss_size = 0;
585     p->sas_ss_flags = SS_DISABLE;
586 }
587 
sigsp(unsigned long sp,struct ksignal * ksig)588 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
589 {
590     if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && !sas_ss_flags(sp))
591 #ifdef CONFIG_STACK_GROWSUP
592         return current->sas_ss_sp;
593 #else
594         return current->sas_ss_sp + current->sas_ss_size;
595 #endif
596     return sp;
597 }
598 
599 extern void __cleanup_sighand(struct sighand_struct *);
600 extern void flush_itimer_signals(void);
601 
602 #define tasklist_empty() list_empty(&init_task.tasks)
603 
604 #define next_task(p) list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
605 
606 #define for_each_process(p) for ((p) = &init_task; ((p) = next_task(p)) != &init_task;)
607 
608 extern bool current_is_single_threaded(void);
609 
610 /*
611  * Careful: do_each_thread/while_each_thread is a double loop so
612  *          'break' will not work as expected - use goto instead.
613  */
614 #define do_each_thread(g, t)                                                                                           \
615     for ((g) = (t) = &init_task; ((g) = (t) = next_task(g)) != &init_task;)                                            \
616         do
617 
618 #define while_each_thread(g, t) while (((t) = next_thread(t)) != (g))
619 
620 #define _for_each_thread(signal, t) list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
621 
622 #define for_each_thread(p, t) _for_each_thread((p)->signal, t)
623 
624 /* Careful: this is a double loop, 'break' won't work as expected. */
625 #define for_each_process_thread(p, t) for_each_process(p) for_each_thread(p, t)
626 
627 typedef int (*proc_visitor)(struct task_struct *p, void *data);
628 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
629 
task_pid_type(struct task_struct * task,enum pid_type type)630 static inline struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
631 {
632     struct pid *pid;
633     if (type == PIDTYPE_PID) {
634         pid = task_pid(task);
635     } else {
636         pid = task->signal->pids[type];
637     }
638     return pid;
639 }
640 
task_tgid(struct task_struct * task)641 static inline struct pid *task_tgid(struct task_struct *task)
642 {
643     return task->signal->pids[PIDTYPE_TGID];
644 }
645 
646 /*
647  * Without tasklist or RCU lock it is not safe to dereference
648  * the result of task_pgrp/task_session even if task == current,
649  * we can race with another thread doing sys_setsid/sys_setpgid.
650  */
task_pgrp(struct task_struct * task)651 static inline struct pid *task_pgrp(struct task_struct *task)
652 {
653     return task->signal->pids[PIDTYPE_PGID];
654 }
655 
task_session(struct task_struct * task)656 static inline struct pid *task_session(struct task_struct *task)
657 {
658     return task->signal->pids[PIDTYPE_SID];
659 }
660 
get_nr_threads(struct task_struct * task)661 static inline int get_nr_threads(struct task_struct *task)
662 {
663     return task->signal->nr_threads;
664 }
665 
thread_group_leader(struct task_struct * p)666 static inline bool thread_group_leader(struct task_struct *p)
667 {
668     return p->exit_signal >= 0;
669 }
670 
same_thread_group(struct task_struct * p1,struct task_struct * p2)671 static inline bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
672 {
673     return p1->signal == p2->signal;
674 }
675 
next_thread(const struct task_struct * p)676 static inline struct task_struct *next_thread(const struct task_struct *p)
677 {
678     return list_entry_rcu(p->thread_group.next, struct task_struct, thread_group);
679 }
680 
thread_group_empty(struct task_struct * p)681 static inline int thread_group_empty(struct task_struct *p)
682 {
683     return list_empty(&p->thread_group);
684 }
685 
686 #define delay_group_leader(p) (thread_group_leader(p) && !thread_group_empty(p))
687 
688 extern bool thread_group_exited(struct pid *pid);
689 
690 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, unsigned long *flags);
691 
lock_task_sighand(struct task_struct * task,unsigned long * flags)692 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, unsigned long *flags)
693 {
694     struct sighand_struct *ret;
695 
696     ret = __lock_task_sighand(task, flags);
697     (void)__cond_lock(&task->sighand->siglock, ret);
698     return ret;
699 }
700 
unlock_task_sighand(struct task_struct * task,unsigned long * flags)701 static inline void unlock_task_sighand(struct task_struct *task, unsigned long *flags)
702 {
703     spin_unlock_irqrestore(&task->sighand->siglock, *flags);
704 }
705 
task_rlimit(const struct task_struct * task,unsigned int limit)706 static inline unsigned long task_rlimit(const struct task_struct *task, unsigned int limit)
707 {
708     return READ_ONCE(task->signal->rlim[limit].rlim_cur);
709 }
710 
task_rlimit_max(const struct task_struct * task,unsigned int limit)711 static inline unsigned long task_rlimit_max(const struct task_struct *task, unsigned int limit)
712 {
713     return READ_ONCE(task->signal->rlim[limit].rlim_max);
714 }
715 
rlimit(unsigned int limit)716 static inline unsigned long rlimit(unsigned int limit)
717 {
718     return task_rlimit(current, limit);
719 }
720 
rlimit_max(unsigned int limit)721 static inline unsigned long rlimit_max(unsigned int limit)
722 {
723     return task_rlimit_max(current, limit);
724 }
725 
726 #endif /* _LINUX_SCHED_SIGNAL_H */
727