1 /*
2 * Copyright 2010 Marek Olšák <maraeo@gmail.com>
3 * Copyright 2016 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "slab.h"
25 #include "macros.h"
26 #include "u_atomic.h"
27 #include <stdint.h>
28 #include <stdbool.h>
29 #include <string.h>
30
31 #define SLAB_MAGIC_ALLOCATED 0xcafe4321
32 #define SLAB_MAGIC_FREE 0x7ee01234
33
34 #ifndef NDEBUG
35 #define SET_MAGIC(element, value) (element)->magic = (value)
36 #define CHECK_MAGIC(element, value) assert((element)->magic == (value))
37 #else
38 #define SET_MAGIC(element, value)
39 #define CHECK_MAGIC(element, value)
40 #endif
41
42 /* One array element within a big buffer. */
43 struct slab_element_header {
44 /* The next element in the free or migrated list. */
45 struct slab_element_header *next;
46
47 /* This is either
48 * - a pointer to the child pool to which this element belongs, or
49 * - a pointer to the orphaned page of the element, with the least
50 * significant bit set to 1.
51 */
52 intptr_t owner;
53
54 #ifndef NDEBUG
55 intptr_t magic;
56 #endif
57 };
58
59 /* The page is an array of allocations in one block. */
60 struct slab_page_header {
61 union {
62 /* Next page in the same child pool. */
63 struct slab_page_header *next;
64
65 /* Number of remaining, non-freed elements (for orphaned pages). */
66 unsigned num_remaining;
67 } u;
68 /* Memory after the last member is dedicated to the page itself.
69 * The allocated size is always larger than this structure.
70 */
71 };
72
73
74 static struct slab_element_header *
slab_get_element(struct slab_parent_pool * parent,struct slab_page_header * page,unsigned index)75 slab_get_element(struct slab_parent_pool *parent,
76 struct slab_page_header *page, unsigned index)
77 {
78 return (struct slab_element_header*)
79 ((uint8_t*)&page[1] + (parent->element_size * index));
80 }
81
82 /* The given object/element belongs to an orphaned page (i.e. the owning child
83 * pool has been destroyed). Mark the element as freed and free the whole page
84 * when no elements are left in it.
85 */
86 static void
slab_free_orphaned(struct slab_element_header * elt)87 slab_free_orphaned(struct slab_element_header *elt)
88 {
89 struct slab_page_header *page;
90
91 assert(elt->owner & 1);
92
93 page = (struct slab_page_header *)(elt->owner & ~(intptr_t)1);
94 if (!p_atomic_dec_return(&page->u.num_remaining))
95 free(page);
96 }
97
98 /**
99 * Create a parent pool for the allocation of same-sized objects.
100 *
101 * \param item_size Size of one object.
102 * \param num_items Number of objects to allocate at once.
103 */
104 void
slab_create_parent(struct slab_parent_pool * parent,unsigned item_size,unsigned num_items)105 slab_create_parent(struct slab_parent_pool *parent,
106 unsigned item_size,
107 unsigned num_items)
108 {
109 simple_mtx_init(&parent->mutex, mtx_plain);
110 parent->element_size = ALIGN_POT(sizeof(struct slab_element_header) + item_size,
111 sizeof(intptr_t));
112 parent->num_elements = num_items;
113 parent->item_size = item_size;
114 }
115
116 void
slab_destroy_parent(struct slab_parent_pool * parent)117 slab_destroy_parent(struct slab_parent_pool *parent)
118 {
119 simple_mtx_destroy(&parent->mutex);
120 }
121
122 /**
123 * Create a child pool linked to the given parent.
124 */
slab_create_child(struct slab_child_pool * pool,struct slab_parent_pool * parent)125 void slab_create_child(struct slab_child_pool *pool,
126 struct slab_parent_pool *parent)
127 {
128 pool->parent = parent;
129 pool->pages = NULL;
130 pool->free = NULL;
131 pool->migrated = NULL;
132 }
133
134 /**
135 * Destroy the child pool.
136 *
137 * Pages associated to the pool will be orphaned. They are eventually freed
138 * when all objects in them are freed.
139 */
slab_destroy_child(struct slab_child_pool * pool)140 void slab_destroy_child(struct slab_child_pool *pool)
141 {
142 if (!pool->parent)
143 return; /* the slab probably wasn't even created */
144
145 simple_mtx_lock(&pool->parent->mutex);
146
147 while (pool->pages) {
148 struct slab_page_header *page = pool->pages;
149 pool->pages = page->u.next;
150 p_atomic_set(&page->u.num_remaining, pool->parent->num_elements);
151
152 for (unsigned i = 0; i < pool->parent->num_elements; ++i) {
153 struct slab_element_header *elt = slab_get_element(pool->parent, page, i);
154 p_atomic_set(&elt->owner, (intptr_t)page | 1);
155 }
156 }
157
158 while (pool->migrated) {
159 struct slab_element_header *elt = pool->migrated;
160 pool->migrated = elt->next;
161 slab_free_orphaned(elt);
162 }
163
164 simple_mtx_unlock(&pool->parent->mutex);
165
166 while (pool->free) {
167 struct slab_element_header *elt = pool->free;
168 pool->free = elt->next;
169 slab_free_orphaned(elt);
170 }
171
172 /* Guard against use-after-free. */
173 pool->parent = NULL;
174 }
175
176 static bool
slab_add_new_page(struct slab_child_pool * pool)177 slab_add_new_page(struct slab_child_pool *pool)
178 {
179 struct slab_page_header *page = malloc(sizeof(struct slab_page_header) +
180 pool->parent->num_elements * pool->parent->element_size);
181
182 if (!page)
183 return false;
184
185 for (unsigned i = 0; i < pool->parent->num_elements; ++i) {
186 struct slab_element_header *elt = slab_get_element(pool->parent, page, i);
187 elt->owner = (intptr_t)pool;
188 assert(!(elt->owner & 1));
189
190 elt->next = pool->free;
191 pool->free = elt;
192 SET_MAGIC(elt, SLAB_MAGIC_FREE);
193 }
194
195 page->u.next = pool->pages;
196 pool->pages = page;
197
198 return true;
199 }
200
201 /**
202 * Allocate an object from the child pool. Single-threaded (i.e. the caller
203 * must ensure that no operation happens on the same child pool in another
204 * thread).
205 */
206 void *
slab_alloc(struct slab_child_pool * pool)207 slab_alloc(struct slab_child_pool *pool)
208 {
209 struct slab_element_header *elt;
210
211 if (!pool->free) {
212 /* First, collect elements that belong to us but were freed from a
213 * different child pool.
214 */
215 simple_mtx_lock(&pool->parent->mutex);
216 pool->free = pool->migrated;
217 pool->migrated = NULL;
218 simple_mtx_unlock(&pool->parent->mutex);
219
220 /* Now allocate a new page. */
221 if (!pool->free && !slab_add_new_page(pool))
222 return NULL;
223 }
224
225 elt = pool->free;
226 pool->free = elt->next;
227
228 CHECK_MAGIC(elt, SLAB_MAGIC_FREE);
229 SET_MAGIC(elt, SLAB_MAGIC_ALLOCATED);
230
231 return &elt[1];
232 }
233
234 /**
235 * Same as slab_alloc but memset the returned object to 0.
236 */
237 void *
slab_zalloc(struct slab_child_pool * pool)238 slab_zalloc(struct slab_child_pool *pool)
239 {
240 void *r = slab_alloc(pool);
241 if (r)
242 memset(r, 0, pool->parent->item_size);
243 return r;
244 }
245
246 /**
247 * Free an object allocated from the slab. Single-threaded (i.e. the caller
248 * must ensure that no operation happens on the same child pool in another
249 * thread).
250 *
251 * Freeing an object in a different child pool from the one where it was
252 * allocated is allowed, as long the pool belong to the same parent. No
253 * additional locking is required in this case.
254 */
slab_free(struct slab_child_pool * pool,void * ptr)255 void slab_free(struct slab_child_pool *pool, void *ptr)
256 {
257 struct slab_element_header *elt = ((struct slab_element_header*)ptr - 1);
258 intptr_t owner_int;
259
260 CHECK_MAGIC(elt, SLAB_MAGIC_ALLOCATED);
261 SET_MAGIC(elt, SLAB_MAGIC_FREE);
262
263 if (p_atomic_read(&elt->owner) == (intptr_t)pool) {
264 /* This is the simple case: The caller guarantees that we can safely
265 * access the free list.
266 */
267 elt->next = pool->free;
268 pool->free = elt;
269 return;
270 }
271
272 /* The slow case: migration or an orphaned page. */
273 if (pool->parent)
274 simple_mtx_lock(&pool->parent->mutex);
275
276 /* Note: we _must_ re-read elt->owner here because the owning child pool
277 * may have been destroyed by another thread in the meantime.
278 */
279 owner_int = p_atomic_read(&elt->owner);
280
281 if (!(owner_int & 1)) {
282 struct slab_child_pool *owner = (struct slab_child_pool *)owner_int;
283 elt->next = owner->migrated;
284 owner->migrated = elt;
285 if (pool->parent)
286 simple_mtx_unlock(&pool->parent->mutex);
287 } else {
288 if (pool->parent)
289 simple_mtx_unlock(&pool->parent->mutex);
290
291 slab_free_orphaned(elt);
292 }
293 }
294
295 /**
296 * Allocate an object from the slab. Single-threaded (no mutex).
297 */
298 void *
slab_alloc_st(struct slab_mempool * mempool)299 slab_alloc_st(struct slab_mempool *mempool)
300 {
301 return slab_alloc(&mempool->child);
302 }
303
304 /**
305 * Free an object allocated from the slab. Single-threaded (no mutex).
306 */
307 void
slab_free_st(struct slab_mempool * mempool,void * ptr)308 slab_free_st(struct slab_mempool *mempool, void *ptr)
309 {
310 slab_free(&mempool->child, ptr);
311 }
312
313 void
slab_destroy(struct slab_mempool * mempool)314 slab_destroy(struct slab_mempool *mempool)
315 {
316 slab_destroy_child(&mempool->child);
317 slab_destroy_parent(&mempool->parent);
318 }
319
320 /**
321 * Create an allocator for same-sized objects.
322 *
323 * \param item_size Size of one object.
324 * \param num_items Number of objects to allocate at once.
325 */
326 void
slab_create(struct slab_mempool * mempool,unsigned item_size,unsigned num_items)327 slab_create(struct slab_mempool *mempool,
328 unsigned item_size,
329 unsigned num_items)
330 {
331 slab_create_parent(&mempool->parent, item_size, num_items);
332 slab_create_child(&mempool->child, &mempool->parent);
333 }
334