• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG-4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #ifndef AVCODEC_H264DEC_H
29 #define AVCODEC_H264DEC_H
30 
31 #include "libavutil/buffer.h"
32 #include "libavutil/intreadwrite.h"
33 #include "libavutil/mem_internal.h"
34 #include "libavutil/thread.h"
35 
36 #include "cabac.h"
37 #include "error_resilience.h"
38 #include "h264_parse.h"
39 #include "h264_ps.h"
40 #include "h264_sei.h"
41 #include "h2645_parse.h"
42 #include "h264chroma.h"
43 #include "h264dsp.h"
44 #include "h264pred.h"
45 #include "h264qpel.h"
46 #include "internal.h"
47 #include "mpegutils.h"
48 #include "parser.h"
49 #include "qpeldsp.h"
50 #include "rectangle.h"
51 #include "videodsp.h"
52 
53 #define H264_MAX_PICTURE_COUNT 36
54 
55 #define MAX_MMCO_COUNT         66
56 
57 #define MAX_DELAYED_PIC_COUNT  16
58 
59 /* Compiling in interlaced support reduces the speed
60  * of progressive decoding by about 2%. */
61 #define ALLOW_INTERLACE
62 
63 #define FMO 0
64 
65 /**
66  * The maximum number of slices supported by the decoder.
67  * must be a power of 2
68  */
69 #define MAX_SLICES 32
70 
71 #ifdef ALLOW_INTERLACE
72 #define MB_MBAFF(h)    (h)->mb_mbaff
73 #define MB_FIELD(sl)  (sl)->mb_field_decoding_flag
74 #define FRAME_MBAFF(h) (h)->mb_aff_frame
75 #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
76 #define LEFT_MBS 2
77 #define LTOP     0
78 #define LBOT     1
79 #define LEFT(i)  (i)
80 #else
81 #define MB_MBAFF(h)      0
82 #define MB_FIELD(sl)     0
83 #define FRAME_MBAFF(h)   0
84 #define FIELD_PICTURE(h) 0
85 #undef  IS_INTERLACED
86 #define IS_INTERLACED(mb_type) 0
87 #define LEFT_MBS 1
88 #define LTOP     0
89 #define LBOT     0
90 #define LEFT(i)  0
91 #endif
92 #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
93 
94 #ifndef CABAC
95 #define CABAC(h) (h)->ps.pps->cabac
96 #endif
97 
98 #define CHROMA(h)    ((h)->ps.sps->chroma_format_idc)
99 #define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
100 #define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
101 
102 #define MB_TYPE_REF0       MB_TYPE_ACPRED // dirty but it fits in 16 bit
103 #define MB_TYPE_8x8DCT     0x01000000
104 #define IS_REF0(a)         ((a) & MB_TYPE_REF0)
105 #define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
106 
107 /**
108  * Memory management control operation opcode.
109  */
110 typedef enum MMCOOpcode {
111     MMCO_END = 0,
112     MMCO_SHORT2UNUSED,
113     MMCO_LONG2UNUSED,
114     MMCO_SHORT2LONG,
115     MMCO_SET_MAX_LONG,
116     MMCO_RESET,
117     MMCO_LONG,
118 } MMCOOpcode;
119 
120 /**
121  * Memory management control operation.
122  */
123 typedef struct MMCO {
124     MMCOOpcode opcode;
125     int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
126     int long_arg;       ///< index, pic_num, or num long refs depending on opcode
127 } MMCO;
128 
129 typedef struct H264Picture {
130     AVFrame *f;
131     ThreadFrame tf;
132 
133     AVBufferRef *qscale_table_buf;
134     int8_t *qscale_table;
135 
136     AVBufferRef *motion_val_buf[2];
137     int16_t (*motion_val[2])[2];
138 
139     AVBufferRef *mb_type_buf;
140     uint32_t *mb_type;
141 
142     AVBufferRef *hwaccel_priv_buf;
143     void *hwaccel_picture_private; ///< hardware accelerator private data
144 
145     AVBufferRef *ref_index_buf[2];
146     int8_t *ref_index[2];
147 
148     int field_poc[2];       ///< top/bottom POC
149     int poc;                ///< frame POC
150     int frame_num;          ///< frame_num (raw frame_num from slice header)
151     int mmco_reset;         /**< MMCO_RESET set this 1. Reordering code must
152                                  not mix pictures before and after MMCO_RESET. */
153     int pic_id;             /**< pic_num (short -> no wrap version of pic_num,
154                                  pic_num & max_pic_num; long -> long_pic_num) */
155     int long_ref;           ///< 1->long term reference 0->short term reference
156     int ref_poc[2][2][32];  ///< POCs of the frames/fields used as reference (FIXME need per slice)
157     int ref_count[2][2];    ///< number of entries in ref_poc         (FIXME need per slice)
158     int mbaff;              ///< 1 -> MBAFF frame 0-> not MBAFF
159     int field_picture;      ///< whether or not picture was encoded in separate fields
160 
161     int reference;
162     int recovered;          ///< picture at IDR or recovery point + recovery count
163     int invalid_gap;
164     int sei_recovery_frame_cnt;
165 
166     AVBufferRef *pps_buf;
167     const PPS   *pps;
168 
169     int mb_width, mb_height;
170     int mb_stride;
171 } H264Picture;
172 
173 typedef struct H264Ref {
174     uint8_t *data[3];
175     int linesize[3];
176 
177     int reference;
178     int poc;
179     int pic_id;
180 
181     H264Picture *parent;
182 } H264Ref;
183 
184 typedef struct H264SliceContext {
185     struct H264Context *h264;
186     GetBitContext gb;
187     ERContext er;
188 
189     int slice_num;
190     int slice_type;
191     int slice_type_nos;         ///< S free slice type (SI/SP are remapped to I/P)
192     int slice_type_fixed;
193 
194     int qscale;
195     int chroma_qp[2];   // QPc
196     int qp_thresh;      ///< QP threshold to skip loopfilter
197     int last_qscale_diff;
198 
199     // deblock
200     int deblocking_filter;          ///< disable_deblocking_filter_idc with 1 <-> 0
201     int slice_alpha_c0_offset;
202     int slice_beta_offset;
203 
204     H264PredWeightTable pwt;
205 
206     int prev_mb_skipped;
207     int next_mb_skipped;
208 
209     int chroma_pred_mode;
210     int intra16x16_pred_mode;
211 
212     int8_t intra4x4_pred_mode_cache[5 * 8];
213     int8_t(*intra4x4_pred_mode);
214 
215     int topleft_mb_xy;
216     int top_mb_xy;
217     int topright_mb_xy;
218     int left_mb_xy[LEFT_MBS];
219 
220     int topleft_type;
221     int top_type;
222     int topright_type;
223     int left_type[LEFT_MBS];
224 
225     const uint8_t *left_block;
226     int topleft_partition;
227 
228     unsigned int topleft_samples_available;
229     unsigned int top_samples_available;
230     unsigned int topright_samples_available;
231     unsigned int left_samples_available;
232 
233     ptrdiff_t linesize, uvlinesize;
234     ptrdiff_t mb_linesize;  ///< may be equal to s->linesize or s->linesize * 2, for mbaff
235     ptrdiff_t mb_uvlinesize;
236 
237     int mb_x, mb_y;
238     int mb_xy;
239     int resync_mb_x;
240     int resync_mb_y;
241     unsigned int first_mb_addr;
242     // index of the first MB of the next slice
243     int next_slice_idx;
244     int mb_skip_run;
245     int is_complex;
246 
247     int picture_structure;
248     int mb_field_decoding_flag;
249     int mb_mbaff;               ///< mb_aff_frame && mb_field_decoding_flag
250 
251     int redundant_pic_count;
252 
253     /**
254      * number of neighbors (top and/or left) that used 8x8 dct
255      */
256     int neighbor_transform_size;
257 
258     int direct_spatial_mv_pred;
259     int col_parity;
260     int col_fieldoff;
261 
262     int cbp;
263     int top_cbp;
264     int left_cbp;
265 
266     int dist_scale_factor[32];
267     int dist_scale_factor_field[2][32];
268     int map_col_to_list0[2][16 + 32];
269     int map_col_to_list0_field[2][2][16 + 32];
270 
271     /**
272      * num_ref_idx_l0/1_active_minus1 + 1
273      */
274     unsigned int ref_count[2];          ///< counts frames or fields, depending on current mb mode
275     unsigned int list_count;
276     H264Ref ref_list[2][48];        /**< 0..15: frame refs, 16..47: mbaff field refs.
277                                          *   Reordered version of default_ref_list
278                                          *   according to picture reordering in slice header */
279     struct {
280         uint8_t op;
281         uint32_t val;
282     } ref_modifications[2][32];
283     int nb_ref_modifications[2];
284 
285     unsigned int pps_id;
286 
287     const uint8_t *intra_pcm_ptr;
288     int16_t *dc_val_base;
289 
290     uint8_t *bipred_scratchpad;
291     uint8_t *edge_emu_buffer;
292     uint8_t (*top_borders[2])[(16 * 3) * 2];
293     int bipred_scratchpad_allocated;
294     int edge_emu_buffer_allocated;
295     int top_borders_allocated[2];
296 
297     /**
298      * non zero coeff count cache.
299      * is 64 if not available.
300      */
301     DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
302 
303     /**
304      * Motion vector cache.
305      */
306     DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
307     DECLARE_ALIGNED(8,  int8_t, ref_cache)[2][5 * 8];
308     DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
309     uint8_t direct_cache[5 * 8];
310 
311     DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
312 
313     ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
314     DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
315     DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
316     ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
317     ///< check that i is not too large or ensure that there is some unused stuff after mb
318     int16_t mb_padding[256 * 2];
319 
320     uint8_t (*mvd_table[2])[2];
321 
322     /**
323      * Cabac
324      */
325     CABACContext cabac;
326     uint8_t cabac_state[1024];
327     int cabac_init_idc;
328 
329     MMCO mmco[MAX_MMCO_COUNT];
330     int  nb_mmco;
331     int explicit_ref_marking;
332 
333     int frame_num;
334     int poc_lsb;
335     int delta_poc_bottom;
336     int delta_poc[2];
337     int curr_pic_num;
338     int max_pic_num;
339 } H264SliceContext;
340 
341 /**
342  * H264Context
343  */
344 typedef struct H264Context {
345     const AVClass *class;
346     AVCodecContext *avctx;
347     VideoDSPContext vdsp;
348     H264DSPContext h264dsp;
349     H264ChromaContext h264chroma;
350     H264QpelContext h264qpel;
351 
352     H264Picture DPB[H264_MAX_PICTURE_COUNT];
353     H264Picture *cur_pic_ptr;
354     H264Picture cur_pic;
355     H264Picture last_pic_for_ec;
356 
357     H264SliceContext *slice_ctx;
358     int            nb_slice_ctx;
359     int            nb_slice_ctx_queued;
360 
361     H2645Packet pkt;
362 
363     int pixel_shift;    ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
364 
365     /* coded dimensions -- 16 * mb w/h */
366     int width, height;
367     int chroma_x_shift, chroma_y_shift;
368 
369     int droppable;
370     int coded_picture_number;
371 
372     int context_initialized;
373     int flags;
374     int workaround_bugs;
375     int x264_build;
376     /* Set when slice threading is used and at least one slice uses deblocking
377      * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
378      * during normal MB decoding and execute it serially at the end.
379      */
380     int postpone_filter;
381 
382     /*
383      * Set to 1 when the current picture is IDR, 0 otherwise.
384      */
385     int picture_idr;
386 
387     int crop_left;
388     int crop_right;
389     int crop_top;
390     int crop_bottom;
391 
392     int8_t(*intra4x4_pred_mode);
393     H264PredContext hpc;
394 
395     uint8_t (*non_zero_count)[48];
396 
397 #define LIST_NOT_USED -1 // FIXME rename?
398 #define PART_NOT_AVAILABLE -2
399 
400     /**
401      * block_offset[ 0..23] for frame macroblocks
402      * block_offset[24..47] for field macroblocks
403      */
404     int block_offset[2 * (16 * 3)];
405 
406     uint32_t *mb2b_xy;  // FIXME are these 4 a good idea?
407     uint32_t *mb2br_xy;
408     int b_stride;       // FIXME use s->b4_stride
409 
410     uint16_t *slice_table;      ///< slice_table_base + 2*mb_stride + 1
411 
412     // interlacing specific flags
413     int mb_aff_frame;
414     int picture_structure;
415     int first_field;
416 
417     uint8_t *list_counts;               ///< Array of list_count per MB specifying the slice type
418 
419     /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
420     uint16_t *cbp_table;
421 
422     /* chroma_pred_mode for i4x4 or i16x16, else 0 */
423     uint8_t *chroma_pred_mode_table;
424     uint8_t (*mvd_table[2])[2];
425     uint8_t *direct_table;
426 
427     uint8_t scan_padding[16];
428     uint8_t zigzag_scan[16];
429     uint8_t zigzag_scan8x8[64];
430     uint8_t zigzag_scan8x8_cavlc[64];
431     uint8_t field_scan[16];
432     uint8_t field_scan8x8[64];
433     uint8_t field_scan8x8_cavlc[64];
434     uint8_t zigzag_scan_q0[16];
435     uint8_t zigzag_scan8x8_q0[64];
436     uint8_t zigzag_scan8x8_cavlc_q0[64];
437     uint8_t field_scan_q0[16];
438     uint8_t field_scan8x8_q0[64];
439     uint8_t field_scan8x8_cavlc_q0[64];
440 
441     int mb_y;
442     int mb_height, mb_width;
443     int mb_stride;
444     int mb_num;
445 
446     // =============================================================
447     // Things below are not used in the MB or more inner code
448 
449     int nal_ref_idc;
450     int nal_unit_type;
451 
452     int has_slice;          ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
453 
454     /**
455      * Used to parse AVC variant of H.264
456      */
457     int is_avc;           ///< this flag is != 0 if codec is avc1
458     int nal_length_size;  ///< Number of bytes used for nal length (1, 2 or 4)
459 
460     int bit_depth_luma;         ///< luma bit depth from sps to detect changes
461     int chroma_format_idc;      ///< chroma format from sps to detect changes
462 
463     H264ParamSets ps;
464 
465     uint16_t *slice_table_base;
466 
467     H264POCContext poc;
468 
469     H264Ref default_ref[2];
470     H264Picture *short_ref[32];
471     H264Picture *long_ref[32];
472     H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
473     int last_pocs[MAX_DELAYED_PIC_COUNT];
474     H264Picture *next_output_pic;
475     int next_outputed_poc;
476 
477     /**
478      * memory management control operations buffer.
479      */
480     MMCO mmco[MAX_MMCO_COUNT];
481     int  nb_mmco;
482     int mmco_reset;
483     int explicit_ref_marking;
484 
485     int long_ref_count;     ///< number of actual long term references
486     int short_ref_count;    ///< number of actual short term references
487 
488     /**
489      * @name Members for slice based multithreading
490      * @{
491      */
492     /**
493      * current slice number, used to initialize slice_num of each thread/context
494      */
495     int current_slice;
496 
497     /** @} */
498 
499     /**
500      * Complement sei_pic_struct
501      * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
502      * However, soft telecined frames may have these values.
503      * This is used in an attempt to flag soft telecine progressive.
504      */
505     int prev_interlaced_frame;
506 
507     /**
508      * Are the SEI recovery points looking valid.
509      */
510     int valid_recovery_point;
511 
512     /**
513      * recovery_frame is the frame_num at which the next frame should
514      * be fully constructed.
515      *
516      * Set to -1 when not expecting a recovery point.
517      */
518     int recovery_frame;
519 
520 /**
521  * We have seen an IDR, so all the following frames in coded order are correctly
522  * decodable.
523  */
524 #define FRAME_RECOVERED_IDR  (1 << 0)
525 /**
526  * Sufficient number of frames have been decoded since a SEI recovery point,
527  * so all the following frames in presentation order are correct.
528  */
529 #define FRAME_RECOVERED_SEI  (1 << 1)
530 
531     int frame_recovered;    ///< Initial frame has been completely recovered
532 
533     int has_recovery_point;
534 
535     int missing_fields;
536 
537     /* for frame threading, this is set to 1
538      * after finish_setup() has been called, so we cannot modify
539      * some context properties (which are supposed to stay constant between
540      * slices) anymore */
541     int setup_finished;
542 
543     int cur_chroma_format_idc;
544     int cur_bit_depth_luma;
545     int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
546 
547     /* original AVCodecContext dimensions, used to handle container
548      * cropping */
549     int width_from_caller;
550     int height_from_caller;
551 
552     int enable_er;
553 
554     H264SEIContext sei;
555 
556     AVBufferPool *qscale_table_pool;
557     AVBufferPool *mb_type_pool;
558     AVBufferPool *motion_val_pool;
559     AVBufferPool *ref_index_pool;
560     int ref2frm[MAX_SLICES][2][64];     ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
561 } H264Context;
562 
563 extern const uint16_t ff_h264_mb_sizes[4];
564 
565 /**
566  * Reconstruct bitstream slice_type.
567  */
568 int ff_h264_get_slice_type(const H264SliceContext *sl);
569 
570 /**
571  * Allocate tables.
572  * needs width/height
573  */
574 int ff_h264_alloc_tables(H264Context *h);
575 
576 int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
577 int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
578 void ff_h264_remove_all_refs(H264Context *h);
579 
580 /**
581  * Execute the reference picture marking (memory management control operations).
582  */
583 int ff_h264_execute_ref_pic_marking(H264Context *h);
584 
585 int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
586                                    const H2645NAL *nal, void *logctx);
587 
588 void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
589 void ff_h264_decode_init_vlc(void);
590 
591 /**
592  * Decode a macroblock
593  * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
594  */
595 int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
596 
597 /**
598  * Decode a CABAC coded macroblock
599  * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
600  */
601 int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
602 
603 void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
604 
605 void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
606 void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
607 void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
608                                 int *mb_type);
609 
610 void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
611                             uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
612                             unsigned int linesize, unsigned int uvlinesize);
613 void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
614                        uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
615                        unsigned int linesize, unsigned int uvlinesize);
616 
617 /*
618  * o-o o-o
619  *  / / /
620  * o-o o-o
621  *  ,---'
622  * o-o o-o
623  *  / / /
624  * o-o o-o
625  */
626 
627 /* Scan8 organization:
628  *    0 1 2 3 4 5 6 7
629  * 0  DY    y y y y y
630  * 1        y Y Y Y Y
631  * 2        y Y Y Y Y
632  * 3        y Y Y Y Y
633  * 4        y Y Y Y Y
634  * 5  DU    u u u u u
635  * 6        u U U U U
636  * 7        u U U U U
637  * 8        u U U U U
638  * 9        u U U U U
639  * 10 DV    v v v v v
640  * 11       v V V V V
641  * 12       v V V V V
642  * 13       v V V V V
643  * 14       v V V V V
644  * DY/DU/DV are for luma/chroma DC.
645  */
646 
647 #define LUMA_DC_BLOCK_INDEX   48
648 #define CHROMA_DC_BLOCK_INDEX 49
649 
650 // This table must be here because scan8[constant] must be known at compiletime
651 static const uint8_t scan8[16 * 3 + 3] = {
652     4 +  1 * 8, 5 +  1 * 8, 4 +  2 * 8, 5 +  2 * 8,
653     6 +  1 * 8, 7 +  1 * 8, 6 +  2 * 8, 7 +  2 * 8,
654     4 +  3 * 8, 5 +  3 * 8, 4 +  4 * 8, 5 +  4 * 8,
655     6 +  3 * 8, 7 +  3 * 8, 6 +  4 * 8, 7 +  4 * 8,
656     4 +  6 * 8, 5 +  6 * 8, 4 +  7 * 8, 5 +  7 * 8,
657     6 +  6 * 8, 7 +  6 * 8, 6 +  7 * 8, 7 +  7 * 8,
658     4 +  8 * 8, 5 +  8 * 8, 4 +  9 * 8, 5 +  9 * 8,
659     6 +  8 * 8, 7 +  8 * 8, 6 +  9 * 8, 7 +  9 * 8,
660     4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
661     6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
662     4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
663     6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
664     0 +  0 * 8, 0 +  5 * 8, 0 + 10 * 8
665 };
666 
pack16to32(unsigned a,unsigned b)667 static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
668 {
669 #if HAVE_BIGENDIAN
670     return (b & 0xFFFF) + (a << 16);
671 #else
672     return (a & 0xFFFF) + (b << 16);
673 #endif
674 }
675 
pack8to16(unsigned a,unsigned b)676 static av_always_inline uint16_t pack8to16(unsigned a, unsigned b)
677 {
678 #if HAVE_BIGENDIAN
679     return (b & 0xFF) + (a << 8);
680 #else
681     return (a & 0xFF) + (b << 8);
682 #endif
683 }
684 
685 /**
686  * Get the chroma qp.
687  */
get_chroma_qp(const PPS * pps,int t,int qscale)688 static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
689 {
690     return pps->chroma_qp_table[t][qscale];
691 }
692 
693 /**
694  * Get the predicted intra4x4 prediction mode.
695  */
pred_intra_mode(const H264Context * h,H264SliceContext * sl,int n)696 static av_always_inline int pred_intra_mode(const H264Context *h,
697                                             H264SliceContext *sl, int n)
698 {
699     const int index8 = scan8[n];
700     const int left   = sl->intra4x4_pred_mode_cache[index8 - 1];
701     const int top    = sl->intra4x4_pred_mode_cache[index8 - 8];
702     const int min    = FFMIN(left, top);
703 
704     ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
705 
706     if (min < 0)
707         return DC_PRED;
708     else
709         return min;
710 }
711 
write_back_intra_pred_mode(const H264Context * h,H264SliceContext * sl)712 static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
713                                                         H264SliceContext *sl)
714 {
715     int8_t *i4x4       = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
716     int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
717 
718     AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
719     i4x4[4] = i4x4_cache[7 + 8 * 3];
720     i4x4[5] = i4x4_cache[7 + 8 * 2];
721     i4x4[6] = i4x4_cache[7 + 8 * 1];
722 }
723 
write_back_non_zero_count(const H264Context * h,H264SliceContext * sl)724 static av_always_inline void write_back_non_zero_count(const H264Context *h,
725                                                        H264SliceContext *sl)
726 {
727     const int mb_xy    = sl->mb_xy;
728     uint8_t *nnz       = h->non_zero_count[mb_xy];
729     uint8_t *nnz_cache = sl->non_zero_count_cache;
730 
731     AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
732     AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
733     AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
734     AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
735     AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
736     AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
737     AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
738     AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
739 
740     if (!h->chroma_y_shift) {
741         AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
742         AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
743         AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
744         AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
745     }
746 }
747 
write_back_motion_list(const H264Context * h,H264SliceContext * sl,int b_stride,int b_xy,int b8_xy,int mb_type,int list)748 static av_always_inline void write_back_motion_list(const H264Context *h,
749                                                     H264SliceContext *sl,
750                                                     int b_stride,
751                                                     int b_xy, int b8_xy,
752                                                     int mb_type, int list)
753 {
754     int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
755     int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
756     AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
757     AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
758     AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
759     AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
760     if (CABAC(h)) {
761         uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
762                                                         : h->mb2br_xy[sl->mb_xy]];
763         uint8_t(*mvd_src)[2]  = &sl->mvd_cache[list][scan8[0]];
764         if (IS_SKIP(mb_type)) {
765             AV_ZERO128(mvd_dst);
766         } else {
767             AV_COPY64(mvd_dst, mvd_src + 8 * 3);
768             AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
769             AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
770             AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
771         }
772     }
773 
774     {
775         int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
776         int8_t *ref_cache = sl->ref_cache[list];
777         ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
778         ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
779         ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
780         ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
781     }
782 }
783 
write_back_motion(const H264Context * h,H264SliceContext * sl,int mb_type)784 static av_always_inline void write_back_motion(const H264Context *h,
785                                                H264SliceContext *sl,
786                                                int mb_type)
787 {
788     const int b_stride      = h->b_stride;
789     const int b_xy  = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
790     const int b8_xy = 4 * sl->mb_xy;
791 
792     if (USES_LIST(mb_type, 0)) {
793         write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
794     } else {
795         fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
796                        2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
797     }
798     if (USES_LIST(mb_type, 1))
799         write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
800 
801     if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
802         if (IS_8X8(mb_type)) {
803             uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
804             direct_table[1] = sl->sub_mb_type[1] >> 1;
805             direct_table[2] = sl->sub_mb_type[2] >> 1;
806             direct_table[3] = sl->sub_mb_type[3] >> 1;
807         }
808     }
809 }
810 
get_dct8x8_allowed(const H264Context * h,H264SliceContext * sl)811 static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
812 {
813     if (h->ps.sps->direct_8x8_inference_flag)
814         return !(AV_RN64A(sl->sub_mb_type) &
815                  ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
816                   0x0001000100010001ULL));
817     else
818         return !(AV_RN64A(sl->sub_mb_type) &
819                  ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
820                   0x0001000100010001ULL));
821 }
822 
find_start_code(const uint8_t * buf,int buf_size,int buf_index,int next_avc)823 static inline int find_start_code(const uint8_t *buf, int buf_size,
824                            int buf_index, int next_avc)
825 {
826     uint32_t state = -1;
827 
828     buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
829 
830     return FFMIN(buf_index, buf_size);
831 }
832 
833 int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
834 
835 int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
836 void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
837 
838 int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
839 
840 void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
841 
842 /**
843  * Submit a slice for decoding.
844  *
845  * Parse the slice header, starting a new field/frame if necessary. If any
846  * slices are queued for the previous field, they are decoded.
847  */
848 int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
849 int ff_h264_execute_decode_slices(H264Context *h);
850 int ff_h264_update_thread_context(AVCodecContext *dst,
851                                   const AVCodecContext *src);
852 
853 void ff_h264_flush_change(H264Context *h);
854 
855 void ff_h264_free_tables(H264Context *h);
856 
857 void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
858 
859 #endif /* AVCODEC_H264DEC_H */
860