1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38
39 #include <trace/events/power.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/cpuhp.h>
42
43 #undef CREATE_TRACE_POINTS
44
45 #include "smpboot.h"
46
47 #define CPU_PAGE_SIZE_OFF_TWO 2
48
49 /**
50 * cpuhp_cpu_state - Per cpu hotplug state storage
51 * @state: The current cpu state
52 * @target: The target state
53 * @thread: Pointer to the hotplug thread
54 * @should_run: Thread should execute
55 * @rollback: Perform a rollback
56 * @single: Single callback invocation
57 * @bringup: Single callback bringup or teardown selector
58 * @cb_state: The state for a single callback (install/uninstall)
59 * @result: Result of the operation
60 * @done_up: Signal completion to the issuer of the task for cpu-up
61 * @done_down: Signal completion to the issuer of the task for cpu-down
62 */
63 struct cpuhp_cpu_state {
64 enum cpuhp_state state;
65 enum cpuhp_state target;
66 enum cpuhp_state fail;
67 #ifdef CONFIG_SMP
68 struct task_struct *thread;
69 bool should_run;
70 bool rollback;
71 bool single;
72 bool bringup;
73 struct hlist_node *node;
74 struct hlist_node *last;
75 enum cpuhp_state cb_state;
76 int result;
77 struct completion done_up;
78 struct completion done_down;
79 #endif
80 };
81
82 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
83 .fail = CPUHP_INVALID,
84 };
85
86 #ifdef CONFIG_SMP
87 cpumask_t cpus_booted_once_mask;
88 #endif
89
90 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
91 static struct lockdep_map cpuhp_state_up_map = STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
92 static struct lockdep_map cpuhp_state_down_map = STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
93
cpuhp_lock_acquire(bool bringup)94 static inline void cpuhp_lock_acquire(bool bringup)
95 {
96 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
97 }
98
cpuhp_lock_release(bool bringup)99 static inline void cpuhp_lock_release(bool bringup)
100 {
101 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
102 }
103 #else
104
cpuhp_lock_acquire(bool bringup)105 static inline void cpuhp_lock_acquire(bool bringup)
106 {
107 }
cpuhp_lock_release(bool bringup)108 static inline void cpuhp_lock_release(bool bringup)
109 {
110 }
111
112 #endif
113
114 /**
115 * cpuhp_step - Hotplug state machine step
116 * @name: Name of the step
117 * @startup: Startup function of the step
118 * @teardown: Teardown function of the step
119 * @cant_stop: Bringup/teardown can't be stopped at this step
120 */
121 struct cpuhp_step {
122 const char *name;
123 union {
124 int (*single)(unsigned int cpu);
125 int (*multi)(unsigned int cpu, struct hlist_node *node);
126 } startup;
127 union {
128 int (*single)(unsigned int cpu);
129 int (*multi)(unsigned int cpu, struct hlist_node *node);
130 } teardown;
131 struct hlist_head list;
132 bool cant_stop;
133 bool multi_instance;
134 };
135
136 static DEFINE_MUTEX(cpuhp_state_mutex);
137 static struct cpuhp_step cpuhp_hp_states[];
138
cpuhp_get_step(enum cpuhp_state state)139 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
140 {
141 return cpuhp_hp_states + state;
142 }
143
144 /**
145 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
146 * @cpu: The cpu for which the callback should be invoked
147 * @state: The state to do callbacks for
148 * @bringup: True if the bringup callback should be invoked
149 * @node: For multi-instance, do a single entry callback for install/remove
150 * @lastp: For multi-instance rollback, remember how far we got
151 *
152 * Called from cpu hotplug and from the state register machinery.
153 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)154 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, bool bringup, struct hlist_node *node,
155 struct hlist_node **lastp)
156 {
157 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
158 struct cpuhp_step *step = cpuhp_get_step(state);
159 int (*cbm)(unsigned int cpu, struct hlist_node *node);
160 int (*cb)(unsigned int cpu);
161 int ret, cnt;
162
163 if (st->fail == state) {
164 st->fail = CPUHP_INVALID;
165
166 if (!(bringup ? step->startup.single : step->teardown.single)) {
167 return 0;
168 }
169
170 return -EAGAIN;
171 }
172
173 if (!step->multi_instance) {
174 WARN_ON_ONCE(lastp && *lastp);
175 cb = bringup ? step->startup.single : step->teardown.single;
176 if (!cb) {
177 return 0;
178 }
179 trace_cpuhp_enter(cpu, st->target, state, cb);
180 ret = cb(cpu);
181 trace_cpuhp_exit(cpu, st->state, state, ret);
182 return ret;
183 }
184 cbm = bringup ? step->startup.multi : step->teardown.multi;
185 if (!cbm) {
186 return 0;
187 }
188
189 /* Single invocation for instance add/remove */
190 if (node) {
191 WARN_ON_ONCE(lastp && *lastp);
192 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
193 ret = cbm(cpu, node);
194 trace_cpuhp_exit(cpu, st->state, state, ret);
195 return ret;
196 }
197
198 /* State transition. Invoke on all instances */
199 cnt = 0;
200 hlist_for_each(node, &step->list)
201 {
202 if (lastp && node == *lastp) {
203 break;
204 }
205
206 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
207 ret = cbm(cpu, node);
208 trace_cpuhp_exit(cpu, st->state, state, ret);
209 if (ret) {
210 if (!lastp) {
211 goto err;
212 }
213
214 *lastp = node;
215 return ret;
216 }
217 cnt++;
218 }
219 if (lastp) {
220 *lastp = NULL;
221 }
222 return 0;
223 err:
224 /* Rollback the instances if one failed */
225 cbm = !bringup ? step->startup.multi : step->teardown.multi;
226 if (!cbm) {
227 return ret;
228 }
229
230 hlist_for_each(node, &step->list)
231 {
232 if (!cnt--) {
233 break;
234 }
235
236 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
237 ret = cbm(cpu, node);
238 trace_cpuhp_exit(cpu, st->state, state, ret);
239 /*
240 * Rollback must not fail,
241 */
242 WARN_ON_ONCE(ret);
243 }
244 return ret;
245 }
246
247 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)248 static bool cpuhp_is_ap_state(enum cpuhp_state state)
249 {
250 /*
251 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
252 * purposes as that state is handled explicitly in cpu_down.
253 */
254 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
255 }
256
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)257 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
258 {
259 struct completion *done = bringup ? &st->done_up : &st->done_down;
260 wait_for_completion(done);
261 }
262
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)263 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
264 {
265 struct completion *done = bringup ? &st->done_up : &st->done_down;
266 complete(done);
267 }
268
269 /*
270 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
271 */
cpuhp_is_atomic_state(enum cpuhp_state state)272 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
273 {
274 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
275 }
276
277 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
278 static DEFINE_MUTEX(cpu_add_remove_lock);
279 bool cpuhp_tasks_frozen;
280 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
281
282 /*
283 * The following two APIs (cpu_maps_update_begin/done) must be used when
284 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
285 */
cpu_maps_update_begin(void)286 void cpu_maps_update_begin(void)
287 {
288 mutex_lock(&cpu_add_remove_lock);
289 }
290 EXPORT_SYMBOL_GPL(cpu_maps_update_begin);
291
cpu_maps_update_done(void)292 void cpu_maps_update_done(void)
293 {
294 mutex_unlock(&cpu_add_remove_lock);
295 }
296 EXPORT_SYMBOL_GPL(cpu_maps_update_done);
297
298 /*
299 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
300 * Should always be manipulated under cpu_add_remove_lock
301 */
302 static int cpu_hotplug_disabled;
303
304 #ifdef CONFIG_HOTPLUG_CPU
305
306 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
307
cpus_read_lock(void)308 void cpus_read_lock(void)
309 {
310 percpu_down_read(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_lock);
313
cpus_read_trylock(void)314 int cpus_read_trylock(void)
315 {
316 return percpu_down_read_trylock(&cpu_hotplug_lock);
317 }
318 EXPORT_SYMBOL_GPL(cpus_read_trylock);
319
cpus_read_unlock(void)320 void cpus_read_unlock(void)
321 {
322 percpu_up_read(&cpu_hotplug_lock);
323 }
324 EXPORT_SYMBOL_GPL(cpus_read_unlock);
325
cpus_write_lock(void)326 void cpus_write_lock(void)
327 {
328 percpu_down_write(&cpu_hotplug_lock);
329 }
330
cpus_write_unlock(void)331 void cpus_write_unlock(void)
332 {
333 percpu_up_write(&cpu_hotplug_lock);
334 }
335
lockdep_assert_cpus_held(void)336 void lockdep_assert_cpus_held(void)
337 {
338 /*
339 * We can't have hotplug operations before userspace starts running,
340 * and some init codepaths will knowingly not take the hotplug lock.
341 * This is all valid, so mute lockdep until it makes sense to report
342 * unheld locks.
343 */
344 if (system_state < SYSTEM_RUNNING) {
345 return;
346 }
347
348 percpu_rwsem_assert_held(&cpu_hotplug_lock);
349 }
350
lockdep_acquire_cpus_lock(void)351 static void lockdep_acquire_cpus_lock(void)
352 {
353 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
354 }
355
lockdep_release_cpus_lock(void)356 static void lockdep_release_cpus_lock(void)
357 {
358 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
359 }
360
361 /*
362 * Wait for currently running CPU hotplug operations to complete (if any) and
363 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
364 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
365 * hotplug path before performing hotplug operations. So acquiring that lock
366 * guarantees mutual exclusion from any currently running hotplug operations.
367 */
cpu_hotplug_disable(void)368 void cpu_hotplug_disable(void)
369 {
370 cpu_maps_update_begin();
371 cpu_hotplug_disabled++;
372 cpu_maps_update_done();
373 }
374 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
375
_cpu_hotplug_enable(void)376 static void _cpu_hotplug_enable(void)
377 {
378 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) {
379 return;
380 }
381 cpu_hotplug_disabled--;
382 }
383
cpu_hotplug_enable(void)384 void cpu_hotplug_enable(void)
385 {
386 cpu_maps_update_begin();
387 _cpu_hotplug_enable();
388 cpu_maps_update_done();
389 }
390 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
391
392 #else
393
lockdep_acquire_cpus_lock(void)394 static void lockdep_acquire_cpus_lock(void)
395 {
396 }
397
lockdep_release_cpus_lock(void)398 static void lockdep_release_cpus_lock(void)
399 {
400 }
401
402 #endif /* CONFIG_HOTPLUG_CPU */
403
404 /*
405 * Architectures that need SMT-specific errata handling during SMT hotplug
406 * should override this.
407 */
arch_smt_update(void)408 void __weak arch_smt_update(void)
409 {
410 }
411
412 #ifdef CONFIG_HOTPLUG_SMT
413 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
414
cpu_smt_disable(bool force)415 void __init cpu_smt_disable(bool force)
416 {
417 if (!cpu_smt_possible()) {
418 return;
419 }
420
421 if (force) {
422 pr_info("SMT: Force disabled\n");
423 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
424 } else {
425 pr_info("SMT: disabled\n");
426 cpu_smt_control = CPU_SMT_DISABLED;
427 }
428 }
429
430 /*
431 * The decision whether SMT is supported can only be done after the full
432 * CPU identification. Called from architecture code.
433 */
cpu_smt_check_topology(void)434 void __init cpu_smt_check_topology(void)
435 {
436 if (!topology_smt_supported()) {
437 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
438 }
439 }
440
smt_cmdline_disable(char * str)441 static int __init smt_cmdline_disable(char *str)
442 {
443 cpu_smt_disable(str && !strcmp(str, "force"));
444 return 0;
445 }
446 early_param("nosmt", smt_cmdline_disable);
447
cpu_smt_allowed(unsigned int cpu)448 static inline bool cpu_smt_allowed(unsigned int cpu)
449 {
450 if (cpu_smt_control == CPU_SMT_ENABLED) {
451 return true;
452 }
453
454 if (topology_is_primary_thread(cpu)) {
455 return true;
456 }
457
458 /*
459 * On x86 it's required to boot all logical CPUs at least once so
460 * that the init code can get a chance to set CR4.MCE on each
461 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
462 * core will shutdown the machine.
463 */
464 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
465 }
466
467 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)468 bool cpu_smt_possible(void)
469 {
470 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
471 }
472 EXPORT_SYMBOL_GPL(cpu_smt_possible);
473 #else
cpu_smt_allowed(unsigned int cpu)474 static inline bool cpu_smt_allowed(unsigned int cpu)
475 {
476 return true;
477 }
478 #endif
479
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)480 static inline enum cpuhp_state cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
481 {
482 enum cpuhp_state prev_state = st->state;
483
484 st->rollback = false;
485 st->last = NULL;
486
487 st->target = target;
488 st->single = false;
489 st->bringup = st->state < target;
490
491 return prev_state;
492 }
493
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)494 static inline void cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
495 {
496 st->rollback = true;
497
498 /*
499 * If we have st->last we need to undo partial multi_instance of this
500 * state first. Otherwise start undo at the previous state.
501 */
502 if (!st->last) {
503 if (st->bringup) {
504 st->state--;
505 } else {
506 st->state++;
507 }
508 }
509
510 st->target = prev_state;
511 st->bringup = !st->bringup;
512 }
513
514 /* Regular hotplug invocation of the AP hotplug thread */
_cpuhp_kick_ap(struct cpuhp_cpu_state * st)515 static void _cpuhp_kick_ap(struct cpuhp_cpu_state *st)
516 {
517 if (!st->single && st->state == st->target) {
518 return;
519 }
520
521 st->result = 0;
522 /*
523 * Make sure the above stores are visible before should_run becomes
524 * true. Paired with the mb() above in cpuhp_thread_fun()
525 */
526 smp_mb();
527 st->should_run = true;
528 wake_up_process(st->thread);
529 wait_for_ap_thread(st, st->bringup);
530 }
531
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)532 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
533 {
534 enum cpuhp_state prev_state;
535 int ret;
536
537 prev_state = cpuhp_set_state(st, target);
538 _cpuhp_kick_ap(st);
539 if ((ret = st->result)) {
540 cpuhp_reset_state(st, prev_state);
541 _cpuhp_kick_ap(st);
542 }
543
544 return ret;
545 }
546
bringup_wait_for_ap(unsigned int cpu)547 static int bringup_wait_for_ap(unsigned int cpu)
548 {
549 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
550
551 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
552 wait_for_ap_thread(st, true);
553 if (WARN_ON_ONCE((!cpu_online(cpu)))) {
554 return -ECANCELED;
555 }
556
557 /* Unpark the hotplug thread of the target cpu */
558 kthread_unpark(st->thread);
559
560 /*
561 * SMT soft disabling on X86 requires to bring the CPU out of the
562 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
563 * CPU marked itself as booted_once in notify_cpu_starting() so the
564 * cpu_smt_allowed() check will now return false if this is not the
565 * primary sibling.
566 */
567 if (!cpu_smt_allowed(cpu)) {
568 return -ECANCELED;
569 }
570
571 if (st->target <= CPUHP_AP_ONLINE_IDLE) {
572 return 0;
573 }
574
575 return cpuhp_kick_ap(st, st->target);
576 }
577
bringup_cpu(unsigned int cpu)578 static int bringup_cpu(unsigned int cpu)
579 {
580 struct task_struct *idle = idle_thread_get(cpu);
581 int ret;
582
583 /*
584 * Reset stale stack state from the last time this CPU was online.
585 */
586 scs_task_reset(idle);
587 kasan_unpoison_task_stack(idle);
588
589 /*
590 * Some architectures have to walk the irq descriptors to
591 * setup the vector space for the cpu which comes online.
592 * Prevent irq alloc/free across the bringup.
593 */
594 irq_lock_sparse();
595
596 /* Arch-specific enabling code. */
597 ret = __cpu_up(cpu, idle);
598 irq_unlock_sparse();
599 if (ret) {
600 return ret;
601 }
602 return bringup_wait_for_ap(cpu);
603 }
604
finish_cpu(unsigned int cpu)605 static int finish_cpu(unsigned int cpu)
606 {
607 struct task_struct *idle = idle_thread_get(cpu);
608 struct mm_struct *mm = idle->active_mm;
609
610 /*
611 * idle_task_exit() will have switched to &init_mm, now
612 * clean up any remaining active_mm state.
613 */
614 if (mm != &init_mm) {
615 idle->active_mm = &init_mm;
616 }
617 mmdrop(mm);
618 return 0;
619 }
620
621 /*
622 * Hotplug state machine related functions
623 */
624
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)625 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
626 {
627 for (st->state--; st->state > st->target; st->state--) {
628 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
629 }
630 }
631
can_rollback_cpu(struct cpuhp_cpu_state * st)632 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
633 {
634 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
635 return true;
636 }
637 /*
638 * When CPU hotplug is disabled, then taking the CPU down is not
639 * possible because takedown_cpu() and the architecture and
640 * subsystem specific mechanisms are not available. So the CPU
641 * which would be completely unplugged again needs to stay around
642 * in the current state.
643 */
644 return st->state <= CPUHP_BRINGUP_CPU;
645 }
646
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)647 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
648 {
649 enum cpuhp_state prev_state = st->state;
650 int ret = 0;
651
652 while (st->state < target) {
653 st->state++;
654 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
655 if (ret) {
656 if (can_rollback_cpu(st)) {
657 st->target = prev_state;
658 undo_cpu_up(cpu, st);
659 }
660 break;
661 }
662 }
663 return ret;
664 }
665
666 /*
667 * The cpu hotplug threads manage the bringup and teardown of the cpus
668 */
cpuhp_create(unsigned int cpu)669 static void cpuhp_create(unsigned int cpu)
670 {
671 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
672
673 init_completion(&st->done_up);
674 init_completion(&st->done_down);
675 }
676
cpuhp_should_run(unsigned int cpu)677 static int cpuhp_should_run(unsigned int cpu)
678 {
679 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
680
681 return st->should_run;
682 }
683
684 /*
685 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
686 * callbacks when a state gets [un]installed at runtime.
687 *
688 * Each invocation of this function by the smpboot thread does a single AP
689 * state callback.
690 *
691 * It has 3 modes of operation:
692 * - single: runs st->cb_state
693 * - up: runs ++st->state, while st->state < st->target
694 * - down: runs st->state--, while st->state > st->target
695 *
696 * When complete or on error, should_run is cleared and the completion is fired.
697 */
cpuhp_thread_fun(unsigned int cpu)698 static void cpuhp_thread_fun(unsigned int cpu)
699 {
700 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
701 bool bringup = st->bringup;
702 enum cpuhp_state state;
703
704 if (WARN_ON_ONCE(!st->should_run)) {
705 return;
706 }
707
708 /*
709 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
710 * that if we see ->should_run we also see the rest of the state.
711 */
712 smp_mb();
713
714 /*
715 * The BP holds the hotplug lock, but we're now running on the AP,
716 * ensure that anybody asserting the lock is held, will actually find
717 * it so.
718 */
719 lockdep_acquire_cpus_lock();
720 cpuhp_lock_acquire(bringup);
721
722 if (st->single) {
723 state = st->cb_state;
724 st->should_run = false;
725 } else {
726 if (bringup) {
727 st->state++;
728 state = st->state;
729 st->should_run = (st->state < st->target);
730 WARN_ON_ONCE(st->state > st->target);
731 } else {
732 state = st->state;
733 st->state--;
734 st->should_run = (st->state > st->target);
735 WARN_ON_ONCE(st->state < st->target);
736 }
737 }
738
739 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
740
741 if (cpuhp_is_atomic_state(state)) {
742 local_irq_disable();
743 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
744 local_irq_enable();
745
746 /*
747 * STARTING/DYING must not fail!
748 */
749 WARN_ON_ONCE(st->result);
750 } else {
751 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
752 }
753
754 if (st->result) {
755 /*
756 * If we fail on a rollback, we're up a creek without no
757 * paddle, no way forward, no way back. We loose, thanks for
758 * playing.
759 */
760 WARN_ON_ONCE(st->rollback);
761 st->should_run = false;
762 }
763
764 cpuhp_lock_release(bringup);
765 lockdep_release_cpus_lock();
766
767 if (!st->should_run) {
768 complete_ap_thread(st, bringup);
769 }
770 }
771
772 /* Invoke a single callback on a remote cpu */
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)773 static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, struct hlist_node *node)
774 {
775 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
776 int ret;
777
778 if (!cpu_online(cpu)) {
779 return 0;
780 }
781
782 cpuhp_lock_acquire(false);
783 cpuhp_lock_release(false);
784
785 cpuhp_lock_acquire(true);
786 cpuhp_lock_release(true);
787
788 /*
789 * If we are up and running, use the hotplug thread. For early calls
790 * we invoke the thread function directly.
791 */
792 if (!st->thread) {
793 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
794 }
795
796 st->rollback = false;
797 st->last = NULL;
798
799 st->node = node;
800 st->bringup = bringup;
801 st->cb_state = state;
802 st->single = true;
803
804 _cpuhp_kick_ap(st);
805
806 /*
807 * If we failed and did a partial, do a rollback.
808 */
809 if ((ret = st->result) && st->last) {
810 st->rollback = true;
811 st->bringup = !bringup;
812
813 _cpuhp_kick_ap(st);
814 }
815
816 /*
817 * Clean up the leftovers so the next hotplug operation wont use stale
818 * data.
819 */
820 st->node = st->last = NULL;
821 return ret;
822 }
823
cpuhp_kick_ap_work(unsigned int cpu)824 static int cpuhp_kick_ap_work(unsigned int cpu)
825 {
826 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
827 enum cpuhp_state prev_state = st->state;
828 int ret;
829
830 cpuhp_lock_acquire(false);
831 cpuhp_lock_release(false);
832
833 cpuhp_lock_acquire(true);
834 cpuhp_lock_release(true);
835
836 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
837 ret = cpuhp_kick_ap(st, st->target);
838 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
839
840 return ret;
841 }
842
843 static struct smp_hotplug_thread cpuhp_threads = {
844 .store = &cpuhp_state.thread,
845 .create = &cpuhp_create,
846 .thread_should_run = cpuhp_should_run,
847 .thread_fn = cpuhp_thread_fun,
848 .thread_comm = "cpuhp/%u",
849 .selfparking = true,
850 };
851
cpuhp_threads_init(void)852 void __init cpuhp_threads_init(void)
853 {
854 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
855 kthread_unpark(this_cpu_read(cpuhp_state.thread));
856 }
857
858 /*
859 *
860 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
861 * protected region.
862 *
863 * The operation is still serialized against concurrent CPU hotplug via
864 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
865 * serialized against other hotplug related activity like adding or
866 * removing of state callbacks and state instances, which invoke either the
867 * startup or the teardown callback of the affected state.
868 *
869 * This is required for subsystems which are unfixable vs. CPU hotplug and
870 * evade lock inversion problems by scheduling work which has to be
871 * completed _before_ cpu_up()/_cpu_down() returns.
872 *
873 * Don't even think about adding anything to this for any new code or even
874 * drivers. It's only purpose is to keep existing lock order trainwrecks
875 * working.
876 *
877 * For cpu_down() there might be valid reasons to finish cleanups which are
878 * not required to be done under cpu_hotplug_lock, but that's a different
879 * story and would be not invoked via this.
880 */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)881 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
882 {
883 /*
884 * cpusets delegate hotplug operations to a worker to "solve" the
885 * lock order problems. Wait for the worker, but only if tasks are
886 * _not_ frozen (suspend, hibernate) as that would wait forever.
887 *
888 * The wait is required because otherwise the hotplug operation
889 * returns with inconsistent state, which could even be observed in
890 * user space when a new CPU is brought up. The CPU plug uevent
891 * would be delivered and user space reacting on it would fail to
892 * move tasks to the newly plugged CPU up to the point where the
893 * work has finished because up to that point the newly plugged CPU
894 * is not assignable in cpusets/cgroups. On unplug that's not
895 * necessarily a visible issue, but it is still inconsistent state,
896 * which is the real problem which needs to be "fixed". This can't
897 * prevent the transient state between scheduling the work and
898 * returning from waiting for it.
899 */
900 if (!tasks_frozen) {
901 cpuset_wait_for_hotplug();
902 }
903 }
904
905 #ifdef CONFIG_HOTPLUG_CPU
906 #ifndef arch_clear_mm_cpumask_cpu
907 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
908 #endif
909
910 /**
911 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
912 * @cpu: a CPU id
913 *
914 * This function walks all processes, finds a valid mm struct for each one and
915 * then clears a corresponding bit in mm's cpumask. While this all sounds
916 * trivial, there are various non-obvious corner cases, which this function
917 * tries to solve in a safe manner.
918 *
919 * Also note that the function uses a somewhat relaxed locking scheme, so it may
920 * be called only for an already offlined CPU.
921 */
clear_tasks_mm_cpumask(int cpu)922 void clear_tasks_mm_cpumask(int cpu)
923 {
924 struct task_struct *p;
925
926 /*
927 * This function is called after the cpu is taken down and marked
928 * offline, so its not like new tasks will ever get this cpu set in
929 * their mm mask. -- Peter Zijlstra
930 * Thus, we may use rcu_read_lock() here, instead of grabbing
931 * full-fledged tasklist_lock.
932 */
933 WARN_ON(cpu_online(cpu));
934 rcu_read_lock();
935 for_each_process(p)
936 {
937 struct task_struct *t;
938
939 /*
940 * Main thread might exit, but other threads may still have
941 * a valid mm. Find one.
942 */
943 t = find_lock_task_mm(p);
944 if (!t) {
945 continue;
946 }
947 arch_clear_mm_cpumask_cpu(cpu, t->mm);
948 task_unlock(t);
949 }
950 rcu_read_unlock();
951 }
952
953 /* Take this CPU down. */
take_cpu_down(void * _param)954 static int take_cpu_down(void *_param)
955 {
956 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
957 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
958 int err, cpu = smp_processor_id();
959 int ret;
960
961 /* Ensure this CPU doesn't handle any more interrupts. */
962 err = __cpu_disable();
963 if (err < 0) {
964 return err;
965 }
966
967 /*
968 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
969 * do this step again.
970 */
971 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
972 st->state--;
973 /* Invoke the former CPU_DYING callbacks */
974 for (; st->state > target; st->state--) {
975 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
976 /*
977 * DYING must not fail!
978 */
979 WARN_ON_ONCE(ret);
980 }
981
982 /* Give up timekeeping duties */
983 tick_handover_do_timer();
984 /* Remove CPU from timer broadcasting */
985 tick_offline_cpu(cpu);
986 /* Park the stopper thread */
987 stop_machine_park(cpu);
988 return 0;
989 }
990
takedown_cpu(unsigned int cpu)991 static int takedown_cpu(unsigned int cpu)
992 {
993 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
994 int err;
995
996 /* Park the smpboot threads */
997 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
998
999 /*
1000 * Prevent irq alloc/free while the dying cpu reorganizes the
1001 * interrupt affinities.
1002 */
1003 irq_lock_sparse();
1004
1005 /*
1006 * So now all preempt/rcu users must observe !cpu_active().
1007 */
1008 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1009 if (err) {
1010 /* CPU refused to die */
1011 irq_unlock_sparse();
1012 /* Unpark the hotplug thread so we can rollback there */
1013 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
1014 return err;
1015 }
1016 BUG_ON(cpu_online(cpu));
1017
1018 /*
1019 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1020 * all runnable tasks from the CPU, there's only the idle task left now
1021 * that the migration thread is done doing the stop_machine thing.
1022 *
1023 * Wait for the stop thread to go away.
1024 */
1025 wait_for_ap_thread(st, false);
1026 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1027
1028 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1029 irq_unlock_sparse();
1030
1031 hotplug_cpu__broadcast_tick_pull(cpu);
1032 /* This actually kills the CPU. */
1033 __cpu_die(cpu);
1034
1035 tick_cleanup_dead_cpu(cpu);
1036 rcutree_migrate_callbacks(cpu);
1037 return 0;
1038 }
1039
cpuhp_complete_idle_dead(void * arg)1040 static void cpuhp_complete_idle_dead(void *arg)
1041 {
1042 struct cpuhp_cpu_state *st = arg;
1043
1044 complete_ap_thread(st, false);
1045 }
1046
cpuhp_report_idle_dead(void)1047 void cpuhp_report_idle_dead(void)
1048 {
1049 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1050
1051 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1052 rcu_report_dead(smp_processor_id());
1053 st->state = CPUHP_AP_IDLE_DEAD;
1054 /*
1055 * We cannot call complete after rcu_report_dead() so we delegate it
1056 * to an online cpu.
1057 */
1058 smp_call_function_single(cpumask_first(cpu_online_mask), cpuhp_complete_idle_dead, st, 0);
1059 }
1060
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)1061 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
1062 {
1063 for (st->state++; st->state < st->target; st->state++) {
1064 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1065 }
1066 }
1067
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1068 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
1069 {
1070 enum cpuhp_state prev_state = st->state;
1071 int ret = 0;
1072
1073 for (; st->state > target; st->state--) {
1074 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
1075 if (ret) {
1076 st->target = prev_state;
1077 if (st->state < prev_state) {
1078 undo_cpu_down(cpu, st);
1079 }
1080 break;
1081 }
1082 }
1083 return ret;
1084 }
1085
1086 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1087 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1088 {
1089 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1090 int prev_state, ret = 0;
1091
1092 if (num_active_cpus() == 1 && cpu_active(cpu)) {
1093 return -EBUSY;
1094 }
1095
1096 if (!cpu_present(cpu)) {
1097 return -EINVAL;
1098 }
1099
1100 #ifdef CONFIG_CPU_ISOLATION_OPT
1101 if (!tasks_frozen && !cpu_isolated(cpu) && num_online_uniso_cpus() == 1) {
1102 return -EBUSY;
1103 }
1104 #endif
1105
1106 cpus_write_lock();
1107
1108 cpuhp_tasks_frozen = tasks_frozen;
1109
1110 prev_state = cpuhp_set_state(st, target);
1111 /*
1112 * If the current CPU state is in the range of the AP hotplug thread,
1113 * then we need to kick the thread.
1114 */
1115 if (st->state > CPUHP_TEARDOWN_CPU) {
1116 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1117 ret = cpuhp_kick_ap_work(cpu);
1118 /*
1119 * The AP side has done the error rollback already. Just
1120 * return the error code..
1121 */
1122 if (ret) {
1123 goto out;
1124 }
1125
1126 /*
1127 * We might have stopped still in the range of the AP hotplug
1128 * thread. Nothing to do anymore.
1129 */
1130 if (st->state > CPUHP_TEARDOWN_CPU) {
1131 goto out;
1132 }
1133
1134 st->target = target;
1135 }
1136 /*
1137 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1138 * to do the further cleanups.
1139 */
1140 ret = cpuhp_down_callbacks(cpu, st, target);
1141 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1142 cpuhp_reset_state(st, prev_state);
1143 _cpuhp_kick_ap(st);
1144 }
1145
1146 out:
1147 cpus_write_unlock();
1148 /*
1149 * Do post unplug cleanup. This is still protected against
1150 * concurrent CPU hotplug via cpu_add_remove_lock.
1151 */
1152 lockup_detector_cleanup();
1153 arch_smt_update();
1154 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1155 return ret;
1156 }
1157
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1158 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1159 {
1160 if (cpu_hotplug_disabled) {
1161 return -EBUSY;
1162 }
1163 return _cpu_down(cpu, 0, target);
1164 }
1165
cpu_down(unsigned int cpu,enum cpuhp_state target)1166 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1167 {
1168 int err;
1169
1170 cpu_maps_update_begin();
1171 err = cpu_down_maps_locked(cpu, target);
1172 cpu_maps_update_done();
1173 return err;
1174 }
1175
1176 /**
1177 * cpu_device_down - Bring down a cpu device
1178 * @dev: Pointer to the cpu device to offline
1179 *
1180 * This function is meant to be used by device core cpu subsystem only.
1181 *
1182 * Other subsystems should use remove_cpu() instead.
1183 */
cpu_device_down(struct device * dev)1184 int cpu_device_down(struct device *dev)
1185 {
1186 return cpu_down(dev->id, CPUHP_OFFLINE);
1187 }
1188
remove_cpu(unsigned int cpu)1189 int remove_cpu(unsigned int cpu)
1190 {
1191 int ret;
1192
1193 lock_device_hotplug();
1194 ret = device_offline(get_cpu_device(cpu));
1195 unlock_device_hotplug();
1196
1197 return ret;
1198 }
1199 EXPORT_SYMBOL_GPL(remove_cpu);
1200
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1201 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1202 {
1203 unsigned int cpu;
1204 int error;
1205
1206 cpu_maps_update_begin();
1207
1208 /*
1209 * Make certain the cpu I'm about to reboot on is online.
1210 *
1211 * This is inline to what migrate_to_reboot_cpu() already do.
1212 */
1213 if (!cpu_online(primary_cpu)) {
1214 primary_cpu = cpumask_first(cpu_online_mask);
1215 }
1216
1217 for_each_online_cpu(cpu)
1218 {
1219 if (cpu == primary_cpu) {
1220 continue;
1221 }
1222
1223 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1224 if (error) {
1225 pr_err("Failed to offline CPU%d - error=%d", cpu, error);
1226 break;
1227 }
1228 }
1229
1230 /*
1231 * Ensure all but the reboot CPU are offline.
1232 */
1233 BUG_ON(num_online_cpus() > 1);
1234
1235 /*
1236 * Make sure the CPUs won't be enabled by someone else after this
1237 * point. Kexec will reboot to a new kernel shortly resetting
1238 * everything along the way.
1239 */
1240 cpu_hotplug_disabled++;
1241
1242 cpu_maps_update_done();
1243 }
1244
1245 #else
1246 #define takedown_cpu NULL
1247 #endif /* CONFIG_HOTPLUG_CPU */
1248
1249 /**
1250 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1251 * @cpu: cpu that just started
1252 *
1253 * It must be called by the arch code on the new cpu, before the new cpu
1254 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1255 */
notify_cpu_starting(unsigned int cpu)1256 void notify_cpu_starting(unsigned int cpu)
1257 {
1258 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1259 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1260 int ret;
1261
1262 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1263 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1264 while (st->state < target) {
1265 st->state++;
1266 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1267 /*
1268 * STARTING must not fail!
1269 */
1270 WARN_ON_ONCE(ret);
1271 }
1272 }
1273
1274 /*
1275 * Called from the idle task. Wake up the controlling task which brings the
1276 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1277 * online bringup to the hotplug thread.
1278 */
cpuhp_online_idle(enum cpuhp_state state)1279 void cpuhp_online_idle(enum cpuhp_state state)
1280 {
1281 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1282
1283 /* Happens for the boot cpu */
1284 if (state != CPUHP_AP_ONLINE_IDLE) {
1285 return;
1286 }
1287
1288 /*
1289 * Unpart the stopper thread before we start the idle loop (and start
1290 * scheduling); this ensures the stopper task is always available.
1291 */
1292 stop_machine_unpark(smp_processor_id());
1293
1294 st->state = CPUHP_AP_ONLINE_IDLE;
1295 complete_ap_thread(st, true);
1296 }
1297
1298 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1299 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1300 {
1301 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1302 struct task_struct *idle;
1303 int ret = 0;
1304
1305 cpus_write_lock();
1306
1307 if (!cpu_present(cpu)) {
1308 ret = -EINVAL;
1309 goto out;
1310 }
1311
1312 /*
1313 * The caller of cpu_up() might have raced with another
1314 * caller. Nothing to do.
1315 */
1316 if (st->state >= target) {
1317 goto out;
1318 }
1319
1320 if (st->state == CPUHP_OFFLINE) {
1321 /* Let it fail before we try to bring the cpu up */
1322 idle = idle_thread_get(cpu);
1323 if (IS_ERR(idle)) {
1324 ret = PTR_ERR(idle);
1325 goto out;
1326 }
1327 }
1328
1329 cpuhp_tasks_frozen = tasks_frozen;
1330
1331 cpuhp_set_state(st, target);
1332 /*
1333 * If the current CPU state is in the range of the AP hotplug thread,
1334 * then we need to kick the thread once more.
1335 */
1336 if (st->state > CPUHP_BRINGUP_CPU) {
1337 ret = cpuhp_kick_ap_work(cpu);
1338 /*
1339 * The AP side has done the error rollback already. Just
1340 * return the error code..
1341 */
1342 if (ret) {
1343 goto out;
1344 }
1345 }
1346
1347 /*
1348 * Try to reach the target state. We max out on the BP at
1349 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1350 * responsible for bringing it up to the target state.
1351 */
1352 target = min((int)target, CPUHP_BRINGUP_CPU);
1353 ret = cpuhp_up_callbacks(cpu, st, target);
1354 out:
1355 cpus_write_unlock();
1356 arch_smt_update();
1357 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1358 return ret;
1359 }
1360
cpu_up(unsigned int cpu,enum cpuhp_state target)1361 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1362 {
1363 int err = 0;
1364
1365 if (!cpu_possible(cpu)) {
1366 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", cpu);
1367 #if defined(CONFIG_IA64)
1368 pr_err("please check additional_cpus= boot parameter\n");
1369 #endif
1370 return -EINVAL;
1371 }
1372
1373 err = try_online_node(cpu_to_node(cpu));
1374 if (err) {
1375 return err;
1376 }
1377
1378 cpu_maps_update_begin();
1379
1380 if (cpu_hotplug_disabled) {
1381 err = -EBUSY;
1382 goto out;
1383 }
1384 if (!cpu_smt_allowed(cpu)) {
1385 err = -EPERM;
1386 goto out;
1387 }
1388
1389 err = _cpu_up(cpu, 0, target);
1390 out:
1391 cpu_maps_update_done();
1392 return err;
1393 }
1394
1395 /**
1396 * cpu_device_up - Bring up a cpu device
1397 * @dev: Pointer to the cpu device to online
1398 *
1399 * This function is meant to be used by device core cpu subsystem only.
1400 *
1401 * Other subsystems should use add_cpu() instead.
1402 */
cpu_device_up(struct device * dev)1403 int cpu_device_up(struct device *dev)
1404 {
1405 return cpu_up(dev->id, CPUHP_ONLINE);
1406 }
1407
add_cpu(unsigned int cpu)1408 int add_cpu(unsigned int cpu)
1409 {
1410 int ret;
1411
1412 lock_device_hotplug();
1413 ret = device_online(get_cpu_device(cpu));
1414 unlock_device_hotplug();
1415
1416 return ret;
1417 }
1418 EXPORT_SYMBOL_GPL(add_cpu);
1419
1420 /**
1421 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1422 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1423 *
1424 * On some architectures like arm64, we can hibernate on any CPU, but on
1425 * wake up the CPU we hibernated on might be offline as a side effect of
1426 * using maxcpus= for example.
1427 */
bringup_hibernate_cpu(unsigned int sleep_cpu)1428 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1429 {
1430 int ret;
1431
1432 if (!cpu_online(sleep_cpu)) {
1433 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1434 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1435 if (ret) {
1436 pr_err("Failed to bring hibernate-CPU up!\n");
1437 return ret;
1438 }
1439 }
1440 return 0;
1441 }
1442
bringup_nonboot_cpus(unsigned int setup_max_cpus)1443 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1444 {
1445 unsigned int cpu;
1446
1447 for_each_present_cpu(cpu)
1448 {
1449 if (num_online_cpus() >= setup_max_cpus) {
1450 break;
1451 }
1452 if (!cpu_online(cpu)) {
1453 cpu_up(cpu, CPUHP_ONLINE);
1454 }
1455 }
1456 }
1457
1458 #ifdef CONFIG_PM_SLEEP_SMP
1459 static cpumask_var_t frozen_cpus;
1460
freeze_secondary_cpus(int primary)1461 int freeze_secondary_cpus(int primary)
1462 {
1463 int cpu, error = 0;
1464
1465 cpu_maps_update_begin();
1466 if (primary == -1) {
1467 primary = cpumask_first(cpu_online_mask);
1468 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) {
1469 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1470 }
1471 } else {
1472 if (!cpu_online(primary)) {
1473 primary = cpumask_first(cpu_online_mask);
1474 }
1475 }
1476
1477 /*
1478 * We take down all of the non-boot CPUs in one shot to avoid races
1479 * with the userspace trying to use the CPU hotplug at the same time
1480 */
1481 cpumask_clear(frozen_cpus);
1482
1483 pr_info("Disabling non-boot CPUs ...\n");
1484 for_each_online_cpu(cpu)
1485 {
1486 if (cpu == primary) {
1487 continue;
1488 }
1489
1490 if (pm_wakeup_pending()) {
1491 pr_info("Wakeup pending. Abort CPU freeze\n");
1492 error = -EBUSY;
1493 break;
1494 }
1495
1496 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1497 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1498 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1499 if (!error) {
1500 cpumask_set_cpu(cpu, frozen_cpus);
1501 } else {
1502 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1503 break;
1504 }
1505 }
1506
1507 if (!error) {
1508 BUG_ON(num_online_cpus() > 1);
1509 } else {
1510 pr_err("Non-boot CPUs are not disabled\n");
1511 }
1512
1513 /*
1514 * Make sure the CPUs won't be enabled by someone else. We need to do
1515 * this even in case of failure as all freeze_secondary_cpus() users are
1516 * supposed to do thaw_secondary_cpus() on the failure path.
1517 */
1518 cpu_hotplug_disabled++;
1519
1520 cpu_maps_update_done();
1521 return error;
1522 }
1523
arch_thaw_secondary_cpus_begin(void)1524 void __weak arch_thaw_secondary_cpus_begin(void)
1525 {
1526 }
1527
arch_thaw_secondary_cpus_end(void)1528 void __weak arch_thaw_secondary_cpus_end(void)
1529 {
1530 }
1531
thaw_secondary_cpus(void)1532 void thaw_secondary_cpus(void)
1533 {
1534 int cpu, error;
1535
1536 /* Allow everyone to use the CPU hotplug again */
1537 cpu_maps_update_begin();
1538 _cpu_hotplug_enable();
1539 if (cpumask_empty(frozen_cpus)) {
1540 goto out;
1541 }
1542
1543 pr_info("Enabling non-boot CPUs ...\n");
1544
1545 arch_thaw_secondary_cpus_begin();
1546
1547 for_each_cpu(cpu, frozen_cpus)
1548 {
1549 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1550 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1551 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1552 if (!error) {
1553 pr_info("CPU%d is up\n", cpu);
1554 continue;
1555 }
1556 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1557 }
1558
1559 arch_thaw_secondary_cpus_end();
1560
1561 cpumask_clear(frozen_cpus);
1562 out:
1563 cpu_maps_update_done();
1564 }
1565
alloc_frozen_cpus(void)1566 static int __init alloc_frozen_cpus(void)
1567 {
1568 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL | __GFP_ZERO)) {
1569 return -ENOMEM;
1570 }
1571 return 0;
1572 }
1573 core_initcall(alloc_frozen_cpus);
1574
1575 /*
1576 * When callbacks for CPU hotplug notifications are being executed, we must
1577 * ensure that the state of the system with respect to the tasks being frozen
1578 * or not, as reported by the notification, remains unchanged *throughout the
1579 * duration* of the execution of the callbacks.
1580 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1581 *
1582 * This synchronization is implemented by mutually excluding regular CPU
1583 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1584 * Hibernate notifications.
1585 */
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1586 static int cpu_hotplug_pm_callback(struct notifier_block *nb, unsigned long action, void *ptr)
1587 {
1588 switch (action) {
1589 case PM_SUSPEND_PREPARE:
1590 case PM_HIBERNATION_PREPARE:
1591 cpu_hotplug_disable();
1592 break;
1593
1594 case PM_POST_SUSPEND:
1595 case PM_POST_HIBERNATION:
1596 cpu_hotplug_enable();
1597 break;
1598
1599 default:
1600 return NOTIFY_DONE;
1601 }
1602
1603 return NOTIFY_OK;
1604 }
1605
cpu_hotplug_pm_sync_init(void)1606 static int __init cpu_hotplug_pm_sync_init(void)
1607 {
1608 /*
1609 * cpu_hotplug_pm_callback has higher priority than x86
1610 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1611 * to disable cpu hotplug to avoid cpu hotplug race.
1612 */
1613 pm_notifier(cpu_hotplug_pm_callback, 0);
1614 return 0;
1615 }
1616 core_initcall(cpu_hotplug_pm_sync_init);
1617
1618 #endif /* CONFIG_PM_SLEEP_SMP */
1619
1620 int __boot_cpu_id;
1621
1622 #endif /* CONFIG_SMP */
1623
1624 /* Boot processor state steps */
1625 static struct cpuhp_step cpuhp_hp_states[] = {
1626 [CPUHP_OFFLINE] =
1627 {
1628 .name = "offline",
1629 .startup.single = NULL,
1630 .teardown.single = NULL,
1631 },
1632 #ifdef CONFIG_SMP
1633 [CPUHP_CREATE_THREADS] =
1634 {
1635 .name = "threads:prepare",
1636 .startup.single = smpboot_create_threads,
1637 .teardown.single = NULL,
1638 .cant_stop = true,
1639 },
1640 [CPUHP_PERF_PREPARE] =
1641 {
1642 .name = "perf:prepare",
1643 .startup.single = perf_event_init_cpu,
1644 .teardown.single = perf_event_exit_cpu,
1645 },
1646 [CPUHP_RANDOM_PREPARE] = {
1647 .name = "random:prepare",
1648 .startup.single = random_prepare_cpu,
1649 .teardown.single = NULL,
1650 },
1651
1652 [CPUHP_WORKQUEUE_PREP] =
1653 {
1654 .name = "workqueue:prepare",
1655 .startup.single = workqueue_prepare_cpu,
1656 .teardown.single = NULL,
1657 },
1658 [CPUHP_HRTIMERS_PREPARE] =
1659 {
1660 .name = "hrtimers:prepare",
1661 .startup.single = hrtimers_prepare_cpu,
1662 .teardown.single = hrtimers_dead_cpu,
1663 },
1664 [CPUHP_SMPCFD_PREPARE] =
1665 {
1666 .name = "smpcfd:prepare",
1667 .startup.single = smpcfd_prepare_cpu,
1668 .teardown.single = smpcfd_dead_cpu,
1669 },
1670 [CPUHP_RELAY_PREPARE] =
1671 {
1672 .name = "relay:prepare",
1673 .startup.single = relay_prepare_cpu,
1674 .teardown.single = NULL,
1675 },
1676 [CPUHP_SLAB_PREPARE] =
1677 {
1678 .name = "slab:prepare",
1679 .startup.single = slab_prepare_cpu,
1680 .teardown.single = slab_dead_cpu,
1681 },
1682 [CPUHP_RCUTREE_PREP] =
1683 {
1684 .name = "RCU/tree:prepare",
1685 .startup.single = rcutree_prepare_cpu,
1686 .teardown.single = rcutree_dead_cpu,
1687 },
1688 /*
1689 * On the tear-down path, timers_dead_cpu() must be invoked
1690 * before blk_mq_queue_reinit_notify() from notify_dead(),
1691 * otherwise a RCU stall occurs.
1692 */
1693 [CPUHP_TIMERS_PREPARE] =
1694 {
1695 .name = "timers:prepare",
1696 .startup.single = timers_prepare_cpu,
1697 .teardown.single = timers_dead_cpu,
1698 },
1699 /* Kicks the plugged cpu into life */
1700 [CPUHP_BRINGUP_CPU] =
1701 {
1702 .name = "cpu:bringup",
1703 .startup.single = bringup_cpu,
1704 .teardown.single = finish_cpu,
1705 .cant_stop = true,
1706 },
1707 /* Final state before CPU kills itself */
1708 [CPUHP_AP_IDLE_DEAD] =
1709 {
1710 .name = "idle:dead",
1711 },
1712 /*
1713 * Last state before CPU enters the idle loop to die. Transient state
1714 * for synchronization.
1715 */
1716 [CPUHP_AP_OFFLINE] =
1717 {
1718 .name = "ap:offline",
1719 .cant_stop = true,
1720 },
1721 /* First state is scheduler control. Interrupts are disabled */
1722 [CPUHP_AP_SCHED_STARTING] =
1723 {
1724 .name = "sched:starting",
1725 .startup.single = sched_cpu_starting,
1726 .teardown.single = sched_cpu_dying,
1727 },
1728 [CPUHP_AP_RCUTREE_DYING] =
1729 {
1730 .name = "RCU/tree:dying",
1731 .startup.single = NULL,
1732 .teardown.single = rcutree_dying_cpu,
1733 },
1734 [CPUHP_AP_SMPCFD_DYING] =
1735 {
1736 .name = "smpcfd:dying",
1737 .startup.single = NULL,
1738 .teardown.single = smpcfd_dying_cpu,
1739 },
1740 /* Entry state on starting. Interrupts enabled from here on. Transient
1741 * state for synchronsization */
1742 [CPUHP_AP_ONLINE] =
1743 {
1744 .name = "ap:online",
1745 },
1746 /*
1747 * Handled on controll processor until the plugged processor manages
1748 * this itself.
1749 */
1750 [CPUHP_TEARDOWN_CPU] =
1751 {
1752 .name = "cpu:teardown",
1753 .startup.single = NULL,
1754 .teardown.single = takedown_cpu,
1755 .cant_stop = true,
1756 },
1757 /* Handle smpboot threads park/unpark */
1758 [CPUHP_AP_SMPBOOT_THREADS] =
1759 {
1760 .name = "smpboot/threads:online",
1761 .startup.single = smpboot_unpark_threads,
1762 .teardown.single = smpboot_park_threads,
1763 },
1764 [CPUHP_AP_IRQ_AFFINITY_ONLINE] =
1765 {
1766 .name = "irq/affinity:online",
1767 .startup.single = irq_affinity_online_cpu,
1768 .teardown.single = NULL,
1769 },
1770 [CPUHP_AP_PERF_ONLINE] =
1771 {
1772 .name = "perf:online",
1773 .startup.single = perf_event_init_cpu,
1774 .teardown.single = perf_event_exit_cpu,
1775 },
1776 [CPUHP_AP_WATCHDOG_ONLINE] =
1777 {
1778 .name = "lockup_detector:online",
1779 .startup.single = lockup_detector_online_cpu,
1780 .teardown.single = lockup_detector_offline_cpu,
1781 },
1782 [CPUHP_AP_WORKQUEUE_ONLINE] =
1783 {
1784 .name = "workqueue:online",
1785 .startup.single = workqueue_online_cpu,
1786 .teardown.single = workqueue_offline_cpu,
1787 },
1788 [CPUHP_AP_RANDOM_ONLINE] = {
1789 .name = "random:online",
1790 .startup.single = random_online_cpu,
1791 .teardown.single = NULL,
1792 },
1793 [CPUHP_AP_RCUTREE_ONLINE] =
1794 {
1795 .name = "RCU/tree:online",
1796 .startup.single = rcutree_online_cpu,
1797 .teardown.single = rcutree_offline_cpu,
1798 },
1799 #endif
1800 /*
1801 * The dynamically registered state space is here
1802 */
1803
1804 #ifdef CONFIG_SMP
1805 /* Last state is scheduler control setting the cpu active */
1806 [CPUHP_AP_ACTIVE] =
1807 {
1808 .name = "sched:active",
1809 .startup.single = sched_cpu_activate,
1810 .teardown.single = sched_cpu_deactivate,
1811 },
1812 #endif
1813
1814 /* CPU is fully up and running. */
1815 [CPUHP_ONLINE] =
1816 {
1817 .name = "online",
1818 .startup.single = NULL,
1819 .teardown.single = NULL,
1820 },
1821 };
1822
1823 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1824 static int cpuhp_cb_check(enum cpuhp_state state)
1825 {
1826 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) {
1827 return -EINVAL;
1828 }
1829 return 0;
1830 }
1831
1832 /*
1833 * Returns a free for dynamic slot assignment of the Online state. The states
1834 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1835 * by having no name assigned.
1836 */
cpuhp_reserve_state(enum cpuhp_state state)1837 static int cpuhp_reserve_state(enum cpuhp_state state)
1838 {
1839 enum cpuhp_state i, end;
1840 struct cpuhp_step *step;
1841
1842 switch (state) {
1843 case CPUHP_AP_ONLINE_DYN:
1844 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1845 end = CPUHP_AP_ONLINE_DYN_END;
1846 break;
1847 case CPUHP_BP_PREPARE_DYN:
1848 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1849 end = CPUHP_BP_PREPARE_DYN_END;
1850 break;
1851 default:
1852 return -EINVAL;
1853 }
1854
1855 for (i = state; i <= end; i++, step++) {
1856 if (!step->name) {
1857 return i;
1858 }
1859 }
1860 WARN(1, "No more dynamic states available for CPU hotplug\n");
1861 return -ENOSPC;
1862 }
1863
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1864 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu),
1865 int (*teardown)(unsigned int cpu), bool multi_instance)
1866 {
1867 /* (Un)Install the callbacks for further cpu hotplug operations */
1868 struct cpuhp_step *sp;
1869 int ret = 0;
1870
1871 /*
1872 * If name is NULL, then the state gets removed.
1873 *
1874 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1875 * the first allocation from these dynamic ranges, so the removal
1876 * would trigger a new allocation and clear the wrong (already
1877 * empty) state, leaving the callbacks of the to be cleared state
1878 * dangling, which causes wreckage on the next hotplug operation.
1879 */
1880 if (name && (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN)) {
1881 ret = cpuhp_reserve_state(state);
1882 if (ret < 0) {
1883 return ret;
1884 }
1885 state = ret;
1886 }
1887 sp = cpuhp_get_step(state);
1888 if (name && sp->name) {
1889 return -EBUSY;
1890 }
1891
1892 sp->startup.single = startup;
1893 sp->teardown.single = teardown;
1894 sp->name = name;
1895 sp->multi_instance = multi_instance;
1896 INIT_HLIST_HEAD(&sp->list);
1897 return ret;
1898 }
1899
cpuhp_get_teardown_cb(enum cpuhp_state state)1900 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1901 {
1902 return cpuhp_get_step(state)->teardown.single;
1903 }
1904
1905 /*
1906 * Call the startup/teardown function for a step either on the AP or
1907 * on the current CPU.
1908 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1909 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, struct hlist_node *node)
1910 {
1911 struct cpuhp_step *sp = cpuhp_get_step(state);
1912 int ret;
1913
1914 /*
1915 * If there's nothing to do, we done.
1916 * Relies on the union for multi_instance.
1917 */
1918 if ((bringup && !sp->startup.single) || (!bringup && !sp->teardown.single)) {
1919 return 0;
1920 }
1921 /*
1922 * The non AP bound callbacks can fail on bringup. On teardown
1923 * e.g. module removal we crash for now.
1924 */
1925 #ifdef CONFIG_SMP
1926 if (cpuhp_is_ap_state(state)) {
1927 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1928 } else {
1929 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1930 }
1931 #else
1932 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1933 #endif
1934 BUG_ON(ret && !bringup);
1935 return ret;
1936 }
1937
1938 /*
1939 * Called from __cpuhp_setup_state on a recoverable failure.
1940 *
1941 * Note: The teardown callbacks for rollback are not allowed to fail!
1942 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1943 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, struct hlist_node *node)
1944 {
1945 int cpu;
1946
1947 /* Roll back the already executed steps on the other cpus */
1948 for_each_present_cpu(cpu)
1949 {
1950 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1951 int cpustate = st->state;
1952
1953 if (cpu >= failedcpu) {
1954 break;
1955 }
1956
1957 /* Did we invoke the startup call on that cpu ? */
1958 if (cpustate >= state) {
1959 cpuhp_issue_call(cpu, state, false, node);
1960 }
1961 }
1962 }
1963
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1964 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, struct hlist_node *node, bool invoke)
1965 {
1966 struct cpuhp_step *sp;
1967 int cpu;
1968 int ret;
1969
1970 lockdep_assert_cpus_held();
1971
1972 sp = cpuhp_get_step(state);
1973 if (sp->multi_instance == false) {
1974 return -EINVAL;
1975 }
1976
1977 mutex_lock(&cpuhp_state_mutex);
1978
1979 if (!invoke || !sp->startup.multi) {
1980 goto add_node;
1981 }
1982
1983 /*
1984 * Try to call the startup callback for each present cpu
1985 * depending on the hotplug state of the cpu.
1986 */
1987 for_each_present_cpu(cpu)
1988 {
1989 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1990 int cpustate = st->state;
1991
1992 if (cpustate < state) {
1993 continue;
1994 }
1995
1996 ret = cpuhp_issue_call(cpu, state, true, node);
1997 if (ret) {
1998 if (sp->teardown.multi) {
1999 cpuhp_rollback_install(cpu, state, node);
2000 }
2001 goto unlock;
2002 }
2003 }
2004 add_node:
2005 ret = 0;
2006 hlist_add_head(node, &sp->list);
2007 unlock:
2008 mutex_unlock(&cpuhp_state_mutex);
2009 return ret;
2010 }
2011
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2012 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, bool invoke)
2013 {
2014 int ret;
2015
2016 cpus_read_lock();
2017 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2018 cpus_read_unlock();
2019 return ret;
2020 }
2021 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2022
2023 /**
2024 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2025 * @state: The state to setup
2026 * @invoke: If true, the startup function is invoked for cpus where
2027 * cpu state >= @state
2028 * @startup: startup callback function
2029 * @teardown: teardown callback function
2030 * @multi_instance: State is set up for multiple instances which get
2031 * added afterwards.
2032 *
2033 * The caller needs to hold cpus read locked while calling this function.
2034 * Returns:
2035 * On success:
2036 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
2037 * 0 for all other states
2038 * On failure: proper (negative) error code
2039 */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2040 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, const char *name, bool invoke,
2041 int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu),
2042 bool multi_instance)
2043 {
2044 int cpu, ret = 0;
2045 bool dynstate;
2046
2047 lockdep_assert_cpus_held();
2048
2049 if (cpuhp_cb_check(state) || !name) {
2050 return -EINVAL;
2051 }
2052
2053 mutex_lock(&cpuhp_state_mutex);
2054
2055 ret = cpuhp_store_callbacks(state, name, startup, teardown, multi_instance);
2056
2057 dynstate = state == CPUHP_AP_ONLINE_DYN;
2058 if (ret > 0 && dynstate) {
2059 state = ret;
2060 ret = 0;
2061 }
2062
2063 if (ret || !invoke || !startup) {
2064 goto out;
2065 }
2066
2067 /*
2068 * Try to call the startup callback for each present cpu
2069 * depending on the hotplug state of the cpu.
2070 */
2071 for_each_present_cpu(cpu)
2072 {
2073 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2074 int cpustate = st->state;
2075
2076 if (cpustate < state) {
2077 continue;
2078 }
2079
2080 ret = cpuhp_issue_call(cpu, state, true, NULL);
2081 if (ret) {
2082 if (teardown) {
2083 cpuhp_rollback_install(cpu, state, NULL);
2084 }
2085 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2086 goto out;
2087 }
2088 }
2089 out:
2090 mutex_unlock(&cpuhp_state_mutex);
2091 /*
2092 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2093 * dynamically allocated state in case of success.
2094 */
2095 if (!ret && dynstate) {
2096 return state;
2097 }
2098 return ret;
2099 }
2100 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2101
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2102 int __cpuhp_setup_state(enum cpuhp_state state, const char *name, bool invoke, int (*startup)(unsigned int cpu),
2103 int (*teardown)(unsigned int cpu), bool multi_instance)
2104 {
2105 int ret;
2106
2107 cpus_read_lock();
2108 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, teardown, multi_instance);
2109 cpus_read_unlock();
2110 return ret;
2111 }
2112 EXPORT_SYMBOL(__cpuhp_setup_state);
2113
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2114 int __cpuhp_state_remove_instance(enum cpuhp_state state, struct hlist_node *node, bool invoke)
2115 {
2116 struct cpuhp_step *sp = cpuhp_get_step(state);
2117 int cpu;
2118
2119 BUG_ON(cpuhp_cb_check(state));
2120
2121 if (!sp->multi_instance) {
2122 return -EINVAL;
2123 }
2124
2125 cpus_read_lock();
2126 mutex_lock(&cpuhp_state_mutex);
2127
2128 if (!invoke || !cpuhp_get_teardown_cb(state)) {
2129 goto remove;
2130 }
2131 /*
2132 * Call the teardown callback for each present cpu depending
2133 * on the hotplug state of the cpu. This function is not
2134 * allowed to fail currently!
2135 */
2136 for_each_present_cpu(cpu)
2137 {
2138 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2139 int cpustate = st->state;
2140
2141 if (cpustate >= state) {
2142 cpuhp_issue_call(cpu, state, false, node);
2143 }
2144 }
2145
2146 remove:
2147 hlist_del(node);
2148 mutex_unlock(&cpuhp_state_mutex);
2149 cpus_read_unlock();
2150
2151 return 0;
2152 }
2153 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2154
2155 /**
2156 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2157 * @state: The state to remove
2158 * @invoke: If true, the teardown function is invoked for cpus where
2159 * cpu state >= @state
2160 *
2161 * The caller needs to hold cpus read locked while calling this function.
2162 * The teardown callback is currently not allowed to fail. Think
2163 * about module removal!
2164 */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2165 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2166 {
2167 struct cpuhp_step *sp = cpuhp_get_step(state);
2168 int cpu;
2169
2170 BUG_ON(cpuhp_cb_check(state));
2171
2172 lockdep_assert_cpus_held();
2173
2174 mutex_lock(&cpuhp_state_mutex);
2175 if (sp->multi_instance) {
2176 WARN(!hlist_empty(&sp->list), "Error: Removing state %d which has instances left.\n", state);
2177 goto remove;
2178 }
2179
2180 if (!invoke || !cpuhp_get_teardown_cb(state)) {
2181 goto remove;
2182 }
2183
2184 /*
2185 * Call the teardown callback for each present cpu depending
2186 * on the hotplug state of the cpu. This function is not
2187 * allowed to fail currently!
2188 */
2189 for_each_present_cpu(cpu)
2190 {
2191 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2192 int cpustate = st->state;
2193
2194 if (cpustate >= state) {
2195 cpuhp_issue_call(cpu, state, false, NULL);
2196 }
2197 }
2198 remove:
2199 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2200 mutex_unlock(&cpuhp_state_mutex);
2201 }
2202 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2203
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2204 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2205 {
2206 cpus_read_lock();
2207 __cpuhp_remove_state_cpuslocked(state, invoke);
2208 cpus_read_unlock();
2209 }
2210 EXPORT_SYMBOL(__cpuhp_remove_state);
2211
2212 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2213 static void cpuhp_offline_cpu_device(unsigned int cpu)
2214 {
2215 struct device *dev = get_cpu_device(cpu);
2216
2217 dev->offline = true;
2218 /* Tell user space about the state change */
2219 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2220 }
2221
cpuhp_online_cpu_device(unsigned int cpu)2222 static void cpuhp_online_cpu_device(unsigned int cpu)
2223 {
2224 struct device *dev = get_cpu_device(cpu);
2225
2226 dev->offline = false;
2227 /* Tell user space about the state change */
2228 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2229 }
2230
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2231 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2232 {
2233 int cpu, ret = 0;
2234
2235 cpu_maps_update_begin();
2236 for_each_online_cpu(cpu)
2237 {
2238 if (topology_is_primary_thread(cpu)) {
2239 continue;
2240 }
2241 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2242 if (ret) {
2243 break;
2244 }
2245 /*
2246 * As this needs to hold the cpu maps lock it's impossible
2247 * to call device_offline() because that ends up calling
2248 * cpu_down() which takes cpu maps lock. cpu maps lock
2249 * needs to be held as this might race against in kernel
2250 * abusers of the hotplug machinery (thermal management).
2251 *
2252 * So nothing would update device:offline state. That would
2253 * leave the sysfs entry stale and prevent onlining after
2254 * smt control has been changed to 'off' again. This is
2255 * called under the sysfs hotplug lock, so it is properly
2256 * serialized against the regular offline usage.
2257 */
2258 cpuhp_offline_cpu_device(cpu);
2259 }
2260 if (!ret) {
2261 cpu_smt_control = ctrlval;
2262 }
2263 cpu_maps_update_done();
2264 return ret;
2265 }
2266
cpuhp_smt_enable(void)2267 int cpuhp_smt_enable(void)
2268 {
2269 int cpu, ret = 0;
2270
2271 cpu_maps_update_begin();
2272 cpu_smt_control = CPU_SMT_ENABLED;
2273 for_each_present_cpu(cpu)
2274 {
2275 /* Skip online CPUs and CPUs on offline nodes */
2276 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) {
2277 continue;
2278 }
2279 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2280 if (ret) {
2281 break;
2282 }
2283 /* See comment in cpuhp_smt_disable() */
2284 cpuhp_online_cpu_device(cpu);
2285 }
2286 cpu_maps_update_done();
2287 return ret;
2288 }
2289 #endif
2290
2291 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)2292 static ssize_t show_cpuhp_state(struct device *dev, struct device_attribute *attr, char *buf)
2293 {
2294 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2295
2296 return sprintf(buf, "%d\n", st->state);
2297 }
2298 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2299
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2300 static ssize_t write_cpuhp_target(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2301 {
2302 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2303 struct cpuhp_step *sp;
2304 int target, ret;
2305
2306 ret = kstrtoint(buf, 10, &target);
2307 if (ret) {
2308 return ret;
2309 }
2310
2311 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2312 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) {
2313 return -EINVAL;
2314 }
2315 #else
2316 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) {
2317 return -EINVAL;
2318 }
2319 #endif
2320
2321 ret = lock_device_hotplug_sysfs();
2322 if (ret) {
2323 return ret;
2324 }
2325
2326 mutex_lock(&cpuhp_state_mutex);
2327 sp = cpuhp_get_step(target);
2328 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2329 mutex_unlock(&cpuhp_state_mutex);
2330 if (ret) {
2331 goto out;
2332 }
2333
2334 if (st->state < target) {
2335 ret = cpu_up(dev->id, target);
2336 } else {
2337 ret = cpu_down(dev->id, target);
2338 }
2339 out:
2340 unlock_device_hotplug();
2341 return ret ? ret : count;
2342 }
2343
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)2344 static ssize_t show_cpuhp_target(struct device *dev, struct device_attribute *attr, char *buf)
2345 {
2346 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2347
2348 return sprintf(buf, "%d\n", st->target);
2349 }
2350 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2351
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2352 static ssize_t write_cpuhp_fail(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2353 {
2354 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2355 struct cpuhp_step *sp;
2356 int fail, ret;
2357
2358 ret = kstrtoint(buf, 10, &fail);
2359 if (ret) {
2360 return ret;
2361 }
2362
2363 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) {
2364 return -EINVAL;
2365 }
2366
2367 /*
2368 * Cannot fail STARTING/DYING callbacks.
2369 */
2370 if (cpuhp_is_atomic_state(fail)) {
2371 return -EINVAL;
2372 }
2373
2374 /*
2375 * Cannot fail anything that doesn't have callbacks.
2376 */
2377 mutex_lock(&cpuhp_state_mutex);
2378 sp = cpuhp_get_step(fail);
2379 if (!sp->startup.single && !sp->teardown.single) {
2380 ret = -EINVAL;
2381 }
2382 mutex_unlock(&cpuhp_state_mutex);
2383 if (ret) {
2384 return ret;
2385 }
2386
2387 st->fail = fail;
2388
2389 return count;
2390 }
2391
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)2392 static ssize_t show_cpuhp_fail(struct device *dev, struct device_attribute *attr, char *buf)
2393 {
2394 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2395
2396 return sprintf(buf, "%d\n", st->fail);
2397 }
2398
2399 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2400
2401 static struct attribute *cpuhp_cpu_attrs[] = {&dev_attr_state.attr, &dev_attr_target.attr, &dev_attr_fail.attr, NULL};
2402
2403 static const struct attribute_group cpuhp_cpu_attr_group = {.attrs = cpuhp_cpu_attrs, .name = "hotplug", NULL};
2404
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2405 static ssize_t show_cpuhp_states(struct device *dev, struct device_attribute *attr, char *buf)
2406 {
2407 ssize_t cur, res = 0;
2408 int i;
2409
2410 mutex_lock(&cpuhp_state_mutex);
2411 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2412 struct cpuhp_step *sp = cpuhp_get_step(i);
2413
2414 if (sp->name) {
2415 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2416 buf += cur;
2417 res += cur;
2418 }
2419 }
2420 mutex_unlock(&cpuhp_state_mutex);
2421 return res;
2422 }
2423 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2424
2425 static struct attribute *cpuhp_cpu_root_attrs[] = {&dev_attr_states.attr, NULL};
2426
2427 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2428 .attrs = cpuhp_cpu_root_attrs, .name = "hotplug", NULL};
2429
2430 #ifdef CONFIG_HOTPLUG_SMT
2431
_store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2432 static ssize_t _store_smt_control(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2433 {
2434 int ctrlval, ret;
2435
2436 if (sysfs_streq(buf, "on")) {
2437 ctrlval = CPU_SMT_ENABLED;
2438 } else if (sysfs_streq(buf, "off")) {
2439 ctrlval = CPU_SMT_DISABLED;
2440 } else if (sysfs_streq(buf, "forceoff")) {
2441 ctrlval = CPU_SMT_FORCE_DISABLED;
2442 } else {
2443 return -EINVAL;
2444 }
2445
2446 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) {
2447 return -EPERM;
2448 }
2449
2450 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) {
2451 return -ENODEV;
2452 }
2453
2454 ret = lock_device_hotplug_sysfs();
2455 if (ret) {
2456 return ret;
2457 }
2458
2459 if (ctrlval != cpu_smt_control) {
2460 switch (ctrlval) {
2461 case CPU_SMT_ENABLED:
2462 ret = cpuhp_smt_enable();
2463 break;
2464 case CPU_SMT_DISABLED:
2465 case CPU_SMT_FORCE_DISABLED:
2466 ret = cpuhp_smt_disable(ctrlval);
2467 break;
2468 }
2469 }
2470
2471 unlock_device_hotplug();
2472 return ret ? ret : count;
2473 }
2474
2475 #else /* !CONFIG_HOTPLUG_SMT */
_store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2476 static ssize_t _store_smt_control(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2477 {
2478 return -ENODEV;
2479 }
2480 #endif /* CONFIG_HOTPLUG_SMT */
2481
2482 static const char *smt_states[] = {
2483 [CPU_SMT_ENABLED] = "on",
2484 [CPU_SMT_DISABLED] = "off",
2485 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2486 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2487 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2488 };
2489
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2490 static ssize_t show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2491 {
2492 const char *state = smt_states[cpu_smt_control];
2493
2494 return snprintf(buf, PAGE_SIZE - CPU_PAGE_SIZE_OFF_TWO, "%s\n", state);
2495 }
2496
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2497 static ssize_t store_smt_control(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2498 {
2499 return _store_smt_control(dev, attr, buf, count);
2500 }
2501 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2502
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2503 static ssize_t show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2504 {
2505 return snprintf(buf, PAGE_SIZE - CPU_PAGE_SIZE_OFF_TWO, "%d\n", sched_smt_active());
2506 }
2507 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2508
2509 static struct attribute *cpuhp_smt_attrs[] = {&dev_attr_control.attr, &dev_attr_active.attr, NULL};
2510
2511 static const struct attribute_group cpuhp_smt_attr_group = {.attrs = cpuhp_smt_attrs, .name = "smt", NULL};
2512
cpu_smt_sysfs_init(void)2513 static int __init cpu_smt_sysfs_init(void)
2514 {
2515 return sysfs_create_group(&cpu_subsys.dev_root->kobj, &cpuhp_smt_attr_group);
2516 }
2517
cpuhp_sysfs_init(void)2518 static int __init cpuhp_sysfs_init(void)
2519 {
2520 int cpu, ret;
2521
2522 ret = cpu_smt_sysfs_init();
2523 if (ret) {
2524 return ret;
2525 }
2526
2527 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, &cpuhp_cpu_root_attr_group);
2528 if (ret) {
2529 return ret;
2530 }
2531
2532 for_each_possible_cpu(cpu)
2533 {
2534 struct device *dev = get_cpu_device(cpu);
2535
2536 if (!dev) {
2537 continue;
2538 }
2539 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2540 if (ret) {
2541 return ret;
2542 }
2543 }
2544 return 0;
2545 }
2546 device_initcall(cpuhp_sysfs_init);
2547 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2548
2549 /*
2550 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2551 * represents all NR_CPUS bits binary values of 1<<nr.
2552 *
2553 * It is used by cpumask_of() to get a constant address to a CPU
2554 * mask value that has a single bit set only.
2555 */
2556
2557 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2558 #define MASK_DECLARE_1(x) [(x) + 1][0] = (1UL << (x))
2559 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1((x) + 1)
2560 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2((x) + 2)
2561 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4((x) + 4)
2562
2563 const unsigned long cpu_bit_bitmap[BITS_PER_LONG + 1][BITS_TO_LONGS(NR_CPUS)] = {
2564
2565 MASK_DECLARE_8(0), MASK_DECLARE_8(8), MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2566 #if BITS_PER_LONG > 32
2567 MASK_DECLARE_8(32), MASK_DECLARE_8(40), MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2568 #endif
2569 };
2570 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2571
2572 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2573 EXPORT_SYMBOL(cpu_all_bits);
2574
2575 #ifdef CONFIG_INIT_ALL_POSSIBLE
2576 struct cpumask __cpu_possible_mask __read_mostly = {CPU_BITS_ALL};
2577 #else
2578 struct cpumask __cpu_possible_mask __read_mostly;
2579 #endif
2580 EXPORT_SYMBOL(__cpu_possible_mask);
2581
2582 struct cpumask __cpu_online_mask __read_mostly;
2583 EXPORT_SYMBOL(__cpu_online_mask);
2584
2585 struct cpumask __cpu_present_mask __read_mostly;
2586 EXPORT_SYMBOL(__cpu_present_mask);
2587
2588 struct cpumask __cpu_active_mask __read_mostly;
2589 EXPORT_SYMBOL(__cpu_active_mask);
2590
2591 #ifdef CONFIG_CPU_ISOLATION_OPT
2592 struct cpumask __cpu_isolated_mask __read_mostly;
2593 EXPORT_SYMBOL(__cpu_isolated_mask);
2594 #endif
2595
2596 atomic_t __num_online_cpus __read_mostly;
2597 EXPORT_SYMBOL(__num_online_cpus);
2598
init_cpu_present(const struct cpumask * src)2599 void init_cpu_present(const struct cpumask *src)
2600 {
2601 cpumask_copy(&__cpu_present_mask, src);
2602 }
2603
init_cpu_possible(const struct cpumask * src)2604 void init_cpu_possible(const struct cpumask *src)
2605 {
2606 cpumask_copy(&__cpu_possible_mask, src);
2607 }
2608
init_cpu_online(const struct cpumask * src)2609 void init_cpu_online(const struct cpumask *src)
2610 {
2611 cpumask_copy(&__cpu_online_mask, src);
2612 }
2613
2614 #ifdef CONFIG_CPU_ISOLATION_OPT
init_cpu_isolated(const struct cpumask * src)2615 void init_cpu_isolated(const struct cpumask *src)
2616 {
2617 cpumask_copy(&__cpu_isolated_mask, src);
2618 }
2619 #endif
2620
set_cpu_online(unsigned int cpu,bool online)2621 void set_cpu_online(unsigned int cpu, bool online)
2622 {
2623 /*
2624 * atomic_inc/dec() is required to handle the horrid abuse of this
2625 * function by the reboot and kexec code which invoke it from
2626 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2627 * regular CPU hotplug is properly serialized.
2628 *
2629 * Note, that the fact that __num_online_cpus is of type atomic_t
2630 * does not protect readers which are not serialized against
2631 * concurrent hotplug operations.
2632 */
2633 if (online) {
2634 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) {
2635 atomic_inc(&__num_online_cpus);
2636 }
2637 } else {
2638 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) {
2639 atomic_dec(&__num_online_cpus);
2640 }
2641 }
2642 }
2643
2644 /*
2645 * Activate the first processor.
2646 */
boot_cpu_init(void)2647 void __init boot_cpu_init(void)
2648 {
2649 int cpu = smp_processor_id();
2650
2651 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2652 set_cpu_online(cpu, true);
2653 set_cpu_active(cpu, true);
2654 set_cpu_present(cpu, true);
2655 set_cpu_possible(cpu, true);
2656
2657 #ifdef CONFIG_SMP
2658 __boot_cpu_id = cpu;
2659 #endif
2660 }
2661
2662 /*
2663 * Must be called _AFTER_ setting up the per_cpu areas
2664 */
boot_cpu_hotplug_init(void)2665 void __init boot_cpu_hotplug_init(void)
2666 {
2667 #ifdef CONFIG_SMP
2668 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2669 #endif
2670 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2671 }
2672
2673 /*
2674 * These are used for a global "mitigations=" cmdline option for toggling
2675 * optional CPU mitigations.
2676 */
2677 enum cpu_mitigations {
2678 CPU_MITIGATIONS_OFF,
2679 CPU_MITIGATIONS_AUTO,
2680 CPU_MITIGATIONS_AUTO_NOSMT,
2681 };
2682
2683 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
2684
mitigations_parse_cmdline(char * arg)2685 static int __init mitigations_parse_cmdline(char *arg)
2686 {
2687 if (!strcmp(arg, "off")) {
2688 cpu_mitigations = CPU_MITIGATIONS_OFF;
2689 } else if (!strcmp(arg, "auto")) {
2690 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2691 } else if (!strcmp(arg, "auto,nosmt")) {
2692 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2693 } else {
2694 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", arg);
2695 }
2696
2697 return 0;
2698 }
2699 early_param("mitigations", mitigations_parse_cmdline);
2700
2701 /* mitigations=off */
cpu_mitigations_off(void)2702 bool cpu_mitigations_off(void)
2703 {
2704 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2705 }
2706 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2707
2708 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2709 bool cpu_mitigations_auto_nosmt(void)
2710 {
2711 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2712 }
2713 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2714