• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Cell Broadband Engine OProfile Support
4  *
5  * (C) Copyright IBM Corporation 2006
6  *
7  * Authors: Maynard Johnson <maynardj@us.ibm.com>
8  *	    Carl Love <carll@us.ibm.com>
9  */
10 
11 #include <linux/hrtimer.h>
12 #include <linux/smp.h>
13 #include <linux/slab.h>
14 #include <asm/cell-pmu.h>
15 #include <asm/time.h>
16 #include "pr_util.h"
17 
18 #define SCALE_SHIFT 14
19 
20 static u32 *samples;
21 
22 /* spu_prof_running is a flag used to indicate if spu profiling is enabled
23  * or not.  It is set by the routines start_spu_profiling_cycles() and
24  * start_spu_profiling_events().  The flag is cleared by the routines
25  * stop_spu_profiling_cycles() and stop_spu_profiling_events().  These
26  * routines are called via global_start() and global_stop() which are called in
27  * op_powerpc_start() and op_powerpc_stop().  These routines are called once
28  * per system as a result of the user starting/stopping oprofile.  Hence, only
29  * one CPU per user at a time will be changing  the value of spu_prof_running.
30  * In general, OProfile does not protect against multiple users trying to run
31  * OProfile at a time.
32  */
33 int spu_prof_running;
34 static unsigned int profiling_interval;
35 
36 #define NUM_SPU_BITS_TRBUF 16
37 #define SPUS_PER_TB_ENTRY   4
38 
39 #define SPU_PC_MASK	     0xFFFF
40 
41 DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck);
42 static unsigned long oprof_spu_smpl_arry_lck_flags;
43 
set_spu_profiling_frequency(unsigned int freq_khz,unsigned int cycles_reset)44 void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset)
45 {
46 	unsigned long ns_per_cyc;
47 
48 	if (!freq_khz)
49 		freq_khz = ppc_proc_freq/1000;
50 
51 	/* To calculate a timeout in nanoseconds, the basic
52 	 * formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency).
53 	 * To avoid floating point math, we use the scale math
54 	 * technique as described in linux/jiffies.h.  We use
55 	 * a scale factor of SCALE_SHIFT, which provides 4 decimal places
56 	 * of precision.  This is close enough for the purpose at hand.
57 	 *
58 	 * The value of the timeout should be small enough that the hw
59 	 * trace buffer will not get more than about 1/3 full for the
60 	 * maximum user specified (the LFSR value) hw sampling frequency.
61 	 * This is to ensure the trace buffer will never fill even if the
62 	 * kernel thread scheduling varies under a heavy system load.
63 	 */
64 
65 	ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz;
66 	profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT;
67 
68 }
69 
70 /*
71  * Extract SPU PC from trace buffer entry
72  */
spu_pc_extract(int cpu,int entry)73 static void spu_pc_extract(int cpu, int entry)
74 {
75 	/* the trace buffer is 128 bits */
76 	u64 trace_buffer[2];
77 	u64 spu_mask;
78 	int spu;
79 
80 	spu_mask = SPU_PC_MASK;
81 
82 	/* Each SPU PC is 16 bits; hence, four spus in each of
83 	 * the two 64-bit buffer entries that make up the
84 	 * 128-bit trace_buffer entry.	Process two 64-bit values
85 	 * simultaneously.
86 	 * trace[0] SPU PC contents are: 0 1 2 3
87 	 * trace[1] SPU PC contents are: 4 5 6 7
88 	 */
89 
90 	cbe_read_trace_buffer(cpu, trace_buffer);
91 
92 	for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) {
93 		/* spu PC trace entry is upper 16 bits of the
94 		 * 18 bit SPU program counter
95 		 */
96 		samples[spu * TRACE_ARRAY_SIZE + entry]
97 			= (spu_mask & trace_buffer[0]) << 2;
98 		samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry]
99 			= (spu_mask & trace_buffer[1]) << 2;
100 
101 		trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF;
102 		trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF;
103 	}
104 }
105 
cell_spu_pc_collection(int cpu)106 static int cell_spu_pc_collection(int cpu)
107 {
108 	u32 trace_addr;
109 	int entry;
110 
111 	/* process the collected SPU PC for the node */
112 
113 	entry = 0;
114 
115 	trace_addr = cbe_read_pm(cpu, trace_address);
116 	while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
117 		/* there is data in the trace buffer to process */
118 		spu_pc_extract(cpu, entry);
119 
120 		entry++;
121 
122 		if (entry >= TRACE_ARRAY_SIZE)
123 			/* spu_samples is full */
124 			break;
125 
126 		trace_addr = cbe_read_pm(cpu, trace_address);
127 	}
128 
129 	return entry;
130 }
131 
132 
profile_spus(struct hrtimer * timer)133 static enum hrtimer_restart profile_spus(struct hrtimer *timer)
134 {
135 	ktime_t kt;
136 	int cpu, node, k, num_samples, spu_num;
137 
138 	if (!spu_prof_running)
139 		goto stop;
140 
141 	for_each_online_cpu(cpu) {
142 		if (cbe_get_hw_thread_id(cpu))
143 			continue;
144 
145 		node = cbe_cpu_to_node(cpu);
146 
147 		/* There should only be one kernel thread at a time processing
148 		 * the samples.	 In the very unlikely case that the processing
149 		 * is taking a very long time and multiple kernel threads are
150 		 * started to process the samples.  Make sure only one kernel
151 		 * thread is working on the samples array at a time.  The
152 		 * sample array must be loaded and then processed for a given
153 		 * cpu.	 The sample array is not per cpu.
154 		 */
155 		spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
156 				  oprof_spu_smpl_arry_lck_flags);
157 		num_samples = cell_spu_pc_collection(cpu);
158 
159 		if (num_samples == 0) {
160 			spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
161 					       oprof_spu_smpl_arry_lck_flags);
162 			continue;
163 		}
164 
165 		for (k = 0; k < SPUS_PER_NODE; k++) {
166 			spu_num = k + (node * SPUS_PER_NODE);
167 			spu_sync_buffer(spu_num,
168 					samples + (k * TRACE_ARRAY_SIZE),
169 					num_samples);
170 		}
171 
172 		spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
173 				       oprof_spu_smpl_arry_lck_flags);
174 
175 	}
176 	smp_wmb();	/* insure spu event buffer updates are written */
177 			/* don't want events intermingled... */
178 
179 	kt = profiling_interval;
180 	if (!spu_prof_running)
181 		goto stop;
182 	hrtimer_forward(timer, timer->base->get_time(), kt);
183 	return HRTIMER_RESTART;
184 
185  stop:
186 	printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n");
187 	return HRTIMER_NORESTART;
188 }
189 
190 static struct hrtimer timer;
191 /*
192  * Entry point for SPU cycle profiling.
193  * NOTE:  SPU profiling is done system-wide, not per-CPU.
194  *
195  * cycles_reset is the count value specified by the user when
196  * setting up OProfile to count SPU_CYCLES.
197  */
start_spu_profiling_cycles(unsigned int cycles_reset)198 int start_spu_profiling_cycles(unsigned int cycles_reset)
199 {
200 	ktime_t kt;
201 
202 	pr_debug("timer resolution: %lu\n", TICK_NSEC);
203 	kt = profiling_interval;
204 	hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 	hrtimer_set_expires(&timer, kt);
206 	timer.function = profile_spus;
207 
208 	/* Allocate arrays for collecting SPU PC samples */
209 	samples = kcalloc(SPUS_PER_NODE * TRACE_ARRAY_SIZE, sizeof(u32),
210 			  GFP_KERNEL);
211 
212 	if (!samples)
213 		return -ENOMEM;
214 
215 	spu_prof_running = 1;
216 	hrtimer_start(&timer, kt, HRTIMER_MODE_REL);
217 	schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
218 
219 	return 0;
220 }
221 
222 /*
223  * Entry point for SPU event profiling.
224  * NOTE:  SPU profiling is done system-wide, not per-CPU.
225  *
226  * cycles_reset is the count value specified by the user when
227  * setting up OProfile to count SPU_CYCLES.
228  */
start_spu_profiling_events(void)229 void start_spu_profiling_events(void)
230 {
231 	spu_prof_running = 1;
232 	schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
233 
234 	return;
235 }
236 
stop_spu_profiling_cycles(void)237 void stop_spu_profiling_cycles(void)
238 {
239 	spu_prof_running = 0;
240 	hrtimer_cancel(&timer);
241 	kfree(samples);
242 	pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n");
243 }
244 
stop_spu_profiling_events(void)245 void stop_spu_profiling_events(void)
246 {
247 	spu_prof_running = 0;
248 }
249