• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/mce.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #include "svm.h"
44 
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49 
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53 	{}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57 
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60 
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63 
64 #define SVM_FEATURE_LBRV           (1 <<  1)
65 #define SVM_FEATURE_SVML           (1 <<  2)
66 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
67 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
68 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
69 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
70 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
71 
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73 
74 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
75 #define TSC_RATIO_MIN		0x0000000000000001ULL
76 #define TSC_RATIO_MAX		0x000000ffffffffffULL
77 
78 static bool erratum_383_found __read_mostly;
79 
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81 
82 /*
83  * Set osvw_len to higher value when updated Revision Guides
84  * are published and we know what the new status bits are
85  */
86 static uint64_t osvw_len = 4, osvw_status;
87 
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT	0x0100000000ULL
90 
91 static const struct svm_direct_access_msrs {
92 	u32 index;   /* Index of the MSR */
93 	bool always; /* True if intercept is always on */
94 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
95 	{ .index = MSR_STAR,				.always = true  },
96 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
97 #ifdef CONFIG_X86_64
98 	{ .index = MSR_GS_BASE,				.always = true  },
99 	{ .index = MSR_FS_BASE,				.always = true  },
100 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
101 	{ .index = MSR_LSTAR,				.always = true  },
102 	{ .index = MSR_CSTAR,				.always = true  },
103 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
104 #endif
105 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
106 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
107 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
108 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
109 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
110 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
111 	{ .index = MSR_INVALID,				.always = false },
112 };
113 
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 bool npt_enabled = true;
117 #else
118 bool npt_enabled;
119 #endif
120 
121 /*
122  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
123  * pause_filter_count: On processors that support Pause filtering(indicated
124  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
125  *	count value. On VMRUN this value is loaded into an internal counter.
126  *	Each time a pause instruction is executed, this counter is decremented
127  *	until it reaches zero at which time a #VMEXIT is generated if pause
128  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
129  *	Intercept Filtering for more details.
130  *	This also indicate if ple logic enabled.
131  *
132  * pause_filter_thresh: In addition, some processor families support advanced
133  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
134  *	the amount of time a guest is allowed to execute in a pause loop.
135  *	In this mode, a 16-bit pause filter threshold field is added in the
136  *	VMCB. The threshold value is a cycle count that is used to reset the
137  *	pause counter. As with simple pause filtering, VMRUN loads the pause
138  *	count value from VMCB into an internal counter. Then, on each pause
139  *	instruction the hardware checks the elapsed number of cycles since
140  *	the most recent pause instruction against the pause filter threshold.
141  *	If the elapsed cycle count is greater than the pause filter threshold,
142  *	then the internal pause count is reloaded from the VMCB and execution
143  *	continues. If the elapsed cycle count is less than the pause filter
144  *	threshold, then the internal pause count is decremented. If the count
145  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
146  *	triggered. If advanced pause filtering is supported and pause filter
147  *	threshold field is set to zero, the filter will operate in the simpler,
148  *	count only mode.
149  */
150 
151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
152 module_param(pause_filter_thresh, ushort, 0444);
153 
154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
155 module_param(pause_filter_count, ushort, 0444);
156 
157 /* Default doubles per-vcpu window every exit. */
158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
159 module_param(pause_filter_count_grow, ushort, 0444);
160 
161 /* Default resets per-vcpu window every exit to pause_filter_count. */
162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
163 module_param(pause_filter_count_shrink, ushort, 0444);
164 
165 /* Default is to compute the maximum so we can never overflow. */
166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
167 module_param(pause_filter_count_max, ushort, 0444);
168 
169 /* allow nested paging (virtualized MMU) for all guests */
170 static int npt = true;
171 module_param(npt, int, S_IRUGO);
172 
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176 
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180 
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184 
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188 
189 /* enable/disable SEV support */
190 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
191 module_param(sev, int, 0444);
192 
193 static bool __read_mostly dump_invalid_vmcb = 0;
194 module_param(dump_invalid_vmcb, bool, 0644);
195 
196 static u8 rsm_ins_bytes[] = "\x0f\xaa";
197 
198 static void svm_complete_interrupts(struct vcpu_svm *svm);
199 
200 static unsigned long iopm_base;
201 
202 struct kvm_ldttss_desc {
203 	u16 limit0;
204 	u16 base0;
205 	unsigned base1:8, type:5, dpl:2, p:1;
206 	unsigned limit1:4, zero0:3, g:1, base2:8;
207 	u32 base3;
208 	u32 zero1;
209 } __attribute__((packed));
210 
211 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
212 
213 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
214 
215 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
216 #define MSRS_RANGE_SIZE 2048
217 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
218 
svm_msrpm_offset(u32 msr)219 u32 svm_msrpm_offset(u32 msr)
220 {
221 	u32 offset;
222 	int i;
223 
224 	for (i = 0; i < NUM_MSR_MAPS; i++) {
225 		if (msr < msrpm_ranges[i] ||
226 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
227 			continue;
228 
229 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
230 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
231 
232 		/* Now we have the u8 offset - but need the u32 offset */
233 		return offset / 4;
234 	}
235 
236 	/* MSR not in any range */
237 	return MSR_INVALID;
238 }
239 
240 #define MAX_INST_SIZE 15
241 
clgi(void)242 static inline void clgi(void)
243 {
244 	asm volatile (__ex("clgi"));
245 }
246 
stgi(void)247 static inline void stgi(void)
248 {
249 	asm volatile (__ex("stgi"));
250 }
251 
invlpga(unsigned long addr,u32 asid)252 static inline void invlpga(unsigned long addr, u32 asid)
253 {
254 	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
255 }
256 
get_max_npt_level(void)257 static int get_max_npt_level(void)
258 {
259 #ifdef CONFIG_X86_64
260 	return PT64_ROOT_4LEVEL;
261 #else
262 	return PT32E_ROOT_LEVEL;
263 #endif
264 }
265 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)266 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
267 {
268 	struct vcpu_svm *svm = to_svm(vcpu);
269 	u64 old_efer = vcpu->arch.efer;
270 	vcpu->arch.efer = efer;
271 
272 	if (!npt_enabled) {
273 		/* Shadow paging assumes NX to be available.  */
274 		efer |= EFER_NX;
275 
276 		if (!(efer & EFER_LMA))
277 			efer &= ~EFER_LME;
278 	}
279 
280 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
281 		if (!(efer & EFER_SVME)) {
282 			svm_leave_nested(vcpu);
283 			svm_set_gif(svm, true);
284 
285 			/*
286 			 * Free the nested guest state, unless we are in SMM.
287 			 * In this case we will return to the nested guest
288 			 * as soon as we leave SMM.
289 			 */
290 			if (!is_smm(&svm->vcpu))
291 				svm_free_nested(svm);
292 
293 		} else {
294 			int ret = svm_allocate_nested(svm);
295 
296 			if (ret) {
297 				vcpu->arch.efer = old_efer;
298 				return ret;
299 			}
300 		}
301 	}
302 
303 	svm->vmcb->save.efer = efer | EFER_SVME;
304 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
305 	return 0;
306 }
307 
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)308 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
309 {
310 	struct vcpu_svm *svm = to_svm(vcpu);
311 	u32 ret = 0;
312 
313 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
314 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
315 	return ret;
316 }
317 
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)318 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
319 {
320 	struct vcpu_svm *svm = to_svm(vcpu);
321 
322 	if (mask == 0)
323 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
324 	else
325 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
326 
327 }
328 
skip_emulated_instruction(struct kvm_vcpu * vcpu)329 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
330 {
331 	struct vcpu_svm *svm = to_svm(vcpu);
332 
333 	if (nrips && svm->vmcb->control.next_rip != 0) {
334 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
335 		svm->next_rip = svm->vmcb->control.next_rip;
336 	}
337 
338 	if (!svm->next_rip) {
339 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
340 			return 0;
341 	} else {
342 		kvm_rip_write(vcpu, svm->next_rip);
343 	}
344 	svm_set_interrupt_shadow(vcpu, 0);
345 
346 	return 1;
347 }
348 
svm_queue_exception(struct kvm_vcpu * vcpu)349 static void svm_queue_exception(struct kvm_vcpu *vcpu)
350 {
351 	struct vcpu_svm *svm = to_svm(vcpu);
352 	unsigned nr = vcpu->arch.exception.nr;
353 	bool has_error_code = vcpu->arch.exception.has_error_code;
354 	u32 error_code = vcpu->arch.exception.error_code;
355 
356 	kvm_deliver_exception_payload(&svm->vcpu);
357 
358 	if (nr == BP_VECTOR && !nrips) {
359 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
360 
361 		/*
362 		 * For guest debugging where we have to reinject #BP if some
363 		 * INT3 is guest-owned:
364 		 * Emulate nRIP by moving RIP forward. Will fail if injection
365 		 * raises a fault that is not intercepted. Still better than
366 		 * failing in all cases.
367 		 */
368 		(void)skip_emulated_instruction(&svm->vcpu);
369 		rip = kvm_rip_read(&svm->vcpu);
370 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
371 		svm->int3_injected = rip - old_rip;
372 	}
373 
374 	svm->vmcb->control.event_inj = nr
375 		| SVM_EVTINJ_VALID
376 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
377 		| SVM_EVTINJ_TYPE_EXEPT;
378 	svm->vmcb->control.event_inj_err = error_code;
379 }
380 
svm_init_erratum_383(void)381 static void svm_init_erratum_383(void)
382 {
383 	u32 low, high;
384 	int err;
385 	u64 val;
386 
387 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
388 		return;
389 
390 	/* Use _safe variants to not break nested virtualization */
391 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
392 	if (err)
393 		return;
394 
395 	val |= (1ULL << 47);
396 
397 	low  = lower_32_bits(val);
398 	high = upper_32_bits(val);
399 
400 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
401 
402 	erratum_383_found = true;
403 }
404 
svm_init_osvw(struct kvm_vcpu * vcpu)405 static void svm_init_osvw(struct kvm_vcpu *vcpu)
406 {
407 	/*
408 	 * Guests should see errata 400 and 415 as fixed (assuming that
409 	 * HLT and IO instructions are intercepted).
410 	 */
411 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
412 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
413 
414 	/*
415 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
416 	 * all osvw.status bits inside that length, including bit 0 (which is
417 	 * reserved for erratum 298), are valid. However, if host processor's
418 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
419 	 * be conservative here and therefore we tell the guest that erratum 298
420 	 * is present (because we really don't know).
421 	 */
422 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
423 		vcpu->arch.osvw.status |= 1;
424 }
425 
has_svm(void)426 static int has_svm(void)
427 {
428 	const char *msg;
429 
430 	if (!cpu_has_svm(&msg)) {
431 		printk(KERN_INFO "has_svm: %s\n", msg);
432 		return 0;
433 	}
434 
435 	if (sev_active()) {
436 		pr_info("KVM is unsupported when running as an SEV guest\n");
437 		return 0;
438 	}
439 
440 	return 1;
441 }
442 
svm_hardware_disable(void)443 static void svm_hardware_disable(void)
444 {
445 	/* Make sure we clean up behind us */
446 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
447 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
448 
449 	cpu_svm_disable();
450 
451 	amd_pmu_disable_virt();
452 }
453 
svm_hardware_enable(void)454 static int svm_hardware_enable(void)
455 {
456 
457 	struct svm_cpu_data *sd;
458 	uint64_t efer;
459 	struct desc_struct *gdt;
460 	int me = raw_smp_processor_id();
461 
462 	rdmsrl(MSR_EFER, efer);
463 	if (efer & EFER_SVME)
464 		return -EBUSY;
465 
466 	if (!has_svm()) {
467 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
468 		return -EINVAL;
469 	}
470 	sd = per_cpu(svm_data, me);
471 	if (!sd) {
472 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
473 		return -EINVAL;
474 	}
475 
476 	sd->asid_generation = 1;
477 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
478 	sd->next_asid = sd->max_asid + 1;
479 	sd->min_asid = max_sev_asid + 1;
480 
481 	gdt = get_current_gdt_rw();
482 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
483 
484 	wrmsrl(MSR_EFER, efer | EFER_SVME);
485 
486 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
487 
488 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
489 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
490 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
491 	}
492 
493 
494 	/*
495 	 * Get OSVW bits.
496 	 *
497 	 * Note that it is possible to have a system with mixed processor
498 	 * revisions and therefore different OSVW bits. If bits are not the same
499 	 * on different processors then choose the worst case (i.e. if erratum
500 	 * is present on one processor and not on another then assume that the
501 	 * erratum is present everywhere).
502 	 */
503 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
504 		uint64_t len, status = 0;
505 		int err;
506 
507 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
508 		if (!err)
509 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
510 						      &err);
511 
512 		if (err)
513 			osvw_status = osvw_len = 0;
514 		else {
515 			if (len < osvw_len)
516 				osvw_len = len;
517 			osvw_status |= status;
518 			osvw_status &= (1ULL << osvw_len) - 1;
519 		}
520 	} else
521 		osvw_status = osvw_len = 0;
522 
523 	svm_init_erratum_383();
524 
525 	amd_pmu_enable_virt();
526 
527 	return 0;
528 }
529 
svm_cpu_uninit(int cpu)530 static void svm_cpu_uninit(int cpu)
531 {
532 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
533 
534 	if (!sd)
535 		return;
536 
537 	per_cpu(svm_data, cpu) = NULL;
538 	kfree(sd->sev_vmcbs);
539 	__free_page(sd->save_area);
540 	kfree(sd);
541 }
542 
svm_cpu_init(int cpu)543 static int svm_cpu_init(int cpu)
544 {
545 	struct svm_cpu_data *sd;
546 
547 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
548 	if (!sd)
549 		return -ENOMEM;
550 	sd->cpu = cpu;
551 	sd->save_area = alloc_page(GFP_KERNEL);
552 	if (!sd->save_area)
553 		goto free_cpu_data;
554 
555 	if (svm_sev_enabled()) {
556 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
557 					      sizeof(void *),
558 					      GFP_KERNEL);
559 		if (!sd->sev_vmcbs)
560 			goto free_save_area;
561 	}
562 
563 	per_cpu(svm_data, cpu) = sd;
564 
565 	return 0;
566 
567 free_save_area:
568 	__free_page(sd->save_area);
569 free_cpu_data:
570 	kfree(sd);
571 	return -ENOMEM;
572 
573 }
574 
direct_access_msr_slot(u32 msr)575 static int direct_access_msr_slot(u32 msr)
576 {
577 	u32 i;
578 
579 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
580 		if (direct_access_msrs[i].index == msr)
581 			return i;
582 
583 	return -ENOENT;
584 }
585 
set_shadow_msr_intercept(struct kvm_vcpu * vcpu,u32 msr,int read,int write)586 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
587 				     int write)
588 {
589 	struct vcpu_svm *svm = to_svm(vcpu);
590 	int slot = direct_access_msr_slot(msr);
591 
592 	if (slot == -ENOENT)
593 		return;
594 
595 	/* Set the shadow bitmaps to the desired intercept states */
596 	if (read)
597 		set_bit(slot, svm->shadow_msr_intercept.read);
598 	else
599 		clear_bit(slot, svm->shadow_msr_intercept.read);
600 
601 	if (write)
602 		set_bit(slot, svm->shadow_msr_intercept.write);
603 	else
604 		clear_bit(slot, svm->shadow_msr_intercept.write);
605 }
606 
valid_msr_intercept(u32 index)607 static bool valid_msr_intercept(u32 index)
608 {
609 	return direct_access_msr_slot(index) != -ENOENT;
610 }
611 
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)612 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
613 {
614 	u8 bit_write;
615 	unsigned long tmp;
616 	u32 offset;
617 	u32 *msrpm;
618 
619 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
620 				      to_svm(vcpu)->msrpm;
621 
622 	offset    = svm_msrpm_offset(msr);
623 	bit_write = 2 * (msr & 0x0f) + 1;
624 	tmp       = msrpm[offset];
625 
626 	BUG_ON(offset == MSR_INVALID);
627 
628 	return !!test_bit(bit_write,  &tmp);
629 }
630 
set_msr_interception_bitmap(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)631 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
632 					u32 msr, int read, int write)
633 {
634 	u8 bit_read, bit_write;
635 	unsigned long tmp;
636 	u32 offset;
637 
638 	/*
639 	 * If this warning triggers extend the direct_access_msrs list at the
640 	 * beginning of the file
641 	 */
642 	WARN_ON(!valid_msr_intercept(msr));
643 
644 	/* Enforce non allowed MSRs to trap */
645 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
646 		read = 0;
647 
648 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
649 		write = 0;
650 
651 	offset    = svm_msrpm_offset(msr);
652 	bit_read  = 2 * (msr & 0x0f);
653 	bit_write = 2 * (msr & 0x0f) + 1;
654 	tmp       = msrpm[offset];
655 
656 	BUG_ON(offset == MSR_INVALID);
657 
658 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
659 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
660 
661 	msrpm[offset] = tmp;
662 }
663 
set_msr_interception(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)664 static void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
665 				 int read, int write)
666 {
667 	set_shadow_msr_intercept(vcpu, msr, read, write);
668 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
669 }
670 
svm_vcpu_alloc_msrpm(void)671 u32 *svm_vcpu_alloc_msrpm(void)
672 {
673 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
674 	u32 *msrpm;
675 
676 	if (!pages)
677 		return NULL;
678 
679 	msrpm = page_address(pages);
680 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
681 
682 	return msrpm;
683 }
684 
svm_vcpu_init_msrpm(struct kvm_vcpu * vcpu,u32 * msrpm)685 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
686 {
687 	int i;
688 
689 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
690 		if (!direct_access_msrs[i].always)
691 			continue;
692 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
693 	}
694 }
695 
696 
svm_vcpu_free_msrpm(u32 * msrpm)697 void svm_vcpu_free_msrpm(u32 *msrpm)
698 {
699 	__free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
700 }
701 
svm_msr_filter_changed(struct kvm_vcpu * vcpu)702 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
703 {
704 	struct vcpu_svm *svm = to_svm(vcpu);
705 	u32 i;
706 
707 	/*
708 	 * Set intercept permissions for all direct access MSRs again. They
709 	 * will automatically get filtered through the MSR filter, so we are
710 	 * back in sync after this.
711 	 */
712 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
713 		u32 msr = direct_access_msrs[i].index;
714 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
715 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
716 
717 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
718 	}
719 }
720 
add_msr_offset(u32 offset)721 static void add_msr_offset(u32 offset)
722 {
723 	int i;
724 
725 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
726 
727 		/* Offset already in list? */
728 		if (msrpm_offsets[i] == offset)
729 			return;
730 
731 		/* Slot used by another offset? */
732 		if (msrpm_offsets[i] != MSR_INVALID)
733 			continue;
734 
735 		/* Add offset to list */
736 		msrpm_offsets[i] = offset;
737 
738 		return;
739 	}
740 
741 	/*
742 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
743 	 * increase MSRPM_OFFSETS in this case.
744 	 */
745 	BUG();
746 }
747 
init_msrpm_offsets(void)748 static void init_msrpm_offsets(void)
749 {
750 	int i;
751 
752 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
753 
754 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
755 		u32 offset;
756 
757 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
758 		BUG_ON(offset == MSR_INVALID);
759 
760 		add_msr_offset(offset);
761 	}
762 }
763 
svm_enable_lbrv(struct kvm_vcpu * vcpu)764 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
765 {
766 	struct vcpu_svm *svm = to_svm(vcpu);
767 
768 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
769 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
770 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
771 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
772 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
773 }
774 
svm_disable_lbrv(struct kvm_vcpu * vcpu)775 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
776 {
777 	struct vcpu_svm *svm = to_svm(vcpu);
778 
779 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
780 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
781 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
782 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
783 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
784 }
785 
disable_nmi_singlestep(struct vcpu_svm * svm)786 void disable_nmi_singlestep(struct vcpu_svm *svm)
787 {
788 	svm->nmi_singlestep = false;
789 
790 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
791 		/* Clear our flags if they were not set by the guest */
792 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
793 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
794 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
795 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
796 	}
797 }
798 
grow_ple_window(struct kvm_vcpu * vcpu)799 static void grow_ple_window(struct kvm_vcpu *vcpu)
800 {
801 	struct vcpu_svm *svm = to_svm(vcpu);
802 	struct vmcb_control_area *control = &svm->vmcb->control;
803 	int old = control->pause_filter_count;
804 
805 	control->pause_filter_count = __grow_ple_window(old,
806 							pause_filter_count,
807 							pause_filter_count_grow,
808 							pause_filter_count_max);
809 
810 	if (control->pause_filter_count != old) {
811 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
812 		trace_kvm_ple_window_update(vcpu->vcpu_id,
813 					    control->pause_filter_count, old);
814 	}
815 }
816 
shrink_ple_window(struct kvm_vcpu * vcpu)817 static void shrink_ple_window(struct kvm_vcpu *vcpu)
818 {
819 	struct vcpu_svm *svm = to_svm(vcpu);
820 	struct vmcb_control_area *control = &svm->vmcb->control;
821 	int old = control->pause_filter_count;
822 
823 	control->pause_filter_count =
824 				__shrink_ple_window(old,
825 						    pause_filter_count,
826 						    pause_filter_count_shrink,
827 						    pause_filter_count);
828 	if (control->pause_filter_count != old) {
829 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
830 		trace_kvm_ple_window_update(vcpu->vcpu_id,
831 					    control->pause_filter_count, old);
832 	}
833 }
834 
835 /*
836  * The default MMIO mask is a single bit (excluding the present bit),
837  * which could conflict with the memory encryption bit. Check for
838  * memory encryption support and override the default MMIO mask if
839  * memory encryption is enabled.
840  */
svm_adjust_mmio_mask(void)841 static __init void svm_adjust_mmio_mask(void)
842 {
843 	unsigned int enc_bit, mask_bit;
844 	u64 msr, mask;
845 
846 	/* If there is no memory encryption support, use existing mask */
847 	if (cpuid_eax(0x80000000) < 0x8000001f)
848 		return;
849 
850 	/* If memory encryption is not enabled, use existing mask */
851 	rdmsrl(MSR_K8_SYSCFG, msr);
852 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
853 		return;
854 
855 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
856 	mask_bit = boot_cpu_data.x86_phys_bits;
857 
858 	/* Increment the mask bit if it is the same as the encryption bit */
859 	if (enc_bit == mask_bit)
860 		mask_bit++;
861 
862 	/*
863 	 * If the mask bit location is below 52, then some bits above the
864 	 * physical addressing limit will always be reserved, so use the
865 	 * rsvd_bits() function to generate the mask. This mask, along with
866 	 * the present bit, will be used to generate a page fault with
867 	 * PFER.RSV = 1.
868 	 *
869 	 * If the mask bit location is 52 (or above), then clear the mask.
870 	 */
871 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
872 
873 	kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
874 }
875 
svm_hardware_teardown(void)876 static void svm_hardware_teardown(void)
877 {
878 	int cpu;
879 
880 	if (svm_sev_enabled())
881 		sev_hardware_teardown();
882 
883 	for_each_possible_cpu(cpu)
884 		svm_cpu_uninit(cpu);
885 
886 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
887 	iopm_base = 0;
888 }
889 
svm_set_cpu_caps(void)890 static __init void svm_set_cpu_caps(void)
891 {
892 	kvm_set_cpu_caps();
893 
894 	supported_xss = 0;
895 
896 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
897 	if (nested) {
898 		kvm_cpu_cap_set(X86_FEATURE_SVM);
899 
900 		if (nrips)
901 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
902 
903 		if (npt_enabled)
904 			kvm_cpu_cap_set(X86_FEATURE_NPT);
905 	}
906 
907 	/* CPUID 0x80000008 */
908 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
909 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
910 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
911 
912 	/* Enable INVPCID feature */
913 	kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
914 }
915 
svm_hardware_setup(void)916 static __init int svm_hardware_setup(void)
917 {
918 	int cpu;
919 	struct page *iopm_pages;
920 	void *iopm_va;
921 	int r;
922 
923 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
924 
925 	if (!iopm_pages)
926 		return -ENOMEM;
927 
928 	iopm_va = page_address(iopm_pages);
929 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
930 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
931 
932 	init_msrpm_offsets();
933 
934 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
935 
936 	if (boot_cpu_has(X86_FEATURE_NX))
937 		kvm_enable_efer_bits(EFER_NX);
938 
939 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
940 		kvm_enable_efer_bits(EFER_FFXSR);
941 
942 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
943 		kvm_has_tsc_control = true;
944 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
945 		kvm_tsc_scaling_ratio_frac_bits = 32;
946 	}
947 
948 	/* Check for pause filtering support */
949 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
950 		pause_filter_count = 0;
951 		pause_filter_thresh = 0;
952 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
953 		pause_filter_thresh = 0;
954 	}
955 
956 	if (nested) {
957 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
958 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
959 	}
960 
961 	if (sev) {
962 		if (boot_cpu_has(X86_FEATURE_SEV) &&
963 		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
964 			r = sev_hardware_setup();
965 			if (r)
966 				sev = false;
967 		} else {
968 			sev = false;
969 		}
970 	}
971 
972 	svm_adjust_mmio_mask();
973 
974 	for_each_possible_cpu(cpu) {
975 		r = svm_cpu_init(cpu);
976 		if (r)
977 			goto err;
978 	}
979 
980 	if (!boot_cpu_has(X86_FEATURE_NPT))
981 		npt_enabled = false;
982 
983 	if (npt_enabled && !npt)
984 		npt_enabled = false;
985 
986 	kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
987 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
988 
989 	if (nrips) {
990 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
991 			nrips = false;
992 	}
993 
994 	if (avic) {
995 		if (!npt_enabled ||
996 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
997 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
998 			avic = false;
999 		} else {
1000 			pr_info("AVIC enabled\n");
1001 
1002 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1003 		}
1004 	}
1005 
1006 	if (vls) {
1007 		if (!npt_enabled ||
1008 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1009 		    !IS_ENABLED(CONFIG_X86_64)) {
1010 			vls = false;
1011 		} else {
1012 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1013 		}
1014 	}
1015 
1016 	if (vgif) {
1017 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1018 			vgif = false;
1019 		else
1020 			pr_info("Virtual GIF supported\n");
1021 	}
1022 
1023 	svm_set_cpu_caps();
1024 
1025 	/*
1026 	 * It seems that on AMD processors PTE's accessed bit is
1027 	 * being set by the CPU hardware before the NPF vmexit.
1028 	 * This is not expected behaviour and our tests fail because
1029 	 * of it.
1030 	 * A workaround here is to disable support for
1031 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1032 	 * In this case userspace can know if there is support using
1033 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1034 	 * it
1035 	 * If future AMD CPU models change the behaviour described above,
1036 	 * this variable can be changed accordingly
1037 	 */
1038 	allow_smaller_maxphyaddr = !npt_enabled;
1039 
1040 	return 0;
1041 
1042 err:
1043 	svm_hardware_teardown();
1044 	return r;
1045 }
1046 
init_seg(struct vmcb_seg * seg)1047 static void init_seg(struct vmcb_seg *seg)
1048 {
1049 	seg->selector = 0;
1050 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1051 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1052 	seg->limit = 0xffff;
1053 	seg->base = 0;
1054 }
1055 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1056 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1057 {
1058 	seg->selector = 0;
1059 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1060 	seg->limit = 0xffff;
1061 	seg->base = 0;
1062 }
1063 
svm_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1064 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1065 {
1066 	struct vcpu_svm *svm = to_svm(vcpu);
1067 	u64 g_tsc_offset = 0;
1068 
1069 	if (is_guest_mode(vcpu)) {
1070 		/* Write L1's TSC offset.  */
1071 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1072 			       svm->nested.hsave->control.tsc_offset;
1073 		svm->nested.hsave->control.tsc_offset = offset;
1074 	}
1075 
1076 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1077 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
1078 				   offset);
1079 
1080 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1081 
1082 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1083 	return svm->vmcb->control.tsc_offset;
1084 }
1085 
svm_check_invpcid(struct vcpu_svm * svm)1086 static void svm_check_invpcid(struct vcpu_svm *svm)
1087 {
1088 	/*
1089 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1090 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1091 	 */
1092 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1093 		if (!npt_enabled ||
1094 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1095 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1096 		else
1097 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1098 	}
1099 }
1100 
init_vmcb(struct vcpu_svm * svm)1101 static void init_vmcb(struct vcpu_svm *svm)
1102 {
1103 	struct vmcb_control_area *control = &svm->vmcb->control;
1104 	struct vmcb_save_area *save = &svm->vmcb->save;
1105 
1106 	svm->vcpu.arch.hflags = 0;
1107 
1108 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1109 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1110 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1111 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1112 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1113 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1114 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1115 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1116 
1117 	set_dr_intercepts(svm);
1118 
1119 	set_exception_intercept(svm, PF_VECTOR);
1120 	set_exception_intercept(svm, UD_VECTOR);
1121 	set_exception_intercept(svm, MC_VECTOR);
1122 	set_exception_intercept(svm, AC_VECTOR);
1123 	set_exception_intercept(svm, DB_VECTOR);
1124 	/*
1125 	 * Guest access to VMware backdoor ports could legitimately
1126 	 * trigger #GP because of TSS I/O permission bitmap.
1127 	 * We intercept those #GP and allow access to them anyway
1128 	 * as VMware does.
1129 	 */
1130 	if (enable_vmware_backdoor)
1131 		set_exception_intercept(svm, GP_VECTOR);
1132 
1133 	svm_set_intercept(svm, INTERCEPT_INTR);
1134 	svm_set_intercept(svm, INTERCEPT_NMI);
1135 	svm_set_intercept(svm, INTERCEPT_SMI);
1136 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1137 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1138 	svm_set_intercept(svm, INTERCEPT_CPUID);
1139 	svm_set_intercept(svm, INTERCEPT_INVD);
1140 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1141 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1142 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1143 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1144 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1145 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1146 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1147 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1148 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1149 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1150 	svm_set_intercept(svm, INTERCEPT_STGI);
1151 	svm_set_intercept(svm, INTERCEPT_CLGI);
1152 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1153 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1154 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1155 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1156 	svm_set_intercept(svm, INTERCEPT_RSM);
1157 
1158 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1159 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1160 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1161 	}
1162 
1163 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1164 		svm_set_intercept(svm, INTERCEPT_HLT);
1165 
1166 	control->iopm_base_pa = __sme_set(iopm_base);
1167 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1168 	control->int_ctl = V_INTR_MASKING_MASK;
1169 
1170 	init_seg(&save->es);
1171 	init_seg(&save->ss);
1172 	init_seg(&save->ds);
1173 	init_seg(&save->fs);
1174 	init_seg(&save->gs);
1175 
1176 	save->cs.selector = 0xf000;
1177 	save->cs.base = 0xffff0000;
1178 	/* Executable/Readable Code Segment */
1179 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1180 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1181 	save->cs.limit = 0xffff;
1182 
1183 	save->gdtr.limit = 0xffff;
1184 	save->idtr.limit = 0xffff;
1185 
1186 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1187 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1188 
1189 	svm_set_cr4(&svm->vcpu, 0);
1190 	svm_set_efer(&svm->vcpu, 0);
1191 	save->dr6 = 0xffff0ff0;
1192 	kvm_set_rflags(&svm->vcpu, 2);
1193 	save->rip = 0x0000fff0;
1194 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1195 
1196 	/*
1197 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1198 	 * It also updates the guest-visible cr0 value.
1199 	 */
1200 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1201 	kvm_mmu_reset_context(&svm->vcpu);
1202 
1203 	save->cr4 = X86_CR4_PAE;
1204 	/* rdx = ?? */
1205 
1206 	if (npt_enabled) {
1207 		/* Setup VMCB for Nested Paging */
1208 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1209 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1210 		clr_exception_intercept(svm, PF_VECTOR);
1211 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1212 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1213 		save->g_pat = svm->vcpu.arch.pat;
1214 		save->cr3 = 0;
1215 		save->cr4 = 0;
1216 	}
1217 	svm->asid_generation = 0;
1218 
1219 	svm->nested.vmcb12_gpa = 0;
1220 	svm->vcpu.arch.hflags = 0;
1221 
1222 	if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1223 		control->pause_filter_count = pause_filter_count;
1224 		if (pause_filter_thresh)
1225 			control->pause_filter_thresh = pause_filter_thresh;
1226 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1227 	} else {
1228 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1229 	}
1230 
1231 	svm_check_invpcid(svm);
1232 
1233 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1234 		avic_init_vmcb(svm);
1235 
1236 	/*
1237 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1238 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1239 	 */
1240 	if (vls) {
1241 		svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1242 		svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1243 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1244 	}
1245 
1246 	if (vgif) {
1247 		svm_clr_intercept(svm, INTERCEPT_STGI);
1248 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1249 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1250 	}
1251 
1252 	if (sev_guest(svm->vcpu.kvm)) {
1253 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1254 		clr_exception_intercept(svm, UD_VECTOR);
1255 	}
1256 
1257 	vmcb_mark_all_dirty(svm->vmcb);
1258 
1259 	enable_gif(svm);
1260 
1261 }
1262 
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1263 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1264 {
1265 	struct vcpu_svm *svm = to_svm(vcpu);
1266 	u32 dummy;
1267 	u32 eax = 1;
1268 
1269 	svm->spec_ctrl = 0;
1270 	svm->virt_spec_ctrl = 0;
1271 
1272 	if (!init_event) {
1273 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1274 					   MSR_IA32_APICBASE_ENABLE;
1275 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1276 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1277 	}
1278 	init_vmcb(svm);
1279 
1280 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1281 	kvm_rdx_write(vcpu, eax);
1282 
1283 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1284 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1285 }
1286 
svm_create_vcpu(struct kvm_vcpu * vcpu)1287 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1288 {
1289 	struct vcpu_svm *svm;
1290 	struct page *vmcb_page;
1291 	int err;
1292 
1293 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1294 	svm = to_svm(vcpu);
1295 
1296 	err = -ENOMEM;
1297 	vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1298 	if (!vmcb_page)
1299 		goto out;
1300 
1301 	err = avic_init_vcpu(svm);
1302 	if (err)
1303 		goto error_free_vmcb_page;
1304 
1305 	/* We initialize this flag to true to make sure that the is_running
1306 	 * bit would be set the first time the vcpu is loaded.
1307 	 */
1308 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1309 		svm->avic_is_running = true;
1310 
1311 	svm->msrpm = svm_vcpu_alloc_msrpm();
1312 	if (!svm->msrpm) {
1313 		err = -ENOMEM;
1314 		goto error_free_vmcb_page;
1315 	}
1316 
1317 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1318 
1319 	svm->vmcb = page_address(vmcb_page);
1320 	svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
1321 	svm->asid_generation = 0;
1322 	init_vmcb(svm);
1323 
1324 	svm_init_osvw(vcpu);
1325 	vcpu->arch.microcode_version = 0x01000065;
1326 
1327 	return 0;
1328 
1329 error_free_vmcb_page:
1330 	__free_page(vmcb_page);
1331 out:
1332 	return err;
1333 }
1334 
svm_clear_current_vmcb(struct vmcb * vmcb)1335 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1336 {
1337 	int i;
1338 
1339 	for_each_online_cpu(i)
1340 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1341 }
1342 
svm_free_vcpu(struct kvm_vcpu * vcpu)1343 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1344 {
1345 	struct vcpu_svm *svm = to_svm(vcpu);
1346 
1347 	/*
1348 	 * The vmcb page can be recycled, causing a false negative in
1349 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1350 	 * vmcb page recorded as its current vmcb.
1351 	 */
1352 	svm_clear_current_vmcb(svm->vmcb);
1353 
1354 	svm_leave_nested(vcpu);
1355 	svm_free_nested(svm);
1356 
1357 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1358 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1359 }
1360 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1361 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1362 {
1363 	struct vcpu_svm *svm = to_svm(vcpu);
1364 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1365 	int i;
1366 
1367 	if (unlikely(cpu != vcpu->cpu)) {
1368 		svm->asid_generation = 0;
1369 		vmcb_mark_all_dirty(svm->vmcb);
1370 	}
1371 
1372 #ifdef CONFIG_X86_64
1373 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1374 #endif
1375 	savesegment(fs, svm->host.fs);
1376 	savesegment(gs, svm->host.gs);
1377 	svm->host.ldt = kvm_read_ldt();
1378 
1379 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1380 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1381 
1382 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1383 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1384 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1385 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1386 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1387 		}
1388 	}
1389 	/* This assumes that the kernel never uses MSR_TSC_AUX */
1390 	if (static_cpu_has(X86_FEATURE_RDTSCP))
1391 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1392 
1393 	if (sd->current_vmcb != svm->vmcb) {
1394 		sd->current_vmcb = svm->vmcb;
1395 		indirect_branch_prediction_barrier();
1396 	}
1397 	avic_vcpu_load(vcpu, cpu);
1398 }
1399 
svm_vcpu_put(struct kvm_vcpu * vcpu)1400 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1401 {
1402 	struct vcpu_svm *svm = to_svm(vcpu);
1403 	int i;
1404 
1405 	avic_vcpu_put(vcpu);
1406 
1407 	++vcpu->stat.host_state_reload;
1408 	kvm_load_ldt(svm->host.ldt);
1409 #ifdef CONFIG_X86_64
1410 	loadsegment(fs, svm->host.fs);
1411 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1412 	load_gs_index(svm->host.gs);
1413 #else
1414 #ifdef CONFIG_X86_32_LAZY_GS
1415 	loadsegment(gs, svm->host.gs);
1416 #endif
1417 #endif
1418 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1419 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1420 }
1421 
svm_get_rflags(struct kvm_vcpu * vcpu)1422 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1423 {
1424 	struct vcpu_svm *svm = to_svm(vcpu);
1425 	unsigned long rflags = svm->vmcb->save.rflags;
1426 
1427 	if (svm->nmi_singlestep) {
1428 		/* Hide our flags if they were not set by the guest */
1429 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1430 			rflags &= ~X86_EFLAGS_TF;
1431 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1432 			rflags &= ~X86_EFLAGS_RF;
1433 	}
1434 	return rflags;
1435 }
1436 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1437 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1438 {
1439 	if (to_svm(vcpu)->nmi_singlestep)
1440 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1441 
1442        /*
1443         * Any change of EFLAGS.VM is accompanied by a reload of SS
1444         * (caused by either a task switch or an inter-privilege IRET),
1445         * so we do not need to update the CPL here.
1446         */
1447 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1448 }
1449 
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1450 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1451 {
1452 	switch (reg) {
1453 	case VCPU_EXREG_PDPTR:
1454 		BUG_ON(!npt_enabled);
1455 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1456 		break;
1457 	default:
1458 		WARN_ON_ONCE(1);
1459 	}
1460 }
1461 
svm_set_vintr(struct vcpu_svm * svm)1462 static void svm_set_vintr(struct vcpu_svm *svm)
1463 {
1464 	struct vmcb_control_area *control;
1465 
1466 	/* The following fields are ignored when AVIC is enabled */
1467 	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1468 	svm_set_intercept(svm, INTERCEPT_VINTR);
1469 
1470 	/*
1471 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1472 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1473 	 */
1474 	control = &svm->vmcb->control;
1475 	control->int_vector = 0x0;
1476 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1477 	control->int_ctl |= V_IRQ_MASK |
1478 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1479 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1480 }
1481 
svm_clear_vintr(struct vcpu_svm * svm)1482 static void svm_clear_vintr(struct vcpu_svm *svm)
1483 {
1484 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1485 
1486 	/* Drop int_ctl fields related to VINTR injection.  */
1487 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1488 	if (is_guest_mode(&svm->vcpu)) {
1489 		svm->nested.hsave->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1490 
1491 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1492 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1493 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1494 			V_IRQ_INJECTION_BITS_MASK;
1495 
1496 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1497 	}
1498 
1499 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1500 }
1501 
svm_seg(struct kvm_vcpu * vcpu,int seg)1502 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1503 {
1504 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1505 
1506 	switch (seg) {
1507 	case VCPU_SREG_CS: return &save->cs;
1508 	case VCPU_SREG_DS: return &save->ds;
1509 	case VCPU_SREG_ES: return &save->es;
1510 	case VCPU_SREG_FS: return &save->fs;
1511 	case VCPU_SREG_GS: return &save->gs;
1512 	case VCPU_SREG_SS: return &save->ss;
1513 	case VCPU_SREG_TR: return &save->tr;
1514 	case VCPU_SREG_LDTR: return &save->ldtr;
1515 	}
1516 	BUG();
1517 	return NULL;
1518 }
1519 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1520 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1521 {
1522 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1523 
1524 	return s->base;
1525 }
1526 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1527 static void svm_get_segment(struct kvm_vcpu *vcpu,
1528 			    struct kvm_segment *var, int seg)
1529 {
1530 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1531 
1532 	var->base = s->base;
1533 	var->limit = s->limit;
1534 	var->selector = s->selector;
1535 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1536 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1537 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1538 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1539 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1540 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1541 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1542 
1543 	/*
1544 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1545 	 * However, the SVM spec states that the G bit is not observed by the
1546 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1547 	 * So let's synthesize a legal G bit for all segments, this helps
1548 	 * running KVM nested. It also helps cross-vendor migration, because
1549 	 * Intel's vmentry has a check on the 'G' bit.
1550 	 */
1551 	var->g = s->limit > 0xfffff;
1552 
1553 	/*
1554 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1555 	 * for cross vendor migration purposes by "not present"
1556 	 */
1557 	var->unusable = !var->present;
1558 
1559 	switch (seg) {
1560 	case VCPU_SREG_TR:
1561 		/*
1562 		 * Work around a bug where the busy flag in the tr selector
1563 		 * isn't exposed
1564 		 */
1565 		var->type |= 0x2;
1566 		break;
1567 	case VCPU_SREG_DS:
1568 	case VCPU_SREG_ES:
1569 	case VCPU_SREG_FS:
1570 	case VCPU_SREG_GS:
1571 		/*
1572 		 * The accessed bit must always be set in the segment
1573 		 * descriptor cache, although it can be cleared in the
1574 		 * descriptor, the cached bit always remains at 1. Since
1575 		 * Intel has a check on this, set it here to support
1576 		 * cross-vendor migration.
1577 		 */
1578 		if (!var->unusable)
1579 			var->type |= 0x1;
1580 		break;
1581 	case VCPU_SREG_SS:
1582 		/*
1583 		 * On AMD CPUs sometimes the DB bit in the segment
1584 		 * descriptor is left as 1, although the whole segment has
1585 		 * been made unusable. Clear it here to pass an Intel VMX
1586 		 * entry check when cross vendor migrating.
1587 		 */
1588 		if (var->unusable)
1589 			var->db = 0;
1590 		/* This is symmetric with svm_set_segment() */
1591 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1592 		break;
1593 	}
1594 }
1595 
svm_get_cpl(struct kvm_vcpu * vcpu)1596 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1597 {
1598 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1599 
1600 	return save->cpl;
1601 }
1602 
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1603 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1604 {
1605 	struct vcpu_svm *svm = to_svm(vcpu);
1606 
1607 	dt->size = svm->vmcb->save.idtr.limit;
1608 	dt->address = svm->vmcb->save.idtr.base;
1609 }
1610 
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1611 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1612 {
1613 	struct vcpu_svm *svm = to_svm(vcpu);
1614 
1615 	svm->vmcb->save.idtr.limit = dt->size;
1616 	svm->vmcb->save.idtr.base = dt->address ;
1617 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1618 }
1619 
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1620 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1621 {
1622 	struct vcpu_svm *svm = to_svm(vcpu);
1623 
1624 	dt->size = svm->vmcb->save.gdtr.limit;
1625 	dt->address = svm->vmcb->save.gdtr.base;
1626 }
1627 
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1628 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1629 {
1630 	struct vcpu_svm *svm = to_svm(vcpu);
1631 
1632 	svm->vmcb->save.gdtr.limit = dt->size;
1633 	svm->vmcb->save.gdtr.base = dt->address ;
1634 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1635 }
1636 
update_cr0_intercept(struct vcpu_svm * svm)1637 static void update_cr0_intercept(struct vcpu_svm *svm)
1638 {
1639 	ulong gcr0 = svm->vcpu.arch.cr0;
1640 	u64 *hcr0 = &svm->vmcb->save.cr0;
1641 
1642 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1643 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1644 
1645 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1646 
1647 	if (gcr0 == *hcr0) {
1648 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1649 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1650 	} else {
1651 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1652 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1653 	}
1654 }
1655 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1656 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1657 {
1658 	struct vcpu_svm *svm = to_svm(vcpu);
1659 
1660 #ifdef CONFIG_X86_64
1661 	if (vcpu->arch.efer & EFER_LME) {
1662 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1663 			vcpu->arch.efer |= EFER_LMA;
1664 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1665 		}
1666 
1667 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1668 			vcpu->arch.efer &= ~EFER_LMA;
1669 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1670 		}
1671 	}
1672 #endif
1673 	vcpu->arch.cr0 = cr0;
1674 
1675 	if (!npt_enabled)
1676 		cr0 |= X86_CR0_PG | X86_CR0_WP;
1677 
1678 	/*
1679 	 * re-enable caching here because the QEMU bios
1680 	 * does not do it - this results in some delay at
1681 	 * reboot
1682 	 */
1683 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1684 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1685 	svm->vmcb->save.cr0 = cr0;
1686 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1687 	update_cr0_intercept(svm);
1688 }
1689 
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1690 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1691 {
1692 	return true;
1693 }
1694 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1695 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1696 {
1697 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1698 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1699 
1700 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1701 		svm_flush_tlb(vcpu);
1702 
1703 	vcpu->arch.cr4 = cr4;
1704 	if (!npt_enabled)
1705 		cr4 |= X86_CR4_PAE;
1706 	cr4 |= host_cr4_mce;
1707 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1708 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1709 }
1710 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1711 static void svm_set_segment(struct kvm_vcpu *vcpu,
1712 			    struct kvm_segment *var, int seg)
1713 {
1714 	struct vcpu_svm *svm = to_svm(vcpu);
1715 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1716 
1717 	s->base = var->base;
1718 	s->limit = var->limit;
1719 	s->selector = var->selector;
1720 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1721 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1722 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1723 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1724 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1725 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1726 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1727 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1728 
1729 	/*
1730 	 * This is always accurate, except if SYSRET returned to a segment
1731 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1732 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1733 	 * would entail passing the CPL to userspace and back.
1734 	 */
1735 	if (seg == VCPU_SREG_SS)
1736 		/* This is symmetric with svm_get_segment() */
1737 		svm->vmcb->save.cpl = (var->dpl & 3);
1738 
1739 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1740 }
1741 
update_exception_bitmap(struct kvm_vcpu * vcpu)1742 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1743 {
1744 	struct vcpu_svm *svm = to_svm(vcpu);
1745 
1746 	clr_exception_intercept(svm, BP_VECTOR);
1747 
1748 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1749 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1750 			set_exception_intercept(svm, BP_VECTOR);
1751 	}
1752 }
1753 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1754 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1755 {
1756 	if (sd->next_asid > sd->max_asid) {
1757 		++sd->asid_generation;
1758 		sd->next_asid = sd->min_asid;
1759 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1760 	}
1761 
1762 	svm->asid_generation = sd->asid_generation;
1763 	svm->vmcb->control.asid = sd->next_asid++;
1764 
1765 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1766 }
1767 
svm_set_dr6(struct vcpu_svm * svm,unsigned long value)1768 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1769 {
1770 	struct vmcb *vmcb = svm->vmcb;
1771 
1772 	if (unlikely(value != vmcb->save.dr6)) {
1773 		vmcb->save.dr6 = value;
1774 		vmcb_mark_dirty(vmcb, VMCB_DR);
1775 	}
1776 }
1777 
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1778 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1779 {
1780 	struct vcpu_svm *svm = to_svm(vcpu);
1781 
1782 	get_debugreg(vcpu->arch.db[0], 0);
1783 	get_debugreg(vcpu->arch.db[1], 1);
1784 	get_debugreg(vcpu->arch.db[2], 2);
1785 	get_debugreg(vcpu->arch.db[3], 3);
1786 	/*
1787 	 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1788 	 * because db_interception might need it.  We can do it before vmentry.
1789 	 */
1790 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1791 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1792 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1793 	set_dr_intercepts(svm);
1794 }
1795 
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1796 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1797 {
1798 	struct vcpu_svm *svm = to_svm(vcpu);
1799 
1800 	svm->vmcb->save.dr7 = value;
1801 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1802 }
1803 
pf_interception(struct vcpu_svm * svm)1804 static int pf_interception(struct vcpu_svm *svm)
1805 {
1806 	u64 fault_address = svm->vmcb->control.exit_info_2;
1807 	u64 error_code = svm->vmcb->control.exit_info_1;
1808 
1809 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1810 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1811 			svm->vmcb->control.insn_bytes : NULL,
1812 			svm->vmcb->control.insn_len);
1813 }
1814 
npf_interception(struct vcpu_svm * svm)1815 static int npf_interception(struct vcpu_svm *svm)
1816 {
1817 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1818 	u64 error_code = svm->vmcb->control.exit_info_1;
1819 
1820 	trace_kvm_page_fault(fault_address, error_code);
1821 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1822 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1823 			svm->vmcb->control.insn_bytes : NULL,
1824 			svm->vmcb->control.insn_len);
1825 }
1826 
db_interception(struct vcpu_svm * svm)1827 static int db_interception(struct vcpu_svm *svm)
1828 {
1829 	struct kvm_run *kvm_run = svm->vcpu.run;
1830 	struct kvm_vcpu *vcpu = &svm->vcpu;
1831 
1832 	if (!(svm->vcpu.guest_debug &
1833 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1834 		!svm->nmi_singlestep) {
1835 		u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1836 		kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1837 		return 1;
1838 	}
1839 
1840 	if (svm->nmi_singlestep) {
1841 		disable_nmi_singlestep(svm);
1842 		/* Make sure we check for pending NMIs upon entry */
1843 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1844 	}
1845 
1846 	if (svm->vcpu.guest_debug &
1847 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1848 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1849 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1850 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1851 		kvm_run->debug.arch.pc =
1852 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1853 		kvm_run->debug.arch.exception = DB_VECTOR;
1854 		return 0;
1855 	}
1856 
1857 	return 1;
1858 }
1859 
bp_interception(struct vcpu_svm * svm)1860 static int bp_interception(struct vcpu_svm *svm)
1861 {
1862 	struct kvm_run *kvm_run = svm->vcpu.run;
1863 
1864 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1865 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1866 	kvm_run->debug.arch.exception = BP_VECTOR;
1867 	return 0;
1868 }
1869 
ud_interception(struct vcpu_svm * svm)1870 static int ud_interception(struct vcpu_svm *svm)
1871 {
1872 	return handle_ud(&svm->vcpu);
1873 }
1874 
ac_interception(struct vcpu_svm * svm)1875 static int ac_interception(struct vcpu_svm *svm)
1876 {
1877 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1878 	return 1;
1879 }
1880 
gp_interception(struct vcpu_svm * svm)1881 static int gp_interception(struct vcpu_svm *svm)
1882 {
1883 	struct kvm_vcpu *vcpu = &svm->vcpu;
1884 	u32 error_code = svm->vmcb->control.exit_info_1;
1885 
1886 	WARN_ON_ONCE(!enable_vmware_backdoor);
1887 
1888 	/*
1889 	 * VMware backdoor emulation on #GP interception only handles IN{S},
1890 	 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1891 	 */
1892 	if (error_code) {
1893 		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1894 		return 1;
1895 	}
1896 	return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1897 }
1898 
is_erratum_383(void)1899 static bool is_erratum_383(void)
1900 {
1901 	int err, i;
1902 	u64 value;
1903 
1904 	if (!erratum_383_found)
1905 		return false;
1906 
1907 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1908 	if (err)
1909 		return false;
1910 
1911 	/* Bit 62 may or may not be set for this mce */
1912 	value &= ~(1ULL << 62);
1913 
1914 	if (value != 0xb600000000010015ULL)
1915 		return false;
1916 
1917 	/* Clear MCi_STATUS registers */
1918 	for (i = 0; i < 6; ++i)
1919 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1920 
1921 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1922 	if (!err) {
1923 		u32 low, high;
1924 
1925 		value &= ~(1ULL << 2);
1926 		low    = lower_32_bits(value);
1927 		high   = upper_32_bits(value);
1928 
1929 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1930 	}
1931 
1932 	/* Flush tlb to evict multi-match entries */
1933 	__flush_tlb_all();
1934 
1935 	return true;
1936 }
1937 
1938 /*
1939  * Trigger machine check on the host. We assume all the MSRs are already set up
1940  * by the CPU and that we still run on the same CPU as the MCE occurred on.
1941  * We pass a fake environment to the machine check handler because we want
1942  * the guest to be always treated like user space, no matter what context
1943  * it used internally.
1944  */
kvm_machine_check(void)1945 static void kvm_machine_check(void)
1946 {
1947 #if defined(CONFIG_X86_MCE)
1948 	struct pt_regs regs = {
1949 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
1950 		.flags = X86_EFLAGS_IF,
1951 	};
1952 
1953 	do_machine_check(&regs);
1954 #endif
1955 }
1956 
svm_handle_mce(struct vcpu_svm * svm)1957 static void svm_handle_mce(struct vcpu_svm *svm)
1958 {
1959 	if (is_erratum_383()) {
1960 		/*
1961 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1962 		 * guest.
1963 		 */
1964 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1965 
1966 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1967 
1968 		return;
1969 	}
1970 
1971 	/*
1972 	 * On an #MC intercept the MCE handler is not called automatically in
1973 	 * the host. So do it by hand here.
1974 	 */
1975 	kvm_machine_check();
1976 }
1977 
mc_interception(struct vcpu_svm * svm)1978 static int mc_interception(struct vcpu_svm *svm)
1979 {
1980 	return 1;
1981 }
1982 
shutdown_interception(struct vcpu_svm * svm)1983 static int shutdown_interception(struct vcpu_svm *svm)
1984 {
1985 	struct kvm_run *kvm_run = svm->vcpu.run;
1986 
1987 	/*
1988 	 * VMCB is undefined after a SHUTDOWN intercept
1989 	 * so reinitialize it.
1990 	 */
1991 	clear_page(svm->vmcb);
1992 	init_vmcb(svm);
1993 
1994 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1995 	return 0;
1996 }
1997 
io_interception(struct vcpu_svm * svm)1998 static int io_interception(struct vcpu_svm *svm)
1999 {
2000 	struct kvm_vcpu *vcpu = &svm->vcpu;
2001 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2002 	int size, in, string;
2003 	unsigned port;
2004 
2005 	++svm->vcpu.stat.io_exits;
2006 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2007 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2008 	if (string)
2009 		return kvm_emulate_instruction(vcpu, 0);
2010 
2011 	port = io_info >> 16;
2012 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2013 	svm->next_rip = svm->vmcb->control.exit_info_2;
2014 
2015 	return kvm_fast_pio(&svm->vcpu, size, port, in);
2016 }
2017 
nmi_interception(struct vcpu_svm * svm)2018 static int nmi_interception(struct vcpu_svm *svm)
2019 {
2020 	return 1;
2021 }
2022 
intr_interception(struct vcpu_svm * svm)2023 static int intr_interception(struct vcpu_svm *svm)
2024 {
2025 	++svm->vcpu.stat.irq_exits;
2026 	return 1;
2027 }
2028 
nop_on_interception(struct vcpu_svm * svm)2029 static int nop_on_interception(struct vcpu_svm *svm)
2030 {
2031 	return 1;
2032 }
2033 
halt_interception(struct vcpu_svm * svm)2034 static int halt_interception(struct vcpu_svm *svm)
2035 {
2036 	return kvm_emulate_halt(&svm->vcpu);
2037 }
2038 
vmmcall_interception(struct vcpu_svm * svm)2039 static int vmmcall_interception(struct vcpu_svm *svm)
2040 {
2041 	return kvm_emulate_hypercall(&svm->vcpu);
2042 }
2043 
vmload_interception(struct vcpu_svm * svm)2044 static int vmload_interception(struct vcpu_svm *svm)
2045 {
2046 	struct vmcb *nested_vmcb;
2047 	struct kvm_host_map map;
2048 	int ret;
2049 
2050 	if (nested_svm_check_permissions(svm))
2051 		return 1;
2052 
2053 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2054 	if (ret) {
2055 		if (ret == -EINVAL)
2056 			kvm_inject_gp(&svm->vcpu, 0);
2057 		return 1;
2058 	}
2059 
2060 	nested_vmcb = map.hva;
2061 
2062 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2063 
2064 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2065 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2066 
2067 	return ret;
2068 }
2069 
vmsave_interception(struct vcpu_svm * svm)2070 static int vmsave_interception(struct vcpu_svm *svm)
2071 {
2072 	struct vmcb *nested_vmcb;
2073 	struct kvm_host_map map;
2074 	int ret;
2075 
2076 	if (nested_svm_check_permissions(svm))
2077 		return 1;
2078 
2079 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2080 	if (ret) {
2081 		if (ret == -EINVAL)
2082 			kvm_inject_gp(&svm->vcpu, 0);
2083 		return 1;
2084 	}
2085 
2086 	nested_vmcb = map.hva;
2087 
2088 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2089 
2090 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2091 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2092 
2093 	return ret;
2094 }
2095 
vmrun_interception(struct vcpu_svm * svm)2096 static int vmrun_interception(struct vcpu_svm *svm)
2097 {
2098 	if (nested_svm_check_permissions(svm))
2099 		return 1;
2100 
2101 	return nested_svm_vmrun(svm);
2102 }
2103 
svm_set_gif(struct vcpu_svm * svm,bool value)2104 void svm_set_gif(struct vcpu_svm *svm, bool value)
2105 {
2106 	if (value) {
2107 		/*
2108 		 * If VGIF is enabled, the STGI intercept is only added to
2109 		 * detect the opening of the SMI/NMI window; remove it now.
2110 		 * Likewise, clear the VINTR intercept, we will set it
2111 		 * again while processing KVM_REQ_EVENT if needed.
2112 		 */
2113 		if (vgif_enabled(svm))
2114 			svm_clr_intercept(svm, INTERCEPT_STGI);
2115 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2116 			svm_clear_vintr(svm);
2117 
2118 		enable_gif(svm);
2119 		if (svm->vcpu.arch.smi_pending ||
2120 		    svm->vcpu.arch.nmi_pending ||
2121 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2122 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2123 	} else {
2124 		disable_gif(svm);
2125 
2126 		/*
2127 		 * After a CLGI no interrupts should come.  But if vGIF is
2128 		 * in use, we still rely on the VINTR intercept (rather than
2129 		 * STGI) to detect an open interrupt window.
2130 		*/
2131 		if (!vgif_enabled(svm))
2132 			svm_clear_vintr(svm);
2133 	}
2134 }
2135 
stgi_interception(struct vcpu_svm * svm)2136 static int stgi_interception(struct vcpu_svm *svm)
2137 {
2138 	int ret;
2139 
2140 	if (nested_svm_check_permissions(svm))
2141 		return 1;
2142 
2143 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2144 	svm_set_gif(svm, true);
2145 	return ret;
2146 }
2147 
clgi_interception(struct vcpu_svm * svm)2148 static int clgi_interception(struct vcpu_svm *svm)
2149 {
2150 	int ret;
2151 
2152 	if (nested_svm_check_permissions(svm))
2153 		return 1;
2154 
2155 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2156 	svm_set_gif(svm, false);
2157 	return ret;
2158 }
2159 
invlpga_interception(struct vcpu_svm * svm)2160 static int invlpga_interception(struct vcpu_svm *svm)
2161 {
2162 	struct kvm_vcpu *vcpu = &svm->vcpu;
2163 
2164 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2165 			  kvm_rax_read(&svm->vcpu));
2166 
2167 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2168 	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2169 
2170 	return kvm_skip_emulated_instruction(&svm->vcpu);
2171 }
2172 
skinit_interception(struct vcpu_svm * svm)2173 static int skinit_interception(struct vcpu_svm *svm)
2174 {
2175 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2176 
2177 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2178 	return 1;
2179 }
2180 
wbinvd_interception(struct vcpu_svm * svm)2181 static int wbinvd_interception(struct vcpu_svm *svm)
2182 {
2183 	return kvm_emulate_wbinvd(&svm->vcpu);
2184 }
2185 
xsetbv_interception(struct vcpu_svm * svm)2186 static int xsetbv_interception(struct vcpu_svm *svm)
2187 {
2188 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2189 	u32 index = kvm_rcx_read(&svm->vcpu);
2190 
2191 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2192 		return kvm_skip_emulated_instruction(&svm->vcpu);
2193 	}
2194 
2195 	return 1;
2196 }
2197 
rdpru_interception(struct vcpu_svm * svm)2198 static int rdpru_interception(struct vcpu_svm *svm)
2199 {
2200 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2201 	return 1;
2202 }
2203 
task_switch_interception(struct vcpu_svm * svm)2204 static int task_switch_interception(struct vcpu_svm *svm)
2205 {
2206 	u16 tss_selector;
2207 	int reason;
2208 	int int_type = svm->vmcb->control.exit_int_info &
2209 		SVM_EXITINTINFO_TYPE_MASK;
2210 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2211 	uint32_t type =
2212 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2213 	uint32_t idt_v =
2214 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2215 	bool has_error_code = false;
2216 	u32 error_code = 0;
2217 
2218 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2219 
2220 	if (svm->vmcb->control.exit_info_2 &
2221 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2222 		reason = TASK_SWITCH_IRET;
2223 	else if (svm->vmcb->control.exit_info_2 &
2224 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2225 		reason = TASK_SWITCH_JMP;
2226 	else if (idt_v)
2227 		reason = TASK_SWITCH_GATE;
2228 	else
2229 		reason = TASK_SWITCH_CALL;
2230 
2231 	if (reason == TASK_SWITCH_GATE) {
2232 		switch (type) {
2233 		case SVM_EXITINTINFO_TYPE_NMI:
2234 			svm->vcpu.arch.nmi_injected = false;
2235 			break;
2236 		case SVM_EXITINTINFO_TYPE_EXEPT:
2237 			if (svm->vmcb->control.exit_info_2 &
2238 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2239 				has_error_code = true;
2240 				error_code =
2241 					(u32)svm->vmcb->control.exit_info_2;
2242 			}
2243 			kvm_clear_exception_queue(&svm->vcpu);
2244 			break;
2245 		case SVM_EXITINTINFO_TYPE_INTR:
2246 			kvm_clear_interrupt_queue(&svm->vcpu);
2247 			break;
2248 		default:
2249 			break;
2250 		}
2251 	}
2252 
2253 	if (reason != TASK_SWITCH_GATE ||
2254 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2255 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2256 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2257 		if (!skip_emulated_instruction(&svm->vcpu))
2258 			return 0;
2259 	}
2260 
2261 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2262 		int_vec = -1;
2263 
2264 	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2265 			       has_error_code, error_code);
2266 }
2267 
cpuid_interception(struct vcpu_svm * svm)2268 static int cpuid_interception(struct vcpu_svm *svm)
2269 {
2270 	return kvm_emulate_cpuid(&svm->vcpu);
2271 }
2272 
iret_interception(struct vcpu_svm * svm)2273 static int iret_interception(struct vcpu_svm *svm)
2274 {
2275 	++svm->vcpu.stat.nmi_window_exits;
2276 	svm_clr_intercept(svm, INTERCEPT_IRET);
2277 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2278 	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2279 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2280 	return 1;
2281 }
2282 
invd_interception(struct vcpu_svm * svm)2283 static int invd_interception(struct vcpu_svm *svm)
2284 {
2285 	/* Treat an INVD instruction as a NOP and just skip it. */
2286 	return kvm_skip_emulated_instruction(&svm->vcpu);
2287 }
2288 
invlpg_interception(struct vcpu_svm * svm)2289 static int invlpg_interception(struct vcpu_svm *svm)
2290 {
2291 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2292 		return kvm_emulate_instruction(&svm->vcpu, 0);
2293 
2294 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2295 	return kvm_skip_emulated_instruction(&svm->vcpu);
2296 }
2297 
emulate_on_interception(struct vcpu_svm * svm)2298 static int emulate_on_interception(struct vcpu_svm *svm)
2299 {
2300 	return kvm_emulate_instruction(&svm->vcpu, 0);
2301 }
2302 
rsm_interception(struct vcpu_svm * svm)2303 static int rsm_interception(struct vcpu_svm *svm)
2304 {
2305 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2306 }
2307 
rdpmc_interception(struct vcpu_svm * svm)2308 static int rdpmc_interception(struct vcpu_svm *svm)
2309 {
2310 	int err;
2311 
2312 	if (!nrips)
2313 		return emulate_on_interception(svm);
2314 
2315 	err = kvm_rdpmc(&svm->vcpu);
2316 	return kvm_complete_insn_gp(&svm->vcpu, err);
2317 }
2318 
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)2319 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2320 					    unsigned long val)
2321 {
2322 	unsigned long cr0 = svm->vcpu.arch.cr0;
2323 	bool ret = false;
2324 
2325 	if (!is_guest_mode(&svm->vcpu) ||
2326 	    (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2327 		return false;
2328 
2329 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2330 	val &= ~SVM_CR0_SELECTIVE_MASK;
2331 
2332 	if (cr0 ^ val) {
2333 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2334 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2335 	}
2336 
2337 	return ret;
2338 }
2339 
2340 #define CR_VALID (1ULL << 63)
2341 
cr_interception(struct vcpu_svm * svm)2342 static int cr_interception(struct vcpu_svm *svm)
2343 {
2344 	int reg, cr;
2345 	unsigned long val;
2346 	int err;
2347 
2348 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2349 		return emulate_on_interception(svm);
2350 
2351 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2352 		return emulate_on_interception(svm);
2353 
2354 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2355 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2356 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2357 	else
2358 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2359 
2360 	err = 0;
2361 	if (cr >= 16) { /* mov to cr */
2362 		cr -= 16;
2363 		val = kvm_register_readl(&svm->vcpu, reg);
2364 		trace_kvm_cr_write(cr, val);
2365 		switch (cr) {
2366 		case 0:
2367 			if (!check_selective_cr0_intercepted(svm, val))
2368 				err = kvm_set_cr0(&svm->vcpu, val);
2369 			else
2370 				return 1;
2371 
2372 			break;
2373 		case 3:
2374 			err = kvm_set_cr3(&svm->vcpu, val);
2375 			break;
2376 		case 4:
2377 			err = kvm_set_cr4(&svm->vcpu, val);
2378 			break;
2379 		case 8:
2380 			err = kvm_set_cr8(&svm->vcpu, val);
2381 			break;
2382 		default:
2383 			WARN(1, "unhandled write to CR%d", cr);
2384 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2385 			return 1;
2386 		}
2387 	} else { /* mov from cr */
2388 		switch (cr) {
2389 		case 0:
2390 			val = kvm_read_cr0(&svm->vcpu);
2391 			break;
2392 		case 2:
2393 			val = svm->vcpu.arch.cr2;
2394 			break;
2395 		case 3:
2396 			val = kvm_read_cr3(&svm->vcpu);
2397 			break;
2398 		case 4:
2399 			val = kvm_read_cr4(&svm->vcpu);
2400 			break;
2401 		case 8:
2402 			val = kvm_get_cr8(&svm->vcpu);
2403 			break;
2404 		default:
2405 			WARN(1, "unhandled read from CR%d", cr);
2406 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2407 			return 1;
2408 		}
2409 		kvm_register_writel(&svm->vcpu, reg, val);
2410 		trace_kvm_cr_read(cr, val);
2411 	}
2412 	return kvm_complete_insn_gp(&svm->vcpu, err);
2413 }
2414 
dr_interception(struct vcpu_svm * svm)2415 static int dr_interception(struct vcpu_svm *svm)
2416 {
2417 	int reg, dr;
2418 	unsigned long val;
2419 
2420 	if (svm->vcpu.guest_debug == 0) {
2421 		/*
2422 		 * No more DR vmexits; force a reload of the debug registers
2423 		 * and reenter on this instruction.  The next vmexit will
2424 		 * retrieve the full state of the debug registers.
2425 		 */
2426 		clr_dr_intercepts(svm);
2427 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2428 		return 1;
2429 	}
2430 
2431 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2432 		return emulate_on_interception(svm);
2433 
2434 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2435 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2436 
2437 	if (dr >= 16) { /* mov to DRn */
2438 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
2439 			return 1;
2440 		val = kvm_register_readl(&svm->vcpu, reg);
2441 		kvm_set_dr(&svm->vcpu, dr - 16, val);
2442 	} else {
2443 		if (!kvm_require_dr(&svm->vcpu, dr))
2444 			return 1;
2445 		kvm_get_dr(&svm->vcpu, dr, &val);
2446 		kvm_register_writel(&svm->vcpu, reg, val);
2447 	}
2448 
2449 	return kvm_skip_emulated_instruction(&svm->vcpu);
2450 }
2451 
cr8_write_interception(struct vcpu_svm * svm)2452 static int cr8_write_interception(struct vcpu_svm *svm)
2453 {
2454 	struct kvm_run *kvm_run = svm->vcpu.run;
2455 	int r;
2456 
2457 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2458 	/* instruction emulation calls kvm_set_cr8() */
2459 	r = cr_interception(svm);
2460 	if (lapic_in_kernel(&svm->vcpu))
2461 		return r;
2462 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2463 		return r;
2464 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2465 	return 0;
2466 }
2467 
svm_get_msr_feature(struct kvm_msr_entry * msr)2468 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2469 {
2470 	msr->data = 0;
2471 
2472 	switch (msr->index) {
2473 	case MSR_AMD64_DE_CFG:
2474 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2475 			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2476 		break;
2477 	case MSR_IA32_PERF_CAPABILITIES:
2478 		return 0;
2479 	default:
2480 		return KVM_MSR_RET_INVALID;
2481 	}
2482 
2483 	return 0;
2484 }
2485 
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2486 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2487 {
2488 	struct vcpu_svm *svm = to_svm(vcpu);
2489 
2490 	switch (msr_info->index) {
2491 	case MSR_STAR:
2492 		msr_info->data = svm->vmcb->save.star;
2493 		break;
2494 #ifdef CONFIG_X86_64
2495 	case MSR_LSTAR:
2496 		msr_info->data = svm->vmcb->save.lstar;
2497 		break;
2498 	case MSR_CSTAR:
2499 		msr_info->data = svm->vmcb->save.cstar;
2500 		break;
2501 	case MSR_KERNEL_GS_BASE:
2502 		msr_info->data = svm->vmcb->save.kernel_gs_base;
2503 		break;
2504 	case MSR_SYSCALL_MASK:
2505 		msr_info->data = svm->vmcb->save.sfmask;
2506 		break;
2507 #endif
2508 	case MSR_IA32_SYSENTER_CS:
2509 		msr_info->data = svm->vmcb->save.sysenter_cs;
2510 		break;
2511 	case MSR_IA32_SYSENTER_EIP:
2512 		msr_info->data = svm->sysenter_eip;
2513 		break;
2514 	case MSR_IA32_SYSENTER_ESP:
2515 		msr_info->data = svm->sysenter_esp;
2516 		break;
2517 	case MSR_TSC_AUX:
2518 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2519 			return 1;
2520 		if (!msr_info->host_initiated &&
2521 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2522 			return 1;
2523 		msr_info->data = svm->tsc_aux;
2524 		break;
2525 	/*
2526 	 * Nobody will change the following 5 values in the VMCB so we can
2527 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2528 	 * implemented.
2529 	 */
2530 	case MSR_IA32_DEBUGCTLMSR:
2531 		msr_info->data = svm->vmcb->save.dbgctl;
2532 		break;
2533 	case MSR_IA32_LASTBRANCHFROMIP:
2534 		msr_info->data = svm->vmcb->save.br_from;
2535 		break;
2536 	case MSR_IA32_LASTBRANCHTOIP:
2537 		msr_info->data = svm->vmcb->save.br_to;
2538 		break;
2539 	case MSR_IA32_LASTINTFROMIP:
2540 		msr_info->data = svm->vmcb->save.last_excp_from;
2541 		break;
2542 	case MSR_IA32_LASTINTTOIP:
2543 		msr_info->data = svm->vmcb->save.last_excp_to;
2544 		break;
2545 	case MSR_VM_HSAVE_PA:
2546 		msr_info->data = svm->nested.hsave_msr;
2547 		break;
2548 	case MSR_VM_CR:
2549 		msr_info->data = svm->nested.vm_cr_msr;
2550 		break;
2551 	case MSR_IA32_SPEC_CTRL:
2552 		if (!msr_info->host_initiated &&
2553 		    !guest_has_spec_ctrl_msr(vcpu))
2554 			return 1;
2555 
2556 		msr_info->data = svm->spec_ctrl;
2557 		break;
2558 	case MSR_AMD64_VIRT_SPEC_CTRL:
2559 		if (!msr_info->host_initiated &&
2560 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2561 			return 1;
2562 
2563 		msr_info->data = svm->virt_spec_ctrl;
2564 		break;
2565 	case MSR_F15H_IC_CFG: {
2566 
2567 		int family, model;
2568 
2569 		family = guest_cpuid_family(vcpu);
2570 		model  = guest_cpuid_model(vcpu);
2571 
2572 		if (family < 0 || model < 0)
2573 			return kvm_get_msr_common(vcpu, msr_info);
2574 
2575 		msr_info->data = 0;
2576 
2577 		if (family == 0x15 &&
2578 		    (model >= 0x2 && model < 0x20))
2579 			msr_info->data = 0x1E;
2580 		}
2581 		break;
2582 	case MSR_AMD64_DE_CFG:
2583 		msr_info->data = svm->msr_decfg;
2584 		break;
2585 	default:
2586 		return kvm_get_msr_common(vcpu, msr_info);
2587 	}
2588 	return 0;
2589 }
2590 
rdmsr_interception(struct vcpu_svm * svm)2591 static int rdmsr_interception(struct vcpu_svm *svm)
2592 {
2593 	return kvm_emulate_rdmsr(&svm->vcpu);
2594 }
2595 
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2596 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2597 {
2598 	struct vcpu_svm *svm = to_svm(vcpu);
2599 	int svm_dis, chg_mask;
2600 
2601 	if (data & ~SVM_VM_CR_VALID_MASK)
2602 		return 1;
2603 
2604 	chg_mask = SVM_VM_CR_VALID_MASK;
2605 
2606 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2607 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2608 
2609 	svm->nested.vm_cr_msr &= ~chg_mask;
2610 	svm->nested.vm_cr_msr |= (data & chg_mask);
2611 
2612 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2613 
2614 	/* check for svm_disable while efer.svme is set */
2615 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2616 		return 1;
2617 
2618 	return 0;
2619 }
2620 
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2621 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2622 {
2623 	struct vcpu_svm *svm = to_svm(vcpu);
2624 
2625 	u32 ecx = msr->index;
2626 	u64 data = msr->data;
2627 	switch (ecx) {
2628 	case MSR_IA32_CR_PAT:
2629 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2630 			return 1;
2631 		vcpu->arch.pat = data;
2632 		svm->vmcb->save.g_pat = data;
2633 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2634 		break;
2635 	case MSR_IA32_SPEC_CTRL:
2636 		if (!msr->host_initiated &&
2637 		    !guest_has_spec_ctrl_msr(vcpu))
2638 			return 1;
2639 
2640 		if (kvm_spec_ctrl_test_value(data))
2641 			return 1;
2642 
2643 		svm->spec_ctrl = data;
2644 		if (!data)
2645 			break;
2646 
2647 		/*
2648 		 * For non-nested:
2649 		 * When it's written (to non-zero) for the first time, pass
2650 		 * it through.
2651 		 *
2652 		 * For nested:
2653 		 * The handling of the MSR bitmap for L2 guests is done in
2654 		 * nested_svm_vmrun_msrpm.
2655 		 * We update the L1 MSR bit as well since it will end up
2656 		 * touching the MSR anyway now.
2657 		 */
2658 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2659 		break;
2660 	case MSR_IA32_PRED_CMD:
2661 		if (!msr->host_initiated &&
2662 		    !guest_has_pred_cmd_msr(vcpu))
2663 			return 1;
2664 
2665 		if (data & ~PRED_CMD_IBPB)
2666 			return 1;
2667 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2668 			return 1;
2669 		if (!data)
2670 			break;
2671 
2672 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2673 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2674 		break;
2675 	case MSR_AMD64_VIRT_SPEC_CTRL:
2676 		if (!msr->host_initiated &&
2677 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2678 			return 1;
2679 
2680 		if (data & ~SPEC_CTRL_SSBD)
2681 			return 1;
2682 
2683 		svm->virt_spec_ctrl = data;
2684 		break;
2685 	case MSR_STAR:
2686 		svm->vmcb->save.star = data;
2687 		break;
2688 #ifdef CONFIG_X86_64
2689 	case MSR_LSTAR:
2690 		svm->vmcb->save.lstar = data;
2691 		break;
2692 	case MSR_CSTAR:
2693 		svm->vmcb->save.cstar = data;
2694 		break;
2695 	case MSR_KERNEL_GS_BASE:
2696 		svm->vmcb->save.kernel_gs_base = data;
2697 		break;
2698 	case MSR_SYSCALL_MASK:
2699 		svm->vmcb->save.sfmask = data;
2700 		break;
2701 #endif
2702 	case MSR_IA32_SYSENTER_CS:
2703 		svm->vmcb->save.sysenter_cs = data;
2704 		break;
2705 	case MSR_IA32_SYSENTER_EIP:
2706 		svm->sysenter_eip = data;
2707 		svm->vmcb->save.sysenter_eip = data;
2708 		break;
2709 	case MSR_IA32_SYSENTER_ESP:
2710 		svm->sysenter_esp = data;
2711 		svm->vmcb->save.sysenter_esp = data;
2712 		break;
2713 	case MSR_TSC_AUX:
2714 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2715 			return 1;
2716 
2717 		if (!msr->host_initiated &&
2718 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2719 			return 1;
2720 
2721 		/*
2722 		 * This is rare, so we update the MSR here instead of using
2723 		 * direct_access_msrs.  Doing that would require a rdmsr in
2724 		 * svm_vcpu_put.
2725 		 */
2726 		svm->tsc_aux = data;
2727 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2728 		break;
2729 	case MSR_IA32_DEBUGCTLMSR:
2730 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2731 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2732 				    __func__, data);
2733 			break;
2734 		}
2735 		if (data & DEBUGCTL_RESERVED_BITS)
2736 			return 1;
2737 
2738 		svm->vmcb->save.dbgctl = data;
2739 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2740 		if (data & (1ULL<<0))
2741 			svm_enable_lbrv(vcpu);
2742 		else
2743 			svm_disable_lbrv(vcpu);
2744 		break;
2745 	case MSR_VM_HSAVE_PA:
2746 		/*
2747 		 * Old kernels did not validate the value written to
2748 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
2749 		 * value to allow live migrating buggy or malicious guests
2750 		 * originating from those kernels.
2751 		 */
2752 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
2753 			return 1;
2754 
2755 		svm->nested.hsave_msr = data & PAGE_MASK;
2756 		break;
2757 	case MSR_VM_CR:
2758 		return svm_set_vm_cr(vcpu, data);
2759 	case MSR_VM_IGNNE:
2760 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2761 		break;
2762 	case MSR_AMD64_DE_CFG: {
2763 		struct kvm_msr_entry msr_entry;
2764 
2765 		msr_entry.index = msr->index;
2766 		if (svm_get_msr_feature(&msr_entry))
2767 			return 1;
2768 
2769 		/* Check the supported bits */
2770 		if (data & ~msr_entry.data)
2771 			return 1;
2772 
2773 		/* Don't allow the guest to change a bit, #GP */
2774 		if (!msr->host_initiated && (data ^ msr_entry.data))
2775 			return 1;
2776 
2777 		svm->msr_decfg = data;
2778 		break;
2779 	}
2780 	case MSR_IA32_APICBASE:
2781 		if (kvm_vcpu_apicv_active(vcpu))
2782 			avic_update_vapic_bar(to_svm(vcpu), data);
2783 		fallthrough;
2784 	default:
2785 		return kvm_set_msr_common(vcpu, msr);
2786 	}
2787 	return 0;
2788 }
2789 
wrmsr_interception(struct vcpu_svm * svm)2790 static int wrmsr_interception(struct vcpu_svm *svm)
2791 {
2792 	return kvm_emulate_wrmsr(&svm->vcpu);
2793 }
2794 
msr_interception(struct vcpu_svm * svm)2795 static int msr_interception(struct vcpu_svm *svm)
2796 {
2797 	if (svm->vmcb->control.exit_info_1)
2798 		return wrmsr_interception(svm);
2799 	else
2800 		return rdmsr_interception(svm);
2801 }
2802 
interrupt_window_interception(struct vcpu_svm * svm)2803 static int interrupt_window_interception(struct vcpu_svm *svm)
2804 {
2805 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2806 	svm_clear_vintr(svm);
2807 
2808 	/*
2809 	 * For AVIC, the only reason to end up here is ExtINTs.
2810 	 * In this case AVIC was temporarily disabled for
2811 	 * requesting the IRQ window and we have to re-enable it.
2812 	 */
2813 	svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2814 
2815 	++svm->vcpu.stat.irq_window_exits;
2816 	return 1;
2817 }
2818 
pause_interception(struct vcpu_svm * svm)2819 static int pause_interception(struct vcpu_svm *svm)
2820 {
2821 	struct kvm_vcpu *vcpu = &svm->vcpu;
2822 	bool in_kernel = (svm_get_cpl(vcpu) == 0);
2823 
2824 	if (!kvm_pause_in_guest(vcpu->kvm))
2825 		grow_ple_window(vcpu);
2826 
2827 	kvm_vcpu_on_spin(vcpu, in_kernel);
2828 	return 1;
2829 }
2830 
nop_interception(struct vcpu_svm * svm)2831 static int nop_interception(struct vcpu_svm *svm)
2832 {
2833 	return kvm_skip_emulated_instruction(&(svm->vcpu));
2834 }
2835 
monitor_interception(struct vcpu_svm * svm)2836 static int monitor_interception(struct vcpu_svm *svm)
2837 {
2838 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2839 	return nop_interception(svm);
2840 }
2841 
mwait_interception(struct vcpu_svm * svm)2842 static int mwait_interception(struct vcpu_svm *svm)
2843 {
2844 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2845 	return nop_interception(svm);
2846 }
2847 
invpcid_interception(struct vcpu_svm * svm)2848 static int invpcid_interception(struct vcpu_svm *svm)
2849 {
2850 	struct kvm_vcpu *vcpu = &svm->vcpu;
2851 	unsigned long type;
2852 	gva_t gva;
2853 
2854 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
2855 		kvm_queue_exception(vcpu, UD_VECTOR);
2856 		return 1;
2857 	}
2858 
2859 	/*
2860 	 * For an INVPCID intercept:
2861 	 * EXITINFO1 provides the linear address of the memory operand.
2862 	 * EXITINFO2 provides the contents of the register operand.
2863 	 */
2864 	type = svm->vmcb->control.exit_info_2;
2865 	gva = svm->vmcb->control.exit_info_1;
2866 
2867 	if (type > 3) {
2868 		kvm_inject_gp(vcpu, 0);
2869 		return 1;
2870 	}
2871 
2872 	return kvm_handle_invpcid(vcpu, type, gva);
2873 }
2874 
2875 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2876 	[SVM_EXIT_READ_CR0]			= cr_interception,
2877 	[SVM_EXIT_READ_CR3]			= cr_interception,
2878 	[SVM_EXIT_READ_CR4]			= cr_interception,
2879 	[SVM_EXIT_READ_CR8]			= cr_interception,
2880 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
2881 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
2882 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
2883 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
2884 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
2885 	[SVM_EXIT_READ_DR0]			= dr_interception,
2886 	[SVM_EXIT_READ_DR1]			= dr_interception,
2887 	[SVM_EXIT_READ_DR2]			= dr_interception,
2888 	[SVM_EXIT_READ_DR3]			= dr_interception,
2889 	[SVM_EXIT_READ_DR4]			= dr_interception,
2890 	[SVM_EXIT_READ_DR5]			= dr_interception,
2891 	[SVM_EXIT_READ_DR6]			= dr_interception,
2892 	[SVM_EXIT_READ_DR7]			= dr_interception,
2893 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
2894 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
2895 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
2896 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
2897 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
2898 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
2899 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
2900 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
2901 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
2902 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
2903 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
2904 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
2905 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
2906 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
2907 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
2908 	[SVM_EXIT_INTR]				= intr_interception,
2909 	[SVM_EXIT_NMI]				= nmi_interception,
2910 	[SVM_EXIT_SMI]				= nop_on_interception,
2911 	[SVM_EXIT_INIT]				= nop_on_interception,
2912 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
2913 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
2914 	[SVM_EXIT_CPUID]			= cpuid_interception,
2915 	[SVM_EXIT_IRET]                         = iret_interception,
2916 	[SVM_EXIT_INVD]                         = invd_interception,
2917 	[SVM_EXIT_PAUSE]			= pause_interception,
2918 	[SVM_EXIT_HLT]				= halt_interception,
2919 	[SVM_EXIT_INVLPG]			= invlpg_interception,
2920 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
2921 	[SVM_EXIT_IOIO]				= io_interception,
2922 	[SVM_EXIT_MSR]				= msr_interception,
2923 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
2924 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
2925 	[SVM_EXIT_VMRUN]			= vmrun_interception,
2926 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
2927 	[SVM_EXIT_VMLOAD]			= vmload_interception,
2928 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
2929 	[SVM_EXIT_STGI]				= stgi_interception,
2930 	[SVM_EXIT_CLGI]				= clgi_interception,
2931 	[SVM_EXIT_SKINIT]			= skinit_interception,
2932 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
2933 	[SVM_EXIT_MONITOR]			= monitor_interception,
2934 	[SVM_EXIT_MWAIT]			= mwait_interception,
2935 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
2936 	[SVM_EXIT_RDPRU]			= rdpru_interception,
2937 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
2938 	[SVM_EXIT_NPF]				= npf_interception,
2939 	[SVM_EXIT_RSM]                          = rsm_interception,
2940 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
2941 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
2942 };
2943 
dump_vmcb(struct kvm_vcpu * vcpu)2944 static void dump_vmcb(struct kvm_vcpu *vcpu)
2945 {
2946 	struct vcpu_svm *svm = to_svm(vcpu);
2947 	struct vmcb_control_area *control = &svm->vmcb->control;
2948 	struct vmcb_save_area *save = &svm->vmcb->save;
2949 
2950 	if (!dump_invalid_vmcb) {
2951 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2952 		return;
2953 	}
2954 
2955 	pr_err("VMCB Control Area:\n");
2956 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
2957 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
2958 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
2959 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
2960 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
2961 	pr_err("%-20s%08x %08x\n", "intercepts:",
2962               control->intercepts[INTERCEPT_WORD3],
2963 	       control->intercepts[INTERCEPT_WORD4]);
2964 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2965 	pr_err("%-20s%d\n", "pause filter threshold:",
2966 	       control->pause_filter_thresh);
2967 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2968 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2969 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2970 	pr_err("%-20s%d\n", "asid:", control->asid);
2971 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2972 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2973 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2974 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
2975 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2976 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2977 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2978 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2979 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2980 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2981 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2982 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2983 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2984 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2985 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2986 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2987 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2988 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2989 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2990 	pr_err("VMCB State Save Area:\n");
2991 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2992 	       "es:",
2993 	       save->es.selector, save->es.attrib,
2994 	       save->es.limit, save->es.base);
2995 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2996 	       "cs:",
2997 	       save->cs.selector, save->cs.attrib,
2998 	       save->cs.limit, save->cs.base);
2999 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3000 	       "ss:",
3001 	       save->ss.selector, save->ss.attrib,
3002 	       save->ss.limit, save->ss.base);
3003 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3004 	       "ds:",
3005 	       save->ds.selector, save->ds.attrib,
3006 	       save->ds.limit, save->ds.base);
3007 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3008 	       "fs:",
3009 	       save->fs.selector, save->fs.attrib,
3010 	       save->fs.limit, save->fs.base);
3011 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3012 	       "gs:",
3013 	       save->gs.selector, save->gs.attrib,
3014 	       save->gs.limit, save->gs.base);
3015 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3016 	       "gdtr:",
3017 	       save->gdtr.selector, save->gdtr.attrib,
3018 	       save->gdtr.limit, save->gdtr.base);
3019 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3020 	       "ldtr:",
3021 	       save->ldtr.selector, save->ldtr.attrib,
3022 	       save->ldtr.limit, save->ldtr.base);
3023 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3024 	       "idtr:",
3025 	       save->idtr.selector, save->idtr.attrib,
3026 	       save->idtr.limit, save->idtr.base);
3027 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3028 	       "tr:",
3029 	       save->tr.selector, save->tr.attrib,
3030 	       save->tr.limit, save->tr.base);
3031 	pr_err("cpl:            %d                efer:         %016llx\n",
3032 		save->cpl, save->efer);
3033 	pr_err("%-15s %016llx %-13s %016llx\n",
3034 	       "cr0:", save->cr0, "cr2:", save->cr2);
3035 	pr_err("%-15s %016llx %-13s %016llx\n",
3036 	       "cr3:", save->cr3, "cr4:", save->cr4);
3037 	pr_err("%-15s %016llx %-13s %016llx\n",
3038 	       "dr6:", save->dr6, "dr7:", save->dr7);
3039 	pr_err("%-15s %016llx %-13s %016llx\n",
3040 	       "rip:", save->rip, "rflags:", save->rflags);
3041 	pr_err("%-15s %016llx %-13s %016llx\n",
3042 	       "rsp:", save->rsp, "rax:", save->rax);
3043 	pr_err("%-15s %016llx %-13s %016llx\n",
3044 	       "star:", save->star, "lstar:", save->lstar);
3045 	pr_err("%-15s %016llx %-13s %016llx\n",
3046 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
3047 	pr_err("%-15s %016llx %-13s %016llx\n",
3048 	       "kernel_gs_base:", save->kernel_gs_base,
3049 	       "sysenter_cs:", save->sysenter_cs);
3050 	pr_err("%-15s %016llx %-13s %016llx\n",
3051 	       "sysenter_esp:", save->sysenter_esp,
3052 	       "sysenter_eip:", save->sysenter_eip);
3053 	pr_err("%-15s %016llx %-13s %016llx\n",
3054 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3055 	pr_err("%-15s %016llx %-13s %016llx\n",
3056 	       "br_from:", save->br_from, "br_to:", save->br_to);
3057 	pr_err("%-15s %016llx %-13s %016llx\n",
3058 	       "excp_from:", save->last_excp_from,
3059 	       "excp_to:", save->last_excp_to);
3060 }
3061 
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3062 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3063 			      u32 *intr_info, u32 *error_code)
3064 {
3065 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3066 
3067 	*info1 = control->exit_info_1;
3068 	*info2 = control->exit_info_2;
3069 	*intr_info = control->exit_int_info;
3070 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3071 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3072 		*error_code = control->exit_int_info_err;
3073 	else
3074 		*error_code = 0;
3075 }
3076 
handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3077 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3078 {
3079 	struct vcpu_svm *svm = to_svm(vcpu);
3080 	struct kvm_run *kvm_run = vcpu->run;
3081 	u32 exit_code = svm->vmcb->control.exit_code;
3082 
3083 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3084 
3085 	if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3086 		vcpu->arch.cr0 = svm->vmcb->save.cr0;
3087 	if (npt_enabled)
3088 		vcpu->arch.cr3 = svm->vmcb->save.cr3;
3089 
3090 	if (is_guest_mode(vcpu)) {
3091 		int vmexit;
3092 
3093 		trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3094 
3095 		vmexit = nested_svm_exit_special(svm);
3096 
3097 		if (vmexit == NESTED_EXIT_CONTINUE)
3098 			vmexit = nested_svm_exit_handled(svm);
3099 
3100 		if (vmexit == NESTED_EXIT_DONE)
3101 			return 1;
3102 	}
3103 
3104 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3105 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3106 		kvm_run->fail_entry.hardware_entry_failure_reason
3107 			= svm->vmcb->control.exit_code;
3108 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3109 		dump_vmcb(vcpu);
3110 		return 0;
3111 	}
3112 
3113 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3114 		return 1;
3115 
3116 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3117 	    || !svm_exit_handlers[exit_code]) {
3118 		vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
3119 		dump_vmcb(vcpu);
3120 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3121 		vcpu->run->internal.suberror =
3122 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3123 		vcpu->run->internal.ndata = 2;
3124 		vcpu->run->internal.data[0] = exit_code;
3125 		vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3126 		return 0;
3127 	}
3128 
3129 #ifdef CONFIG_RETPOLINE
3130 	if (exit_code == SVM_EXIT_MSR)
3131 		return msr_interception(svm);
3132 	else if (exit_code == SVM_EXIT_VINTR)
3133 		return interrupt_window_interception(svm);
3134 	else if (exit_code == SVM_EXIT_INTR)
3135 		return intr_interception(svm);
3136 	else if (exit_code == SVM_EXIT_HLT)
3137 		return halt_interception(svm);
3138 	else if (exit_code == SVM_EXIT_NPF)
3139 		return npf_interception(svm);
3140 #endif
3141 	return svm_exit_handlers[exit_code](svm);
3142 }
3143 
reload_tss(struct kvm_vcpu * vcpu)3144 static void reload_tss(struct kvm_vcpu *vcpu)
3145 {
3146 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3147 
3148 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3149 	load_TR_desc();
3150 }
3151 
pre_svm_run(struct vcpu_svm * svm)3152 static void pre_svm_run(struct vcpu_svm *svm)
3153 {
3154 	struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3155 
3156 	if (sev_guest(svm->vcpu.kvm))
3157 		return pre_sev_run(svm, svm->vcpu.cpu);
3158 
3159 	/* FIXME: handle wraparound of asid_generation */
3160 	if (svm->asid_generation != sd->asid_generation)
3161 		new_asid(svm, sd);
3162 }
3163 
svm_inject_nmi(struct kvm_vcpu * vcpu)3164 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3165 {
3166 	struct vcpu_svm *svm = to_svm(vcpu);
3167 
3168 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3169 	vcpu->arch.hflags |= HF_NMI_MASK;
3170 	svm_set_intercept(svm, INTERCEPT_IRET);
3171 	++vcpu->stat.nmi_injections;
3172 }
3173 
svm_set_irq(struct kvm_vcpu * vcpu)3174 static void svm_set_irq(struct kvm_vcpu *vcpu)
3175 {
3176 	struct vcpu_svm *svm = to_svm(vcpu);
3177 
3178 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3179 	++vcpu->stat.irq_injections;
3180 
3181 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3182 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3183 }
3184 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3185 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3186 {
3187 	struct vcpu_svm *svm = to_svm(vcpu);
3188 
3189 	if (nested_svm_virtualize_tpr(vcpu))
3190 		return;
3191 
3192 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3193 
3194 	if (irr == -1)
3195 		return;
3196 
3197 	if (tpr >= irr)
3198 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3199 }
3200 
svm_nmi_blocked(struct kvm_vcpu * vcpu)3201 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3202 {
3203 	struct vcpu_svm *svm = to_svm(vcpu);
3204 	struct vmcb *vmcb = svm->vmcb;
3205 	bool ret;
3206 
3207 	if (!gif_set(svm))
3208 		return true;
3209 
3210 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3211 		return false;
3212 
3213 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3214 	      (svm->vcpu.arch.hflags & HF_NMI_MASK);
3215 
3216 	return ret;
3217 }
3218 
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3219 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3220 {
3221 	struct vcpu_svm *svm = to_svm(vcpu);
3222 	if (svm->nested.nested_run_pending)
3223 		return -EBUSY;
3224 
3225 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3226 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3227 		return -EBUSY;
3228 
3229 	return !svm_nmi_blocked(vcpu);
3230 }
3231 
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3232 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3233 {
3234 	struct vcpu_svm *svm = to_svm(vcpu);
3235 
3236 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3237 }
3238 
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3239 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3240 {
3241 	struct vcpu_svm *svm = to_svm(vcpu);
3242 
3243 	if (masked) {
3244 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3245 		svm_set_intercept(svm, INTERCEPT_IRET);
3246 	} else {
3247 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3248 		svm_clr_intercept(svm, INTERCEPT_IRET);
3249 	}
3250 }
3251 
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3252 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3253 {
3254 	struct vcpu_svm *svm = to_svm(vcpu);
3255 	struct vmcb *vmcb = svm->vmcb;
3256 
3257 	if (!gif_set(svm))
3258 		return true;
3259 
3260 	if (is_guest_mode(vcpu)) {
3261 		/* As long as interrupts are being delivered...  */
3262 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3263 		    ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3264 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3265 			return true;
3266 
3267 		/* ... vmexits aren't blocked by the interrupt shadow  */
3268 		if (nested_exit_on_intr(svm))
3269 			return false;
3270 	} else {
3271 		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3272 			return true;
3273 	}
3274 
3275 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3276 }
3277 
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3278 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3279 {
3280 	struct vcpu_svm *svm = to_svm(vcpu);
3281 	if (svm->nested.nested_run_pending)
3282 		return -EBUSY;
3283 
3284 	/*
3285 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3286 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3287 	 */
3288 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3289 		return -EBUSY;
3290 
3291 	return !svm_interrupt_blocked(vcpu);
3292 }
3293 
enable_irq_window(struct kvm_vcpu * vcpu)3294 static void enable_irq_window(struct kvm_vcpu *vcpu)
3295 {
3296 	struct vcpu_svm *svm = to_svm(vcpu);
3297 
3298 	/*
3299 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3300 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3301 	 * get that intercept, this function will be called again though and
3302 	 * we'll get the vintr intercept. However, if the vGIF feature is
3303 	 * enabled, the STGI interception will not occur. Enable the irq
3304 	 * window under the assumption that the hardware will set the GIF.
3305 	 */
3306 	if (vgif_enabled(svm) || gif_set(svm)) {
3307 		/*
3308 		 * IRQ window is not needed when AVIC is enabled,
3309 		 * unless we have pending ExtINT since it cannot be injected
3310 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3311 		 * and fallback to injecting IRQ via V_IRQ.
3312 		 */
3313 		svm_toggle_avic_for_irq_window(vcpu, false);
3314 		svm_set_vintr(svm);
3315 	}
3316 }
3317 
enable_nmi_window(struct kvm_vcpu * vcpu)3318 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3319 {
3320 	struct vcpu_svm *svm = to_svm(vcpu);
3321 
3322 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3323 	    == HF_NMI_MASK)
3324 		return; /* IRET will cause a vm exit */
3325 
3326 	if (!gif_set(svm)) {
3327 		if (vgif_enabled(svm))
3328 			svm_set_intercept(svm, INTERCEPT_STGI);
3329 		return; /* STGI will cause a vm exit */
3330 	}
3331 
3332 	/*
3333 	 * Something prevents NMI from been injected. Single step over possible
3334 	 * problem (IRET or exception injection or interrupt shadow)
3335 	 */
3336 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3337 	svm->nmi_singlestep = true;
3338 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3339 }
3340 
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)3341 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3342 {
3343 	return 0;
3344 }
3345 
svm_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3346 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3347 {
3348 	return 0;
3349 }
3350 
svm_flush_tlb(struct kvm_vcpu * vcpu)3351 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3352 {
3353 	struct vcpu_svm *svm = to_svm(vcpu);
3354 
3355 	/*
3356 	 * Flush only the current ASID even if the TLB flush was invoked via
3357 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3358 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3359 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3360 	 * VM-Exit (via kvm_mmu_reset_context()).
3361 	 */
3362 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3363 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3364 	else
3365 		svm->asid_generation--;
3366 }
3367 
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)3368 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3369 {
3370 	struct vcpu_svm *svm = to_svm(vcpu);
3371 
3372 	invlpga(gva, svm->vmcb->control.asid);
3373 }
3374 
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)3375 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3376 {
3377 }
3378 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)3379 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3380 {
3381 	struct vcpu_svm *svm = to_svm(vcpu);
3382 
3383 	if (nested_svm_virtualize_tpr(vcpu))
3384 		return;
3385 
3386 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3387 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3388 		kvm_set_cr8(vcpu, cr8);
3389 	}
3390 }
3391 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)3392 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3393 {
3394 	struct vcpu_svm *svm = to_svm(vcpu);
3395 	u64 cr8;
3396 
3397 	if (nested_svm_virtualize_tpr(vcpu) ||
3398 	    kvm_vcpu_apicv_active(vcpu))
3399 		return;
3400 
3401 	cr8 = kvm_get_cr8(vcpu);
3402 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3403 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3404 }
3405 
svm_complete_interrupts(struct vcpu_svm * svm)3406 static void svm_complete_interrupts(struct vcpu_svm *svm)
3407 {
3408 	u8 vector;
3409 	int type;
3410 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3411 	unsigned int3_injected = svm->int3_injected;
3412 
3413 	svm->int3_injected = 0;
3414 
3415 	/*
3416 	 * If we've made progress since setting HF_IRET_MASK, we've
3417 	 * executed an IRET and can allow NMI injection.
3418 	 */
3419 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3420 	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3421 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3422 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3423 	}
3424 
3425 	svm->vcpu.arch.nmi_injected = false;
3426 	kvm_clear_exception_queue(&svm->vcpu);
3427 	kvm_clear_interrupt_queue(&svm->vcpu);
3428 
3429 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3430 		return;
3431 
3432 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3433 
3434 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3435 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3436 
3437 	switch (type) {
3438 	case SVM_EXITINTINFO_TYPE_NMI:
3439 		svm->vcpu.arch.nmi_injected = true;
3440 		break;
3441 	case SVM_EXITINTINFO_TYPE_EXEPT:
3442 		/*
3443 		 * In case of software exceptions, do not reinject the vector,
3444 		 * but re-execute the instruction instead. Rewind RIP first
3445 		 * if we emulated INT3 before.
3446 		 */
3447 		if (kvm_exception_is_soft(vector)) {
3448 			if (vector == BP_VECTOR && int3_injected &&
3449 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3450 				kvm_rip_write(&svm->vcpu,
3451 					      kvm_rip_read(&svm->vcpu) -
3452 					      int3_injected);
3453 			break;
3454 		}
3455 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3456 			u32 err = svm->vmcb->control.exit_int_info_err;
3457 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3458 
3459 		} else
3460 			kvm_requeue_exception(&svm->vcpu, vector);
3461 		break;
3462 	case SVM_EXITINTINFO_TYPE_INTR:
3463 		kvm_queue_interrupt(&svm->vcpu, vector, false);
3464 		break;
3465 	default:
3466 		break;
3467 	}
3468 }
3469 
svm_cancel_injection(struct kvm_vcpu * vcpu)3470 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3471 {
3472 	struct vcpu_svm *svm = to_svm(vcpu);
3473 	struct vmcb_control_area *control = &svm->vmcb->control;
3474 
3475 	control->exit_int_info = control->event_inj;
3476 	control->exit_int_info_err = control->event_inj_err;
3477 	control->event_inj = 0;
3478 	svm_complete_interrupts(svm);
3479 }
3480 
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)3481 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3482 {
3483 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3484 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3485 		return handle_fastpath_set_msr_irqoff(vcpu);
3486 
3487 	return EXIT_FASTPATH_NONE;
3488 }
3489 
3490 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3491 
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_svm * svm)3492 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3493 					struct vcpu_svm *svm)
3494 {
3495 	/*
3496 	 * VMENTER enables interrupts (host state), but the kernel state is
3497 	 * interrupts disabled when this is invoked. Also tell RCU about
3498 	 * it. This is the same logic as for exit_to_user_mode().
3499 	 *
3500 	 * This ensures that e.g. latency analysis on the host observes
3501 	 * guest mode as interrupt enabled.
3502 	 *
3503 	 * guest_enter_irqoff() informs context tracking about the
3504 	 * transition to guest mode and if enabled adjusts RCU state
3505 	 * accordingly.
3506 	 */
3507 	instrumentation_begin();
3508 	trace_hardirqs_on_prepare();
3509 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3510 	instrumentation_end();
3511 
3512 	guest_enter_irqoff();
3513 	lockdep_hardirqs_on(CALLER_ADDR0);
3514 
3515 	__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3516 
3517 #ifdef CONFIG_X86_64
3518 	native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3519 #else
3520 	loadsegment(fs, svm->host.fs);
3521 #ifndef CONFIG_X86_32_LAZY_GS
3522 	loadsegment(gs, svm->host.gs);
3523 #endif
3524 #endif
3525 
3526 	/*
3527 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
3528 	 * have them in state 'on' as recorded before entering guest mode.
3529 	 * Same as enter_from_user_mode().
3530 	 *
3531 	 * context_tracking_guest_exit() restores host context and reinstates
3532 	 * RCU if enabled and required.
3533 	 *
3534 	 * This needs to be done before the below as native_read_msr()
3535 	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3536 	 * into world and some more.
3537 	 */
3538 	lockdep_hardirqs_off(CALLER_ADDR0);
3539 	context_tracking_guest_exit();
3540 
3541 	instrumentation_begin();
3542 	trace_hardirqs_off_finish();
3543 	instrumentation_end();
3544 }
3545 
svm_vcpu_run(struct kvm_vcpu * vcpu)3546 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3547 {
3548 	struct vcpu_svm *svm = to_svm(vcpu);
3549 
3550 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3551 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3552 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3553 
3554 	/*
3555 	 * Disable singlestep if we're injecting an interrupt/exception.
3556 	 * We don't want our modified rflags to be pushed on the stack where
3557 	 * we might not be able to easily reset them if we disabled NMI
3558 	 * singlestep later.
3559 	 */
3560 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3561 		/*
3562 		 * Event injection happens before external interrupts cause a
3563 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3564 		 * is enough to force an immediate vmexit.
3565 		 */
3566 		disable_nmi_singlestep(svm);
3567 		smp_send_reschedule(vcpu->cpu);
3568 	}
3569 
3570 	pre_svm_run(svm);
3571 
3572 	sync_lapic_to_cr8(vcpu);
3573 
3574 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3575 
3576 	/*
3577 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3578 	 * of a #DB.
3579 	 */
3580 	if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3581 		svm_set_dr6(svm, vcpu->arch.dr6);
3582 	else
3583 		svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3584 
3585 	clgi();
3586 	kvm_load_guest_xsave_state(vcpu);
3587 
3588 	kvm_wait_lapic_expire(vcpu);
3589 
3590 	/*
3591 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3592 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3593 	 * is no need to worry about the conditional branch over the wrmsr
3594 	 * being speculatively taken.
3595 	 */
3596 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3597 
3598 	svm_vcpu_enter_exit(vcpu, svm);
3599 
3600 	/*
3601 	 * We do not use IBRS in the kernel. If this vCPU has used the
3602 	 * SPEC_CTRL MSR it may have left it on; save the value and
3603 	 * turn it off. This is much more efficient than blindly adding
3604 	 * it to the atomic save/restore list. Especially as the former
3605 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3606 	 *
3607 	 * For non-nested case:
3608 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3609 	 * save it.
3610 	 *
3611 	 * For nested case:
3612 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3613 	 * save it.
3614 	 */
3615 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3616 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3617 
3618 	reload_tss(vcpu);
3619 
3620 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3621 
3622 	vcpu->arch.cr2 = svm->vmcb->save.cr2;
3623 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3624 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3625 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3626 
3627 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3628 		kvm_before_interrupt(&svm->vcpu);
3629 
3630 	kvm_load_host_xsave_state(vcpu);
3631 	stgi();
3632 
3633 	/* Any pending NMI will happen here */
3634 
3635 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3636 		kvm_after_interrupt(&svm->vcpu);
3637 
3638 	sync_cr8_to_lapic(vcpu);
3639 
3640 	svm->next_rip = 0;
3641 	if (is_guest_mode(&svm->vcpu)) {
3642 		sync_nested_vmcb_control(svm);
3643 		svm->nested.nested_run_pending = 0;
3644 	}
3645 
3646 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3647 	vmcb_mark_all_clean(svm->vmcb);
3648 
3649 	/* if exit due to PF check for async PF */
3650 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3651 		svm->vcpu.arch.apf.host_apf_flags =
3652 			kvm_read_and_reset_apf_flags();
3653 
3654 	if (npt_enabled) {
3655 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3656 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3657 	}
3658 
3659 	/*
3660 	 * We need to handle MC intercepts here before the vcpu has a chance to
3661 	 * change the physical cpu
3662 	 */
3663 	if (unlikely(svm->vmcb->control.exit_code ==
3664 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3665 		svm_handle_mce(svm);
3666 
3667 	svm_complete_interrupts(svm);
3668 
3669 	if (is_guest_mode(vcpu))
3670 		return EXIT_FASTPATH_NONE;
3671 
3672 	return svm_exit_handlers_fastpath(vcpu);
3673 }
3674 
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,unsigned long root,int root_level)3675 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3676 			     int root_level)
3677 {
3678 	struct vcpu_svm *svm = to_svm(vcpu);
3679 	unsigned long cr3;
3680 
3681 	cr3 = __sme_set(root);
3682 	if (npt_enabled) {
3683 		svm->vmcb->control.nested_cr3 = cr3;
3684 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3685 
3686 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3687 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3688 			return;
3689 		cr3 = vcpu->arch.cr3;
3690 	}
3691 
3692 	svm->vmcb->save.cr3 = cr3;
3693 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3694 }
3695 
is_disabled(void)3696 static int is_disabled(void)
3697 {
3698 	u64 vm_cr;
3699 
3700 	rdmsrl(MSR_VM_CR, vm_cr);
3701 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3702 		return 1;
3703 
3704 	return 0;
3705 }
3706 
3707 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)3708 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3709 {
3710 	/*
3711 	 * Patch in the VMMCALL instruction:
3712 	 */
3713 	hypercall[0] = 0x0f;
3714 	hypercall[1] = 0x01;
3715 	hypercall[2] = 0xd9;
3716 }
3717 
svm_check_processor_compat(void)3718 static int __init svm_check_processor_compat(void)
3719 {
3720 	return 0;
3721 }
3722 
svm_cpu_has_accelerated_tpr(void)3723 static bool svm_cpu_has_accelerated_tpr(void)
3724 {
3725 	return false;
3726 }
3727 
svm_has_emulated_msr(u32 index)3728 static bool svm_has_emulated_msr(u32 index)
3729 {
3730 	switch (index) {
3731 	case MSR_IA32_MCG_EXT_CTL:
3732 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3733 		return false;
3734 	default:
3735 		break;
3736 	}
3737 
3738 	return true;
3739 }
3740 
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)3741 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3742 {
3743 	return 0;
3744 }
3745 
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)3746 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3747 {
3748 	struct vcpu_svm *svm = to_svm(vcpu);
3749 	struct kvm_cpuid_entry2 *best;
3750 
3751 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3752 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
3753 				    boot_cpu_has(X86_FEATURE_XSAVES);
3754 
3755 	/* Update nrips enabled cache */
3756 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3757 			     guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3758 
3759 	/* Check again if INVPCID interception if required */
3760 	svm_check_invpcid(svm);
3761 
3762 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
3763 	if (sev_guest(vcpu->kvm)) {
3764 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3765 		if (best)
3766 			vcpu->arch.cr3_lm_rsvd_bits &= ~(1UL << (best->ebx & 0x3f));
3767 	}
3768 
3769 	if (!kvm_vcpu_apicv_active(vcpu))
3770 		return;
3771 
3772 	/*
3773 	 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3774 	 * is exposed to the guest, disable AVIC.
3775 	 */
3776 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3777 		kvm_request_apicv_update(vcpu->kvm, false,
3778 					 APICV_INHIBIT_REASON_X2APIC);
3779 
3780 	/*
3781 	 * Currently, AVIC does not work with nested virtualization.
3782 	 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3783 	 */
3784 	if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3785 		kvm_request_apicv_update(vcpu->kvm, false,
3786 					 APICV_INHIBIT_REASON_NESTED);
3787 }
3788 
svm_has_wbinvd_exit(void)3789 static bool svm_has_wbinvd_exit(void)
3790 {
3791 	return true;
3792 }
3793 
3794 #define PRE_EX(exit)  { .exit_code = (exit), \
3795 			.stage = X86_ICPT_PRE_EXCEPT, }
3796 #define POST_EX(exit) { .exit_code = (exit), \
3797 			.stage = X86_ICPT_POST_EXCEPT, }
3798 #define POST_MEM(exit) { .exit_code = (exit), \
3799 			.stage = X86_ICPT_POST_MEMACCESS, }
3800 
3801 static const struct __x86_intercept {
3802 	u32 exit_code;
3803 	enum x86_intercept_stage stage;
3804 } x86_intercept_map[] = {
3805 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
3806 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
3807 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
3808 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
3809 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
3810 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
3811 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
3812 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
3813 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
3814 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
3815 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
3816 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
3817 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
3818 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
3819 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
3820 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
3821 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
3822 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
3823 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
3824 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
3825 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
3826 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
3827 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
3828 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
3829 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
3830 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
3831 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
3832 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
3833 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
3834 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
3835 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
3836 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
3837 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
3838 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
3839 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
3840 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
3841 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
3842 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
3843 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
3844 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
3845 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
3846 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
3847 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
3848 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
3849 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
3850 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
3851 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
3852 };
3853 
3854 #undef PRE_EX
3855 #undef POST_EX
3856 #undef POST_MEM
3857 
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)3858 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3859 			       struct x86_instruction_info *info,
3860 			       enum x86_intercept_stage stage,
3861 			       struct x86_exception *exception)
3862 {
3863 	struct vcpu_svm *svm = to_svm(vcpu);
3864 	int vmexit, ret = X86EMUL_CONTINUE;
3865 	struct __x86_intercept icpt_info;
3866 	struct vmcb *vmcb = svm->vmcb;
3867 
3868 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3869 		goto out;
3870 
3871 	icpt_info = x86_intercept_map[info->intercept];
3872 
3873 	if (stage != icpt_info.stage)
3874 		goto out;
3875 
3876 	switch (icpt_info.exit_code) {
3877 	case SVM_EXIT_READ_CR0:
3878 		if (info->intercept == x86_intercept_cr_read)
3879 			icpt_info.exit_code += info->modrm_reg;
3880 		break;
3881 	case SVM_EXIT_WRITE_CR0: {
3882 		unsigned long cr0, val;
3883 
3884 		if (info->intercept == x86_intercept_cr_write)
3885 			icpt_info.exit_code += info->modrm_reg;
3886 
3887 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3888 		    info->intercept == x86_intercept_clts)
3889 			break;
3890 
3891 		if (!(vmcb_is_intercept(&svm->nested.ctl,
3892 					INTERCEPT_SELECTIVE_CR0)))
3893 			break;
3894 
3895 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3896 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
3897 
3898 		if (info->intercept == x86_intercept_lmsw) {
3899 			cr0 &= 0xfUL;
3900 			val &= 0xfUL;
3901 			/* lmsw can't clear PE - catch this here */
3902 			if (cr0 & X86_CR0_PE)
3903 				val |= X86_CR0_PE;
3904 		}
3905 
3906 		if (cr0 ^ val)
3907 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3908 
3909 		break;
3910 	}
3911 	case SVM_EXIT_READ_DR0:
3912 	case SVM_EXIT_WRITE_DR0:
3913 		icpt_info.exit_code += info->modrm_reg;
3914 		break;
3915 	case SVM_EXIT_MSR:
3916 		if (info->intercept == x86_intercept_wrmsr)
3917 			vmcb->control.exit_info_1 = 1;
3918 		else
3919 			vmcb->control.exit_info_1 = 0;
3920 		break;
3921 	case SVM_EXIT_PAUSE:
3922 		/*
3923 		 * We get this for NOP only, but pause
3924 		 * is rep not, check this here
3925 		 */
3926 		if (info->rep_prefix != REPE_PREFIX)
3927 			goto out;
3928 		break;
3929 	case SVM_EXIT_IOIO: {
3930 		u64 exit_info;
3931 		u32 bytes;
3932 
3933 		if (info->intercept == x86_intercept_in ||
3934 		    info->intercept == x86_intercept_ins) {
3935 			exit_info = ((info->src_val & 0xffff) << 16) |
3936 				SVM_IOIO_TYPE_MASK;
3937 			bytes = info->dst_bytes;
3938 		} else {
3939 			exit_info = (info->dst_val & 0xffff) << 16;
3940 			bytes = info->src_bytes;
3941 		}
3942 
3943 		if (info->intercept == x86_intercept_outs ||
3944 		    info->intercept == x86_intercept_ins)
3945 			exit_info |= SVM_IOIO_STR_MASK;
3946 
3947 		if (info->rep_prefix)
3948 			exit_info |= SVM_IOIO_REP_MASK;
3949 
3950 		bytes = min(bytes, 4u);
3951 
3952 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3953 
3954 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3955 
3956 		vmcb->control.exit_info_1 = exit_info;
3957 		vmcb->control.exit_info_2 = info->next_rip;
3958 
3959 		break;
3960 	}
3961 	default:
3962 		break;
3963 	}
3964 
3965 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3966 	if (static_cpu_has(X86_FEATURE_NRIPS))
3967 		vmcb->control.next_rip  = info->next_rip;
3968 	vmcb->control.exit_code = icpt_info.exit_code;
3969 	vmexit = nested_svm_exit_handled(svm);
3970 
3971 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3972 					   : X86EMUL_CONTINUE;
3973 
3974 out:
3975 	return ret;
3976 }
3977 
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)3978 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
3979 {
3980 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
3981 		vcpu->arch.at_instruction_boundary = true;
3982 }
3983 
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)3984 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
3985 {
3986 	if (!kvm_pause_in_guest(vcpu->kvm))
3987 		shrink_ple_window(vcpu);
3988 }
3989 
svm_setup_mce(struct kvm_vcpu * vcpu)3990 static void svm_setup_mce(struct kvm_vcpu *vcpu)
3991 {
3992 	/* [63:9] are reserved. */
3993 	vcpu->arch.mcg_cap &= 0x1ff;
3994 }
3995 
svm_smi_blocked(struct kvm_vcpu * vcpu)3996 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
3997 {
3998 	struct vcpu_svm *svm = to_svm(vcpu);
3999 
4000 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4001 	if (!gif_set(svm))
4002 		return true;
4003 
4004 	return is_smm(vcpu);
4005 }
4006 
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4007 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4008 {
4009 	struct vcpu_svm *svm = to_svm(vcpu);
4010 	if (svm->nested.nested_run_pending)
4011 		return -EBUSY;
4012 
4013 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4014 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4015 		return -EBUSY;
4016 
4017 	return !svm_smi_blocked(vcpu);
4018 }
4019 
svm_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)4020 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4021 {
4022 	struct vcpu_svm *svm = to_svm(vcpu);
4023 	int ret;
4024 
4025 	if (is_guest_mode(vcpu)) {
4026 		/* FED8h - SVM Guest */
4027 		put_smstate(u64, smstate, 0x7ed8, 1);
4028 		/* FEE0h - SVM Guest VMCB Physical Address */
4029 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4030 
4031 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4032 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4033 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4034 
4035 		ret = nested_svm_vmexit(svm);
4036 		if (ret)
4037 			return ret;
4038 	}
4039 	return 0;
4040 }
4041 
svm_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)4042 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4043 {
4044 	struct vcpu_svm *svm = to_svm(vcpu);
4045 	struct kvm_host_map map;
4046 	int ret = 0;
4047 
4048 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4049 		u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4050 		u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4051 		u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4052 
4053 		if (guest) {
4054 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4055 				return 1;
4056 
4057 			if (!(saved_efer & EFER_SVME))
4058 				return 1;
4059 
4060 			if (kvm_vcpu_map(&svm->vcpu,
4061 					 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4062 				return 1;
4063 
4064 			if (svm_allocate_nested(svm))
4065 				return 1;
4066 
4067 			ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
4068 			kvm_vcpu_unmap(&svm->vcpu, &map, true);
4069 		}
4070 	}
4071 
4072 	return ret;
4073 }
4074 
enable_smi_window(struct kvm_vcpu * vcpu)4075 static void enable_smi_window(struct kvm_vcpu *vcpu)
4076 {
4077 	struct vcpu_svm *svm = to_svm(vcpu);
4078 
4079 	if (!gif_set(svm)) {
4080 		if (vgif_enabled(svm))
4081 			svm_set_intercept(svm, INTERCEPT_STGI);
4082 		/* STGI will cause a vm exit */
4083 	} else {
4084 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4085 	}
4086 }
4087 
svm_can_emulate_instruction(struct kvm_vcpu * vcpu,void * insn,int insn_len)4088 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4089 {
4090 	bool smep, smap, is_user;
4091 	unsigned long cr4;
4092 
4093 	/* Emulation is always possible when KVM has access to all guest state. */
4094 	if (!sev_guest(vcpu->kvm))
4095 		return true;
4096 
4097 	/*
4098 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4099 	 *
4100 	 * Errata:
4101 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4102 	 * possible that CPU microcode implementing DecodeAssist will fail
4103 	 * to read bytes of instruction which caused #NPF. In this case,
4104 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4105 	 * return 0 instead of the correct guest instruction bytes.
4106 	 *
4107 	 * This happens because CPU microcode reading instruction bytes
4108 	 * uses a special opcode which attempts to read data using CPL=0
4109 	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
4110 	 * fault, it gives up and returns no instruction bytes.
4111 	 *
4112 	 * Detection:
4113 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4114 	 * returned 0 in GuestIntrBytes field of the VMCB.
4115 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4116 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4117 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4118 	 * a SMEP fault instead of #NPF).
4119 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4120 	 * As most guests enable SMAP if they have also enabled SMEP, use above
4121 	 * logic in order to attempt minimize false-positive of detecting errata
4122 	 * while still preserving all cases semantic correctness.
4123 	 *
4124 	 * Workaround:
4125 	 * To determine what instruction the guest was executing, the hypervisor
4126 	 * will have to decode the instruction at the instruction pointer.
4127 	 *
4128 	 * In non SEV guest, hypervisor will be able to read the guest
4129 	 * memory to decode the instruction pointer when insn_len is zero
4130 	 * so we return true to indicate that decoding is possible.
4131 	 *
4132 	 * But in the SEV guest, the guest memory is encrypted with the
4133 	 * guest specific key and hypervisor will not be able to decode the
4134 	 * instruction pointer so we will not able to workaround it. Lets
4135 	 * print the error and request to kill the guest.
4136 	 */
4137 	if (likely(!insn || insn_len))
4138 		return true;
4139 
4140 	cr4 = kvm_read_cr4(vcpu);
4141 	smep = cr4 & X86_CR4_SMEP;
4142 	smap = cr4 & X86_CR4_SMAP;
4143 	is_user = svm_get_cpl(vcpu) == 3;
4144 	if (smap && (!smep || is_user)) {
4145 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4146 
4147 		/*
4148 		 * If the fault occurred in userspace, arbitrarily inject #GP
4149 		 * to avoid killing the guest and to hopefully avoid confusing
4150 		 * the guest kernel too much, e.g. injecting #PF would not be
4151 		 * coherent with respect to the guest's page tables.  Request
4152 		 * triple fault if the fault occurred in the kernel as there's
4153 		 * no fault that KVM can inject without confusing the guest.
4154 		 * In practice, the triple fault is moot as no sane SEV kernel
4155 		 * will execute from user memory while also running with SMAP=1.
4156 		 */
4157 		if (is_user)
4158 			kvm_inject_gp(vcpu, 0);
4159 		else
4160 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4161 	}
4162 
4163 	return false;
4164 }
4165 
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4166 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4167 {
4168 	struct vcpu_svm *svm = to_svm(vcpu);
4169 
4170 	/*
4171 	 * TODO: Last condition latch INIT signals on vCPU when
4172 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4173 	 * To properly emulate the INIT intercept,
4174 	 * svm_check_nested_events() should call nested_svm_vmexit()
4175 	 * if an INIT signal is pending.
4176 	 */
4177 	return !gif_set(svm) ||
4178 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4179 }
4180 
svm_vm_destroy(struct kvm * kvm)4181 static void svm_vm_destroy(struct kvm *kvm)
4182 {
4183 	avic_vm_destroy(kvm);
4184 	sev_vm_destroy(kvm);
4185 }
4186 
svm_vm_init(struct kvm * kvm)4187 static int svm_vm_init(struct kvm *kvm)
4188 {
4189 	if (!pause_filter_count || !pause_filter_thresh)
4190 		kvm->arch.pause_in_guest = true;
4191 
4192 	if (avic) {
4193 		int ret = avic_vm_init(kvm);
4194 		if (ret)
4195 			return ret;
4196 	}
4197 
4198 	kvm_apicv_init(kvm, avic);
4199 	return 0;
4200 }
4201 
4202 static struct kvm_x86_ops svm_x86_ops __initdata = {
4203 	.hardware_unsetup = svm_hardware_teardown,
4204 	.hardware_enable = svm_hardware_enable,
4205 	.hardware_disable = svm_hardware_disable,
4206 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4207 	.has_emulated_msr = svm_has_emulated_msr,
4208 
4209 	.vcpu_create = svm_create_vcpu,
4210 	.vcpu_free = svm_free_vcpu,
4211 	.vcpu_reset = svm_vcpu_reset,
4212 
4213 	.vm_size = sizeof(struct kvm_svm),
4214 	.vm_init = svm_vm_init,
4215 	.vm_destroy = svm_vm_destroy,
4216 
4217 	.prepare_guest_switch = svm_prepare_guest_switch,
4218 	.vcpu_load = svm_vcpu_load,
4219 	.vcpu_put = svm_vcpu_put,
4220 	.vcpu_blocking = svm_vcpu_blocking,
4221 	.vcpu_unblocking = svm_vcpu_unblocking,
4222 
4223 	.update_exception_bitmap = update_exception_bitmap,
4224 	.get_msr_feature = svm_get_msr_feature,
4225 	.get_msr = svm_get_msr,
4226 	.set_msr = svm_set_msr,
4227 	.get_segment_base = svm_get_segment_base,
4228 	.get_segment = svm_get_segment,
4229 	.set_segment = svm_set_segment,
4230 	.get_cpl = svm_get_cpl,
4231 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4232 	.set_cr0 = svm_set_cr0,
4233 	.is_valid_cr4 = svm_is_valid_cr4,
4234 	.set_cr4 = svm_set_cr4,
4235 	.set_efer = svm_set_efer,
4236 	.get_idt = svm_get_idt,
4237 	.set_idt = svm_set_idt,
4238 	.get_gdt = svm_get_gdt,
4239 	.set_gdt = svm_set_gdt,
4240 	.set_dr7 = svm_set_dr7,
4241 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4242 	.cache_reg = svm_cache_reg,
4243 	.get_rflags = svm_get_rflags,
4244 	.set_rflags = svm_set_rflags,
4245 
4246 	.tlb_flush_all = svm_flush_tlb,
4247 	.tlb_flush_current = svm_flush_tlb,
4248 	.tlb_flush_gva = svm_flush_tlb_gva,
4249 	.tlb_flush_guest = svm_flush_tlb,
4250 
4251 	.run = svm_vcpu_run,
4252 	.handle_exit = handle_exit,
4253 	.skip_emulated_instruction = skip_emulated_instruction,
4254 	.update_emulated_instruction = NULL,
4255 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4256 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4257 	.patch_hypercall = svm_patch_hypercall,
4258 	.set_irq = svm_set_irq,
4259 	.set_nmi = svm_inject_nmi,
4260 	.queue_exception = svm_queue_exception,
4261 	.cancel_injection = svm_cancel_injection,
4262 	.interrupt_allowed = svm_interrupt_allowed,
4263 	.nmi_allowed = svm_nmi_allowed,
4264 	.get_nmi_mask = svm_get_nmi_mask,
4265 	.set_nmi_mask = svm_set_nmi_mask,
4266 	.enable_nmi_window = enable_nmi_window,
4267 	.enable_irq_window = enable_irq_window,
4268 	.update_cr8_intercept = update_cr8_intercept,
4269 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4270 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4271 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4272 	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4273 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4274 	.hwapic_irr_update = svm_hwapic_irr_update,
4275 	.hwapic_isr_update = svm_hwapic_isr_update,
4276 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
4277 	.apicv_post_state_restore = avic_post_state_restore,
4278 
4279 	.set_tss_addr = svm_set_tss_addr,
4280 	.set_identity_map_addr = svm_set_identity_map_addr,
4281 	.get_mt_mask = svm_get_mt_mask,
4282 
4283 	.get_exit_info = svm_get_exit_info,
4284 
4285 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4286 
4287 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4288 
4289 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
4290 
4291 	.load_mmu_pgd = svm_load_mmu_pgd,
4292 
4293 	.check_intercept = svm_check_intercept,
4294 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4295 
4296 	.request_immediate_exit = __kvm_request_immediate_exit,
4297 
4298 	.sched_in = svm_sched_in,
4299 
4300 	.pmu_ops = &amd_pmu_ops,
4301 	.nested_ops = &svm_nested_ops,
4302 
4303 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4304 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4305 	.update_pi_irte = svm_update_pi_irte,
4306 	.setup_mce = svm_setup_mce,
4307 
4308 	.smi_allowed = svm_smi_allowed,
4309 	.pre_enter_smm = svm_pre_enter_smm,
4310 	.pre_leave_smm = svm_pre_leave_smm,
4311 	.enable_smi_window = enable_smi_window,
4312 
4313 	.mem_enc_op = svm_mem_enc_op,
4314 	.mem_enc_reg_region = svm_register_enc_region,
4315 	.mem_enc_unreg_region = svm_unregister_enc_region,
4316 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
4317 
4318 	.can_emulate_instruction = svm_can_emulate_instruction,
4319 
4320 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4321 
4322 	.msr_filter_changed = svm_msr_filter_changed,
4323 };
4324 
4325 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4326 	.cpu_has_kvm_support = has_svm,
4327 	.disabled_by_bios = is_disabled,
4328 	.hardware_setup = svm_hardware_setup,
4329 	.check_processor_compatibility = svm_check_processor_compat,
4330 
4331 	.runtime_ops = &svm_x86_ops,
4332 };
4333 
svm_init(void)4334 static int __init svm_init(void)
4335 {
4336 	__unused_size_checks();
4337 
4338 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4339 			__alignof__(struct vcpu_svm), THIS_MODULE);
4340 }
4341 
svm_exit(void)4342 static void __exit svm_exit(void)
4343 {
4344 	kvm_exit();
4345 }
4346 
4347 module_init(svm_init)
4348 module_exit(svm_exit)
4349