1 /*****************************************************************************
2 * *
3 * File: sge.c *
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, see <http://www.gnu.org/licenses/>. *
16 * *
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
20 * *
21 * http://www.chelsio.com *
22 * *
23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
24 * All rights reserved. *
25 * *
26 * Maintainers: maintainers@chelsio.com *
27 * *
28 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
29 * Tina Yang <tainay@chelsio.com> *
30 * Felix Marti <felix@chelsio.com> *
31 * Scott Bardone <sbardone@chelsio.com> *
32 * Kurt Ottaway <kottaway@chelsio.com> *
33 * Frank DiMambro <frank@chelsio.com> *
34 * *
35 * History: *
36 * *
37 ****************************************************************************/
38
39 #include "common.h"
40
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/pci.h>
44 #include <linux/ktime.h>
45 #include <linux/netdevice.h>
46 #include <linux/etherdevice.h>
47 #include <linux/if_vlan.h>
48 #include <linux/skbuff.h>
49 #include <linux/mm.h>
50 #include <linux/tcp.h>
51 #include <linux/ip.h>
52 #include <linux/in.h>
53 #include <linux/if_arp.h>
54 #include <linux/slab.h>
55 #include <linux/prefetch.h>
56
57 #include "cpl5_cmd.h"
58 #include "sge.h"
59 #include "regs.h"
60 #include "espi.h"
61
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
64
65 #define SGE_CMDQ_N 2
66 #define SGE_FREELQ_N 2
67 #define SGE_CMDQ0_E_N 1024
68 #define SGE_CMDQ1_E_N 128
69 #define SGE_FREEL_SIZE 4096
70 #define SGE_JUMBO_FREEL_SIZE 512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N 1024
73 #define SGE_INTRTIMER_NRES 1000
74 #define SGE_RX_SM_BUF_SIZE 1536
75 #define SGE_TX_DESC_MAX_PLEN 16384
76
77 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
78
79 /*
80 * Period of the TX buffer reclaim timer. This timer does not need to run
81 * frequently as TX buffers are usually reclaimed by new TX packets.
82 */
83 #define TX_RECLAIM_PERIOD (HZ / 4)
84
85 #define M_CMD_LEN 0x7fffffff
86 #define V_CMD_LEN(v) (v)
87 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
88 #define V_CMD_GEN1(v) ((v) << 31)
89 #define V_CMD_GEN2(v) (v)
90 #define F_CMD_DATAVALID (1 << 1)
91 #define F_CMD_SOP (1 << 2)
92 #define V_CMD_EOP(v) ((v) << 3)
93
94 /*
95 * Command queue, receive buffer list, and response queue descriptors.
96 */
97 #if defined(__BIG_ENDIAN_BITFIELD)
98 struct cmdQ_e {
99 u32 addr_lo;
100 u32 len_gen;
101 u32 flags;
102 u32 addr_hi;
103 };
104
105 struct freelQ_e {
106 u32 addr_lo;
107 u32 len_gen;
108 u32 gen2;
109 u32 addr_hi;
110 };
111
112 struct respQ_e {
113 u32 Qsleeping : 4;
114 u32 Cmdq1CreditReturn : 5;
115 u32 Cmdq1DmaComplete : 5;
116 u32 Cmdq0CreditReturn : 5;
117 u32 Cmdq0DmaComplete : 5;
118 u32 FreelistQid : 2;
119 u32 CreditValid : 1;
120 u32 DataValid : 1;
121 u32 Offload : 1;
122 u32 Eop : 1;
123 u32 Sop : 1;
124 u32 GenerationBit : 1;
125 u32 BufferLength;
126 };
127 #elif defined(__LITTLE_ENDIAN_BITFIELD)
128 struct cmdQ_e {
129 u32 len_gen;
130 u32 addr_lo;
131 u32 addr_hi;
132 u32 flags;
133 };
134
135 struct freelQ_e {
136 u32 len_gen;
137 u32 addr_lo;
138 u32 addr_hi;
139 u32 gen2;
140 };
141
142 struct respQ_e {
143 u32 BufferLength;
144 u32 GenerationBit : 1;
145 u32 Sop : 1;
146 u32 Eop : 1;
147 u32 Offload : 1;
148 u32 DataValid : 1;
149 u32 CreditValid : 1;
150 u32 FreelistQid : 2;
151 u32 Cmdq0DmaComplete : 5;
152 u32 Cmdq0CreditReturn : 5;
153 u32 Cmdq1DmaComplete : 5;
154 u32 Cmdq1CreditReturn : 5;
155 u32 Qsleeping : 4;
156 } ;
157 #endif
158
159 /*
160 * SW Context Command and Freelist Queue Descriptors
161 */
162 struct cmdQ_ce {
163 struct sk_buff *skb;
164 DEFINE_DMA_UNMAP_ADDR(dma_addr);
165 DEFINE_DMA_UNMAP_LEN(dma_len);
166 };
167
168 struct freelQ_ce {
169 struct sk_buff *skb;
170 DEFINE_DMA_UNMAP_ADDR(dma_addr);
171 DEFINE_DMA_UNMAP_LEN(dma_len);
172 };
173
174 /*
175 * SW command, freelist and response rings
176 */
177 struct cmdQ {
178 unsigned long status; /* HW DMA fetch status */
179 unsigned int in_use; /* # of in-use command descriptors */
180 unsigned int size; /* # of descriptors */
181 unsigned int processed; /* total # of descs HW has processed */
182 unsigned int cleaned; /* total # of descs SW has reclaimed */
183 unsigned int stop_thres; /* SW TX queue suspend threshold */
184 u16 pidx; /* producer index (SW) */
185 u16 cidx; /* consumer index (HW) */
186 u8 genbit; /* current generation (=valid) bit */
187 u8 sop; /* is next entry start of packet? */
188 struct cmdQ_e *entries; /* HW command descriptor Q */
189 struct cmdQ_ce *centries; /* SW command context descriptor Q */
190 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
191 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
192 };
193
194 struct freelQ {
195 unsigned int credits; /* # of available RX buffers */
196 unsigned int size; /* free list capacity */
197 u16 pidx; /* producer index (SW) */
198 u16 cidx; /* consumer index (HW) */
199 u16 rx_buffer_size; /* Buffer size on this free list */
200 u16 dma_offset; /* DMA offset to align IP headers */
201 u16 recycleq_idx; /* skb recycle q to use */
202 u8 genbit; /* current generation (=valid) bit */
203 struct freelQ_e *entries; /* HW freelist descriptor Q */
204 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
205 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
206 };
207
208 struct respQ {
209 unsigned int credits; /* credits to be returned to SGE */
210 unsigned int size; /* # of response Q descriptors */
211 u16 cidx; /* consumer index (SW) */
212 u8 genbit; /* current generation(=valid) bit */
213 struct respQ_e *entries; /* HW response descriptor Q */
214 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
215 };
216
217 /* Bit flags for cmdQ.status */
218 enum {
219 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
220 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
221 };
222
223 /* T204 TX SW scheduler */
224
225 /* Per T204 TX port */
226 struct sched_port {
227 unsigned int avail; /* available bits - quota */
228 unsigned int drain_bits_per_1024ns; /* drain rate */
229 unsigned int speed; /* drain rate, mbps */
230 unsigned int mtu; /* mtu size */
231 struct sk_buff_head skbq; /* pending skbs */
232 };
233
234 /* Per T204 device */
235 struct sched {
236 ktime_t last_updated; /* last time quotas were computed */
237 unsigned int max_avail; /* max bits to be sent to any port */
238 unsigned int port; /* port index (round robin ports) */
239 unsigned int num; /* num skbs in per port queues */
240 struct sched_port p[MAX_NPORTS];
241 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
242 struct sge *sge;
243 };
244
245 static void restart_sched(struct tasklet_struct *t);
246
247
248 /*
249 * Main SGE data structure
250 *
251 * Interrupts are handled by a single CPU and it is likely that on a MP system
252 * the application is migrated to another CPU. In that scenario, we try to
253 * separate the RX(in irq context) and TX state in order to decrease memory
254 * contention.
255 */
256 struct sge {
257 struct adapter *adapter; /* adapter backpointer */
258 struct net_device *netdev; /* netdevice backpointer */
259 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
260 struct respQ respQ; /* response Q */
261 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
262 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
263 unsigned int jumbo_fl; /* jumbo freelist Q index */
264 unsigned int intrtimer_nres; /* no-resource interrupt timer */
265 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
266 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
267 struct timer_list espibug_timer;
268 unsigned long espibug_timeout;
269 struct sk_buff *espibug_skb[MAX_NPORTS];
270 u32 sge_control; /* shadow value of sge control reg */
271 struct sge_intr_counts stats;
272 struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
273 struct sched *tx_sched;
274 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
275 };
276
277 static const u8 ch_mac_addr[ETH_ALEN] = {
278 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
279 };
280
281 /*
282 * stop tasklet and free all pending skb's
283 */
tx_sched_stop(struct sge * sge)284 static void tx_sched_stop(struct sge *sge)
285 {
286 struct sched *s = sge->tx_sched;
287 int i;
288
289 tasklet_kill(&s->sched_tsk);
290
291 for (i = 0; i < MAX_NPORTS; i++)
292 __skb_queue_purge(&s->p[s->port].skbq);
293 }
294
295 /*
296 * t1_sched_update_parms() is called when the MTU or link speed changes. It
297 * re-computes scheduler parameters to scope with the change.
298 */
t1_sched_update_parms(struct sge * sge,unsigned int port,unsigned int mtu,unsigned int speed)299 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
300 unsigned int mtu, unsigned int speed)
301 {
302 struct sched *s = sge->tx_sched;
303 struct sched_port *p = &s->p[port];
304 unsigned int max_avail_segs;
305
306 pr_debug("%s mtu=%d speed=%d\n", __func__, mtu, speed);
307 if (speed)
308 p->speed = speed;
309 if (mtu)
310 p->mtu = mtu;
311
312 if (speed || mtu) {
313 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
314 do_div(drain, (p->mtu + 50) * 1000);
315 p->drain_bits_per_1024ns = (unsigned int) drain;
316
317 if (p->speed < 1000)
318 p->drain_bits_per_1024ns =
319 90 * p->drain_bits_per_1024ns / 100;
320 }
321
322 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
323 p->drain_bits_per_1024ns -= 16;
324 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
325 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
326 } else {
327 s->max_avail = 16384;
328 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
329 }
330
331 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
332 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
333 p->speed, s->max_avail, max_avail_segs,
334 p->drain_bits_per_1024ns);
335
336 return max_avail_segs * (p->mtu - 40);
337 }
338
339 #if 0
340
341 /*
342 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
343 * data that can be pushed per port.
344 */
345 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
346 {
347 struct sched *s = sge->tx_sched;
348 unsigned int i;
349
350 s->max_avail = val;
351 for (i = 0; i < MAX_NPORTS; i++)
352 t1_sched_update_parms(sge, i, 0, 0);
353 }
354
355 /*
356 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
357 * is draining.
358 */
359 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
360 unsigned int val)
361 {
362 struct sched *s = sge->tx_sched;
363 struct sched_port *p = &s->p[port];
364 p->drain_bits_per_1024ns = val * 1024 / 1000;
365 t1_sched_update_parms(sge, port, 0, 0);
366 }
367
368 #endif /* 0 */
369
370 /*
371 * tx_sched_init() allocates resources and does basic initialization.
372 */
tx_sched_init(struct sge * sge)373 static int tx_sched_init(struct sge *sge)
374 {
375 struct sched *s;
376 int i;
377
378 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
379 if (!s)
380 return -ENOMEM;
381
382 pr_debug("tx_sched_init\n");
383 tasklet_setup(&s->sched_tsk, restart_sched);
384 s->sge = sge;
385 sge->tx_sched = s;
386
387 for (i = 0; i < MAX_NPORTS; i++) {
388 skb_queue_head_init(&s->p[i].skbq);
389 t1_sched_update_parms(sge, i, 1500, 1000);
390 }
391
392 return 0;
393 }
394
395 /*
396 * sched_update_avail() computes the delta since the last time it was called
397 * and updates the per port quota (number of bits that can be sent to the any
398 * port).
399 */
sched_update_avail(struct sge * sge)400 static inline int sched_update_avail(struct sge *sge)
401 {
402 struct sched *s = sge->tx_sched;
403 ktime_t now = ktime_get();
404 unsigned int i;
405 long long delta_time_ns;
406
407 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
408
409 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
410 if (delta_time_ns < 15000)
411 return 0;
412
413 for (i = 0; i < MAX_NPORTS; i++) {
414 struct sched_port *p = &s->p[i];
415 unsigned int delta_avail;
416
417 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
418 p->avail = min(p->avail + delta_avail, s->max_avail);
419 }
420
421 s->last_updated = now;
422
423 return 1;
424 }
425
426 /*
427 * sched_skb() is called from two different places. In the tx path, any
428 * packet generating load on an output port will call sched_skb()
429 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
430 * context (skb == NULL).
431 * The scheduler only returns a skb (which will then be sent) if the
432 * length of the skb is <= the current quota of the output port.
433 */
sched_skb(struct sge * sge,struct sk_buff * skb,unsigned int credits)434 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
435 unsigned int credits)
436 {
437 struct sched *s = sge->tx_sched;
438 struct sk_buff_head *skbq;
439 unsigned int i, len, update = 1;
440
441 pr_debug("sched_skb %p\n", skb);
442 if (!skb) {
443 if (!s->num)
444 return NULL;
445 } else {
446 skbq = &s->p[skb->dev->if_port].skbq;
447 __skb_queue_tail(skbq, skb);
448 s->num++;
449 skb = NULL;
450 }
451
452 if (credits < MAX_SKB_FRAGS + 1)
453 goto out;
454
455 again:
456 for (i = 0; i < MAX_NPORTS; i++) {
457 s->port = (s->port + 1) & (MAX_NPORTS - 1);
458 skbq = &s->p[s->port].skbq;
459
460 skb = skb_peek(skbq);
461
462 if (!skb)
463 continue;
464
465 len = skb->len;
466 if (len <= s->p[s->port].avail) {
467 s->p[s->port].avail -= len;
468 s->num--;
469 __skb_unlink(skb, skbq);
470 goto out;
471 }
472 skb = NULL;
473 }
474
475 if (update-- && sched_update_avail(sge))
476 goto again;
477
478 out:
479 /* If there are more pending skbs, we use the hardware to schedule us
480 * again.
481 */
482 if (s->num && !skb) {
483 struct cmdQ *q = &sge->cmdQ[0];
484 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
485 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
486 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
487 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
488 }
489 }
490 pr_debug("sched_skb ret %p\n", skb);
491
492 return skb;
493 }
494
495 /*
496 * PIO to indicate that memory mapped Q contains valid descriptor(s).
497 */
doorbell_pio(struct adapter * adapter,u32 val)498 static inline void doorbell_pio(struct adapter *adapter, u32 val)
499 {
500 wmb();
501 writel(val, adapter->regs + A_SG_DOORBELL);
502 }
503
504 /*
505 * Frees all RX buffers on the freelist Q. The caller must make sure that
506 * the SGE is turned off before calling this function.
507 */
free_freelQ_buffers(struct pci_dev * pdev,struct freelQ * q)508 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
509 {
510 unsigned int cidx = q->cidx;
511
512 while (q->credits--) {
513 struct freelQ_ce *ce = &q->centries[cidx];
514
515 dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr),
516 dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
517 dev_kfree_skb(ce->skb);
518 ce->skb = NULL;
519 if (++cidx == q->size)
520 cidx = 0;
521 }
522 }
523
524 /*
525 * Free RX free list and response queue resources.
526 */
free_rx_resources(struct sge * sge)527 static void free_rx_resources(struct sge *sge)
528 {
529 struct pci_dev *pdev = sge->adapter->pdev;
530 unsigned int size, i;
531
532 if (sge->respQ.entries) {
533 size = sizeof(struct respQ_e) * sge->respQ.size;
534 dma_free_coherent(&pdev->dev, size, sge->respQ.entries,
535 sge->respQ.dma_addr);
536 }
537
538 for (i = 0; i < SGE_FREELQ_N; i++) {
539 struct freelQ *q = &sge->freelQ[i];
540
541 if (q->centries) {
542 free_freelQ_buffers(pdev, q);
543 kfree(q->centries);
544 }
545 if (q->entries) {
546 size = sizeof(struct freelQ_e) * q->size;
547 dma_free_coherent(&pdev->dev, size, q->entries,
548 q->dma_addr);
549 }
550 }
551 }
552
553 /*
554 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
555 * response queue.
556 */
alloc_rx_resources(struct sge * sge,struct sge_params * p)557 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
558 {
559 struct pci_dev *pdev = sge->adapter->pdev;
560 unsigned int size, i;
561
562 for (i = 0; i < SGE_FREELQ_N; i++) {
563 struct freelQ *q = &sge->freelQ[i];
564
565 q->genbit = 1;
566 q->size = p->freelQ_size[i];
567 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
568 size = sizeof(struct freelQ_e) * q->size;
569 q->entries = dma_alloc_coherent(&pdev->dev, size,
570 &q->dma_addr, GFP_KERNEL);
571 if (!q->entries)
572 goto err_no_mem;
573
574 size = sizeof(struct freelQ_ce) * q->size;
575 q->centries = kzalloc(size, GFP_KERNEL);
576 if (!q->centries)
577 goto err_no_mem;
578 }
579
580 /*
581 * Calculate the buffer sizes for the two free lists. FL0 accommodates
582 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
583 * including all the sk_buff overhead.
584 *
585 * Note: For T2 FL0 and FL1 are reversed.
586 */
587 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
588 sizeof(struct cpl_rx_data) +
589 sge->freelQ[!sge->jumbo_fl].dma_offset;
590
591 size = (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
592
593 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
594
595 /*
596 * Setup which skb recycle Q should be used when recycling buffers from
597 * each free list.
598 */
599 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
600 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
601
602 sge->respQ.genbit = 1;
603 sge->respQ.size = SGE_RESPQ_E_N;
604 sge->respQ.credits = 0;
605 size = sizeof(struct respQ_e) * sge->respQ.size;
606 sge->respQ.entries =
607 dma_alloc_coherent(&pdev->dev, size, &sge->respQ.dma_addr,
608 GFP_KERNEL);
609 if (!sge->respQ.entries)
610 goto err_no_mem;
611 return 0;
612
613 err_no_mem:
614 free_rx_resources(sge);
615 return -ENOMEM;
616 }
617
618 /*
619 * Reclaims n TX descriptors and frees the buffers associated with them.
620 */
free_cmdQ_buffers(struct sge * sge,struct cmdQ * q,unsigned int n)621 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
622 {
623 struct cmdQ_ce *ce;
624 struct pci_dev *pdev = sge->adapter->pdev;
625 unsigned int cidx = q->cidx;
626
627 q->in_use -= n;
628 ce = &q->centries[cidx];
629 while (n--) {
630 if (likely(dma_unmap_len(ce, dma_len))) {
631 dma_unmap_single(&pdev->dev,
632 dma_unmap_addr(ce, dma_addr),
633 dma_unmap_len(ce, dma_len),
634 DMA_TO_DEVICE);
635 if (q->sop)
636 q->sop = 0;
637 }
638 if (ce->skb) {
639 dev_kfree_skb_any(ce->skb);
640 q->sop = 1;
641 }
642 ce++;
643 if (++cidx == q->size) {
644 cidx = 0;
645 ce = q->centries;
646 }
647 }
648 q->cidx = cidx;
649 }
650
651 /*
652 * Free TX resources.
653 *
654 * Assumes that SGE is stopped and all interrupts are disabled.
655 */
free_tx_resources(struct sge * sge)656 static void free_tx_resources(struct sge *sge)
657 {
658 struct pci_dev *pdev = sge->adapter->pdev;
659 unsigned int size, i;
660
661 for (i = 0; i < SGE_CMDQ_N; i++) {
662 struct cmdQ *q = &sge->cmdQ[i];
663
664 if (q->centries) {
665 if (q->in_use)
666 free_cmdQ_buffers(sge, q, q->in_use);
667 kfree(q->centries);
668 }
669 if (q->entries) {
670 size = sizeof(struct cmdQ_e) * q->size;
671 dma_free_coherent(&pdev->dev, size, q->entries,
672 q->dma_addr);
673 }
674 }
675 }
676
677 /*
678 * Allocates basic TX resources, consisting of memory mapped command Qs.
679 */
alloc_tx_resources(struct sge * sge,struct sge_params * p)680 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
681 {
682 struct pci_dev *pdev = sge->adapter->pdev;
683 unsigned int size, i;
684
685 for (i = 0; i < SGE_CMDQ_N; i++) {
686 struct cmdQ *q = &sge->cmdQ[i];
687
688 q->genbit = 1;
689 q->sop = 1;
690 q->size = p->cmdQ_size[i];
691 q->in_use = 0;
692 q->status = 0;
693 q->processed = q->cleaned = 0;
694 q->stop_thres = 0;
695 spin_lock_init(&q->lock);
696 size = sizeof(struct cmdQ_e) * q->size;
697 q->entries = dma_alloc_coherent(&pdev->dev, size,
698 &q->dma_addr, GFP_KERNEL);
699 if (!q->entries)
700 goto err_no_mem;
701
702 size = sizeof(struct cmdQ_ce) * q->size;
703 q->centries = kzalloc(size, GFP_KERNEL);
704 if (!q->centries)
705 goto err_no_mem;
706 }
707
708 /*
709 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
710 * only. For queue 0 set the stop threshold so we can handle one more
711 * packet from each port, plus reserve an additional 24 entries for
712 * Ethernet packets only. Queue 1 never suspends nor do we reserve
713 * space for Ethernet packets.
714 */
715 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
716 (MAX_SKB_FRAGS + 1);
717 return 0;
718
719 err_no_mem:
720 free_tx_resources(sge);
721 return -ENOMEM;
722 }
723
setup_ring_params(struct adapter * adapter,u64 addr,u32 size,int base_reg_lo,int base_reg_hi,int size_reg)724 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
725 u32 size, int base_reg_lo,
726 int base_reg_hi, int size_reg)
727 {
728 writel((u32)addr, adapter->regs + base_reg_lo);
729 writel(addr >> 32, adapter->regs + base_reg_hi);
730 writel(size, adapter->regs + size_reg);
731 }
732
733 /*
734 * Enable/disable VLAN acceleration.
735 */
t1_vlan_mode(struct adapter * adapter,netdev_features_t features)736 void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
737 {
738 struct sge *sge = adapter->sge;
739
740 if (features & NETIF_F_HW_VLAN_CTAG_RX)
741 sge->sge_control |= F_VLAN_XTRACT;
742 else
743 sge->sge_control &= ~F_VLAN_XTRACT;
744 if (adapter->open_device_map) {
745 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
746 readl(adapter->regs + A_SG_CONTROL); /* flush */
747 }
748 }
749
750 /*
751 * Programs the various SGE registers. However, the engine is not yet enabled,
752 * but sge->sge_control is setup and ready to go.
753 */
configure_sge(struct sge * sge,struct sge_params * p)754 static void configure_sge(struct sge *sge, struct sge_params *p)
755 {
756 struct adapter *ap = sge->adapter;
757
758 writel(0, ap->regs + A_SG_CONTROL);
759 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
760 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
761 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
762 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
763 setup_ring_params(ap, sge->freelQ[0].dma_addr,
764 sge->freelQ[0].size, A_SG_FL0BASELWR,
765 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
766 setup_ring_params(ap, sge->freelQ[1].dma_addr,
767 sge->freelQ[1].size, A_SG_FL1BASELWR,
768 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
769
770 /* The threshold comparison uses <. */
771 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
772
773 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
774 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
775 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
776
777 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
778 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
779 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
780 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
781
782 #if defined(__BIG_ENDIAN_BITFIELD)
783 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
784 #endif
785
786 /* Initialize no-resource timer */
787 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
788
789 t1_sge_set_coalesce_params(sge, p);
790 }
791
792 /*
793 * Return the payload capacity of the jumbo free-list buffers.
794 */
jumbo_payload_capacity(const struct sge * sge)795 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
796 {
797 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
798 sge->freelQ[sge->jumbo_fl].dma_offset -
799 sizeof(struct cpl_rx_data);
800 }
801
802 /*
803 * Frees all SGE related resources and the sge structure itself
804 */
t1_sge_destroy(struct sge * sge)805 void t1_sge_destroy(struct sge *sge)
806 {
807 int i;
808
809 for_each_port(sge->adapter, i)
810 free_percpu(sge->port_stats[i]);
811
812 kfree(sge->tx_sched);
813 free_tx_resources(sge);
814 free_rx_resources(sge);
815 kfree(sge);
816 }
817
818 /*
819 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
820 * context Q) until the Q is full or alloc_skb fails.
821 *
822 * It is possible that the generation bits already match, indicating that the
823 * buffer is already valid and nothing needs to be done. This happens when we
824 * copied a received buffer into a new sk_buff during the interrupt processing.
825 *
826 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
827 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
828 * aligned.
829 */
refill_free_list(struct sge * sge,struct freelQ * q)830 static void refill_free_list(struct sge *sge, struct freelQ *q)
831 {
832 struct pci_dev *pdev = sge->adapter->pdev;
833 struct freelQ_ce *ce = &q->centries[q->pidx];
834 struct freelQ_e *e = &q->entries[q->pidx];
835 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
836
837 while (q->credits < q->size) {
838 struct sk_buff *skb;
839 dma_addr_t mapping;
840
841 skb = dev_alloc_skb(q->rx_buffer_size);
842 if (!skb)
843 break;
844
845 skb_reserve(skb, q->dma_offset);
846 mapping = dma_map_single(&pdev->dev, skb->data, dma_len,
847 DMA_FROM_DEVICE);
848 skb_reserve(skb, sge->rx_pkt_pad);
849
850 ce->skb = skb;
851 dma_unmap_addr_set(ce, dma_addr, mapping);
852 dma_unmap_len_set(ce, dma_len, dma_len);
853 e->addr_lo = (u32)mapping;
854 e->addr_hi = (u64)mapping >> 32;
855 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
856 wmb();
857 e->gen2 = V_CMD_GEN2(q->genbit);
858
859 e++;
860 ce++;
861 if (++q->pidx == q->size) {
862 q->pidx = 0;
863 q->genbit ^= 1;
864 ce = q->centries;
865 e = q->entries;
866 }
867 q->credits++;
868 }
869 }
870
871 /*
872 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
873 * of both rings, we go into 'few interrupt mode' in order to give the system
874 * time to free up resources.
875 */
freelQs_empty(struct sge * sge)876 static void freelQs_empty(struct sge *sge)
877 {
878 struct adapter *adapter = sge->adapter;
879 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
880 u32 irqholdoff_reg;
881
882 refill_free_list(sge, &sge->freelQ[0]);
883 refill_free_list(sge, &sge->freelQ[1]);
884
885 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
886 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
887 irq_reg |= F_FL_EXHAUSTED;
888 irqholdoff_reg = sge->fixed_intrtimer;
889 } else {
890 /* Clear the F_FL_EXHAUSTED interrupts for now */
891 irq_reg &= ~F_FL_EXHAUSTED;
892 irqholdoff_reg = sge->intrtimer_nres;
893 }
894 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
895 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
896
897 /* We reenable the Qs to force a freelist GTS interrupt later */
898 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
899 }
900
901 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
902 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
903 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
904 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
905
906 /*
907 * Disable SGE Interrupts
908 */
t1_sge_intr_disable(struct sge * sge)909 void t1_sge_intr_disable(struct sge *sge)
910 {
911 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
912
913 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
914 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
915 }
916
917 /*
918 * Enable SGE interrupts.
919 */
t1_sge_intr_enable(struct sge * sge)920 void t1_sge_intr_enable(struct sge *sge)
921 {
922 u32 en = SGE_INT_ENABLE;
923 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
924
925 if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
926 en &= ~F_PACKET_TOO_BIG;
927 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
928 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
929 }
930
931 /*
932 * Clear SGE interrupts.
933 */
t1_sge_intr_clear(struct sge * sge)934 void t1_sge_intr_clear(struct sge *sge)
935 {
936 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
937 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
938 }
939
940 /*
941 * SGE 'Error' interrupt handler
942 */
t1_sge_intr_error_handler(struct sge * sge)943 int t1_sge_intr_error_handler(struct sge *sge)
944 {
945 struct adapter *adapter = sge->adapter;
946 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
947
948 if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
949 cause &= ~F_PACKET_TOO_BIG;
950 if (cause & F_RESPQ_EXHAUSTED)
951 sge->stats.respQ_empty++;
952 if (cause & F_RESPQ_OVERFLOW) {
953 sge->stats.respQ_overflow++;
954 pr_alert("%s: SGE response queue overflow\n",
955 adapter->name);
956 }
957 if (cause & F_FL_EXHAUSTED) {
958 sge->stats.freelistQ_empty++;
959 freelQs_empty(sge);
960 }
961 if (cause & F_PACKET_TOO_BIG) {
962 sge->stats.pkt_too_big++;
963 pr_alert("%s: SGE max packet size exceeded\n",
964 adapter->name);
965 }
966 if (cause & F_PACKET_MISMATCH) {
967 sge->stats.pkt_mismatch++;
968 pr_alert("%s: SGE packet mismatch\n", adapter->name);
969 }
970 if (cause & SGE_INT_FATAL)
971 t1_fatal_err(adapter);
972
973 writel(cause, adapter->regs + A_SG_INT_CAUSE);
974 return 0;
975 }
976
t1_sge_get_intr_counts(const struct sge * sge)977 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
978 {
979 return &sge->stats;
980 }
981
t1_sge_get_port_stats(const struct sge * sge,int port,struct sge_port_stats * ss)982 void t1_sge_get_port_stats(const struct sge *sge, int port,
983 struct sge_port_stats *ss)
984 {
985 int cpu;
986
987 memset(ss, 0, sizeof(*ss));
988 for_each_possible_cpu(cpu) {
989 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
990
991 ss->rx_cso_good += st->rx_cso_good;
992 ss->tx_cso += st->tx_cso;
993 ss->tx_tso += st->tx_tso;
994 ss->tx_need_hdrroom += st->tx_need_hdrroom;
995 ss->vlan_xtract += st->vlan_xtract;
996 ss->vlan_insert += st->vlan_insert;
997 }
998 }
999
1000 /**
1001 * recycle_fl_buf - recycle a free list buffer
1002 * @fl: the free list
1003 * @idx: index of buffer to recycle
1004 *
1005 * Recycles the specified buffer on the given free list by adding it at
1006 * the next available slot on the list.
1007 */
recycle_fl_buf(struct freelQ * fl,int idx)1008 static void recycle_fl_buf(struct freelQ *fl, int idx)
1009 {
1010 struct freelQ_e *from = &fl->entries[idx];
1011 struct freelQ_e *to = &fl->entries[fl->pidx];
1012
1013 fl->centries[fl->pidx] = fl->centries[idx];
1014 to->addr_lo = from->addr_lo;
1015 to->addr_hi = from->addr_hi;
1016 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1017 wmb();
1018 to->gen2 = V_CMD_GEN2(fl->genbit);
1019 fl->credits++;
1020
1021 if (++fl->pidx == fl->size) {
1022 fl->pidx = 0;
1023 fl->genbit ^= 1;
1024 }
1025 }
1026
1027 static int copybreak __read_mostly = 256;
1028 module_param(copybreak, int, 0);
1029 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1030
1031 /**
1032 * get_packet - return the next ingress packet buffer
1033 * @adapter: the adapter that received the packet
1034 * @fl: the SGE free list holding the packet
1035 * @len: the actual packet length, excluding any SGE padding
1036 *
1037 * Get the next packet from a free list and complete setup of the
1038 * sk_buff. If the packet is small we make a copy and recycle the
1039 * original buffer, otherwise we use the original buffer itself. If a
1040 * positive drop threshold is supplied packets are dropped and their
1041 * buffers recycled if (a) the number of remaining buffers is under the
1042 * threshold and the packet is too big to copy, or (b) the packet should
1043 * be copied but there is no memory for the copy.
1044 */
get_packet(struct adapter * adapter,struct freelQ * fl,unsigned int len)1045 static inline struct sk_buff *get_packet(struct adapter *adapter,
1046 struct freelQ *fl, unsigned int len)
1047 {
1048 const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1049 struct pci_dev *pdev = adapter->pdev;
1050 struct sk_buff *skb;
1051
1052 if (len < copybreak) {
1053 skb = napi_alloc_skb(&adapter->napi, len);
1054 if (!skb)
1055 goto use_orig_buf;
1056
1057 skb_put(skb, len);
1058 dma_sync_single_for_cpu(&pdev->dev,
1059 dma_unmap_addr(ce, dma_addr),
1060 dma_unmap_len(ce, dma_len),
1061 DMA_FROM_DEVICE);
1062 skb_copy_from_linear_data(ce->skb, skb->data, len);
1063 dma_sync_single_for_device(&pdev->dev,
1064 dma_unmap_addr(ce, dma_addr),
1065 dma_unmap_len(ce, dma_len),
1066 DMA_FROM_DEVICE);
1067 recycle_fl_buf(fl, fl->cidx);
1068 return skb;
1069 }
1070
1071 use_orig_buf:
1072 if (fl->credits < 2) {
1073 recycle_fl_buf(fl, fl->cidx);
1074 return NULL;
1075 }
1076
1077 dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr),
1078 dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
1079 skb = ce->skb;
1080 prefetch(skb->data);
1081
1082 skb_put(skb, len);
1083 return skb;
1084 }
1085
1086 /**
1087 * unexpected_offload - handle an unexpected offload packet
1088 * @adapter: the adapter
1089 * @fl: the free list that received the packet
1090 *
1091 * Called when we receive an unexpected offload packet (e.g., the TOE
1092 * function is disabled or the card is a NIC). Prints a message and
1093 * recycles the buffer.
1094 */
unexpected_offload(struct adapter * adapter,struct freelQ * fl)1095 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1096 {
1097 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1098 struct sk_buff *skb = ce->skb;
1099
1100 dma_sync_single_for_cpu(&adapter->pdev->dev,
1101 dma_unmap_addr(ce, dma_addr),
1102 dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
1103 pr_err("%s: unexpected offload packet, cmd %u\n",
1104 adapter->name, *skb->data);
1105 recycle_fl_buf(fl, fl->cidx);
1106 }
1107
1108 /*
1109 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1110 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1111 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1112 * Note that the *_large_page_tx_descs stuff will be optimized out when
1113 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1114 *
1115 * compute_large_page_descs() computes how many additional descriptors are
1116 * required to break down the stack's request.
1117 */
compute_large_page_tx_descs(struct sk_buff * skb)1118 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1119 {
1120 unsigned int count = 0;
1121
1122 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1123 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1124 unsigned int i, len = skb_headlen(skb);
1125 while (len > SGE_TX_DESC_MAX_PLEN) {
1126 count++;
1127 len -= SGE_TX_DESC_MAX_PLEN;
1128 }
1129 for (i = 0; nfrags--; i++) {
1130 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1131 len = skb_frag_size(frag);
1132 while (len > SGE_TX_DESC_MAX_PLEN) {
1133 count++;
1134 len -= SGE_TX_DESC_MAX_PLEN;
1135 }
1136 }
1137 }
1138 return count;
1139 }
1140
1141 /*
1142 * Write a cmdQ entry.
1143 *
1144 * Since this function writes the 'flags' field, it must not be used to
1145 * write the first cmdQ entry.
1146 */
write_tx_desc(struct cmdQ_e * e,dma_addr_t mapping,unsigned int len,unsigned int gen,unsigned int eop)1147 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1148 unsigned int len, unsigned int gen,
1149 unsigned int eop)
1150 {
1151 BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1152
1153 e->addr_lo = (u32)mapping;
1154 e->addr_hi = (u64)mapping >> 32;
1155 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1156 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1157 }
1158
1159 /*
1160 * See comment for previous function.
1161 *
1162 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1163 * *desc_len exceeds HW's capability.
1164 */
write_large_page_tx_descs(unsigned int pidx,struct cmdQ_e ** e,struct cmdQ_ce ** ce,unsigned int * gen,dma_addr_t * desc_mapping,unsigned int * desc_len,unsigned int nfrags,struct cmdQ * q)1165 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1166 struct cmdQ_e **e,
1167 struct cmdQ_ce **ce,
1168 unsigned int *gen,
1169 dma_addr_t *desc_mapping,
1170 unsigned int *desc_len,
1171 unsigned int nfrags,
1172 struct cmdQ *q)
1173 {
1174 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1175 struct cmdQ_e *e1 = *e;
1176 struct cmdQ_ce *ce1 = *ce;
1177
1178 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1179 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1180 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1181 *gen, nfrags == 0 && *desc_len == 0);
1182 ce1->skb = NULL;
1183 dma_unmap_len_set(ce1, dma_len, 0);
1184 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1185 if (*desc_len) {
1186 ce1++;
1187 e1++;
1188 if (++pidx == q->size) {
1189 pidx = 0;
1190 *gen ^= 1;
1191 ce1 = q->centries;
1192 e1 = q->entries;
1193 }
1194 }
1195 }
1196 *e = e1;
1197 *ce = ce1;
1198 }
1199 return pidx;
1200 }
1201
1202 /*
1203 * Write the command descriptors to transmit the given skb starting at
1204 * descriptor pidx with the given generation.
1205 */
write_tx_descs(struct adapter * adapter,struct sk_buff * skb,unsigned int pidx,unsigned int gen,struct cmdQ * q)1206 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1207 unsigned int pidx, unsigned int gen,
1208 struct cmdQ *q)
1209 {
1210 dma_addr_t mapping, desc_mapping;
1211 struct cmdQ_e *e, *e1;
1212 struct cmdQ_ce *ce;
1213 unsigned int i, flags, first_desc_len, desc_len,
1214 nfrags = skb_shinfo(skb)->nr_frags;
1215
1216 e = e1 = &q->entries[pidx];
1217 ce = &q->centries[pidx];
1218
1219 mapping = dma_map_single(&adapter->pdev->dev, skb->data,
1220 skb_headlen(skb), DMA_TO_DEVICE);
1221
1222 desc_mapping = mapping;
1223 desc_len = skb_headlen(skb);
1224
1225 flags = F_CMD_DATAVALID | F_CMD_SOP |
1226 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1227 V_CMD_GEN2(gen);
1228 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1229 desc_len : SGE_TX_DESC_MAX_PLEN;
1230 e->addr_lo = (u32)desc_mapping;
1231 e->addr_hi = (u64)desc_mapping >> 32;
1232 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1233 ce->skb = NULL;
1234 dma_unmap_len_set(ce, dma_len, 0);
1235
1236 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1237 desc_len > SGE_TX_DESC_MAX_PLEN) {
1238 desc_mapping += first_desc_len;
1239 desc_len -= first_desc_len;
1240 e1++;
1241 ce++;
1242 if (++pidx == q->size) {
1243 pidx = 0;
1244 gen ^= 1;
1245 e1 = q->entries;
1246 ce = q->centries;
1247 }
1248 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1249 &desc_mapping, &desc_len,
1250 nfrags, q);
1251
1252 if (likely(desc_len))
1253 write_tx_desc(e1, desc_mapping, desc_len, gen,
1254 nfrags == 0);
1255 }
1256
1257 ce->skb = NULL;
1258 dma_unmap_addr_set(ce, dma_addr, mapping);
1259 dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1260
1261 for (i = 0; nfrags--; i++) {
1262 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1263 e1++;
1264 ce++;
1265 if (++pidx == q->size) {
1266 pidx = 0;
1267 gen ^= 1;
1268 e1 = q->entries;
1269 ce = q->centries;
1270 }
1271
1272 mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1273 skb_frag_size(frag), DMA_TO_DEVICE);
1274 desc_mapping = mapping;
1275 desc_len = skb_frag_size(frag);
1276
1277 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1278 &desc_mapping, &desc_len,
1279 nfrags, q);
1280 if (likely(desc_len))
1281 write_tx_desc(e1, desc_mapping, desc_len, gen,
1282 nfrags == 0);
1283 ce->skb = NULL;
1284 dma_unmap_addr_set(ce, dma_addr, mapping);
1285 dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1286 }
1287 ce->skb = skb;
1288 wmb();
1289 e->flags = flags;
1290 }
1291
1292 /*
1293 * Clean up completed Tx buffers.
1294 */
reclaim_completed_tx(struct sge * sge,struct cmdQ * q)1295 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1296 {
1297 unsigned int reclaim = q->processed - q->cleaned;
1298
1299 if (reclaim) {
1300 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1301 q->processed, q->cleaned);
1302 free_cmdQ_buffers(sge, q, reclaim);
1303 q->cleaned += reclaim;
1304 }
1305 }
1306
1307 /*
1308 * Called from tasklet. Checks the scheduler for any
1309 * pending skbs that can be sent.
1310 */
restart_sched(struct tasklet_struct * t)1311 static void restart_sched(struct tasklet_struct *t)
1312 {
1313 struct sched *s = from_tasklet(s, t, sched_tsk);
1314 struct sge *sge = s->sge;
1315 struct adapter *adapter = sge->adapter;
1316 struct cmdQ *q = &sge->cmdQ[0];
1317 struct sk_buff *skb;
1318 unsigned int credits, queued_skb = 0;
1319
1320 spin_lock(&q->lock);
1321 reclaim_completed_tx(sge, q);
1322
1323 credits = q->size - q->in_use;
1324 pr_debug("restart_sched credits=%d\n", credits);
1325 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1326 unsigned int genbit, pidx, count;
1327 count = 1 + skb_shinfo(skb)->nr_frags;
1328 count += compute_large_page_tx_descs(skb);
1329 q->in_use += count;
1330 genbit = q->genbit;
1331 pidx = q->pidx;
1332 q->pidx += count;
1333 if (q->pidx >= q->size) {
1334 q->pidx -= q->size;
1335 q->genbit ^= 1;
1336 }
1337 write_tx_descs(adapter, skb, pidx, genbit, q);
1338 credits = q->size - q->in_use;
1339 queued_skb = 1;
1340 }
1341
1342 if (queued_skb) {
1343 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1344 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1345 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1346 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1347 }
1348 }
1349 spin_unlock(&q->lock);
1350 }
1351
1352 /**
1353 * sge_rx - process an ingress ethernet packet
1354 * @sge: the sge structure
1355 * @fl: the free list that contains the packet buffer
1356 * @len: the packet length
1357 *
1358 * Process an ingress ethernet pakcet and deliver it to the stack.
1359 */
sge_rx(struct sge * sge,struct freelQ * fl,unsigned int len)1360 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1361 {
1362 struct sk_buff *skb;
1363 const struct cpl_rx_pkt *p;
1364 struct adapter *adapter = sge->adapter;
1365 struct sge_port_stats *st;
1366 struct net_device *dev;
1367
1368 skb = get_packet(adapter, fl, len - sge->rx_pkt_pad);
1369 if (unlikely(!skb)) {
1370 sge->stats.rx_drops++;
1371 return;
1372 }
1373
1374 p = (const struct cpl_rx_pkt *) skb->data;
1375 if (p->iff >= adapter->params.nports) {
1376 kfree_skb(skb);
1377 return;
1378 }
1379 __skb_pull(skb, sizeof(*p));
1380
1381 st = this_cpu_ptr(sge->port_stats[p->iff]);
1382 dev = adapter->port[p->iff].dev;
1383
1384 skb->protocol = eth_type_trans(skb, dev);
1385 if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1386 skb->protocol == htons(ETH_P_IP) &&
1387 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1388 ++st->rx_cso_good;
1389 skb->ip_summed = CHECKSUM_UNNECESSARY;
1390 } else
1391 skb_checksum_none_assert(skb);
1392
1393 if (p->vlan_valid) {
1394 st->vlan_xtract++;
1395 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
1396 }
1397 netif_receive_skb(skb);
1398 }
1399
1400 /*
1401 * Returns true if a command queue has enough available descriptors that
1402 * we can resume Tx operation after temporarily disabling its packet queue.
1403 */
enough_free_Tx_descs(const struct cmdQ * q)1404 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1405 {
1406 unsigned int r = q->processed - q->cleaned;
1407
1408 return q->in_use - r < (q->size >> 1);
1409 }
1410
1411 /*
1412 * Called when sufficient space has become available in the SGE command queues
1413 * after the Tx packet schedulers have been suspended to restart the Tx path.
1414 */
restart_tx_queues(struct sge * sge)1415 static void restart_tx_queues(struct sge *sge)
1416 {
1417 struct adapter *adap = sge->adapter;
1418 int i;
1419
1420 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1421 return;
1422
1423 for_each_port(adap, i) {
1424 struct net_device *nd = adap->port[i].dev;
1425
1426 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1427 netif_running(nd)) {
1428 sge->stats.cmdQ_restarted[2]++;
1429 netif_wake_queue(nd);
1430 }
1431 }
1432 }
1433
1434 /*
1435 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1436 * information.
1437 */
update_tx_info(struct adapter * adapter,unsigned int flags,unsigned int pr0)1438 static unsigned int update_tx_info(struct adapter *adapter,
1439 unsigned int flags,
1440 unsigned int pr0)
1441 {
1442 struct sge *sge = adapter->sge;
1443 struct cmdQ *cmdq = &sge->cmdQ[0];
1444
1445 cmdq->processed += pr0;
1446 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1447 freelQs_empty(sge);
1448 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1449 }
1450 if (flags & F_CMDQ0_ENABLE) {
1451 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1452
1453 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1454 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1455 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1456 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1457 }
1458 if (sge->tx_sched)
1459 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1460
1461 flags &= ~F_CMDQ0_ENABLE;
1462 }
1463
1464 if (unlikely(sge->stopped_tx_queues != 0))
1465 restart_tx_queues(sge);
1466
1467 return flags;
1468 }
1469
1470 /*
1471 * Process SGE responses, up to the supplied budget. Returns the number of
1472 * responses processed. A negative budget is effectively unlimited.
1473 */
process_responses(struct adapter * adapter,int budget)1474 static int process_responses(struct adapter *adapter, int budget)
1475 {
1476 struct sge *sge = adapter->sge;
1477 struct respQ *q = &sge->respQ;
1478 struct respQ_e *e = &q->entries[q->cidx];
1479 int done = 0;
1480 unsigned int flags = 0;
1481 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1482
1483 while (done < budget && e->GenerationBit == q->genbit) {
1484 flags |= e->Qsleeping;
1485
1486 cmdq_processed[0] += e->Cmdq0CreditReturn;
1487 cmdq_processed[1] += e->Cmdq1CreditReturn;
1488
1489 /* We batch updates to the TX side to avoid cacheline
1490 * ping-pong of TX state information on MP where the sender
1491 * might run on a different CPU than this function...
1492 */
1493 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1494 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1495 cmdq_processed[0] = 0;
1496 }
1497
1498 if (unlikely(cmdq_processed[1] > 16)) {
1499 sge->cmdQ[1].processed += cmdq_processed[1];
1500 cmdq_processed[1] = 0;
1501 }
1502
1503 if (likely(e->DataValid)) {
1504 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1505
1506 BUG_ON(!e->Sop || !e->Eop);
1507 if (unlikely(e->Offload))
1508 unexpected_offload(adapter, fl);
1509 else
1510 sge_rx(sge, fl, e->BufferLength);
1511
1512 ++done;
1513
1514 /*
1515 * Note: this depends on each packet consuming a
1516 * single free-list buffer; cf. the BUG above.
1517 */
1518 if (++fl->cidx == fl->size)
1519 fl->cidx = 0;
1520 prefetch(fl->centries[fl->cidx].skb);
1521
1522 if (unlikely(--fl->credits <
1523 fl->size - SGE_FREEL_REFILL_THRESH))
1524 refill_free_list(sge, fl);
1525 } else
1526 sge->stats.pure_rsps++;
1527
1528 e++;
1529 if (unlikely(++q->cidx == q->size)) {
1530 q->cidx = 0;
1531 q->genbit ^= 1;
1532 e = q->entries;
1533 }
1534 prefetch(e);
1535
1536 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1537 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1538 q->credits = 0;
1539 }
1540 }
1541
1542 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1543 sge->cmdQ[1].processed += cmdq_processed[1];
1544
1545 return done;
1546 }
1547
responses_pending(const struct adapter * adapter)1548 static inline int responses_pending(const struct adapter *adapter)
1549 {
1550 const struct respQ *Q = &adapter->sge->respQ;
1551 const struct respQ_e *e = &Q->entries[Q->cidx];
1552
1553 return e->GenerationBit == Q->genbit;
1554 }
1555
1556 /*
1557 * A simpler version of process_responses() that handles only pure (i.e.,
1558 * non data-carrying) responses. Such respones are too light-weight to justify
1559 * calling a softirq when using NAPI, so we handle them specially in hard
1560 * interrupt context. The function is called with a pointer to a response,
1561 * which the caller must ensure is a valid pure response. Returns 1 if it
1562 * encounters a valid data-carrying response, 0 otherwise.
1563 */
process_pure_responses(struct adapter * adapter)1564 static int process_pure_responses(struct adapter *adapter)
1565 {
1566 struct sge *sge = adapter->sge;
1567 struct respQ *q = &sge->respQ;
1568 struct respQ_e *e = &q->entries[q->cidx];
1569 const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1570 unsigned int flags = 0;
1571 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1572
1573 prefetch(fl->centries[fl->cidx].skb);
1574 if (e->DataValid)
1575 return 1;
1576
1577 do {
1578 flags |= e->Qsleeping;
1579
1580 cmdq_processed[0] += e->Cmdq0CreditReturn;
1581 cmdq_processed[1] += e->Cmdq1CreditReturn;
1582
1583 e++;
1584 if (unlikely(++q->cidx == q->size)) {
1585 q->cidx = 0;
1586 q->genbit ^= 1;
1587 e = q->entries;
1588 }
1589 prefetch(e);
1590
1591 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1592 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1593 q->credits = 0;
1594 }
1595 sge->stats.pure_rsps++;
1596 } while (e->GenerationBit == q->genbit && !e->DataValid);
1597
1598 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1599 sge->cmdQ[1].processed += cmdq_processed[1];
1600
1601 return e->GenerationBit == q->genbit;
1602 }
1603
1604 /*
1605 * Handler for new data events when using NAPI. This does not need any locking
1606 * or protection from interrupts as data interrupts are off at this point and
1607 * other adapter interrupts do not interfere.
1608 */
t1_poll(struct napi_struct * napi,int budget)1609 int t1_poll(struct napi_struct *napi, int budget)
1610 {
1611 struct adapter *adapter = container_of(napi, struct adapter, napi);
1612 int work_done = process_responses(adapter, budget);
1613
1614 if (likely(work_done < budget)) {
1615 napi_complete_done(napi, work_done);
1616 writel(adapter->sge->respQ.cidx,
1617 adapter->regs + A_SG_SLEEPING);
1618 }
1619 return work_done;
1620 }
1621
t1_interrupt(int irq,void * data)1622 irqreturn_t t1_interrupt(int irq, void *data)
1623 {
1624 struct adapter *adapter = data;
1625 struct sge *sge = adapter->sge;
1626 int handled;
1627
1628 if (likely(responses_pending(adapter))) {
1629 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1630
1631 if (napi_schedule_prep(&adapter->napi)) {
1632 if (process_pure_responses(adapter))
1633 __napi_schedule(&adapter->napi);
1634 else {
1635 /* no data, no NAPI needed */
1636 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1637 /* undo schedule_prep */
1638 napi_enable(&adapter->napi);
1639 }
1640 }
1641 return IRQ_HANDLED;
1642 }
1643
1644 spin_lock(&adapter->async_lock);
1645 handled = t1_slow_intr_handler(adapter);
1646 spin_unlock(&adapter->async_lock);
1647
1648 if (!handled)
1649 sge->stats.unhandled_irqs++;
1650
1651 return IRQ_RETVAL(handled != 0);
1652 }
1653
1654 /*
1655 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1656 *
1657 * The code figures out how many entries the sk_buff will require in the
1658 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1659 * has complete. Then, it doesn't access the global structure anymore, but
1660 * uses the corresponding fields on the stack. In conjunction with a spinlock
1661 * around that code, we can make the function reentrant without holding the
1662 * lock when we actually enqueue (which might be expensive, especially on
1663 * architectures with IO MMUs).
1664 *
1665 * This runs with softirqs disabled.
1666 */
t1_sge_tx(struct sk_buff * skb,struct adapter * adapter,unsigned int qid,struct net_device * dev)1667 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1668 unsigned int qid, struct net_device *dev)
1669 {
1670 struct sge *sge = adapter->sge;
1671 struct cmdQ *q = &sge->cmdQ[qid];
1672 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1673
1674 spin_lock(&q->lock);
1675
1676 reclaim_completed_tx(sge, q);
1677
1678 pidx = q->pidx;
1679 credits = q->size - q->in_use;
1680 count = 1 + skb_shinfo(skb)->nr_frags;
1681 count += compute_large_page_tx_descs(skb);
1682
1683 /* Ethernet packet */
1684 if (unlikely(credits < count)) {
1685 if (!netif_queue_stopped(dev)) {
1686 netif_stop_queue(dev);
1687 set_bit(dev->if_port, &sge->stopped_tx_queues);
1688 sge->stats.cmdQ_full[2]++;
1689 pr_err("%s: Tx ring full while queue awake!\n",
1690 adapter->name);
1691 }
1692 spin_unlock(&q->lock);
1693 return NETDEV_TX_BUSY;
1694 }
1695
1696 if (unlikely(credits - count < q->stop_thres)) {
1697 netif_stop_queue(dev);
1698 set_bit(dev->if_port, &sge->stopped_tx_queues);
1699 sge->stats.cmdQ_full[2]++;
1700 }
1701
1702 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1703 * through the scheduler.
1704 */
1705 if (sge->tx_sched && !qid && skb->dev) {
1706 use_sched:
1707 use_sched_skb = 1;
1708 /* Note that the scheduler might return a different skb than
1709 * the one passed in.
1710 */
1711 skb = sched_skb(sge, skb, credits);
1712 if (!skb) {
1713 spin_unlock(&q->lock);
1714 return NETDEV_TX_OK;
1715 }
1716 pidx = q->pidx;
1717 count = 1 + skb_shinfo(skb)->nr_frags;
1718 count += compute_large_page_tx_descs(skb);
1719 }
1720
1721 q->in_use += count;
1722 genbit = q->genbit;
1723 pidx = q->pidx;
1724 q->pidx += count;
1725 if (q->pidx >= q->size) {
1726 q->pidx -= q->size;
1727 q->genbit ^= 1;
1728 }
1729 spin_unlock(&q->lock);
1730
1731 write_tx_descs(adapter, skb, pidx, genbit, q);
1732
1733 /*
1734 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1735 * the doorbell if the Q is asleep. There is a natural race, where
1736 * the hardware is going to sleep just after we checked, however,
1737 * then the interrupt handler will detect the outstanding TX packet
1738 * and ring the doorbell for us.
1739 */
1740 if (qid)
1741 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1742 else {
1743 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1744 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1745 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1746 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1747 }
1748 }
1749
1750 if (use_sched_skb) {
1751 if (spin_trylock(&q->lock)) {
1752 credits = q->size - q->in_use;
1753 skb = NULL;
1754 goto use_sched;
1755 }
1756 }
1757 return NETDEV_TX_OK;
1758 }
1759
1760 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1761
1762 /*
1763 * eth_hdr_len - return the length of an Ethernet header
1764 * @data: pointer to the start of the Ethernet header
1765 *
1766 * Returns the length of an Ethernet header, including optional VLAN tag.
1767 */
eth_hdr_len(const void * data)1768 static inline int eth_hdr_len(const void *data)
1769 {
1770 const struct ethhdr *e = data;
1771
1772 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1773 }
1774
1775 /*
1776 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1777 */
t1_start_xmit(struct sk_buff * skb,struct net_device * dev)1778 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1779 {
1780 struct adapter *adapter = dev->ml_priv;
1781 struct sge *sge = adapter->sge;
1782 struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1783 struct cpl_tx_pkt *cpl;
1784 struct sk_buff *orig_skb = skb;
1785 int ret;
1786
1787 if (skb->protocol == htons(ETH_P_CPL5))
1788 goto send;
1789
1790 /*
1791 * We are using a non-standard hard_header_len.
1792 * Allocate more header room in the rare cases it is not big enough.
1793 */
1794 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1795 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1796 ++st->tx_need_hdrroom;
1797 dev_kfree_skb_any(orig_skb);
1798 if (!skb)
1799 return NETDEV_TX_OK;
1800 }
1801
1802 if (skb_shinfo(skb)->gso_size) {
1803 int eth_type;
1804 struct cpl_tx_pkt_lso *hdr;
1805
1806 ++st->tx_tso;
1807
1808 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1809 CPL_ETH_II : CPL_ETH_II_VLAN;
1810
1811 hdr = skb_push(skb, sizeof(*hdr));
1812 hdr->opcode = CPL_TX_PKT_LSO;
1813 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1814 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1815 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1816 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1817 skb_shinfo(skb)->gso_size));
1818 hdr->len = htonl(skb->len - sizeof(*hdr));
1819 cpl = (struct cpl_tx_pkt *)hdr;
1820 } else {
1821 /*
1822 * Packets shorter than ETH_HLEN can break the MAC, drop them
1823 * early. Also, we may get oversized packets because some
1824 * parts of the kernel don't handle our unusual hard_header_len
1825 * right, drop those too.
1826 */
1827 if (unlikely(skb->len < ETH_HLEN ||
1828 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1829 netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1830 skb->len, eth_hdr_len(skb->data), dev->mtu);
1831 dev_kfree_skb_any(skb);
1832 return NETDEV_TX_OK;
1833 }
1834
1835 if (skb->ip_summed == CHECKSUM_PARTIAL &&
1836 ip_hdr(skb)->protocol == IPPROTO_UDP) {
1837 if (unlikely(skb_checksum_help(skb))) {
1838 netdev_dbg(dev, "unable to do udp checksum\n");
1839 dev_kfree_skb_any(skb);
1840 return NETDEV_TX_OK;
1841 }
1842 }
1843
1844 /* Hmmm, assuming to catch the gratious arp... and we'll use
1845 * it to flush out stuck espi packets...
1846 */
1847 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1848 if (skb->protocol == htons(ETH_P_ARP) &&
1849 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1850 adapter->sge->espibug_skb[dev->if_port] = skb;
1851 /* We want to re-use this skb later. We
1852 * simply bump the reference count and it
1853 * will not be freed...
1854 */
1855 skb = skb_get(skb);
1856 }
1857 }
1858
1859 cpl = __skb_push(skb, sizeof(*cpl));
1860 cpl->opcode = CPL_TX_PKT;
1861 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
1862 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1863 /* the length field isn't used so don't bother setting it */
1864
1865 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1866 }
1867 cpl->iff = dev->if_port;
1868
1869 if (skb_vlan_tag_present(skb)) {
1870 cpl->vlan_valid = 1;
1871 cpl->vlan = htons(skb_vlan_tag_get(skb));
1872 st->vlan_insert++;
1873 } else
1874 cpl->vlan_valid = 0;
1875
1876 send:
1877 ret = t1_sge_tx(skb, adapter, 0, dev);
1878
1879 /* If transmit busy, and we reallocated skb's due to headroom limit,
1880 * then silently discard to avoid leak.
1881 */
1882 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1883 dev_kfree_skb_any(skb);
1884 ret = NETDEV_TX_OK;
1885 }
1886 return ret;
1887 }
1888
1889 /*
1890 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1891 */
sge_tx_reclaim_cb(struct timer_list * t)1892 static void sge_tx_reclaim_cb(struct timer_list *t)
1893 {
1894 int i;
1895 struct sge *sge = from_timer(sge, t, tx_reclaim_timer);
1896
1897 for (i = 0; i < SGE_CMDQ_N; ++i) {
1898 struct cmdQ *q = &sge->cmdQ[i];
1899
1900 if (!spin_trylock(&q->lock))
1901 continue;
1902
1903 reclaim_completed_tx(sge, q);
1904 if (i == 0 && q->in_use) { /* flush pending credits */
1905 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1906 }
1907 spin_unlock(&q->lock);
1908 }
1909 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1910 }
1911
1912 /*
1913 * Propagate changes of the SGE coalescing parameters to the HW.
1914 */
t1_sge_set_coalesce_params(struct sge * sge,struct sge_params * p)1915 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1916 {
1917 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1918 core_ticks_per_usec(sge->adapter);
1919 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1920 return 0;
1921 }
1922
1923 /*
1924 * Allocates both RX and TX resources and configures the SGE. However,
1925 * the hardware is not enabled yet.
1926 */
t1_sge_configure(struct sge * sge,struct sge_params * p)1927 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1928 {
1929 if (alloc_rx_resources(sge, p))
1930 return -ENOMEM;
1931 if (alloc_tx_resources(sge, p)) {
1932 free_rx_resources(sge);
1933 return -ENOMEM;
1934 }
1935 configure_sge(sge, p);
1936
1937 /*
1938 * Now that we have sized the free lists calculate the payload
1939 * capacity of the large buffers. Other parts of the driver use
1940 * this to set the max offload coalescing size so that RX packets
1941 * do not overflow our large buffers.
1942 */
1943 p->large_buf_capacity = jumbo_payload_capacity(sge);
1944 return 0;
1945 }
1946
1947 /*
1948 * Disables the DMA engine.
1949 */
t1_sge_stop(struct sge * sge)1950 void t1_sge_stop(struct sge *sge)
1951 {
1952 int i;
1953 writel(0, sge->adapter->regs + A_SG_CONTROL);
1954 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1955
1956 if (is_T2(sge->adapter))
1957 del_timer_sync(&sge->espibug_timer);
1958
1959 del_timer_sync(&sge->tx_reclaim_timer);
1960 if (sge->tx_sched)
1961 tx_sched_stop(sge);
1962
1963 for (i = 0; i < MAX_NPORTS; i++)
1964 kfree_skb(sge->espibug_skb[i]);
1965 }
1966
1967 /*
1968 * Enables the DMA engine.
1969 */
t1_sge_start(struct sge * sge)1970 void t1_sge_start(struct sge *sge)
1971 {
1972 refill_free_list(sge, &sge->freelQ[0]);
1973 refill_free_list(sge, &sge->freelQ[1]);
1974
1975 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1976 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1977 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1978
1979 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1980
1981 if (is_T2(sge->adapter))
1982 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1983 }
1984
1985 /*
1986 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1987 */
espibug_workaround_t204(struct timer_list * t)1988 static void espibug_workaround_t204(struct timer_list *t)
1989 {
1990 struct sge *sge = from_timer(sge, t, espibug_timer);
1991 struct adapter *adapter = sge->adapter;
1992 unsigned int nports = adapter->params.nports;
1993 u32 seop[MAX_NPORTS];
1994
1995 if (adapter->open_device_map & PORT_MASK) {
1996 int i;
1997
1998 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
1999 return;
2000
2001 for (i = 0; i < nports; i++) {
2002 struct sk_buff *skb = sge->espibug_skb[i];
2003
2004 if (!netif_running(adapter->port[i].dev) ||
2005 netif_queue_stopped(adapter->port[i].dev) ||
2006 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2007 continue;
2008
2009 if (!skb->cb[0]) {
2010 skb_copy_to_linear_data_offset(skb,
2011 sizeof(struct cpl_tx_pkt),
2012 ch_mac_addr,
2013 ETH_ALEN);
2014 skb_copy_to_linear_data_offset(skb,
2015 skb->len - 10,
2016 ch_mac_addr,
2017 ETH_ALEN);
2018 skb->cb[0] = 0xff;
2019 }
2020
2021 /* bump the reference count to avoid freeing of
2022 * the skb once the DMA has completed.
2023 */
2024 skb = skb_get(skb);
2025 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2026 }
2027 }
2028 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2029 }
2030
espibug_workaround(struct timer_list * t)2031 static void espibug_workaround(struct timer_list *t)
2032 {
2033 struct sge *sge = from_timer(sge, t, espibug_timer);
2034 struct adapter *adapter = sge->adapter;
2035
2036 if (netif_running(adapter->port[0].dev)) {
2037 struct sk_buff *skb = sge->espibug_skb[0];
2038 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2039
2040 if ((seop & 0xfff0fff) == 0xfff && skb) {
2041 if (!skb->cb[0]) {
2042 skb_copy_to_linear_data_offset(skb,
2043 sizeof(struct cpl_tx_pkt),
2044 ch_mac_addr,
2045 ETH_ALEN);
2046 skb_copy_to_linear_data_offset(skb,
2047 skb->len - 10,
2048 ch_mac_addr,
2049 ETH_ALEN);
2050 skb->cb[0] = 0xff;
2051 }
2052
2053 /* bump the reference count to avoid freeing of the
2054 * skb once the DMA has completed.
2055 */
2056 skb = skb_get(skb);
2057 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2058 }
2059 }
2060 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2061 }
2062
2063 /*
2064 * Creates a t1_sge structure and returns suggested resource parameters.
2065 */
t1_sge_create(struct adapter * adapter,struct sge_params * p)2066 struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
2067 {
2068 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2069 int i;
2070
2071 if (!sge)
2072 return NULL;
2073
2074 sge->adapter = adapter;
2075 sge->netdev = adapter->port[0].dev;
2076 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2077 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2078
2079 for_each_port(adapter, i) {
2080 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2081 if (!sge->port_stats[i])
2082 goto nomem_port;
2083 }
2084
2085 timer_setup(&sge->tx_reclaim_timer, sge_tx_reclaim_cb, 0);
2086
2087 if (is_T2(sge->adapter)) {
2088 timer_setup(&sge->espibug_timer,
2089 adapter->params.nports > 1 ? espibug_workaround_t204 : espibug_workaround,
2090 0);
2091
2092 if (adapter->params.nports > 1)
2093 tx_sched_init(sge);
2094
2095 sge->espibug_timeout = 1;
2096 /* for T204, every 10ms */
2097 if (adapter->params.nports > 1)
2098 sge->espibug_timeout = HZ/100;
2099 }
2100
2101
2102 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2103 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2104 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2105 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2106 if (sge->tx_sched) {
2107 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2108 p->rx_coalesce_usecs = 15;
2109 else
2110 p->rx_coalesce_usecs = 50;
2111 } else
2112 p->rx_coalesce_usecs = 50;
2113
2114 p->coalesce_enable = 0;
2115 p->sample_interval_usecs = 0;
2116
2117 return sge;
2118 nomem_port:
2119 while (i >= 0) {
2120 free_percpu(sge->port_stats[i]);
2121 --i;
2122 }
2123 kfree(sge);
2124 return NULL;
2125
2126 }
2127