1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Thunderbolt driver - NHI driver
4 *
5 * The NHI (native host interface) is the pci device that allows us to send and
6 * receive frames from the thunderbolt bus.
7 *
8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9 * Copyright (C) 2018, Intel Corporation
10 */
11
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20 #include <linux/platform_data/x86/apple.h>
21
22 #include "nhi.h"
23 #include "nhi_regs.h"
24 #include "tb.h"
25
26 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
27
28 #define RING_FIRST_USABLE_HOPID 1
29
30 /*
31 * Minimal number of vectors when we use MSI-X. Two for control channel
32 * Rx/Tx and the rest four are for cross domain DMA paths.
33 */
34 #define MSIX_MIN_VECS 6
35 #define MSIX_MAX_VECS 16
36
37 #define NHI_MAILBOX_TIMEOUT 500 /* ms */
38
ring_interrupt_index(struct tb_ring * ring)39 static int ring_interrupt_index(struct tb_ring *ring)
40 {
41 int bit = ring->hop;
42 if (!ring->is_tx)
43 bit += ring->nhi->hop_count;
44 return bit;
45 }
46
47 /**
48 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
49 *
50 * ring->nhi->lock must be held.
51 */
ring_interrupt_active(struct tb_ring * ring,bool active)52 static void ring_interrupt_active(struct tb_ring *ring, bool active)
53 {
54 int reg = REG_RING_INTERRUPT_BASE +
55 ring_interrupt_index(ring) / 32 * 4;
56 int bit = ring_interrupt_index(ring) & 31;
57 int mask = 1 << bit;
58 u32 old, new;
59
60 if (ring->irq > 0) {
61 u32 step, shift, ivr, misc;
62 void __iomem *ivr_base;
63 int index;
64
65 if (ring->is_tx)
66 index = ring->hop;
67 else
68 index = ring->hop + ring->nhi->hop_count;
69
70 /*
71 * Ask the hardware to clear interrupt status bits automatically
72 * since we already know which interrupt was triggered.
73 */
74 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
75 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
76 misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
77 iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
78 }
79
80 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
81 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
82 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
83 ivr = ioread32(ivr_base + step);
84 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
85 if (active)
86 ivr |= ring->vector << shift;
87 iowrite32(ivr, ivr_base + step);
88 }
89
90 old = ioread32(ring->nhi->iobase + reg);
91 if (active)
92 new = old | mask;
93 else
94 new = old & ~mask;
95
96 dev_dbg(&ring->nhi->pdev->dev,
97 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
98 active ? "enabling" : "disabling", reg, bit, old, new);
99
100 if (new == old)
101 dev_WARN(&ring->nhi->pdev->dev,
102 "interrupt for %s %d is already %s\n",
103 RING_TYPE(ring), ring->hop,
104 active ? "enabled" : "disabled");
105 iowrite32(new, ring->nhi->iobase + reg);
106 }
107
108 /**
109 * nhi_disable_interrupts() - disable interrupts for all rings
110 *
111 * Use only during init and shutdown.
112 */
nhi_disable_interrupts(struct tb_nhi * nhi)113 static void nhi_disable_interrupts(struct tb_nhi *nhi)
114 {
115 int i = 0;
116 /* disable interrupts */
117 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
118 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
119
120 /* clear interrupt status bits */
121 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
122 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
123 }
124
125 /* ring helper methods */
126
ring_desc_base(struct tb_ring * ring)127 static void __iomem *ring_desc_base(struct tb_ring *ring)
128 {
129 void __iomem *io = ring->nhi->iobase;
130 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
131 io += ring->hop * 16;
132 return io;
133 }
134
ring_options_base(struct tb_ring * ring)135 static void __iomem *ring_options_base(struct tb_ring *ring)
136 {
137 void __iomem *io = ring->nhi->iobase;
138 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
139 io += ring->hop * 32;
140 return io;
141 }
142
ring_iowrite_cons(struct tb_ring * ring,u16 cons)143 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
144 {
145 /*
146 * The other 16-bits in the register is read-only and writes to it
147 * are ignored by the hardware so we can save one ioread32() by
148 * filling the read-only bits with zeroes.
149 */
150 iowrite32(cons, ring_desc_base(ring) + 8);
151 }
152
ring_iowrite_prod(struct tb_ring * ring,u16 prod)153 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
154 {
155 /* See ring_iowrite_cons() above for explanation */
156 iowrite32(prod << 16, ring_desc_base(ring) + 8);
157 }
158
ring_iowrite32desc(struct tb_ring * ring,u32 value,u32 offset)159 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
160 {
161 iowrite32(value, ring_desc_base(ring) + offset);
162 }
163
ring_iowrite64desc(struct tb_ring * ring,u64 value,u32 offset)164 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
165 {
166 iowrite32(value, ring_desc_base(ring) + offset);
167 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
168 }
169
ring_iowrite32options(struct tb_ring * ring,u32 value,u32 offset)170 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
171 {
172 iowrite32(value, ring_options_base(ring) + offset);
173 }
174
ring_full(struct tb_ring * ring)175 static bool ring_full(struct tb_ring *ring)
176 {
177 return ((ring->head + 1) % ring->size) == ring->tail;
178 }
179
ring_empty(struct tb_ring * ring)180 static bool ring_empty(struct tb_ring *ring)
181 {
182 return ring->head == ring->tail;
183 }
184
185 /**
186 * ring_write_descriptors() - post frames from ring->queue to the controller
187 *
188 * ring->lock is held.
189 */
ring_write_descriptors(struct tb_ring * ring)190 static void ring_write_descriptors(struct tb_ring *ring)
191 {
192 struct ring_frame *frame, *n;
193 struct ring_desc *descriptor;
194 list_for_each_entry_safe(frame, n, &ring->queue, list) {
195 if (ring_full(ring))
196 break;
197 list_move_tail(&frame->list, &ring->in_flight);
198 descriptor = &ring->descriptors[ring->head];
199 descriptor->phys = frame->buffer_phy;
200 descriptor->time = 0;
201 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
202 if (ring->is_tx) {
203 descriptor->length = frame->size;
204 descriptor->eof = frame->eof;
205 descriptor->sof = frame->sof;
206 }
207 ring->head = (ring->head + 1) % ring->size;
208 if (ring->is_tx)
209 ring_iowrite_prod(ring, ring->head);
210 else
211 ring_iowrite_cons(ring, ring->head);
212 }
213 }
214
215 /**
216 * ring_work() - progress completed frames
217 *
218 * If the ring is shutting down then all frames are marked as canceled and
219 * their callbacks are invoked.
220 *
221 * Otherwise we collect all completed frame from the ring buffer, write new
222 * frame to the ring buffer and invoke the callbacks for the completed frames.
223 */
ring_work(struct work_struct * work)224 static void ring_work(struct work_struct *work)
225 {
226 struct tb_ring *ring = container_of(work, typeof(*ring), work);
227 struct ring_frame *frame;
228 bool canceled = false;
229 unsigned long flags;
230 LIST_HEAD(done);
231
232 spin_lock_irqsave(&ring->lock, flags);
233
234 if (!ring->running) {
235 /* Move all frames to done and mark them as canceled. */
236 list_splice_tail_init(&ring->in_flight, &done);
237 list_splice_tail_init(&ring->queue, &done);
238 canceled = true;
239 goto invoke_callback;
240 }
241
242 while (!ring_empty(ring)) {
243 if (!(ring->descriptors[ring->tail].flags
244 & RING_DESC_COMPLETED))
245 break;
246 frame = list_first_entry(&ring->in_flight, typeof(*frame),
247 list);
248 list_move_tail(&frame->list, &done);
249 if (!ring->is_tx) {
250 frame->size = ring->descriptors[ring->tail].length;
251 frame->eof = ring->descriptors[ring->tail].eof;
252 frame->sof = ring->descriptors[ring->tail].sof;
253 frame->flags = ring->descriptors[ring->tail].flags;
254 }
255 ring->tail = (ring->tail + 1) % ring->size;
256 }
257 ring_write_descriptors(ring);
258
259 invoke_callback:
260 /* allow callbacks to schedule new work */
261 spin_unlock_irqrestore(&ring->lock, flags);
262 while (!list_empty(&done)) {
263 frame = list_first_entry(&done, typeof(*frame), list);
264 /*
265 * The callback may reenqueue or delete frame.
266 * Do not hold on to it.
267 */
268 list_del_init(&frame->list);
269 if (frame->callback)
270 frame->callback(ring, frame, canceled);
271 }
272 }
273
__tb_ring_enqueue(struct tb_ring * ring,struct ring_frame * frame)274 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
275 {
276 unsigned long flags;
277 int ret = 0;
278
279 spin_lock_irqsave(&ring->lock, flags);
280 if (ring->running) {
281 list_add_tail(&frame->list, &ring->queue);
282 ring_write_descriptors(ring);
283 } else {
284 ret = -ESHUTDOWN;
285 }
286 spin_unlock_irqrestore(&ring->lock, flags);
287 return ret;
288 }
289 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
290
291 /**
292 * tb_ring_poll() - Poll one completed frame from the ring
293 * @ring: Ring to poll
294 *
295 * This function can be called when @start_poll callback of the @ring
296 * has been called. It will read one completed frame from the ring and
297 * return it to the caller. Returns %NULL if there is no more completed
298 * frames.
299 */
tb_ring_poll(struct tb_ring * ring)300 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
301 {
302 struct ring_frame *frame = NULL;
303 unsigned long flags;
304
305 spin_lock_irqsave(&ring->lock, flags);
306 if (!ring->running)
307 goto unlock;
308 if (ring_empty(ring))
309 goto unlock;
310
311 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
312 frame = list_first_entry(&ring->in_flight, typeof(*frame),
313 list);
314 list_del_init(&frame->list);
315
316 if (!ring->is_tx) {
317 frame->size = ring->descriptors[ring->tail].length;
318 frame->eof = ring->descriptors[ring->tail].eof;
319 frame->sof = ring->descriptors[ring->tail].sof;
320 frame->flags = ring->descriptors[ring->tail].flags;
321 }
322
323 ring->tail = (ring->tail + 1) % ring->size;
324 }
325
326 unlock:
327 spin_unlock_irqrestore(&ring->lock, flags);
328 return frame;
329 }
330 EXPORT_SYMBOL_GPL(tb_ring_poll);
331
__ring_interrupt_mask(struct tb_ring * ring,bool mask)332 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
333 {
334 int idx = ring_interrupt_index(ring);
335 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
336 int bit = idx % 32;
337 u32 val;
338
339 val = ioread32(ring->nhi->iobase + reg);
340 if (mask)
341 val &= ~BIT(bit);
342 else
343 val |= BIT(bit);
344 iowrite32(val, ring->nhi->iobase + reg);
345 }
346
347 /* Both @nhi->lock and @ring->lock should be held */
__ring_interrupt(struct tb_ring * ring)348 static void __ring_interrupt(struct tb_ring *ring)
349 {
350 if (!ring->running)
351 return;
352
353 if (ring->start_poll) {
354 __ring_interrupt_mask(ring, true);
355 ring->start_poll(ring->poll_data);
356 } else {
357 schedule_work(&ring->work);
358 }
359 }
360
361 /**
362 * tb_ring_poll_complete() - Re-start interrupt for the ring
363 * @ring: Ring to re-start the interrupt
364 *
365 * This will re-start (unmask) the ring interrupt once the user is done
366 * with polling.
367 */
tb_ring_poll_complete(struct tb_ring * ring)368 void tb_ring_poll_complete(struct tb_ring *ring)
369 {
370 unsigned long flags;
371
372 spin_lock_irqsave(&ring->nhi->lock, flags);
373 spin_lock(&ring->lock);
374 if (ring->start_poll)
375 __ring_interrupt_mask(ring, false);
376 spin_unlock(&ring->lock);
377 spin_unlock_irqrestore(&ring->nhi->lock, flags);
378 }
379 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
380
ring_msix(int irq,void * data)381 static irqreturn_t ring_msix(int irq, void *data)
382 {
383 struct tb_ring *ring = data;
384
385 spin_lock(&ring->nhi->lock);
386 spin_lock(&ring->lock);
387 __ring_interrupt(ring);
388 spin_unlock(&ring->lock);
389 spin_unlock(&ring->nhi->lock);
390
391 return IRQ_HANDLED;
392 }
393
ring_request_msix(struct tb_ring * ring,bool no_suspend)394 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
395 {
396 struct tb_nhi *nhi = ring->nhi;
397 unsigned long irqflags;
398 int ret;
399
400 if (!nhi->pdev->msix_enabled)
401 return 0;
402
403 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
404 if (ret < 0)
405 return ret;
406
407 ring->vector = ret;
408
409 ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
410 if (ret < 0)
411 goto err_ida_remove;
412
413 ring->irq = ret;
414
415 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
416 ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
417 if (ret)
418 goto err_ida_remove;
419
420 return 0;
421
422 err_ida_remove:
423 ida_simple_remove(&nhi->msix_ida, ring->vector);
424
425 return ret;
426 }
427
ring_release_msix(struct tb_ring * ring)428 static void ring_release_msix(struct tb_ring *ring)
429 {
430 if (ring->irq <= 0)
431 return;
432
433 free_irq(ring->irq, ring);
434 ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
435 ring->vector = 0;
436 ring->irq = 0;
437 }
438
nhi_alloc_hop(struct tb_nhi * nhi,struct tb_ring * ring)439 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
440 {
441 int ret = 0;
442
443 spin_lock_irq(&nhi->lock);
444
445 if (ring->hop < 0) {
446 unsigned int i;
447
448 /*
449 * Automatically allocate HopID from the non-reserved
450 * range 1 .. hop_count - 1.
451 */
452 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
453 if (ring->is_tx) {
454 if (!nhi->tx_rings[i]) {
455 ring->hop = i;
456 break;
457 }
458 } else {
459 if (!nhi->rx_rings[i]) {
460 ring->hop = i;
461 break;
462 }
463 }
464 }
465 }
466
467 if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
468 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
469 ret = -EINVAL;
470 goto err_unlock;
471 }
472 if (ring->is_tx && nhi->tx_rings[ring->hop]) {
473 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
474 ring->hop);
475 ret = -EBUSY;
476 goto err_unlock;
477 } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
478 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
479 ring->hop);
480 ret = -EBUSY;
481 goto err_unlock;
482 }
483
484 if (ring->is_tx)
485 nhi->tx_rings[ring->hop] = ring;
486 else
487 nhi->rx_rings[ring->hop] = ring;
488
489 err_unlock:
490 spin_unlock_irq(&nhi->lock);
491
492 return ret;
493 }
494
tb_ring_alloc(struct tb_nhi * nhi,u32 hop,int size,bool transmit,unsigned int flags,u16 sof_mask,u16 eof_mask,void (* start_poll)(void *),void * poll_data)495 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
496 bool transmit, unsigned int flags,
497 u16 sof_mask, u16 eof_mask,
498 void (*start_poll)(void *),
499 void *poll_data)
500 {
501 struct tb_ring *ring = NULL;
502
503 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
504 transmit ? "TX" : "RX", hop, size);
505
506 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
507 if (!ring)
508 return NULL;
509
510 spin_lock_init(&ring->lock);
511 INIT_LIST_HEAD(&ring->queue);
512 INIT_LIST_HEAD(&ring->in_flight);
513 INIT_WORK(&ring->work, ring_work);
514
515 ring->nhi = nhi;
516 ring->hop = hop;
517 ring->is_tx = transmit;
518 ring->size = size;
519 ring->flags = flags;
520 ring->sof_mask = sof_mask;
521 ring->eof_mask = eof_mask;
522 ring->head = 0;
523 ring->tail = 0;
524 ring->running = false;
525 ring->start_poll = start_poll;
526 ring->poll_data = poll_data;
527
528 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
529 size * sizeof(*ring->descriptors),
530 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
531 if (!ring->descriptors)
532 goto err_free_ring;
533
534 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
535 goto err_free_descs;
536
537 if (nhi_alloc_hop(nhi, ring))
538 goto err_release_msix;
539
540 return ring;
541
542 err_release_msix:
543 ring_release_msix(ring);
544 err_free_descs:
545 dma_free_coherent(&ring->nhi->pdev->dev,
546 ring->size * sizeof(*ring->descriptors),
547 ring->descriptors, ring->descriptors_dma);
548 err_free_ring:
549 kfree(ring);
550
551 return NULL;
552 }
553
554 /**
555 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
556 * @nhi: Pointer to the NHI the ring is to be allocated
557 * @hop: HopID (ring) to allocate
558 * @size: Number of entries in the ring
559 * @flags: Flags for the ring
560 */
tb_ring_alloc_tx(struct tb_nhi * nhi,int hop,int size,unsigned int flags)561 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
562 unsigned int flags)
563 {
564 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
565 }
566 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
567
568 /**
569 * tb_ring_alloc_rx() - Allocate DMA ring for receive
570 * @nhi: Pointer to the NHI the ring is to be allocated
571 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
572 * @size: Number of entries in the ring
573 * @flags: Flags for the ring
574 * @sof_mask: Mask of PDF values that start a frame
575 * @eof_mask: Mask of PDF values that end a frame
576 * @start_poll: If not %NULL the ring will call this function when an
577 * interrupt is triggered and masked, instead of callback
578 * in each Rx frame.
579 * @poll_data: Optional data passed to @start_poll
580 */
tb_ring_alloc_rx(struct tb_nhi * nhi,int hop,int size,unsigned int flags,u16 sof_mask,u16 eof_mask,void (* start_poll)(void *),void * poll_data)581 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
582 unsigned int flags, u16 sof_mask, u16 eof_mask,
583 void (*start_poll)(void *), void *poll_data)
584 {
585 return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
586 start_poll, poll_data);
587 }
588 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
589
590 /**
591 * tb_ring_start() - enable a ring
592 *
593 * Must not be invoked in parallel with tb_ring_stop().
594 */
tb_ring_start(struct tb_ring * ring)595 void tb_ring_start(struct tb_ring *ring)
596 {
597 u16 frame_size;
598 u32 flags;
599
600 spin_lock_irq(&ring->nhi->lock);
601 spin_lock(&ring->lock);
602 if (ring->nhi->going_away)
603 goto err;
604 if (ring->running) {
605 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
606 goto err;
607 }
608 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
609 RING_TYPE(ring), ring->hop);
610
611 if (ring->flags & RING_FLAG_FRAME) {
612 /* Means 4096 */
613 frame_size = 0;
614 flags = RING_FLAG_ENABLE;
615 } else {
616 frame_size = TB_FRAME_SIZE;
617 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
618 }
619
620 ring_iowrite64desc(ring, ring->descriptors_dma, 0);
621 if (ring->is_tx) {
622 ring_iowrite32desc(ring, ring->size, 12);
623 ring_iowrite32options(ring, 0, 4); /* time releated ? */
624 ring_iowrite32options(ring, flags, 0);
625 } else {
626 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
627
628 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
629 ring_iowrite32options(ring, sof_eof_mask, 4);
630 ring_iowrite32options(ring, flags, 0);
631 }
632 ring_interrupt_active(ring, true);
633 ring->running = true;
634 err:
635 spin_unlock(&ring->lock);
636 spin_unlock_irq(&ring->nhi->lock);
637 }
638 EXPORT_SYMBOL_GPL(tb_ring_start);
639
640 /**
641 * tb_ring_stop() - shutdown a ring
642 *
643 * Must not be invoked from a callback.
644 *
645 * This method will disable the ring. Further calls to
646 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
647 * called.
648 *
649 * All enqueued frames will be canceled and their callbacks will be executed
650 * with frame->canceled set to true (on the callback thread). This method
651 * returns only after all callback invocations have finished.
652 */
tb_ring_stop(struct tb_ring * ring)653 void tb_ring_stop(struct tb_ring *ring)
654 {
655 spin_lock_irq(&ring->nhi->lock);
656 spin_lock(&ring->lock);
657 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
658 RING_TYPE(ring), ring->hop);
659 if (ring->nhi->going_away)
660 goto err;
661 if (!ring->running) {
662 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
663 RING_TYPE(ring), ring->hop);
664 goto err;
665 }
666 ring_interrupt_active(ring, false);
667
668 ring_iowrite32options(ring, 0, 0);
669 ring_iowrite64desc(ring, 0, 0);
670 ring_iowrite32desc(ring, 0, 8);
671 ring_iowrite32desc(ring, 0, 12);
672 ring->head = 0;
673 ring->tail = 0;
674 ring->running = false;
675
676 err:
677 spin_unlock(&ring->lock);
678 spin_unlock_irq(&ring->nhi->lock);
679
680 /*
681 * schedule ring->work to invoke callbacks on all remaining frames.
682 */
683 schedule_work(&ring->work);
684 flush_work(&ring->work);
685 }
686 EXPORT_SYMBOL_GPL(tb_ring_stop);
687
688 /*
689 * tb_ring_free() - free ring
690 *
691 * When this method returns all invocations of ring->callback will have
692 * finished.
693 *
694 * Ring must be stopped.
695 *
696 * Must NOT be called from ring_frame->callback!
697 */
tb_ring_free(struct tb_ring * ring)698 void tb_ring_free(struct tb_ring *ring)
699 {
700 spin_lock_irq(&ring->nhi->lock);
701 /*
702 * Dissociate the ring from the NHI. This also ensures that
703 * nhi_interrupt_work cannot reschedule ring->work.
704 */
705 if (ring->is_tx)
706 ring->nhi->tx_rings[ring->hop] = NULL;
707 else
708 ring->nhi->rx_rings[ring->hop] = NULL;
709
710 if (ring->running) {
711 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
712 RING_TYPE(ring), ring->hop);
713 }
714 spin_unlock_irq(&ring->nhi->lock);
715
716 ring_release_msix(ring);
717
718 dma_free_coherent(&ring->nhi->pdev->dev,
719 ring->size * sizeof(*ring->descriptors),
720 ring->descriptors, ring->descriptors_dma);
721
722 ring->descriptors = NULL;
723 ring->descriptors_dma = 0;
724
725
726 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
727 ring->hop);
728
729 /**
730 * ring->work can no longer be scheduled (it is scheduled only
731 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
732 * to finish before freeing the ring.
733 */
734 flush_work(&ring->work);
735 kfree(ring);
736 }
737 EXPORT_SYMBOL_GPL(tb_ring_free);
738
739 /**
740 * nhi_mailbox_cmd() - Send a command through NHI mailbox
741 * @nhi: Pointer to the NHI structure
742 * @cmd: Command to send
743 * @data: Data to be send with the command
744 *
745 * Sends mailbox command to the firmware running on NHI. Returns %0 in
746 * case of success and negative errno in case of failure.
747 */
nhi_mailbox_cmd(struct tb_nhi * nhi,enum nhi_mailbox_cmd cmd,u32 data)748 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
749 {
750 ktime_t timeout;
751 u32 val;
752
753 iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
754
755 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
756 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
757 val |= REG_INMAIL_OP_REQUEST | cmd;
758 iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
759
760 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
761 do {
762 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
763 if (!(val & REG_INMAIL_OP_REQUEST))
764 break;
765 usleep_range(10, 20);
766 } while (ktime_before(ktime_get(), timeout));
767
768 if (val & REG_INMAIL_OP_REQUEST)
769 return -ETIMEDOUT;
770 if (val & REG_INMAIL_ERROR)
771 return -EIO;
772
773 return 0;
774 }
775
776 /**
777 * nhi_mailbox_mode() - Return current firmware operation mode
778 * @nhi: Pointer to the NHI structure
779 *
780 * The function reads current firmware operation mode using NHI mailbox
781 * registers and returns it to the caller.
782 */
nhi_mailbox_mode(struct tb_nhi * nhi)783 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
784 {
785 u32 val;
786
787 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
788 val &= REG_OUTMAIL_CMD_OPMODE_MASK;
789 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
790
791 return (enum nhi_fw_mode)val;
792 }
793
nhi_interrupt_work(struct work_struct * work)794 static void nhi_interrupt_work(struct work_struct *work)
795 {
796 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
797 int value = 0; /* Suppress uninitialized usage warning. */
798 int bit;
799 int hop = -1;
800 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
801 struct tb_ring *ring;
802
803 spin_lock_irq(&nhi->lock);
804
805 /*
806 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
807 * (TX, RX, RX overflow). We iterate over the bits and read a new
808 * dwords as required. The registers are cleared on read.
809 */
810 for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
811 if (bit % 32 == 0)
812 value = ioread32(nhi->iobase
813 + REG_RING_NOTIFY_BASE
814 + 4 * (bit / 32));
815 if (++hop == nhi->hop_count) {
816 hop = 0;
817 type++;
818 }
819 if ((value & (1 << (bit % 32))) == 0)
820 continue;
821 if (type == 2) {
822 dev_warn(&nhi->pdev->dev,
823 "RX overflow for ring %d\n",
824 hop);
825 continue;
826 }
827 if (type == 0)
828 ring = nhi->tx_rings[hop];
829 else
830 ring = nhi->rx_rings[hop];
831 if (ring == NULL) {
832 dev_warn(&nhi->pdev->dev,
833 "got interrupt for inactive %s ring %d\n",
834 type ? "RX" : "TX",
835 hop);
836 continue;
837 }
838
839 spin_lock(&ring->lock);
840 __ring_interrupt(ring);
841 spin_unlock(&ring->lock);
842 }
843 spin_unlock_irq(&nhi->lock);
844 }
845
nhi_msi(int irq,void * data)846 static irqreturn_t nhi_msi(int irq, void *data)
847 {
848 struct tb_nhi *nhi = data;
849 schedule_work(&nhi->interrupt_work);
850 return IRQ_HANDLED;
851 }
852
__nhi_suspend_noirq(struct device * dev,bool wakeup)853 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
854 {
855 struct pci_dev *pdev = to_pci_dev(dev);
856 struct tb *tb = pci_get_drvdata(pdev);
857 struct tb_nhi *nhi = tb->nhi;
858 int ret;
859
860 ret = tb_domain_suspend_noirq(tb);
861 if (ret)
862 return ret;
863
864 if (nhi->ops && nhi->ops->suspend_noirq) {
865 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
866 if (ret)
867 return ret;
868 }
869
870 return 0;
871 }
872
nhi_suspend_noirq(struct device * dev)873 static int nhi_suspend_noirq(struct device *dev)
874 {
875 return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
876 }
877
nhi_freeze_noirq(struct device * dev)878 static int nhi_freeze_noirq(struct device *dev)
879 {
880 struct pci_dev *pdev = to_pci_dev(dev);
881 struct tb *tb = pci_get_drvdata(pdev);
882
883 return tb_domain_freeze_noirq(tb);
884 }
885
nhi_thaw_noirq(struct device * dev)886 static int nhi_thaw_noirq(struct device *dev)
887 {
888 struct pci_dev *pdev = to_pci_dev(dev);
889 struct tb *tb = pci_get_drvdata(pdev);
890
891 return tb_domain_thaw_noirq(tb);
892 }
893
nhi_wake_supported(struct pci_dev * pdev)894 static bool nhi_wake_supported(struct pci_dev *pdev)
895 {
896 u8 val;
897
898 /*
899 * If power rails are sustainable for wakeup from S4 this
900 * property is set by the BIOS.
901 */
902 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
903 return !!val;
904
905 return true;
906 }
907
nhi_poweroff_noirq(struct device * dev)908 static int nhi_poweroff_noirq(struct device *dev)
909 {
910 struct pci_dev *pdev = to_pci_dev(dev);
911 bool wakeup;
912
913 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
914 return __nhi_suspend_noirq(dev, wakeup);
915 }
916
nhi_enable_int_throttling(struct tb_nhi * nhi)917 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
918 {
919 /* Throttling is specified in 256ns increments */
920 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
921 unsigned int i;
922
923 /*
924 * Configure interrupt throttling for all vectors even if we
925 * only use few.
926 */
927 for (i = 0; i < MSIX_MAX_VECS; i++) {
928 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
929 iowrite32(throttle, nhi->iobase + reg);
930 }
931 }
932
nhi_resume_noirq(struct device * dev)933 static int nhi_resume_noirq(struct device *dev)
934 {
935 struct pci_dev *pdev = to_pci_dev(dev);
936 struct tb *tb = pci_get_drvdata(pdev);
937 struct tb_nhi *nhi = tb->nhi;
938 int ret;
939
940 /*
941 * Check that the device is still there. It may be that the user
942 * unplugged last device which causes the host controller to go
943 * away on PCs.
944 */
945 if (!pci_device_is_present(pdev)) {
946 nhi->going_away = true;
947 } else {
948 if (nhi->ops && nhi->ops->resume_noirq) {
949 ret = nhi->ops->resume_noirq(nhi);
950 if (ret)
951 return ret;
952 }
953 nhi_enable_int_throttling(tb->nhi);
954 }
955
956 return tb_domain_resume_noirq(tb);
957 }
958
nhi_suspend(struct device * dev)959 static int nhi_suspend(struct device *dev)
960 {
961 struct pci_dev *pdev = to_pci_dev(dev);
962 struct tb *tb = pci_get_drvdata(pdev);
963
964 return tb_domain_suspend(tb);
965 }
966
nhi_complete(struct device * dev)967 static void nhi_complete(struct device *dev)
968 {
969 struct pci_dev *pdev = to_pci_dev(dev);
970 struct tb *tb = pci_get_drvdata(pdev);
971
972 /*
973 * If we were runtime suspended when system suspend started,
974 * schedule runtime resume now. It should bring the domain back
975 * to functional state.
976 */
977 if (pm_runtime_suspended(&pdev->dev))
978 pm_runtime_resume(&pdev->dev);
979 else
980 tb_domain_complete(tb);
981 }
982
nhi_runtime_suspend(struct device * dev)983 static int nhi_runtime_suspend(struct device *dev)
984 {
985 struct pci_dev *pdev = to_pci_dev(dev);
986 struct tb *tb = pci_get_drvdata(pdev);
987 struct tb_nhi *nhi = tb->nhi;
988 int ret;
989
990 ret = tb_domain_runtime_suspend(tb);
991 if (ret)
992 return ret;
993
994 if (nhi->ops && nhi->ops->runtime_suspend) {
995 ret = nhi->ops->runtime_suspend(tb->nhi);
996 if (ret)
997 return ret;
998 }
999 return 0;
1000 }
1001
nhi_runtime_resume(struct device * dev)1002 static int nhi_runtime_resume(struct device *dev)
1003 {
1004 struct pci_dev *pdev = to_pci_dev(dev);
1005 struct tb *tb = pci_get_drvdata(pdev);
1006 struct tb_nhi *nhi = tb->nhi;
1007 int ret;
1008
1009 if (nhi->ops && nhi->ops->runtime_resume) {
1010 ret = nhi->ops->runtime_resume(nhi);
1011 if (ret)
1012 return ret;
1013 }
1014
1015 nhi_enable_int_throttling(nhi);
1016 return tb_domain_runtime_resume(tb);
1017 }
1018
nhi_shutdown(struct tb_nhi * nhi)1019 static void nhi_shutdown(struct tb_nhi *nhi)
1020 {
1021 int i;
1022
1023 dev_dbg(&nhi->pdev->dev, "shutdown\n");
1024
1025 for (i = 0; i < nhi->hop_count; i++) {
1026 if (nhi->tx_rings[i])
1027 dev_WARN(&nhi->pdev->dev,
1028 "TX ring %d is still active\n", i);
1029 if (nhi->rx_rings[i])
1030 dev_WARN(&nhi->pdev->dev,
1031 "RX ring %d is still active\n", i);
1032 }
1033 nhi_disable_interrupts(nhi);
1034 /*
1035 * We have to release the irq before calling flush_work. Otherwise an
1036 * already executing IRQ handler could call schedule_work again.
1037 */
1038 if (!nhi->pdev->msix_enabled) {
1039 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1040 flush_work(&nhi->interrupt_work);
1041 }
1042 ida_destroy(&nhi->msix_ida);
1043
1044 if (nhi->ops && nhi->ops->shutdown)
1045 nhi->ops->shutdown(nhi);
1046 }
1047
nhi_init_msi(struct tb_nhi * nhi)1048 static int nhi_init_msi(struct tb_nhi *nhi)
1049 {
1050 struct pci_dev *pdev = nhi->pdev;
1051 int res, irq, nvec;
1052
1053 /* In case someone left them on. */
1054 nhi_disable_interrupts(nhi);
1055
1056 nhi_enable_int_throttling(nhi);
1057
1058 ida_init(&nhi->msix_ida);
1059
1060 /*
1061 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1062 * get all MSI-X vectors and if we succeed, each ring will have
1063 * one MSI-X. If for some reason that does not work out, we
1064 * fallback to a single MSI.
1065 */
1066 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1067 PCI_IRQ_MSIX);
1068 if (nvec < 0) {
1069 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1070 if (nvec < 0)
1071 return nvec;
1072
1073 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1074
1075 irq = pci_irq_vector(nhi->pdev, 0);
1076 if (irq < 0)
1077 return irq;
1078
1079 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1080 IRQF_NO_SUSPEND, "thunderbolt", nhi);
1081 if (res) {
1082 dev_err(&pdev->dev, "request_irq failed, aborting\n");
1083 return res;
1084 }
1085 }
1086
1087 return 0;
1088 }
1089
nhi_imr_valid(struct pci_dev * pdev)1090 static bool nhi_imr_valid(struct pci_dev *pdev)
1091 {
1092 u8 val;
1093
1094 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1095 return !!val;
1096
1097 return true;
1098 }
1099
1100 /*
1101 * During suspend the Thunderbolt controller is reset and all PCIe
1102 * tunnels are lost. The NHI driver will try to reestablish all tunnels
1103 * during resume. This adds device links between the tunneled PCIe
1104 * downstream ports and the NHI so that the device core will make sure
1105 * NHI is resumed first before the rest.
1106 */
tb_apple_add_links(struct tb_nhi * nhi)1107 static void tb_apple_add_links(struct tb_nhi *nhi)
1108 {
1109 struct pci_dev *upstream, *pdev;
1110
1111 if (!x86_apple_machine)
1112 return;
1113
1114 switch (nhi->pdev->device) {
1115 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1116 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1117 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1118 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1119 break;
1120 default:
1121 return;
1122 }
1123
1124 upstream = pci_upstream_bridge(nhi->pdev);
1125 while (upstream) {
1126 if (!pci_is_pcie(upstream))
1127 return;
1128 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
1129 break;
1130 upstream = pci_upstream_bridge(upstream);
1131 }
1132
1133 if (!upstream)
1134 return;
1135
1136 /*
1137 * For each hotplug downstream port, create add device link
1138 * back to NHI so that PCIe tunnels can be re-established after
1139 * sleep.
1140 */
1141 for_each_pci_bridge(pdev, upstream->subordinate) {
1142 const struct device_link *link;
1143
1144 if (!pci_is_pcie(pdev))
1145 continue;
1146 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
1147 !pdev->is_hotplug_bridge)
1148 continue;
1149
1150 link = device_link_add(&pdev->dev, &nhi->pdev->dev,
1151 DL_FLAG_AUTOREMOVE_SUPPLIER |
1152 DL_FLAG_PM_RUNTIME);
1153 if (link) {
1154 dev_dbg(&nhi->pdev->dev, "created link from %s\n",
1155 dev_name(&pdev->dev));
1156 } else {
1157 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
1158 dev_name(&pdev->dev));
1159 }
1160 }
1161 }
1162
nhi_probe(struct pci_dev * pdev,const struct pci_device_id * id)1163 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1164 {
1165 struct tb_nhi *nhi;
1166 struct tb *tb;
1167 int res;
1168
1169 if (!nhi_imr_valid(pdev)) {
1170 dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1171 return -ENODEV;
1172 }
1173
1174 res = pcim_enable_device(pdev);
1175 if (res) {
1176 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1177 return res;
1178 }
1179
1180 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1181 if (res) {
1182 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1183 return res;
1184 }
1185
1186 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1187 if (!nhi)
1188 return -ENOMEM;
1189
1190 nhi->pdev = pdev;
1191 nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1192 /* cannot fail - table is allocated bin pcim_iomap_regions */
1193 nhi->iobase = pcim_iomap_table(pdev)[0];
1194 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1195 dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1196
1197 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1198 sizeof(*nhi->tx_rings), GFP_KERNEL);
1199 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1200 sizeof(*nhi->rx_rings), GFP_KERNEL);
1201 if (!nhi->tx_rings || !nhi->rx_rings)
1202 return -ENOMEM;
1203
1204 res = nhi_init_msi(nhi);
1205 if (res) {
1206 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1207 return res;
1208 }
1209
1210 spin_lock_init(&nhi->lock);
1211
1212 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1213 if (res)
1214 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1215 if (res) {
1216 dev_err(&pdev->dev, "failed to set DMA mask\n");
1217 return res;
1218 }
1219
1220 pci_set_master(pdev);
1221
1222 if (nhi->ops && nhi->ops->init) {
1223 res = nhi->ops->init(nhi);
1224 if (res)
1225 return res;
1226 }
1227
1228 tb_apple_add_links(nhi);
1229 tb_acpi_add_links(nhi);
1230
1231 tb = icm_probe(nhi);
1232 if (!tb)
1233 tb = tb_probe(nhi);
1234 if (!tb) {
1235 dev_err(&nhi->pdev->dev,
1236 "failed to determine connection manager, aborting\n");
1237 return -ENODEV;
1238 }
1239
1240 dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1241
1242 res = tb_domain_add(tb);
1243 if (res) {
1244 /*
1245 * At this point the RX/TX rings might already have been
1246 * activated. Do a proper shutdown.
1247 */
1248 tb_domain_put(tb);
1249 nhi_shutdown(nhi);
1250 return res;
1251 }
1252 pci_set_drvdata(pdev, tb);
1253
1254 device_wakeup_enable(&pdev->dev);
1255
1256 pm_runtime_allow(&pdev->dev);
1257 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1258 pm_runtime_use_autosuspend(&pdev->dev);
1259 pm_runtime_put_autosuspend(&pdev->dev);
1260
1261 return 0;
1262 }
1263
nhi_remove(struct pci_dev * pdev)1264 static void nhi_remove(struct pci_dev *pdev)
1265 {
1266 struct tb *tb = pci_get_drvdata(pdev);
1267 struct tb_nhi *nhi = tb->nhi;
1268
1269 pm_runtime_get_sync(&pdev->dev);
1270 pm_runtime_dont_use_autosuspend(&pdev->dev);
1271 pm_runtime_forbid(&pdev->dev);
1272
1273 tb_domain_remove(tb);
1274 nhi_shutdown(nhi);
1275 }
1276
1277 /*
1278 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1279 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1280 * resume_noirq until we are done.
1281 */
1282 static const struct dev_pm_ops nhi_pm_ops = {
1283 .suspend_noirq = nhi_suspend_noirq,
1284 .resume_noirq = nhi_resume_noirq,
1285 .freeze_noirq = nhi_freeze_noirq, /*
1286 * we just disable hotplug, the
1287 * pci-tunnels stay alive.
1288 */
1289 .thaw_noirq = nhi_thaw_noirq,
1290 .restore_noirq = nhi_resume_noirq,
1291 .suspend = nhi_suspend,
1292 .poweroff_noirq = nhi_poweroff_noirq,
1293 .poweroff = nhi_suspend,
1294 .complete = nhi_complete,
1295 .runtime_suspend = nhi_runtime_suspend,
1296 .runtime_resume = nhi_runtime_resume,
1297 };
1298
1299 static struct pci_device_id nhi_ids[] = {
1300 /*
1301 * We have to specify class, the TB bridges use the same device and
1302 * vendor (sub)id on gen 1 and gen 2 controllers.
1303 */
1304 {
1305 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1306 .vendor = PCI_VENDOR_ID_INTEL,
1307 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1308 .subvendor = 0x2222, .subdevice = 0x1111,
1309 },
1310 {
1311 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1312 .vendor = PCI_VENDOR_ID_INTEL,
1313 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1314 .subvendor = 0x2222, .subdevice = 0x1111,
1315 },
1316 {
1317 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1318 .vendor = PCI_VENDOR_ID_INTEL,
1319 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1320 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1321 },
1322 {
1323 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1324 .vendor = PCI_VENDOR_ID_INTEL,
1325 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1326 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1327 },
1328
1329 /* Thunderbolt 3 */
1330 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1331 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1332 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1333 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1334 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1335 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1336 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1337 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1338 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1339 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1340 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1341 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1342 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1343 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1344 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1345 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1346 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1347 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1348 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1349 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1350 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1351 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1352
1353 /* Any USB4 compliant host */
1354 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1355
1356 { 0,}
1357 };
1358
1359 MODULE_DEVICE_TABLE(pci, nhi_ids);
1360 MODULE_LICENSE("GPL");
1361
1362 static struct pci_driver nhi_driver = {
1363 .name = "thunderbolt",
1364 .id_table = nhi_ids,
1365 .probe = nhi_probe,
1366 .remove = nhi_remove,
1367 .shutdown = nhi_remove,
1368 .driver.pm = &nhi_pm_ops,
1369 };
1370
nhi_init(void)1371 static int __init nhi_init(void)
1372 {
1373 int ret;
1374
1375 ret = tb_domain_init();
1376 if (ret)
1377 return ret;
1378 ret = pci_register_driver(&nhi_driver);
1379 if (ret)
1380 tb_domain_exit();
1381 return ret;
1382 }
1383
nhi_unload(void)1384 static void __exit nhi_unload(void)
1385 {
1386 pci_unregister_driver(&nhi_driver);
1387 tb_domain_exit();
1388 }
1389
1390 rootfs_initcall(nhi_init);
1391 module_exit(nhi_unload);
1392