1 /**
2 * @file
3 * Transmission Control Protocol for IP
4 * See also @ref tcp_raw
5 *
6 * @defgroup tcp_raw TCP
7 * @ingroup callbackstyle_api
8 * Transmission Control Protocol for IP\n
9 * @see @ref api
10 *
11 * Common functions for the TCP implementation, such as functions
12 * for manipulating the data structures and the TCP timer functions. TCP functions
13 * related to input and output is found in tcp_in.c and tcp_out.c respectively.\n
14 *
15 * TCP connection setup
16 * --------------------
17 * The functions used for setting up connections is similar to that of
18 * the sequential API and of the BSD socket API. A new TCP connection
19 * identifier (i.e., a protocol control block - PCB) is created with the
20 * tcp_new() function. This PCB can then be either set to listen for new
21 * incoming connections or be explicitly connected to another host.
22 * - tcp_new()
23 * - tcp_bind()
24 * - tcp_listen() and tcp_listen_with_backlog()
25 * - tcp_accept()
26 * - tcp_connect()
27 *
28 * Sending TCP data
29 * ----------------
30 * TCP data is sent by enqueueing the data with a call to tcp_write() and
31 * triggering to send by calling tcp_output(). When the data is successfully
32 * transmitted to the remote host, the application will be notified with a
33 * call to a specified callback function.
34 * - tcp_write()
35 * - tcp_output()
36 * - tcp_sent()
37 *
38 * Receiving TCP data
39 * ------------------
40 * TCP data reception is callback based - an application specified
41 * callback function is called when new data arrives. When the
42 * application has taken the data, it has to call the tcp_recved()
43 * function to indicate that TCP can advertise increase the receive
44 * window.
45 * - tcp_recv()
46 * - tcp_recved()
47 *
48 * Application polling
49 * -------------------
50 * When a connection is idle (i.e., no data is either transmitted or
51 * received), lwIP will repeatedly poll the application by calling a
52 * specified callback function. This can be used either as a watchdog
53 * timer for killing connections that have stayed idle for too long, or
54 * as a method of waiting for memory to become available. For instance,
55 * if a call to tcp_write() has failed because memory wasn't available,
56 * the application may use the polling functionality to call tcp_write()
57 * again when the connection has been idle for a while.
58 * - tcp_poll()
59 *
60 * Closing and aborting connections
61 * --------------------------------
62 * - tcp_close()
63 * - tcp_abort()
64 * - tcp_err()
65 *
66 */
67
68 /*
69 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without modification,
73 * are permitted provided that the following conditions are met:
74 *
75 * 1. Redistributions of source code must retain the above copyright notice,
76 * this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright notice,
78 * this list of conditions and the following disclaimer in the documentation
79 * and/or other materials provided with the distribution.
80 * 3. The name of the author may not be used to endorse or promote products
81 * derived from this software without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
84 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
85 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
86 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
87 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
88 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
91 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
92 * OF SUCH DAMAGE.
93 *
94 * This file is part of the lwIP TCP/IP stack.
95 *
96 * Author: Adam Dunkels <adam@sics.se>
97 *
98 */
99
100 #include "lwip/opt.h"
101
102 #if LWIP_TCP /* don't build if not configured for use in lwipopts.h */
103
104 #include "lwip/def.h"
105 #include "lwip/mem.h"
106 #include "lwip/memp.h"
107 #include "lwip/tcp.h"
108 #include "lwip/priv/tcp_priv.h"
109 #include "lwip/debug.h"
110 #include "lwip/stats.h"
111 #include "lwip/ip6.h"
112 #include "lwip/ip6_addr.h"
113 #include "lwip/nd6.h"
114 #if LWIP_LOWPOWER
115 #include "lwip/priv/api_msg.h"
116 #endif
117
118 #include <string.h>
119
120 #ifdef LWIP_HOOK_FILENAME
121 #include LWIP_HOOK_FILENAME
122 #endif
123
124 #ifndef TCP_LOCAL_PORT_RANGE_START
125 /* From http://www.iana.org/assignments/port-numbers:
126 "The Dynamic and/or Private Ports are those from 49152 through 65535" */
127 #define TCP_LOCAL_PORT_RANGE_START 0xc000
128 #define TCP_LOCAL_PORT_RANGE_END 0xffff
129 #define TCP_ENSURE_LOCAL_PORT_RANGE(port) ((u16_t)(((port) & (u16_t)~TCP_LOCAL_PORT_RANGE_START) + TCP_LOCAL_PORT_RANGE_START))
130 #endif
131
132 #if LWIP_TCP_KEEPALIVE
133 #define TCP_KEEP_DUR(pcb) ((pcb)->keep_cnt * (pcb)->keep_intvl)
134 #define TCP_KEEP_INTVL(pcb) ((pcb)->keep_intvl)
135 #else /* LWIP_TCP_KEEPALIVE */
136 #define TCP_KEEP_DUR(pcb) TCP_MAXIDLE
137 #define TCP_KEEP_INTVL(pcb) TCP_KEEPINTVL_DEFAULT
138 #endif /* LWIP_TCP_KEEPALIVE */
139
140 /* As initial send MSS, we use TCP_MSS but limit it to 536. */
141 #if TCP_MSS > 536
142 #define INITIAL_MSS 536
143 #else
144 #define INITIAL_MSS TCP_MSS
145 #endif
146
147 static const char *const tcp_state_str[] = {
148 "CLOSED",
149 "LISTEN",
150 "SYN_SENT",
151 "SYN_RCVD",
152 "ESTABLISHED",
153 "FIN_WAIT_1",
154 "FIN_WAIT_2",
155 "CLOSE_WAIT",
156 "CLOSING",
157 "LAST_ACK",
158 "TIME_WAIT"
159 };
160
161 /* last local TCP port */
162 static volatile u16_t tcp_port = TCP_LOCAL_PORT_RANGE_START;
163
164 /* Incremented every coarse grained timer shot (typically every 500 ms). */
165 u32_t tcp_ticks;
166 static const u8_t tcp_backoff[13] =
167 { 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7};
168 /* Times per slowtmr hits */
169 static const u8_t tcp_persist_backoff[7] = { 3, 6, 12, 24, 48, 96, 120 };
170
171 /* The TCP PCB lists. */
172
173 /** List of all TCP PCBs bound but not yet (connected || listening) */
174 struct tcp_pcb *tcp_bound_pcbs;
175 /** List of all TCP PCBs in LISTEN state */
176 union tcp_listen_pcbs_t tcp_listen_pcbs;
177 /** List of all TCP PCBs that are in a state in which
178 * they accept or send data. */
179 struct tcp_pcb *tcp_active_pcbs;
180 /** List of all TCP PCBs in TIME-WAIT state */
181 struct tcp_pcb *tcp_tw_pcbs;
182
183 /** An array with all (non-temporary) PCB lists, mainly used for smaller code size */
184 struct tcp_pcb **const tcp_pcb_lists[] = {&tcp_listen_pcbs.pcbs, &tcp_bound_pcbs,
185 &tcp_active_pcbs, &tcp_tw_pcbs
186 };
187
188 u8_t tcp_active_pcbs_changed;
189
190 /** Timer counter to handle calling slow-timer from tcp_tmr() */
191 static u8_t tcp_timer;
192 static u8_t tcp_timer_ctr;
193 static u16_t tcp_new_port(void);
194
195 static err_t tcp_close_shutdown_fin(struct tcp_pcb *pcb);
196 #if LWIP_TCP_PCB_NUM_EXT_ARGS
197 static void tcp_ext_arg_invoke_callbacks_destroyed(struct tcp_pcb_ext_args *ext_args);
198 #endif
199
200 #ifdef LOSCFG_NET_CONTAINER
set_tcp_pcb_net_group(struct tcp_pcb * pcb,struct net_group * group)201 void set_tcp_pcb_net_group(struct tcp_pcb *pcb, struct net_group *group)
202 {
203 set_ippcb_net_group((struct ip_pcb *)pcb, group);
204 }
205
get_net_group_from_tcp_pcb(const struct tcp_pcb * pcb)206 struct net_group *get_net_group_from_tcp_pcb(const struct tcp_pcb *pcb)
207 {
208 return get_net_group_from_ippcb((struct ip_pcb *)pcb);
209 }
210 #endif
211 /**
212 * Initialize this module.
213 */
214 void
tcp_init(void)215 tcp_init(void)
216 {
217 #ifdef LWIP_RAND
218 tcp_port = TCP_ENSURE_LOCAL_PORT_RANGE(LWIP_RAND());
219 #endif /* LWIP_RAND */
220 }
221
222 /** Free a tcp pcb */
223 void
tcp_free(struct tcp_pcb * pcb)224 tcp_free(struct tcp_pcb *pcb)
225 {
226 LWIP_ASSERT("tcp_free: LISTEN", pcb->state != LISTEN);
227 #if LWIP_TCP_PCB_NUM_EXT_ARGS
228 tcp_ext_arg_invoke_callbacks_destroyed(pcb->ext_args);
229 #endif
230 memp_free(MEMP_TCP_PCB, pcb);
231 }
232
233 /** Free a tcp listen pcb */
234 static void
tcp_free_listen(struct tcp_pcb * pcb)235 tcp_free_listen(struct tcp_pcb *pcb)
236 {
237 LWIP_ASSERT("tcp_free_listen: !LISTEN", pcb->state != LISTEN);
238 #if LWIP_TCP_PCB_NUM_EXT_ARGS
239 tcp_ext_arg_invoke_callbacks_destroyed(pcb->ext_args);
240 #endif
241 memp_free(MEMP_TCP_PCB_LISTEN, pcb);
242 }
243
244 /**
245 * Called periodically to dispatch TCP timers.
246 */
247 void
tcp_tmr(void)248 tcp_tmr(void)
249 {
250 /* Call tcp_fasttmr() every 250 ms */
251 tcp_fasttmr();
252
253 if (++tcp_timer & 1) {
254 /* Call tcp_slowtmr() every 500 ms, i.e., every other timer
255 tcp_tmr() is called. */
256 tcp_slowtmr();
257 }
258 }
259
260 #if LWIP_LOWPOWER
261 #include "lwip/lowpower.h"
262
263 static u32_t
tcp_set_timer_tick_by_persist(struct tcp_pcb * pcb,u32_t tick)264 tcp_set_timer_tick_by_persist(struct tcp_pcb *pcb, u32_t tick)
265 {
266 u32_t val;
267
268 if (pcb->persist_backoff > 0) {
269 u8_t backoff_cnt = tcp_persist_backoff[pcb->persist_backoff - 1];
270 SET_TMR_TICK(tick, backoff_cnt);
271 return tick;
272 }
273
274 /* timer not running */
275 if (pcb->rtime >= 0) {
276 val = pcb->rto - pcb->rtime;
277 if (val == 0) {
278 val = 1;
279 }
280 SET_TMR_TICK(tick, val);
281 }
282 return tick;
283 }
284
285 static u32_t
tcp_set_timer_tick_by_keepalive(struct tcp_pcb * pcb,u32_t tick)286 tcp_set_timer_tick_by_keepalive(struct tcp_pcb *pcb, u32_t tick)
287 {
288 u32_t val;
289
290 if (ip_get_option(pcb, SOF_KEEPALIVE) &&
291 ((pcb->state == ESTABLISHED) ||
292 (pcb->state == CLOSE_WAIT))) {
293 u32_t idle = (pcb->keep_idle) / TCP_SLOW_INTERVAL;
294 if (pcb->keep_cnt_sent == 0) {
295 val = idle - (tcp_ticks - pcb->tmr);
296 } else {
297 val = (tcp_ticks - pcb->tmr) - idle;
298 idle = (TCP_KEEP_INTVL(pcb) / TCP_SLOW_INTERVAL);
299 val = idle - (val % idle);
300 }
301 /* need add 1 to trig timer */
302 val++;
303 SET_TMR_TICK(tick, val);
304 }
305
306 return tick;
307 }
308
tcp_set_timer_tick_by_tcp_state(struct tcp_pcb * pcb,u32_t tick)309 static u32_t tcp_set_timer_tick_by_tcp_state(struct tcp_pcb *pcb, u32_t tick)
310 {
311 u32_t val;
312
313 /* Check if this PCB has stayed too long in FIN-WAIT-2 */
314 if (pcb->state == FIN_WAIT_2) {
315 /* If this PCB is in FIN_WAIT_2 because of SHUT_WR don't let it time out. */
316 if (pcb->flags & TF_RXCLOSED) {
317 val = TCP_FIN_WAIT_TIMEOUT / TCP_SLOW_INTERVAL;
318 SET_TMR_TICK(tick, val);
319 }
320 }
321
322 /* Check if this PCB has stayed too long in SYN-RCVD */
323 if (pcb->state == SYN_RCVD) {
324 val = TCP_SYN_RCVD_TIMEOUT / TCP_SLOW_INTERVAL;
325 SET_TMR_TICK(tick, val);
326 }
327
328 /* Check if this PCB has stayed too long in LAST-ACK */
329 if (pcb->state == LAST_ACK) {
330 /*
331 * In a TCP connection the end that performs the active close
332 * is required to stay in TIME_WAIT state for 2MSL of time
333 */
334 val = (2 * TCP_MSL) / TCP_SLOW_INTERVAL;
335 SET_TMR_TICK(tick, val);
336 }
337
338 return tick;
339 }
340
341 u32_t
tcp_slow_tmr_tick(void)342 tcp_slow_tmr_tick(void)
343 {
344 struct tcp_pcb *pcb = NULL;
345 u32_t tick = 0;
346
347 pcb = tcp_active_pcbs;
348 while (pcb != NULL) {
349 if (((pcb->state == SYN_SENT) && (pcb->nrtx >= TCP_SYNMAXRTX)) ||
350 ((pcb->state == FIN_WAIT_1) || (pcb->state == CLOSING)) ||
351 (pcb->nrtx >= TCP_MAXRTX)) {
352 return 1;
353 }
354
355 tick = tcp_set_timer_tick_by_persist(pcb, tick);
356 tick = tcp_set_timer_tick_by_keepalive(pcb, tick);
357
358 /*
359 * If this PCB has queued out of sequence data, but has been
360 * inactive for too long, will drop the data (it will eventually
361 * be retransmitted).
362 */
363 #if TCP_QUEUE_OOSEQ
364 if (pcb->ooseq != NULL) {
365 SET_TMR_TICK(tick, 1);
366 }
367 #endif /* TCP_QUEUE_OOSEQ */
368
369 tick = tcp_set_timer_tick_by_tcp_state(pcb, tick);
370
371 u8_t ret = poll_tcp_needed(pcb->callback_arg, pcb);
372 if ((pcb->poll != NULL) && (ret != 0)) {
373 SET_TMR_TICK(tick, 1);
374 }
375 pcb = pcb->next;
376 }
377
378 LWIP_DEBUGF(LOWPOWER_DEBUG, ("%s tmr tick: %u\n", "tcp_slow_tmr_tick", tick));
379 return tick;
380 }
381
382 u32_t
tcp_fast_tmr_tick(void)383 tcp_fast_tmr_tick(void)
384 {
385 struct tcp_pcb *pcb = NULL;
386
387 pcb = tcp_active_pcbs;
388 while (pcb != NULL) {
389 /* send delayed ACKs or send pending FIN */
390 if ((pcb->flags & TF_ACK_DELAY) ||
391 (pcb->flags & TF_CLOSEPEND) ||
392 (pcb->refused_data != NULL)
393 ) {
394 LWIP_DEBUGF(LOWPOWER_DEBUG, ("%s tmr tick: 1\n", "tcp_fast_tmr_tick"));
395 return 1;
396 }
397 pcb = pcb->next;
398 }
399 LWIP_DEBUGF(LOWPOWER_DEBUG, ("%s tmr tick: 0\n", "tcp_fast_tmr_tick"));
400 return 0;
401 }
402 #endif /* LWIP_LOWPOWER */
403
404 #if LWIP_CALLBACK_API || TCP_LISTEN_BACKLOG
405 /** Called when a listen pcb is closed. Iterates one pcb list and removes the
406 * closed listener pcb from pcb->listener if matching.
407 */
408 static void
tcp_remove_listener(struct tcp_pcb * list,struct tcp_pcb_listen * lpcb)409 tcp_remove_listener(struct tcp_pcb *list, struct tcp_pcb_listen *lpcb)
410 {
411 struct tcp_pcb *pcb;
412
413 LWIP_ASSERT("tcp_remove_listener: invalid listener", lpcb != NULL);
414
415 for (pcb = list; pcb != NULL; pcb = pcb->next) {
416 if (pcb->listener == lpcb) {
417 pcb->listener = NULL;
418 }
419 }
420 }
421 #endif
422
423 /** Called when a listen pcb is closed. Iterates all pcb lists and removes the
424 * closed listener pcb from pcb->listener if matching.
425 */
426 static void
tcp_listen_closed(struct tcp_pcb * pcb)427 tcp_listen_closed(struct tcp_pcb *pcb)
428 {
429 #if LWIP_CALLBACK_API || TCP_LISTEN_BACKLOG
430 size_t i;
431 LWIP_ASSERT("pcb != NULL", pcb != NULL);
432 LWIP_ASSERT("pcb->state == LISTEN", pcb->state == LISTEN);
433 for (i = 1; i < LWIP_ARRAYSIZE(tcp_pcb_lists); i++) {
434 tcp_remove_listener(*tcp_pcb_lists[i], (struct tcp_pcb_listen *)pcb);
435 }
436 #endif
437 LWIP_UNUSED_ARG(pcb);
438 }
439
440 #if TCP_LISTEN_BACKLOG
441 /** @ingroup tcp_raw
442 * Delay accepting a connection in respect to the listen backlog:
443 * the number of outstanding connections is increased until
444 * tcp_backlog_accepted() is called.
445 *
446 * ATTENTION: the caller is responsible for calling tcp_backlog_accepted()
447 * or else the backlog feature will get out of sync!
448 *
449 * @param pcb the connection pcb which is not fully accepted yet
450 */
451 void
tcp_backlog_delayed(struct tcp_pcb * pcb)452 tcp_backlog_delayed(struct tcp_pcb *pcb)
453 {
454 LWIP_ASSERT("pcb != NULL", pcb != NULL);
455 LWIP_ASSERT_CORE_LOCKED();
456 if ((pcb->flags & TF_BACKLOGPEND) == 0) {
457 if (pcb->listener != NULL) {
458 pcb->listener->accepts_pending++;
459 LWIP_ASSERT("accepts_pending != 0", pcb->listener->accepts_pending != 0);
460 tcp_set_flags(pcb, TF_BACKLOGPEND);
461 }
462 }
463 }
464
465 /** @ingroup tcp_raw
466 * A delayed-accept a connection is accepted (or closed/aborted): decreases
467 * the number of outstanding connections after calling tcp_backlog_delayed().
468 *
469 * ATTENTION: the caller is responsible for calling tcp_backlog_accepted()
470 * or else the backlog feature will get out of sync!
471 *
472 * @param pcb the connection pcb which is now fully accepted (or closed/aborted)
473 */
474 void
tcp_backlog_accepted(struct tcp_pcb * pcb)475 tcp_backlog_accepted(struct tcp_pcb *pcb)
476 {
477 LWIP_ASSERT("pcb != NULL", pcb != NULL);
478 LWIP_ASSERT_CORE_LOCKED();
479 if ((pcb->flags & TF_BACKLOGPEND) != 0) {
480 if (pcb->listener != NULL) {
481 LWIP_ASSERT("accepts_pending != 0", pcb->listener->accepts_pending != 0);
482 pcb->listener->accepts_pending--;
483 tcp_clear_flags(pcb, TF_BACKLOGPEND);
484 }
485 }
486 }
487 #endif /* TCP_LISTEN_BACKLOG */
488
489 /**
490 * Closes the TX side of a connection held by the PCB.
491 * For tcp_close(), a RST is sent if the application didn't receive all data
492 * (tcp_recved() not called for all data passed to recv callback).
493 *
494 * Listening pcbs are freed and may not be referenced any more.
495 * Connection pcbs are freed if not yet connected and may not be referenced
496 * any more. If a connection is established (at least SYN received or in
497 * a closing state), the connection is closed, and put in a closing state.
498 * The pcb is then automatically freed in tcp_slowtmr(). It is therefore
499 * unsafe to reference it.
500 *
501 * @param pcb the tcp_pcb to close
502 * @return ERR_OK if connection has been closed
503 * another err_t if closing failed and pcb is not freed
504 */
505 static err_t
tcp_close_shutdown(struct tcp_pcb * pcb,u8_t rst_on_unacked_data)506 tcp_close_shutdown(struct tcp_pcb *pcb, u8_t rst_on_unacked_data)
507 {
508 LWIP_ASSERT("tcp_close_shutdown: invalid pcb", pcb != NULL);
509
510 if (rst_on_unacked_data && ((pcb->state == ESTABLISHED) || (pcb->state == CLOSE_WAIT))) {
511 if ((pcb->refused_data != NULL) || (pcb->rcv_wnd != TCP_WND_MAX(pcb))) {
512 /* Not all data received by application, send RST to tell the remote
513 side about this. */
514 LWIP_ASSERT("pcb->flags & TF_RXCLOSED", pcb->flags & TF_RXCLOSED);
515
516 /* don't call tcp_abort here: we must not deallocate the pcb since
517 that might not be expected when calling tcp_close */
518 tcp_rst(pcb, pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip,
519 pcb->local_port, pcb->remote_port);
520
521 tcp_pcb_purge(pcb);
522 TCP_RMV_ACTIVE(pcb);
523 /* Deallocate the pcb since we already sent a RST for it */
524 if (tcp_input_pcb == pcb) {
525 /* prevent using a deallocated pcb: free it from tcp_input later */
526 tcp_trigger_input_pcb_close();
527 } else {
528 tcp_free(pcb);
529 }
530 return ERR_OK;
531 }
532 }
533
534 /* - states which free the pcb are handled here,
535 - states which send FIN and change state are handled in tcp_close_shutdown_fin() */
536 switch (pcb->state) {
537 case CLOSED:
538 /* Closing a pcb in the CLOSED state might seem erroneous,
539 * however, it is in this state once allocated and as yet unused
540 * and the user needs some way to free it should the need arise.
541 * Calling tcp_close() with a pcb that has already been closed, (i.e. twice)
542 * or for a pcb that has been used and then entered the CLOSED state
543 * is erroneous, but this should never happen as the pcb has in those cases
544 * been freed, and so any remaining handles are bogus. */
545 if (pcb->local_port != 0) {
546 TCP_RMV(&tcp_bound_pcbs, pcb);
547 }
548 tcp_free(pcb);
549 break;
550 case LISTEN:
551 tcp_listen_closed(pcb);
552 tcp_pcb_remove(&tcp_listen_pcbs.pcbs, pcb);
553 tcp_free_listen(pcb);
554 break;
555 case SYN_SENT:
556 TCP_PCB_REMOVE_ACTIVE(pcb);
557 tcp_free(pcb);
558 MIB2_STATS_INC(mib2.tcpattemptfails);
559 break;
560 default:
561 return tcp_close_shutdown_fin(pcb);
562 }
563 return ERR_OK;
564 }
565
566 static err_t
tcp_close_shutdown_fin(struct tcp_pcb * pcb)567 tcp_close_shutdown_fin(struct tcp_pcb *pcb)
568 {
569 err_t err;
570 LWIP_ASSERT("pcb != NULL", pcb != NULL);
571
572 switch (pcb->state) {
573 case SYN_RCVD:
574 err = tcp_send_fin(pcb);
575 if (err == ERR_OK) {
576 tcp_backlog_accepted(pcb);
577 MIB2_STATS_INC(mib2.tcpattemptfails);
578 pcb->state = FIN_WAIT_1;
579 }
580 break;
581 case ESTABLISHED:
582 err = tcp_send_fin(pcb);
583 if (err == ERR_OK) {
584 MIB2_STATS_INC(mib2.tcpestabresets);
585 pcb->state = FIN_WAIT_1;
586 }
587 break;
588 case CLOSE_WAIT:
589 err = tcp_send_fin(pcb);
590 if (err == ERR_OK) {
591 MIB2_STATS_INC(mib2.tcpestabresets);
592 pcb->state = LAST_ACK;
593 }
594 break;
595 default:
596 /* Has already been closed, do nothing. */
597 return ERR_OK;
598 }
599
600 if (err == ERR_OK) {
601 /* To ensure all data has been sent when tcp_close returns, we have
602 to make sure tcp_output doesn't fail.
603 Since we don't really have to ensure all data has been sent when tcp_close
604 returns (unsent data is sent from tcp timer functions, also), we don't care
605 for the return value of tcp_output for now. */
606 tcp_output(pcb);
607 } else if (err == ERR_MEM) {
608 /* Mark this pcb for closing. Closing is retried from tcp_tmr. */
609 tcp_set_flags(pcb, TF_CLOSEPEND);
610 /* We have to return ERR_OK from here to indicate to the callers that this
611 pcb should not be used any more as it will be freed soon via tcp_tmr.
612 This is OK here since sending FIN does not guarantee a time frime for
613 actually freeing the pcb, either (it is left in closure states for
614 remote ACK or timeout) */
615 return ERR_OK;
616 }
617 return err;
618 }
619
620 /**
621 * @ingroup tcp_raw
622 * Closes the connection held by the PCB.
623 *
624 * Listening pcbs are freed and may not be referenced any more.
625 * Connection pcbs are freed if not yet connected and may not be referenced
626 * any more. If a connection is established (at least SYN received or in
627 * a closing state), the connection is closed, and put in a closing state.
628 * The pcb is then automatically freed in tcp_slowtmr(). It is therefore
629 * unsafe to reference it (unless an error is returned).
630 *
631 * The function may return ERR_MEM if no memory
632 * was available for closing the connection. If so, the application
633 * should wait and try again either by using the acknowledgment
634 * callback or the polling functionality. If the close succeeds, the
635 * function returns ERR_OK.
636 *
637 * @param pcb the tcp_pcb to close
638 * @return ERR_OK if connection has been closed
639 * another err_t if closing failed and pcb is not freed
640 */
641 err_t
tcp_close(struct tcp_pcb * pcb)642 tcp_close(struct tcp_pcb *pcb)
643 {
644 LWIP_ASSERT_CORE_LOCKED();
645
646 LWIP_ERROR("tcp_close: invalid pcb", pcb != NULL, return ERR_ARG);
647 LWIP_DEBUGF(TCP_DEBUG, ("tcp_close: closing in "));
648
649 tcp_debug_print_state(pcb->state);
650
651 if (pcb->state != LISTEN) {
652 /* Set a flag not to receive any more data... */
653 tcp_set_flags(pcb, TF_RXCLOSED);
654 }
655 /* ... and close */
656 return tcp_close_shutdown(pcb, 1);
657 }
658
659 /**
660 * @ingroup tcp_raw
661 * Causes all or part of a full-duplex connection of this PCB to be shut down.
662 * This doesn't deallocate the PCB unless shutting down both sides!
663 * Shutting down both sides is the same as calling tcp_close, so if it succeds
664 * (i.e. returns ER_OK), the PCB must not be referenced any more!
665 *
666 * @param pcb PCB to shutdown
667 * @param shut_rx shut down receive side if this is != 0
668 * @param shut_tx shut down send side if this is != 0
669 * @return ERR_OK if shutdown succeeded (or the PCB has already been shut down)
670 * another err_t on error.
671 */
672 err_t
tcp_shutdown(struct tcp_pcb * pcb,int shut_rx,int shut_tx)673 tcp_shutdown(struct tcp_pcb *pcb, int shut_rx, int shut_tx)
674 {
675 LWIP_ASSERT_CORE_LOCKED();
676
677 LWIP_ERROR("tcp_shutdown: invalid pcb", pcb != NULL, return ERR_ARG);
678
679 if (pcb->state == LISTEN) {
680 return ERR_CONN;
681 }
682 if (shut_rx) {
683 /* shut down the receive side: set a flag not to receive any more data... */
684 tcp_set_flags(pcb, TF_RXCLOSED);
685 if (shut_tx) {
686 /* shutting down the tx AND rx side is the same as closing for the raw API */
687 return tcp_close_shutdown(pcb, 1);
688 }
689 /* ... and free buffered data */
690 if (pcb->refused_data != NULL) {
691 pbuf_free(pcb->refused_data);
692 pcb->refused_data = NULL;
693 }
694 }
695 if (shut_tx) {
696 /* This can't happen twice since if it succeeds, the pcb's state is changed.
697 Only close in these states as the others directly deallocate the PCB */
698 switch (pcb->state) {
699 case SYN_RCVD:
700 case ESTABLISHED:
701 case CLOSE_WAIT:
702 return tcp_close_shutdown(pcb, (u8_t)shut_rx);
703 default:
704 /* Not (yet?) connected, cannot shutdown the TX side as that would bring us
705 into CLOSED state, where the PCB is deallocated. */
706 return ERR_CONN;
707 }
708 }
709 return ERR_OK;
710 }
711
712 /**
713 * Abandons a connection and optionally sends a RST to the remote
714 * host. Deletes the local protocol control block. This is done when
715 * a connection is killed because of shortage of memory.
716 *
717 * @param pcb the tcp_pcb to abort
718 * @param reset boolean to indicate whether a reset should be sent
719 */
720 void
tcp_abandon(struct tcp_pcb * pcb,int reset)721 tcp_abandon(struct tcp_pcb *pcb, int reset)
722 {
723 u32_t seqno, ackno;
724 #if LWIP_CALLBACK_API
725 tcp_err_fn errf;
726 #endif /* LWIP_CALLBACK_API */
727 void *errf_arg;
728
729 LWIP_ASSERT_CORE_LOCKED();
730
731 LWIP_ERROR("tcp_abandon: invalid pcb", pcb != NULL, return);
732
733 /* pcb->state LISTEN not allowed here */
734 LWIP_ASSERT("don't call tcp_abort/tcp_abandon for listen-pcbs",
735 pcb->state != LISTEN);
736 /* Figure out on which TCP PCB list we are, and remove us. If we
737 are in an active state, call the receive function associated with
738 the PCB with a NULL argument, and send an RST to the remote end. */
739 if (pcb->state == TIME_WAIT) {
740 tcp_pcb_remove(&tcp_tw_pcbs, pcb);
741 tcp_free(pcb);
742 } else {
743 int send_rst = 0;
744 u16_t local_port = 0;
745 enum tcp_state last_state;
746 seqno = pcb->snd_nxt;
747 ackno = pcb->rcv_nxt;
748 #if LWIP_CALLBACK_API
749 errf = pcb->errf;
750 #endif /* LWIP_CALLBACK_API */
751 errf_arg = pcb->callback_arg;
752 if (pcb->state == CLOSED) {
753 if (pcb->local_port != 0) {
754 /* bound, not yet opened */
755 TCP_RMV(&tcp_bound_pcbs, pcb);
756 }
757 } else {
758 send_rst = reset;
759 local_port = pcb->local_port;
760 TCP_PCB_REMOVE_ACTIVE(pcb);
761 }
762 if (pcb->unacked != NULL) {
763 tcp_segs_free(pcb->unacked);
764 }
765 if (pcb->unsent != NULL) {
766 tcp_segs_free(pcb->unsent);
767 }
768 #if TCP_QUEUE_OOSEQ
769 if (pcb->ooseq != NULL) {
770 tcp_segs_free(pcb->ooseq);
771 }
772 #endif /* TCP_QUEUE_OOSEQ */
773 tcp_backlog_accepted(pcb);
774 if (send_rst) {
775 LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_abandon: sending RST\n"));
776 tcp_rst(pcb, seqno, ackno, &pcb->local_ip, &pcb->remote_ip, local_port, pcb->remote_port);
777 }
778 last_state = pcb->state;
779 tcp_free(pcb);
780 TCP_EVENT_ERR(last_state, errf, errf_arg, ERR_ABRT);
781 }
782 }
783
784 /**
785 * @ingroup tcp_raw
786 * Aborts the connection by sending a RST (reset) segment to the remote
787 * host. The pcb is deallocated. This function never fails.
788 *
789 * ATTENTION: When calling this from one of the TCP callbacks, make
790 * sure you always return ERR_ABRT (and never return ERR_ABRT otherwise
791 * or you will risk accessing deallocated memory or memory leaks!
792 *
793 * @param pcb the tcp pcb to abort
794 */
795 void
tcp_abort(struct tcp_pcb * pcb)796 tcp_abort(struct tcp_pcb *pcb)
797 {
798 tcp_abandon(pcb, 1);
799 }
800
801 /**
802 * @ingroup tcp_raw
803 * Binds the connection to a local port number and IP address. If the
804 * IP address is not given (i.e., ipaddr == IP_ANY_TYPE), the connection is
805 * bound to all local IP addresses.
806 * If another connection is bound to the same port, the function will
807 * return ERR_USE, otherwise ERR_OK is returned.
808 * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB
809 *
810 * @param pcb the tcp_pcb to bind (no check is done whether this pcb is
811 * already bound!)
812 * @param ipaddr the local ip address to bind to (use IPx_ADDR_ANY to bind
813 * to any local address
814 * @param port the local port to bind to
815 * @return ERR_USE if the port is already in use
816 * ERR_VAL if bind failed because the PCB is not in a valid state
817 * ERR_OK if bound
818 */
819 err_t
tcp_bind(struct tcp_pcb * pcb,const ip_addr_t * ipaddr,u16_t port)820 tcp_bind(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port)
821 {
822 int i;
823 int max_pcb_list = NUM_TCP_PCB_LISTS;
824 struct tcp_pcb *cpcb;
825 #if LWIP_IPV6 && LWIP_IPV6_SCOPES
826 ip_addr_t zoned_ipaddr;
827 #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */
828
829 LWIP_ASSERT_CORE_LOCKED();
830
831 #if LWIP_IPV4
832 /* Don't propagate NULL pointer (IPv4 ANY) to subsequent functions */
833 if (ipaddr == NULL) {
834 ipaddr = IP4_ADDR_ANY;
835 }
836 #else /* LWIP_IPV4 */
837 LWIP_ERROR("tcp_bind: invalid ipaddr", ipaddr != NULL, return ERR_ARG);
838 #endif /* LWIP_IPV4 */
839
840 LWIP_ERROR("tcp_bind: invalid pcb", pcb != NULL, return ERR_ARG);
841
842 LWIP_ERROR("tcp_bind: can only bind in state CLOSED", pcb->state == CLOSED, return ERR_VAL);
843
844 #if SO_REUSE
845 /* Unless the REUSEADDR flag is set,
846 we have to check the pcbs in TIME-WAIT state, also.
847 We do not dump TIME_WAIT pcb's; they can still be matched by incoming
848 packets using both local and remote IP addresses and ports to distinguish.
849 */
850 if (ip_get_option(pcb, SOF_REUSEADDR)) {
851 max_pcb_list = NUM_TCP_PCB_LISTS_NO_TIME_WAIT;
852 }
853 #endif /* SO_REUSE */
854
855 #if LWIP_IPV6 && LWIP_IPV6_SCOPES
856 /* If the given IP address should have a zone but doesn't, assign one now.
857 * This is legacy support: scope-aware callers should always provide properly
858 * zoned source addresses. Do the zone selection before the address-in-use
859 * check below; as such we have to make a temporary copy of the address. */
860 if (IP_IS_V6(ipaddr) && ip6_addr_lacks_zone(ip_2_ip6(ipaddr), IP6_UNICAST)) {
861 ip_addr_copy(zoned_ipaddr, *ipaddr);
862 ip6_addr_select_zone(ip_2_ip6(&zoned_ipaddr), ip_2_ip6(&zoned_ipaddr));
863 ipaddr = &zoned_ipaddr;
864 }
865 #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */
866
867 if (port == 0) {
868 port = tcp_new_port();
869 if (port == 0) {
870 return ERR_BUF;
871 }
872 } else {
873 /* Check if the address already is in use (on all lists) */
874 for (i = 0; i < max_pcb_list; i++) {
875 for (cpcb = *tcp_pcb_lists[i]; cpcb != NULL; cpcb = cpcb->next) {
876 #ifdef LOSCFG_NET_CONTAINER
877 if (cpcb->local_port == port && (get_net_group_from_tcp_pcb(pcb) == get_net_group_from_tcp_pcb(cpcb))) {
878 #else
879 if (cpcb->local_port == port) {
880 #endif
881 #if SO_REUSE
882 /* Omit checking for the same port if both pcbs have REUSEADDR set.
883 For SO_REUSEADDR, the duplicate-check for a 5-tuple is done in
884 tcp_connect. */
885 if (!ip_get_option(pcb, SOF_REUSEADDR) ||
886 !ip_get_option(cpcb, SOF_REUSEADDR))
887 #endif /* SO_REUSE */
888 {
889 /* @todo: check accept_any_ip_version */
890 if ((IP_IS_V6(ipaddr) == IP_IS_V6_VAL(cpcb->local_ip)) &&
891 (ip_addr_isany(&cpcb->local_ip) ||
892 ip_addr_isany(ipaddr) ||
893 ip_addr_cmp(&cpcb->local_ip, ipaddr))) {
894 return ERR_USE;
895 }
896 }
897 }
898 }
899 }
900 }
901
902 if (!ip_addr_isany(ipaddr)
903 #if LWIP_IPV4 && LWIP_IPV6
904 || (IP_GET_TYPE(ipaddr) != IP_GET_TYPE(&pcb->local_ip))
905 #endif /* LWIP_IPV4 && LWIP_IPV6 */
906 ) {
907 ip_addr_set(&pcb->local_ip, ipaddr);
908 }
909 pcb->local_port = port;
910 TCP_REG(&tcp_bound_pcbs, pcb);
911 LWIP_DEBUGF(TCP_DEBUG, ("tcp_bind: bind to port %"U16_F"\n", port));
912 return ERR_OK;
913 }
914
915 /**
916 * @ingroup tcp_raw
917 * Binds the connection to a netif and IP address.
918 * After calling this function, all packets received via this PCB
919 * are guaranteed to have come in via the specified netif, and all
920 * outgoing packets will go out via the specified netif.
921 *
922 * @param pcb the tcp_pcb to bind.
923 * @param netif the netif to bind to. Can be NULL.
924 */
925 void
926 tcp_bind_netif(struct tcp_pcb *pcb, const struct netif *netif)
927 {
928 LWIP_ASSERT_CORE_LOCKED();
929 if (netif != NULL) {
930 pcb->netif_idx = netif_get_index(netif);
931 } else {
932 pcb->netif_idx = NETIF_NO_INDEX;
933 }
934 }
935
936 #if LWIP_CALLBACK_API
937 /**
938 * Default accept callback if no accept callback is specified by the user.
939 */
940 static err_t
941 tcp_accept_null(void *arg, struct tcp_pcb *pcb, err_t err)
942 {
943 LWIP_UNUSED_ARG(arg);
944 LWIP_UNUSED_ARG(err);
945
946 LWIP_ASSERT("tcp_accept_null: invalid pcb", pcb != NULL);
947
948 tcp_abort(pcb);
949
950 return ERR_ABRT;
951 }
952 #endif /* LWIP_CALLBACK_API */
953
954 /**
955 * @ingroup tcp_raw
956 * Set the state of the connection to be LISTEN, which means that it
957 * is able to accept incoming connections. The protocol control block
958 * is reallocated in order to consume less memory. Setting the
959 * connection to LISTEN is an irreversible process.
960 * When an incoming connection is accepted, the function specified with
961 * the tcp_accept() function will be called. The pcb has to be bound
962 * to a local port with the tcp_bind() function.
963 *
964 * The tcp_listen() function returns a new connection identifier, and
965 * the one passed as an argument to the function will be
966 * deallocated. The reason for this behavior is that less memory is
967 * needed for a connection that is listening, so tcp_listen() will
968 * reclaim the memory needed for the original connection and allocate a
969 * new smaller memory block for the listening connection.
970 *
971 * tcp_listen() may return NULL if no memory was available for the
972 * listening connection. If so, the memory associated with the pcb
973 * passed as an argument to tcp_listen() will not be deallocated.
974 *
975 * The backlog limits the number of outstanding connections
976 * in the listen queue to the value specified by the backlog argument.
977 * To use it, your need to set TCP_LISTEN_BACKLOG=1 in your lwipopts.h.
978 *
979 * @param pcb the original tcp_pcb
980 * @param backlog the incoming connections queue limit
981 * @return tcp_pcb used for listening, consumes less memory.
982 *
983 * @note The original tcp_pcb is freed. This function therefore has to be
984 * called like this:
985 * tpcb = tcp_listen_with_backlog(tpcb, backlog);
986 */
987 struct tcp_pcb *
988 tcp_listen_with_backlog(struct tcp_pcb *pcb, u8_t backlog)
989 {
990 LWIP_ASSERT_CORE_LOCKED();
991 return tcp_listen_with_backlog_and_err(pcb, backlog, NULL);
992 }
993
994 /**
995 * @ingroup tcp_raw
996 * Set the state of the connection to be LISTEN, which means that it
997 * is able to accept incoming connections. The protocol control block
998 * is reallocated in order to consume less memory. Setting the
999 * connection to LISTEN is an irreversible process.
1000 *
1001 * @param pcb the original tcp_pcb
1002 * @param backlog the incoming connections queue limit
1003 * @param err when NULL is returned, this contains the error reason
1004 * @return tcp_pcb used for listening, consumes less memory.
1005 *
1006 * @note The original tcp_pcb is freed. This function therefore has to be
1007 * called like this:
1008 * tpcb = tcp_listen_with_backlog_and_err(tpcb, backlog, &err);
1009 */
1010 struct tcp_pcb *
1011 tcp_listen_with_backlog_and_err(struct tcp_pcb *pcb, u8_t backlog, err_t *err)
1012 {
1013 struct tcp_pcb_listen *lpcb = NULL;
1014 err_t res;
1015
1016 LWIP_UNUSED_ARG(backlog);
1017
1018 LWIP_ASSERT_CORE_LOCKED();
1019
1020 LWIP_ERROR("tcp_listen_with_backlog_and_err: invalid pcb", pcb != NULL, res = ERR_ARG; goto done);
1021 LWIP_ERROR("tcp_listen_with_backlog_and_err: pcb already connected", pcb->state == CLOSED, res = ERR_CLSD; goto done);
1022
1023 /* already listening? */
1024 if (pcb->state == LISTEN) {
1025 lpcb = (struct tcp_pcb_listen *)pcb;
1026 res = ERR_ALREADY;
1027 goto done;
1028 }
1029 #if SO_REUSE
1030 if (ip_get_option(pcb, SOF_REUSEADDR)) {
1031 /* Since SOF_REUSEADDR allows reusing a local address before the pcb's usage
1032 is declared (listen-/connection-pcb), we have to make sure now that
1033 this port is only used once for every local IP. */
1034 for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) {
1035 if ((lpcb->local_port == pcb->local_port) &&
1036 ip_addr_cmp(&lpcb->local_ip, &pcb->local_ip)) {
1037 /* this address/port is already used */
1038 lpcb = NULL;
1039 res = ERR_USE;
1040 goto done;
1041 }
1042 }
1043 }
1044 #endif /* SO_REUSE */
1045 lpcb = (struct tcp_pcb_listen *)memp_malloc(MEMP_TCP_PCB_LISTEN);
1046 if (lpcb == NULL) {
1047 res = ERR_MEM;
1048 goto done;
1049 }
1050 #ifdef LOSCFG_NET_CONTAINER
1051 set_tcp_pcb_net_group((struct tcp_pcb *)lpcb, get_net_group_from_tcp_pcb(pcb));
1052 #endif
1053 lpcb->callback_arg = pcb->callback_arg;
1054 lpcb->local_port = pcb->local_port;
1055 lpcb->state = LISTEN;
1056 lpcb->prio = pcb->prio;
1057 lpcb->so_options = pcb->so_options;
1058 lpcb->netif_idx = pcb->netif_idx;
1059 lpcb->ttl = pcb->ttl;
1060 lpcb->tos = pcb->tos;
1061 #if LWIP_IPV4 && LWIP_IPV6
1062 IP_SET_TYPE_VAL(lpcb->remote_ip, pcb->local_ip.type);
1063 #endif /* LWIP_IPV4 && LWIP_IPV6 */
1064 ip_addr_copy(lpcb->local_ip, pcb->local_ip);
1065 if (pcb->local_port != 0) {
1066 TCP_RMV(&tcp_bound_pcbs, pcb);
1067 }
1068 #if LWIP_TCP_PCB_NUM_EXT_ARGS
1069 /* copy over ext_args to listening pcb */
1070 memcpy(&lpcb->ext_args, &pcb->ext_args, sizeof(pcb->ext_args));
1071 #endif
1072 tcp_free(pcb);
1073 #if LWIP_CALLBACK_API
1074 lpcb->accept = tcp_accept_null;
1075 #endif /* LWIP_CALLBACK_API */
1076 #if TCP_LISTEN_BACKLOG
1077 lpcb->accepts_pending = 0;
1078 tcp_backlog_set(lpcb, backlog);
1079 #endif /* TCP_LISTEN_BACKLOG */
1080 TCP_REG(&tcp_listen_pcbs.pcbs, (struct tcp_pcb *)lpcb);
1081 res = ERR_OK;
1082 done:
1083 if (err != NULL) {
1084 *err = res;
1085 }
1086 return (struct tcp_pcb *)lpcb;
1087 }
1088
1089 /**
1090 * Update the state that tracks the available window space to advertise.
1091 *
1092 * Returns how much extra window would be advertised if we sent an
1093 * update now.
1094 */
1095 u32_t
1096 tcp_update_rcv_ann_wnd(struct tcp_pcb *pcb)
1097 {
1098 u32_t new_right_edge;
1099
1100 LWIP_ASSERT("tcp_update_rcv_ann_wnd: invalid pcb", pcb != NULL);
1101 new_right_edge = pcb->rcv_nxt + pcb->rcv_wnd;
1102
1103 if (TCP_SEQ_GEQ(new_right_edge, pcb->rcv_ann_right_edge + LWIP_MIN((TCP_WND / 2), pcb->mss))) {
1104 /* we can advertise more window */
1105 pcb->rcv_ann_wnd = pcb->rcv_wnd;
1106 return new_right_edge - pcb->rcv_ann_right_edge;
1107 } else {
1108 if (TCP_SEQ_GT(pcb->rcv_nxt, pcb->rcv_ann_right_edge)) {
1109 /* Can happen due to other end sending out of advertised window,
1110 * but within actual available (but not yet advertised) window */
1111 pcb->rcv_ann_wnd = 0;
1112 } else {
1113 /* keep the right edge of window constant */
1114 u32_t new_rcv_ann_wnd = pcb->rcv_ann_right_edge - pcb->rcv_nxt;
1115 #if !LWIP_WND_SCALE
1116 LWIP_ASSERT("new_rcv_ann_wnd <= 0xffff", new_rcv_ann_wnd <= 0xffff);
1117 #endif
1118 pcb->rcv_ann_wnd = (tcpwnd_size_t)new_rcv_ann_wnd;
1119 }
1120 return 0;
1121 }
1122 }
1123
1124 /**
1125 * @ingroup tcp_raw
1126 * This function should be called by the application when it has
1127 * processed the data. The purpose is to advertise a larger window
1128 * when the data has been processed.
1129 *
1130 * @param pcb the tcp_pcb for which data is read
1131 * @param len the amount of bytes that have been read by the application
1132 */
1133 void
1134 tcp_recved(struct tcp_pcb *pcb, u16_t len)
1135 {
1136 u32_t wnd_inflation;
1137 tcpwnd_size_t rcv_wnd;
1138
1139 LWIP_ASSERT_CORE_LOCKED();
1140
1141 LWIP_ERROR("tcp_recved: invalid pcb", pcb != NULL, return);
1142
1143 /* pcb->state LISTEN not allowed here */
1144 LWIP_ASSERT("don't call tcp_recved for listen-pcbs",
1145 pcb->state != LISTEN);
1146
1147 rcv_wnd = (tcpwnd_size_t)(pcb->rcv_wnd + len);
1148 if ((rcv_wnd > TCP_WND_MAX(pcb)) || (rcv_wnd < pcb->rcv_wnd)) {
1149 /* window got too big or tcpwnd_size_t overflow */
1150 LWIP_DEBUGF(TCP_DEBUG, ("tcp_recved: window got too big or tcpwnd_size_t overflow\n"));
1151 pcb->rcv_wnd = TCP_WND_MAX(pcb);
1152 } else {
1153 pcb->rcv_wnd = rcv_wnd;
1154 }
1155
1156 wnd_inflation = tcp_update_rcv_ann_wnd(pcb);
1157
1158 /* If the change in the right edge of window is significant (default
1159 * watermark is TCP_WND/4), then send an explicit update now.
1160 * Otherwise wait for a packet to be sent in the normal course of
1161 * events (or more window to be available later) */
1162 if (wnd_inflation >= TCP_WND_UPDATE_THRESHOLD) {
1163 tcp_ack_now(pcb);
1164 tcp_output(pcb);
1165 }
1166
1167 LWIP_DEBUGF(TCP_DEBUG, ("tcp_recved: received %"U16_F" bytes, wnd %"TCPWNDSIZE_F" (%"TCPWNDSIZE_F").\n",
1168 len, pcb->rcv_wnd, (u16_t)(TCP_WND_MAX(pcb) - pcb->rcv_wnd)));
1169 }
1170
1171 /**
1172 * Allocate a new local TCP port.
1173 *
1174 * @return a new (free) local TCP port number
1175 */
1176 static u16_t
1177 tcp_new_port(void)
1178 {
1179 u8_t i;
1180 u16_t n = 0;
1181 struct tcp_pcb *pcb;
1182
1183 again:
1184 tcp_port++;
1185 if (tcp_port == TCP_LOCAL_PORT_RANGE_END) {
1186 tcp_port = TCP_LOCAL_PORT_RANGE_START;
1187 }
1188 /* Check all PCB lists. */
1189 for (i = 0; i < NUM_TCP_PCB_LISTS; i++) {
1190 for (pcb = *tcp_pcb_lists[i]; pcb != NULL; pcb = pcb->next) {
1191 if (pcb->local_port == tcp_port) {
1192 n++;
1193 if (n > (TCP_LOCAL_PORT_RANGE_END - TCP_LOCAL_PORT_RANGE_START)) {
1194 return 0;
1195 }
1196 goto again;
1197 }
1198 }
1199 }
1200 return tcp_port;
1201 }
1202
1203 /**
1204 * @ingroup tcp_raw
1205 * Connects to another host. The function given as the "connected"
1206 * argument will be called when the connection has been established.
1207 * Sets up the pcb to connect to the remote host and sends the
1208 * initial SYN segment which opens the connection.
1209 *
1210 * The tcp_connect() function returns immediately; it does not wait for
1211 * the connection to be properly setup. Instead, it will call the
1212 * function specified as the fourth argument (the "connected" argument)
1213 * when the connection is established. If the connection could not be
1214 * properly established, either because the other host refused the
1215 * connection or because the other host didn't answer, the "err"
1216 * callback function of this pcb (registered with tcp_err, see below)
1217 * will be called.
1218 *
1219 * The tcp_connect() function can return ERR_MEM if no memory is
1220 * available for enqueueing the SYN segment. If the SYN indeed was
1221 * enqueued successfully, the tcp_connect() function returns ERR_OK.
1222 *
1223 * @param pcb the tcp_pcb used to establish the connection
1224 * @param ipaddr the remote ip address to connect to
1225 * @param port the remote tcp port to connect to
1226 * @param connected callback function to call when connected (on error,
1227 the err calback will be called)
1228 * @return ERR_VAL if invalid arguments are given
1229 * ERR_OK if connect request has been sent
1230 * other err_t values if connect request couldn't be sent
1231 */
1232 err_t
1233 tcp_connect(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port,
1234 tcp_connected_fn connected)
1235 {
1236 struct netif *netif = NULL;
1237 err_t ret;
1238 u32_t iss;
1239 u16_t old_local_port;
1240
1241 LWIP_ASSERT_CORE_LOCKED();
1242
1243 LWIP_ERROR("tcp_connect: invalid pcb", pcb != NULL, return ERR_ARG);
1244 LWIP_ERROR("tcp_connect: invalid ipaddr", ipaddr != NULL, return ERR_ARG);
1245
1246 LWIP_ERROR("tcp_connect: can only connect from state CLOSED", pcb->state == CLOSED, return ERR_ISCONN);
1247
1248 #ifdef LOSCFG_NET_CONTAINER
1249 struct net_group *group = get_net_group_from_tcp_pcb(pcb);
1250 LWIP_ERROR("tcp_connect: invalid net group", group != NULL, return ERR_RTE);
1251 #endif
1252 LWIP_DEBUGF(TCP_DEBUG, ("tcp_connect to port %"U16_F"\n", port));
1253 ip_addr_set(&pcb->remote_ip, ipaddr);
1254 pcb->remote_port = port;
1255
1256 if (pcb->netif_idx != NETIF_NO_INDEX) {
1257 #ifdef LOSCFG_NET_CONTAINER
1258 netif = netif_get_by_index(pcb->netif_idx, group);
1259 #else
1260 netif = netif_get_by_index(pcb->netif_idx);
1261 #endif
1262 } else {
1263 /* check if we have a route to the remote host */
1264 #ifdef LOSCFG_NET_CONTAINER
1265 netif = ip_route(&pcb->local_ip, &pcb->remote_ip, group);
1266 #else
1267 netif = ip_route(&pcb->local_ip, &pcb->remote_ip);
1268 #endif
1269 }
1270 if (netif == NULL) {
1271 /* Don't even try to send a SYN packet if we have no route since that will fail. */
1272 return ERR_RTE;
1273 }
1274
1275 /* check if local IP has been assigned to pcb, if not, get one */
1276 if (ip_addr_isany(&pcb->local_ip)) {
1277 const ip_addr_t *local_ip = ip_netif_get_local_ip(netif, ipaddr);
1278 if (local_ip == NULL) {
1279 return ERR_RTE;
1280 }
1281 ip_addr_copy(pcb->local_ip, *local_ip);
1282 }
1283
1284 #if LWIP_IPV6 && LWIP_IPV6_SCOPES
1285 /* If the given IP address should have a zone but doesn't, assign one now.
1286 * Given that we already have the target netif, this is easy and cheap. */
1287 if (IP_IS_V6(&pcb->remote_ip) &&
1288 ip6_addr_lacks_zone(ip_2_ip6(&pcb->remote_ip), IP6_UNICAST)) {
1289 ip6_addr_assign_zone(ip_2_ip6(&pcb->remote_ip), IP6_UNICAST, netif);
1290 }
1291 #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */
1292
1293 old_local_port = pcb->local_port;
1294 if (pcb->local_port == 0) {
1295 pcb->local_port = tcp_new_port();
1296 if (pcb->local_port == 0) {
1297 return ERR_BUF;
1298 }
1299 } else {
1300 #if SO_REUSE
1301 if (ip_get_option(pcb, SOF_REUSEADDR)) {
1302 /* Since SOF_REUSEADDR allows reusing a local address, we have to make sure
1303 now that the 5-tuple is unique. */
1304 struct tcp_pcb *cpcb;
1305 int i;
1306 /* Don't check listen- and bound-PCBs, check active- and TIME-WAIT PCBs. */
1307 for (i = 2; i < NUM_TCP_PCB_LISTS; i++) {
1308 for (cpcb = *tcp_pcb_lists[i]; cpcb != NULL; cpcb = cpcb->next) {
1309 if ((cpcb->local_port == pcb->local_port) &&
1310 (cpcb->remote_port == port) &&
1311 ip_addr_cmp(&cpcb->local_ip, &pcb->local_ip) &&
1312 ip_addr_cmp(&cpcb->remote_ip, ipaddr)) {
1313 /* linux returns EISCONN here, but ERR_USE should be OK for us */
1314 return ERR_USE;
1315 }
1316 }
1317 }
1318 }
1319 #endif /* SO_REUSE */
1320 }
1321
1322 iss = tcp_next_iss(pcb);
1323 pcb->rcv_nxt = 0;
1324 pcb->snd_nxt = iss;
1325 pcb->lastack = iss - 1;
1326 pcb->snd_wl2 = iss - 1;
1327 pcb->snd_lbb = iss - 1;
1328 /* Start with a window that does not need scaling. When window scaling is
1329 enabled and used, the window is enlarged when both sides agree on scaling. */
1330 pcb->rcv_wnd = pcb->rcv_ann_wnd = TCPWND_MIN16(TCP_WND);
1331 pcb->rcv_ann_right_edge = pcb->rcv_nxt;
1332 pcb->snd_wnd = TCP_WND;
1333 /* As initial send MSS, we use TCP_MSS but limit it to 536.
1334 The send MSS is updated when an MSS option is received. */
1335 pcb->mss = INITIAL_MSS;
1336 #if TCP_CALCULATE_EFF_SEND_MSS
1337 pcb->mss = tcp_eff_send_mss_netif(pcb->mss, netif, &pcb->remote_ip);
1338 #endif /* TCP_CALCULATE_EFF_SEND_MSS */
1339 pcb->cwnd = 1;
1340 #if LWIP_CALLBACK_API
1341 pcb->connected = connected;
1342 #else /* LWIP_CALLBACK_API */
1343 LWIP_UNUSED_ARG(connected);
1344 #endif /* LWIP_CALLBACK_API */
1345
1346 /* Send a SYN together with the MSS option. */
1347 ret = tcp_enqueue_flags(pcb, TCP_SYN);
1348 if (ret == ERR_OK) {
1349 /* SYN segment was enqueued, changed the pcbs state now */
1350 pcb->state = SYN_SENT;
1351 if (old_local_port != 0) {
1352 TCP_RMV(&tcp_bound_pcbs, pcb);
1353 }
1354 TCP_REG_ACTIVE(pcb);
1355 MIB2_STATS_INC(mib2.tcpactiveopens);
1356
1357 tcp_output(pcb);
1358 }
1359 return ret;
1360 }
1361
1362 /**
1363 * Called every 500 ms and implements the retransmission timer and the timer that
1364 * removes PCBs that have been in TIME-WAIT for enough time. It also increments
1365 * various timers such as the inactivity timer in each PCB.
1366 *
1367 * Automatically called from tcp_tmr().
1368 */
1369 void
1370 tcp_slowtmr(void)
1371 {
1372 struct tcp_pcb *pcb, *prev;
1373 tcpwnd_size_t eff_wnd;
1374 u8_t pcb_remove; /* flag if a PCB should be removed */
1375 u8_t pcb_reset; /* flag if a RST should be sent when removing */
1376 err_t err;
1377
1378 err = ERR_OK;
1379
1380 ++tcp_ticks;
1381 ++tcp_timer_ctr;
1382
1383 tcp_slowtmr_start:
1384 /* Steps through all of the active PCBs. */
1385 prev = NULL;
1386 pcb = tcp_active_pcbs;
1387 if (pcb == NULL) {
1388 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: no active pcbs\n"));
1389 }
1390 while (pcb != NULL) {
1391 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: processing active pcb\n"));
1392 LWIP_ASSERT("tcp_slowtmr: active pcb->state != CLOSED\n", pcb->state != CLOSED);
1393 LWIP_ASSERT("tcp_slowtmr: active pcb->state != LISTEN\n", pcb->state != LISTEN);
1394 LWIP_ASSERT("tcp_slowtmr: active pcb->state != TIME-WAIT\n", pcb->state != TIME_WAIT);
1395 if (pcb->last_timer == tcp_timer_ctr) {
1396 /* skip this pcb, we have already processed it */
1397 prev = pcb;
1398 pcb = pcb->next;
1399 continue;
1400 }
1401 pcb->last_timer = tcp_timer_ctr;
1402
1403 pcb_remove = 0;
1404 pcb_reset = 0;
1405
1406 if (pcb->state == SYN_SENT && pcb->nrtx >= TCP_SYNMAXRTX) {
1407 ++pcb_remove;
1408 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max SYN retries reached\n"));
1409 } else if (pcb->nrtx >= TCP_MAXRTX) {
1410 ++pcb_remove;
1411 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max DATA retries reached\n"));
1412 } else {
1413 if (pcb->persist_backoff > 0) {
1414 LWIP_ASSERT("tcp_slowtimr: persist ticking with in-flight data", pcb->unacked == NULL);
1415 LWIP_ASSERT("tcp_slowtimr: persist ticking with empty send buffer", pcb->unsent != NULL);
1416 if (pcb->persist_probe >= TCP_MAXRTX) {
1417 ++pcb_remove; /* max probes reached */
1418 } else {
1419 u8_t backoff_cnt = tcp_persist_backoff[pcb->persist_backoff - 1];
1420 if (pcb->persist_cnt < backoff_cnt) {
1421 pcb->persist_cnt++;
1422 }
1423 if (pcb->persist_cnt >= backoff_cnt) {
1424 int next_slot = 1; /* increment timer to next slot */
1425 /* If snd_wnd is zero, send 1 byte probes */
1426 if (pcb->snd_wnd == 0) {
1427 if (tcp_zero_window_probe(pcb) != ERR_OK) {
1428 next_slot = 0; /* try probe again with current slot */
1429 }
1430 /* snd_wnd not fully closed, split unsent head and fill window */
1431 } else {
1432 if (tcp_split_unsent_seg(pcb, (u16_t)pcb->snd_wnd) == ERR_OK) {
1433 if (tcp_output(pcb) == ERR_OK) {
1434 /* sending will cancel persist timer, else retry with current slot */
1435 next_slot = 0;
1436 }
1437 }
1438 }
1439 if (next_slot) {
1440 pcb->persist_cnt = 0;
1441 if (pcb->persist_backoff < sizeof(tcp_persist_backoff)) {
1442 pcb->persist_backoff++;
1443 }
1444 }
1445 }
1446 }
1447 } else {
1448 /* Increase the retransmission timer if it is running */
1449 if ((pcb->rtime >= 0) && (pcb->rtime < 0x7FFF)) {
1450 ++pcb->rtime;
1451 }
1452
1453 if (pcb->rtime >= pcb->rto) {
1454 /* Time for a retransmission. */
1455 LWIP_DEBUGF(TCP_RTO_DEBUG, ("tcp_slowtmr: rtime %"S16_F
1456 " pcb->rto %"S16_F"\n",
1457 pcb->rtime, pcb->rto));
1458 /* If prepare phase fails but we have unsent data but no unacked data,
1459 still execute the backoff calculations below, as this means we somehow
1460 failed to send segment. */
1461 if ((tcp_rexmit_rto_prepare(pcb) == ERR_OK) || ((pcb->unacked == NULL) && (pcb->unsent != NULL))) {
1462 /* Double retransmission time-out unless we are trying to
1463 * connect to somebody (i.e., we are in SYN_SENT). */
1464 if (pcb->state != SYN_SENT) {
1465 u8_t backoff_idx = LWIP_MIN(pcb->nrtx, sizeof(tcp_backoff) - 1);
1466 int calc_rto = ((pcb->sa >> 3) + pcb->sv) << tcp_backoff[backoff_idx];
1467 pcb->rto = (s16_t)LWIP_MIN(calc_rto, 0x7FFF);
1468 }
1469
1470 /* Reset the retransmission timer. */
1471 pcb->rtime = 0;
1472
1473 /* Reduce congestion window and ssthresh. */
1474 eff_wnd = LWIP_MIN(pcb->cwnd, pcb->snd_wnd);
1475 pcb->ssthresh = eff_wnd >> 1;
1476 if (pcb->ssthresh < (tcpwnd_size_t)(pcb->mss << 1)) {
1477 pcb->ssthresh = (tcpwnd_size_t)(pcb->mss << 1);
1478 }
1479 pcb->cwnd = pcb->mss;
1480 LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: cwnd %"TCPWNDSIZE_F
1481 " ssthresh %"TCPWNDSIZE_F"\n",
1482 pcb->cwnd, pcb->ssthresh));
1483 pcb->bytes_acked = 0;
1484
1485 /* The following needs to be called AFTER cwnd is set to one
1486 mss - STJ */
1487 tcp_rexmit_rto_commit(pcb);
1488 }
1489 }
1490 }
1491 }
1492 /* Check if this PCB has stayed too long in FIN-WAIT-2 */
1493 if (pcb->state == FIN_WAIT_2) {
1494 /* If this PCB is in FIN_WAIT_2 because of SHUT_WR don't let it time out. */
1495 if (pcb->flags & TF_RXCLOSED) {
1496 /* PCB was fully closed (either through close() or SHUT_RDWR):
1497 normal FIN-WAIT timeout handling. */
1498 if ((u32_t)(tcp_ticks - pcb->tmr) >
1499 TCP_FIN_WAIT_TIMEOUT / TCP_SLOW_INTERVAL) {
1500 ++pcb_remove;
1501 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in FIN-WAIT-2\n"));
1502 }
1503 }
1504 }
1505
1506 /* Check if KEEPALIVE should be sent */
1507 if (ip_get_option(pcb, SOF_KEEPALIVE) &&
1508 ((pcb->state == ESTABLISHED) ||
1509 (pcb->state == CLOSE_WAIT))) {
1510 if ((u32_t)(tcp_ticks - pcb->tmr) >
1511 (pcb->keep_idle + TCP_KEEP_DUR(pcb)) / TCP_SLOW_INTERVAL) {
1512 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: KEEPALIVE timeout. Aborting connection to "));
1513 ip_addr_debug_print_val(TCP_DEBUG, pcb->remote_ip);
1514 LWIP_DEBUGF(TCP_DEBUG, ("\n"));
1515
1516 ++pcb_remove;
1517 ++pcb_reset;
1518 } else if ((u32_t)(tcp_ticks - pcb->tmr) >
1519 (pcb->keep_idle + pcb->keep_cnt_sent * TCP_KEEP_INTVL(pcb))
1520 / TCP_SLOW_INTERVAL) {
1521 err = tcp_keepalive(pcb);
1522 if (err == ERR_OK) {
1523 pcb->keep_cnt_sent++;
1524 }
1525 }
1526 }
1527
1528 /* If this PCB has queued out of sequence data, but has been
1529 inactive for too long, will drop the data (it will eventually
1530 be retransmitted). */
1531 #if TCP_QUEUE_OOSEQ
1532 if (pcb->ooseq != NULL &&
1533 (tcp_ticks - pcb->tmr >= (u32_t)pcb->rto * TCP_OOSEQ_TIMEOUT)) {
1534 LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: dropping OOSEQ queued data\n"));
1535 tcp_free_ooseq(pcb);
1536 }
1537 #endif /* TCP_QUEUE_OOSEQ */
1538
1539 /* Check if this PCB has stayed too long in SYN-RCVD */
1540 if (pcb->state == SYN_RCVD) {
1541 if ((u32_t)(tcp_ticks - pcb->tmr) >
1542 TCP_SYN_RCVD_TIMEOUT / TCP_SLOW_INTERVAL) {
1543 ++pcb_remove;
1544 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in SYN-RCVD\n"));
1545 }
1546 }
1547
1548 /* Check if this PCB has stayed too long in LAST-ACK */
1549 if (pcb->state == LAST_ACK) {
1550 if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) {
1551 ++pcb_remove;
1552 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in LAST-ACK\n"));
1553 }
1554 }
1555
1556 /* If the PCB should be removed, do it. */
1557 if (pcb_remove) {
1558 struct tcp_pcb *pcb2;
1559 #if LWIP_CALLBACK_API
1560 tcp_err_fn err_fn = pcb->errf;
1561 #endif /* LWIP_CALLBACK_API */
1562 void *err_arg;
1563 enum tcp_state last_state;
1564 tcp_pcb_purge(pcb);
1565 /* Remove PCB from tcp_active_pcbs list. */
1566 if (prev != NULL) {
1567 LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_active_pcbs", pcb != tcp_active_pcbs);
1568 prev->next = pcb->next;
1569 } else {
1570 /* This PCB was the first. */
1571 LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_active_pcbs", tcp_active_pcbs == pcb);
1572 tcp_active_pcbs = pcb->next;
1573 }
1574
1575 if (pcb_reset) {
1576 tcp_rst(pcb, pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip,
1577 pcb->local_port, pcb->remote_port);
1578 }
1579
1580 err_arg = pcb->callback_arg;
1581 last_state = pcb->state;
1582 pcb2 = pcb;
1583 pcb = pcb->next;
1584 tcp_free(pcb2);
1585
1586 tcp_active_pcbs_changed = 0;
1587 TCP_EVENT_ERR(last_state, err_fn, err_arg, ERR_ABRT);
1588 if (tcp_active_pcbs_changed) {
1589 goto tcp_slowtmr_start;
1590 }
1591 } else {
1592 /* get the 'next' element now and work with 'prev' below (in case of abort) */
1593 prev = pcb;
1594 pcb = pcb->next;
1595
1596 /* We check if we should poll the connection. */
1597 ++prev->polltmr;
1598 if (prev->polltmr >= prev->pollinterval) {
1599 prev->polltmr = 0;
1600 LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: polling application\n"));
1601 tcp_active_pcbs_changed = 0;
1602 TCP_EVENT_POLL(prev, err);
1603 if (tcp_active_pcbs_changed) {
1604 goto tcp_slowtmr_start;
1605 }
1606 /* if err == ERR_ABRT, 'prev' is already deallocated */
1607 if (err == ERR_OK) {
1608 tcp_output(prev);
1609 }
1610 }
1611 }
1612 }
1613
1614
1615 /* Steps through all of the TIME-WAIT PCBs. */
1616 prev = NULL;
1617 pcb = tcp_tw_pcbs;
1618 while (pcb != NULL) {
1619 LWIP_ASSERT("tcp_slowtmr: TIME-WAIT pcb->state == TIME-WAIT", pcb->state == TIME_WAIT);
1620 pcb_remove = 0;
1621
1622 /* Check if this PCB has stayed long enough in TIME-WAIT */
1623 if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) {
1624 ++pcb_remove;
1625 }
1626
1627 /* If the PCB should be removed, do it. */
1628 if (pcb_remove) {
1629 struct tcp_pcb *pcb2;
1630 tcp_pcb_purge(pcb);
1631 /* Remove PCB from tcp_tw_pcbs list. */
1632 if (prev != NULL) {
1633 LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_tw_pcbs", pcb != tcp_tw_pcbs);
1634 prev->next = pcb->next;
1635 } else {
1636 /* This PCB was the first. */
1637 LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_tw_pcbs", tcp_tw_pcbs == pcb);
1638 tcp_tw_pcbs = pcb->next;
1639 }
1640 pcb2 = pcb;
1641 pcb = pcb->next;
1642 tcp_free(pcb2);
1643 } else {
1644 prev = pcb;
1645 pcb = pcb->next;
1646 }
1647 }
1648 }
1649
1650 /**
1651 * Is called every TCP_FAST_INTERVAL (250 ms) and process data previously
1652 * "refused" by upper layer (application) and sends delayed ACKs or pending FINs.
1653 *
1654 * Automatically called from tcp_tmr().
1655 */
1656 void
1657 tcp_fasttmr(void)
1658 {
1659 struct tcp_pcb *pcb;
1660
1661 ++tcp_timer_ctr;
1662
1663 tcp_fasttmr_start:
1664 pcb = tcp_active_pcbs;
1665
1666 while (pcb != NULL) {
1667 if (pcb->last_timer != tcp_timer_ctr) {
1668 struct tcp_pcb *next;
1669 pcb->last_timer = tcp_timer_ctr;
1670 /* send delayed ACKs */
1671 if (pcb->flags & TF_ACK_DELAY) {
1672 LWIP_DEBUGF(TCP_DEBUG, ("tcp_fasttmr: delayed ACK\n"));
1673 tcp_ack_now(pcb);
1674 tcp_output(pcb);
1675 tcp_clear_flags(pcb, TF_ACK_DELAY | TF_ACK_NOW);
1676 }
1677 /* send pending FIN */
1678 if (pcb->flags & TF_CLOSEPEND) {
1679 LWIP_DEBUGF(TCP_DEBUG, ("tcp_fasttmr: pending FIN\n"));
1680 tcp_clear_flags(pcb, TF_CLOSEPEND);
1681 tcp_close_shutdown_fin(pcb);
1682 }
1683
1684 next = pcb->next;
1685
1686 /* If there is data which was previously "refused" by upper layer */
1687 if (pcb->refused_data != NULL) {
1688 tcp_active_pcbs_changed = 0;
1689 tcp_process_refused_data(pcb);
1690 if (tcp_active_pcbs_changed) {
1691 /* application callback has changed the pcb list: restart the loop */
1692 goto tcp_fasttmr_start;
1693 }
1694 }
1695 pcb = next;
1696 } else {
1697 pcb = pcb->next;
1698 }
1699 }
1700 }
1701
1702 /** Call tcp_output for all active pcbs that have TF_NAGLEMEMERR set */
1703 void
1704 tcp_txnow(void)
1705 {
1706 struct tcp_pcb *pcb;
1707
1708 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
1709 if (pcb->flags & TF_NAGLEMEMERR) {
1710 tcp_output(pcb);
1711 }
1712 }
1713 }
1714
1715 /** Pass pcb->refused_data to the recv callback */
1716 err_t
1717 tcp_process_refused_data(struct tcp_pcb *pcb)
1718 {
1719 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1720 struct pbuf *rest;
1721 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1722
1723 LWIP_ERROR("tcp_process_refused_data: invalid pcb", pcb != NULL, return ERR_ARG);
1724
1725 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1726 while (pcb->refused_data != NULL)
1727 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1728 {
1729 err_t err;
1730 u8_t refused_flags = pcb->refused_data->flags;
1731 /* set pcb->refused_data to NULL in case the callback frees it and then
1732 closes the pcb */
1733 struct pbuf *refused_data = pcb->refused_data;
1734 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1735 pbuf_split_64k(refused_data, &rest);
1736 pcb->refused_data = rest;
1737 #else /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1738 pcb->refused_data = NULL;
1739 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1740 /* Notify again application with data previously received. */
1741 LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: notify kept packet\n"));
1742 TCP_EVENT_RECV(pcb, refused_data, ERR_OK, err);
1743 if (err == ERR_OK) {
1744 /* did refused_data include a FIN? */
1745 if ((refused_flags & PBUF_FLAG_TCP_FIN)
1746 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1747 && (rest == NULL)
1748 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1749 ) {
1750 /* correct rcv_wnd as the application won't call tcp_recved()
1751 for the FIN's seqno */
1752 if (pcb->rcv_wnd != TCP_WND_MAX(pcb)) {
1753 pcb->rcv_wnd++;
1754 }
1755 TCP_EVENT_CLOSED(pcb, err);
1756 if (err == ERR_ABRT) {
1757 return ERR_ABRT;
1758 }
1759 }
1760 } else if (err == ERR_ABRT) {
1761 /* if err == ERR_ABRT, 'pcb' is already deallocated */
1762 /* Drop incoming packets because pcb is "full" (only if the incoming
1763 segment contains data). */
1764 LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: drop incoming packets, because pcb is \"full\"\n"));
1765 return ERR_ABRT;
1766 } else {
1767 /* data is still refused, pbuf is still valid (go on for ACK-only packets) */
1768 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1769 if (rest != NULL) {
1770 pbuf_cat(refused_data, rest);
1771 }
1772 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1773 pcb->refused_data = refused_data;
1774 return ERR_INPROGRESS;
1775 }
1776 }
1777 return ERR_OK;
1778 }
1779
1780 /**
1781 * Deallocates a list of TCP segments (tcp_seg structures).
1782 *
1783 * @param seg tcp_seg list of TCP segments to free
1784 */
1785 void
1786 tcp_segs_free(struct tcp_seg *seg)
1787 {
1788 while (seg != NULL) {
1789 struct tcp_seg *next = seg->next;
1790 tcp_seg_free(seg);
1791 seg = next;
1792 }
1793 }
1794
1795 /**
1796 * Frees a TCP segment (tcp_seg structure).
1797 *
1798 * @param seg single tcp_seg to free
1799 */
1800 void
1801 tcp_seg_free(struct tcp_seg *seg)
1802 {
1803 if (seg != NULL) {
1804 if (seg->p != NULL) {
1805 pbuf_free(seg->p);
1806 #if TCP_DEBUG
1807 seg->p = NULL;
1808 #endif /* TCP_DEBUG */
1809 }
1810 memp_free(MEMP_TCP_SEG, seg);
1811 }
1812 }
1813
1814 /**
1815 * @ingroup tcp
1816 * Sets the priority of a connection.
1817 *
1818 * @param pcb the tcp_pcb to manipulate
1819 * @param prio new priority
1820 */
1821 void
1822 tcp_setprio(struct tcp_pcb *pcb, u8_t prio)
1823 {
1824 LWIP_ASSERT_CORE_LOCKED();
1825
1826 LWIP_ERROR("tcp_setprio: invalid pcb", pcb != NULL, return);
1827
1828 pcb->prio = prio;
1829 }
1830
1831 #if TCP_QUEUE_OOSEQ
1832 /**
1833 * Returns a copy of the given TCP segment.
1834 * The pbuf and data are not copied, only the pointers
1835 *
1836 * @param seg the old tcp_seg
1837 * @return a copy of seg
1838 */
1839 struct tcp_seg *
1840 tcp_seg_copy(struct tcp_seg *seg)
1841 {
1842 struct tcp_seg *cseg;
1843
1844 LWIP_ASSERT("tcp_seg_copy: invalid seg", seg != NULL);
1845
1846 cseg = (struct tcp_seg *)memp_malloc(MEMP_TCP_SEG);
1847 if (cseg == NULL) {
1848 return NULL;
1849 }
1850 SMEMCPY((u8_t *)cseg, (const u8_t *)seg, sizeof(struct tcp_seg));
1851 pbuf_ref(cseg->p);
1852 return cseg;
1853 }
1854 #endif /* TCP_QUEUE_OOSEQ */
1855
1856 #if LWIP_CALLBACK_API
1857 /**
1858 * Default receive callback that is called if the user didn't register
1859 * a recv callback for the pcb.
1860 */
1861 err_t
1862 tcp_recv_null(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err)
1863 {
1864 LWIP_UNUSED_ARG(arg);
1865
1866 LWIP_ERROR("tcp_recv_null: invalid pcb", pcb != NULL, return ERR_ARG);
1867
1868 if (p != NULL) {
1869 tcp_recved(pcb, p->tot_len);
1870 pbuf_free(p);
1871 } else if (err == ERR_OK) {
1872 return tcp_close(pcb);
1873 }
1874 return ERR_OK;
1875 }
1876 #endif /* LWIP_CALLBACK_API */
1877
1878 /**
1879 * Kills the oldest active connection that has a lower priority than 'prio'.
1880 *
1881 * @param prio minimum priority
1882 */
1883 static void
1884 tcp_kill_prio(u8_t prio)
1885 {
1886 struct tcp_pcb *pcb, *inactive;
1887 u32_t inactivity;
1888 u8_t mprio;
1889
1890 mprio = LWIP_MIN(TCP_PRIO_MAX, prio);
1891
1892 /* We want to kill connections with a lower prio, so bail out if
1893 * supplied prio is 0 - there can never be a lower prio
1894 */
1895 if (mprio == 0) {
1896 return;
1897 }
1898
1899 /* We only want kill connections with a lower prio, so decrement prio by one
1900 * and start searching for oldest connection with same or lower priority than mprio.
1901 * We want to find the connections with the lowest possible prio, and among
1902 * these the one with the longest inactivity time.
1903 */
1904 mprio--;
1905
1906 inactivity = 0;
1907 inactive = NULL;
1908 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
1909 /* lower prio is always a kill candidate */
1910 if ((pcb->prio < mprio) ||
1911 /* longer inactivity is also a kill candidate */
1912 ((pcb->prio == mprio) && ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity))) {
1913 inactivity = tcp_ticks - pcb->tmr;
1914 inactive = pcb;
1915 mprio = pcb->prio;
1916 }
1917 }
1918 if (inactive != NULL) {
1919 LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_prio: killing oldest PCB %p (%"S32_F")\n",
1920 (void *)inactive, inactivity));
1921 tcp_abort(inactive);
1922 }
1923 }
1924
1925 /**
1926 * Kills the oldest connection that is in specific state.
1927 * Called from tcp_alloc() for LAST_ACK and CLOSING if no more connections are available.
1928 */
1929 static void
1930 tcp_kill_state(enum tcp_state state)
1931 {
1932 struct tcp_pcb *pcb, *inactive;
1933 u32_t inactivity;
1934
1935 LWIP_ASSERT("invalid state", (state == CLOSING) || (state == LAST_ACK));
1936
1937 inactivity = 0;
1938 inactive = NULL;
1939 /* Go through the list of active pcbs and get the oldest pcb that is in state
1940 CLOSING/LAST_ACK. */
1941 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
1942 if (pcb->state == state) {
1943 if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) {
1944 inactivity = tcp_ticks - pcb->tmr;
1945 inactive = pcb;
1946 }
1947 }
1948 }
1949 if (inactive != NULL) {
1950 LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_closing: killing oldest %s PCB %p (%"S32_F")\n",
1951 tcp_state_str[state], (void *)inactive, inactivity));
1952 /* Don't send a RST, since no data is lost. */
1953 tcp_abandon(inactive, 0);
1954 }
1955 }
1956
1957 /**
1958 * Kills the oldest connection that is in TIME_WAIT state.
1959 * Called from tcp_alloc() if no more connections are available.
1960 */
1961 static void
1962 tcp_kill_timewait(void)
1963 {
1964 struct tcp_pcb *pcb, *inactive;
1965 u32_t inactivity;
1966
1967 inactivity = 0;
1968 inactive = NULL;
1969 /* Go through the list of TIME_WAIT pcbs and get the oldest pcb. */
1970 for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
1971 if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) {
1972 inactivity = tcp_ticks - pcb->tmr;
1973 inactive = pcb;
1974 }
1975 }
1976 if (inactive != NULL) {
1977 LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_timewait: killing oldest TIME-WAIT PCB %p (%"S32_F")\n",
1978 (void *)inactive, inactivity));
1979 tcp_abort(inactive);
1980 }
1981 }
1982
1983 /* Called when allocating a pcb fails.
1984 * In this case, we want to handle all pcbs that want to close first: if we can
1985 * now send the FIN (which failed before), the pcb might be in a state that is
1986 * OK for us to now free it.
1987 */
1988 static void
1989 tcp_handle_closepend(void)
1990 {
1991 struct tcp_pcb *pcb = tcp_active_pcbs;
1992
1993 while (pcb != NULL) {
1994 struct tcp_pcb *next = pcb->next;
1995 /* send pending FIN */
1996 if (pcb->flags & TF_CLOSEPEND) {
1997 LWIP_DEBUGF(TCP_DEBUG, ("tcp_handle_closepend: pending FIN\n"));
1998 tcp_clear_flags(pcb, TF_CLOSEPEND);
1999 tcp_close_shutdown_fin(pcb);
2000 }
2001 pcb = next;
2002 }
2003 }
2004
2005 /**
2006 * Allocate a new tcp_pcb structure.
2007 *
2008 * @param prio priority for the new pcb
2009 * @return a new tcp_pcb that initially is in state CLOSED
2010 */
2011 struct tcp_pcb *
2012 tcp_alloc(u8_t prio)
2013 {
2014 struct tcp_pcb *pcb;
2015
2016 LWIP_ASSERT_CORE_LOCKED();
2017
2018 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
2019 if (pcb == NULL) {
2020 /* Try to send FIN for all pcbs stuck in TF_CLOSEPEND first */
2021 tcp_handle_closepend();
2022
2023 /* Try killing oldest connection in TIME-WAIT. */
2024 LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest TIME-WAIT connection\n"));
2025 tcp_kill_timewait();
2026 /* Try to allocate a tcp_pcb again. */
2027 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
2028 if (pcb == NULL) {
2029 /* Try killing oldest connection in LAST-ACK (these wouldn't go to TIME-WAIT). */
2030 LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest LAST-ACK connection\n"));
2031 tcp_kill_state(LAST_ACK);
2032 /* Try to allocate a tcp_pcb again. */
2033 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
2034 if (pcb == NULL) {
2035 /* Try killing oldest connection in CLOSING. */
2036 LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest CLOSING connection\n"));
2037 tcp_kill_state(CLOSING);
2038 /* Try to allocate a tcp_pcb again. */
2039 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
2040 if (pcb == NULL) {
2041 /* Try killing oldest active connection with lower priority than the new one. */
2042 LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing oldest connection with prio lower than %d\n", prio));
2043 tcp_kill_prio(prio);
2044 /* Try to allocate a tcp_pcb again. */
2045 pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
2046 if (pcb != NULL) {
2047 /* adjust err stats: memp_malloc failed multiple times before */
2048 MEMP_STATS_DEC(err, MEMP_TCP_PCB);
2049 }
2050 }
2051 if (pcb != NULL) {
2052 /* adjust err stats: memp_malloc failed multiple times before */
2053 MEMP_STATS_DEC(err, MEMP_TCP_PCB);
2054 }
2055 }
2056 if (pcb != NULL) {
2057 /* adjust err stats: memp_malloc failed multiple times before */
2058 MEMP_STATS_DEC(err, MEMP_TCP_PCB);
2059 }
2060 }
2061 if (pcb != NULL) {
2062 /* adjust err stats: memp_malloc failed above */
2063 MEMP_STATS_DEC(err, MEMP_TCP_PCB);
2064 }
2065 }
2066 if (pcb != NULL) {
2067 /* zero out the whole pcb, so there is no need to initialize members to zero */
2068 memset(pcb, 0, sizeof(struct tcp_pcb));
2069 pcb->prio = prio;
2070 pcb->snd_buf = TCP_SND_BUF;
2071 /* Start with a window that does not need scaling. When window scaling is
2072 enabled and used, the window is enlarged when both sides agree on scaling. */
2073 pcb->rcv_wnd = pcb->rcv_ann_wnd = TCPWND_MIN16(TCP_WND);
2074 pcb->ttl = TCP_TTL;
2075 /* As initial send MSS, we use TCP_MSS but limit it to 536.
2076 The send MSS is updated when an MSS option is received. */
2077 pcb->mss = INITIAL_MSS;
2078 pcb->rto = 3000 / TCP_SLOW_INTERVAL;
2079 pcb->sv = 3000 / TCP_SLOW_INTERVAL;
2080 pcb->rtime = -1;
2081 pcb->cwnd = 1;
2082 pcb->tmr = tcp_ticks;
2083 pcb->last_timer = tcp_timer_ctr;
2084
2085 /* RFC 5681 recommends setting ssthresh abritrarily high and gives an example
2086 of using the largest advertised receive window. We've seen complications with
2087 receiving TCPs that use window scaling and/or window auto-tuning where the
2088 initial advertised window is very small and then grows rapidly once the
2089 connection is established. To avoid these complications, we set ssthresh to the
2090 largest effective cwnd (amount of in-flight data) that the sender can have. */
2091 pcb->ssthresh = TCP_SND_BUF;
2092
2093 #if LWIP_CALLBACK_API
2094 pcb->recv = tcp_recv_null;
2095 #endif /* LWIP_CALLBACK_API */
2096
2097 /* Init KEEPALIVE timer */
2098 pcb->keep_idle = TCP_KEEPIDLE_DEFAULT;
2099
2100 #if LWIP_TCP_KEEPALIVE
2101 pcb->keep_intvl = TCP_KEEPINTVL_DEFAULT;
2102 pcb->keep_cnt = TCP_KEEPCNT_DEFAULT;
2103 #endif /* LWIP_TCP_KEEPALIVE */
2104 }
2105 return pcb;
2106 }
2107
2108 /**
2109 * @ingroup tcp_raw
2110 * Creates a new TCP protocol control block but doesn't place it on
2111 * any of the TCP PCB lists.
2112 * The pcb is not put on any list until binding using tcp_bind().
2113 * If memory is not available for creating the new pcb, NULL is returned.
2114 * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB
2115 *
2116 * @internal: Maybe there should be a idle TCP PCB list where these
2117 * PCBs are put on. Port reservation using tcp_bind() is implemented but
2118 * allocated pcbs that are not bound can't be killed automatically if wanting
2119 * to allocate a pcb with higher prio (@see tcp_kill_prio())
2120 *
2121 * @return a new tcp_pcb that initially is in state CLOSED
2122 */
2123 struct tcp_pcb *
2124 tcp_new(void)
2125 {
2126 return tcp_alloc(TCP_PRIO_NORMAL);
2127 }
2128
2129 /**
2130 * @ingroup tcp_raw
2131 * Creates a new TCP protocol control block but doesn't
2132 * place it on any of the TCP PCB lists.
2133 * The pcb is not put on any list until binding using tcp_bind().
2134 * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB
2135 *
2136 * @param type IP address type, see @ref lwip_ip_addr_type definitions.
2137 * If you want to listen to IPv4 and IPv6 (dual-stack) connections,
2138 * supply @ref IPADDR_TYPE_ANY as argument and bind to @ref IP_ANY_TYPE.
2139 * @return a new tcp_pcb that initially is in state CLOSED
2140 */
2141 struct tcp_pcb *
2142 tcp_new_ip_type(u8_t type)
2143 {
2144 struct tcp_pcb *pcb;
2145 pcb = tcp_alloc(TCP_PRIO_NORMAL);
2146 #if LWIP_IPV4 && LWIP_IPV6
2147 if (pcb != NULL) {
2148 IP_SET_TYPE_VAL(pcb->local_ip, type);
2149 IP_SET_TYPE_VAL(pcb->remote_ip, type);
2150 }
2151 #else
2152 LWIP_UNUSED_ARG(type);
2153 #endif /* LWIP_IPV4 && LWIP_IPV6 */
2154 return pcb;
2155 }
2156
2157 /**
2158 * @ingroup tcp_raw
2159 * Specifies the program specific state that should be passed to all
2160 * other callback functions. The "pcb" argument is the current TCP
2161 * connection control block, and the "arg" argument is the argument
2162 * that will be passed to the callbacks.
2163 *
2164 * @param pcb tcp_pcb to set the callback argument
2165 * @param arg void pointer argument to pass to callback functions
2166 */
2167 void
2168 tcp_arg(struct tcp_pcb *pcb, void *arg)
2169 {
2170 LWIP_ASSERT_CORE_LOCKED();
2171 /* This function is allowed to be called for both listen pcbs and
2172 connection pcbs. */
2173 if (pcb != NULL) {
2174 pcb->callback_arg = arg;
2175 }
2176 }
2177 #if LWIP_CALLBACK_API
2178
2179 /**
2180 * @ingroup tcp_raw
2181 * Sets the callback function that will be called when new data
2182 * arrives. The callback function will be passed a NULL pbuf to
2183 * indicate that the remote host has closed the connection. If the
2184 * callback function returns ERR_OK or ERR_ABRT it must have
2185 * freed the pbuf, otherwise it must not have freed it.
2186 *
2187 * @param pcb tcp_pcb to set the recv callback
2188 * @param recv callback function to call for this pcb when data is received
2189 */
2190 void
2191 tcp_recv(struct tcp_pcb *pcb, tcp_recv_fn recv)
2192 {
2193 LWIP_ASSERT_CORE_LOCKED();
2194 if (pcb != NULL) {
2195 LWIP_ASSERT("invalid socket state for recv callback", pcb->state != LISTEN);
2196 pcb->recv = recv;
2197 }
2198 }
2199
2200 /**
2201 * @ingroup tcp_raw
2202 * Specifies the callback function that should be called when data has
2203 * successfully been received (i.e., acknowledged) by the remote
2204 * host. The len argument passed to the callback function gives the
2205 * amount bytes that was acknowledged by the last acknowledgment.
2206 *
2207 * @param pcb tcp_pcb to set the sent callback
2208 * @param sent callback function to call for this pcb when data is successfully sent
2209 */
2210 void
2211 tcp_sent(struct tcp_pcb *pcb, tcp_sent_fn sent)
2212 {
2213 LWIP_ASSERT_CORE_LOCKED();
2214 if (pcb != NULL) {
2215 LWIP_ASSERT("invalid socket state for sent callback", pcb->state != LISTEN);
2216 pcb->sent = sent;
2217 }
2218 }
2219
2220 /**
2221 * @ingroup tcp_raw
2222 * Used to specify the function that should be called when a fatal error
2223 * has occurred on the connection.
2224 *
2225 * If a connection is aborted because of an error, the application is
2226 * alerted of this event by the err callback. Errors that might abort a
2227 * connection are when there is a shortage of memory. The callback
2228 * function to be called is set using the tcp_err() function.
2229 *
2230 * @note The corresponding pcb is already freed when this callback is called!
2231 *
2232 * @param pcb tcp_pcb to set the err callback
2233 * @param err callback function to call for this pcb when a fatal error
2234 * has occurred on the connection
2235 */
2236 void
2237 tcp_err(struct tcp_pcb *pcb, tcp_err_fn err)
2238 {
2239 LWIP_ASSERT_CORE_LOCKED();
2240 if (pcb != NULL) {
2241 LWIP_ASSERT("invalid socket state for err callback", pcb->state != LISTEN);
2242 pcb->errf = err;
2243 }
2244 }
2245
2246 /**
2247 * @ingroup tcp_raw
2248 * Used for specifying the function that should be called when a
2249 * LISTENing connection has been connected to another host.
2250 * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB
2251 *
2252 * @param pcb tcp_pcb to set the accept callback
2253 * @param accept callback function to call for this pcb when LISTENing
2254 * connection has been connected to another host
2255 */
2256 void
2257 tcp_accept(struct tcp_pcb *pcb, tcp_accept_fn accept)
2258 {
2259 LWIP_ASSERT_CORE_LOCKED();
2260 if ((pcb != NULL) && (pcb->state == LISTEN)) {
2261 struct tcp_pcb_listen *lpcb = (struct tcp_pcb_listen *)pcb;
2262 lpcb->accept = accept;
2263 }
2264 }
2265 #endif /* LWIP_CALLBACK_API */
2266
2267
2268 /**
2269 * @ingroup tcp_raw
2270 * Specifies the polling interval and the callback function that should
2271 * be called to poll the application. The interval is specified in
2272 * number of TCP coarse grained timer shots, which typically occurs
2273 * twice a second. An interval of 10 means that the application would
2274 * be polled every 5 seconds.
2275 *
2276 * When a connection is idle (i.e., no data is either transmitted or
2277 * received), lwIP will repeatedly poll the application by calling a
2278 * specified callback function. This can be used either as a watchdog
2279 * timer for killing connections that have stayed idle for too long, or
2280 * as a method of waiting for memory to become available. For instance,
2281 * if a call to tcp_write() has failed because memory wasn't available,
2282 * the application may use the polling functionality to call tcp_write()
2283 * again when the connection has been idle for a while.
2284 */
2285 void
2286 tcp_poll(struct tcp_pcb *pcb, tcp_poll_fn poll, u8_t interval)
2287 {
2288 LWIP_ASSERT_CORE_LOCKED();
2289
2290 LWIP_ERROR("tcp_poll: invalid pcb", pcb != NULL, return);
2291 LWIP_ASSERT("invalid socket state for poll", pcb->state != LISTEN);
2292
2293 #if LWIP_CALLBACK_API
2294 pcb->poll = poll;
2295 #else /* LWIP_CALLBACK_API */
2296 LWIP_UNUSED_ARG(poll);
2297 #endif /* LWIP_CALLBACK_API */
2298 pcb->pollinterval = interval;
2299 }
2300
2301 /**
2302 * Purges a TCP PCB. Removes any buffered data and frees the buffer memory
2303 * (pcb->ooseq, pcb->unsent and pcb->unacked are freed).
2304 *
2305 * @param pcb tcp_pcb to purge. The pcb itself is not deallocated!
2306 */
2307 void
2308 tcp_pcb_purge(struct tcp_pcb *pcb)
2309 {
2310 LWIP_ERROR("tcp_pcb_purge: invalid pcb", pcb != NULL, return);
2311
2312 if (pcb->state != CLOSED &&
2313 pcb->state != TIME_WAIT &&
2314 pcb->state != LISTEN) {
2315
2316 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge\n"));
2317
2318 tcp_backlog_accepted(pcb);
2319
2320 if (pcb->refused_data != NULL) {
2321 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->refused_data\n"));
2322 pbuf_free(pcb->refused_data);
2323 pcb->refused_data = NULL;
2324 }
2325 if (pcb->unsent != NULL) {
2326 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: not all data sent\n"));
2327 }
2328 if (pcb->unacked != NULL) {
2329 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->unacked\n"));
2330 }
2331 #if TCP_QUEUE_OOSEQ
2332 if (pcb->ooseq != NULL) {
2333 LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->ooseq\n"));
2334 tcp_free_ooseq(pcb);
2335 }
2336 #endif /* TCP_QUEUE_OOSEQ */
2337
2338 /* Stop the retransmission timer as it will expect data on unacked
2339 queue if it fires */
2340 pcb->rtime = -1;
2341
2342 tcp_segs_free(pcb->unsent);
2343 tcp_segs_free(pcb->unacked);
2344 pcb->unacked = pcb->unsent = NULL;
2345 #if TCP_OVERSIZE
2346 pcb->unsent_oversize = 0;
2347 #endif /* TCP_OVERSIZE */
2348 }
2349 }
2350
2351 /**
2352 * Purges the PCB and removes it from a PCB list. Any delayed ACKs are sent first.
2353 *
2354 * @param pcblist PCB list to purge.
2355 * @param pcb tcp_pcb to purge. The pcb itself is NOT deallocated!
2356 */
2357 void
2358 tcp_pcb_remove(struct tcp_pcb **pcblist, struct tcp_pcb *pcb)
2359 {
2360 LWIP_ASSERT("tcp_pcb_remove: invalid pcb", pcb != NULL);
2361 LWIP_ASSERT("tcp_pcb_remove: invalid pcblist", pcblist != NULL);
2362
2363 TCP_RMV(pcblist, pcb);
2364
2365 tcp_pcb_purge(pcb);
2366
2367 /* if there is an outstanding delayed ACKs, send it */
2368 if ((pcb->state != TIME_WAIT) &&
2369 (pcb->state != LISTEN) &&
2370 (pcb->flags & TF_ACK_DELAY)) {
2371 tcp_ack_now(pcb);
2372 tcp_output(pcb);
2373 }
2374
2375 if (pcb->state != LISTEN) {
2376 LWIP_ASSERT("unsent segments leaking", pcb->unsent == NULL);
2377 LWIP_ASSERT("unacked segments leaking", pcb->unacked == NULL);
2378 #if TCP_QUEUE_OOSEQ
2379 LWIP_ASSERT("ooseq segments leaking", pcb->ooseq == NULL);
2380 #endif /* TCP_QUEUE_OOSEQ */
2381 }
2382
2383 pcb->state = CLOSED;
2384 /* reset the local port to prevent the pcb from being 'bound' */
2385 pcb->local_port = 0;
2386
2387 LWIP_ASSERT("tcp_pcb_remove: tcp_pcbs_sane()", tcp_pcbs_sane());
2388 }
2389
2390 /**
2391 * Calculates a new initial sequence number for new connections.
2392 *
2393 * @return u32_t pseudo random sequence number
2394 */
2395 u32_t
2396 tcp_next_iss(struct tcp_pcb *pcb)
2397 {
2398 #ifdef LWIP_HOOK_TCP_ISN
2399 LWIP_ASSERT("tcp_next_iss: invalid pcb", pcb != NULL);
2400 return LWIP_HOOK_TCP_ISN(&pcb->local_ip, pcb->local_port, &pcb->remote_ip, pcb->remote_port);
2401 #else /* LWIP_HOOK_TCP_ISN */
2402 static u32_t iss = 6510;
2403
2404 LWIP_ASSERT("tcp_next_iss: invalid pcb", pcb != NULL);
2405 LWIP_UNUSED_ARG(pcb);
2406
2407 iss += tcp_ticks; /* XXX */
2408 return iss;
2409 #endif /* LWIP_HOOK_TCP_ISN */
2410 }
2411
2412 #if TCP_CALCULATE_EFF_SEND_MSS
2413 /**
2414 * Calculates the effective send mss that can be used for a specific IP address
2415 * by calculating the minimum of TCP_MSS and the mtu (if set) of the target
2416 * netif (if not NULL).
2417 */
2418 u16_t
2419 tcp_eff_send_mss_netif(u16_t sendmss, struct netif *outif, const ip_addr_t *dest)
2420 {
2421 u16_t mss_s;
2422 u16_t mtu;
2423
2424 LWIP_UNUSED_ARG(dest); /* in case IPv6 is disabled */
2425
2426 LWIP_ASSERT("tcp_eff_send_mss_netif: invalid dst_ip", dest != NULL);
2427
2428 #if LWIP_IPV6
2429 #if LWIP_IPV4
2430 if (IP_IS_V6(dest))
2431 #endif /* LWIP_IPV4 */
2432 {
2433 /* First look in destination cache, to see if there is a Path MTU. */
2434 mtu = nd6_get_destination_mtu(ip_2_ip6(dest), outif);
2435 }
2436 #if LWIP_IPV4
2437 else
2438 #endif /* LWIP_IPV4 */
2439 #endif /* LWIP_IPV6 */
2440 #if LWIP_IPV4
2441 {
2442 if (outif == NULL) {
2443 return sendmss;
2444 }
2445 mtu = outif->mtu;
2446 }
2447 #endif /* LWIP_IPV4 */
2448
2449 if (mtu != 0) {
2450 u16_t offset;
2451 #if LWIP_IPV6
2452 #if LWIP_IPV4
2453 if (IP_IS_V6(dest))
2454 #endif /* LWIP_IPV4 */
2455 {
2456 offset = IP6_HLEN + TCP_HLEN;
2457 }
2458 #if LWIP_IPV4
2459 else
2460 #endif /* LWIP_IPV4 */
2461 #endif /* LWIP_IPV6 */
2462 #if LWIP_IPV4
2463 {
2464 offset = IP_HLEN + TCP_HLEN;
2465 }
2466 #endif /* LWIP_IPV4 */
2467 mss_s = (mtu > offset) ? (u16_t)(mtu - offset) : 0;
2468 /* RFC 1122, chap 4.2.2.6:
2469 * Eff.snd.MSS = min(SendMSS+20, MMS_S) - TCPhdrsize - IPoptionsize
2470 * We correct for TCP options in tcp_write(), and don't support IP options.
2471 */
2472 sendmss = LWIP_MIN(sendmss, mss_s);
2473 }
2474 return sendmss;
2475 }
2476 #endif /* TCP_CALCULATE_EFF_SEND_MSS */
2477
2478 /** Helper function for tcp_netif_ip_addr_changed() that iterates a pcb list */
2479 static void
2480 tcp_netif_ip_addr_changed_pcblist(const ip_addr_t *old_addr, struct tcp_pcb *pcb_list)
2481 {
2482 struct tcp_pcb *pcb;
2483 pcb = pcb_list;
2484
2485 LWIP_ASSERT("tcp_netif_ip_addr_changed_pcblist: invalid old_addr", old_addr != NULL);
2486
2487 while (pcb != NULL) {
2488 /* PCB bound to current local interface address? */
2489 if (ip_addr_cmp(&pcb->local_ip, old_addr)
2490 #if LWIP_AUTOIP
2491 /* connections to link-local addresses must persist (RFC3927 ch. 1.9) */
2492 && (!IP_IS_V4_VAL(pcb->local_ip) || !ip4_addr_islinklocal(ip_2_ip4(&pcb->local_ip)))
2493 #endif /* LWIP_AUTOIP */
2494 ) {
2495 /* this connection must be aborted */
2496 struct tcp_pcb *next = pcb->next;
2497 LWIP_DEBUGF(NETIF_DEBUG | LWIP_DBG_STATE, ("netif_set_ipaddr: aborting TCP pcb %p\n", (void *)pcb));
2498 tcp_abort(pcb);
2499 pcb = next;
2500 } else {
2501 pcb = pcb->next;
2502 }
2503 }
2504 }
2505
2506 /** This function is called from netif.c when address is changed or netif is removed
2507 *
2508 * @param old_addr IP address of the netif before change
2509 * @param new_addr IP address of the netif after change or NULL if netif has been removed
2510 */
2511 void
2512 tcp_netif_ip_addr_changed(const ip_addr_t *old_addr, const ip_addr_t *new_addr)
2513 {
2514 struct tcp_pcb_listen *lpcb;
2515
2516 if (!ip_addr_isany(old_addr)) {
2517 tcp_netif_ip_addr_changed_pcblist(old_addr, tcp_active_pcbs);
2518 tcp_netif_ip_addr_changed_pcblist(old_addr, tcp_bound_pcbs);
2519
2520 if (!ip_addr_isany(new_addr)) {
2521 /* PCB bound to current local interface address? */
2522 for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) {
2523 /* PCB bound to current local interface address? */
2524 if (ip_addr_cmp(&lpcb->local_ip, old_addr)) {
2525 /* The PCB is listening to the old ipaddr and
2526 * is set to listen to the new one instead */
2527 ip_addr_copy(lpcb->local_ip, *new_addr);
2528 }
2529 }
2530 }
2531 }
2532 }
2533
2534 const char *
2535 tcp_debug_state_str(enum tcp_state s)
2536 {
2537 return tcp_state_str[s];
2538 }
2539
2540 err_t
2541 tcp_tcp_get_tcp_addrinfo(struct tcp_pcb *pcb, int local, ip_addr_t *addr, u16_t *port)
2542 {
2543 if (pcb) {
2544 if (local) {
2545 if (addr) {
2546 *addr = pcb->local_ip;
2547 }
2548 if (port) {
2549 *port = pcb->local_port;
2550 }
2551 } else {
2552 if (addr) {
2553 *addr = pcb->remote_ip;
2554 }
2555 if (port) {
2556 *port = pcb->remote_port;
2557 }
2558 }
2559 return ERR_OK;
2560 }
2561 return ERR_VAL;
2562 }
2563
2564 #if TCP_QUEUE_OOSEQ
2565 /* Free all ooseq pbufs (and possibly reset SACK state) */
2566 void
2567 tcp_free_ooseq(struct tcp_pcb *pcb)
2568 {
2569 if (pcb->ooseq) {
2570 tcp_segs_free(pcb->ooseq);
2571 pcb->ooseq = NULL;
2572 #if LWIP_TCP_SACK_OUT
2573 memset(pcb->rcv_sacks, 0, sizeof(pcb->rcv_sacks));
2574 #endif /* LWIP_TCP_SACK_OUT */
2575 }
2576 }
2577 #endif /* TCP_QUEUE_OOSEQ */
2578
2579 #if TCP_DEBUG || TCP_INPUT_DEBUG || TCP_OUTPUT_DEBUG
2580 /**
2581 * Print a tcp header for debugging purposes.
2582 *
2583 * @param tcphdr pointer to a struct tcp_hdr
2584 */
2585 void
2586 tcp_debug_print(struct tcp_hdr *tcphdr)
2587 {
2588 LWIP_DEBUGF(TCP_DEBUG, ("TCP header:\n"));
2589 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2590 LWIP_DEBUGF(TCP_DEBUG, ("| %5"U16_F" | %5"U16_F" | (src port, dest port)\n",
2591 lwip_ntohs(tcphdr->src), lwip_ntohs(tcphdr->dest)));
2592 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2593 LWIP_DEBUGF(TCP_DEBUG, ("| %010"U32_F" | (seq no)\n",
2594 lwip_ntohl(tcphdr->seqno)));
2595 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2596 LWIP_DEBUGF(TCP_DEBUG, ("| %010"U32_F" | (ack no)\n",
2597 lwip_ntohl(tcphdr->ackno)));
2598 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2599 LWIP_DEBUGF(TCP_DEBUG, ("| %2"U16_F" | |%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"| %5"U16_F" | (hdrlen, flags (",
2600 TCPH_HDRLEN(tcphdr),
2601 (u16_t)(TCPH_FLAGS(tcphdr) >> 5 & 1),
2602 (u16_t)(TCPH_FLAGS(tcphdr) >> 4 & 1),
2603 (u16_t)(TCPH_FLAGS(tcphdr) >> 3 & 1),
2604 (u16_t)(TCPH_FLAGS(tcphdr) >> 2 & 1),
2605 (u16_t)(TCPH_FLAGS(tcphdr) >> 1 & 1),
2606 (u16_t)(TCPH_FLAGS(tcphdr) & 1),
2607 lwip_ntohs(tcphdr->wnd)));
2608 tcp_debug_print_flags(TCPH_FLAGS(tcphdr));
2609 LWIP_DEBUGF(TCP_DEBUG, ("), win)\n"));
2610 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2611 LWIP_DEBUGF(TCP_DEBUG, ("| 0x%04"X16_F" | %5"U16_F" | (chksum, urgp)\n",
2612 lwip_ntohs(tcphdr->chksum), lwip_ntohs(tcphdr->urgp)));
2613 LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2614 }
2615
2616 /**
2617 * Print a tcp state for debugging purposes.
2618 *
2619 * @param s enum tcp_state to print
2620 */
2621 void
2622 tcp_debug_print_state(enum tcp_state s)
2623 {
2624 LWIP_DEBUGF(TCP_DEBUG, ("State: %s\n", tcp_state_str[s]));
2625 }
2626
2627 /**
2628 * Print tcp flags for debugging purposes.
2629 *
2630 * @param flags tcp flags, all active flags are printed
2631 */
2632 void
2633 tcp_debug_print_flags(u8_t flags)
2634 {
2635 if (flags & TCP_FIN) {
2636 LWIP_DEBUGF(TCP_DEBUG, ("FIN "));
2637 }
2638 if (flags & TCP_SYN) {
2639 LWIP_DEBUGF(TCP_DEBUG, ("SYN "));
2640 }
2641 if (flags & TCP_RST) {
2642 LWIP_DEBUGF(TCP_DEBUG, ("RST "));
2643 }
2644 if (flags & TCP_PSH) {
2645 LWIP_DEBUGF(TCP_DEBUG, ("PSH "));
2646 }
2647 if (flags & TCP_ACK) {
2648 LWIP_DEBUGF(TCP_DEBUG, ("ACK "));
2649 }
2650 if (flags & TCP_URG) {
2651 LWIP_DEBUGF(TCP_DEBUG, ("URG "));
2652 }
2653 if (flags & TCP_ECE) {
2654 LWIP_DEBUGF(TCP_DEBUG, ("ECE "));
2655 }
2656 if (flags & TCP_CWR) {
2657 LWIP_DEBUGF(TCP_DEBUG, ("CWR "));
2658 }
2659 LWIP_DEBUGF(TCP_DEBUG, ("\n"));
2660 }
2661
2662 /**
2663 * Print all tcp_pcbs in every list for debugging purposes.
2664 */
2665 void
2666 tcp_debug_print_pcbs(void)
2667 {
2668 struct tcp_pcb *pcb;
2669 struct tcp_pcb_listen *pcbl;
2670
2671 LWIP_DEBUGF(TCP_DEBUG, ("Active PCB states:\n"));
2672 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
2673 LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ",
2674 pcb->local_port, pcb->remote_port,
2675 pcb->snd_nxt, pcb->rcv_nxt));
2676 tcp_debug_print_state(pcb->state);
2677 }
2678
2679 LWIP_DEBUGF(TCP_DEBUG, ("Listen PCB states:\n"));
2680 for (pcbl = tcp_listen_pcbs.listen_pcbs; pcbl != NULL; pcbl = pcbl->next) {
2681 LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F" ", pcbl->local_port));
2682 tcp_debug_print_state(pcbl->state);
2683 }
2684
2685 LWIP_DEBUGF(TCP_DEBUG, ("TIME-WAIT PCB states:\n"));
2686 for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
2687 LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ",
2688 pcb->local_port, pcb->remote_port,
2689 pcb->snd_nxt, pcb->rcv_nxt));
2690 tcp_debug_print_state(pcb->state);
2691 }
2692 }
2693
2694 /**
2695 * Check state consistency of the tcp_pcb lists.
2696 */
2697 s16_t
2698 tcp_pcbs_sane(void)
2699 {
2700 struct tcp_pcb *pcb;
2701 for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
2702 LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != CLOSED", pcb->state != CLOSED);
2703 LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != LISTEN", pcb->state != LISTEN);
2704 LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != TIME-WAIT", pcb->state != TIME_WAIT);
2705 }
2706 for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
2707 LWIP_ASSERT("tcp_pcbs_sane: tw pcb->state == TIME-WAIT", pcb->state == TIME_WAIT);
2708 }
2709 return 1;
2710 }
2711 #endif /* TCP_DEBUG */
2712
2713 #if LWIP_TCP_PCB_NUM_EXT_ARGS
2714 /**
2715 * @defgroup tcp_raw_extargs ext arguments
2716 * @ingroup tcp_raw
2717 * Additional data storage per tcp pcb\n
2718 * @see @ref tcp_raw
2719 *
2720 * When LWIP_TCP_PCB_NUM_EXT_ARGS is > 0, every tcp pcb (including listen pcb)
2721 * includes a number of additional argument entries in an array.
2722 *
2723 * To support memory management, in addition to a 'void *', callbacks can be
2724 * provided to manage transition from listening pcbs to connections and to
2725 * deallocate memory when a pcb is deallocated (see struct @ref tcp_ext_arg_callbacks).
2726 *
2727 * After allocating this index, use @ref tcp_ext_arg_set and @ref tcp_ext_arg_get
2728 * to store and load arguments from this index for a given pcb.
2729 */
2730
2731 static u8_t tcp_ext_arg_id;
2732
2733 /**
2734 * @ingroup tcp_raw_extargs
2735 * Allocate an index to store data in ext_args member of struct tcp_pcb.
2736 * Returned value is an index in mentioned array.
2737 * The index is *global* over all pcbs!
2738 *
2739 * When @ref LWIP_TCP_PCB_NUM_EXT_ARGS is > 0, every tcp pcb (including listen pcb)
2740 * includes a number of additional argument entries in an array.
2741 *
2742 * To support memory management, in addition to a 'void *', callbacks can be
2743 * provided to manage transition from listening pcbs to connections and to
2744 * deallocate memory when a pcb is deallocated (see struct @ref tcp_ext_arg_callbacks).
2745 *
2746 * After allocating this index, use @ref tcp_ext_arg_set and @ref tcp_ext_arg_get
2747 * to store and load arguments from this index for a given pcb.
2748 *
2749 * @return a unique index into struct tcp_pcb.ext_args
2750 */
2751 u8_t
2752 tcp_ext_arg_alloc_id(void)
2753 {
2754 u8_t result = tcp_ext_arg_id;
2755 tcp_ext_arg_id++;
2756
2757 LWIP_ASSERT_CORE_LOCKED();
2758
2759 #if LWIP_TCP_PCB_NUM_EXT_ARGS >= 255
2760 #error LWIP_TCP_PCB_NUM_EXT_ARGS
2761 #endif
2762 LWIP_ASSERT("Increase LWIP_TCP_PCB_NUM_EXT_ARGS in lwipopts.h", result < LWIP_TCP_PCB_NUM_EXT_ARGS);
2763 return result;
2764 }
2765
2766 /**
2767 * @ingroup tcp_raw_extargs
2768 * Set callbacks for a given index of ext_args on the specified pcb.
2769 *
2770 * @param pcb tcp_pcb for which to set the callback
2771 * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id)
2772 * @param callbacks callback table (const since it is referenced, not copied!)
2773 */
2774 void
2775 tcp_ext_arg_set_callbacks(struct tcp_pcb *pcb, uint8_t id, const struct tcp_ext_arg_callbacks * const callbacks)
2776 {
2777 LWIP_ASSERT("pcb != NULL", pcb != NULL);
2778 LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS);
2779 LWIP_ASSERT("callbacks != NULL", callbacks != NULL);
2780
2781 LWIP_ASSERT_CORE_LOCKED();
2782
2783 pcb->ext_args[id].callbacks = callbacks;
2784 }
2785
2786 /**
2787 * @ingroup tcp_raw_extargs
2788 * Set data for a given index of ext_args on the specified pcb.
2789 *
2790 * @param pcb tcp_pcb for which to set the data
2791 * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id)
2792 * @param arg data pointer to set
2793 */
2794 void tcp_ext_arg_set(struct tcp_pcb *pcb, uint8_t id, void *arg)
2795 {
2796 LWIP_ASSERT("pcb != NULL", pcb != NULL);
2797 LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS);
2798
2799 LWIP_ASSERT_CORE_LOCKED();
2800
2801 pcb->ext_args[id].data = arg;
2802 }
2803
2804 /**
2805 * @ingroup tcp_raw_extargs
2806 * Set data for a given index of ext_args on the specified pcb.
2807 *
2808 * @param pcb tcp_pcb for which to set the data
2809 * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id)
2810 * @return data pointer at the given index
2811 */
2812 void *tcp_ext_arg_get(const struct tcp_pcb *pcb, uint8_t id)
2813 {
2814 LWIP_ASSERT("pcb != NULL", pcb != NULL);
2815 LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS);
2816
2817 LWIP_ASSERT_CORE_LOCKED();
2818
2819 return pcb->ext_args[id].data;
2820 }
2821
2822 /** This function calls the "destroy" callback for all ext_args once a pcb is
2823 * freed.
2824 */
2825 static void
2826 tcp_ext_arg_invoke_callbacks_destroyed(struct tcp_pcb_ext_args *ext_args)
2827 {
2828 int i;
2829 LWIP_ASSERT("ext_args != NULL", ext_args != NULL);
2830
2831 for (i = 0; i < LWIP_TCP_PCB_NUM_EXT_ARGS; i++) {
2832 if (ext_args[i].callbacks != NULL) {
2833 if (ext_args[i].callbacks->destroy != NULL) {
2834 ext_args[i].callbacks->destroy((u8_t)i, ext_args[i].data);
2835 }
2836 }
2837 }
2838 }
2839
2840 /** This function calls the "passive_open" callback for all ext_args if a connection
2841 * is in the process of being accepted. This is called just after the SYN is
2842 * received and before a SYN/ACK is sent, to allow to modify the very first
2843 * segment sent even on passive open. Naturally, the "accepted" callback of the
2844 * pcb has not been called yet!
2845 */
2846 err_t
2847 tcp_ext_arg_invoke_callbacks_passive_open(struct tcp_pcb_listen *lpcb, struct tcp_pcb *cpcb)
2848 {
2849 int i;
2850 LWIP_ASSERT("lpcb != NULL", lpcb != NULL);
2851 LWIP_ASSERT("cpcb != NULL", cpcb != NULL);
2852
2853 for (i = 0; i < LWIP_TCP_PCB_NUM_EXT_ARGS; i++) {
2854 if (lpcb->ext_args[i].callbacks != NULL) {
2855 if (lpcb->ext_args[i].callbacks->passive_open != NULL) {
2856 err_t err = lpcb->ext_args[i].callbacks->passive_open((u8_t)i, lpcb, cpcb);
2857 if (err != ERR_OK) {
2858 return err;
2859 }
2860 }
2861 }
2862 }
2863 return ERR_OK;
2864 }
2865 #endif /* LWIP_TCP_PCB_NUM_EXT_ARGS */
2866
2867 #endif /* LWIP_TCP */
2868