• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 
112 #define REXMIT_NONE	0 /* no loss recovery to do */
113 #define REXMIT_LOST	1 /* retransmit packets marked lost */
114 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
115 
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 			     void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 	icsk->icsk_clean_acked = cad;
123 	static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 
clean_acked_data_disable(struct inet_connection_sock * icsk)127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 	icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 
clean_acked_data_flush(void)134 void clean_acked_data_flush(void)
135 {
136 	static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140 
141 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)142 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
143 {
144 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
145 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
146 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
147 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
149 	struct bpf_sock_ops_kern sock_ops;
150 
151 	if (likely(!unknown_opt && !parse_all_opt))
152 		return;
153 
154 	/* The skb will be handled in the
155 	 * bpf_skops_established() or
156 	 * bpf_skops_write_hdr_opt().
157 	 */
158 	switch (sk->sk_state) {
159 	case TCP_SYN_RECV:
160 	case TCP_SYN_SENT:
161 	case TCP_LISTEN:
162 		return;
163 	}
164 
165 	sock_owned_by_me(sk);
166 
167 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
168 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
169 	sock_ops.is_fullsock = 1;
170 	sock_ops.sk = sk;
171 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
172 
173 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
174 }
175 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)176 static void bpf_skops_established(struct sock *sk, int bpf_op,
177 				  struct sk_buff *skb)
178 {
179 	struct bpf_sock_ops_kern sock_ops;
180 
181 	sock_owned_by_me(sk);
182 
183 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
184 	sock_ops.op = bpf_op;
185 	sock_ops.is_fullsock = 1;
186 	sock_ops.sk = sk;
187 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
188 	if (skb)
189 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
190 
191 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
192 }
193 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)194 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
195 {
196 }
197 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)198 static void bpf_skops_established(struct sock *sk, int bpf_op,
199 				  struct sk_buff *skb)
200 {
201 }
202 #endif
203 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)204 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
205 			     unsigned int len)
206 {
207 	static bool __once __read_mostly;
208 
209 	if (!__once) {
210 		struct net_device *dev;
211 
212 		__once = true;
213 
214 		rcu_read_lock();
215 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
216 		if (!dev || len >= dev->mtu)
217 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 				dev ? dev->name : "Unknown driver");
219 		rcu_read_unlock();
220 	}
221 }
222 
223 /* Adapt the MSS value used to make delayed ack decision to the
224  * real world.
225  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)226 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
227 {
228 	struct inet_connection_sock *icsk = inet_csk(sk);
229 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
230 	unsigned int len;
231 
232 	icsk->icsk_ack.last_seg_size = 0;
233 
234 	/* skb->len may jitter because of SACKs, even if peer
235 	 * sends good full-sized frames.
236 	 */
237 	len = skb_shinfo(skb)->gso_size ? : skb->len;
238 	if (len >= icsk->icsk_ack.rcv_mss) {
239 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
240 					       tcp_sk(sk)->advmss);
241 		/* Account for possibly-removed options */
242 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
243 				   MAX_TCP_OPTION_SPACE))
244 			tcp_gro_dev_warn(sk, skb, len);
245 	} else {
246 		/* Otherwise, we make more careful check taking into account,
247 		 * that SACKs block is variable.
248 		 *
249 		 * "len" is invariant segment length, including TCP header.
250 		 */
251 		len += skb->data - skb_transport_header(skb);
252 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
253 		    /* If PSH is not set, packet should be
254 		     * full sized, provided peer TCP is not badly broken.
255 		     * This observation (if it is correct 8)) allows
256 		     * to handle super-low mtu links fairly.
257 		     */
258 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
259 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
260 			/* Subtract also invariant (if peer is RFC compliant),
261 			 * tcp header plus fixed timestamp option length.
262 			 * Resulting "len" is MSS free of SACK jitter.
263 			 */
264 			len -= tcp_sk(sk)->tcp_header_len;
265 			icsk->icsk_ack.last_seg_size = len;
266 			if (len == lss) {
267 				icsk->icsk_ack.rcv_mss = len;
268 				return;
269 			}
270 		}
271 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
272 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
273 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
274 	}
275 }
276 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)277 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
278 {
279 	struct inet_connection_sock *icsk = inet_csk(sk);
280 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
281 
282 	if (quickacks == 0)
283 		quickacks = 2;
284 	quickacks = min(quickacks, max_quickacks);
285 	if (quickacks > icsk->icsk_ack.quick)
286 		icsk->icsk_ack.quick = quickacks;
287 }
288 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)289 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
290 {
291 	struct inet_connection_sock *icsk = inet_csk(sk);
292 
293 	tcp_incr_quickack(sk, max_quickacks);
294 	inet_csk_exit_pingpong_mode(sk);
295 	icsk->icsk_ack.ato = TCP_ATO_MIN;
296 }
297 EXPORT_SYMBOL(tcp_enter_quickack_mode);
298 
299 /* Send ACKs quickly, if "quick" count is not exhausted
300  * and the session is not interactive.
301  */
302 
tcp_in_quickack_mode(struct sock * sk)303 static bool tcp_in_quickack_mode(struct sock *sk)
304 {
305 	const struct inet_connection_sock *icsk = inet_csk(sk);
306 	const struct dst_entry *dst = __sk_dst_get(sk);
307 
308 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
309 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
310 }
311 
tcp_ecn_queue_cwr(struct tcp_sock * tp)312 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
313 {
314 	if (tp->ecn_flags & TCP_ECN_OK)
315 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
316 }
317 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)318 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
319 {
320 	if (tcp_hdr(skb)->cwr) {
321 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
322 
323 		/* If the sender is telling us it has entered CWR, then its
324 		 * cwnd may be very low (even just 1 packet), so we should ACK
325 		 * immediately.
326 		 */
327 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
328 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
329 	}
330 }
331 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)332 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
333 {
334 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
335 }
336 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)337 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
338 {
339 	struct tcp_sock *tp = tcp_sk(sk);
340 
341 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
342 	case INET_ECN_NOT_ECT:
343 		/* Funny extension: if ECT is not set on a segment,
344 		 * and we already seen ECT on a previous segment,
345 		 * it is probably a retransmit.
346 		 */
347 		if (tp->ecn_flags & TCP_ECN_SEEN)
348 			tcp_enter_quickack_mode(sk, 2);
349 		break;
350 	case INET_ECN_CE:
351 		if (tcp_ca_needs_ecn(sk))
352 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
353 
354 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
355 			/* Better not delay acks, sender can have a very low cwnd */
356 			tcp_enter_quickack_mode(sk, 2);
357 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
358 		}
359 		tp->ecn_flags |= TCP_ECN_SEEN;
360 		break;
361 	default:
362 		if (tcp_ca_needs_ecn(sk))
363 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
364 		tp->ecn_flags |= TCP_ECN_SEEN;
365 		break;
366 	}
367 }
368 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)369 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
370 {
371 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
372 		__tcp_ecn_check_ce(sk, skb);
373 }
374 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)375 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
376 {
377 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
378 		tp->ecn_flags &= ~TCP_ECN_OK;
379 }
380 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)381 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
382 {
383 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
384 		tp->ecn_flags &= ~TCP_ECN_OK;
385 }
386 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)387 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
388 {
389 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
390 		return true;
391 	return false;
392 }
393 
394 /* Buffer size and advertised window tuning.
395  *
396  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
397  */
398 
tcp_sndbuf_expand(struct sock * sk)399 static void tcp_sndbuf_expand(struct sock *sk)
400 {
401 	const struct tcp_sock *tp = tcp_sk(sk);
402 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
403 	int sndmem, per_mss;
404 	u32 nr_segs;
405 
406 	/* Worst case is non GSO/TSO : each frame consumes one skb
407 	 * and skb->head is kmalloced using power of two area of memory
408 	 */
409 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
410 		  MAX_TCP_HEADER +
411 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
412 
413 	per_mss = roundup_pow_of_two(per_mss) +
414 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
415 
416 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
417 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
418 
419 	/* Fast Recovery (RFC 5681 3.2) :
420 	 * Cubic needs 1.7 factor, rounded to 2 to include
421 	 * extra cushion (application might react slowly to EPOLLOUT)
422 	 */
423 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
424 	sndmem *= nr_segs * per_mss;
425 
426 	if (sk->sk_sndbuf < sndmem)
427 		WRITE_ONCE(sk->sk_sndbuf,
428 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
429 }
430 
431 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
432  *
433  * All tcp_full_space() is split to two parts: "network" buffer, allocated
434  * forward and advertised in receiver window (tp->rcv_wnd) and
435  * "application buffer", required to isolate scheduling/application
436  * latencies from network.
437  * window_clamp is maximal advertised window. It can be less than
438  * tcp_full_space(), in this case tcp_full_space() - window_clamp
439  * is reserved for "application" buffer. The less window_clamp is
440  * the smoother our behaviour from viewpoint of network, but the lower
441  * throughput and the higher sensitivity of the connection to losses. 8)
442  *
443  * rcv_ssthresh is more strict window_clamp used at "slow start"
444  * phase to predict further behaviour of this connection.
445  * It is used for two goals:
446  * - to enforce header prediction at sender, even when application
447  *   requires some significant "application buffer". It is check #1.
448  * - to prevent pruning of receive queue because of misprediction
449  *   of receiver window. Check #2.
450  *
451  * The scheme does not work when sender sends good segments opening
452  * window and then starts to feed us spaghetti. But it should work
453  * in common situations. Otherwise, we have to rely on queue collapsing.
454  */
455 
456 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)457 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
458 			     unsigned int skbtruesize)
459 {
460 	struct tcp_sock *tp = tcp_sk(sk);
461 	/* Optimize this! */
462 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
463 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
464 
465 	while (tp->rcv_ssthresh <= window) {
466 		if (truesize <= skb->len)
467 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
468 
469 		truesize >>= 1;
470 		window >>= 1;
471 	}
472 	return 0;
473 }
474 
475 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
476  * can play nice with us, as sk_buff and skb->head might be either
477  * freed or shared with up to MAX_SKB_FRAGS segments.
478  * Only give a boost to drivers using page frag(s) to hold the frame(s),
479  * and if no payload was pulled in skb->head before reaching us.
480  */
truesize_adjust(bool adjust,const struct sk_buff * skb)481 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
482 {
483 	u32 truesize = skb->truesize;
484 
485 	if (adjust && !skb_headlen(skb)) {
486 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
487 		/* paranoid check, some drivers might be buggy */
488 		if (unlikely((int)truesize < (int)skb->len))
489 			truesize = skb->truesize;
490 	}
491 	return truesize;
492 }
493 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)494 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
495 			    bool adjust)
496 {
497 	struct tcp_sock *tp = tcp_sk(sk);
498 	int room;
499 
500 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
501 
502 	/* Check #1 */
503 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
504 		unsigned int truesize = truesize_adjust(adjust, skb);
505 		int incr;
506 
507 		/* Check #2. Increase window, if skb with such overhead
508 		 * will fit to rcvbuf in future.
509 		 */
510 		if (tcp_win_from_space(sk, truesize) <= skb->len)
511 			incr = 2 * tp->advmss;
512 		else
513 			incr = __tcp_grow_window(sk, skb, truesize);
514 
515 		if (incr) {
516 			incr = max_t(int, incr, 2 * skb->len);
517 			tp->rcv_ssthresh += min(room, incr);
518 			inet_csk(sk)->icsk_ack.quick |= 1;
519 		}
520 	}
521 }
522 
523 /* 3. Try to fixup all. It is made immediately after connection enters
524  *    established state.
525  */
tcp_init_buffer_space(struct sock * sk)526 static void tcp_init_buffer_space(struct sock *sk)
527 {
528 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
529 	struct tcp_sock *tp = tcp_sk(sk);
530 	int maxwin;
531 
532 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
533 		tcp_sndbuf_expand(sk);
534 
535 	tcp_mstamp_refresh(tp);
536 	tp->rcvq_space.time = tp->tcp_mstamp;
537 	tp->rcvq_space.seq = tp->copied_seq;
538 
539 	maxwin = tcp_full_space(sk);
540 
541 	if (tp->window_clamp >= maxwin) {
542 		tp->window_clamp = maxwin;
543 
544 		if (tcp_app_win && maxwin > 4 * tp->advmss)
545 			tp->window_clamp = max(maxwin -
546 					       (maxwin >> tcp_app_win),
547 					       4 * tp->advmss);
548 	}
549 
550 	/* Force reservation of one segment. */
551 	if (tcp_app_win &&
552 	    tp->window_clamp > 2 * tp->advmss &&
553 	    tp->window_clamp + tp->advmss > maxwin)
554 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
555 
556 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
557 	tp->snd_cwnd_stamp = tcp_jiffies32;
558 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
559 				    (u32)TCP_INIT_CWND * tp->advmss);
560 }
561 
562 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)563 static void tcp_clamp_window(struct sock *sk)
564 {
565 	struct tcp_sock *tp = tcp_sk(sk);
566 	struct inet_connection_sock *icsk = inet_csk(sk);
567 	struct net *net = sock_net(sk);
568 	int rmem2;
569 
570 	icsk->icsk_ack.quick = 0;
571 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
572 
573 	if (sk->sk_rcvbuf < rmem2 &&
574 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
575 	    !tcp_under_memory_pressure(sk) &&
576 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
577 		WRITE_ONCE(sk->sk_rcvbuf,
578 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
579 	}
580 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
581 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
582 }
583 
584 /* Initialize RCV_MSS value.
585  * RCV_MSS is an our guess about MSS used by the peer.
586  * We haven't any direct information about the MSS.
587  * It's better to underestimate the RCV_MSS rather than overestimate.
588  * Overestimations make us ACKing less frequently than needed.
589  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
590  */
tcp_initialize_rcv_mss(struct sock * sk)591 void tcp_initialize_rcv_mss(struct sock *sk)
592 {
593 	const struct tcp_sock *tp = tcp_sk(sk);
594 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
595 
596 	hint = min(hint, tp->rcv_wnd / 2);
597 	hint = min(hint, TCP_MSS_DEFAULT);
598 	hint = max(hint, TCP_MIN_MSS);
599 
600 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
601 }
602 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
603 
604 /* Receiver "autotuning" code.
605  *
606  * The algorithm for RTT estimation w/o timestamps is based on
607  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
608  * <https://public.lanl.gov/radiant/pubs.html#DRS>
609  *
610  * More detail on this code can be found at
611  * <http://staff.psc.edu/jheffner/>,
612  * though this reference is out of date.  A new paper
613  * is pending.
614  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)615 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
616 {
617 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
618 	long m = sample;
619 
620 	if (new_sample != 0) {
621 		/* If we sample in larger samples in the non-timestamp
622 		 * case, we could grossly overestimate the RTT especially
623 		 * with chatty applications or bulk transfer apps which
624 		 * are stalled on filesystem I/O.
625 		 *
626 		 * Also, since we are only going for a minimum in the
627 		 * non-timestamp case, we do not smooth things out
628 		 * else with timestamps disabled convergence takes too
629 		 * long.
630 		 */
631 		if (!win_dep) {
632 			m -= (new_sample >> 3);
633 			new_sample += m;
634 		} else {
635 			m <<= 3;
636 			if (m < new_sample)
637 				new_sample = m;
638 		}
639 	} else {
640 		/* No previous measure. */
641 		new_sample = m << 3;
642 	}
643 
644 	tp->rcv_rtt_est.rtt_us = new_sample;
645 }
646 
tcp_rcv_rtt_measure(struct tcp_sock * tp)647 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
648 {
649 	u32 delta_us;
650 
651 	if (tp->rcv_rtt_est.time == 0)
652 		goto new_measure;
653 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
654 		return;
655 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
656 	if (!delta_us)
657 		delta_us = 1;
658 	tcp_rcv_rtt_update(tp, delta_us, 1);
659 
660 new_measure:
661 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
662 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
663 }
664 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)665 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
666 					  const struct sk_buff *skb)
667 {
668 	struct tcp_sock *tp = tcp_sk(sk);
669 
670 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
671 		return;
672 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
673 
674 	if (TCP_SKB_CB(skb)->end_seq -
675 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
676 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
677 		u32 delta_us;
678 
679 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
680 			if (!delta)
681 				delta = 1;
682 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
683 			tcp_rcv_rtt_update(tp, delta_us, 0);
684 		}
685 	}
686 }
687 
688 /*
689  * This function should be called every time data is copied to user space.
690  * It calculates the appropriate TCP receive buffer space.
691  */
tcp_rcv_space_adjust(struct sock * sk)692 void tcp_rcv_space_adjust(struct sock *sk)
693 {
694 	struct tcp_sock *tp = tcp_sk(sk);
695 	u32 copied;
696 	int time;
697 
698 	trace_tcp_rcv_space_adjust(sk);
699 
700 	tcp_mstamp_refresh(tp);
701 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
702 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
703 		return;
704 
705 	/* Number of bytes copied to user in last RTT */
706 	copied = tp->copied_seq - tp->rcvq_space.seq;
707 	if (copied <= tp->rcvq_space.space)
708 		goto new_measure;
709 
710 	/* A bit of theory :
711 	 * copied = bytes received in previous RTT, our base window
712 	 * To cope with packet losses, we need a 2x factor
713 	 * To cope with slow start, and sender growing its cwin by 100 %
714 	 * every RTT, we need a 4x factor, because the ACK we are sending
715 	 * now is for the next RTT, not the current one :
716 	 * <prev RTT . ><current RTT .. ><next RTT .... >
717 	 */
718 
719 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
720 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
721 		int rcvmem, rcvbuf;
722 		u64 rcvwin, grow;
723 
724 		/* minimal window to cope with packet losses, assuming
725 		 * steady state. Add some cushion because of small variations.
726 		 */
727 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
728 
729 		/* Accommodate for sender rate increase (eg. slow start) */
730 		grow = rcvwin * (copied - tp->rcvq_space.space);
731 		do_div(grow, tp->rcvq_space.space);
732 		rcvwin += (grow << 1);
733 
734 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
735 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
736 			rcvmem += 128;
737 
738 		do_div(rcvwin, tp->advmss);
739 		rcvbuf = min_t(u64, rcvwin * rcvmem,
740 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
741 		if (rcvbuf > sk->sk_rcvbuf) {
742 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
743 
744 			/* Make the window clamp follow along.  */
745 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
746 		}
747 	}
748 	tp->rcvq_space.space = copied;
749 
750 new_measure:
751 	tp->rcvq_space.seq = tp->copied_seq;
752 	tp->rcvq_space.time = tp->tcp_mstamp;
753 }
754 
755 /* There is something which you must keep in mind when you analyze the
756  * behavior of the tp->ato delayed ack timeout interval.  When a
757  * connection starts up, we want to ack as quickly as possible.  The
758  * problem is that "good" TCP's do slow start at the beginning of data
759  * transmission.  The means that until we send the first few ACK's the
760  * sender will sit on his end and only queue most of his data, because
761  * he can only send snd_cwnd unacked packets at any given time.  For
762  * each ACK we send, he increments snd_cwnd and transmits more of his
763  * queue.  -DaveM
764  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)765 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
766 {
767 	struct tcp_sock *tp = tcp_sk(sk);
768 	struct inet_connection_sock *icsk = inet_csk(sk);
769 	u32 now;
770 
771 	inet_csk_schedule_ack(sk);
772 
773 	tcp_measure_rcv_mss(sk, skb);
774 
775 	tcp_rcv_rtt_measure(tp);
776 
777 	now = tcp_jiffies32;
778 
779 	if (!icsk->icsk_ack.ato) {
780 		/* The _first_ data packet received, initialize
781 		 * delayed ACK engine.
782 		 */
783 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
784 		icsk->icsk_ack.ato = TCP_ATO_MIN;
785 	} else {
786 		int m = now - icsk->icsk_ack.lrcvtime;
787 
788 		if (m <= TCP_ATO_MIN / 2) {
789 			/* The fastest case is the first. */
790 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
791 		} else if (m < icsk->icsk_ack.ato) {
792 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
793 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
794 				icsk->icsk_ack.ato = icsk->icsk_rto;
795 		} else if (m > icsk->icsk_rto) {
796 			/* Too long gap. Apparently sender failed to
797 			 * restart window, so that we send ACKs quickly.
798 			 */
799 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
800 			sk_mem_reclaim(sk);
801 		}
802 	}
803 	icsk->icsk_ack.lrcvtime = now;
804 
805 	tcp_ecn_check_ce(sk, skb);
806 
807 	if (skb->len >= 128)
808 		tcp_grow_window(sk, skb, true);
809 }
810 
811 /* Called to compute a smoothed rtt estimate. The data fed to this
812  * routine either comes from timestamps, or from segments that were
813  * known _not_ to have been retransmitted [see Karn/Partridge
814  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
815  * piece by Van Jacobson.
816  * NOTE: the next three routines used to be one big routine.
817  * To save cycles in the RFC 1323 implementation it was better to break
818  * it up into three procedures. -- erics
819  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)820 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
821 {
822 	struct tcp_sock *tp = tcp_sk(sk);
823 	long m = mrtt_us; /* RTT */
824 	u32 srtt = tp->srtt_us;
825 
826 	/*	The following amusing code comes from Jacobson's
827 	 *	article in SIGCOMM '88.  Note that rtt and mdev
828 	 *	are scaled versions of rtt and mean deviation.
829 	 *	This is designed to be as fast as possible
830 	 *	m stands for "measurement".
831 	 *
832 	 *	On a 1990 paper the rto value is changed to:
833 	 *	RTO = rtt + 4 * mdev
834 	 *
835 	 * Funny. This algorithm seems to be very broken.
836 	 * These formulae increase RTO, when it should be decreased, increase
837 	 * too slowly, when it should be increased quickly, decrease too quickly
838 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
839 	 * does not matter how to _calculate_ it. Seems, it was trap
840 	 * that VJ failed to avoid. 8)
841 	 */
842 	if (srtt != 0) {
843 		m -= (srtt >> 3);	/* m is now error in rtt est */
844 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
845 		if (m < 0) {
846 			m = -m;		/* m is now abs(error) */
847 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
848 			/* This is similar to one of Eifel findings.
849 			 * Eifel blocks mdev updates when rtt decreases.
850 			 * This solution is a bit different: we use finer gain
851 			 * for mdev in this case (alpha*beta).
852 			 * Like Eifel it also prevents growth of rto,
853 			 * but also it limits too fast rto decreases,
854 			 * happening in pure Eifel.
855 			 */
856 			if (m > 0)
857 				m >>= 3;
858 		} else {
859 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
860 		}
861 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
862 		if (tp->mdev_us > tp->mdev_max_us) {
863 			tp->mdev_max_us = tp->mdev_us;
864 			if (tp->mdev_max_us > tp->rttvar_us)
865 				tp->rttvar_us = tp->mdev_max_us;
866 		}
867 		if (after(tp->snd_una, tp->rtt_seq)) {
868 			if (tp->mdev_max_us < tp->rttvar_us)
869 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
870 			tp->rtt_seq = tp->snd_nxt;
871 			tp->mdev_max_us = tcp_rto_min_us(sk);
872 
873 			tcp_bpf_rtt(sk);
874 		}
875 	} else {
876 		/* no previous measure. */
877 		srtt = m << 3;		/* take the measured time to be rtt */
878 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
879 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
880 		tp->mdev_max_us = tp->rttvar_us;
881 		tp->rtt_seq = tp->snd_nxt;
882 
883 		tcp_bpf_rtt(sk);
884 	}
885 	tp->srtt_us = max(1U, srtt);
886 }
887 
tcp_update_pacing_rate(struct sock * sk)888 static void tcp_update_pacing_rate(struct sock *sk)
889 {
890 	const struct tcp_sock *tp = tcp_sk(sk);
891 	u64 rate;
892 
893 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
894 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
895 
896 	/* current rate is (cwnd * mss) / srtt
897 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
898 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
899 	 *
900 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
901 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
902 	 *	 end of slow start and should slow down.
903 	 */
904 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
905 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
906 	else
907 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
908 
909 	rate *= max(tp->snd_cwnd, tp->packets_out);
910 
911 	if (likely(tp->srtt_us))
912 		do_div(rate, tp->srtt_us);
913 
914 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
915 	 * without any lock. We want to make sure compiler wont store
916 	 * intermediate values in this location.
917 	 */
918 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
919 					     sk->sk_max_pacing_rate));
920 }
921 
922 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
923  * routine referred to above.
924  */
tcp_set_rto(struct sock * sk)925 static void tcp_set_rto(struct sock *sk)
926 {
927 	const struct tcp_sock *tp = tcp_sk(sk);
928 	/* Old crap is replaced with new one. 8)
929 	 *
930 	 * More seriously:
931 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
932 	 *    It cannot be less due to utterly erratic ACK generation made
933 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
934 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
935 	 *    is invisible. Actually, Linux-2.4 also generates erratic
936 	 *    ACKs in some circumstances.
937 	 */
938 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
939 
940 	/* 2. Fixups made earlier cannot be right.
941 	 *    If we do not estimate RTO correctly without them,
942 	 *    all the algo is pure shit and should be replaced
943 	 *    with correct one. It is exactly, which we pretend to do.
944 	 */
945 
946 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
947 	 * guarantees that rto is higher.
948 	 */
949 	tcp_bound_rto(sk);
950 }
951 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)952 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
953 {
954 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
955 
956 	if (!cwnd)
957 		cwnd = TCP_INIT_CWND;
958 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
959 }
960 
961 struct tcp_sacktag_state {
962 	/* Timestamps for earliest and latest never-retransmitted segment
963 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
964 	 * but congestion control should still get an accurate delay signal.
965 	 */
966 	u64	first_sackt;
967 	u64	last_sackt;
968 	u32	reord;
969 	u32	sack_delivered;
970 	int	flag;
971 	unsigned int mss_now;
972 	struct rate_sample *rate;
973 };
974 
975 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
976  * and spurious retransmission information if this DSACK is unlikely caused by
977  * sender's action:
978  * - DSACKed sequence range is larger than maximum receiver's window.
979  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
980  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)981 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
982 			  u32 end_seq, struct tcp_sacktag_state *state)
983 {
984 	u32 seq_len, dup_segs = 1;
985 
986 	if (!before(start_seq, end_seq))
987 		return 0;
988 
989 	seq_len = end_seq - start_seq;
990 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
991 	if (seq_len > tp->max_window)
992 		return 0;
993 	if (seq_len > tp->mss_cache)
994 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
995 
996 	tp->dsack_dups += dup_segs;
997 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
998 	if (tp->dsack_dups > tp->total_retrans)
999 		return 0;
1000 
1001 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1002 	tp->rack.dsack_seen = 1;
1003 
1004 	state->flag |= FLAG_DSACKING_ACK;
1005 	/* A spurious retransmission is delivered */
1006 	state->sack_delivered += dup_segs;
1007 
1008 	return dup_segs;
1009 }
1010 
1011 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1012  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1013  * distance is approximated in full-mss packet distance ("reordering").
1014  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1015 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1016 				      const int ts)
1017 {
1018 	struct tcp_sock *tp = tcp_sk(sk);
1019 	const u32 mss = tp->mss_cache;
1020 	u32 fack, metric;
1021 
1022 	fack = tcp_highest_sack_seq(tp);
1023 	if (!before(low_seq, fack))
1024 		return;
1025 
1026 	metric = fack - low_seq;
1027 	if ((metric > tp->reordering * mss) && mss) {
1028 #if FASTRETRANS_DEBUG > 1
1029 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1030 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1031 			 tp->reordering,
1032 			 0,
1033 			 tp->sacked_out,
1034 			 tp->undo_marker ? tp->undo_retrans : 0);
1035 #endif
1036 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1037 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1038 	}
1039 
1040 	/* This exciting event is worth to be remembered. 8) */
1041 	tp->reord_seen++;
1042 	NET_INC_STATS(sock_net(sk),
1043 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1044 }
1045 
1046  /* This must be called before lost_out or retrans_out are updated
1047   * on a new loss, because we want to know if all skbs previously
1048   * known to be lost have already been retransmitted, indicating
1049   * that this newly lost skb is our next skb to retransmit.
1050   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1051 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1052 {
1053 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1054 	    (tp->retransmit_skb_hint &&
1055 	     before(TCP_SKB_CB(skb)->seq,
1056 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1057 		tp->retransmit_skb_hint = skb;
1058 }
1059 
1060 /* Sum the number of packets on the wire we have marked as lost, and
1061  * notify the congestion control module that the given skb was marked lost.
1062  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1063 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1064 {
1065 	tp->lost += tcp_skb_pcount(skb);
1066 }
1067 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1068 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1069 {
1070 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1071 	struct tcp_sock *tp = tcp_sk(sk);
1072 
1073 	if (sacked & TCPCB_SACKED_ACKED)
1074 		return;
1075 
1076 	tcp_verify_retransmit_hint(tp, skb);
1077 	if (sacked & TCPCB_LOST) {
1078 		if (sacked & TCPCB_SACKED_RETRANS) {
1079 			/* Account for retransmits that are lost again */
1080 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1081 			tp->retrans_out -= tcp_skb_pcount(skb);
1082 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1083 				      tcp_skb_pcount(skb));
1084 			tcp_notify_skb_loss_event(tp, skb);
1085 		}
1086 	} else {
1087 		tp->lost_out += tcp_skb_pcount(skb);
1088 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1089 		tcp_notify_skb_loss_event(tp, skb);
1090 	}
1091 }
1092 
1093 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1094 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1095 				bool ece_ack)
1096 {
1097 	tp->delivered += delivered;
1098 	if (ece_ack)
1099 		tp->delivered_ce += delivered;
1100 }
1101 
1102 /* This procedure tags the retransmission queue when SACKs arrive.
1103  *
1104  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1105  * Packets in queue with these bits set are counted in variables
1106  * sacked_out, retrans_out and lost_out, correspondingly.
1107  *
1108  * Valid combinations are:
1109  * Tag  InFlight	Description
1110  * 0	1		- orig segment is in flight.
1111  * S	0		- nothing flies, orig reached receiver.
1112  * L	0		- nothing flies, orig lost by net.
1113  * R	2		- both orig and retransmit are in flight.
1114  * L|R	1		- orig is lost, retransmit is in flight.
1115  * S|R  1		- orig reached receiver, retrans is still in flight.
1116  * (L|S|R is logically valid, it could occur when L|R is sacked,
1117  *  but it is equivalent to plain S and code short-curcuits it to S.
1118  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1119  *
1120  * These 6 states form finite state machine, controlled by the following events:
1121  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1122  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1123  * 3. Loss detection event of two flavors:
1124  *	A. Scoreboard estimator decided the packet is lost.
1125  *	   A'. Reno "three dupacks" marks head of queue lost.
1126  *	B. SACK arrives sacking SND.NXT at the moment, when the
1127  *	   segment was retransmitted.
1128  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1129  *
1130  * It is pleasant to note, that state diagram turns out to be commutative,
1131  * so that we are allowed not to be bothered by order of our actions,
1132  * when multiple events arrive simultaneously. (see the function below).
1133  *
1134  * Reordering detection.
1135  * --------------------
1136  * Reordering metric is maximal distance, which a packet can be displaced
1137  * in packet stream. With SACKs we can estimate it:
1138  *
1139  * 1. SACK fills old hole and the corresponding segment was not
1140  *    ever retransmitted -> reordering. Alas, we cannot use it
1141  *    when segment was retransmitted.
1142  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1143  *    for retransmitted and already SACKed segment -> reordering..
1144  * Both of these heuristics are not used in Loss state, when we cannot
1145  * account for retransmits accurately.
1146  *
1147  * SACK block validation.
1148  * ----------------------
1149  *
1150  * SACK block range validation checks that the received SACK block fits to
1151  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1152  * Note that SND.UNA is not included to the range though being valid because
1153  * it means that the receiver is rather inconsistent with itself reporting
1154  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1155  * perfectly valid, however, in light of RFC2018 which explicitly states
1156  * that "SACK block MUST reflect the newest segment.  Even if the newest
1157  * segment is going to be discarded ...", not that it looks very clever
1158  * in case of head skb. Due to potentional receiver driven attacks, we
1159  * choose to avoid immediate execution of a walk in write queue due to
1160  * reneging and defer head skb's loss recovery to standard loss recovery
1161  * procedure that will eventually trigger (nothing forbids us doing this).
1162  *
1163  * Implements also blockage to start_seq wrap-around. Problem lies in the
1164  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1165  * there's no guarantee that it will be before snd_nxt (n). The problem
1166  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1167  * wrap (s_w):
1168  *
1169  *         <- outs wnd ->                          <- wrapzone ->
1170  *         u     e      n                         u_w   e_w  s n_w
1171  *         |     |      |                          |     |   |  |
1172  * |<------------+------+----- TCP seqno space --------------+---------->|
1173  * ...-- <2^31 ->|                                           |<--------...
1174  * ...---- >2^31 ------>|                                    |<--------...
1175  *
1176  * Current code wouldn't be vulnerable but it's better still to discard such
1177  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1178  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1179  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1180  * equal to the ideal case (infinite seqno space without wrap caused issues).
1181  *
1182  * With D-SACK the lower bound is extended to cover sequence space below
1183  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1184  * again, D-SACK block must not to go across snd_una (for the same reason as
1185  * for the normal SACK blocks, explained above). But there all simplicity
1186  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1187  * fully below undo_marker they do not affect behavior in anyway and can
1188  * therefore be safely ignored. In rare cases (which are more or less
1189  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1190  * fragmentation and packet reordering past skb's retransmission. To consider
1191  * them correctly, the acceptable range must be extended even more though
1192  * the exact amount is rather hard to quantify. However, tp->max_window can
1193  * be used as an exaggerated estimate.
1194  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1195 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1196 				   u32 start_seq, u32 end_seq)
1197 {
1198 	/* Too far in future, or reversed (interpretation is ambiguous) */
1199 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1200 		return false;
1201 
1202 	/* Nasty start_seq wrap-around check (see comments above) */
1203 	if (!before(start_seq, tp->snd_nxt))
1204 		return false;
1205 
1206 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1207 	 * start_seq == snd_una is non-sensical (see comments above)
1208 	 */
1209 	if (after(start_seq, tp->snd_una))
1210 		return true;
1211 
1212 	if (!is_dsack || !tp->undo_marker)
1213 		return false;
1214 
1215 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1216 	if (after(end_seq, tp->snd_una))
1217 		return false;
1218 
1219 	if (!before(start_seq, tp->undo_marker))
1220 		return true;
1221 
1222 	/* Too old */
1223 	if (!after(end_seq, tp->undo_marker))
1224 		return false;
1225 
1226 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1227 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1228 	 */
1229 	return !before(start_seq, end_seq - tp->max_window);
1230 }
1231 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1232 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1233 			    struct tcp_sack_block_wire *sp, int num_sacks,
1234 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1235 {
1236 	struct tcp_sock *tp = tcp_sk(sk);
1237 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1238 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1239 	u32 dup_segs;
1240 
1241 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1242 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1243 	} else if (num_sacks > 1) {
1244 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1245 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1246 
1247 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1248 			return false;
1249 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1250 	} else {
1251 		return false;
1252 	}
1253 
1254 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1255 	if (!dup_segs) {	/* Skip dubious DSACK */
1256 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1257 		return false;
1258 	}
1259 
1260 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1261 
1262 	/* D-SACK for already forgotten data... Do dumb counting. */
1263 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1264 	    !after(end_seq_0, prior_snd_una) &&
1265 	    after(end_seq_0, tp->undo_marker))
1266 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1267 
1268 	return true;
1269 }
1270 
1271 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1272  * the incoming SACK may not exactly match but we can find smaller MSS
1273  * aligned portion of it that matches. Therefore we might need to fragment
1274  * which may fail and creates some hassle (caller must handle error case
1275  * returns).
1276  *
1277  * FIXME: this could be merged to shift decision code
1278  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1279 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1280 				  u32 start_seq, u32 end_seq)
1281 {
1282 	int err;
1283 	bool in_sack;
1284 	unsigned int pkt_len;
1285 	unsigned int mss;
1286 
1287 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1288 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1289 
1290 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1291 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1292 		mss = tcp_skb_mss(skb);
1293 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1294 
1295 		if (!in_sack) {
1296 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1297 			if (pkt_len < mss)
1298 				pkt_len = mss;
1299 		} else {
1300 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1301 			if (pkt_len < mss)
1302 				return -EINVAL;
1303 		}
1304 
1305 		/* Round if necessary so that SACKs cover only full MSSes
1306 		 * and/or the remaining small portion (if present)
1307 		 */
1308 		if (pkt_len > mss) {
1309 			unsigned int new_len = (pkt_len / mss) * mss;
1310 			if (!in_sack && new_len < pkt_len)
1311 				new_len += mss;
1312 			pkt_len = new_len;
1313 		}
1314 
1315 		if (pkt_len >= skb->len && !in_sack)
1316 			return 0;
1317 
1318 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1319 				   pkt_len, mss, GFP_ATOMIC);
1320 		if (err < 0)
1321 			return err;
1322 	}
1323 
1324 	return in_sack;
1325 }
1326 
1327 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1328 static u8 tcp_sacktag_one(struct sock *sk,
1329 			  struct tcp_sacktag_state *state, u8 sacked,
1330 			  u32 start_seq, u32 end_seq,
1331 			  int dup_sack, int pcount,
1332 			  u64 xmit_time)
1333 {
1334 	struct tcp_sock *tp = tcp_sk(sk);
1335 
1336 	/* Account D-SACK for retransmitted packet. */
1337 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1338 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1339 		    after(end_seq, tp->undo_marker))
1340 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1341 		if ((sacked & TCPCB_SACKED_ACKED) &&
1342 		    before(start_seq, state->reord))
1343 				state->reord = start_seq;
1344 	}
1345 
1346 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1347 	if (!after(end_seq, tp->snd_una))
1348 		return sacked;
1349 
1350 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1351 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1352 
1353 		if (sacked & TCPCB_SACKED_RETRANS) {
1354 			/* If the segment is not tagged as lost,
1355 			 * we do not clear RETRANS, believing
1356 			 * that retransmission is still in flight.
1357 			 */
1358 			if (sacked & TCPCB_LOST) {
1359 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1360 				tp->lost_out -= pcount;
1361 				tp->retrans_out -= pcount;
1362 			}
1363 		} else {
1364 			if (!(sacked & TCPCB_RETRANS)) {
1365 				/* New sack for not retransmitted frame,
1366 				 * which was in hole. It is reordering.
1367 				 */
1368 				if (before(start_seq,
1369 					   tcp_highest_sack_seq(tp)) &&
1370 				    before(start_seq, state->reord))
1371 					state->reord = start_seq;
1372 
1373 				if (!after(end_seq, tp->high_seq))
1374 					state->flag |= FLAG_ORIG_SACK_ACKED;
1375 				if (state->first_sackt == 0)
1376 					state->first_sackt = xmit_time;
1377 				state->last_sackt = xmit_time;
1378 			}
1379 
1380 			if (sacked & TCPCB_LOST) {
1381 				sacked &= ~TCPCB_LOST;
1382 				tp->lost_out -= pcount;
1383 			}
1384 		}
1385 
1386 		sacked |= TCPCB_SACKED_ACKED;
1387 		state->flag |= FLAG_DATA_SACKED;
1388 		tp->sacked_out += pcount;
1389 		/* Out-of-order packets delivered */
1390 		state->sack_delivered += pcount;
1391 
1392 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1393 		if (tp->lost_skb_hint &&
1394 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1395 			tp->lost_cnt_hint += pcount;
1396 	}
1397 
1398 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1399 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1400 	 * are accounted above as well.
1401 	 */
1402 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1403 		sacked &= ~TCPCB_SACKED_RETRANS;
1404 		tp->retrans_out -= pcount;
1405 	}
1406 
1407 	return sacked;
1408 }
1409 
1410 /* Shift newly-SACKed bytes from this skb to the immediately previous
1411  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1412  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1413 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1414 			    struct sk_buff *skb,
1415 			    struct tcp_sacktag_state *state,
1416 			    unsigned int pcount, int shifted, int mss,
1417 			    bool dup_sack)
1418 {
1419 	struct tcp_sock *tp = tcp_sk(sk);
1420 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1421 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1422 
1423 	BUG_ON(!pcount);
1424 
1425 	/* Adjust counters and hints for the newly sacked sequence
1426 	 * range but discard the return value since prev is already
1427 	 * marked. We must tag the range first because the seq
1428 	 * advancement below implicitly advances
1429 	 * tcp_highest_sack_seq() when skb is highest_sack.
1430 	 */
1431 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1432 			start_seq, end_seq, dup_sack, pcount,
1433 			tcp_skb_timestamp_us(skb));
1434 	tcp_rate_skb_delivered(sk, skb, state->rate);
1435 
1436 	if (skb == tp->lost_skb_hint)
1437 		tp->lost_cnt_hint += pcount;
1438 
1439 	TCP_SKB_CB(prev)->end_seq += shifted;
1440 	TCP_SKB_CB(skb)->seq += shifted;
1441 
1442 	tcp_skb_pcount_add(prev, pcount);
1443 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1444 	tcp_skb_pcount_add(skb, -pcount);
1445 
1446 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1447 	 * in theory this shouldn't be necessary but as long as DSACK
1448 	 * code can come after this skb later on it's better to keep
1449 	 * setting gso_size to something.
1450 	 */
1451 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1452 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1453 
1454 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1455 	if (tcp_skb_pcount(skb) <= 1)
1456 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1457 
1458 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1459 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1460 
1461 	if (skb->len > 0) {
1462 		BUG_ON(!tcp_skb_pcount(skb));
1463 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1464 		return false;
1465 	}
1466 
1467 	/* Whole SKB was eaten :-) */
1468 
1469 	if (skb == tp->retransmit_skb_hint)
1470 		tp->retransmit_skb_hint = prev;
1471 	if (skb == tp->lost_skb_hint) {
1472 		tp->lost_skb_hint = prev;
1473 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1474 	}
1475 
1476 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1477 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1478 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1479 		TCP_SKB_CB(prev)->end_seq++;
1480 
1481 	if (skb == tcp_highest_sack(sk))
1482 		tcp_advance_highest_sack(sk, skb);
1483 
1484 	tcp_skb_collapse_tstamp(prev, skb);
1485 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1486 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1487 
1488 	tcp_rtx_queue_unlink_and_free(skb, sk);
1489 
1490 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1491 
1492 	return true;
1493 }
1494 
1495 /* I wish gso_size would have a bit more sane initialization than
1496  * something-or-zero which complicates things
1497  */
tcp_skb_seglen(const struct sk_buff * skb)1498 static int tcp_skb_seglen(const struct sk_buff *skb)
1499 {
1500 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1501 }
1502 
1503 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1504 static int skb_can_shift(const struct sk_buff *skb)
1505 {
1506 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1507 }
1508 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1509 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1510 		  int pcount, int shiftlen)
1511 {
1512 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1513 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1514 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1515 	 * even if current MSS is bigger.
1516 	 */
1517 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1518 		return 0;
1519 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1520 		return 0;
1521 	return skb_shift(to, from, shiftlen);
1522 }
1523 
1524 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1525  * skb.
1526  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1527 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1528 					  struct tcp_sacktag_state *state,
1529 					  u32 start_seq, u32 end_seq,
1530 					  bool dup_sack)
1531 {
1532 	struct tcp_sock *tp = tcp_sk(sk);
1533 	struct sk_buff *prev;
1534 	int mss;
1535 	int pcount = 0;
1536 	int len;
1537 	int in_sack;
1538 
1539 	/* Normally R but no L won't result in plain S */
1540 	if (!dup_sack &&
1541 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1542 		goto fallback;
1543 	if (!skb_can_shift(skb))
1544 		goto fallback;
1545 	/* This frame is about to be dropped (was ACKed). */
1546 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1547 		goto fallback;
1548 
1549 	/* Can only happen with delayed DSACK + discard craziness */
1550 	prev = skb_rb_prev(skb);
1551 	if (!prev)
1552 		goto fallback;
1553 
1554 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1555 		goto fallback;
1556 
1557 	if (!tcp_skb_can_collapse(prev, skb))
1558 		goto fallback;
1559 
1560 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1561 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1562 
1563 	if (in_sack) {
1564 		len = skb->len;
1565 		pcount = tcp_skb_pcount(skb);
1566 		mss = tcp_skb_seglen(skb);
1567 
1568 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1569 		 * drop this restriction as unnecessary
1570 		 */
1571 		if (mss != tcp_skb_seglen(prev))
1572 			goto fallback;
1573 	} else {
1574 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1575 			goto noop;
1576 		/* CHECKME: This is non-MSS split case only?, this will
1577 		 * cause skipped skbs due to advancing loop btw, original
1578 		 * has that feature too
1579 		 */
1580 		if (tcp_skb_pcount(skb) <= 1)
1581 			goto noop;
1582 
1583 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1584 		if (!in_sack) {
1585 			/* TODO: head merge to next could be attempted here
1586 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1587 			 * though it might not be worth of the additional hassle
1588 			 *
1589 			 * ...we can probably just fallback to what was done
1590 			 * previously. We could try merging non-SACKed ones
1591 			 * as well but it probably isn't going to buy off
1592 			 * because later SACKs might again split them, and
1593 			 * it would make skb timestamp tracking considerably
1594 			 * harder problem.
1595 			 */
1596 			goto fallback;
1597 		}
1598 
1599 		len = end_seq - TCP_SKB_CB(skb)->seq;
1600 		BUG_ON(len < 0);
1601 		BUG_ON(len > skb->len);
1602 
1603 		/* MSS boundaries should be honoured or else pcount will
1604 		 * severely break even though it makes things bit trickier.
1605 		 * Optimize common case to avoid most of the divides
1606 		 */
1607 		mss = tcp_skb_mss(skb);
1608 
1609 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1610 		 * drop this restriction as unnecessary
1611 		 */
1612 		if (mss != tcp_skb_seglen(prev))
1613 			goto fallback;
1614 
1615 		if (len == mss) {
1616 			pcount = 1;
1617 		} else if (len < mss) {
1618 			goto noop;
1619 		} else {
1620 			pcount = len / mss;
1621 			len = pcount * mss;
1622 		}
1623 	}
1624 
1625 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1626 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1627 		goto fallback;
1628 
1629 	if (!tcp_skb_shift(prev, skb, pcount, len))
1630 		goto fallback;
1631 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1632 		goto out;
1633 
1634 	/* Hole filled allows collapsing with the next as well, this is very
1635 	 * useful when hole on every nth skb pattern happens
1636 	 */
1637 	skb = skb_rb_next(prev);
1638 	if (!skb)
1639 		goto out;
1640 
1641 	if (!skb_can_shift(skb) ||
1642 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1643 	    (mss != tcp_skb_seglen(skb)))
1644 		goto out;
1645 
1646 	if (!tcp_skb_can_collapse(prev, skb))
1647 		goto out;
1648 	len = skb->len;
1649 	pcount = tcp_skb_pcount(skb);
1650 	if (tcp_skb_shift(prev, skb, pcount, len))
1651 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1652 				len, mss, 0);
1653 
1654 out:
1655 	return prev;
1656 
1657 noop:
1658 	return skb;
1659 
1660 fallback:
1661 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1662 	return NULL;
1663 }
1664 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1665 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1666 					struct tcp_sack_block *next_dup,
1667 					struct tcp_sacktag_state *state,
1668 					u32 start_seq, u32 end_seq,
1669 					bool dup_sack_in)
1670 {
1671 	struct tcp_sock *tp = tcp_sk(sk);
1672 	struct sk_buff *tmp;
1673 
1674 	skb_rbtree_walk_from(skb) {
1675 		int in_sack = 0;
1676 		bool dup_sack = dup_sack_in;
1677 
1678 		/* queue is in-order => we can short-circuit the walk early */
1679 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1680 			break;
1681 
1682 		if (next_dup  &&
1683 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1684 			in_sack = tcp_match_skb_to_sack(sk, skb,
1685 							next_dup->start_seq,
1686 							next_dup->end_seq);
1687 			if (in_sack > 0)
1688 				dup_sack = true;
1689 		}
1690 
1691 		/* skb reference here is a bit tricky to get right, since
1692 		 * shifting can eat and free both this skb and the next,
1693 		 * so not even _safe variant of the loop is enough.
1694 		 */
1695 		if (in_sack <= 0) {
1696 			tmp = tcp_shift_skb_data(sk, skb, state,
1697 						 start_seq, end_seq, dup_sack);
1698 			if (tmp) {
1699 				if (tmp != skb) {
1700 					skb = tmp;
1701 					continue;
1702 				}
1703 
1704 				in_sack = 0;
1705 			} else {
1706 				in_sack = tcp_match_skb_to_sack(sk, skb,
1707 								start_seq,
1708 								end_seq);
1709 			}
1710 		}
1711 
1712 		if (unlikely(in_sack < 0))
1713 			break;
1714 
1715 		if (in_sack) {
1716 			TCP_SKB_CB(skb)->sacked =
1717 				tcp_sacktag_one(sk,
1718 						state,
1719 						TCP_SKB_CB(skb)->sacked,
1720 						TCP_SKB_CB(skb)->seq,
1721 						TCP_SKB_CB(skb)->end_seq,
1722 						dup_sack,
1723 						tcp_skb_pcount(skb),
1724 						tcp_skb_timestamp_us(skb));
1725 			tcp_rate_skb_delivered(sk, skb, state->rate);
1726 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1727 				list_del_init(&skb->tcp_tsorted_anchor);
1728 
1729 			if (!before(TCP_SKB_CB(skb)->seq,
1730 				    tcp_highest_sack_seq(tp)))
1731 				tcp_advance_highest_sack(sk, skb);
1732 		}
1733 	}
1734 	return skb;
1735 }
1736 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1737 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1738 {
1739 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1740 	struct sk_buff *skb;
1741 
1742 	while (*p) {
1743 		parent = *p;
1744 		skb = rb_to_skb(parent);
1745 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1746 			p = &parent->rb_left;
1747 			continue;
1748 		}
1749 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1750 			p = &parent->rb_right;
1751 			continue;
1752 		}
1753 		return skb;
1754 	}
1755 	return NULL;
1756 }
1757 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1758 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1759 					u32 skip_to_seq)
1760 {
1761 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1762 		return skb;
1763 
1764 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1765 }
1766 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1767 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1768 						struct sock *sk,
1769 						struct tcp_sack_block *next_dup,
1770 						struct tcp_sacktag_state *state,
1771 						u32 skip_to_seq)
1772 {
1773 	if (!next_dup)
1774 		return skb;
1775 
1776 	if (before(next_dup->start_seq, skip_to_seq)) {
1777 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1778 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1779 				       next_dup->start_seq, next_dup->end_seq,
1780 				       1);
1781 	}
1782 
1783 	return skb;
1784 }
1785 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1786 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1787 {
1788 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1789 }
1790 
1791 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1792 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1793 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1794 {
1795 	struct tcp_sock *tp = tcp_sk(sk);
1796 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1797 				    TCP_SKB_CB(ack_skb)->sacked);
1798 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1799 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1800 	struct tcp_sack_block *cache;
1801 	struct sk_buff *skb;
1802 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1803 	int used_sacks;
1804 	bool found_dup_sack = false;
1805 	int i, j;
1806 	int first_sack_index;
1807 
1808 	state->flag = 0;
1809 	state->reord = tp->snd_nxt;
1810 
1811 	if (!tp->sacked_out)
1812 		tcp_highest_sack_reset(sk);
1813 
1814 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1815 					 num_sacks, prior_snd_una, state);
1816 
1817 	/* Eliminate too old ACKs, but take into
1818 	 * account more or less fresh ones, they can
1819 	 * contain valid SACK info.
1820 	 */
1821 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1822 		return 0;
1823 
1824 	if (!tp->packets_out)
1825 		goto out;
1826 
1827 	used_sacks = 0;
1828 	first_sack_index = 0;
1829 	for (i = 0; i < num_sacks; i++) {
1830 		bool dup_sack = !i && found_dup_sack;
1831 
1832 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1833 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1834 
1835 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1836 					    sp[used_sacks].start_seq,
1837 					    sp[used_sacks].end_seq)) {
1838 			int mib_idx;
1839 
1840 			if (dup_sack) {
1841 				if (!tp->undo_marker)
1842 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1843 				else
1844 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1845 			} else {
1846 				/* Don't count olds caused by ACK reordering */
1847 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1848 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1849 					continue;
1850 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1851 			}
1852 
1853 			NET_INC_STATS(sock_net(sk), mib_idx);
1854 			if (i == 0)
1855 				first_sack_index = -1;
1856 			continue;
1857 		}
1858 
1859 		/* Ignore very old stuff early */
1860 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1861 			if (i == 0)
1862 				first_sack_index = -1;
1863 			continue;
1864 		}
1865 
1866 		used_sacks++;
1867 	}
1868 
1869 	/* order SACK blocks to allow in order walk of the retrans queue */
1870 	for (i = used_sacks - 1; i > 0; i--) {
1871 		for (j = 0; j < i; j++) {
1872 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1873 				swap(sp[j], sp[j + 1]);
1874 
1875 				/* Track where the first SACK block goes to */
1876 				if (j == first_sack_index)
1877 					first_sack_index = j + 1;
1878 			}
1879 		}
1880 	}
1881 
1882 	state->mss_now = tcp_current_mss(sk);
1883 	skb = NULL;
1884 	i = 0;
1885 
1886 	if (!tp->sacked_out) {
1887 		/* It's already past, so skip checking against it */
1888 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1889 	} else {
1890 		cache = tp->recv_sack_cache;
1891 		/* Skip empty blocks in at head of the cache */
1892 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1893 		       !cache->end_seq)
1894 			cache++;
1895 	}
1896 
1897 	while (i < used_sacks) {
1898 		u32 start_seq = sp[i].start_seq;
1899 		u32 end_seq = sp[i].end_seq;
1900 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1901 		struct tcp_sack_block *next_dup = NULL;
1902 
1903 		if (found_dup_sack && ((i + 1) == first_sack_index))
1904 			next_dup = &sp[i + 1];
1905 
1906 		/* Skip too early cached blocks */
1907 		while (tcp_sack_cache_ok(tp, cache) &&
1908 		       !before(start_seq, cache->end_seq))
1909 			cache++;
1910 
1911 		/* Can skip some work by looking recv_sack_cache? */
1912 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1913 		    after(end_seq, cache->start_seq)) {
1914 
1915 			/* Head todo? */
1916 			if (before(start_seq, cache->start_seq)) {
1917 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1918 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1919 						       state,
1920 						       start_seq,
1921 						       cache->start_seq,
1922 						       dup_sack);
1923 			}
1924 
1925 			/* Rest of the block already fully processed? */
1926 			if (!after(end_seq, cache->end_seq))
1927 				goto advance_sp;
1928 
1929 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1930 						       state,
1931 						       cache->end_seq);
1932 
1933 			/* ...tail remains todo... */
1934 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1935 				/* ...but better entrypoint exists! */
1936 				skb = tcp_highest_sack(sk);
1937 				if (!skb)
1938 					break;
1939 				cache++;
1940 				goto walk;
1941 			}
1942 
1943 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1944 			/* Check overlap against next cached too (past this one already) */
1945 			cache++;
1946 			continue;
1947 		}
1948 
1949 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1950 			skb = tcp_highest_sack(sk);
1951 			if (!skb)
1952 				break;
1953 		}
1954 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1955 
1956 walk:
1957 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1958 				       start_seq, end_seq, dup_sack);
1959 
1960 advance_sp:
1961 		i++;
1962 	}
1963 
1964 	/* Clear the head of the cache sack blocks so we can skip it next time */
1965 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1966 		tp->recv_sack_cache[i].start_seq = 0;
1967 		tp->recv_sack_cache[i].end_seq = 0;
1968 	}
1969 	for (j = 0; j < used_sacks; j++)
1970 		tp->recv_sack_cache[i++] = sp[j];
1971 
1972 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1973 		tcp_check_sack_reordering(sk, state->reord, 0);
1974 
1975 	tcp_verify_left_out(tp);
1976 out:
1977 
1978 #if FASTRETRANS_DEBUG > 0
1979 	WARN_ON((int)tp->sacked_out < 0);
1980 	WARN_ON((int)tp->lost_out < 0);
1981 	WARN_ON((int)tp->retrans_out < 0);
1982 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1983 #endif
1984 	return state->flag;
1985 }
1986 
1987 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1988  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1989  */
tcp_limit_reno_sacked(struct tcp_sock * tp)1990 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1991 {
1992 	u32 holes;
1993 
1994 	holes = max(tp->lost_out, 1U);
1995 	holes = min(holes, tp->packets_out);
1996 
1997 	if ((tp->sacked_out + holes) > tp->packets_out) {
1998 		tp->sacked_out = tp->packets_out - holes;
1999 		return true;
2000 	}
2001 	return false;
2002 }
2003 
2004 /* If we receive more dupacks than we expected counting segments
2005  * in assumption of absent reordering, interpret this as reordering.
2006  * The only another reason could be bug in receiver TCP.
2007  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2008 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2009 {
2010 	struct tcp_sock *tp = tcp_sk(sk);
2011 
2012 	if (!tcp_limit_reno_sacked(tp))
2013 		return;
2014 
2015 	tp->reordering = min_t(u32, tp->packets_out + addend,
2016 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2017 	tp->reord_seen++;
2018 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2019 }
2020 
2021 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2022 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2023 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2024 {
2025 	if (num_dupack) {
2026 		struct tcp_sock *tp = tcp_sk(sk);
2027 		u32 prior_sacked = tp->sacked_out;
2028 		s32 delivered;
2029 
2030 		tp->sacked_out += num_dupack;
2031 		tcp_check_reno_reordering(sk, 0);
2032 		delivered = tp->sacked_out - prior_sacked;
2033 		if (delivered > 0)
2034 			tcp_count_delivered(tp, delivered, ece_ack);
2035 		tcp_verify_left_out(tp);
2036 	}
2037 }
2038 
2039 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2040 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2041 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2042 {
2043 	struct tcp_sock *tp = tcp_sk(sk);
2044 
2045 	if (acked > 0) {
2046 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2047 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2048 				    ece_ack);
2049 		if (acked - 1 >= tp->sacked_out)
2050 			tp->sacked_out = 0;
2051 		else
2052 			tp->sacked_out -= acked - 1;
2053 	}
2054 	tcp_check_reno_reordering(sk, acked);
2055 	tcp_verify_left_out(tp);
2056 }
2057 
tcp_reset_reno_sack(struct tcp_sock * tp)2058 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2059 {
2060 	tp->sacked_out = 0;
2061 }
2062 
tcp_clear_retrans(struct tcp_sock * tp)2063 void tcp_clear_retrans(struct tcp_sock *tp)
2064 {
2065 	tp->retrans_out = 0;
2066 	tp->lost_out = 0;
2067 	tp->undo_marker = 0;
2068 	tp->undo_retrans = -1;
2069 	tp->sacked_out = 0;
2070 }
2071 
tcp_init_undo(struct tcp_sock * tp)2072 static inline void tcp_init_undo(struct tcp_sock *tp)
2073 {
2074 	tp->undo_marker = tp->snd_una;
2075 	/* Retransmission still in flight may cause DSACKs later. */
2076 	tp->undo_retrans = tp->retrans_out ? : -1;
2077 }
2078 
tcp_is_rack(const struct sock * sk)2079 static bool tcp_is_rack(const struct sock *sk)
2080 {
2081 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2082 		TCP_RACK_LOSS_DETECTION;
2083 }
2084 
2085 /* If we detect SACK reneging, forget all SACK information
2086  * and reset tags completely, otherwise preserve SACKs. If receiver
2087  * dropped its ofo queue, we will know this due to reneging detection.
2088  */
tcp_timeout_mark_lost(struct sock * sk)2089 static void tcp_timeout_mark_lost(struct sock *sk)
2090 {
2091 	struct tcp_sock *tp = tcp_sk(sk);
2092 	struct sk_buff *skb, *head;
2093 	bool is_reneg;			/* is receiver reneging on SACKs? */
2094 
2095 	head = tcp_rtx_queue_head(sk);
2096 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2097 	if (is_reneg) {
2098 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2099 		tp->sacked_out = 0;
2100 		/* Mark SACK reneging until we recover from this loss event. */
2101 		tp->is_sack_reneg = 1;
2102 	} else if (tcp_is_reno(tp)) {
2103 		tcp_reset_reno_sack(tp);
2104 	}
2105 
2106 	skb = head;
2107 	skb_rbtree_walk_from(skb) {
2108 		if (is_reneg)
2109 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2110 		else if (tcp_is_rack(sk) && skb != head &&
2111 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2112 			continue; /* Don't mark recently sent ones lost yet */
2113 		tcp_mark_skb_lost(sk, skb);
2114 	}
2115 	tcp_verify_left_out(tp);
2116 	tcp_clear_all_retrans_hints(tp);
2117 }
2118 
2119 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2120 void tcp_enter_loss(struct sock *sk)
2121 {
2122 	const struct inet_connection_sock *icsk = inet_csk(sk);
2123 	struct tcp_sock *tp = tcp_sk(sk);
2124 	struct net *net = sock_net(sk);
2125 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2126 	u8 reordering;
2127 
2128 	tcp_timeout_mark_lost(sk);
2129 
2130 	/* Reduce ssthresh if it has not yet been made inside this window. */
2131 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2132 	    !after(tp->high_seq, tp->snd_una) ||
2133 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2134 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2135 		tp->prior_cwnd = tp->snd_cwnd;
2136 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2137 		tcp_ca_event(sk, CA_EVENT_LOSS);
2138 		tcp_init_undo(tp);
2139 	}
2140 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2141 	tp->snd_cwnd_cnt   = 0;
2142 	tp->snd_cwnd_stamp = tcp_jiffies32;
2143 
2144 	/* Timeout in disordered state after receiving substantial DUPACKs
2145 	 * suggests that the degree of reordering is over-estimated.
2146 	 */
2147 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2148 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2149 	    tp->sacked_out >= reordering)
2150 		tp->reordering = min_t(unsigned int, tp->reordering,
2151 				       reordering);
2152 
2153 	tcp_set_ca_state(sk, TCP_CA_Loss);
2154 	tp->high_seq = tp->snd_nxt;
2155 	tcp_ecn_queue_cwr(tp);
2156 
2157 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2158 	 * loss recovery is underway except recurring timeout(s) on
2159 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2160 	 */
2161 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2162 		   (new_recovery || icsk->icsk_retransmits) &&
2163 		   !inet_csk(sk)->icsk_mtup.probe_size;
2164 }
2165 
2166 /* If ACK arrived pointing to a remembered SACK, it means that our
2167  * remembered SACKs do not reflect real state of receiver i.e.
2168  * receiver _host_ is heavily congested (or buggy).
2169  *
2170  * To avoid big spurious retransmission bursts due to transient SACK
2171  * scoreboard oddities that look like reneging, we give the receiver a
2172  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2173  * restore sanity to the SACK scoreboard. If the apparent reneging
2174  * persists until this RTO then we'll clear the SACK scoreboard.
2175  */
tcp_check_sack_reneging(struct sock * sk,int flag)2176 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2177 {
2178 	if (flag & FLAG_SACK_RENEGING &&
2179 	    flag & FLAG_SND_UNA_ADVANCED) {
2180 		struct tcp_sock *tp = tcp_sk(sk);
2181 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2182 					  msecs_to_jiffies(10));
2183 
2184 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2185 					  delay, TCP_RTO_MAX);
2186 		return true;
2187 	}
2188 	return false;
2189 }
2190 
2191 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2192  * counter when SACK is enabled (without SACK, sacked_out is used for
2193  * that purpose).
2194  *
2195  * With reordering, holes may still be in flight, so RFC3517 recovery
2196  * uses pure sacked_out (total number of SACKed segments) even though
2197  * it violates the RFC that uses duplicate ACKs, often these are equal
2198  * but when e.g. out-of-window ACKs or packet duplication occurs,
2199  * they differ. Since neither occurs due to loss, TCP should really
2200  * ignore them.
2201  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2202 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2203 {
2204 	return tp->sacked_out + 1;
2205 }
2206 
2207 /* Linux NewReno/SACK/ECN state machine.
2208  * --------------------------------------
2209  *
2210  * "Open"	Normal state, no dubious events, fast path.
2211  * "Disorder"   In all the respects it is "Open",
2212  *		but requires a bit more attention. It is entered when
2213  *		we see some SACKs or dupacks. It is split of "Open"
2214  *		mainly to move some processing from fast path to slow one.
2215  * "CWR"	CWND was reduced due to some Congestion Notification event.
2216  *		It can be ECN, ICMP source quench, local device congestion.
2217  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2218  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2219  *
2220  * tcp_fastretrans_alert() is entered:
2221  * - each incoming ACK, if state is not "Open"
2222  * - when arrived ACK is unusual, namely:
2223  *	* SACK
2224  *	* Duplicate ACK.
2225  *	* ECN ECE.
2226  *
2227  * Counting packets in flight is pretty simple.
2228  *
2229  *	in_flight = packets_out - left_out + retrans_out
2230  *
2231  *	packets_out is SND.NXT-SND.UNA counted in packets.
2232  *
2233  *	retrans_out is number of retransmitted segments.
2234  *
2235  *	left_out is number of segments left network, but not ACKed yet.
2236  *
2237  *		left_out = sacked_out + lost_out
2238  *
2239  *     sacked_out: Packets, which arrived to receiver out of order
2240  *		   and hence not ACKed. With SACKs this number is simply
2241  *		   amount of SACKed data. Even without SACKs
2242  *		   it is easy to give pretty reliable estimate of this number,
2243  *		   counting duplicate ACKs.
2244  *
2245  *       lost_out: Packets lost by network. TCP has no explicit
2246  *		   "loss notification" feedback from network (for now).
2247  *		   It means that this number can be only _guessed_.
2248  *		   Actually, it is the heuristics to predict lossage that
2249  *		   distinguishes different algorithms.
2250  *
2251  *	F.e. after RTO, when all the queue is considered as lost,
2252  *	lost_out = packets_out and in_flight = retrans_out.
2253  *
2254  *		Essentially, we have now a few algorithms detecting
2255  *		lost packets.
2256  *
2257  *		If the receiver supports SACK:
2258  *
2259  *		RFC6675/3517: It is the conventional algorithm. A packet is
2260  *		considered lost if the number of higher sequence packets
2261  *		SACKed is greater than or equal the DUPACK thoreshold
2262  *		(reordering). This is implemented in tcp_mark_head_lost and
2263  *		tcp_update_scoreboard.
2264  *
2265  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2266  *		(2017-) that checks timing instead of counting DUPACKs.
2267  *		Essentially a packet is considered lost if it's not S/ACKed
2268  *		after RTT + reordering_window, where both metrics are
2269  *		dynamically measured and adjusted. This is implemented in
2270  *		tcp_rack_mark_lost.
2271  *
2272  *		If the receiver does not support SACK:
2273  *
2274  *		NewReno (RFC6582): in Recovery we assume that one segment
2275  *		is lost (classic Reno). While we are in Recovery and
2276  *		a partial ACK arrives, we assume that one more packet
2277  *		is lost (NewReno). This heuristics are the same in NewReno
2278  *		and SACK.
2279  *
2280  * Really tricky (and requiring careful tuning) part of algorithm
2281  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2282  * The first determines the moment _when_ we should reduce CWND and,
2283  * hence, slow down forward transmission. In fact, it determines the moment
2284  * when we decide that hole is caused by loss, rather than by a reorder.
2285  *
2286  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2287  * holes, caused by lost packets.
2288  *
2289  * And the most logically complicated part of algorithm is undo
2290  * heuristics. We detect false retransmits due to both too early
2291  * fast retransmit (reordering) and underestimated RTO, analyzing
2292  * timestamps and D-SACKs. When we detect that some segments were
2293  * retransmitted by mistake and CWND reduction was wrong, we undo
2294  * window reduction and abort recovery phase. This logic is hidden
2295  * inside several functions named tcp_try_undo_<something>.
2296  */
2297 
2298 /* This function decides, when we should leave Disordered state
2299  * and enter Recovery phase, reducing congestion window.
2300  *
2301  * Main question: may we further continue forward transmission
2302  * with the same cwnd?
2303  */
tcp_time_to_recover(struct sock * sk,int flag)2304 static bool tcp_time_to_recover(struct sock *sk, int flag)
2305 {
2306 	struct tcp_sock *tp = tcp_sk(sk);
2307 
2308 	/* Trick#1: The loss is proven. */
2309 	if (tp->lost_out)
2310 		return true;
2311 
2312 	/* Not-A-Trick#2 : Classic rule... */
2313 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2314 		return true;
2315 
2316 	return false;
2317 }
2318 
2319 /* Detect loss in event "A" above by marking head of queue up as lost.
2320  * For RFC3517 SACK, a segment is considered lost if it
2321  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2322  * the maximum SACKed segments to pass before reaching this limit.
2323  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2324 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2325 {
2326 	struct tcp_sock *tp = tcp_sk(sk);
2327 	struct sk_buff *skb;
2328 	int cnt;
2329 	/* Use SACK to deduce losses of new sequences sent during recovery */
2330 	const u32 loss_high = tp->snd_nxt;
2331 
2332 	WARN_ON(packets > tp->packets_out);
2333 	skb = tp->lost_skb_hint;
2334 	if (skb) {
2335 		/* Head already handled? */
2336 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2337 			return;
2338 		cnt = tp->lost_cnt_hint;
2339 	} else {
2340 		skb = tcp_rtx_queue_head(sk);
2341 		cnt = 0;
2342 	}
2343 
2344 	skb_rbtree_walk_from(skb) {
2345 		/* TODO: do this better */
2346 		/* this is not the most efficient way to do this... */
2347 		tp->lost_skb_hint = skb;
2348 		tp->lost_cnt_hint = cnt;
2349 
2350 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2351 			break;
2352 
2353 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2354 			cnt += tcp_skb_pcount(skb);
2355 
2356 		if (cnt > packets)
2357 			break;
2358 
2359 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2360 			tcp_mark_skb_lost(sk, skb);
2361 
2362 		if (mark_head)
2363 			break;
2364 	}
2365 	tcp_verify_left_out(tp);
2366 }
2367 
2368 /* Account newly detected lost packet(s) */
2369 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2370 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2371 {
2372 	struct tcp_sock *tp = tcp_sk(sk);
2373 
2374 	if (tcp_is_sack(tp)) {
2375 		int sacked_upto = tp->sacked_out - tp->reordering;
2376 		if (sacked_upto >= 0)
2377 			tcp_mark_head_lost(sk, sacked_upto, 0);
2378 		else if (fast_rexmit)
2379 			tcp_mark_head_lost(sk, 1, 1);
2380 	}
2381 }
2382 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2383 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2384 {
2385 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2386 	       before(tp->rx_opt.rcv_tsecr, when);
2387 }
2388 
2389 /* skb is spurious retransmitted if the returned timestamp echo
2390  * reply is prior to the skb transmission time
2391  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2392 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2393 				     const struct sk_buff *skb)
2394 {
2395 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2396 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2397 }
2398 
2399 /* Nothing was retransmitted or returned timestamp is less
2400  * than timestamp of the first retransmission.
2401  */
tcp_packet_delayed(const struct tcp_sock * tp)2402 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2403 {
2404 	return tp->retrans_stamp &&
2405 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2406 }
2407 
2408 /* Undo procedures. */
2409 
2410 /* We can clear retrans_stamp when there are no retransmissions in the
2411  * window. It would seem that it is trivially available for us in
2412  * tp->retrans_out, however, that kind of assumptions doesn't consider
2413  * what will happen if errors occur when sending retransmission for the
2414  * second time. ...It could the that such segment has only
2415  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2416  * the head skb is enough except for some reneging corner cases that
2417  * are not worth the effort.
2418  *
2419  * Main reason for all this complexity is the fact that connection dying
2420  * time now depends on the validity of the retrans_stamp, in particular,
2421  * that successive retransmissions of a segment must not advance
2422  * retrans_stamp under any conditions.
2423  */
tcp_any_retrans_done(const struct sock * sk)2424 static bool tcp_any_retrans_done(const struct sock *sk)
2425 {
2426 	const struct tcp_sock *tp = tcp_sk(sk);
2427 	struct sk_buff *skb;
2428 
2429 	if (tp->retrans_out)
2430 		return true;
2431 
2432 	skb = tcp_rtx_queue_head(sk);
2433 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2434 		return true;
2435 
2436 	return false;
2437 }
2438 
DBGUNDO(struct sock * sk,const char * msg)2439 static void DBGUNDO(struct sock *sk, const char *msg)
2440 {
2441 #if FASTRETRANS_DEBUG > 1
2442 	struct tcp_sock *tp = tcp_sk(sk);
2443 	struct inet_sock *inet = inet_sk(sk);
2444 
2445 	if (sk->sk_family == AF_INET) {
2446 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2447 			 msg,
2448 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2449 			 tp->snd_cwnd, tcp_left_out(tp),
2450 			 tp->snd_ssthresh, tp->prior_ssthresh,
2451 			 tp->packets_out);
2452 	}
2453 #if IS_ENABLED(CONFIG_IPV6)
2454 	else if (sk->sk_family == AF_INET6) {
2455 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2456 			 msg,
2457 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2458 			 tp->snd_cwnd, tcp_left_out(tp),
2459 			 tp->snd_ssthresh, tp->prior_ssthresh,
2460 			 tp->packets_out);
2461 	}
2462 #endif
2463 #endif
2464 }
2465 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2466 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2467 {
2468 	struct tcp_sock *tp = tcp_sk(sk);
2469 
2470 	if (unmark_loss) {
2471 		struct sk_buff *skb;
2472 
2473 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2474 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2475 		}
2476 		tp->lost_out = 0;
2477 		tcp_clear_all_retrans_hints(tp);
2478 	}
2479 
2480 	if (tp->prior_ssthresh) {
2481 		const struct inet_connection_sock *icsk = inet_csk(sk);
2482 
2483 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2484 
2485 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2486 			tp->snd_ssthresh = tp->prior_ssthresh;
2487 			tcp_ecn_withdraw_cwr(tp);
2488 		}
2489 	}
2490 	tp->snd_cwnd_stamp = tcp_jiffies32;
2491 	tp->undo_marker = 0;
2492 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2493 }
2494 
tcp_may_undo(const struct tcp_sock * tp)2495 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2496 {
2497 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2498 }
2499 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2500 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2501 {
2502 	struct tcp_sock *tp = tcp_sk(sk);
2503 
2504 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2505 		/* Hold old state until something *above* high_seq
2506 		 * is ACKed. For Reno it is MUST to prevent false
2507 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2508 		if (!tcp_any_retrans_done(sk))
2509 			tp->retrans_stamp = 0;
2510 		return true;
2511 	}
2512 	return false;
2513 }
2514 
2515 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2516 static bool tcp_try_undo_recovery(struct sock *sk)
2517 {
2518 	struct tcp_sock *tp = tcp_sk(sk);
2519 
2520 	if (tcp_may_undo(tp)) {
2521 		int mib_idx;
2522 
2523 		/* Happy end! We did not retransmit anything
2524 		 * or our original transmission succeeded.
2525 		 */
2526 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2527 		tcp_undo_cwnd_reduction(sk, false);
2528 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2529 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2530 		else
2531 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2532 
2533 		NET_INC_STATS(sock_net(sk), mib_idx);
2534 	} else if (tp->rack.reo_wnd_persist) {
2535 		tp->rack.reo_wnd_persist--;
2536 	}
2537 	if (tcp_is_non_sack_preventing_reopen(sk))
2538 		return true;
2539 	tcp_set_ca_state(sk, TCP_CA_Open);
2540 	tp->is_sack_reneg = 0;
2541 	return false;
2542 }
2543 
2544 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2545 static bool tcp_try_undo_dsack(struct sock *sk)
2546 {
2547 	struct tcp_sock *tp = tcp_sk(sk);
2548 
2549 	if (tp->undo_marker && !tp->undo_retrans) {
2550 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2551 					       tp->rack.reo_wnd_persist + 1);
2552 		DBGUNDO(sk, "D-SACK");
2553 		tcp_undo_cwnd_reduction(sk, false);
2554 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2555 		return true;
2556 	}
2557 	return false;
2558 }
2559 
2560 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2561 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2562 {
2563 	struct tcp_sock *tp = tcp_sk(sk);
2564 
2565 	if (frto_undo || tcp_may_undo(tp)) {
2566 		tcp_undo_cwnd_reduction(sk, true);
2567 
2568 		DBGUNDO(sk, "partial loss");
2569 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2570 		if (frto_undo)
2571 			NET_INC_STATS(sock_net(sk),
2572 					LINUX_MIB_TCPSPURIOUSRTOS);
2573 		inet_csk(sk)->icsk_retransmits = 0;
2574 		if (tcp_is_non_sack_preventing_reopen(sk))
2575 			return true;
2576 		if (frto_undo || tcp_is_sack(tp)) {
2577 			tcp_set_ca_state(sk, TCP_CA_Open);
2578 			tp->is_sack_reneg = 0;
2579 		}
2580 		return true;
2581 	}
2582 	return false;
2583 }
2584 
2585 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2586  * It computes the number of packets to send (sndcnt) based on packets newly
2587  * delivered:
2588  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2589  *	cwnd reductions across a full RTT.
2590  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2591  *      But when the retransmits are acked without further losses, PRR
2592  *      slow starts cwnd up to ssthresh to speed up the recovery.
2593  */
tcp_init_cwnd_reduction(struct sock * sk)2594 static void tcp_init_cwnd_reduction(struct sock *sk)
2595 {
2596 	struct tcp_sock *tp = tcp_sk(sk);
2597 
2598 	tp->high_seq = tp->snd_nxt;
2599 	tp->tlp_high_seq = 0;
2600 	tp->snd_cwnd_cnt = 0;
2601 	tp->prior_cwnd = tp->snd_cwnd;
2602 	tp->prr_delivered = 0;
2603 	tp->prr_out = 0;
2604 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2605 	tcp_ecn_queue_cwr(tp);
2606 }
2607 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2608 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2609 {
2610 	struct tcp_sock *tp = tcp_sk(sk);
2611 	int sndcnt = 0;
2612 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2613 
2614 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2615 		return;
2616 
2617 	tp->prr_delivered += newly_acked_sacked;
2618 	if (delta < 0) {
2619 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2620 			       tp->prior_cwnd - 1;
2621 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2622 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2623 		   FLAG_RETRANS_DATA_ACKED) {
2624 		sndcnt = min_t(int, delta,
2625 			       max_t(int, tp->prr_delivered - tp->prr_out,
2626 				     newly_acked_sacked) + 1);
2627 	} else {
2628 		sndcnt = min(delta, newly_acked_sacked);
2629 	}
2630 	/* Force a fast retransmit upon entering fast recovery */
2631 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2632 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2633 }
2634 
tcp_end_cwnd_reduction(struct sock * sk)2635 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2636 {
2637 	struct tcp_sock *tp = tcp_sk(sk);
2638 
2639 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2640 		return;
2641 
2642 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2643 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2644 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2645 		tp->snd_cwnd = tp->snd_ssthresh;
2646 		tp->snd_cwnd_stamp = tcp_jiffies32;
2647 	}
2648 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2649 }
2650 
2651 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2652 void tcp_enter_cwr(struct sock *sk)
2653 {
2654 	struct tcp_sock *tp = tcp_sk(sk);
2655 
2656 	tp->prior_ssthresh = 0;
2657 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2658 		tp->undo_marker = 0;
2659 		tcp_init_cwnd_reduction(sk);
2660 		tcp_set_ca_state(sk, TCP_CA_CWR);
2661 	}
2662 }
2663 EXPORT_SYMBOL(tcp_enter_cwr);
2664 
tcp_try_keep_open(struct sock * sk)2665 static void tcp_try_keep_open(struct sock *sk)
2666 {
2667 	struct tcp_sock *tp = tcp_sk(sk);
2668 	int state = TCP_CA_Open;
2669 
2670 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2671 		state = TCP_CA_Disorder;
2672 
2673 	if (inet_csk(sk)->icsk_ca_state != state) {
2674 		tcp_set_ca_state(sk, state);
2675 		tp->high_seq = tp->snd_nxt;
2676 	}
2677 }
2678 
tcp_try_to_open(struct sock * sk,int flag)2679 static void tcp_try_to_open(struct sock *sk, int flag)
2680 {
2681 	struct tcp_sock *tp = tcp_sk(sk);
2682 
2683 	tcp_verify_left_out(tp);
2684 
2685 	if (!tcp_any_retrans_done(sk))
2686 		tp->retrans_stamp = 0;
2687 
2688 	if (flag & FLAG_ECE)
2689 		tcp_enter_cwr(sk);
2690 
2691 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2692 		tcp_try_keep_open(sk);
2693 	}
2694 }
2695 
tcp_mtup_probe_failed(struct sock * sk)2696 static void tcp_mtup_probe_failed(struct sock *sk)
2697 {
2698 	struct inet_connection_sock *icsk = inet_csk(sk);
2699 
2700 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2701 	icsk->icsk_mtup.probe_size = 0;
2702 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2703 }
2704 
tcp_mtup_probe_success(struct sock * sk)2705 static void tcp_mtup_probe_success(struct sock *sk)
2706 {
2707 	struct tcp_sock *tp = tcp_sk(sk);
2708 	struct inet_connection_sock *icsk = inet_csk(sk);
2709 	u64 val;
2710 
2711 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2712 
2713 	val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache);
2714 	do_div(val, icsk->icsk_mtup.probe_size);
2715 	WARN_ON_ONCE((u32)val != val);
2716 	tp->snd_cwnd = max_t(u32, 1U, val);
2717 
2718 	tp->snd_cwnd_cnt = 0;
2719 	tp->snd_cwnd_stamp = tcp_jiffies32;
2720 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2721 
2722 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2723 	icsk->icsk_mtup.probe_size = 0;
2724 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2725 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2726 }
2727 
2728 /* Do a simple retransmit without using the backoff mechanisms in
2729  * tcp_timer. This is used for path mtu discovery.
2730  * The socket is already locked here.
2731  */
tcp_simple_retransmit(struct sock * sk)2732 void tcp_simple_retransmit(struct sock *sk)
2733 {
2734 	const struct inet_connection_sock *icsk = inet_csk(sk);
2735 	struct tcp_sock *tp = tcp_sk(sk);
2736 	struct sk_buff *skb;
2737 	unsigned int mss = tcp_current_mss(sk);
2738 
2739 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2740 		if (tcp_skb_seglen(skb) > mss)
2741 			tcp_mark_skb_lost(sk, skb);
2742 	}
2743 
2744 	tcp_clear_retrans_hints_partial(tp);
2745 
2746 	if (!tp->lost_out)
2747 		return;
2748 
2749 	if (tcp_is_reno(tp))
2750 		tcp_limit_reno_sacked(tp);
2751 
2752 	tcp_verify_left_out(tp);
2753 
2754 	/* Don't muck with the congestion window here.
2755 	 * Reason is that we do not increase amount of _data_
2756 	 * in network, but units changed and effective
2757 	 * cwnd/ssthresh really reduced now.
2758 	 */
2759 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2760 		tp->high_seq = tp->snd_nxt;
2761 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2762 		tp->prior_ssthresh = 0;
2763 		tp->undo_marker = 0;
2764 		tcp_set_ca_state(sk, TCP_CA_Loss);
2765 	}
2766 	tcp_xmit_retransmit_queue(sk);
2767 }
2768 EXPORT_SYMBOL(tcp_simple_retransmit);
2769 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2770 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2771 {
2772 	struct tcp_sock *tp = tcp_sk(sk);
2773 	int mib_idx;
2774 
2775 	if (tcp_is_reno(tp))
2776 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2777 	else
2778 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2779 
2780 	NET_INC_STATS(sock_net(sk), mib_idx);
2781 
2782 	tp->prior_ssthresh = 0;
2783 	tcp_init_undo(tp);
2784 
2785 	if (!tcp_in_cwnd_reduction(sk)) {
2786 		if (!ece_ack)
2787 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2788 		tcp_init_cwnd_reduction(sk);
2789 	}
2790 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2791 }
2792 
2793 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2794  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2795  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2796 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2797 			     int *rexmit)
2798 {
2799 	struct tcp_sock *tp = tcp_sk(sk);
2800 	bool recovered = !before(tp->snd_una, tp->high_seq);
2801 
2802 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2803 	    tcp_try_undo_loss(sk, false))
2804 		return;
2805 
2806 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2807 		/* Step 3.b. A timeout is spurious if not all data are
2808 		 * lost, i.e., never-retransmitted data are (s)acked.
2809 		 */
2810 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2811 		    tcp_try_undo_loss(sk, true))
2812 			return;
2813 
2814 		if (after(tp->snd_nxt, tp->high_seq)) {
2815 			if (flag & FLAG_DATA_SACKED || num_dupack)
2816 				tp->frto = 0; /* Step 3.a. loss was real */
2817 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2818 			tp->high_seq = tp->snd_nxt;
2819 			/* Step 2.b. Try send new data (but deferred until cwnd
2820 			 * is updated in tcp_ack()). Otherwise fall back to
2821 			 * the conventional recovery.
2822 			 */
2823 			if (!tcp_write_queue_empty(sk) &&
2824 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2825 				*rexmit = REXMIT_NEW;
2826 				return;
2827 			}
2828 			tp->frto = 0;
2829 		}
2830 	}
2831 
2832 	if (recovered) {
2833 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2834 		tcp_try_undo_recovery(sk);
2835 		return;
2836 	}
2837 	if (tcp_is_reno(tp)) {
2838 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2839 		 * delivered. Lower inflight to clock out (re)tranmissions.
2840 		 */
2841 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2842 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2843 		else if (flag & FLAG_SND_UNA_ADVANCED)
2844 			tcp_reset_reno_sack(tp);
2845 	}
2846 	*rexmit = REXMIT_LOST;
2847 }
2848 
tcp_force_fast_retransmit(struct sock * sk)2849 static bool tcp_force_fast_retransmit(struct sock *sk)
2850 {
2851 	struct tcp_sock *tp = tcp_sk(sk);
2852 
2853 	return after(tcp_highest_sack_seq(tp),
2854 		     tp->snd_una + tp->reordering * tp->mss_cache);
2855 }
2856 
2857 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2858 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2859 				 bool *do_lost)
2860 {
2861 	struct tcp_sock *tp = tcp_sk(sk);
2862 
2863 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2864 		/* Plain luck! Hole if filled with delayed
2865 		 * packet, rather than with a retransmit. Check reordering.
2866 		 */
2867 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2868 
2869 		/* We are getting evidence that the reordering degree is higher
2870 		 * than we realized. If there are no retransmits out then we
2871 		 * can undo. Otherwise we clock out new packets but do not
2872 		 * mark more packets lost or retransmit more.
2873 		 */
2874 		if (tp->retrans_out)
2875 			return true;
2876 
2877 		if (!tcp_any_retrans_done(sk))
2878 			tp->retrans_stamp = 0;
2879 
2880 		DBGUNDO(sk, "partial recovery");
2881 		tcp_undo_cwnd_reduction(sk, true);
2882 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2883 		tcp_try_keep_open(sk);
2884 	} else {
2885 		/* Partial ACK arrived. Force fast retransmit. */
2886 		*do_lost = tcp_force_fast_retransmit(sk);
2887 	}
2888 	return false;
2889 }
2890 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2891 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2892 {
2893 	struct tcp_sock *tp = tcp_sk(sk);
2894 
2895 	if (tcp_rtx_queue_empty(sk))
2896 		return;
2897 
2898 	if (unlikely(tcp_is_reno(tp))) {
2899 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2900 	} else if (tcp_is_rack(sk)) {
2901 		u32 prior_retrans = tp->retrans_out;
2902 
2903 		if (tcp_rack_mark_lost(sk))
2904 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2905 		if (prior_retrans > tp->retrans_out)
2906 			*ack_flag |= FLAG_LOST_RETRANS;
2907 	}
2908 }
2909 
2910 /* Process an event, which can update packets-in-flight not trivially.
2911  * Main goal of this function is to calculate new estimate for left_out,
2912  * taking into account both packets sitting in receiver's buffer and
2913  * packets lost by network.
2914  *
2915  * Besides that it updates the congestion state when packet loss or ECN
2916  * is detected. But it does not reduce the cwnd, it is done by the
2917  * congestion control later.
2918  *
2919  * It does _not_ decide what to send, it is made in function
2920  * tcp_xmit_retransmit_queue().
2921  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2922 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2923 				  int num_dupack, int *ack_flag, int *rexmit)
2924 {
2925 	struct inet_connection_sock *icsk = inet_csk(sk);
2926 	struct tcp_sock *tp = tcp_sk(sk);
2927 	int fast_rexmit = 0, flag = *ack_flag;
2928 	bool ece_ack = flag & FLAG_ECE;
2929 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2930 				      tcp_force_fast_retransmit(sk));
2931 
2932 	if (!tp->packets_out && tp->sacked_out)
2933 		tp->sacked_out = 0;
2934 
2935 	/* Now state machine starts.
2936 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2937 	if (ece_ack)
2938 		tp->prior_ssthresh = 0;
2939 
2940 	/* B. In all the states check for reneging SACKs. */
2941 	if (tcp_check_sack_reneging(sk, flag))
2942 		return;
2943 
2944 	/* C. Check consistency of the current state. */
2945 	tcp_verify_left_out(tp);
2946 
2947 	/* D. Check state exit conditions. State can be terminated
2948 	 *    when high_seq is ACKed. */
2949 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2950 		WARN_ON(tp->retrans_out != 0);
2951 		tp->retrans_stamp = 0;
2952 	} else if (!before(tp->snd_una, tp->high_seq)) {
2953 		switch (icsk->icsk_ca_state) {
2954 		case TCP_CA_CWR:
2955 			/* CWR is to be held something *above* high_seq
2956 			 * is ACKed for CWR bit to reach receiver. */
2957 			if (tp->snd_una != tp->high_seq) {
2958 				tcp_end_cwnd_reduction(sk);
2959 				tcp_set_ca_state(sk, TCP_CA_Open);
2960 			}
2961 			break;
2962 
2963 		case TCP_CA_Recovery:
2964 			if (tcp_is_reno(tp))
2965 				tcp_reset_reno_sack(tp);
2966 			if (tcp_try_undo_recovery(sk))
2967 				return;
2968 			tcp_end_cwnd_reduction(sk);
2969 			break;
2970 		}
2971 	}
2972 
2973 	/* E. Process state. */
2974 	switch (icsk->icsk_ca_state) {
2975 	case TCP_CA_Recovery:
2976 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2977 			if (tcp_is_reno(tp))
2978 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2979 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2980 			return;
2981 
2982 		if (tcp_try_undo_dsack(sk))
2983 			tcp_try_keep_open(sk);
2984 
2985 		tcp_identify_packet_loss(sk, ack_flag);
2986 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2987 			if (!tcp_time_to_recover(sk, flag))
2988 				return;
2989 			/* Undo reverts the recovery state. If loss is evident,
2990 			 * starts a new recovery (e.g. reordering then loss);
2991 			 */
2992 			tcp_enter_recovery(sk, ece_ack);
2993 		}
2994 		break;
2995 	case TCP_CA_Loss:
2996 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2997 		tcp_identify_packet_loss(sk, ack_flag);
2998 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2999 		      (*ack_flag & FLAG_LOST_RETRANS)))
3000 			return;
3001 		/* Change state if cwnd is undone or retransmits are lost */
3002 		fallthrough;
3003 	default:
3004 		if (tcp_is_reno(tp)) {
3005 			if (flag & FLAG_SND_UNA_ADVANCED)
3006 				tcp_reset_reno_sack(tp);
3007 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3008 		}
3009 
3010 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3011 			tcp_try_undo_dsack(sk);
3012 
3013 		tcp_identify_packet_loss(sk, ack_flag);
3014 		if (!tcp_time_to_recover(sk, flag)) {
3015 			tcp_try_to_open(sk, flag);
3016 			return;
3017 		}
3018 
3019 		/* MTU probe failure: don't reduce cwnd */
3020 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3021 		    icsk->icsk_mtup.probe_size &&
3022 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3023 			tcp_mtup_probe_failed(sk);
3024 			/* Restores the reduction we did in tcp_mtup_probe() */
3025 			tp->snd_cwnd++;
3026 			tcp_simple_retransmit(sk);
3027 			return;
3028 		}
3029 
3030 		/* Otherwise enter Recovery state */
3031 		tcp_enter_recovery(sk, ece_ack);
3032 		fast_rexmit = 1;
3033 	}
3034 
3035 	if (!tcp_is_rack(sk) && do_lost)
3036 		tcp_update_scoreboard(sk, fast_rexmit);
3037 	*rexmit = REXMIT_LOST;
3038 }
3039 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3040 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3041 {
3042 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3043 	struct tcp_sock *tp = tcp_sk(sk);
3044 
3045 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3046 		/* If the remote keeps returning delayed ACKs, eventually
3047 		 * the min filter would pick it up and overestimate the
3048 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3049 		 */
3050 		return;
3051 	}
3052 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3053 			   rtt_us ? : jiffies_to_usecs(1));
3054 }
3055 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3056 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3057 			       long seq_rtt_us, long sack_rtt_us,
3058 			       long ca_rtt_us, struct rate_sample *rs)
3059 {
3060 	const struct tcp_sock *tp = tcp_sk(sk);
3061 
3062 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3063 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3064 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3065 	 * is acked (RFC6298).
3066 	 */
3067 	if (seq_rtt_us < 0)
3068 		seq_rtt_us = sack_rtt_us;
3069 
3070 	/* RTTM Rule: A TSecr value received in a segment is used to
3071 	 * update the averaged RTT measurement only if the segment
3072 	 * acknowledges some new data, i.e., only if it advances the
3073 	 * left edge of the send window.
3074 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3075 	 */
3076 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3077 	    flag & FLAG_ACKED) {
3078 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3079 
3080 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3081 			if (!delta)
3082 				delta = 1;
3083 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3084 			ca_rtt_us = seq_rtt_us;
3085 		}
3086 	}
3087 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3088 	if (seq_rtt_us < 0)
3089 		return false;
3090 
3091 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3092 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3093 	 * values will be skipped with the seq_rtt_us < 0 check above.
3094 	 */
3095 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3096 	tcp_rtt_estimator(sk, seq_rtt_us);
3097 	tcp_set_rto(sk);
3098 
3099 	/* RFC6298: only reset backoff on valid RTT measurement. */
3100 	inet_csk(sk)->icsk_backoff = 0;
3101 	return true;
3102 }
3103 
3104 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3105 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3106 {
3107 	struct rate_sample rs;
3108 	long rtt_us = -1L;
3109 
3110 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3111 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3112 
3113 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3114 }
3115 
3116 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3117 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3118 {
3119 	const struct inet_connection_sock *icsk = inet_csk(sk);
3120 
3121 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3122 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3123 }
3124 
3125 /* Restart timer after forward progress on connection.
3126  * RFC2988 recommends to restart timer to now+rto.
3127  */
tcp_rearm_rto(struct sock * sk)3128 void tcp_rearm_rto(struct sock *sk)
3129 {
3130 	const struct inet_connection_sock *icsk = inet_csk(sk);
3131 	struct tcp_sock *tp = tcp_sk(sk);
3132 
3133 	/* If the retrans timer is currently being used by Fast Open
3134 	 * for SYN-ACK retrans purpose, stay put.
3135 	 */
3136 	if (rcu_access_pointer(tp->fastopen_rsk))
3137 		return;
3138 
3139 	if (!tp->packets_out) {
3140 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3141 	} else {
3142 		u32 rto = inet_csk(sk)->icsk_rto;
3143 		/* Offset the time elapsed after installing regular RTO */
3144 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3145 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3146 			s64 delta_us = tcp_rto_delta_us(sk);
3147 			/* delta_us may not be positive if the socket is locked
3148 			 * when the retrans timer fires and is rescheduled.
3149 			 */
3150 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3151 		}
3152 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3153 				     TCP_RTO_MAX);
3154 	}
3155 }
3156 
3157 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3158 static void tcp_set_xmit_timer(struct sock *sk)
3159 {
3160 	if (!tcp_schedule_loss_probe(sk, true))
3161 		tcp_rearm_rto(sk);
3162 }
3163 
3164 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3165 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3166 {
3167 	struct tcp_sock *tp = tcp_sk(sk);
3168 	u32 packets_acked;
3169 
3170 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3171 
3172 	packets_acked = tcp_skb_pcount(skb);
3173 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3174 		return 0;
3175 	packets_acked -= tcp_skb_pcount(skb);
3176 
3177 	if (packets_acked) {
3178 		BUG_ON(tcp_skb_pcount(skb) == 0);
3179 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3180 	}
3181 
3182 	return packets_acked;
3183 }
3184 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3185 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3186 			   u32 prior_snd_una)
3187 {
3188 	const struct skb_shared_info *shinfo;
3189 
3190 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3191 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3192 		return;
3193 
3194 	shinfo = skb_shinfo(skb);
3195 	if (!before(shinfo->tskey, prior_snd_una) &&
3196 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3197 		tcp_skb_tsorted_save(skb) {
3198 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3199 		} tcp_skb_tsorted_restore(skb);
3200 	}
3201 }
3202 
3203 /* Remove acknowledged frames from the retransmission queue. If our packet
3204  * is before the ack sequence we can discard it as it's confirmed to have
3205  * arrived at the other end.
3206  */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3207 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3208 			       u32 prior_snd_una,
3209 			       struct tcp_sacktag_state *sack, bool ece_ack)
3210 {
3211 	const struct inet_connection_sock *icsk = inet_csk(sk);
3212 	u64 first_ackt, last_ackt;
3213 	struct tcp_sock *tp = tcp_sk(sk);
3214 	u32 prior_sacked = tp->sacked_out;
3215 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3216 	struct sk_buff *skb, *next;
3217 	bool fully_acked = true;
3218 	long sack_rtt_us = -1L;
3219 	long seq_rtt_us = -1L;
3220 	long ca_rtt_us = -1L;
3221 	u32 pkts_acked = 0;
3222 	u32 last_in_flight = 0;
3223 	bool rtt_update;
3224 	int flag = 0;
3225 
3226 	first_ackt = 0;
3227 
3228 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3229 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3230 		const u32 start_seq = scb->seq;
3231 		u8 sacked = scb->sacked;
3232 		u32 acked_pcount;
3233 
3234 		/* Determine how many packets and what bytes were acked, tso and else */
3235 		if (after(scb->end_seq, tp->snd_una)) {
3236 			if (tcp_skb_pcount(skb) == 1 ||
3237 			    !after(tp->snd_una, scb->seq))
3238 				break;
3239 
3240 			acked_pcount = tcp_tso_acked(sk, skb);
3241 			if (!acked_pcount)
3242 				break;
3243 			fully_acked = false;
3244 		} else {
3245 			acked_pcount = tcp_skb_pcount(skb);
3246 		}
3247 
3248 		if (unlikely(sacked & TCPCB_RETRANS)) {
3249 			if (sacked & TCPCB_SACKED_RETRANS)
3250 				tp->retrans_out -= acked_pcount;
3251 			flag |= FLAG_RETRANS_DATA_ACKED;
3252 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3253 			last_ackt = tcp_skb_timestamp_us(skb);
3254 			WARN_ON_ONCE(last_ackt == 0);
3255 			if (!first_ackt)
3256 				first_ackt = last_ackt;
3257 
3258 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3259 			if (before(start_seq, reord))
3260 				reord = start_seq;
3261 			if (!after(scb->end_seq, tp->high_seq))
3262 				flag |= FLAG_ORIG_SACK_ACKED;
3263 		}
3264 
3265 		if (sacked & TCPCB_SACKED_ACKED) {
3266 			tp->sacked_out -= acked_pcount;
3267 		} else if (tcp_is_sack(tp)) {
3268 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3269 			if (!tcp_skb_spurious_retrans(tp, skb))
3270 				tcp_rack_advance(tp, sacked, scb->end_seq,
3271 						 tcp_skb_timestamp_us(skb));
3272 		}
3273 		if (sacked & TCPCB_LOST)
3274 			tp->lost_out -= acked_pcount;
3275 
3276 		tp->packets_out -= acked_pcount;
3277 		pkts_acked += acked_pcount;
3278 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3279 
3280 		/* Initial outgoing SYN's get put onto the write_queue
3281 		 * just like anything else we transmit.  It is not
3282 		 * true data, and if we misinform our callers that
3283 		 * this ACK acks real data, we will erroneously exit
3284 		 * connection startup slow start one packet too
3285 		 * quickly.  This is severely frowned upon behavior.
3286 		 */
3287 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3288 			flag |= FLAG_DATA_ACKED;
3289 		} else {
3290 			flag |= FLAG_SYN_ACKED;
3291 			tp->retrans_stamp = 0;
3292 		}
3293 
3294 		if (!fully_acked)
3295 			break;
3296 
3297 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3298 
3299 		next = skb_rb_next(skb);
3300 		if (unlikely(skb == tp->retransmit_skb_hint))
3301 			tp->retransmit_skb_hint = NULL;
3302 		if (unlikely(skb == tp->lost_skb_hint))
3303 			tp->lost_skb_hint = NULL;
3304 		tcp_highest_sack_replace(sk, skb, next);
3305 		tcp_rtx_queue_unlink_and_free(skb, sk);
3306 	}
3307 
3308 	if (!skb)
3309 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3310 
3311 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3312 		tp->snd_up = tp->snd_una;
3313 
3314 	if (skb) {
3315 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3316 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3317 			flag |= FLAG_SACK_RENEGING;
3318 	}
3319 
3320 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3321 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3322 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3323 
3324 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3325 		    last_in_flight && !prior_sacked && fully_acked &&
3326 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3327 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3328 			/* Conservatively mark a delayed ACK. It's typically
3329 			 * from a lone runt packet over the round trip to
3330 			 * a receiver w/o out-of-order or CE events.
3331 			 */
3332 			flag |= FLAG_ACK_MAYBE_DELAYED;
3333 		}
3334 	}
3335 	if (sack->first_sackt) {
3336 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3337 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3338 	}
3339 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3340 					ca_rtt_us, sack->rate);
3341 
3342 	if (flag & FLAG_ACKED) {
3343 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3344 		if (unlikely(icsk->icsk_mtup.probe_size &&
3345 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3346 			tcp_mtup_probe_success(sk);
3347 		}
3348 
3349 		if (tcp_is_reno(tp)) {
3350 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3351 
3352 			/* If any of the cumulatively ACKed segments was
3353 			 * retransmitted, non-SACK case cannot confirm that
3354 			 * progress was due to original transmission due to
3355 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3356 			 * the packets may have been never retransmitted.
3357 			 */
3358 			if (flag & FLAG_RETRANS_DATA_ACKED)
3359 				flag &= ~FLAG_ORIG_SACK_ACKED;
3360 		} else {
3361 			int delta;
3362 
3363 			/* Non-retransmitted hole got filled? That's reordering */
3364 			if (before(reord, prior_fack))
3365 				tcp_check_sack_reordering(sk, reord, 0);
3366 
3367 			delta = prior_sacked - tp->sacked_out;
3368 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3369 		}
3370 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3371 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3372 						    tcp_skb_timestamp_us(skb))) {
3373 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3374 		 * after when the head was last (re)transmitted. Otherwise the
3375 		 * timeout may continue to extend in loss recovery.
3376 		 */
3377 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3378 	}
3379 
3380 	if (icsk->icsk_ca_ops->pkts_acked) {
3381 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3382 					     .rtt_us = sack->rate->rtt_us,
3383 					     .in_flight = last_in_flight };
3384 
3385 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3386 	}
3387 
3388 #if FASTRETRANS_DEBUG > 0
3389 	WARN_ON((int)tp->sacked_out < 0);
3390 	WARN_ON((int)tp->lost_out < 0);
3391 	WARN_ON((int)tp->retrans_out < 0);
3392 	if (!tp->packets_out && tcp_is_sack(tp)) {
3393 		icsk = inet_csk(sk);
3394 		if (tp->lost_out) {
3395 			pr_debug("Leak l=%u %d\n",
3396 				 tp->lost_out, icsk->icsk_ca_state);
3397 			tp->lost_out = 0;
3398 		}
3399 		if (tp->sacked_out) {
3400 			pr_debug("Leak s=%u %d\n",
3401 				 tp->sacked_out, icsk->icsk_ca_state);
3402 			tp->sacked_out = 0;
3403 		}
3404 		if (tp->retrans_out) {
3405 			pr_debug("Leak r=%u %d\n",
3406 				 tp->retrans_out, icsk->icsk_ca_state);
3407 			tp->retrans_out = 0;
3408 		}
3409 	}
3410 #endif
3411 	return flag;
3412 }
3413 
tcp_ack_probe(struct sock * sk)3414 static void tcp_ack_probe(struct sock *sk)
3415 {
3416 	struct inet_connection_sock *icsk = inet_csk(sk);
3417 	struct sk_buff *head = tcp_send_head(sk);
3418 	const struct tcp_sock *tp = tcp_sk(sk);
3419 
3420 	/* Was it a usable window open? */
3421 	if (!head)
3422 		return;
3423 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3424 		icsk->icsk_backoff = 0;
3425 		icsk->icsk_probes_tstamp = 0;
3426 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3427 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3428 		 * This function is not for random using!
3429 		 */
3430 	} else {
3431 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3432 
3433 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3434 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3435 	}
3436 }
3437 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3438 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3439 {
3440 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3441 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3442 }
3443 
3444 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3445 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3446 {
3447 	/* If reordering is high then always grow cwnd whenever data is
3448 	 * delivered regardless of its ordering. Otherwise stay conservative
3449 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3450 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3451 	 * cwnd in tcp_fastretrans_alert() based on more states.
3452 	 */
3453 	if (tcp_sk(sk)->reordering >
3454 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3455 		return flag & FLAG_FORWARD_PROGRESS;
3456 
3457 	return flag & FLAG_DATA_ACKED;
3458 }
3459 
3460 /* The "ultimate" congestion control function that aims to replace the rigid
3461  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3462  * It's called toward the end of processing an ACK with precise rate
3463  * information. All transmission or retransmission are delayed afterwards.
3464  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3465 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3466 			     int flag, const struct rate_sample *rs)
3467 {
3468 	const struct inet_connection_sock *icsk = inet_csk(sk);
3469 
3470 	if (icsk->icsk_ca_ops->cong_control) {
3471 		icsk->icsk_ca_ops->cong_control(sk, rs);
3472 		return;
3473 	}
3474 
3475 	if (tcp_in_cwnd_reduction(sk)) {
3476 		/* Reduce cwnd if state mandates */
3477 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3478 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3479 		/* Advance cwnd if state allows */
3480 		tcp_cong_avoid(sk, ack, acked_sacked);
3481 	}
3482 	tcp_update_pacing_rate(sk);
3483 }
3484 
3485 /* Check that window update is acceptable.
3486  * The function assumes that snd_una<=ack<=snd_next.
3487  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3488 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3489 					const u32 ack, const u32 ack_seq,
3490 					const u32 nwin)
3491 {
3492 	return	after(ack, tp->snd_una) ||
3493 		after(ack_seq, tp->snd_wl1) ||
3494 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3495 }
3496 
3497 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3498 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3499 {
3500 	u32 delta = ack - tp->snd_una;
3501 
3502 	sock_owned_by_me((struct sock *)tp);
3503 	tp->bytes_acked += delta;
3504 	tp->snd_una = ack;
3505 }
3506 
3507 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3508 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3509 {
3510 	u32 delta = seq - tp->rcv_nxt;
3511 
3512 	sock_owned_by_me((struct sock *)tp);
3513 	tp->bytes_received += delta;
3514 	WRITE_ONCE(tp->rcv_nxt, seq);
3515 }
3516 
3517 /* Update our send window.
3518  *
3519  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3520  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3521  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3522 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3523 				 u32 ack_seq)
3524 {
3525 	struct tcp_sock *tp = tcp_sk(sk);
3526 	int flag = 0;
3527 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3528 
3529 	if (likely(!tcp_hdr(skb)->syn))
3530 		nwin <<= tp->rx_opt.snd_wscale;
3531 
3532 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3533 		flag |= FLAG_WIN_UPDATE;
3534 		tcp_update_wl(tp, ack_seq);
3535 
3536 		if (tp->snd_wnd != nwin) {
3537 			tp->snd_wnd = nwin;
3538 
3539 			/* Note, it is the only place, where
3540 			 * fast path is recovered for sending TCP.
3541 			 */
3542 			tp->pred_flags = 0;
3543 			tcp_fast_path_check(sk);
3544 
3545 			if (!tcp_write_queue_empty(sk))
3546 				tcp_slow_start_after_idle_check(sk);
3547 
3548 			if (nwin > tp->max_window) {
3549 				tp->max_window = nwin;
3550 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3551 			}
3552 		}
3553 	}
3554 
3555 	tcp_snd_una_update(tp, ack);
3556 
3557 	return flag;
3558 }
3559 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3560 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3561 				   u32 *last_oow_ack_time)
3562 {
3563 	if (*last_oow_ack_time) {
3564 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3565 
3566 		if (0 <= elapsed &&
3567 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3568 			NET_INC_STATS(net, mib_idx);
3569 			return true;	/* rate-limited: don't send yet! */
3570 		}
3571 	}
3572 
3573 	*last_oow_ack_time = tcp_jiffies32;
3574 
3575 	return false;	/* not rate-limited: go ahead, send dupack now! */
3576 }
3577 
3578 /* Return true if we're currently rate-limiting out-of-window ACKs and
3579  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3580  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3581  * attacks that send repeated SYNs or ACKs for the same connection. To
3582  * do this, we do not send a duplicate SYNACK or ACK if the remote
3583  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3584  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3585 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3586 			  int mib_idx, u32 *last_oow_ack_time)
3587 {
3588 	/* Data packets without SYNs are not likely part of an ACK loop. */
3589 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3590 	    !tcp_hdr(skb)->syn)
3591 		return false;
3592 
3593 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3594 }
3595 
3596 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3597 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3598 {
3599 	/* unprotected vars, we dont care of overwrites */
3600 	static u32 challenge_timestamp;
3601 	static unsigned int challenge_count;
3602 	struct tcp_sock *tp = tcp_sk(sk);
3603 	struct net *net = sock_net(sk);
3604 	u32 count, now;
3605 
3606 	/* First check our per-socket dupack rate limit. */
3607 	if (__tcp_oow_rate_limited(net,
3608 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3609 				   &tp->last_oow_ack_time))
3610 		return;
3611 
3612 	/* Then check host-wide RFC 5961 rate limit. */
3613 	now = jiffies / HZ;
3614 	if (now != READ_ONCE(challenge_timestamp)) {
3615 		u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3616 		u32 half = (ack_limit + 1) >> 1;
3617 
3618 		WRITE_ONCE(challenge_timestamp, now);
3619 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3620 	}
3621 	count = READ_ONCE(challenge_count);
3622 	if (count > 0) {
3623 		WRITE_ONCE(challenge_count, count - 1);
3624 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3625 		tcp_send_ack(sk);
3626 	}
3627 }
3628 
tcp_store_ts_recent(struct tcp_sock * tp)3629 static void tcp_store_ts_recent(struct tcp_sock *tp)
3630 {
3631 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3632 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3633 }
3634 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3635 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3636 {
3637 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3638 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3639 		 * extra check below makes sure this can only happen
3640 		 * for pure ACK frames.  -DaveM
3641 		 *
3642 		 * Not only, also it occurs for expired timestamps.
3643 		 */
3644 
3645 		if (tcp_paws_check(&tp->rx_opt, 0))
3646 			tcp_store_ts_recent(tp);
3647 	}
3648 }
3649 
3650 /* This routine deals with acks during a TLP episode and ends an episode by
3651  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3652  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3653 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3654 {
3655 	struct tcp_sock *tp = tcp_sk(sk);
3656 
3657 	if (before(ack, tp->tlp_high_seq))
3658 		return;
3659 
3660 	if (!tp->tlp_retrans) {
3661 		/* TLP of new data has been acknowledged */
3662 		tp->tlp_high_seq = 0;
3663 	} else if (flag & FLAG_DSACKING_ACK) {
3664 		/* This DSACK means original and TLP probe arrived; no loss */
3665 		tp->tlp_high_seq = 0;
3666 	} else if (after(ack, tp->tlp_high_seq)) {
3667 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3668 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3669 		 */
3670 		tcp_init_cwnd_reduction(sk);
3671 		tcp_set_ca_state(sk, TCP_CA_CWR);
3672 		tcp_end_cwnd_reduction(sk);
3673 		tcp_try_keep_open(sk);
3674 		NET_INC_STATS(sock_net(sk),
3675 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3676 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3677 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3678 		/* Pure dupack: original and TLP probe arrived; no loss */
3679 		tp->tlp_high_seq = 0;
3680 	}
3681 }
3682 
tcp_in_ack_event(struct sock * sk,u32 flags)3683 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3684 {
3685 	const struct inet_connection_sock *icsk = inet_csk(sk);
3686 
3687 	if (icsk->icsk_ca_ops->in_ack_event)
3688 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3689 }
3690 
3691 /* Congestion control has updated the cwnd already. So if we're in
3692  * loss recovery then now we do any new sends (for FRTO) or
3693  * retransmits (for CA_Loss or CA_recovery) that make sense.
3694  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3695 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3696 {
3697 	struct tcp_sock *tp = tcp_sk(sk);
3698 
3699 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3700 		return;
3701 
3702 	if (unlikely(rexmit == REXMIT_NEW)) {
3703 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3704 					  TCP_NAGLE_OFF);
3705 		if (after(tp->snd_nxt, tp->high_seq))
3706 			return;
3707 		tp->frto = 0;
3708 	}
3709 	tcp_xmit_retransmit_queue(sk);
3710 }
3711 
3712 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3713 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3714 {
3715 	const struct net *net = sock_net(sk);
3716 	struct tcp_sock *tp = tcp_sk(sk);
3717 	u32 delivered;
3718 
3719 	delivered = tp->delivered - prior_delivered;
3720 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3721 	if (flag & FLAG_ECE)
3722 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3723 
3724 	return delivered;
3725 }
3726 
3727 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3728 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3729 {
3730 	struct inet_connection_sock *icsk = inet_csk(sk);
3731 	struct tcp_sock *tp = tcp_sk(sk);
3732 	struct tcp_sacktag_state sack_state;
3733 	struct rate_sample rs = { .prior_delivered = 0 };
3734 	u32 prior_snd_una = tp->snd_una;
3735 	bool is_sack_reneg = tp->is_sack_reneg;
3736 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3737 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3738 	int num_dupack = 0;
3739 	int prior_packets = tp->packets_out;
3740 	u32 delivered = tp->delivered;
3741 	u32 lost = tp->lost;
3742 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3743 	u32 prior_fack;
3744 
3745 	sack_state.first_sackt = 0;
3746 	sack_state.rate = &rs;
3747 	sack_state.sack_delivered = 0;
3748 
3749 	/* We very likely will need to access rtx queue. */
3750 	prefetch(sk->tcp_rtx_queue.rb_node);
3751 
3752 	/* If the ack is older than previous acks
3753 	 * then we can probably ignore it.
3754 	 */
3755 	if (before(ack, prior_snd_una)) {
3756 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3757 		if (before(ack, prior_snd_una - tp->max_window)) {
3758 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3759 				tcp_send_challenge_ack(sk, skb);
3760 			return -1;
3761 		}
3762 		goto old_ack;
3763 	}
3764 
3765 	/* If the ack includes data we haven't sent yet, discard
3766 	 * this segment (RFC793 Section 3.9).
3767 	 */
3768 	if (after(ack, tp->snd_nxt))
3769 		return -1;
3770 
3771 	if (after(ack, prior_snd_una)) {
3772 		flag |= FLAG_SND_UNA_ADVANCED;
3773 		icsk->icsk_retransmits = 0;
3774 
3775 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3776 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3777 			if (icsk->icsk_clean_acked)
3778 				icsk->icsk_clean_acked(sk, ack);
3779 #endif
3780 	}
3781 
3782 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3783 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3784 
3785 	/* ts_recent update must be made after we are sure that the packet
3786 	 * is in window.
3787 	 */
3788 	if (flag & FLAG_UPDATE_TS_RECENT)
3789 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3790 
3791 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3792 	    FLAG_SND_UNA_ADVANCED) {
3793 		/* Window is constant, pure forward advance.
3794 		 * No more checks are required.
3795 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3796 		 */
3797 		tcp_update_wl(tp, ack_seq);
3798 		tcp_snd_una_update(tp, ack);
3799 		flag |= FLAG_WIN_UPDATE;
3800 
3801 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3802 
3803 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3804 	} else {
3805 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3806 
3807 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3808 			flag |= FLAG_DATA;
3809 		else
3810 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3811 
3812 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3813 
3814 		if (TCP_SKB_CB(skb)->sacked)
3815 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3816 							&sack_state);
3817 
3818 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3819 			flag |= FLAG_ECE;
3820 			ack_ev_flags |= CA_ACK_ECE;
3821 		}
3822 
3823 		if (sack_state.sack_delivered)
3824 			tcp_count_delivered(tp, sack_state.sack_delivered,
3825 					    flag & FLAG_ECE);
3826 
3827 		if (flag & FLAG_WIN_UPDATE)
3828 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3829 
3830 		tcp_in_ack_event(sk, ack_ev_flags);
3831 	}
3832 
3833 	/* This is a deviation from RFC3168 since it states that:
3834 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3835 	 * the congestion window, it SHOULD set the CWR bit only on the first
3836 	 * new data packet that it transmits."
3837 	 * We accept CWR on pure ACKs to be more robust
3838 	 * with widely-deployed TCP implementations that do this.
3839 	 */
3840 	tcp_ecn_accept_cwr(sk, skb);
3841 
3842 	/* We passed data and got it acked, remove any soft error
3843 	 * log. Something worked...
3844 	 */
3845 	sk->sk_err_soft = 0;
3846 	icsk->icsk_probes_out = 0;
3847 	tp->rcv_tstamp = tcp_jiffies32;
3848 	if (!prior_packets)
3849 		goto no_queue;
3850 
3851 	/* See if we can take anything off of the retransmit queue. */
3852 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3853 				    flag & FLAG_ECE);
3854 
3855 	tcp_rack_update_reo_wnd(sk, &rs);
3856 
3857 	if (tp->tlp_high_seq)
3858 		tcp_process_tlp_ack(sk, ack, flag);
3859 
3860 	if (tcp_ack_is_dubious(sk, flag)) {
3861 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3862 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3863 			num_dupack = 1;
3864 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3865 			if (!(flag & FLAG_DATA))
3866 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3867 		}
3868 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3869 				      &rexmit);
3870 	}
3871 
3872 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3873 	if (flag & FLAG_SET_XMIT_TIMER)
3874 		tcp_set_xmit_timer(sk);
3875 
3876 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3877 		sk_dst_confirm(sk);
3878 
3879 	delivered = tcp_newly_delivered(sk, delivered, flag);
3880 	lost = tp->lost - lost;			/* freshly marked lost */
3881 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3882 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3883 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3884 	tcp_xmit_recovery(sk, rexmit);
3885 	return 1;
3886 
3887 no_queue:
3888 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3889 	if (flag & FLAG_DSACKING_ACK) {
3890 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3891 				      &rexmit);
3892 		tcp_newly_delivered(sk, delivered, flag);
3893 	}
3894 	/* If this ack opens up a zero window, clear backoff.  It was
3895 	 * being used to time the probes, and is probably far higher than
3896 	 * it needs to be for normal retransmission.
3897 	 */
3898 	tcp_ack_probe(sk);
3899 
3900 	if (tp->tlp_high_seq)
3901 		tcp_process_tlp_ack(sk, ack, flag);
3902 	return 1;
3903 
3904 old_ack:
3905 	/* If data was SACKed, tag it and see if we should send more data.
3906 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3907 	 */
3908 	if (TCP_SKB_CB(skb)->sacked) {
3909 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3910 						&sack_state);
3911 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3912 				      &rexmit);
3913 		tcp_newly_delivered(sk, delivered, flag);
3914 		tcp_xmit_recovery(sk, rexmit);
3915 	}
3916 
3917 	return 0;
3918 }
3919 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3920 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3921 				      bool syn, struct tcp_fastopen_cookie *foc,
3922 				      bool exp_opt)
3923 {
3924 	/* Valid only in SYN or SYN-ACK with an even length.  */
3925 	if (!foc || !syn || len < 0 || (len & 1))
3926 		return;
3927 
3928 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3929 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3930 		memcpy(foc->val, cookie, len);
3931 	else if (len != 0)
3932 		len = -1;
3933 	foc->len = len;
3934 	foc->exp = exp_opt;
3935 }
3936 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3937 static bool smc_parse_options(const struct tcphdr *th,
3938 			      struct tcp_options_received *opt_rx,
3939 			      const unsigned char *ptr,
3940 			      int opsize)
3941 {
3942 #if IS_ENABLED(CONFIG_SMC)
3943 	if (static_branch_unlikely(&tcp_have_smc)) {
3944 		if (th->syn && !(opsize & 1) &&
3945 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3946 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3947 			opt_rx->smc_ok = 1;
3948 			return true;
3949 		}
3950 	}
3951 #endif
3952 	return false;
3953 }
3954 
3955 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3956  * value on success.
3957  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3958 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3959 {
3960 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3961 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3962 	u16 mss = 0;
3963 
3964 	while (length > 0) {
3965 		int opcode = *ptr++;
3966 		int opsize;
3967 
3968 		switch (opcode) {
3969 		case TCPOPT_EOL:
3970 			return mss;
3971 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3972 			length--;
3973 			continue;
3974 		default:
3975 			if (length < 2)
3976 				return mss;
3977 			opsize = *ptr++;
3978 			if (opsize < 2) /* "silly options" */
3979 				return mss;
3980 			if (opsize > length)
3981 				return mss;	/* fail on partial options */
3982 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3983 				u16 in_mss = get_unaligned_be16(ptr);
3984 
3985 				if (in_mss) {
3986 					if (user_mss && user_mss < in_mss)
3987 						in_mss = user_mss;
3988 					mss = in_mss;
3989 				}
3990 			}
3991 			ptr += opsize - 2;
3992 			length -= opsize;
3993 		}
3994 	}
3995 	return mss;
3996 }
3997 
3998 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3999  * But, this can also be called on packets in the established flow when
4000  * the fast version below fails.
4001  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4002 void tcp_parse_options(const struct net *net,
4003 		       const struct sk_buff *skb,
4004 		       struct tcp_options_received *opt_rx, int estab,
4005 		       struct tcp_fastopen_cookie *foc)
4006 {
4007 	const unsigned char *ptr;
4008 	const struct tcphdr *th = tcp_hdr(skb);
4009 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4010 
4011 	ptr = (const unsigned char *)(th + 1);
4012 	opt_rx->saw_tstamp = 0;
4013 	opt_rx->saw_unknown = 0;
4014 
4015 	while (length > 0) {
4016 		int opcode = *ptr++;
4017 		int opsize;
4018 
4019 		switch (opcode) {
4020 		case TCPOPT_EOL:
4021 			return;
4022 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4023 			length--;
4024 			continue;
4025 		default:
4026 			if (length < 2)
4027 				return;
4028 			opsize = *ptr++;
4029 			if (opsize < 2) /* "silly options" */
4030 				return;
4031 			if (opsize > length)
4032 				return;	/* don't parse partial options */
4033 			switch (opcode) {
4034 			case TCPOPT_MSS:
4035 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4036 					u16 in_mss = get_unaligned_be16(ptr);
4037 					if (in_mss) {
4038 						if (opt_rx->user_mss &&
4039 						    opt_rx->user_mss < in_mss)
4040 							in_mss = opt_rx->user_mss;
4041 						opt_rx->mss_clamp = in_mss;
4042 					}
4043 				}
4044 				break;
4045 			case TCPOPT_WINDOW:
4046 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4047 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4048 					__u8 snd_wscale = *(__u8 *)ptr;
4049 					opt_rx->wscale_ok = 1;
4050 					if (snd_wscale > TCP_MAX_WSCALE) {
4051 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4052 								     __func__,
4053 								     snd_wscale,
4054 								     TCP_MAX_WSCALE);
4055 						snd_wscale = TCP_MAX_WSCALE;
4056 					}
4057 					opt_rx->snd_wscale = snd_wscale;
4058 				}
4059 				break;
4060 			case TCPOPT_TIMESTAMP:
4061 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4062 				    ((estab && opt_rx->tstamp_ok) ||
4063 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4064 					opt_rx->saw_tstamp = 1;
4065 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4066 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4067 				}
4068 				break;
4069 			case TCPOPT_SACK_PERM:
4070 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4071 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4072 					opt_rx->sack_ok = TCP_SACK_SEEN;
4073 					tcp_sack_reset(opt_rx);
4074 				}
4075 				break;
4076 
4077 			case TCPOPT_SACK:
4078 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4079 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4080 				   opt_rx->sack_ok) {
4081 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4082 				}
4083 				break;
4084 #ifdef CONFIG_TCP_MD5SIG
4085 			case TCPOPT_MD5SIG:
4086 				/*
4087 				 * The MD5 Hash has already been
4088 				 * checked (see tcp_v{4,6}_do_rcv()).
4089 				 */
4090 				break;
4091 #endif
4092 			case TCPOPT_FASTOPEN:
4093 				tcp_parse_fastopen_option(
4094 					opsize - TCPOLEN_FASTOPEN_BASE,
4095 					ptr, th->syn, foc, false);
4096 				break;
4097 
4098 			case TCPOPT_EXP:
4099 				/* Fast Open option shares code 254 using a
4100 				 * 16 bits magic number.
4101 				 */
4102 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4103 				    get_unaligned_be16(ptr) ==
4104 				    TCPOPT_FASTOPEN_MAGIC) {
4105 					tcp_parse_fastopen_option(opsize -
4106 						TCPOLEN_EXP_FASTOPEN_BASE,
4107 						ptr + 2, th->syn, foc, true);
4108 					break;
4109 				}
4110 
4111 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4112 					break;
4113 
4114 				opt_rx->saw_unknown = 1;
4115 				break;
4116 
4117 			default:
4118 				opt_rx->saw_unknown = 1;
4119 			}
4120 			ptr += opsize-2;
4121 			length -= opsize;
4122 		}
4123 	}
4124 }
4125 EXPORT_SYMBOL(tcp_parse_options);
4126 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4127 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4128 {
4129 	const __be32 *ptr = (const __be32 *)(th + 1);
4130 
4131 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4132 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4133 		tp->rx_opt.saw_tstamp = 1;
4134 		++ptr;
4135 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4136 		++ptr;
4137 		if (*ptr)
4138 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4139 		else
4140 			tp->rx_opt.rcv_tsecr = 0;
4141 		return true;
4142 	}
4143 	return false;
4144 }
4145 
4146 /* Fast parse options. This hopes to only see timestamps.
4147  * If it is wrong it falls back on tcp_parse_options().
4148  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4149 static bool tcp_fast_parse_options(const struct net *net,
4150 				   const struct sk_buff *skb,
4151 				   const struct tcphdr *th, struct tcp_sock *tp)
4152 {
4153 	/* In the spirit of fast parsing, compare doff directly to constant
4154 	 * values.  Because equality is used, short doff can be ignored here.
4155 	 */
4156 	if (th->doff == (sizeof(*th) / 4)) {
4157 		tp->rx_opt.saw_tstamp = 0;
4158 		return false;
4159 	} else if (tp->rx_opt.tstamp_ok &&
4160 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4161 		if (tcp_parse_aligned_timestamp(tp, th))
4162 			return true;
4163 	}
4164 
4165 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4166 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4167 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4168 
4169 	return true;
4170 }
4171 
4172 #ifdef CONFIG_TCP_MD5SIG
4173 /*
4174  * Parse MD5 Signature option
4175  */
tcp_parse_md5sig_option(const struct tcphdr * th)4176 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4177 {
4178 	int length = (th->doff << 2) - sizeof(*th);
4179 	const u8 *ptr = (const u8 *)(th + 1);
4180 
4181 	/* If not enough data remaining, we can short cut */
4182 	while (length >= TCPOLEN_MD5SIG) {
4183 		int opcode = *ptr++;
4184 		int opsize;
4185 
4186 		switch (opcode) {
4187 		case TCPOPT_EOL:
4188 			return NULL;
4189 		case TCPOPT_NOP:
4190 			length--;
4191 			continue;
4192 		default:
4193 			opsize = *ptr++;
4194 			if (opsize < 2 || opsize > length)
4195 				return NULL;
4196 			if (opcode == TCPOPT_MD5SIG)
4197 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4198 		}
4199 		ptr += opsize - 2;
4200 		length -= opsize;
4201 	}
4202 	return NULL;
4203 }
4204 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4205 #endif
4206 
4207 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4208  *
4209  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4210  * it can pass through stack. So, the following predicate verifies that
4211  * this segment is not used for anything but congestion avoidance or
4212  * fast retransmit. Moreover, we even are able to eliminate most of such
4213  * second order effects, if we apply some small "replay" window (~RTO)
4214  * to timestamp space.
4215  *
4216  * All these measures still do not guarantee that we reject wrapped ACKs
4217  * on networks with high bandwidth, when sequence space is recycled fastly,
4218  * but it guarantees that such events will be very rare and do not affect
4219  * connection seriously. This doesn't look nice, but alas, PAWS is really
4220  * buggy extension.
4221  *
4222  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4223  * states that events when retransmit arrives after original data are rare.
4224  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4225  * the biggest problem on large power networks even with minor reordering.
4226  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4227  * up to bandwidth of 18Gigabit/sec. 8) ]
4228  */
4229 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4230 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4231 {
4232 	const struct tcp_sock *tp = tcp_sk(sk);
4233 	const struct tcphdr *th = tcp_hdr(skb);
4234 	u32 seq = TCP_SKB_CB(skb)->seq;
4235 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4236 
4237 	return (/* 1. Pure ACK with correct sequence number. */
4238 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4239 
4240 		/* 2. ... and duplicate ACK. */
4241 		ack == tp->snd_una &&
4242 
4243 		/* 3. ... and does not update window. */
4244 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4245 
4246 		/* 4. ... and sits in replay window. */
4247 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4248 }
4249 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4250 static inline bool tcp_paws_discard(const struct sock *sk,
4251 				   const struct sk_buff *skb)
4252 {
4253 	const struct tcp_sock *tp = tcp_sk(sk);
4254 
4255 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4256 	       !tcp_disordered_ack(sk, skb);
4257 }
4258 
4259 /* Check segment sequence number for validity.
4260  *
4261  * Segment controls are considered valid, if the segment
4262  * fits to the window after truncation to the window. Acceptability
4263  * of data (and SYN, FIN, of course) is checked separately.
4264  * See tcp_data_queue(), for example.
4265  *
4266  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4267  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4268  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4269  * (borrowed from freebsd)
4270  */
4271 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4272 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4273 {
4274 	return	!before(end_seq, tp->rcv_wup) &&
4275 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4276 }
4277 
4278 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4279 void tcp_reset(struct sock *sk)
4280 {
4281 	trace_tcp_receive_reset(sk);
4282 
4283 	/* We want the right error as BSD sees it (and indeed as we do). */
4284 	switch (sk->sk_state) {
4285 	case TCP_SYN_SENT:
4286 		sk->sk_err = ECONNREFUSED;
4287 		break;
4288 	case TCP_CLOSE_WAIT:
4289 		sk->sk_err = EPIPE;
4290 		break;
4291 	case TCP_CLOSE:
4292 		return;
4293 	default:
4294 		sk->sk_err = ECONNRESET;
4295 	}
4296 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4297 	smp_wmb();
4298 
4299 	tcp_write_queue_purge(sk);
4300 	tcp_done(sk);
4301 
4302 	if (!sock_flag(sk, SOCK_DEAD))
4303 		sk->sk_error_report(sk);
4304 }
4305 
4306 /*
4307  * 	Process the FIN bit. This now behaves as it is supposed to work
4308  *	and the FIN takes effect when it is validly part of sequence
4309  *	space. Not before when we get holes.
4310  *
4311  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4312  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4313  *	TIME-WAIT)
4314  *
4315  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4316  *	close and we go into CLOSING (and later onto TIME-WAIT)
4317  *
4318  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4319  */
tcp_fin(struct sock * sk)4320 void tcp_fin(struct sock *sk)
4321 {
4322 	struct tcp_sock *tp = tcp_sk(sk);
4323 
4324 	inet_csk_schedule_ack(sk);
4325 
4326 	sk->sk_shutdown |= RCV_SHUTDOWN;
4327 	sock_set_flag(sk, SOCK_DONE);
4328 
4329 	switch (sk->sk_state) {
4330 	case TCP_SYN_RECV:
4331 	case TCP_ESTABLISHED:
4332 		/* Move to CLOSE_WAIT */
4333 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4334 		inet_csk_enter_pingpong_mode(sk);
4335 		break;
4336 
4337 	case TCP_CLOSE_WAIT:
4338 	case TCP_CLOSING:
4339 		/* Received a retransmission of the FIN, do
4340 		 * nothing.
4341 		 */
4342 		break;
4343 	case TCP_LAST_ACK:
4344 		/* RFC793: Remain in the LAST-ACK state. */
4345 		break;
4346 
4347 	case TCP_FIN_WAIT1:
4348 		/* This case occurs when a simultaneous close
4349 		 * happens, we must ack the received FIN and
4350 		 * enter the CLOSING state.
4351 		 */
4352 		tcp_send_ack(sk);
4353 		tcp_set_state(sk, TCP_CLOSING);
4354 		break;
4355 	case TCP_FIN_WAIT2:
4356 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4357 		tcp_send_ack(sk);
4358 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4359 		break;
4360 	default:
4361 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4362 		 * cases we should never reach this piece of code.
4363 		 */
4364 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4365 		       __func__, sk->sk_state);
4366 		break;
4367 	}
4368 
4369 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4370 	 * Probably, we should reset in this case. For now drop them.
4371 	 */
4372 	skb_rbtree_purge(&tp->out_of_order_queue);
4373 	if (tcp_is_sack(tp))
4374 		tcp_sack_reset(&tp->rx_opt);
4375 	sk_mem_reclaim(sk);
4376 
4377 	if (!sock_flag(sk, SOCK_DEAD)) {
4378 		sk->sk_state_change(sk);
4379 
4380 		/* Do not send POLL_HUP for half duplex close. */
4381 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4382 		    sk->sk_state == TCP_CLOSE)
4383 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4384 		else
4385 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4386 	}
4387 }
4388 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4389 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4390 				  u32 end_seq)
4391 {
4392 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4393 		if (before(seq, sp->start_seq))
4394 			sp->start_seq = seq;
4395 		if (after(end_seq, sp->end_seq))
4396 			sp->end_seq = end_seq;
4397 		return true;
4398 	}
4399 	return false;
4400 }
4401 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4402 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4403 {
4404 	struct tcp_sock *tp = tcp_sk(sk);
4405 
4406 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4407 		int mib_idx;
4408 
4409 		if (before(seq, tp->rcv_nxt))
4410 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4411 		else
4412 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4413 
4414 		NET_INC_STATS(sock_net(sk), mib_idx);
4415 
4416 		tp->rx_opt.dsack = 1;
4417 		tp->duplicate_sack[0].start_seq = seq;
4418 		tp->duplicate_sack[0].end_seq = end_seq;
4419 	}
4420 }
4421 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4422 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4423 {
4424 	struct tcp_sock *tp = tcp_sk(sk);
4425 
4426 	if (!tp->rx_opt.dsack)
4427 		tcp_dsack_set(sk, seq, end_seq);
4428 	else
4429 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4430 }
4431 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4432 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4433 {
4434 	/* When the ACK path fails or drops most ACKs, the sender would
4435 	 * timeout and spuriously retransmit the same segment repeatedly.
4436 	 * The receiver remembers and reflects via DSACKs. Leverage the
4437 	 * DSACK state and change the txhash to re-route speculatively.
4438 	 */
4439 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4440 	    sk_rethink_txhash(sk))
4441 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4442 }
4443 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4444 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4445 {
4446 	struct tcp_sock *tp = tcp_sk(sk);
4447 
4448 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4449 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4450 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4451 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4452 
4453 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4454 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4455 
4456 			tcp_rcv_spurious_retrans(sk, skb);
4457 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4458 				end_seq = tp->rcv_nxt;
4459 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4460 		}
4461 	}
4462 
4463 	tcp_send_ack(sk);
4464 }
4465 
4466 /* These routines update the SACK block as out-of-order packets arrive or
4467  * in-order packets close up the sequence space.
4468  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4469 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4470 {
4471 	int this_sack;
4472 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4473 	struct tcp_sack_block *swalk = sp + 1;
4474 
4475 	/* See if the recent change to the first SACK eats into
4476 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4477 	 */
4478 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4479 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4480 			int i;
4481 
4482 			/* Zap SWALK, by moving every further SACK up by one slot.
4483 			 * Decrease num_sacks.
4484 			 */
4485 			tp->rx_opt.num_sacks--;
4486 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4487 				sp[i] = sp[i + 1];
4488 			continue;
4489 		}
4490 		this_sack++;
4491 		swalk++;
4492 	}
4493 }
4494 
tcp_sack_compress_send_ack(struct sock * sk)4495 static void tcp_sack_compress_send_ack(struct sock *sk)
4496 {
4497 	struct tcp_sock *tp = tcp_sk(sk);
4498 
4499 	if (!tp->compressed_ack)
4500 		return;
4501 
4502 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4503 		__sock_put(sk);
4504 
4505 	/* Since we have to send one ack finally,
4506 	 * substract one from tp->compressed_ack to keep
4507 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4508 	 */
4509 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4510 		      tp->compressed_ack - 1);
4511 
4512 	tp->compressed_ack = 0;
4513 	tcp_send_ack(sk);
4514 }
4515 
4516 /* Reasonable amount of sack blocks included in TCP SACK option
4517  * The max is 4, but this becomes 3 if TCP timestamps are there.
4518  * Given that SACK packets might be lost, be conservative and use 2.
4519  */
4520 #define TCP_SACK_BLOCKS_EXPECTED 2
4521 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4522 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4523 {
4524 	struct tcp_sock *tp = tcp_sk(sk);
4525 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4526 	int cur_sacks = tp->rx_opt.num_sacks;
4527 	int this_sack;
4528 
4529 	if (!cur_sacks)
4530 		goto new_sack;
4531 
4532 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4533 		if (tcp_sack_extend(sp, seq, end_seq)) {
4534 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4535 				tcp_sack_compress_send_ack(sk);
4536 			/* Rotate this_sack to the first one. */
4537 			for (; this_sack > 0; this_sack--, sp--)
4538 				swap(*sp, *(sp - 1));
4539 			if (cur_sacks > 1)
4540 				tcp_sack_maybe_coalesce(tp);
4541 			return;
4542 		}
4543 	}
4544 
4545 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4546 		tcp_sack_compress_send_ack(sk);
4547 
4548 	/* Could not find an adjacent existing SACK, build a new one,
4549 	 * put it at the front, and shift everyone else down.  We
4550 	 * always know there is at least one SACK present already here.
4551 	 *
4552 	 * If the sack array is full, forget about the last one.
4553 	 */
4554 	if (this_sack >= TCP_NUM_SACKS) {
4555 		this_sack--;
4556 		tp->rx_opt.num_sacks--;
4557 		sp--;
4558 	}
4559 	for (; this_sack > 0; this_sack--, sp--)
4560 		*sp = *(sp - 1);
4561 
4562 new_sack:
4563 	/* Build the new head SACK, and we're done. */
4564 	sp->start_seq = seq;
4565 	sp->end_seq = end_seq;
4566 	tp->rx_opt.num_sacks++;
4567 }
4568 
4569 /* RCV.NXT advances, some SACKs should be eaten. */
4570 
tcp_sack_remove(struct tcp_sock * tp)4571 static void tcp_sack_remove(struct tcp_sock *tp)
4572 {
4573 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4574 	int num_sacks = tp->rx_opt.num_sacks;
4575 	int this_sack;
4576 
4577 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4578 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4579 		tp->rx_opt.num_sacks = 0;
4580 		return;
4581 	}
4582 
4583 	for (this_sack = 0; this_sack < num_sacks;) {
4584 		/* Check if the start of the sack is covered by RCV.NXT. */
4585 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4586 			int i;
4587 
4588 			/* RCV.NXT must cover all the block! */
4589 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4590 
4591 			/* Zap this SACK, by moving forward any other SACKS. */
4592 			for (i = this_sack+1; i < num_sacks; i++)
4593 				tp->selective_acks[i-1] = tp->selective_acks[i];
4594 			num_sacks--;
4595 			continue;
4596 		}
4597 		this_sack++;
4598 		sp++;
4599 	}
4600 	tp->rx_opt.num_sacks = num_sacks;
4601 }
4602 
4603 /**
4604  * tcp_try_coalesce - try to merge skb to prior one
4605  * @sk: socket
4606  * @to: prior buffer
4607  * @from: buffer to add in queue
4608  * @fragstolen: pointer to boolean
4609  *
4610  * Before queueing skb @from after @to, try to merge them
4611  * to reduce overall memory use and queue lengths, if cost is small.
4612  * Packets in ofo or receive queues can stay a long time.
4613  * Better try to coalesce them right now to avoid future collapses.
4614  * Returns true if caller should free @from instead of queueing it
4615  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4616 static bool tcp_try_coalesce(struct sock *sk,
4617 			     struct sk_buff *to,
4618 			     struct sk_buff *from,
4619 			     bool *fragstolen)
4620 {
4621 	int delta;
4622 
4623 	*fragstolen = false;
4624 
4625 	/* Its possible this segment overlaps with prior segment in queue */
4626 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4627 		return false;
4628 
4629 	if (!mptcp_skb_can_collapse(to, from))
4630 		return false;
4631 
4632 #ifdef CONFIG_TLS_DEVICE
4633 	if (from->decrypted != to->decrypted)
4634 		return false;
4635 #endif
4636 
4637 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4638 		return false;
4639 
4640 	atomic_add(delta, &sk->sk_rmem_alloc);
4641 	sk_mem_charge(sk, delta);
4642 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4643 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4644 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4645 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4646 
4647 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4648 		TCP_SKB_CB(to)->has_rxtstamp = true;
4649 		to->tstamp = from->tstamp;
4650 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4651 	}
4652 
4653 	return true;
4654 }
4655 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4656 static bool tcp_ooo_try_coalesce(struct sock *sk,
4657 			     struct sk_buff *to,
4658 			     struct sk_buff *from,
4659 			     bool *fragstolen)
4660 {
4661 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4662 
4663 	/* In case tcp_drop() is called later, update to->gso_segs */
4664 	if (res) {
4665 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4666 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4667 
4668 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4669 	}
4670 	return res;
4671 }
4672 
tcp_drop(struct sock * sk,struct sk_buff * skb)4673 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4674 {
4675 	sk_drops_add(sk, skb);
4676 	__kfree_skb(skb);
4677 }
4678 
4679 /* This one checks to see if we can put data from the
4680  * out_of_order queue into the receive_queue.
4681  */
tcp_ofo_queue(struct sock * sk)4682 static void tcp_ofo_queue(struct sock *sk)
4683 {
4684 	struct tcp_sock *tp = tcp_sk(sk);
4685 	__u32 dsack_high = tp->rcv_nxt;
4686 	bool fin, fragstolen, eaten;
4687 	struct sk_buff *skb, *tail;
4688 	struct rb_node *p;
4689 
4690 	p = rb_first(&tp->out_of_order_queue);
4691 	while (p) {
4692 		skb = rb_to_skb(p);
4693 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4694 			break;
4695 
4696 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4697 			__u32 dsack = dsack_high;
4698 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4699 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4700 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4701 		}
4702 		p = rb_next(p);
4703 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4704 
4705 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4706 			tcp_drop(sk, skb);
4707 			continue;
4708 		}
4709 
4710 		tail = skb_peek_tail(&sk->sk_receive_queue);
4711 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4712 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4713 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4714 		if (!eaten)
4715 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4716 		else
4717 			kfree_skb_partial(skb, fragstolen);
4718 
4719 		if (unlikely(fin)) {
4720 			tcp_fin(sk);
4721 			/* tcp_fin() purges tp->out_of_order_queue,
4722 			 * so we must end this loop right now.
4723 			 */
4724 			break;
4725 		}
4726 	}
4727 }
4728 
4729 static bool tcp_prune_ofo_queue(struct sock *sk);
4730 static int tcp_prune_queue(struct sock *sk);
4731 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4732 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4733 				 unsigned int size)
4734 {
4735 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4736 	    !sk_rmem_schedule(sk, skb, size)) {
4737 
4738 		if (tcp_prune_queue(sk) < 0)
4739 			return -1;
4740 
4741 		while (!sk_rmem_schedule(sk, skb, size)) {
4742 			if (!tcp_prune_ofo_queue(sk))
4743 				return -1;
4744 		}
4745 	}
4746 	return 0;
4747 }
4748 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4749 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4750 {
4751 	struct tcp_sock *tp = tcp_sk(sk);
4752 	struct rb_node **p, *parent;
4753 	struct sk_buff *skb1;
4754 	u32 seq, end_seq;
4755 	bool fragstolen;
4756 
4757 	tcp_ecn_check_ce(sk, skb);
4758 
4759 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4760 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4761 		sk->sk_data_ready(sk);
4762 		tcp_drop(sk, skb);
4763 		return;
4764 	}
4765 
4766 	/* Disable header prediction. */
4767 	tp->pred_flags = 0;
4768 	inet_csk_schedule_ack(sk);
4769 
4770 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4771 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4772 	seq = TCP_SKB_CB(skb)->seq;
4773 	end_seq = TCP_SKB_CB(skb)->end_seq;
4774 
4775 	p = &tp->out_of_order_queue.rb_node;
4776 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4777 		/* Initial out of order segment, build 1 SACK. */
4778 		if (tcp_is_sack(tp)) {
4779 			tp->rx_opt.num_sacks = 1;
4780 			tp->selective_acks[0].start_seq = seq;
4781 			tp->selective_acks[0].end_seq = end_seq;
4782 		}
4783 		rb_link_node(&skb->rbnode, NULL, p);
4784 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4785 		tp->ooo_last_skb = skb;
4786 		goto end;
4787 	}
4788 
4789 	/* In the typical case, we are adding an skb to the end of the list.
4790 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4791 	 */
4792 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4793 				 skb, &fragstolen)) {
4794 coalesce_done:
4795 		/* For non sack flows, do not grow window to force DUPACK
4796 		 * and trigger fast retransmit.
4797 		 */
4798 		if (tcp_is_sack(tp))
4799 			tcp_grow_window(sk, skb, true);
4800 		kfree_skb_partial(skb, fragstolen);
4801 		skb = NULL;
4802 		goto add_sack;
4803 	}
4804 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4805 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4806 		parent = &tp->ooo_last_skb->rbnode;
4807 		p = &parent->rb_right;
4808 		goto insert;
4809 	}
4810 
4811 	/* Find place to insert this segment. Handle overlaps on the way. */
4812 	parent = NULL;
4813 	while (*p) {
4814 		parent = *p;
4815 		skb1 = rb_to_skb(parent);
4816 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4817 			p = &parent->rb_left;
4818 			continue;
4819 		}
4820 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4821 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4822 				/* All the bits are present. Drop. */
4823 				NET_INC_STATS(sock_net(sk),
4824 					      LINUX_MIB_TCPOFOMERGE);
4825 				tcp_drop(sk, skb);
4826 				skb = NULL;
4827 				tcp_dsack_set(sk, seq, end_seq);
4828 				goto add_sack;
4829 			}
4830 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4831 				/* Partial overlap. */
4832 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4833 			} else {
4834 				/* skb's seq == skb1's seq and skb covers skb1.
4835 				 * Replace skb1 with skb.
4836 				 */
4837 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4838 						&tp->out_of_order_queue);
4839 				tcp_dsack_extend(sk,
4840 						 TCP_SKB_CB(skb1)->seq,
4841 						 TCP_SKB_CB(skb1)->end_seq);
4842 				NET_INC_STATS(sock_net(sk),
4843 					      LINUX_MIB_TCPOFOMERGE);
4844 				tcp_drop(sk, skb1);
4845 				goto merge_right;
4846 			}
4847 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4848 						skb, &fragstolen)) {
4849 			goto coalesce_done;
4850 		}
4851 		p = &parent->rb_right;
4852 	}
4853 insert:
4854 	/* Insert segment into RB tree. */
4855 	rb_link_node(&skb->rbnode, parent, p);
4856 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4857 
4858 merge_right:
4859 	/* Remove other segments covered by skb. */
4860 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4861 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4862 			break;
4863 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4864 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4865 					 end_seq);
4866 			break;
4867 		}
4868 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4869 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4870 				 TCP_SKB_CB(skb1)->end_seq);
4871 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4872 		tcp_drop(sk, skb1);
4873 	}
4874 	/* If there is no skb after us, we are the last_skb ! */
4875 	if (!skb1)
4876 		tp->ooo_last_skb = skb;
4877 
4878 add_sack:
4879 	if (tcp_is_sack(tp))
4880 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4881 end:
4882 	if (skb) {
4883 		/* For non sack flows, do not grow window to force DUPACK
4884 		 * and trigger fast retransmit.
4885 		 */
4886 		if (tcp_is_sack(tp))
4887 			tcp_grow_window(sk, skb, false);
4888 		skb_condense(skb);
4889 		skb_set_owner_r(skb, sk);
4890 	}
4891 }
4892 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4893 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4894 				      bool *fragstolen)
4895 {
4896 	int eaten;
4897 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4898 
4899 	eaten = (tail &&
4900 		 tcp_try_coalesce(sk, tail,
4901 				  skb, fragstolen)) ? 1 : 0;
4902 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4903 	if (!eaten) {
4904 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4905 		skb_set_owner_r(skb, sk);
4906 	}
4907 	return eaten;
4908 }
4909 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4910 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4911 {
4912 	struct sk_buff *skb;
4913 	int err = -ENOMEM;
4914 	int data_len = 0;
4915 	bool fragstolen;
4916 
4917 	if (size == 0)
4918 		return 0;
4919 
4920 	if (size > PAGE_SIZE) {
4921 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4922 
4923 		data_len = npages << PAGE_SHIFT;
4924 		size = data_len + (size & ~PAGE_MASK);
4925 	}
4926 	skb = alloc_skb_with_frags(size - data_len, data_len,
4927 				   PAGE_ALLOC_COSTLY_ORDER,
4928 				   &err, sk->sk_allocation);
4929 	if (!skb)
4930 		goto err;
4931 
4932 	skb_put(skb, size - data_len);
4933 	skb->data_len = data_len;
4934 	skb->len = size;
4935 
4936 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4937 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4938 		goto err_free;
4939 	}
4940 
4941 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4942 	if (err)
4943 		goto err_free;
4944 
4945 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4946 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4947 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4948 
4949 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4950 		WARN_ON_ONCE(fragstolen); /* should not happen */
4951 		__kfree_skb(skb);
4952 	}
4953 	return size;
4954 
4955 err_free:
4956 	kfree_skb(skb);
4957 err:
4958 	return err;
4959 
4960 }
4961 
tcp_data_ready(struct sock * sk)4962 void tcp_data_ready(struct sock *sk)
4963 {
4964 	const struct tcp_sock *tp = tcp_sk(sk);
4965 	int avail = tp->rcv_nxt - tp->copied_seq;
4966 
4967 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4968 	    !sock_flag(sk, SOCK_DONE) &&
4969 	    tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4970 		return;
4971 
4972 	sk->sk_data_ready(sk);
4973 }
4974 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4975 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4976 {
4977 	struct tcp_sock *tp = tcp_sk(sk);
4978 	bool fragstolen;
4979 	int eaten;
4980 
4981 	if (sk_is_mptcp(sk))
4982 		mptcp_incoming_options(sk, skb);
4983 
4984 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4985 		__kfree_skb(skb);
4986 		return;
4987 	}
4988 	skb_dst_drop(skb);
4989 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4990 
4991 	tp->rx_opt.dsack = 0;
4992 
4993 	/*  Queue data for delivery to the user.
4994 	 *  Packets in sequence go to the receive queue.
4995 	 *  Out of sequence packets to the out_of_order_queue.
4996 	 */
4997 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4998 		if (tcp_receive_window(tp) == 0) {
4999 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5000 			goto out_of_window;
5001 		}
5002 
5003 		/* Ok. In sequence. In window. */
5004 queue_and_out:
5005 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5006 			sk_forced_mem_schedule(sk, skb->truesize);
5007 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5008 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5009 			sk->sk_data_ready(sk);
5010 			goto drop;
5011 		}
5012 
5013 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5014 		if (skb->len)
5015 			tcp_event_data_recv(sk, skb);
5016 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5017 			tcp_fin(sk);
5018 
5019 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5020 			tcp_ofo_queue(sk);
5021 
5022 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5023 			 * gap in queue is filled.
5024 			 */
5025 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5026 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5027 		}
5028 
5029 		if (tp->rx_opt.num_sacks)
5030 			tcp_sack_remove(tp);
5031 
5032 		tcp_fast_path_check(sk);
5033 
5034 		if (eaten > 0)
5035 			kfree_skb_partial(skb, fragstolen);
5036 		if (!sock_flag(sk, SOCK_DEAD))
5037 			tcp_data_ready(sk);
5038 		return;
5039 	}
5040 
5041 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5042 		tcp_rcv_spurious_retrans(sk, skb);
5043 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5044 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5045 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5046 
5047 out_of_window:
5048 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5049 		inet_csk_schedule_ack(sk);
5050 drop:
5051 		tcp_drop(sk, skb);
5052 		return;
5053 	}
5054 
5055 	/* Out of window. F.e. zero window probe. */
5056 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5057 		goto out_of_window;
5058 
5059 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5060 		/* Partial packet, seq < rcv_next < end_seq */
5061 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5062 
5063 		/* If window is closed, drop tail of packet. But after
5064 		 * remembering D-SACK for its head made in previous line.
5065 		 */
5066 		if (!tcp_receive_window(tp)) {
5067 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5068 			goto out_of_window;
5069 		}
5070 		goto queue_and_out;
5071 	}
5072 
5073 	tcp_data_queue_ofo(sk, skb);
5074 }
5075 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5076 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5077 {
5078 	if (list)
5079 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5080 
5081 	return skb_rb_next(skb);
5082 }
5083 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5084 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5085 					struct sk_buff_head *list,
5086 					struct rb_root *root)
5087 {
5088 	struct sk_buff *next = tcp_skb_next(skb, list);
5089 
5090 	if (list)
5091 		__skb_unlink(skb, list);
5092 	else
5093 		rb_erase(&skb->rbnode, root);
5094 
5095 	__kfree_skb(skb);
5096 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5097 
5098 	return next;
5099 }
5100 
5101 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5102 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5103 {
5104 	struct rb_node **p = &root->rb_node;
5105 	struct rb_node *parent = NULL;
5106 	struct sk_buff *skb1;
5107 
5108 	while (*p) {
5109 		parent = *p;
5110 		skb1 = rb_to_skb(parent);
5111 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5112 			p = &parent->rb_left;
5113 		else
5114 			p = &parent->rb_right;
5115 	}
5116 	rb_link_node(&skb->rbnode, parent, p);
5117 	rb_insert_color(&skb->rbnode, root);
5118 }
5119 
5120 /* Collapse contiguous sequence of skbs head..tail with
5121  * sequence numbers start..end.
5122  *
5123  * If tail is NULL, this means until the end of the queue.
5124  *
5125  * Segments with FIN/SYN are not collapsed (only because this
5126  * simplifies code)
5127  */
5128 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5129 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5130 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5131 {
5132 	struct sk_buff *skb = head, *n;
5133 	struct sk_buff_head tmp;
5134 	bool end_of_skbs;
5135 
5136 	/* First, check that queue is collapsible and find
5137 	 * the point where collapsing can be useful.
5138 	 */
5139 restart:
5140 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5141 		n = tcp_skb_next(skb, list);
5142 
5143 		/* No new bits? It is possible on ofo queue. */
5144 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5145 			skb = tcp_collapse_one(sk, skb, list, root);
5146 			if (!skb)
5147 				break;
5148 			goto restart;
5149 		}
5150 
5151 		/* The first skb to collapse is:
5152 		 * - not SYN/FIN and
5153 		 * - bloated or contains data before "start" or
5154 		 *   overlaps to the next one and mptcp allow collapsing.
5155 		 */
5156 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5157 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5158 		     before(TCP_SKB_CB(skb)->seq, start))) {
5159 			end_of_skbs = false;
5160 			break;
5161 		}
5162 
5163 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5164 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5165 			end_of_skbs = false;
5166 			break;
5167 		}
5168 
5169 		/* Decided to skip this, advance start seq. */
5170 		start = TCP_SKB_CB(skb)->end_seq;
5171 	}
5172 	if (end_of_skbs ||
5173 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5174 		return;
5175 
5176 	__skb_queue_head_init(&tmp);
5177 
5178 	while (before(start, end)) {
5179 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5180 		struct sk_buff *nskb;
5181 
5182 		nskb = alloc_skb(copy, GFP_ATOMIC);
5183 		if (!nskb)
5184 			break;
5185 
5186 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5187 #ifdef CONFIG_TLS_DEVICE
5188 		nskb->decrypted = skb->decrypted;
5189 #endif
5190 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5191 		if (list)
5192 			__skb_queue_before(list, skb, nskb);
5193 		else
5194 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5195 		skb_set_owner_r(nskb, sk);
5196 		mptcp_skb_ext_move(nskb, skb);
5197 
5198 		/* Copy data, releasing collapsed skbs. */
5199 		while (copy > 0) {
5200 			int offset = start - TCP_SKB_CB(skb)->seq;
5201 			int size = TCP_SKB_CB(skb)->end_seq - start;
5202 
5203 			BUG_ON(offset < 0);
5204 			if (size > 0) {
5205 				size = min(copy, size);
5206 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5207 					BUG();
5208 				TCP_SKB_CB(nskb)->end_seq += size;
5209 				copy -= size;
5210 				start += size;
5211 			}
5212 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5213 				skb = tcp_collapse_one(sk, skb, list, root);
5214 				if (!skb ||
5215 				    skb == tail ||
5216 				    !mptcp_skb_can_collapse(nskb, skb) ||
5217 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5218 					goto end;
5219 #ifdef CONFIG_TLS_DEVICE
5220 				if (skb->decrypted != nskb->decrypted)
5221 					goto end;
5222 #endif
5223 			}
5224 		}
5225 	}
5226 end:
5227 	skb_queue_walk_safe(&tmp, skb, n)
5228 		tcp_rbtree_insert(root, skb);
5229 }
5230 
5231 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5232  * and tcp_collapse() them until all the queue is collapsed.
5233  */
tcp_collapse_ofo_queue(struct sock * sk)5234 static void tcp_collapse_ofo_queue(struct sock *sk)
5235 {
5236 	struct tcp_sock *tp = tcp_sk(sk);
5237 	u32 range_truesize, sum_tiny = 0;
5238 	struct sk_buff *skb, *head;
5239 	u32 start, end;
5240 
5241 	skb = skb_rb_first(&tp->out_of_order_queue);
5242 new_range:
5243 	if (!skb) {
5244 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5245 		return;
5246 	}
5247 	start = TCP_SKB_CB(skb)->seq;
5248 	end = TCP_SKB_CB(skb)->end_seq;
5249 	range_truesize = skb->truesize;
5250 
5251 	for (head = skb;;) {
5252 		skb = skb_rb_next(skb);
5253 
5254 		/* Range is terminated when we see a gap or when
5255 		 * we are at the queue end.
5256 		 */
5257 		if (!skb ||
5258 		    after(TCP_SKB_CB(skb)->seq, end) ||
5259 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5260 			/* Do not attempt collapsing tiny skbs */
5261 			if (range_truesize != head->truesize ||
5262 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5263 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5264 					     head, skb, start, end);
5265 			} else {
5266 				sum_tiny += range_truesize;
5267 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5268 					return;
5269 			}
5270 			goto new_range;
5271 		}
5272 
5273 		range_truesize += skb->truesize;
5274 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5275 			start = TCP_SKB_CB(skb)->seq;
5276 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5277 			end = TCP_SKB_CB(skb)->end_seq;
5278 	}
5279 }
5280 
5281 /*
5282  * Clean the out-of-order queue to make room.
5283  * We drop high sequences packets to :
5284  * 1) Let a chance for holes to be filled.
5285  * 2) not add too big latencies if thousands of packets sit there.
5286  *    (But if application shrinks SO_RCVBUF, we could still end up
5287  *     freeing whole queue here)
5288  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5289  *
5290  * Return true if queue has shrunk.
5291  */
tcp_prune_ofo_queue(struct sock * sk)5292 static bool tcp_prune_ofo_queue(struct sock *sk)
5293 {
5294 	struct tcp_sock *tp = tcp_sk(sk);
5295 	struct rb_node *node, *prev;
5296 	int goal;
5297 
5298 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5299 		return false;
5300 
5301 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5302 	goal = sk->sk_rcvbuf >> 3;
5303 	node = &tp->ooo_last_skb->rbnode;
5304 	do {
5305 		prev = rb_prev(node);
5306 		rb_erase(node, &tp->out_of_order_queue);
5307 		goal -= rb_to_skb(node)->truesize;
5308 		tcp_drop(sk, rb_to_skb(node));
5309 		if (!prev || goal <= 0) {
5310 			sk_mem_reclaim(sk);
5311 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5312 			    !tcp_under_memory_pressure(sk))
5313 				break;
5314 			goal = sk->sk_rcvbuf >> 3;
5315 		}
5316 		node = prev;
5317 	} while (node);
5318 	tp->ooo_last_skb = rb_to_skb(prev);
5319 
5320 	/* Reset SACK state.  A conforming SACK implementation will
5321 	 * do the same at a timeout based retransmit.  When a connection
5322 	 * is in a sad state like this, we care only about integrity
5323 	 * of the connection not performance.
5324 	 */
5325 	if (tp->rx_opt.sack_ok)
5326 		tcp_sack_reset(&tp->rx_opt);
5327 	return true;
5328 }
5329 
5330 /* Reduce allocated memory if we can, trying to get
5331  * the socket within its memory limits again.
5332  *
5333  * Return less than zero if we should start dropping frames
5334  * until the socket owning process reads some of the data
5335  * to stabilize the situation.
5336  */
tcp_prune_queue(struct sock * sk)5337 static int tcp_prune_queue(struct sock *sk)
5338 {
5339 	struct tcp_sock *tp = tcp_sk(sk);
5340 
5341 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5342 
5343 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5344 		tcp_clamp_window(sk);
5345 	else if (tcp_under_memory_pressure(sk))
5346 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5347 
5348 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5349 		return 0;
5350 
5351 	tcp_collapse_ofo_queue(sk);
5352 	if (!skb_queue_empty(&sk->sk_receive_queue))
5353 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5354 			     skb_peek(&sk->sk_receive_queue),
5355 			     NULL,
5356 			     tp->copied_seq, tp->rcv_nxt);
5357 	sk_mem_reclaim(sk);
5358 
5359 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5360 		return 0;
5361 
5362 	/* Collapsing did not help, destructive actions follow.
5363 	 * This must not ever occur. */
5364 
5365 	tcp_prune_ofo_queue(sk);
5366 
5367 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5368 		return 0;
5369 
5370 	/* If we are really being abused, tell the caller to silently
5371 	 * drop receive data on the floor.  It will get retransmitted
5372 	 * and hopefully then we'll have sufficient space.
5373 	 */
5374 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5375 
5376 	/* Massive buffer overcommit. */
5377 	tp->pred_flags = 0;
5378 	return -1;
5379 }
5380 
tcp_should_expand_sndbuf(const struct sock * sk)5381 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5382 {
5383 	const struct tcp_sock *tp = tcp_sk(sk);
5384 
5385 	/* If the user specified a specific send buffer setting, do
5386 	 * not modify it.
5387 	 */
5388 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5389 		return false;
5390 
5391 	/* If we are under global TCP memory pressure, do not expand.  */
5392 	if (tcp_under_memory_pressure(sk))
5393 		return false;
5394 
5395 	/* If we are under soft global TCP memory pressure, do not expand.  */
5396 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5397 		return false;
5398 
5399 	/* If we filled the congestion window, do not expand.  */
5400 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5401 		return false;
5402 
5403 	return true;
5404 }
5405 
tcp_new_space(struct sock * sk)5406 static void tcp_new_space(struct sock *sk)
5407 {
5408 	struct tcp_sock *tp = tcp_sk(sk);
5409 
5410 	if (tcp_should_expand_sndbuf(sk)) {
5411 		tcp_sndbuf_expand(sk);
5412 		tp->snd_cwnd_stamp = tcp_jiffies32;
5413 	}
5414 
5415 	sk->sk_write_space(sk);
5416 }
5417 
5418 /* Caller made space either from:
5419  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5420  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5421  *
5422  * We might be able to generate EPOLLOUT to the application if:
5423  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5424  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5425  *    small enough that tcp_stream_memory_free() decides it
5426  *    is time to generate EPOLLOUT.
5427  */
tcp_check_space(struct sock * sk)5428 void tcp_check_space(struct sock *sk)
5429 {
5430 	/* pairs with tcp_poll() */
5431 	smp_mb();
5432 	if (sk->sk_socket &&
5433 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5434 		tcp_new_space(sk);
5435 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5436 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5437 	}
5438 }
5439 
tcp_data_snd_check(struct sock * sk)5440 static inline void tcp_data_snd_check(struct sock *sk)
5441 {
5442 	tcp_push_pending_frames(sk);
5443 	tcp_check_space(sk);
5444 }
5445 
5446 /*
5447  * Check if sending an ack is needed.
5448  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5449 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5450 {
5451 	struct tcp_sock *tp = tcp_sk(sk);
5452 	unsigned long rtt, delay;
5453 
5454 	    /* More than one full frame received... */
5455 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5456 	     /* ... and right edge of window advances far enough.
5457 	      * (tcp_recvmsg() will send ACK otherwise).
5458 	      * If application uses SO_RCVLOWAT, we want send ack now if
5459 	      * we have not received enough bytes to satisfy the condition.
5460 	      */
5461 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5462 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5463 	    /* We ACK each frame or... */
5464 	    tcp_in_quickack_mode(sk) ||
5465 	    /* Protocol state mandates a one-time immediate ACK */
5466 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5467 send_now:
5468 		tcp_send_ack(sk);
5469 		return;
5470 	}
5471 
5472 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5473 		tcp_send_delayed_ack(sk);
5474 		return;
5475 	}
5476 
5477 	if (!tcp_is_sack(tp) ||
5478 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5479 		goto send_now;
5480 
5481 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5482 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5483 		tp->dup_ack_counter = 0;
5484 	}
5485 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5486 		tp->dup_ack_counter++;
5487 		goto send_now;
5488 	}
5489 	tp->compressed_ack++;
5490 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5491 		return;
5492 
5493 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5494 
5495 	rtt = tp->rcv_rtt_est.rtt_us;
5496 	if (tp->srtt_us && tp->srtt_us < rtt)
5497 		rtt = tp->srtt_us;
5498 
5499 	delay = min_t(unsigned long,
5500 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5501 		      rtt * (NSEC_PER_USEC >> 3)/20);
5502 	sock_hold(sk);
5503 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5504 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5505 			       HRTIMER_MODE_REL_PINNED_SOFT);
5506 }
5507 
tcp_ack_snd_check(struct sock * sk)5508 static inline void tcp_ack_snd_check(struct sock *sk)
5509 {
5510 	if (!inet_csk_ack_scheduled(sk)) {
5511 		/* We sent a data segment already. */
5512 		return;
5513 	}
5514 	__tcp_ack_snd_check(sk, 1);
5515 }
5516 
5517 /*
5518  *	This routine is only called when we have urgent data
5519  *	signaled. Its the 'slow' part of tcp_urg. It could be
5520  *	moved inline now as tcp_urg is only called from one
5521  *	place. We handle URGent data wrong. We have to - as
5522  *	BSD still doesn't use the correction from RFC961.
5523  *	For 1003.1g we should support a new option TCP_STDURG to permit
5524  *	either form (or just set the sysctl tcp_stdurg).
5525  */
5526 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5527 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5528 {
5529 	struct tcp_sock *tp = tcp_sk(sk);
5530 	u32 ptr = ntohs(th->urg_ptr);
5531 
5532 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5533 		ptr--;
5534 	ptr += ntohl(th->seq);
5535 
5536 	/* Ignore urgent data that we've already seen and read. */
5537 	if (after(tp->copied_seq, ptr))
5538 		return;
5539 
5540 	/* Do not replay urg ptr.
5541 	 *
5542 	 * NOTE: interesting situation not covered by specs.
5543 	 * Misbehaving sender may send urg ptr, pointing to segment,
5544 	 * which we already have in ofo queue. We are not able to fetch
5545 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5546 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5547 	 * situations. But it is worth to think about possibility of some
5548 	 * DoSes using some hypothetical application level deadlock.
5549 	 */
5550 	if (before(ptr, tp->rcv_nxt))
5551 		return;
5552 
5553 	/* Do we already have a newer (or duplicate) urgent pointer? */
5554 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5555 		return;
5556 
5557 	/* Tell the world about our new urgent pointer. */
5558 	sk_send_sigurg(sk);
5559 
5560 	/* We may be adding urgent data when the last byte read was
5561 	 * urgent. To do this requires some care. We cannot just ignore
5562 	 * tp->copied_seq since we would read the last urgent byte again
5563 	 * as data, nor can we alter copied_seq until this data arrives
5564 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5565 	 *
5566 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5567 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5568 	 * and expect that both A and B disappear from stream. This is _wrong_.
5569 	 * Though this happens in BSD with high probability, this is occasional.
5570 	 * Any application relying on this is buggy. Note also, that fix "works"
5571 	 * only in this artificial test. Insert some normal data between A and B and we will
5572 	 * decline of BSD again. Verdict: it is better to remove to trap
5573 	 * buggy users.
5574 	 */
5575 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5576 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5577 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5578 		tp->copied_seq++;
5579 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5580 			__skb_unlink(skb, &sk->sk_receive_queue);
5581 			__kfree_skb(skb);
5582 		}
5583 	}
5584 
5585 	tp->urg_data = TCP_URG_NOTYET;
5586 	WRITE_ONCE(tp->urg_seq, ptr);
5587 
5588 	/* Disable header prediction. */
5589 	tp->pred_flags = 0;
5590 }
5591 
5592 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5593 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5594 {
5595 	struct tcp_sock *tp = tcp_sk(sk);
5596 
5597 	/* Check if we get a new urgent pointer - normally not. */
5598 	if (th->urg)
5599 		tcp_check_urg(sk, th);
5600 
5601 	/* Do we wait for any urgent data? - normally not... */
5602 	if (tp->urg_data == TCP_URG_NOTYET) {
5603 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5604 			  th->syn;
5605 
5606 		/* Is the urgent pointer pointing into this packet? */
5607 		if (ptr < skb->len) {
5608 			u8 tmp;
5609 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5610 				BUG();
5611 			tp->urg_data = TCP_URG_VALID | tmp;
5612 			if (!sock_flag(sk, SOCK_DEAD))
5613 				sk->sk_data_ready(sk);
5614 		}
5615 	}
5616 }
5617 
5618 /* Accept RST for rcv_nxt - 1 after a FIN.
5619  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5620  * FIN is sent followed by a RST packet. The RST is sent with the same
5621  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5622  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5623  * ACKs on the closed socket. In addition middleboxes can drop either the
5624  * challenge ACK or a subsequent RST.
5625  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5626 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5627 {
5628 	struct tcp_sock *tp = tcp_sk(sk);
5629 
5630 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5631 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5632 					       TCPF_CLOSING));
5633 }
5634 
5635 /* Does PAWS and seqno based validation of an incoming segment, flags will
5636  * play significant role here.
5637  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5638 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5639 				  const struct tcphdr *th, int syn_inerr)
5640 {
5641 	struct tcp_sock *tp = tcp_sk(sk);
5642 	bool rst_seq_match = false;
5643 
5644 	/* RFC1323: H1. Apply PAWS check first. */
5645 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5646 	    tp->rx_opt.saw_tstamp &&
5647 	    tcp_paws_discard(sk, skb)) {
5648 		if (!th->rst) {
5649 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5650 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5651 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5652 						  &tp->last_oow_ack_time))
5653 				tcp_send_dupack(sk, skb);
5654 			goto discard;
5655 		}
5656 		/* Reset is accepted even if it did not pass PAWS. */
5657 	}
5658 
5659 	/* Step 1: check sequence number */
5660 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5661 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5662 		 * (RST) segments are validated by checking their SEQ-fields."
5663 		 * And page 69: "If an incoming segment is not acceptable,
5664 		 * an acknowledgment should be sent in reply (unless the RST
5665 		 * bit is set, if so drop the segment and return)".
5666 		 */
5667 		if (!th->rst) {
5668 			if (th->syn)
5669 				goto syn_challenge;
5670 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5671 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5672 						  &tp->last_oow_ack_time))
5673 				tcp_send_dupack(sk, skb);
5674 		} else if (tcp_reset_check(sk, skb)) {
5675 			tcp_reset(sk);
5676 		}
5677 		goto discard;
5678 	}
5679 
5680 	/* Step 2: check RST bit */
5681 	if (th->rst) {
5682 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5683 		 * FIN and SACK too if available):
5684 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5685 		 * the right-most SACK block,
5686 		 * then
5687 		 *     RESET the connection
5688 		 * else
5689 		 *     Send a challenge ACK
5690 		 */
5691 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5692 		    tcp_reset_check(sk, skb)) {
5693 			rst_seq_match = true;
5694 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5695 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5696 			int max_sack = sp[0].end_seq;
5697 			int this_sack;
5698 
5699 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5700 			     ++this_sack) {
5701 				max_sack = after(sp[this_sack].end_seq,
5702 						 max_sack) ?
5703 					sp[this_sack].end_seq : max_sack;
5704 			}
5705 
5706 			if (TCP_SKB_CB(skb)->seq == max_sack)
5707 				rst_seq_match = true;
5708 		}
5709 
5710 		if (rst_seq_match)
5711 			tcp_reset(sk);
5712 		else {
5713 			/* Disable TFO if RST is out-of-order
5714 			 * and no data has been received
5715 			 * for current active TFO socket
5716 			 */
5717 			if (tp->syn_fastopen && !tp->data_segs_in &&
5718 			    sk->sk_state == TCP_ESTABLISHED)
5719 				tcp_fastopen_active_disable(sk);
5720 			tcp_send_challenge_ack(sk, skb);
5721 		}
5722 		goto discard;
5723 	}
5724 
5725 	/* step 3: check security and precedence [ignored] */
5726 
5727 	/* step 4: Check for a SYN
5728 	 * RFC 5961 4.2 : Send a challenge ack
5729 	 */
5730 	if (th->syn) {
5731 syn_challenge:
5732 		if (syn_inerr)
5733 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5734 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5735 		tcp_send_challenge_ack(sk, skb);
5736 		goto discard;
5737 	}
5738 
5739 	bpf_skops_parse_hdr(sk, skb);
5740 
5741 	return true;
5742 
5743 discard:
5744 	tcp_drop(sk, skb);
5745 	return false;
5746 }
5747 
5748 /*
5749  *	TCP receive function for the ESTABLISHED state.
5750  *
5751  *	It is split into a fast path and a slow path. The fast path is
5752  * 	disabled when:
5753  *	- A zero window was announced from us - zero window probing
5754  *        is only handled properly in the slow path.
5755  *	- Out of order segments arrived.
5756  *	- Urgent data is expected.
5757  *	- There is no buffer space left
5758  *	- Unexpected TCP flags/window values/header lengths are received
5759  *	  (detected by checking the TCP header against pred_flags)
5760  *	- Data is sent in both directions. Fast path only supports pure senders
5761  *	  or pure receivers (this means either the sequence number or the ack
5762  *	  value must stay constant)
5763  *	- Unexpected TCP option.
5764  *
5765  *	When these conditions are not satisfied it drops into a standard
5766  *	receive procedure patterned after RFC793 to handle all cases.
5767  *	The first three cases are guaranteed by proper pred_flags setting,
5768  *	the rest is checked inline. Fast processing is turned on in
5769  *	tcp_data_queue when everything is OK.
5770  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5771 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5772 {
5773 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5774 	struct tcp_sock *tp = tcp_sk(sk);
5775 	unsigned int len = skb->len;
5776 
5777 	/* TCP congestion window tracking */
5778 	trace_tcp_probe(sk, skb);
5779 
5780 	tcp_mstamp_refresh(tp);
5781 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5782 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5783 	/*
5784 	 *	Header prediction.
5785 	 *	The code loosely follows the one in the famous
5786 	 *	"30 instruction TCP receive" Van Jacobson mail.
5787 	 *
5788 	 *	Van's trick is to deposit buffers into socket queue
5789 	 *	on a device interrupt, to call tcp_recv function
5790 	 *	on the receive process context and checksum and copy
5791 	 *	the buffer to user space. smart...
5792 	 *
5793 	 *	Our current scheme is not silly either but we take the
5794 	 *	extra cost of the net_bh soft interrupt processing...
5795 	 *	We do checksum and copy also but from device to kernel.
5796 	 */
5797 
5798 	tp->rx_opt.saw_tstamp = 0;
5799 
5800 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5801 	 *	if header_prediction is to be made
5802 	 *	'S' will always be tp->tcp_header_len >> 2
5803 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5804 	 *  turn it off	(when there are holes in the receive
5805 	 *	 space for instance)
5806 	 *	PSH flag is ignored.
5807 	 */
5808 
5809 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5810 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5811 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5812 		int tcp_header_len = tp->tcp_header_len;
5813 
5814 		/* Timestamp header prediction: tcp_header_len
5815 		 * is automatically equal to th->doff*4 due to pred_flags
5816 		 * match.
5817 		 */
5818 
5819 		/* Check timestamp */
5820 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5821 			/* No? Slow path! */
5822 			if (!tcp_parse_aligned_timestamp(tp, th))
5823 				goto slow_path;
5824 
5825 			/* If PAWS failed, check it more carefully in slow path */
5826 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5827 				goto slow_path;
5828 
5829 			/* DO NOT update ts_recent here, if checksum fails
5830 			 * and timestamp was corrupted part, it will result
5831 			 * in a hung connection since we will drop all
5832 			 * future packets due to the PAWS test.
5833 			 */
5834 		}
5835 
5836 		if (len <= tcp_header_len) {
5837 			/* Bulk data transfer: sender */
5838 			if (len == tcp_header_len) {
5839 				/* Predicted packet is in window by definition.
5840 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5841 				 * Hence, check seq<=rcv_wup reduces to:
5842 				 */
5843 				if (tcp_header_len ==
5844 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5845 				    tp->rcv_nxt == tp->rcv_wup)
5846 					tcp_store_ts_recent(tp);
5847 
5848 				/* We know that such packets are checksummed
5849 				 * on entry.
5850 				 */
5851 				tcp_ack(sk, skb, 0);
5852 				__kfree_skb(skb);
5853 				tcp_data_snd_check(sk);
5854 				/* When receiving pure ack in fast path, update
5855 				 * last ts ecr directly instead of calling
5856 				 * tcp_rcv_rtt_measure_ts()
5857 				 */
5858 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5859 				return;
5860 			} else { /* Header too small */
5861 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5862 				goto discard;
5863 			}
5864 		} else {
5865 			int eaten = 0;
5866 			bool fragstolen = false;
5867 
5868 			if (tcp_checksum_complete(skb))
5869 				goto csum_error;
5870 
5871 			if ((int)skb->truesize > sk->sk_forward_alloc)
5872 				goto step5;
5873 
5874 			/* Predicted packet is in window by definition.
5875 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5876 			 * Hence, check seq<=rcv_wup reduces to:
5877 			 */
5878 			if (tcp_header_len ==
5879 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5880 			    tp->rcv_nxt == tp->rcv_wup)
5881 				tcp_store_ts_recent(tp);
5882 
5883 			tcp_rcv_rtt_measure_ts(sk, skb);
5884 
5885 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5886 
5887 			/* Bulk data transfer: receiver */
5888 			__skb_pull(skb, tcp_header_len);
5889 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5890 
5891 			tcp_event_data_recv(sk, skb);
5892 
5893 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5894 				/* Well, only one small jumplet in fast path... */
5895 				tcp_ack(sk, skb, FLAG_DATA);
5896 				tcp_data_snd_check(sk);
5897 				if (!inet_csk_ack_scheduled(sk))
5898 					goto no_ack;
5899 			} else {
5900 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5901 			}
5902 
5903 			__tcp_ack_snd_check(sk, 0);
5904 no_ack:
5905 			if (eaten)
5906 				kfree_skb_partial(skb, fragstolen);
5907 			tcp_data_ready(sk);
5908 			return;
5909 		}
5910 	}
5911 
5912 slow_path:
5913 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5914 		goto csum_error;
5915 
5916 	if (!th->ack && !th->rst && !th->syn)
5917 		goto discard;
5918 
5919 	/*
5920 	 *	Standard slow path.
5921 	 */
5922 
5923 	if (!tcp_validate_incoming(sk, skb, th, 1))
5924 		return;
5925 
5926 step5:
5927 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5928 		goto discard;
5929 
5930 	tcp_rcv_rtt_measure_ts(sk, skb);
5931 
5932 	/* Process urgent data. */
5933 	tcp_urg(sk, skb, th);
5934 
5935 	/* step 7: process the segment text */
5936 	tcp_data_queue(sk, skb);
5937 
5938 	tcp_data_snd_check(sk);
5939 	tcp_ack_snd_check(sk);
5940 	return;
5941 
5942 csum_error:
5943 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5944 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5945 
5946 discard:
5947 	tcp_drop(sk, skb);
5948 }
5949 EXPORT_SYMBOL(tcp_rcv_established);
5950 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)5951 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5952 {
5953 	struct inet_connection_sock *icsk = inet_csk(sk);
5954 	struct tcp_sock *tp = tcp_sk(sk);
5955 
5956 	tcp_mtup_init(sk);
5957 	icsk->icsk_af_ops->rebuild_header(sk);
5958 	tcp_init_metrics(sk);
5959 
5960 	/* Initialize the congestion window to start the transfer.
5961 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5962 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5963 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5964 	 * retransmission has occurred.
5965 	 */
5966 	if (tp->total_retrans > 1 && tp->undo_marker)
5967 		tp->snd_cwnd = 1;
5968 	else
5969 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5970 	tp->snd_cwnd_stamp = tcp_jiffies32;
5971 
5972 	bpf_skops_established(sk, bpf_op, skb);
5973 	/* Initialize congestion control unless BPF initialized it already: */
5974 	if (!icsk->icsk_ca_initialized)
5975 		tcp_init_congestion_control(sk);
5976 	tcp_init_buffer_space(sk);
5977 }
5978 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5979 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5980 {
5981 	struct tcp_sock *tp = tcp_sk(sk);
5982 	struct inet_connection_sock *icsk = inet_csk(sk);
5983 
5984 	tcp_set_state(sk, TCP_ESTABLISHED);
5985 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5986 
5987 	if (skb) {
5988 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5989 		security_inet_conn_established(sk, skb);
5990 		sk_mark_napi_id(sk, skb);
5991 	}
5992 
5993 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5994 
5995 	/* Prevent spurious tcp_cwnd_restart() on first data
5996 	 * packet.
5997 	 */
5998 	tp->lsndtime = tcp_jiffies32;
5999 
6000 	if (sock_flag(sk, SOCK_KEEPOPEN))
6001 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6002 
6003 	if (!tp->rx_opt.snd_wscale)
6004 		__tcp_fast_path_on(tp, tp->snd_wnd);
6005 	else
6006 		tp->pred_flags = 0;
6007 }
6008 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6009 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6010 				    struct tcp_fastopen_cookie *cookie)
6011 {
6012 	struct tcp_sock *tp = tcp_sk(sk);
6013 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6014 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6015 	bool syn_drop = false;
6016 
6017 	if (mss == tp->rx_opt.user_mss) {
6018 		struct tcp_options_received opt;
6019 
6020 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6021 		tcp_clear_options(&opt);
6022 		opt.user_mss = opt.mss_clamp = 0;
6023 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6024 		mss = opt.mss_clamp;
6025 	}
6026 
6027 	if (!tp->syn_fastopen) {
6028 		/* Ignore an unsolicited cookie */
6029 		cookie->len = -1;
6030 	} else if (tp->total_retrans) {
6031 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6032 		 * acknowledges data. Presumably the remote received only
6033 		 * the retransmitted (regular) SYNs: either the original
6034 		 * SYN-data or the corresponding SYN-ACK was dropped.
6035 		 */
6036 		syn_drop = (cookie->len < 0 && data);
6037 	} else if (cookie->len < 0 && !tp->syn_data) {
6038 		/* We requested a cookie but didn't get it. If we did not use
6039 		 * the (old) exp opt format then try so next time (try_exp=1).
6040 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6041 		 */
6042 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6043 	}
6044 
6045 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6046 
6047 	if (data) { /* Retransmit unacked data in SYN */
6048 		if (tp->total_retrans)
6049 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6050 		else
6051 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6052 		skb_rbtree_walk_from(data) {
6053 			if (__tcp_retransmit_skb(sk, data, 1))
6054 				break;
6055 		}
6056 		tcp_rearm_rto(sk);
6057 		NET_INC_STATS(sock_net(sk),
6058 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6059 		return true;
6060 	}
6061 	tp->syn_data_acked = tp->syn_data;
6062 	if (tp->syn_data_acked) {
6063 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6064 		/* SYN-data is counted as two separate packets in tcp_ack() */
6065 		if (tp->delivered > 1)
6066 			--tp->delivered;
6067 	}
6068 
6069 	tcp_fastopen_add_skb(sk, synack);
6070 
6071 	return false;
6072 }
6073 
smc_check_reset_syn(struct tcp_sock * tp)6074 static void smc_check_reset_syn(struct tcp_sock *tp)
6075 {
6076 #if IS_ENABLED(CONFIG_SMC)
6077 	if (static_branch_unlikely(&tcp_have_smc)) {
6078 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6079 			tp->syn_smc = 0;
6080 	}
6081 #endif
6082 }
6083 
tcp_try_undo_spurious_syn(struct sock * sk)6084 static void tcp_try_undo_spurious_syn(struct sock *sk)
6085 {
6086 	struct tcp_sock *tp = tcp_sk(sk);
6087 	u32 syn_stamp;
6088 
6089 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6090 	 * spurious if the ACK's timestamp option echo value matches the
6091 	 * original SYN timestamp.
6092 	 */
6093 	syn_stamp = tp->retrans_stamp;
6094 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6095 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6096 		tp->undo_marker = 0;
6097 }
6098 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6099 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6100 					 const struct tcphdr *th)
6101 {
6102 	struct inet_connection_sock *icsk = inet_csk(sk);
6103 	struct tcp_sock *tp = tcp_sk(sk);
6104 	struct tcp_fastopen_cookie foc = { .len = -1 };
6105 	int saved_clamp = tp->rx_opt.mss_clamp;
6106 	bool fastopen_fail;
6107 
6108 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6109 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6110 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6111 
6112 	if (th->ack) {
6113 		/* rfc793:
6114 		 * "If the state is SYN-SENT then
6115 		 *    first check the ACK bit
6116 		 *      If the ACK bit is set
6117 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6118 		 *        a reset (unless the RST bit is set, if so drop
6119 		 *        the segment and return)"
6120 		 */
6121 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6122 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6123 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6124 			if (icsk->icsk_retransmits == 0)
6125 				inet_csk_reset_xmit_timer(sk,
6126 						ICSK_TIME_RETRANS,
6127 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6128 			goto reset_and_undo;
6129 		}
6130 
6131 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6132 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6133 			     tcp_time_stamp(tp))) {
6134 			NET_INC_STATS(sock_net(sk),
6135 					LINUX_MIB_PAWSACTIVEREJECTED);
6136 			goto reset_and_undo;
6137 		}
6138 
6139 		/* Now ACK is acceptable.
6140 		 *
6141 		 * "If the RST bit is set
6142 		 *    If the ACK was acceptable then signal the user "error:
6143 		 *    connection reset", drop the segment, enter CLOSED state,
6144 		 *    delete TCB, and return."
6145 		 */
6146 
6147 		if (th->rst) {
6148 			tcp_reset(sk);
6149 			goto discard;
6150 		}
6151 
6152 		/* rfc793:
6153 		 *   "fifth, if neither of the SYN or RST bits is set then
6154 		 *    drop the segment and return."
6155 		 *
6156 		 *    See note below!
6157 		 *                                        --ANK(990513)
6158 		 */
6159 		if (!th->syn)
6160 			goto discard_and_undo;
6161 
6162 		/* rfc793:
6163 		 *   "If the SYN bit is on ...
6164 		 *    are acceptable then ...
6165 		 *    (our SYN has been ACKed), change the connection
6166 		 *    state to ESTABLISHED..."
6167 		 */
6168 
6169 		tcp_ecn_rcv_synack(tp, th);
6170 
6171 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6172 		tcp_try_undo_spurious_syn(sk);
6173 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6174 
6175 		/* Ok.. it's good. Set up sequence numbers and
6176 		 * move to established.
6177 		 */
6178 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6179 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6180 
6181 		/* RFC1323: The window in SYN & SYN/ACK segments is
6182 		 * never scaled.
6183 		 */
6184 		tp->snd_wnd = ntohs(th->window);
6185 
6186 		if (!tp->rx_opt.wscale_ok) {
6187 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6188 			tp->window_clamp = min(tp->window_clamp, 65535U);
6189 		}
6190 
6191 		if (tp->rx_opt.saw_tstamp) {
6192 			tp->rx_opt.tstamp_ok	   = 1;
6193 			tp->tcp_header_len =
6194 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6195 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6196 			tcp_store_ts_recent(tp);
6197 		} else {
6198 			tp->tcp_header_len = sizeof(struct tcphdr);
6199 		}
6200 
6201 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6202 		tcp_initialize_rcv_mss(sk);
6203 
6204 		/* Remember, tcp_poll() does not lock socket!
6205 		 * Change state from SYN-SENT only after copied_seq
6206 		 * is initialized. */
6207 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6208 
6209 		smc_check_reset_syn(tp);
6210 
6211 		smp_mb();
6212 
6213 		tcp_finish_connect(sk, skb);
6214 
6215 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6216 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6217 
6218 		if (!sock_flag(sk, SOCK_DEAD)) {
6219 			sk->sk_state_change(sk);
6220 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6221 		}
6222 		if (fastopen_fail)
6223 			return -1;
6224 		if (sk->sk_write_pending ||
6225 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6226 		    inet_csk_in_pingpong_mode(sk)) {
6227 			/* Save one ACK. Data will be ready after
6228 			 * several ticks, if write_pending is set.
6229 			 *
6230 			 * It may be deleted, but with this feature tcpdumps
6231 			 * look so _wonderfully_ clever, that I was not able
6232 			 * to stand against the temptation 8)     --ANK
6233 			 */
6234 			inet_csk_schedule_ack(sk);
6235 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6236 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6237 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6238 
6239 discard:
6240 			tcp_drop(sk, skb);
6241 			return 0;
6242 		} else {
6243 			tcp_send_ack(sk);
6244 		}
6245 		return -1;
6246 	}
6247 
6248 	/* No ACK in the segment */
6249 
6250 	if (th->rst) {
6251 		/* rfc793:
6252 		 * "If the RST bit is set
6253 		 *
6254 		 *      Otherwise (no ACK) drop the segment and return."
6255 		 */
6256 
6257 		goto discard_and_undo;
6258 	}
6259 
6260 	/* PAWS check. */
6261 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6262 	    tcp_paws_reject(&tp->rx_opt, 0))
6263 		goto discard_and_undo;
6264 
6265 	if (th->syn) {
6266 		/* We see SYN without ACK. It is attempt of
6267 		 * simultaneous connect with crossed SYNs.
6268 		 * Particularly, it can be connect to self.
6269 		 */
6270 		tcp_set_state(sk, TCP_SYN_RECV);
6271 
6272 		if (tp->rx_opt.saw_tstamp) {
6273 			tp->rx_opt.tstamp_ok = 1;
6274 			tcp_store_ts_recent(tp);
6275 			tp->tcp_header_len =
6276 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6277 		} else {
6278 			tp->tcp_header_len = sizeof(struct tcphdr);
6279 		}
6280 
6281 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6282 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6283 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6284 
6285 		/* RFC1323: The window in SYN & SYN/ACK segments is
6286 		 * never scaled.
6287 		 */
6288 		tp->snd_wnd    = ntohs(th->window);
6289 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6290 		tp->max_window = tp->snd_wnd;
6291 
6292 		tcp_ecn_rcv_syn(tp, th);
6293 
6294 		tcp_mtup_init(sk);
6295 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6296 		tcp_initialize_rcv_mss(sk);
6297 
6298 		tcp_send_synack(sk);
6299 #if 0
6300 		/* Note, we could accept data and URG from this segment.
6301 		 * There are no obstacles to make this (except that we must
6302 		 * either change tcp_recvmsg() to prevent it from returning data
6303 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6304 		 *
6305 		 * However, if we ignore data in ACKless segments sometimes,
6306 		 * we have no reasons to accept it sometimes.
6307 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6308 		 * is not flawless. So, discard packet for sanity.
6309 		 * Uncomment this return to process the data.
6310 		 */
6311 		return -1;
6312 #else
6313 		goto discard;
6314 #endif
6315 	}
6316 	/* "fifth, if neither of the SYN or RST bits is set then
6317 	 * drop the segment and return."
6318 	 */
6319 
6320 discard_and_undo:
6321 	tcp_clear_options(&tp->rx_opt);
6322 	tp->rx_opt.mss_clamp = saved_clamp;
6323 	goto discard;
6324 
6325 reset_and_undo:
6326 	tcp_clear_options(&tp->rx_opt);
6327 	tp->rx_opt.mss_clamp = saved_clamp;
6328 	return 1;
6329 }
6330 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6331 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6332 {
6333 	struct request_sock *req;
6334 
6335 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6336 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6337 	 */
6338 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6339 		tcp_try_undo_loss(sk, false);
6340 
6341 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6342 	tcp_sk(sk)->retrans_stamp = 0;
6343 	inet_csk(sk)->icsk_retransmits = 0;
6344 
6345 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6346 	 * we no longer need req so release it.
6347 	 */
6348 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6349 					lockdep_sock_is_held(sk));
6350 	reqsk_fastopen_remove(sk, req, false);
6351 
6352 	/* Re-arm the timer because data may have been sent out.
6353 	 * This is similar to the regular data transmission case
6354 	 * when new data has just been ack'ed.
6355 	 *
6356 	 * (TFO) - we could try to be more aggressive and
6357 	 * retransmitting any data sooner based on when they
6358 	 * are sent out.
6359 	 */
6360 	tcp_rearm_rto(sk);
6361 }
6362 
6363 /*
6364  *	This function implements the receiving procedure of RFC 793 for
6365  *	all states except ESTABLISHED and TIME_WAIT.
6366  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6367  *	address independent.
6368  */
6369 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6370 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6371 {
6372 	struct tcp_sock *tp = tcp_sk(sk);
6373 	struct inet_connection_sock *icsk = inet_csk(sk);
6374 	const struct tcphdr *th = tcp_hdr(skb);
6375 	struct request_sock *req;
6376 	int queued = 0;
6377 	bool acceptable;
6378 
6379 	switch (sk->sk_state) {
6380 	case TCP_CLOSE:
6381 		goto discard;
6382 
6383 	case TCP_LISTEN:
6384 		if (th->ack)
6385 			return 1;
6386 
6387 		if (th->rst)
6388 			goto discard;
6389 
6390 		if (th->syn) {
6391 			if (th->fin)
6392 				goto discard;
6393 			/* It is possible that we process SYN packets from backlog,
6394 			 * so we need to make sure to disable BH and RCU right there.
6395 			 */
6396 			rcu_read_lock();
6397 			local_bh_disable();
6398 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6399 			local_bh_enable();
6400 			rcu_read_unlock();
6401 
6402 			if (!acceptable)
6403 				return 1;
6404 			consume_skb(skb);
6405 			return 0;
6406 		}
6407 		goto discard;
6408 
6409 	case TCP_SYN_SENT:
6410 		tp->rx_opt.saw_tstamp = 0;
6411 		tcp_mstamp_refresh(tp);
6412 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6413 		if (queued >= 0)
6414 			return queued;
6415 
6416 		/* Do step6 onward by hand. */
6417 		tcp_urg(sk, skb, th);
6418 		__kfree_skb(skb);
6419 		tcp_data_snd_check(sk);
6420 		return 0;
6421 	}
6422 
6423 	tcp_mstamp_refresh(tp);
6424 	tp->rx_opt.saw_tstamp = 0;
6425 	req = rcu_dereference_protected(tp->fastopen_rsk,
6426 					lockdep_sock_is_held(sk));
6427 	if (req) {
6428 		bool req_stolen;
6429 
6430 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6431 		    sk->sk_state != TCP_FIN_WAIT1);
6432 
6433 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6434 			goto discard;
6435 	}
6436 
6437 	if (!th->ack && !th->rst && !th->syn)
6438 		goto discard;
6439 
6440 	if (!tcp_validate_incoming(sk, skb, th, 0))
6441 		return 0;
6442 
6443 	/* step 5: check the ACK field */
6444 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6445 				      FLAG_UPDATE_TS_RECENT |
6446 				      FLAG_NO_CHALLENGE_ACK) > 0;
6447 
6448 	if (!acceptable) {
6449 		if (sk->sk_state == TCP_SYN_RECV)
6450 			return 1;	/* send one RST */
6451 		tcp_send_challenge_ack(sk, skb);
6452 		goto discard;
6453 	}
6454 	switch (sk->sk_state) {
6455 	case TCP_SYN_RECV:
6456 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6457 		if (!tp->srtt_us)
6458 			tcp_synack_rtt_meas(sk, req);
6459 
6460 		if (req) {
6461 			tcp_rcv_synrecv_state_fastopen(sk);
6462 		} else {
6463 			tcp_try_undo_spurious_syn(sk);
6464 			tp->retrans_stamp = 0;
6465 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6466 					  skb);
6467 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6468 		}
6469 		smp_mb();
6470 		tcp_set_state(sk, TCP_ESTABLISHED);
6471 		sk->sk_state_change(sk);
6472 
6473 		/* Note, that this wakeup is only for marginal crossed SYN case.
6474 		 * Passively open sockets are not waked up, because
6475 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6476 		 */
6477 		if (sk->sk_socket)
6478 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6479 
6480 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6481 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6482 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6483 
6484 		if (tp->rx_opt.tstamp_ok)
6485 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6486 
6487 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6488 			tcp_update_pacing_rate(sk);
6489 
6490 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6491 		tp->lsndtime = tcp_jiffies32;
6492 
6493 		tcp_initialize_rcv_mss(sk);
6494 		tcp_fast_path_on(tp);
6495 		break;
6496 
6497 	case TCP_FIN_WAIT1: {
6498 		int tmo;
6499 
6500 		if (req)
6501 			tcp_rcv_synrecv_state_fastopen(sk);
6502 
6503 		if (tp->snd_una != tp->write_seq)
6504 			break;
6505 
6506 		tcp_set_state(sk, TCP_FIN_WAIT2);
6507 		sk->sk_shutdown |= SEND_SHUTDOWN;
6508 
6509 		sk_dst_confirm(sk);
6510 
6511 		if (!sock_flag(sk, SOCK_DEAD)) {
6512 			/* Wake up lingering close() */
6513 			sk->sk_state_change(sk);
6514 			break;
6515 		}
6516 
6517 		if (tp->linger2 < 0) {
6518 			tcp_done(sk);
6519 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6520 			return 1;
6521 		}
6522 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6523 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6524 			/* Receive out of order FIN after close() */
6525 			if (tp->syn_fastopen && th->fin)
6526 				tcp_fastopen_active_disable(sk);
6527 			tcp_done(sk);
6528 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6529 			return 1;
6530 		}
6531 
6532 		tmo = tcp_fin_time(sk);
6533 		if (tmo > TCP_TIMEWAIT_LEN) {
6534 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6535 		} else if (th->fin || sock_owned_by_user(sk)) {
6536 			/* Bad case. We could lose such FIN otherwise.
6537 			 * It is not a big problem, but it looks confusing
6538 			 * and not so rare event. We still can lose it now,
6539 			 * if it spins in bh_lock_sock(), but it is really
6540 			 * marginal case.
6541 			 */
6542 			inet_csk_reset_keepalive_timer(sk, tmo);
6543 		} else {
6544 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6545 			goto discard;
6546 		}
6547 		break;
6548 	}
6549 
6550 	case TCP_CLOSING:
6551 		if (tp->snd_una == tp->write_seq) {
6552 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6553 			goto discard;
6554 		}
6555 		break;
6556 
6557 	case TCP_LAST_ACK:
6558 		if (tp->snd_una == tp->write_seq) {
6559 			tcp_update_metrics(sk);
6560 			tcp_done(sk);
6561 			goto discard;
6562 		}
6563 		break;
6564 	}
6565 
6566 	/* step 6: check the URG bit */
6567 	tcp_urg(sk, skb, th);
6568 
6569 	/* step 7: process the segment text */
6570 	switch (sk->sk_state) {
6571 	case TCP_CLOSE_WAIT:
6572 	case TCP_CLOSING:
6573 	case TCP_LAST_ACK:
6574 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6575 			if (sk_is_mptcp(sk))
6576 				mptcp_incoming_options(sk, skb);
6577 			break;
6578 		}
6579 		fallthrough;
6580 	case TCP_FIN_WAIT1:
6581 	case TCP_FIN_WAIT2:
6582 		/* RFC 793 says to queue data in these states,
6583 		 * RFC 1122 says we MUST send a reset.
6584 		 * BSD 4.4 also does reset.
6585 		 */
6586 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6587 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6588 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6589 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6590 				tcp_reset(sk);
6591 				return 1;
6592 			}
6593 		}
6594 		fallthrough;
6595 	case TCP_ESTABLISHED:
6596 		tcp_data_queue(sk, skb);
6597 		queued = 1;
6598 		break;
6599 	}
6600 
6601 	/* tcp_data could move socket to TIME-WAIT */
6602 	if (sk->sk_state != TCP_CLOSE) {
6603 		tcp_data_snd_check(sk);
6604 		tcp_ack_snd_check(sk);
6605 	}
6606 
6607 	if (!queued) {
6608 discard:
6609 		tcp_drop(sk, skb);
6610 	}
6611 	return 0;
6612 }
6613 EXPORT_SYMBOL(tcp_rcv_state_process);
6614 
pr_drop_req(struct request_sock * req,__u16 port,int family)6615 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6616 {
6617 	struct inet_request_sock *ireq = inet_rsk(req);
6618 
6619 	if (family == AF_INET)
6620 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6621 				    &ireq->ir_rmt_addr, port);
6622 #if IS_ENABLED(CONFIG_IPV6)
6623 	else if (family == AF_INET6)
6624 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6625 				    &ireq->ir_v6_rmt_addr, port);
6626 #endif
6627 }
6628 
6629 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6630  *
6631  * If we receive a SYN packet with these bits set, it means a
6632  * network is playing bad games with TOS bits. In order to
6633  * avoid possible false congestion notifications, we disable
6634  * TCP ECN negotiation.
6635  *
6636  * Exception: tcp_ca wants ECN. This is required for DCTCP
6637  * congestion control: Linux DCTCP asserts ECT on all packets,
6638  * including SYN, which is most optimal solution; however,
6639  * others, such as FreeBSD do not.
6640  *
6641  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6642  * set, indicating the use of a future TCP extension (such as AccECN). See
6643  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6644  * extensions.
6645  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6646 static void tcp_ecn_create_request(struct request_sock *req,
6647 				   const struct sk_buff *skb,
6648 				   const struct sock *listen_sk,
6649 				   const struct dst_entry *dst)
6650 {
6651 	const struct tcphdr *th = tcp_hdr(skb);
6652 	const struct net *net = sock_net(listen_sk);
6653 	bool th_ecn = th->ece && th->cwr;
6654 	bool ect, ecn_ok;
6655 	u32 ecn_ok_dst;
6656 
6657 	if (!th_ecn)
6658 		return;
6659 
6660 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6661 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6662 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6663 
6664 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6665 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6666 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6667 		inet_rsk(req)->ecn_ok = 1;
6668 }
6669 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6670 static void tcp_openreq_init(struct request_sock *req,
6671 			     const struct tcp_options_received *rx_opt,
6672 			     struct sk_buff *skb, const struct sock *sk)
6673 {
6674 	struct inet_request_sock *ireq = inet_rsk(req);
6675 
6676 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6677 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6678 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6679 	tcp_rsk(req)->snt_synack = 0;
6680 	tcp_rsk(req)->last_oow_ack_time = 0;
6681 	req->mss = rx_opt->mss_clamp;
6682 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6683 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6684 	ireq->sack_ok = rx_opt->sack_ok;
6685 	ireq->snd_wscale = rx_opt->snd_wscale;
6686 	ireq->wscale_ok = rx_opt->wscale_ok;
6687 	ireq->acked = 0;
6688 	ireq->ecn_ok = 0;
6689 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6690 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6691 	ireq->ir_mark = inet_request_mark(sk, skb);
6692 #if IS_ENABLED(CONFIG_SMC)
6693 	ireq->smc_ok = rx_opt->smc_ok;
6694 #endif
6695 }
6696 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6697 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6698 				      struct sock *sk_listener,
6699 				      bool attach_listener)
6700 {
6701 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6702 					       attach_listener);
6703 
6704 	if (req) {
6705 		struct inet_request_sock *ireq = inet_rsk(req);
6706 
6707 		ireq->ireq_opt = NULL;
6708 #if IS_ENABLED(CONFIG_IPV6)
6709 		ireq->pktopts = NULL;
6710 #endif
6711 		atomic64_set(&ireq->ir_cookie, 0);
6712 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6713 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6714 		ireq->ireq_family = sk_listener->sk_family;
6715 	}
6716 
6717 	return req;
6718 }
6719 EXPORT_SYMBOL(inet_reqsk_alloc);
6720 
6721 /*
6722  * Return true if a syncookie should be sent
6723  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6724 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6725 {
6726 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6727 	const char *msg = "Dropping request";
6728 	struct net *net = sock_net(sk);
6729 	bool want_cookie = false;
6730 	u8 syncookies;
6731 
6732 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6733 
6734 #ifdef CONFIG_SYN_COOKIES
6735 	if (syncookies) {
6736 		msg = "Sending cookies";
6737 		want_cookie = true;
6738 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6739 	} else
6740 #endif
6741 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6742 
6743 	if (!queue->synflood_warned && syncookies != 2 &&
6744 	    xchg(&queue->synflood_warned, 1) == 0)
6745 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6746 				     proto, sk->sk_num, msg);
6747 
6748 	return want_cookie;
6749 }
6750 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6751 static void tcp_reqsk_record_syn(const struct sock *sk,
6752 				 struct request_sock *req,
6753 				 const struct sk_buff *skb)
6754 {
6755 	if (tcp_sk(sk)->save_syn) {
6756 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6757 		struct saved_syn *saved_syn;
6758 		u32 mac_hdrlen;
6759 		void *base;
6760 
6761 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6762 			base = skb_mac_header(skb);
6763 			mac_hdrlen = skb_mac_header_len(skb);
6764 			len += mac_hdrlen;
6765 		} else {
6766 			base = skb_network_header(skb);
6767 			mac_hdrlen = 0;
6768 		}
6769 
6770 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6771 				    GFP_ATOMIC);
6772 		if (saved_syn) {
6773 			saved_syn->mac_hdrlen = mac_hdrlen;
6774 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6775 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6776 			memcpy(saved_syn->data, base, len);
6777 			req->saved_syn = saved_syn;
6778 		}
6779 	}
6780 }
6781 
6782 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6783  * used for SYN cookie generation.
6784  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6785 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6786 			  const struct tcp_request_sock_ops *af_ops,
6787 			  struct sock *sk, struct tcphdr *th)
6788 {
6789 	struct tcp_sock *tp = tcp_sk(sk);
6790 	u16 mss;
6791 
6792 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6793 	    !inet_csk_reqsk_queue_is_full(sk))
6794 		return 0;
6795 
6796 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6797 		return 0;
6798 
6799 	if (sk_acceptq_is_full(sk)) {
6800 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6801 		return 0;
6802 	}
6803 
6804 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6805 	if (!mss)
6806 		mss = af_ops->mss_clamp;
6807 
6808 	return mss;
6809 }
6810 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6811 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6812 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6813 		     const struct tcp_request_sock_ops *af_ops,
6814 		     struct sock *sk, struct sk_buff *skb)
6815 {
6816 	struct tcp_fastopen_cookie foc = { .len = -1 };
6817 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6818 	struct tcp_options_received tmp_opt;
6819 	struct tcp_sock *tp = tcp_sk(sk);
6820 	struct net *net = sock_net(sk);
6821 	struct sock *fastopen_sk = NULL;
6822 	struct request_sock *req;
6823 	bool want_cookie = false;
6824 	struct dst_entry *dst;
6825 	struct flowi fl;
6826 	u8 syncookies;
6827 
6828 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6829 
6830 	/* TW buckets are converted to open requests without
6831 	 * limitations, they conserve resources and peer is
6832 	 * evidently real one.
6833 	 */
6834 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6835 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6836 		if (!want_cookie)
6837 			goto drop;
6838 	}
6839 
6840 	if (sk_acceptq_is_full(sk)) {
6841 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6842 		goto drop;
6843 	}
6844 
6845 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6846 	if (!req)
6847 		goto drop;
6848 
6849 	req->syncookie = want_cookie;
6850 	tcp_rsk(req)->af_specific = af_ops;
6851 	tcp_rsk(req)->ts_off = 0;
6852 #if IS_ENABLED(CONFIG_MPTCP)
6853 	tcp_rsk(req)->is_mptcp = 0;
6854 #endif
6855 
6856 	tcp_clear_options(&tmp_opt);
6857 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6858 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6859 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6860 			  want_cookie ? NULL : &foc);
6861 
6862 	if (want_cookie && !tmp_opt.saw_tstamp)
6863 		tcp_clear_options(&tmp_opt);
6864 
6865 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6866 		tmp_opt.smc_ok = 0;
6867 
6868 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6869 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6870 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6871 
6872 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6873 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6874 
6875 	af_ops->init_req(req, sk, skb);
6876 
6877 	if (security_inet_conn_request(sk, skb, req))
6878 		goto drop_and_free;
6879 
6880 	if (tmp_opt.tstamp_ok)
6881 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6882 
6883 	dst = af_ops->route_req(sk, &fl, req);
6884 	if (!dst)
6885 		goto drop_and_free;
6886 
6887 	if (!want_cookie && !isn) {
6888 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6889 
6890 		/* Kill the following clause, if you dislike this way. */
6891 		if (!syncookies &&
6892 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6893 		     (max_syn_backlog >> 2)) &&
6894 		    !tcp_peer_is_proven(req, dst)) {
6895 			/* Without syncookies last quarter of
6896 			 * backlog is filled with destinations,
6897 			 * proven to be alive.
6898 			 * It means that we continue to communicate
6899 			 * to destinations, already remembered
6900 			 * to the moment of synflood.
6901 			 */
6902 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6903 				    rsk_ops->family);
6904 			goto drop_and_release;
6905 		}
6906 
6907 		isn = af_ops->init_seq(skb);
6908 	}
6909 
6910 	tcp_ecn_create_request(req, skb, sk, dst);
6911 
6912 	if (want_cookie) {
6913 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6914 		if (!tmp_opt.tstamp_ok)
6915 			inet_rsk(req)->ecn_ok = 0;
6916 	}
6917 
6918 	tcp_rsk(req)->snt_isn = isn;
6919 	tcp_rsk(req)->txhash = net_tx_rndhash();
6920 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6921 	tcp_openreq_init_rwin(req, sk, dst);
6922 	sk_rx_queue_set(req_to_sk(req), skb);
6923 	if (!want_cookie) {
6924 		tcp_reqsk_record_syn(sk, req, skb);
6925 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6926 	}
6927 	if (fastopen_sk) {
6928 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6929 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6930 		/* Add the child socket directly into the accept queue */
6931 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6932 			reqsk_fastopen_remove(fastopen_sk, req, false);
6933 			bh_unlock_sock(fastopen_sk);
6934 			sock_put(fastopen_sk);
6935 			goto drop_and_free;
6936 		}
6937 		sk->sk_data_ready(sk);
6938 		bh_unlock_sock(fastopen_sk);
6939 		sock_put(fastopen_sk);
6940 	} else {
6941 		tcp_rsk(req)->tfo_listener = false;
6942 		if (!want_cookie)
6943 			inet_csk_reqsk_queue_hash_add(sk, req,
6944 				tcp_timeout_init((struct sock *)req));
6945 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6946 				    !want_cookie ? TCP_SYNACK_NORMAL :
6947 						   TCP_SYNACK_COOKIE,
6948 				    skb);
6949 		if (want_cookie) {
6950 			reqsk_free(req);
6951 			return 0;
6952 		}
6953 	}
6954 	reqsk_put(req);
6955 	return 0;
6956 
6957 drop_and_release:
6958 	dst_release(dst);
6959 drop_and_free:
6960 	__reqsk_free(req);
6961 drop:
6962 	tcp_listendrop(sk);
6963 	return 0;
6964 }
6965 EXPORT_SYMBOL(tcp_conn_request);
6966