• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/core_names.h>
16 #include <openssl/ocsp.h>
17 #include <openssl/conf.h>
18 #include <openssl/x509v3.h>
19 #include <openssl/dh.h>
20 #include <openssl/bn.h>
21 #include <openssl/provider.h>
22 #include <openssl/param_build.h>
23 #include "internal/nelem.h"
24 #include "internal/sizes.h"
25 #include "internal/tlsgroups.h"
26 #include "ssl_local.h"
27 #include <openssl/ct.h>
28 
29 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
30 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
31 
32 SSL3_ENC_METHOD const TLSv1_enc_data = {
33     tls1_enc,
34     tls1_mac,
35     tls1_setup_key_block,
36     tls1_generate_master_secret,
37     tls1_change_cipher_state,
38     tls1_final_finish_mac,
39     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
40     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
41     tls1_alert_code,
42     tls1_export_keying_material,
43     0,
44     ssl3_set_handshake_header,
45     tls_close_construct_packet,
46     ssl3_handshake_write
47 };
48 
49 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
50     tls1_enc,
51     tls1_mac,
52     tls1_setup_key_block,
53     tls1_generate_master_secret,
54     tls1_change_cipher_state,
55     tls1_final_finish_mac,
56     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
57     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
58     tls1_alert_code,
59     tls1_export_keying_material,
60     SSL_ENC_FLAG_EXPLICIT_IV,
61     ssl3_set_handshake_header,
62     tls_close_construct_packet,
63     ssl3_handshake_write
64 };
65 
66 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
67     tls1_enc,
68     tls1_mac,
69     tls1_setup_key_block,
70     tls1_generate_master_secret,
71     tls1_change_cipher_state,
72     tls1_final_finish_mac,
73     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
74     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
75     tls1_alert_code,
76     tls1_export_keying_material,
77     SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
78         | SSL_ENC_FLAG_TLS1_2_CIPHERS,
79     ssl3_set_handshake_header,
80     tls_close_construct_packet,
81     ssl3_handshake_write
82 };
83 
84 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
85     tls13_enc,
86     tls1_mac,
87     tls13_setup_key_block,
88     tls13_generate_master_secret,
89     tls13_change_cipher_state,
90     tls13_final_finish_mac,
91     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
92     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
93     tls13_alert_code,
94     tls13_export_keying_material,
95     SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
96     ssl3_set_handshake_header,
97     tls_close_construct_packet,
98     ssl3_handshake_write
99 };
100 
tls1_default_timeout(void)101 long tls1_default_timeout(void)
102 {
103     /*
104      * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
105      * http, the cache would over fill
106      */
107     return (60 * 60 * 2);
108 }
109 
tls1_new(SSL * s)110 int tls1_new(SSL *s)
111 {
112     if (!ssl3_new(s))
113         return 0;
114     if (!s->method->ssl_clear(s))
115         return 0;
116 
117     return 1;
118 }
119 
tls1_free(SSL * s)120 void tls1_free(SSL *s)
121 {
122     OPENSSL_free(s->ext.session_ticket);
123     ssl3_free(s);
124 }
125 
tls1_clear(SSL * s)126 int tls1_clear(SSL *s)
127 {
128     if (!ssl3_clear(s))
129         return 0;
130 
131     if (s->method->version == TLS_ANY_VERSION)
132         s->version = TLS_MAX_VERSION_INTERNAL;
133     else
134         s->version = s->method->version;
135 
136     return 1;
137 }
138 
139 /* Legacy NID to group_id mapping. Only works for groups we know about */
140 static struct {
141     int nid;
142     uint16_t group_id;
143 } nid_to_group[] = {
144     {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
145     {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
146     {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
147     {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
148     {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
149     {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
150     {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
151     {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
152     {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
153     {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
154     {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
155     {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
156     {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
157     {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
158     {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
159     {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
160     {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
161     {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
162     {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
163     {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
164     {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
165     {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
166     {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
167     {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
168     {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
169     {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
170     {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
171     {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
172     {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
173     {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
174     {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
175     {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
176     {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
177     {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
178     {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
179     {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
180     {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
181     {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
182     {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
183     {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
184     {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
185     {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
186 };
187 
188 static const unsigned char ecformats_default[] = {
189     TLSEXT_ECPOINTFORMAT_uncompressed,
190     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
191     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
192 };
193 
194 /* The default curves */
195 static const uint16_t supported_groups_default[] = {
196     29,                      /* X25519 (29) */
197     23,                      /* secp256r1 (23) */
198     30,                      /* X448 (30) */
199     25,                      /* secp521r1 (25) */
200     24,                      /* secp384r1 (24) */
201     34,                      /* GC256A (34) */
202     35,                      /* GC256B (35) */
203     36,                      /* GC256C (36) */
204     37,                      /* GC256D (37) */
205     38,                      /* GC512A (38) */
206     39,                      /* GC512B (39) */
207     40,                      /* GC512C (40) */
208     0x100,                   /* ffdhe2048 (0x100) */
209     0x101,                   /* ffdhe3072 (0x101) */
210     0x102,                   /* ffdhe4096 (0x102) */
211     0x103,                   /* ffdhe6144 (0x103) */
212     0x104,                   /* ffdhe8192 (0x104) */
213 };
214 
215 static const uint16_t suiteb_curves[] = {
216     TLSEXT_curve_P_256,
217     TLSEXT_curve_P_384
218 };
219 
220 struct provider_group_data_st {
221     SSL_CTX *ctx;
222     OSSL_PROVIDER *provider;
223 };
224 
225 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
226 static OSSL_CALLBACK add_provider_groups;
add_provider_groups(const OSSL_PARAM params[],void * data)227 static int add_provider_groups(const OSSL_PARAM params[], void *data)
228 {
229     struct provider_group_data_st *pgd = data;
230     SSL_CTX *ctx = pgd->ctx;
231     OSSL_PROVIDER *provider = pgd->provider;
232     const OSSL_PARAM *p;
233     TLS_GROUP_INFO *ginf = NULL;
234     EVP_KEYMGMT *keymgmt;
235     unsigned int gid;
236     unsigned int is_kem = 0;
237     int ret = 0;
238 
239     if (ctx->group_list_max_len == ctx->group_list_len) {
240         TLS_GROUP_INFO *tmp = NULL;
241 
242         if (ctx->group_list_max_len == 0)
243             tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
244                                  * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
245         else
246             tmp = OPENSSL_realloc(ctx->group_list,
247                                   (ctx->group_list_max_len
248                                    + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
249                                   * sizeof(TLS_GROUP_INFO));
250         if (tmp == NULL) {
251             ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
252             return 0;
253         }
254         ctx->group_list = tmp;
255         memset(tmp + ctx->group_list_max_len,
256                0,
257                sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
258         ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
259     }
260 
261     ginf = &ctx->group_list[ctx->group_list_len];
262 
263     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
264     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
265         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
266         goto err;
267     }
268     ginf->tlsname = OPENSSL_strdup(p->data);
269     if (ginf->tlsname == NULL) {
270         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
271         goto err;
272     }
273 
274     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
275     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
276         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277         goto err;
278     }
279     ginf->realname = OPENSSL_strdup(p->data);
280     if (ginf->realname == NULL) {
281         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
282         goto err;
283     }
284 
285     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286     if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288         goto err;
289     }
290     ginf->group_id = (uint16_t)gid;
291 
292     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295         goto err;
296     }
297     ginf->algorithm = OPENSSL_strdup(p->data);
298     if (ginf->algorithm == NULL) {
299         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
300         goto err;
301     }
302 
303     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
304     if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
305         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306         goto err;
307     }
308 
309     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
310     if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
311         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312         goto err;
313     }
314     ginf->is_kem = 1 & is_kem;
315 
316     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
317     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
318         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
319         goto err;
320     }
321 
322     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
323     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
324         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
325         goto err;
326     }
327 
328     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
329     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
330         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
331         goto err;
332     }
333 
334     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
335     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
336         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
337         goto err;
338     }
339     /*
340      * Now check that the algorithm is actually usable for our property query
341      * string. Regardless of the result we still return success because we have
342      * successfully processed this group, even though we may decide not to use
343      * it.
344      */
345     ret = 1;
346     ERR_set_mark();
347     keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
348     if (keymgmt != NULL) {
349         /*
350          * We have successfully fetched the algorithm - however if the provider
351          * doesn't match this one then we ignore it.
352          *
353          * Note: We're cheating a little here. Technically if the same algorithm
354          * is available from more than one provider then it is undefined which
355          * implementation you will get back. Theoretically this could be
356          * different every time...we assume here that you'll always get the
357          * same one back if you repeat the exact same fetch. Is this a reasonable
358          * assumption to make (in which case perhaps we should document this
359          * behaviour)?
360          */
361         if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
362             /* We have a match - so we will use this group */
363             ctx->group_list_len++;
364             ginf = NULL;
365         }
366         EVP_KEYMGMT_free(keymgmt);
367     }
368     ERR_pop_to_mark();
369  err:
370     if (ginf != NULL) {
371         OPENSSL_free(ginf->tlsname);
372         OPENSSL_free(ginf->realname);
373         OPENSSL_free(ginf->algorithm);
374         ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
375     }
376     return ret;
377 }
378 
discover_provider_groups(OSSL_PROVIDER * provider,void * vctx)379 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
380 {
381     struct provider_group_data_st pgd;
382 
383     pgd.ctx = vctx;
384     pgd.provider = provider;
385     return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
386                                           add_provider_groups, &pgd);
387 }
388 
ssl_load_groups(SSL_CTX * ctx)389 int ssl_load_groups(SSL_CTX *ctx)
390 {
391     size_t i, j, num_deflt_grps = 0;
392     uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
393 
394     if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
395         return 0;
396 
397     for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
398         for (j = 0; j < ctx->group_list_len; j++) {
399             if (ctx->group_list[j].group_id == supported_groups_default[i]) {
400                 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
401                 break;
402             }
403         }
404     }
405 
406     if (num_deflt_grps == 0)
407         return 1;
408 
409     ctx->ext.supported_groups_default
410         = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
411 
412     if (ctx->ext.supported_groups_default == NULL) {
413         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
414         return 0;
415     }
416 
417     memcpy(ctx->ext.supported_groups_default,
418            tmp_supp_groups,
419            num_deflt_grps * sizeof(tmp_supp_groups[0]));
420     ctx->ext.supported_groups_default_len = num_deflt_grps;
421 
422     return 1;
423 }
424 
tls1_group_name2id(SSL_CTX * ctx,const char * name)425 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
426 {
427     size_t i;
428 
429     for (i = 0; i < ctx->group_list_len; i++) {
430         if (strcmp(ctx->group_list[i].tlsname, name) == 0
431                 || strcmp(ctx->group_list[i].realname, name) == 0)
432             return ctx->group_list[i].group_id;
433     }
434 
435     return 0;
436 }
437 
tls1_group_id_lookup(SSL_CTX * ctx,uint16_t group_id)438 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
439 {
440     size_t i;
441 
442     for (i = 0; i < ctx->group_list_len; i++) {
443         if (ctx->group_list[i].group_id == group_id)
444             return &ctx->group_list[i];
445     }
446 
447     return NULL;
448 }
449 
tls1_group_id2nid(uint16_t group_id,int include_unknown)450 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
451 {
452     size_t i;
453 
454     if (group_id == 0)
455         return NID_undef;
456 
457     /*
458      * Return well known Group NIDs - for backwards compatibility. This won't
459      * work for groups we don't know about.
460      */
461     for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
462     {
463         if (nid_to_group[i].group_id == group_id)
464             return nid_to_group[i].nid;
465     }
466     if (!include_unknown)
467         return NID_undef;
468     return TLSEXT_nid_unknown | (int)group_id;
469 }
470 
tls1_nid2group_id(int nid)471 uint16_t tls1_nid2group_id(int nid)
472 {
473     size_t i;
474 
475     /*
476      * Return well known Group ids - for backwards compatibility. This won't
477      * work for groups we don't know about.
478      */
479     for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
480     {
481         if (nid_to_group[i].nid == nid)
482             return nid_to_group[i].group_id;
483     }
484 
485     return 0;
486 }
487 
488 /*
489  * Set *pgroups to the supported groups list and *pgroupslen to
490  * the number of groups supported.
491  */
tls1_get_supported_groups(SSL * s,const uint16_t ** pgroups,size_t * pgroupslen)492 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
493                                size_t *pgroupslen)
494 {
495     /* For Suite B mode only include P-256, P-384 */
496     switch (tls1_suiteb(s)) {
497     case SSL_CERT_FLAG_SUITEB_128_LOS:
498         *pgroups = suiteb_curves;
499         *pgroupslen = OSSL_NELEM(suiteb_curves);
500         break;
501 
502     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
503         *pgroups = suiteb_curves;
504         *pgroupslen = 1;
505         break;
506 
507     case SSL_CERT_FLAG_SUITEB_192_LOS:
508         *pgroups = suiteb_curves + 1;
509         *pgroupslen = 1;
510         break;
511 
512     default:
513         if (s->ext.supportedgroups == NULL) {
514             *pgroups = s->ctx->ext.supported_groups_default;
515             *pgroupslen = s->ctx->ext.supported_groups_default_len;
516         } else {
517             *pgroups = s->ext.supportedgroups;
518             *pgroupslen = s->ext.supportedgroups_len;
519         }
520         break;
521     }
522 }
523 
tls_valid_group(SSL * s,uint16_t group_id,int minversion,int maxversion,int isec,int * okfortls13)524 int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
525                     int isec, int *okfortls13)
526 {
527     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
528     int ret;
529 
530     if (okfortls13 != NULL)
531         *okfortls13 = 0;
532 
533     if (ginfo == NULL)
534         return 0;
535 
536     if (SSL_IS_DTLS(s)) {
537         if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
538             return 0;
539         if (ginfo->maxdtls == 0)
540             ret = 1;
541         else
542             ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
543         if (ginfo->mindtls > 0)
544             ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
545     } else {
546         if (ginfo->mintls < 0 || ginfo->maxtls < 0)
547             return 0;
548         if (ginfo->maxtls == 0)
549             ret = 1;
550         else
551             ret = (minversion <= ginfo->maxtls);
552         if (ginfo->mintls > 0)
553             ret &= (maxversion >= ginfo->mintls);
554         if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
555             *okfortls13 = (ginfo->maxtls == 0)
556                           || (ginfo->maxtls >= TLS1_3_VERSION);
557     }
558     ret &= !isec
559            || strcmp(ginfo->algorithm, "EC") == 0
560            || strcmp(ginfo->algorithm, "X25519") == 0
561            || strcmp(ginfo->algorithm, "X448") == 0;
562 
563     return ret;
564 }
565 
566 /* See if group is allowed by security callback */
tls_group_allowed(SSL * s,uint16_t group,int op)567 int tls_group_allowed(SSL *s, uint16_t group, int op)
568 {
569     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
570     unsigned char gtmp[2];
571 
572     if (ginfo == NULL)
573         return 0;
574 
575     gtmp[0] = group >> 8;
576     gtmp[1] = group & 0xff;
577     return ssl_security(s, op, ginfo->secbits,
578                         tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
579 }
580 
581 /* Return 1 if "id" is in "list" */
tls1_in_list(uint16_t id,const uint16_t * list,size_t listlen)582 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
583 {
584     size_t i;
585     for (i = 0; i < listlen; i++)
586         if (list[i] == id)
587             return 1;
588     return 0;
589 }
590 
591 /*-
592  * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
593  * if there is no match.
594  * For nmatch == -1, return number of matches
595  * For nmatch == -2, return the id of the group to use for
596  * a tmp key, or 0 if there is no match.
597  */
tls1_shared_group(SSL * s,int nmatch)598 uint16_t tls1_shared_group(SSL *s, int nmatch)
599 {
600     const uint16_t *pref, *supp;
601     size_t num_pref, num_supp, i;
602     int k;
603 
604     /* Can't do anything on client side */
605     if (s->server == 0)
606         return 0;
607     if (nmatch == -2) {
608         if (tls1_suiteb(s)) {
609             /*
610              * For Suite B ciphersuite determines curve: we already know
611              * these are acceptable due to previous checks.
612              */
613             unsigned long cid = s->s3.tmp.new_cipher->id;
614 
615             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
616                 return TLSEXT_curve_P_256;
617             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
618                 return TLSEXT_curve_P_384;
619             /* Should never happen */
620             return 0;
621         }
622         /* If not Suite B just return first preference shared curve */
623         nmatch = 0;
624     }
625     /*
626      * If server preference set, our groups are the preference order
627      * otherwise peer decides.
628      */
629     if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
630         tls1_get_supported_groups(s, &pref, &num_pref);
631         tls1_get_peer_groups(s, &supp, &num_supp);
632     } else {
633         tls1_get_peer_groups(s, &pref, &num_pref);
634         tls1_get_supported_groups(s, &supp, &num_supp);
635     }
636 
637     for (k = 0, i = 0; i < num_pref; i++) {
638         uint16_t id = pref[i];
639 
640         if (!tls1_in_list(id, supp, num_supp)
641             || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
642                     continue;
643         if (nmatch == k)
644             return id;
645          k++;
646     }
647     if (nmatch == -1)
648         return k;
649     /* Out of range (nmatch > k). */
650     return 0;
651 }
652 
tls1_set_groups(uint16_t ** pext,size_t * pextlen,int * groups,size_t ngroups)653 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
654                     int *groups, size_t ngroups)
655 {
656     uint16_t *glist;
657     size_t i;
658     /*
659      * Bitmap of groups included to detect duplicates: two variables are added
660      * to detect duplicates as some values are more than 32.
661      */
662     unsigned long *dup_list = NULL;
663     unsigned long dup_list_egrp = 0;
664     unsigned long dup_list_dhgrp = 0;
665 
666     if (ngroups == 0) {
667         ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
668         return 0;
669     }
670     if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
671         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
672         return 0;
673     }
674     for (i = 0; i < ngroups; i++) {
675         unsigned long idmask;
676         uint16_t id;
677         id = tls1_nid2group_id(groups[i]);
678         if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
679             goto err;
680         idmask = 1L << (id & 0x00FF);
681         dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
682         if (!id || ((*dup_list) & idmask))
683             goto err;
684         *dup_list |= idmask;
685         glist[i] = id;
686     }
687     OPENSSL_free(*pext);
688     *pext = glist;
689     *pextlen = ngroups;
690     return 1;
691 err:
692     OPENSSL_free(glist);
693     return 0;
694 }
695 
696 # define GROUPLIST_INCREMENT   40
697 # define GROUP_NAME_BUFFER_LENGTH 64
698 typedef struct {
699     SSL_CTX *ctx;
700     size_t gidcnt;
701     size_t gidmax;
702     uint16_t *gid_arr;
703 } gid_cb_st;
704 
gid_cb(const char * elem,int len,void * arg)705 static int gid_cb(const char *elem, int len, void *arg)
706 {
707     gid_cb_st *garg = arg;
708     size_t i;
709     uint16_t gid = 0;
710     char etmp[GROUP_NAME_BUFFER_LENGTH];
711 
712     if (elem == NULL)
713         return 0;
714     if (garg->gidcnt == garg->gidmax) {
715         uint16_t *tmp =
716             OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT);
717         if (tmp == NULL)
718             return 0;
719         garg->gidmax += GROUPLIST_INCREMENT;
720         garg->gid_arr = tmp;
721     }
722     if (len > (int)(sizeof(etmp) - 1))
723         return 0;
724     memcpy(etmp, elem, len);
725     etmp[len] = 0;
726 
727     gid = tls1_group_name2id(garg->ctx, etmp);
728     if (gid == 0) {
729         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
730                        "group '%s' cannot be set", etmp);
731         return 0;
732     }
733     for (i = 0; i < garg->gidcnt; i++)
734         if (garg->gid_arr[i] == gid)
735             return 0;
736     garg->gid_arr[garg->gidcnt++] = gid;
737     return 1;
738 }
739 
740 /* Set groups based on a colon separated list */
tls1_set_groups_list(SSL_CTX * ctx,uint16_t ** pext,size_t * pextlen,const char * str)741 int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
742                          const char *str)
743 {
744     gid_cb_st gcb;
745     uint16_t *tmparr;
746     int ret = 0;
747 
748     gcb.gidcnt = 0;
749     gcb.gidmax = GROUPLIST_INCREMENT;
750     gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
751     if (gcb.gid_arr == NULL)
752         return 0;
753     gcb.ctx = ctx;
754     if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
755         goto end;
756     if (pext == NULL) {
757         ret = 1;
758         goto end;
759     }
760 
761     /*
762      * gid_cb ensurse there are no duplicates so we can just go ahead and set
763      * the result
764      */
765     tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
766     if (tmparr == NULL)
767         goto end;
768     *pext = tmparr;
769     *pextlen = gcb.gidcnt;
770     ret = 1;
771  end:
772     OPENSSL_free(gcb.gid_arr);
773     return ret;
774 }
775 
776 /* Check a group id matches preferences */
tls1_check_group_id(SSL * s,uint16_t group_id,int check_own_groups)777 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
778     {
779     const uint16_t *groups;
780     size_t groups_len;
781 
782     if (group_id == 0)
783         return 0;
784 
785     /* Check for Suite B compliance */
786     if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
787         unsigned long cid = s->s3.tmp.new_cipher->id;
788 
789         if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
790             if (group_id != TLSEXT_curve_P_256)
791                 return 0;
792         } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
793             if (group_id != TLSEXT_curve_P_384)
794                 return 0;
795         } else {
796             /* Should never happen */
797             return 0;
798         }
799     }
800 
801     if (check_own_groups) {
802         /* Check group is one of our preferences */
803         tls1_get_supported_groups(s, &groups, &groups_len);
804         if (!tls1_in_list(group_id, groups, groups_len))
805             return 0;
806     }
807 
808     if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
809         return 0;
810 
811     /* For clients, nothing more to check */
812     if (!s->server)
813         return 1;
814 
815     /* Check group is one of peers preferences */
816     tls1_get_peer_groups(s, &groups, &groups_len);
817 
818     /*
819      * RFC 4492 does not require the supported elliptic curves extension
820      * so if it is not sent we can just choose any curve.
821      * It is invalid to send an empty list in the supported groups
822      * extension, so groups_len == 0 always means no extension.
823      */
824     if (groups_len == 0)
825             return 1;
826     return tls1_in_list(group_id, groups, groups_len);
827 }
828 
tls1_get_formatlist(SSL * s,const unsigned char ** pformats,size_t * num_formats)829 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
830                          size_t *num_formats)
831 {
832     /*
833      * If we have a custom point format list use it otherwise use default
834      */
835     if (s->ext.ecpointformats) {
836         *pformats = s->ext.ecpointformats;
837         *num_formats = s->ext.ecpointformats_len;
838     } else {
839         *pformats = ecformats_default;
840         /* For Suite B we don't support char2 fields */
841         if (tls1_suiteb(s))
842             *num_formats = sizeof(ecformats_default) - 1;
843         else
844             *num_formats = sizeof(ecformats_default);
845     }
846 }
847 
848 /* Check a key is compatible with compression extension */
tls1_check_pkey_comp(SSL * s,EVP_PKEY * pkey)849 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
850 {
851     unsigned char comp_id;
852     size_t i;
853     int point_conv;
854 
855     /* If not an EC key nothing to check */
856     if (!EVP_PKEY_is_a(pkey, "EC"))
857         return 1;
858 
859 
860     /* Get required compression id */
861     point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
862     if (point_conv == 0)
863         return 0;
864     if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
865             comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
866     } else if (SSL_IS_TLS13(s)) {
867         /*
868          * ec_point_formats extension is not used in TLSv1.3 so we ignore
869          * this check.
870          */
871         return 1;
872     } else {
873         int field_type = EVP_PKEY_get_field_type(pkey);
874 
875         if (field_type == NID_X9_62_prime_field)
876             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
877         else if (field_type == NID_X9_62_characteristic_two_field)
878             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
879         else
880             return 0;
881     }
882     /*
883      * If point formats extension present check it, otherwise everything is
884      * supported (see RFC4492).
885      */
886     if (s->ext.peer_ecpointformats == NULL)
887         return 1;
888 
889     for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
890         if (s->ext.peer_ecpointformats[i] == comp_id)
891             return 1;
892     }
893     return 0;
894 }
895 
896 /* Return group id of a key */
tls1_get_group_id(EVP_PKEY * pkey)897 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
898 {
899     int curve_nid = ssl_get_EC_curve_nid(pkey);
900 
901     if (curve_nid == NID_undef)
902         return 0;
903     return tls1_nid2group_id(curve_nid);
904 }
905 
906 /*
907  * Check cert parameters compatible with extensions: currently just checks EC
908  * certificates have compatible curves and compression.
909  */
tls1_check_cert_param(SSL * s,X509 * x,int check_ee_md)910 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
911 {
912     uint16_t group_id;
913     EVP_PKEY *pkey;
914     pkey = X509_get0_pubkey(x);
915     if (pkey == NULL)
916         return 0;
917     /* If not EC nothing to do */
918     if (!EVP_PKEY_is_a(pkey, "EC"))
919         return 1;
920     /* Check compression */
921     if (!tls1_check_pkey_comp(s, pkey))
922         return 0;
923     group_id = tls1_get_group_id(pkey);
924     /*
925      * For a server we allow the certificate to not be in our list of supported
926      * groups.
927      */
928     if (!tls1_check_group_id(s, group_id, !s->server))
929         return 0;
930     /*
931      * Special case for suite B. We *MUST* sign using SHA256+P-256 or
932      * SHA384+P-384.
933      */
934     if (check_ee_md && tls1_suiteb(s)) {
935         int check_md;
936         size_t i;
937 
938         /* Check to see we have necessary signing algorithm */
939         if (group_id == TLSEXT_curve_P_256)
940             check_md = NID_ecdsa_with_SHA256;
941         else if (group_id == TLSEXT_curve_P_384)
942             check_md = NID_ecdsa_with_SHA384;
943         else
944             return 0;           /* Should never happen */
945         for (i = 0; i < s->shared_sigalgslen; i++) {
946             if (check_md == s->shared_sigalgs[i]->sigandhash)
947                 return 1;;
948         }
949         return 0;
950     }
951     return 1;
952 }
953 
954 /*
955  * tls1_check_ec_tmp_key - Check EC temporary key compatibility
956  * @s: SSL connection
957  * @cid: Cipher ID we're considering using
958  *
959  * Checks that the kECDHE cipher suite we're considering using
960  * is compatible with the client extensions.
961  *
962  * Returns 0 when the cipher can't be used or 1 when it can.
963  */
tls1_check_ec_tmp_key(SSL * s,unsigned long cid)964 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
965 {
966     /* If not Suite B just need a shared group */
967     if (!tls1_suiteb(s))
968         return tls1_shared_group(s, 0) != 0;
969     /*
970      * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
971      * curves permitted.
972      */
973     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
974         return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
975     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
976         return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
977 
978     return 0;
979 }
980 
981 /* Default sigalg schemes */
982 static const uint16_t tls12_sigalgs[] = {
983     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
984     TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
985     TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
986     TLSEXT_SIGALG_ed25519,
987     TLSEXT_SIGALG_ed448,
988 
989     TLSEXT_SIGALG_rsa_pss_pss_sha256,
990     TLSEXT_SIGALG_rsa_pss_pss_sha384,
991     TLSEXT_SIGALG_rsa_pss_pss_sha512,
992     TLSEXT_SIGALG_rsa_pss_rsae_sha256,
993     TLSEXT_SIGALG_rsa_pss_rsae_sha384,
994     TLSEXT_SIGALG_rsa_pss_rsae_sha512,
995 
996     TLSEXT_SIGALG_rsa_pkcs1_sha256,
997     TLSEXT_SIGALG_rsa_pkcs1_sha384,
998     TLSEXT_SIGALG_rsa_pkcs1_sha512,
999 
1000     TLSEXT_SIGALG_ecdsa_sha224,
1001     TLSEXT_SIGALG_ecdsa_sha1,
1002 
1003     TLSEXT_SIGALG_rsa_pkcs1_sha224,
1004     TLSEXT_SIGALG_rsa_pkcs1_sha1,
1005 
1006     TLSEXT_SIGALG_dsa_sha224,
1007     TLSEXT_SIGALG_dsa_sha1,
1008 
1009     TLSEXT_SIGALG_dsa_sha256,
1010     TLSEXT_SIGALG_dsa_sha384,
1011     TLSEXT_SIGALG_dsa_sha512,
1012 
1013 #ifndef OPENSSL_NO_GOST
1014     TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1015     TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1016     TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1017     TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1018     TLSEXT_SIGALG_gostr34102001_gostr3411,
1019 #endif
1020 };
1021 
1022 
1023 static const uint16_t suiteb_sigalgs[] = {
1024     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1025     TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1026 };
1027 
1028 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1029     {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1030      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1031      NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1032     {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1033      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1034      NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1035     {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1036      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1037      NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1038     {"ed25519", TLSEXT_SIGALG_ed25519,
1039      NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1040      NID_undef, NID_undef, 1},
1041     {"ed448", TLSEXT_SIGALG_ed448,
1042      NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1043      NID_undef, NID_undef, 1},
1044     {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1045      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1046      NID_ecdsa_with_SHA224, NID_undef, 1},
1047     {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1048      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1049      NID_ecdsa_with_SHA1, NID_undef, 1},
1050     {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1051      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1052      NID_undef, NID_undef, 1},
1053     {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1054      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1055      NID_undef, NID_undef, 1},
1056     {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1057      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1058      NID_undef, NID_undef, 1},
1059     {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1060      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1061      NID_undef, NID_undef, 1},
1062     {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1063      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1064      NID_undef, NID_undef, 1},
1065     {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1066      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1067      NID_undef, NID_undef, 1},
1068     {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1069      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1070      NID_sha256WithRSAEncryption, NID_undef, 1},
1071     {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1072      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1073      NID_sha384WithRSAEncryption, NID_undef, 1},
1074     {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1075      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1076      NID_sha512WithRSAEncryption, NID_undef, 1},
1077     {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1078      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1079      NID_sha224WithRSAEncryption, NID_undef, 1},
1080     {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1081      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1082      NID_sha1WithRSAEncryption, NID_undef, 1},
1083     {NULL, TLSEXT_SIGALG_dsa_sha256,
1084      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1085      NID_dsa_with_SHA256, NID_undef, 1},
1086     {NULL, TLSEXT_SIGALG_dsa_sha384,
1087      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1088      NID_undef, NID_undef, 1},
1089     {NULL, TLSEXT_SIGALG_dsa_sha512,
1090      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1091      NID_undef, NID_undef, 1},
1092     {NULL, TLSEXT_SIGALG_dsa_sha224,
1093      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1094      NID_undef, NID_undef, 1},
1095     {NULL, TLSEXT_SIGALG_dsa_sha1,
1096      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1097      NID_dsaWithSHA1, NID_undef, 1},
1098 #ifndef OPENSSL_NO_GOST
1099     {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1100      NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1101      NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1102      NID_undef, NID_undef, 1},
1103     {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1104      NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1105      NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1106      NID_undef, NID_undef, 1},
1107     {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1108      NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1109      NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1110      NID_undef, NID_undef, 1},
1111     {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1112      NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1113      NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1114      NID_undef, NID_undef, 1},
1115     {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1116      NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1117      NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1118      NID_undef, NID_undef, 1}
1119 #endif
1120 };
1121 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1122 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1123     "rsa_pkcs1_md5_sha1", 0,
1124      NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1125      EVP_PKEY_RSA, SSL_PKEY_RSA,
1126      NID_undef, NID_undef, 1
1127 };
1128 
1129 /*
1130  * Default signature algorithm values used if signature algorithms not present.
1131  * From RFC5246. Note: order must match certificate index order.
1132  */
1133 static const uint16_t tls_default_sigalg[] = {
1134     TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1135     0, /* SSL_PKEY_RSA_PSS_SIGN */
1136     TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1137     TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1138     TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1139     TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1140     TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1141     0, /* SSL_PKEY_ED25519 */
1142     0, /* SSL_PKEY_ED448 */
1143 };
1144 
ssl_setup_sig_algs(SSL_CTX * ctx)1145 int ssl_setup_sig_algs(SSL_CTX *ctx)
1146 {
1147     size_t i;
1148     const SIGALG_LOOKUP *lu;
1149     SIGALG_LOOKUP *cache
1150         = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1151     EVP_PKEY *tmpkey = EVP_PKEY_new();
1152     int ret = 0;
1153 
1154     if (cache == NULL || tmpkey == NULL)
1155         goto err;
1156 
1157     ERR_set_mark();
1158     for (i = 0, lu = sigalg_lookup_tbl;
1159          i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1160         EVP_PKEY_CTX *pctx;
1161 
1162         cache[i] = *lu;
1163 
1164         /*
1165          * Check hash is available.
1166          * This test is not perfect. A provider could have support
1167          * for a signature scheme, but not a particular hash. However the hash
1168          * could be available from some other loaded provider. In that case it
1169          * could be that the signature is available, and the hash is available
1170          * independently - but not as a combination. We ignore this for now.
1171          */
1172         if (lu->hash != NID_undef
1173                 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1174             cache[i].enabled = 0;
1175             continue;
1176         }
1177 
1178         if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1179             cache[i].enabled = 0;
1180             continue;
1181         }
1182         pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1183         /* If unable to create pctx we assume the sig algorithm is unavailable */
1184         if (pctx == NULL)
1185             cache[i].enabled = 0;
1186         EVP_PKEY_CTX_free(pctx);
1187     }
1188     ERR_pop_to_mark();
1189     ctx->sigalg_lookup_cache = cache;
1190     cache = NULL;
1191 
1192     ret = 1;
1193  err:
1194     OPENSSL_free(cache);
1195     EVP_PKEY_free(tmpkey);
1196     return ret;
1197 }
1198 
1199 /* Lookup TLS signature algorithm */
tls1_lookup_sigalg(const SSL * s,uint16_t sigalg)1200 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1201 {
1202     size_t i;
1203     const SIGALG_LOOKUP *lu;
1204 
1205     for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1206          /* cache should have the same number of elements as sigalg_lookup_tbl */
1207          i < OSSL_NELEM(sigalg_lookup_tbl);
1208          lu++, i++) {
1209         if (lu->sigalg == sigalg) {
1210             if (!lu->enabled)
1211                 return NULL;
1212             return lu;
1213         }
1214     }
1215     return NULL;
1216 }
1217 /* Lookup hash: return 0 if invalid or not enabled */
tls1_lookup_md(SSL_CTX * ctx,const SIGALG_LOOKUP * lu,const EVP_MD ** pmd)1218 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1219 {
1220     const EVP_MD *md;
1221     if (lu == NULL)
1222         return 0;
1223     /* lu->hash == NID_undef means no associated digest */
1224     if (lu->hash == NID_undef) {
1225         md = NULL;
1226     } else {
1227         md = ssl_md(ctx, lu->hash_idx);
1228         if (md == NULL)
1229             return 0;
1230     }
1231     if (pmd)
1232         *pmd = md;
1233     return 1;
1234 }
1235 
1236 /*
1237  * Check if key is large enough to generate RSA-PSS signature.
1238  *
1239  * The key must greater than or equal to 2 * hash length + 2.
1240  * SHA512 has a hash length of 64 bytes, which is incompatible
1241  * with a 128 byte (1024 bit) key.
1242  */
1243 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
rsa_pss_check_min_key_size(SSL_CTX * ctx,const EVP_PKEY * pkey,const SIGALG_LOOKUP * lu)1244 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1245                                       const SIGALG_LOOKUP *lu)
1246 {
1247     const EVP_MD *md;
1248 
1249     if (pkey == NULL)
1250         return 0;
1251     if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1252         return 0;
1253     if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1254         return 0;
1255     return 1;
1256 }
1257 
1258 /*
1259  * Returns a signature algorithm when the peer did not send a list of supported
1260  * signature algorithms. The signature algorithm is fixed for the certificate
1261  * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1262  * certificate type from |s| will be used.
1263  * Returns the signature algorithm to use, or NULL on error.
1264  */
tls1_get_legacy_sigalg(const SSL * s,int idx)1265 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1266 {
1267     if (idx == -1) {
1268         if (s->server) {
1269             size_t i;
1270 
1271             /* Work out index corresponding to ciphersuite */
1272             for (i = 0; i < SSL_PKEY_NUM; i++) {
1273                 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1274 
1275                 if (clu == NULL)
1276                     continue;
1277                 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1278                     idx = i;
1279                     break;
1280                 }
1281             }
1282 
1283             /*
1284              * Some GOST ciphersuites allow more than one signature algorithms
1285              * */
1286             if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1287                 int real_idx;
1288 
1289                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1290                      real_idx--) {
1291                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
1292                         idx = real_idx;
1293                         break;
1294                     }
1295                 }
1296             }
1297             /*
1298              * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1299              * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1300              */
1301             else if (idx == SSL_PKEY_GOST12_256) {
1302                 int real_idx;
1303 
1304                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1305                      real_idx--) {
1306                      if (s->cert->pkeys[real_idx].privatekey != NULL) {
1307                          idx = real_idx;
1308                          break;
1309                      }
1310                 }
1311             }
1312         } else {
1313             idx = s->cert->key - s->cert->pkeys;
1314         }
1315     }
1316     if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1317         return NULL;
1318     if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1319         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1320 
1321         if (lu == NULL)
1322             return NULL;
1323         if (!tls1_lookup_md(s->ctx, lu, NULL))
1324             return NULL;
1325         if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1326             return NULL;
1327         return lu;
1328     }
1329     if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1330         return NULL;
1331     return &legacy_rsa_sigalg;
1332 }
1333 /* Set peer sigalg based key type */
tls1_set_peer_legacy_sigalg(SSL * s,const EVP_PKEY * pkey)1334 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1335 {
1336     size_t idx;
1337     const SIGALG_LOOKUP *lu;
1338 
1339     if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1340         return 0;
1341     lu = tls1_get_legacy_sigalg(s, idx);
1342     if (lu == NULL)
1343         return 0;
1344     s->s3.tmp.peer_sigalg = lu;
1345     return 1;
1346 }
1347 
tls12_get_psigalgs(SSL * s,int sent,const uint16_t ** psigs)1348 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1349 {
1350     /*
1351      * If Suite B mode use Suite B sigalgs only, ignore any other
1352      * preferences.
1353      */
1354     switch (tls1_suiteb(s)) {
1355     case SSL_CERT_FLAG_SUITEB_128_LOS:
1356         *psigs = suiteb_sigalgs;
1357         return OSSL_NELEM(suiteb_sigalgs);
1358 
1359     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1360         *psigs = suiteb_sigalgs;
1361         return 1;
1362 
1363     case SSL_CERT_FLAG_SUITEB_192_LOS:
1364         *psigs = suiteb_sigalgs + 1;
1365         return 1;
1366     }
1367     /*
1368      *  We use client_sigalgs (if not NULL) if we're a server
1369      *  and sending a certificate request or if we're a client and
1370      *  determining which shared algorithm to use.
1371      */
1372     if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1373         *psigs = s->cert->client_sigalgs;
1374         return s->cert->client_sigalgslen;
1375     } else if (s->cert->conf_sigalgs) {
1376         *psigs = s->cert->conf_sigalgs;
1377         return s->cert->conf_sigalgslen;
1378     } else {
1379         *psigs = tls12_sigalgs;
1380         return OSSL_NELEM(tls12_sigalgs);
1381     }
1382 }
1383 
1384 /*
1385  * Called by servers only. Checks that we have a sig alg that supports the
1386  * specified EC curve.
1387  */
tls_check_sigalg_curve(const SSL * s,int curve)1388 int tls_check_sigalg_curve(const SSL *s, int curve)
1389 {
1390    const uint16_t *sigs;
1391    size_t siglen, i;
1392 
1393     if (s->cert->conf_sigalgs) {
1394         sigs = s->cert->conf_sigalgs;
1395         siglen = s->cert->conf_sigalgslen;
1396     } else {
1397         sigs = tls12_sigalgs;
1398         siglen = OSSL_NELEM(tls12_sigalgs);
1399     }
1400 
1401     for (i = 0; i < siglen; i++) {
1402         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1403 
1404         if (lu == NULL)
1405             continue;
1406         if (lu->sig == EVP_PKEY_EC
1407                 && lu->curve != NID_undef
1408                 && curve == lu->curve)
1409             return 1;
1410     }
1411 
1412     return 0;
1413 }
1414 
1415 /*
1416  * Return the number of security bits for the signature algorithm, or 0 on
1417  * error.
1418  */
sigalg_security_bits(SSL_CTX * ctx,const SIGALG_LOOKUP * lu)1419 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1420 {
1421     const EVP_MD *md = NULL;
1422     int secbits = 0;
1423 
1424     if (!tls1_lookup_md(ctx, lu, &md))
1425         return 0;
1426     if (md != NULL)
1427     {
1428         int md_type = EVP_MD_get_type(md);
1429 
1430         /* Security bits: half digest bits */
1431         secbits = EVP_MD_get_size(md) * 4;
1432         /*
1433          * SHA1 and MD5 are known to be broken. Reduce security bits so that
1434          * they're no longer accepted at security level 1. The real values don't
1435          * really matter as long as they're lower than 80, which is our
1436          * security level 1.
1437          * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1438          * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1439          * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1440          * puts a chosen-prefix attack for MD5 at 2^39.
1441          */
1442         if (md_type == NID_sha1)
1443             secbits = 64;
1444         else if (md_type == NID_md5_sha1)
1445             secbits = 67;
1446         else if (md_type == NID_md5)
1447             secbits = 39;
1448     } else {
1449         /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1450         if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1451             secbits = 128;
1452         else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1453             secbits = 224;
1454     }
1455     return secbits;
1456 }
1457 
1458 /*
1459  * Check signature algorithm is consistent with sent supported signature
1460  * algorithms and if so set relevant digest and signature scheme in
1461  * s.
1462  */
tls12_check_peer_sigalg(SSL * s,uint16_t sig,EVP_PKEY * pkey)1463 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1464 {
1465     const uint16_t *sent_sigs;
1466     const EVP_MD *md = NULL;
1467     char sigalgstr[2];
1468     size_t sent_sigslen, i, cidx;
1469     int pkeyid = -1;
1470     const SIGALG_LOOKUP *lu;
1471     int secbits = 0;
1472 
1473     pkeyid = EVP_PKEY_get_id(pkey);
1474     /* Should never happen */
1475     if (pkeyid == -1)
1476         return -1;
1477     if (SSL_IS_TLS13(s)) {
1478         /* Disallow DSA for TLS 1.3 */
1479         if (pkeyid == EVP_PKEY_DSA) {
1480             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1481             return 0;
1482         }
1483         /* Only allow PSS for TLS 1.3 */
1484         if (pkeyid == EVP_PKEY_RSA)
1485             pkeyid = EVP_PKEY_RSA_PSS;
1486     }
1487     lu = tls1_lookup_sigalg(s, sig);
1488     /*
1489      * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1490      * is consistent with signature: RSA keys can be used for RSA-PSS
1491      */
1492     if (lu == NULL
1493         || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1494         || (pkeyid != lu->sig
1495         && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1496         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1497         return 0;
1498     }
1499     /* Check the sigalg is consistent with the key OID */
1500     if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
1501             || lu->sig_idx != (int)cidx) {
1502         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1503         return 0;
1504     }
1505 
1506     if (pkeyid == EVP_PKEY_EC) {
1507 
1508         /* Check point compression is permitted */
1509         if (!tls1_check_pkey_comp(s, pkey)) {
1510             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1511                      SSL_R_ILLEGAL_POINT_COMPRESSION);
1512             return 0;
1513         }
1514 
1515         /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1516         if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1517             int curve = ssl_get_EC_curve_nid(pkey);
1518 
1519             if (lu->curve != NID_undef && curve != lu->curve) {
1520                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1521                 return 0;
1522             }
1523         }
1524         if (!SSL_IS_TLS13(s)) {
1525             /* Check curve matches extensions */
1526             if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1527                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1528                 return 0;
1529             }
1530             if (tls1_suiteb(s)) {
1531                 /* Check sigalg matches a permissible Suite B value */
1532                 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1533                     && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1534                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1535                              SSL_R_WRONG_SIGNATURE_TYPE);
1536                     return 0;
1537                 }
1538             }
1539         }
1540     } else if (tls1_suiteb(s)) {
1541         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1542         return 0;
1543     }
1544 
1545     /* Check signature matches a type we sent */
1546     sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1547     for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1548         if (sig == *sent_sigs)
1549             break;
1550     }
1551     /* Allow fallback to SHA1 if not strict mode */
1552     if (i == sent_sigslen && (lu->hash != NID_sha1
1553         || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1554         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1555         return 0;
1556     }
1557     if (!tls1_lookup_md(s->ctx, lu, &md)) {
1558         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1559         return 0;
1560     }
1561     /*
1562      * Make sure security callback allows algorithm. For historical
1563      * reasons we have to pass the sigalg as a two byte char array.
1564      */
1565     sigalgstr[0] = (sig >> 8) & 0xff;
1566     sigalgstr[1] = sig & 0xff;
1567     secbits = sigalg_security_bits(s->ctx, lu);
1568     if (secbits == 0 ||
1569         !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1570                       md != NULL ? EVP_MD_get_type(md) : NID_undef,
1571                       (void *)sigalgstr)) {
1572         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1573         return 0;
1574     }
1575     /* Store the sigalg the peer uses */
1576     s->s3.tmp.peer_sigalg = lu;
1577     return 1;
1578 }
1579 
SSL_get_peer_signature_type_nid(const SSL * s,int * pnid)1580 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1581 {
1582     if (s->s3.tmp.peer_sigalg == NULL)
1583         return 0;
1584     *pnid = s->s3.tmp.peer_sigalg->sig;
1585     return 1;
1586 }
1587 
SSL_get_signature_type_nid(const SSL * s,int * pnid)1588 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1589 {
1590     if (s->s3.tmp.sigalg == NULL)
1591         return 0;
1592     *pnid = s->s3.tmp.sigalg->sig;
1593     return 1;
1594 }
1595 
1596 /*
1597  * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1598  * supported, doesn't appear in supported signature algorithms, isn't supported
1599  * by the enabled protocol versions or by the security level.
1600  *
1601  * This function should only be used for checking which ciphers are supported
1602  * by the client.
1603  *
1604  * Call ssl_cipher_disabled() to check that it's enabled or not.
1605  */
ssl_set_client_disabled(SSL * s)1606 int ssl_set_client_disabled(SSL *s)
1607 {
1608     s->s3.tmp.mask_a = 0;
1609     s->s3.tmp.mask_k = 0;
1610     ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1611     if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1612                                 &s->s3.tmp.max_ver, NULL) != 0)
1613         return 0;
1614 #ifndef OPENSSL_NO_PSK
1615     /* with PSK there must be client callback set */
1616     if (!s->psk_client_callback) {
1617         s->s3.tmp.mask_a |= SSL_aPSK;
1618         s->s3.tmp.mask_k |= SSL_PSK;
1619     }
1620 #endif                          /* OPENSSL_NO_PSK */
1621 #ifndef OPENSSL_NO_SRP
1622     if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1623         s->s3.tmp.mask_a |= SSL_aSRP;
1624         s->s3.tmp.mask_k |= SSL_kSRP;
1625     }
1626 #endif
1627     return 1;
1628 }
1629 
1630 /*
1631  * ssl_cipher_disabled - check that a cipher is disabled or not
1632  * @s: SSL connection that you want to use the cipher on
1633  * @c: cipher to check
1634  * @op: Security check that you want to do
1635  * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1636  *
1637  * Returns 1 when it's disabled, 0 when enabled.
1638  */
ssl_cipher_disabled(const SSL * s,const SSL_CIPHER * c,int op,int ecdhe)1639 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1640 {
1641     if (c->algorithm_mkey & s->s3.tmp.mask_k
1642         || c->algorithm_auth & s->s3.tmp.mask_a)
1643         return 1;
1644     if (s->s3.tmp.max_ver == 0)
1645         return 1;
1646     if (!SSL_IS_DTLS(s)) {
1647         int min_tls = c->min_tls;
1648 
1649         /*
1650          * For historical reasons we will allow ECHDE to be selected by a server
1651          * in SSLv3 if we are a client
1652          */
1653         if (min_tls == TLS1_VERSION && ecdhe
1654                 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1655             min_tls = SSL3_VERSION;
1656 
1657         if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1658             return 1;
1659     }
1660     if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1661                            || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1662         return 1;
1663 
1664     return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1665 }
1666 
tls_use_ticket(SSL * s)1667 int tls_use_ticket(SSL *s)
1668 {
1669     if ((s->options & SSL_OP_NO_TICKET))
1670         return 0;
1671     return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1672 }
1673 
tls1_set_server_sigalgs(SSL * s)1674 int tls1_set_server_sigalgs(SSL *s)
1675 {
1676     size_t i;
1677 
1678     /* Clear any shared signature algorithms */
1679     OPENSSL_free(s->shared_sigalgs);
1680     s->shared_sigalgs = NULL;
1681     s->shared_sigalgslen = 0;
1682     /* Clear certificate validity flags */
1683     for (i = 0; i < SSL_PKEY_NUM; i++)
1684         s->s3.tmp.valid_flags[i] = 0;
1685     /*
1686      * If peer sent no signature algorithms check to see if we support
1687      * the default algorithm for each certificate type
1688      */
1689     if (s->s3.tmp.peer_cert_sigalgs == NULL
1690             && s->s3.tmp.peer_sigalgs == NULL) {
1691         const uint16_t *sent_sigs;
1692         size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1693 
1694         for (i = 0; i < SSL_PKEY_NUM; i++) {
1695             const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1696             size_t j;
1697 
1698             if (lu == NULL)
1699                 continue;
1700             /* Check default matches a type we sent */
1701             for (j = 0; j < sent_sigslen; j++) {
1702                 if (lu->sigalg == sent_sigs[j]) {
1703                         s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1704                         break;
1705                 }
1706             }
1707         }
1708         return 1;
1709     }
1710 
1711     if (!tls1_process_sigalgs(s)) {
1712         SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1713         return 0;
1714     }
1715     if (s->shared_sigalgs != NULL)
1716         return 1;
1717 
1718     /* Fatal error if no shared signature algorithms */
1719     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1720              SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1721     return 0;
1722 }
1723 
1724 /*-
1725  * Gets the ticket information supplied by the client if any.
1726  *
1727  *   hello: The parsed ClientHello data
1728  *   ret: (output) on return, if a ticket was decrypted, then this is set to
1729  *       point to the resulting session.
1730  */
tls_get_ticket_from_client(SSL * s,CLIENTHELLO_MSG * hello,SSL_SESSION ** ret)1731 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1732                                              SSL_SESSION **ret)
1733 {
1734     size_t size;
1735     RAW_EXTENSION *ticketext;
1736 
1737     *ret = NULL;
1738     s->ext.ticket_expected = 0;
1739 
1740     /*
1741      * If tickets disabled or not supported by the protocol version
1742      * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1743      * resumption.
1744      */
1745     if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1746         return SSL_TICKET_NONE;
1747 
1748     ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1749     if (!ticketext->present)
1750         return SSL_TICKET_NONE;
1751 
1752     size = PACKET_remaining(&ticketext->data);
1753 
1754     return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1755                               hello->session_id, hello->session_id_len, ret);
1756 }
1757 
1758 /*-
1759  * tls_decrypt_ticket attempts to decrypt a session ticket.
1760  *
1761  * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1762  * expecting a pre-shared key ciphersuite, in which case we have no use for
1763  * session tickets and one will never be decrypted, nor will
1764  * s->ext.ticket_expected be set to 1.
1765  *
1766  * Side effects:
1767  *   Sets s->ext.ticket_expected to 1 if the server will have to issue
1768  *   a new session ticket to the client because the client indicated support
1769  *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1770  *   a session ticket or we couldn't use the one it gave us, or if
1771  *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1772  *   Otherwise, s->ext.ticket_expected is set to 0.
1773  *
1774  *   etick: points to the body of the session ticket extension.
1775  *   eticklen: the length of the session tickets extension.
1776  *   sess_id: points at the session ID.
1777  *   sesslen: the length of the session ID.
1778  *   psess: (output) on return, if a ticket was decrypted, then this is set to
1779  *       point to the resulting session.
1780  */
tls_decrypt_ticket(SSL * s,const unsigned char * etick,size_t eticklen,const unsigned char * sess_id,size_t sesslen,SSL_SESSION ** psess)1781 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1782                                      size_t eticklen, const unsigned char *sess_id,
1783                                      size_t sesslen, SSL_SESSION **psess)
1784 {
1785     SSL_SESSION *sess = NULL;
1786     unsigned char *sdec;
1787     const unsigned char *p;
1788     int slen, ivlen, renew_ticket = 0, declen;
1789     SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1790     size_t mlen;
1791     unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1792     SSL_HMAC *hctx = NULL;
1793     EVP_CIPHER_CTX *ctx = NULL;
1794     SSL_CTX *tctx = s->session_ctx;
1795 
1796     if (eticklen == 0) {
1797         /*
1798          * The client will accept a ticket but doesn't currently have
1799          * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1800          */
1801         ret = SSL_TICKET_EMPTY;
1802         goto end;
1803     }
1804     if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1805         /*
1806          * Indicate that the ticket couldn't be decrypted rather than
1807          * generating the session from ticket now, trigger
1808          * abbreviated handshake based on external mechanism to
1809          * calculate the master secret later.
1810          */
1811         ret = SSL_TICKET_NO_DECRYPT;
1812         goto end;
1813     }
1814 
1815     /* Need at least keyname + iv */
1816     if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1817         ret = SSL_TICKET_NO_DECRYPT;
1818         goto end;
1819     }
1820 
1821     /* Initialize session ticket encryption and HMAC contexts */
1822     hctx = ssl_hmac_new(tctx);
1823     if (hctx == NULL) {
1824         ret = SSL_TICKET_FATAL_ERR_MALLOC;
1825         goto end;
1826     }
1827     ctx = EVP_CIPHER_CTX_new();
1828     if (ctx == NULL) {
1829         ret = SSL_TICKET_FATAL_ERR_MALLOC;
1830         goto end;
1831     }
1832 #ifndef OPENSSL_NO_DEPRECATED_3_0
1833     if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1834 #else
1835     if (tctx->ext.ticket_key_evp_cb != NULL)
1836 #endif
1837     {
1838         unsigned char *nctick = (unsigned char *)etick;
1839         int rv = 0;
1840 
1841         if (tctx->ext.ticket_key_evp_cb != NULL)
1842             rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1843                                              nctick + TLSEXT_KEYNAME_LENGTH,
1844                                              ctx,
1845                                              ssl_hmac_get0_EVP_MAC_CTX(hctx),
1846                                              0);
1847 #ifndef OPENSSL_NO_DEPRECATED_3_0
1848         else if (tctx->ext.ticket_key_cb != NULL)
1849             /* if 0 is returned, write an empty ticket */
1850             rv = tctx->ext.ticket_key_cb(s, nctick,
1851                                          nctick + TLSEXT_KEYNAME_LENGTH,
1852                                          ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1853 #endif
1854         if (rv < 0) {
1855             ret = SSL_TICKET_FATAL_ERR_OTHER;
1856             goto end;
1857         }
1858         if (rv == 0) {
1859             ret = SSL_TICKET_NO_DECRYPT;
1860             goto end;
1861         }
1862         if (rv == 2)
1863             renew_ticket = 1;
1864     } else {
1865         EVP_CIPHER *aes256cbc = NULL;
1866 
1867         /* Check key name matches */
1868         if (memcmp(etick, tctx->ext.tick_key_name,
1869                    TLSEXT_KEYNAME_LENGTH) != 0) {
1870             ret = SSL_TICKET_NO_DECRYPT;
1871             goto end;
1872         }
1873 
1874         aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1875                                      s->ctx->propq);
1876         if (aes256cbc == NULL
1877             || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1878                              sizeof(tctx->ext.secure->tick_hmac_key),
1879                              "SHA256") <= 0
1880             || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1881                                   tctx->ext.secure->tick_aes_key,
1882                                   etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1883             EVP_CIPHER_free(aes256cbc);
1884             ret = SSL_TICKET_FATAL_ERR_OTHER;
1885             goto end;
1886         }
1887         EVP_CIPHER_free(aes256cbc);
1888         if (SSL_IS_TLS13(s))
1889             renew_ticket = 1;
1890     }
1891     /*
1892      * Attempt to process session ticket, first conduct sanity and integrity
1893      * checks on ticket.
1894      */
1895     mlen = ssl_hmac_size(hctx);
1896     if (mlen == 0) {
1897         ret = SSL_TICKET_FATAL_ERR_OTHER;
1898         goto end;
1899     }
1900 
1901     ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
1902     if (ivlen < 0) {
1903         ret = SSL_TICKET_FATAL_ERR_OTHER;
1904         goto end;
1905     }
1906 
1907     /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1908     if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
1909         ret = SSL_TICKET_NO_DECRYPT;
1910         goto end;
1911     }
1912     eticklen -= mlen;
1913     /* Check HMAC of encrypted ticket */
1914     if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1915         || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1916         ret = SSL_TICKET_FATAL_ERR_OTHER;
1917         goto end;
1918     }
1919 
1920     if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1921         ret = SSL_TICKET_NO_DECRYPT;
1922         goto end;
1923     }
1924     /* Attempt to decrypt session data */
1925     /* Move p after IV to start of encrypted ticket, update length */
1926     p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
1927     eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
1928     sdec = OPENSSL_malloc(eticklen);
1929     if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1930                                           (int)eticklen) <= 0) {
1931         OPENSSL_free(sdec);
1932         ret = SSL_TICKET_FATAL_ERR_OTHER;
1933         goto end;
1934     }
1935     if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1936         OPENSSL_free(sdec);
1937         ret = SSL_TICKET_NO_DECRYPT;
1938         goto end;
1939     }
1940     slen += declen;
1941     p = sdec;
1942 
1943     sess = d2i_SSL_SESSION(NULL, &p, slen);
1944     slen -= p - sdec;
1945     OPENSSL_free(sdec);
1946     if (sess) {
1947         /* Some additional consistency checks */
1948         if (slen != 0) {
1949             SSL_SESSION_free(sess);
1950             sess = NULL;
1951             ret = SSL_TICKET_NO_DECRYPT;
1952             goto end;
1953         }
1954         /*
1955          * The session ID, if non-empty, is used by some clients to detect
1956          * that the ticket has been accepted. So we copy it to the session
1957          * structure. If it is empty set length to zero as required by
1958          * standard.
1959          */
1960         if (sesslen) {
1961             memcpy(sess->session_id, sess_id, sesslen);
1962             sess->session_id_length = sesslen;
1963         }
1964         if (renew_ticket)
1965             ret = SSL_TICKET_SUCCESS_RENEW;
1966         else
1967             ret = SSL_TICKET_SUCCESS;
1968         goto end;
1969     }
1970     ERR_clear_error();
1971     /*
1972      * For session parse failure, indicate that we need to send a new ticket.
1973      */
1974     ret = SSL_TICKET_NO_DECRYPT;
1975 
1976  end:
1977     EVP_CIPHER_CTX_free(ctx);
1978     ssl_hmac_free(hctx);
1979 
1980     /*
1981      * If set, the decrypt_ticket_cb() is called unless a fatal error was
1982      * detected above. The callback is responsible for checking |ret| before it
1983      * performs any action
1984      */
1985     if (s->session_ctx->decrypt_ticket_cb != NULL
1986             && (ret == SSL_TICKET_EMPTY
1987                 || ret == SSL_TICKET_NO_DECRYPT
1988                 || ret == SSL_TICKET_SUCCESS
1989                 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1990         size_t keyname_len = eticklen;
1991         int retcb;
1992 
1993         if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1994             keyname_len = TLSEXT_KEYNAME_LENGTH;
1995         retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1996                                                   ret,
1997                                                   s->session_ctx->ticket_cb_data);
1998         switch (retcb) {
1999         case SSL_TICKET_RETURN_ABORT:
2000             ret = SSL_TICKET_FATAL_ERR_OTHER;
2001             break;
2002 
2003         case SSL_TICKET_RETURN_IGNORE:
2004             ret = SSL_TICKET_NONE;
2005             SSL_SESSION_free(sess);
2006             sess = NULL;
2007             break;
2008 
2009         case SSL_TICKET_RETURN_IGNORE_RENEW:
2010             if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2011                 ret = SSL_TICKET_NO_DECRYPT;
2012             /* else the value of |ret| will already do the right thing */
2013             SSL_SESSION_free(sess);
2014             sess = NULL;
2015             break;
2016 
2017         case SSL_TICKET_RETURN_USE:
2018         case SSL_TICKET_RETURN_USE_RENEW:
2019             if (ret != SSL_TICKET_SUCCESS
2020                     && ret != SSL_TICKET_SUCCESS_RENEW)
2021                 ret = SSL_TICKET_FATAL_ERR_OTHER;
2022             else if (retcb == SSL_TICKET_RETURN_USE)
2023                 ret = SSL_TICKET_SUCCESS;
2024             else
2025                 ret = SSL_TICKET_SUCCESS_RENEW;
2026             break;
2027 
2028         default:
2029             ret = SSL_TICKET_FATAL_ERR_OTHER;
2030         }
2031     }
2032 
2033     if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2034         switch (ret) {
2035         case SSL_TICKET_NO_DECRYPT:
2036         case SSL_TICKET_SUCCESS_RENEW:
2037         case SSL_TICKET_EMPTY:
2038             s->ext.ticket_expected = 1;
2039         }
2040     }
2041 
2042     *psess = sess;
2043 
2044     return ret;
2045 }
2046 
2047 /* Check to see if a signature algorithm is allowed */
tls12_sigalg_allowed(const SSL * s,int op,const SIGALG_LOOKUP * lu)2048 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2049 {
2050     unsigned char sigalgstr[2];
2051     int secbits;
2052 
2053     if (lu == NULL || !lu->enabled)
2054         return 0;
2055     /* DSA is not allowed in TLS 1.3 */
2056     if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2057         return 0;
2058     /*
2059      * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2060      * spec
2061      */
2062     if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2063         && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2064             || lu->hash_idx == SSL_MD_MD5_IDX
2065             || lu->hash_idx == SSL_MD_SHA224_IDX))
2066         return 0;
2067 
2068     /* See if public key algorithm allowed */
2069     if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
2070         return 0;
2071 
2072     if (lu->sig == NID_id_GostR3410_2012_256
2073             || lu->sig == NID_id_GostR3410_2012_512
2074             || lu->sig == NID_id_GostR3410_2001) {
2075         /* We never allow GOST sig algs on the server with TLSv1.3 */
2076         if (s->server && SSL_IS_TLS13(s))
2077             return 0;
2078         if (!s->server
2079                 && s->method->version == TLS_ANY_VERSION
2080                 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2081             int i, num;
2082             STACK_OF(SSL_CIPHER) *sk;
2083 
2084             /*
2085              * We're a client that could negotiate TLSv1.3. We only allow GOST
2086              * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2087              * ciphersuites enabled.
2088              */
2089 
2090             if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2091                 return 0;
2092 
2093             sk = SSL_get_ciphers(s);
2094             num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2095             for (i = 0; i < num; i++) {
2096                 const SSL_CIPHER *c;
2097 
2098                 c = sk_SSL_CIPHER_value(sk, i);
2099                 /* Skip disabled ciphers */
2100                 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2101                     continue;
2102 
2103                 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2104                     break;
2105             }
2106             if (i == num)
2107                 return 0;
2108         }
2109     }
2110 
2111     /* Finally see if security callback allows it */
2112     secbits = sigalg_security_bits(s->ctx, lu);
2113     sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2114     sigalgstr[1] = lu->sigalg & 0xff;
2115     return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2116 }
2117 
2118 /*
2119  * Get a mask of disabled public key algorithms based on supported signature
2120  * algorithms. For example if no signature algorithm supports RSA then RSA is
2121  * disabled.
2122  */
2123 
ssl_set_sig_mask(uint32_t * pmask_a,SSL * s,int op)2124 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2125 {
2126     const uint16_t *sigalgs;
2127     size_t i, sigalgslen;
2128     uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2129     /*
2130      * Go through all signature algorithms seeing if we support any
2131      * in disabled_mask.
2132      */
2133     sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2134     for (i = 0; i < sigalgslen; i++, sigalgs++) {
2135         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2136         const SSL_CERT_LOOKUP *clu;
2137 
2138         if (lu == NULL)
2139             continue;
2140 
2141         clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2142         if (clu == NULL)
2143                 continue;
2144 
2145         /* If algorithm is disabled see if we can enable it */
2146         if ((clu->amask & disabled_mask) != 0
2147                 && tls12_sigalg_allowed(s, op, lu))
2148             disabled_mask &= ~clu->amask;
2149     }
2150     *pmask_a |= disabled_mask;
2151 }
2152 
tls12_copy_sigalgs(SSL * s,WPACKET * pkt,const uint16_t * psig,size_t psiglen)2153 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2154                        const uint16_t *psig, size_t psiglen)
2155 {
2156     size_t i;
2157     int rv = 0;
2158 
2159     for (i = 0; i < psiglen; i++, psig++) {
2160         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2161 
2162         if (lu == NULL
2163                 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2164             continue;
2165         if (!WPACKET_put_bytes_u16(pkt, *psig))
2166             return 0;
2167         /*
2168          * If TLS 1.3 must have at least one valid TLS 1.3 message
2169          * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2170          */
2171         if (rv == 0 && (!SSL_IS_TLS13(s)
2172             || (lu->sig != EVP_PKEY_RSA
2173                 && lu->hash != NID_sha1
2174                 && lu->hash != NID_sha224)))
2175             rv = 1;
2176     }
2177     if (rv == 0)
2178         ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2179     return rv;
2180 }
2181 
2182 /* Given preference and allowed sigalgs set shared sigalgs */
tls12_shared_sigalgs(SSL * s,const SIGALG_LOOKUP ** shsig,const uint16_t * pref,size_t preflen,const uint16_t * allow,size_t allowlen)2183 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2184                                    const uint16_t *pref, size_t preflen,
2185                                    const uint16_t *allow, size_t allowlen)
2186 {
2187     const uint16_t *ptmp, *atmp;
2188     size_t i, j, nmatch = 0;
2189     for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2190         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2191 
2192         /* Skip disabled hashes or signature algorithms */
2193         if (lu == NULL
2194                 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2195             continue;
2196         for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2197             if (*ptmp == *atmp) {
2198                 nmatch++;
2199                 if (shsig)
2200                     *shsig++ = lu;
2201                 break;
2202             }
2203         }
2204     }
2205     return nmatch;
2206 }
2207 
2208 /* Set shared signature algorithms for SSL structures */
tls1_set_shared_sigalgs(SSL * s)2209 static int tls1_set_shared_sigalgs(SSL *s)
2210 {
2211     const uint16_t *pref, *allow, *conf;
2212     size_t preflen, allowlen, conflen;
2213     size_t nmatch;
2214     const SIGALG_LOOKUP **salgs = NULL;
2215     CERT *c = s->cert;
2216     unsigned int is_suiteb = tls1_suiteb(s);
2217 
2218     OPENSSL_free(s->shared_sigalgs);
2219     s->shared_sigalgs = NULL;
2220     s->shared_sigalgslen = 0;
2221     /* If client use client signature algorithms if not NULL */
2222     if (!s->server && c->client_sigalgs && !is_suiteb) {
2223         conf = c->client_sigalgs;
2224         conflen = c->client_sigalgslen;
2225     } else if (c->conf_sigalgs && !is_suiteb) {
2226         conf = c->conf_sigalgs;
2227         conflen = c->conf_sigalgslen;
2228     } else
2229         conflen = tls12_get_psigalgs(s, 0, &conf);
2230     if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2231         pref = conf;
2232         preflen = conflen;
2233         allow = s->s3.tmp.peer_sigalgs;
2234         allowlen = s->s3.tmp.peer_sigalgslen;
2235     } else {
2236         allow = conf;
2237         allowlen = conflen;
2238         pref = s->s3.tmp.peer_sigalgs;
2239         preflen = s->s3.tmp.peer_sigalgslen;
2240     }
2241     nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2242     if (nmatch) {
2243         if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2244             ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2245             return 0;
2246         }
2247         nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2248     } else {
2249         salgs = NULL;
2250     }
2251     s->shared_sigalgs = salgs;
2252     s->shared_sigalgslen = nmatch;
2253     return 1;
2254 }
2255 
tls1_save_u16(PACKET * pkt,uint16_t ** pdest,size_t * pdestlen)2256 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2257 {
2258     unsigned int stmp;
2259     size_t size, i;
2260     uint16_t *buf;
2261 
2262     size = PACKET_remaining(pkt);
2263 
2264     /* Invalid data length */
2265     if (size == 0 || (size & 1) != 0)
2266         return 0;
2267 
2268     size >>= 1;
2269 
2270     if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)  {
2271         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2272         return 0;
2273     }
2274     for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2275         buf[i] = stmp;
2276 
2277     if (i != size) {
2278         OPENSSL_free(buf);
2279         return 0;
2280     }
2281 
2282     OPENSSL_free(*pdest);
2283     *pdest = buf;
2284     *pdestlen = size;
2285 
2286     return 1;
2287 }
2288 
tls1_save_sigalgs(SSL * s,PACKET * pkt,int cert)2289 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2290 {
2291     /* Extension ignored for inappropriate versions */
2292     if (!SSL_USE_SIGALGS(s))
2293         return 1;
2294     /* Should never happen */
2295     if (s->cert == NULL)
2296         return 0;
2297 
2298     if (cert)
2299         return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2300                              &s->s3.tmp.peer_cert_sigalgslen);
2301     else
2302         return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2303                              &s->s3.tmp.peer_sigalgslen);
2304 
2305 }
2306 
2307 /* Set preferred digest for each key type */
2308 
tls1_process_sigalgs(SSL * s)2309 int tls1_process_sigalgs(SSL *s)
2310 {
2311     size_t i;
2312     uint32_t *pvalid = s->s3.tmp.valid_flags;
2313 
2314     if (!tls1_set_shared_sigalgs(s))
2315         return 0;
2316 
2317     for (i = 0; i < SSL_PKEY_NUM; i++)
2318         pvalid[i] = 0;
2319 
2320     for (i = 0; i < s->shared_sigalgslen; i++) {
2321         const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2322         int idx = sigptr->sig_idx;
2323 
2324         /* Ignore PKCS1 based sig algs in TLSv1.3 */
2325         if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2326             continue;
2327         /* If not disabled indicate we can explicitly sign */
2328         if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
2329             pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2330     }
2331     return 1;
2332 }
2333 
SSL_get_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)2334 int SSL_get_sigalgs(SSL *s, int idx,
2335                     int *psign, int *phash, int *psignhash,
2336                     unsigned char *rsig, unsigned char *rhash)
2337 {
2338     uint16_t *psig = s->s3.tmp.peer_sigalgs;
2339     size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2340     if (psig == NULL || numsigalgs > INT_MAX)
2341         return 0;
2342     if (idx >= 0) {
2343         const SIGALG_LOOKUP *lu;
2344 
2345         if (idx >= (int)numsigalgs)
2346             return 0;
2347         psig += idx;
2348         if (rhash != NULL)
2349             *rhash = (unsigned char)((*psig >> 8) & 0xff);
2350         if (rsig != NULL)
2351             *rsig = (unsigned char)(*psig & 0xff);
2352         lu = tls1_lookup_sigalg(s, *psig);
2353         if (psign != NULL)
2354             *psign = lu != NULL ? lu->sig : NID_undef;
2355         if (phash != NULL)
2356             *phash = lu != NULL ? lu->hash : NID_undef;
2357         if (psignhash != NULL)
2358             *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2359     }
2360     return (int)numsigalgs;
2361 }
2362 
SSL_get_shared_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)2363 int SSL_get_shared_sigalgs(SSL *s, int idx,
2364                            int *psign, int *phash, int *psignhash,
2365                            unsigned char *rsig, unsigned char *rhash)
2366 {
2367     const SIGALG_LOOKUP *shsigalgs;
2368     if (s->shared_sigalgs == NULL
2369         || idx < 0
2370         || idx >= (int)s->shared_sigalgslen
2371         || s->shared_sigalgslen > INT_MAX)
2372         return 0;
2373     shsigalgs = s->shared_sigalgs[idx];
2374     if (phash != NULL)
2375         *phash = shsigalgs->hash;
2376     if (psign != NULL)
2377         *psign = shsigalgs->sig;
2378     if (psignhash != NULL)
2379         *psignhash = shsigalgs->sigandhash;
2380     if (rsig != NULL)
2381         *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2382     if (rhash != NULL)
2383         *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2384     return (int)s->shared_sigalgslen;
2385 }
2386 
2387 /* Maximum possible number of unique entries in sigalgs array */
2388 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2389 
2390 typedef struct {
2391     size_t sigalgcnt;
2392     /* TLSEXT_SIGALG_XXX values */
2393     uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2394 } sig_cb_st;
2395 
get_sigorhash(int * psig,int * phash,const char * str)2396 static void get_sigorhash(int *psig, int *phash, const char *str)
2397 {
2398     if (strcmp(str, "RSA") == 0) {
2399         *psig = EVP_PKEY_RSA;
2400     } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2401         *psig = EVP_PKEY_RSA_PSS;
2402     } else if (strcmp(str, "DSA") == 0) {
2403         *psig = EVP_PKEY_DSA;
2404     } else if (strcmp(str, "ECDSA") == 0) {
2405         *psig = EVP_PKEY_EC;
2406     } else {
2407         *phash = OBJ_sn2nid(str);
2408         if (*phash == NID_undef)
2409             *phash = OBJ_ln2nid(str);
2410     }
2411 }
2412 /* Maximum length of a signature algorithm string component */
2413 #define TLS_MAX_SIGSTRING_LEN   40
2414 
sig_cb(const char * elem,int len,void * arg)2415 static int sig_cb(const char *elem, int len, void *arg)
2416 {
2417     sig_cb_st *sarg = arg;
2418     size_t i;
2419     const SIGALG_LOOKUP *s;
2420     char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2421     int sig_alg = NID_undef, hash_alg = NID_undef;
2422     if (elem == NULL)
2423         return 0;
2424     if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2425         return 0;
2426     if (len > (int)(sizeof(etmp) - 1))
2427         return 0;
2428     memcpy(etmp, elem, len);
2429     etmp[len] = 0;
2430     p = strchr(etmp, '+');
2431     /*
2432      * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2433      * if there's no '+' in the provided name, look for the new-style combined
2434      * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2435      * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2436      * rsa_pss_rsae_* that differ only by public key OID; in such cases
2437      * we will pick the _rsae_ variant, by virtue of them appearing earlier
2438      * in the table.
2439      */
2440     if (p == NULL) {
2441         for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2442              i++, s++) {
2443             if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2444                 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2445                 break;
2446             }
2447         }
2448         if (i == OSSL_NELEM(sigalg_lookup_tbl))
2449             return 0;
2450     } else {
2451         *p = 0;
2452         p++;
2453         if (*p == 0)
2454             return 0;
2455         get_sigorhash(&sig_alg, &hash_alg, etmp);
2456         get_sigorhash(&sig_alg, &hash_alg, p);
2457         if (sig_alg == NID_undef || hash_alg == NID_undef)
2458             return 0;
2459         for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2460              i++, s++) {
2461             if (s->hash == hash_alg && s->sig == sig_alg) {
2462                 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2463                 break;
2464             }
2465         }
2466         if (i == OSSL_NELEM(sigalg_lookup_tbl))
2467             return 0;
2468     }
2469 
2470     /* Reject duplicates */
2471     for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2472         if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2473             sarg->sigalgcnt--;
2474             return 0;
2475         }
2476     }
2477     return 1;
2478 }
2479 
2480 /*
2481  * Set supported signature algorithms based on a colon separated list of the
2482  * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2483  */
tls1_set_sigalgs_list(CERT * c,const char * str,int client)2484 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2485 {
2486     sig_cb_st sig;
2487     sig.sigalgcnt = 0;
2488     if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2489         return 0;
2490     if (c == NULL)
2491         return 1;
2492     return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2493 }
2494 
tls1_set_raw_sigalgs(CERT * c,const uint16_t * psigs,size_t salglen,int client)2495 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2496                      int client)
2497 {
2498     uint16_t *sigalgs;
2499 
2500     if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2501         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2502         return 0;
2503     }
2504     memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2505 
2506     if (client) {
2507         OPENSSL_free(c->client_sigalgs);
2508         c->client_sigalgs = sigalgs;
2509         c->client_sigalgslen = salglen;
2510     } else {
2511         OPENSSL_free(c->conf_sigalgs);
2512         c->conf_sigalgs = sigalgs;
2513         c->conf_sigalgslen = salglen;
2514     }
2515 
2516     return 1;
2517 }
2518 
tls1_set_sigalgs(CERT * c,const int * psig_nids,size_t salglen,int client)2519 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2520 {
2521     uint16_t *sigalgs, *sptr;
2522     size_t i;
2523 
2524     if (salglen & 1)
2525         return 0;
2526     if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2527         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2528         return 0;
2529     }
2530     for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2531         size_t j;
2532         const SIGALG_LOOKUP *curr;
2533         int md_id = *psig_nids++;
2534         int sig_id = *psig_nids++;
2535 
2536         for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2537              j++, curr++) {
2538             if (curr->hash == md_id && curr->sig == sig_id) {
2539                 *sptr++ = curr->sigalg;
2540                 break;
2541             }
2542         }
2543 
2544         if (j == OSSL_NELEM(sigalg_lookup_tbl))
2545             goto err;
2546     }
2547 
2548     if (client) {
2549         OPENSSL_free(c->client_sigalgs);
2550         c->client_sigalgs = sigalgs;
2551         c->client_sigalgslen = salglen / 2;
2552     } else {
2553         OPENSSL_free(c->conf_sigalgs);
2554         c->conf_sigalgs = sigalgs;
2555         c->conf_sigalgslen = salglen / 2;
2556     }
2557 
2558     return 1;
2559 
2560  err:
2561     OPENSSL_free(sigalgs);
2562     return 0;
2563 }
2564 
tls1_check_sig_alg(SSL * s,X509 * x,int default_nid)2565 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2566 {
2567     int sig_nid, use_pc_sigalgs = 0;
2568     size_t i;
2569     const SIGALG_LOOKUP *sigalg;
2570     size_t sigalgslen;
2571     if (default_nid == -1)
2572         return 1;
2573     sig_nid = X509_get_signature_nid(x);
2574     if (default_nid)
2575         return sig_nid == default_nid ? 1 : 0;
2576 
2577     if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2578         /*
2579          * If we're in TLSv1.3 then we only get here if we're checking the
2580          * chain. If the peer has specified peer_cert_sigalgs then we use them
2581          * otherwise we default to normal sigalgs.
2582          */
2583         sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2584         use_pc_sigalgs = 1;
2585     } else {
2586         sigalgslen = s->shared_sigalgslen;
2587     }
2588     for (i = 0; i < sigalgslen; i++) {
2589         sigalg = use_pc_sigalgs
2590                  ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2591                  : s->shared_sigalgs[i];
2592         if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2593             return 1;
2594     }
2595     return 0;
2596 }
2597 
2598 /* Check to see if a certificate issuer name matches list of CA names */
ssl_check_ca_name(STACK_OF (X509_NAME)* names,X509 * x)2599 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2600 {
2601     const X509_NAME *nm;
2602     int i;
2603     nm = X509_get_issuer_name(x);
2604     for (i = 0; i < sk_X509_NAME_num(names); i++) {
2605         if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2606             return 1;
2607     }
2608     return 0;
2609 }
2610 
2611 /*
2612  * Check certificate chain is consistent with TLS extensions and is usable by
2613  * server. This servers two purposes: it allows users to check chains before
2614  * passing them to the server and it allows the server to check chains before
2615  * attempting to use them.
2616  */
2617 
2618 /* Flags which need to be set for a certificate when strict mode not set */
2619 
2620 #define CERT_PKEY_VALID_FLAGS \
2621         (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2622 /* Strict mode flags */
2623 #define CERT_PKEY_STRICT_FLAGS \
2624          (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2625          | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2626 
tls1_check_chain(SSL * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain,int idx)2627 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2628                      int idx)
2629 {
2630     int i;
2631     int rv = 0;
2632     int check_flags = 0, strict_mode;
2633     CERT_PKEY *cpk = NULL;
2634     CERT *c = s->cert;
2635     uint32_t *pvalid;
2636     unsigned int suiteb_flags = tls1_suiteb(s);
2637     /* idx == -1 means checking server chains */
2638     if (idx != -1) {
2639         /* idx == -2 means checking client certificate chains */
2640         if (idx == -2) {
2641             cpk = c->key;
2642             idx = (int)(cpk - c->pkeys);
2643         } else
2644             cpk = c->pkeys + idx;
2645         pvalid = s->s3.tmp.valid_flags + idx;
2646         x = cpk->x509;
2647         pk = cpk->privatekey;
2648         chain = cpk->chain;
2649         strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2650         /* If no cert or key, forget it */
2651         if (!x || !pk)
2652             goto end;
2653     } else {
2654         size_t certidx;
2655 
2656         if (!x || !pk)
2657             return 0;
2658 
2659         if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2660             return 0;
2661         idx = certidx;
2662         pvalid = s->s3.tmp.valid_flags + idx;
2663 
2664         if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2665             check_flags = CERT_PKEY_STRICT_FLAGS;
2666         else
2667             check_flags = CERT_PKEY_VALID_FLAGS;
2668         strict_mode = 1;
2669     }
2670 
2671     if (suiteb_flags) {
2672         int ok;
2673         if (check_flags)
2674             check_flags |= CERT_PKEY_SUITEB;
2675         ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2676         if (ok == X509_V_OK)
2677             rv |= CERT_PKEY_SUITEB;
2678         else if (!check_flags)
2679             goto end;
2680     }
2681 
2682     /*
2683      * Check all signature algorithms are consistent with signature
2684      * algorithms extension if TLS 1.2 or later and strict mode.
2685      */
2686     if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2687         int default_nid;
2688         int rsign = 0;
2689         if (s->s3.tmp.peer_cert_sigalgs != NULL
2690                 || s->s3.tmp.peer_sigalgs != NULL) {
2691             default_nid = 0;
2692         /* If no sigalgs extension use defaults from RFC5246 */
2693         } else {
2694             switch (idx) {
2695             case SSL_PKEY_RSA:
2696                 rsign = EVP_PKEY_RSA;
2697                 default_nid = NID_sha1WithRSAEncryption;
2698                 break;
2699 
2700             case SSL_PKEY_DSA_SIGN:
2701                 rsign = EVP_PKEY_DSA;
2702                 default_nid = NID_dsaWithSHA1;
2703                 break;
2704 
2705             case SSL_PKEY_ECC:
2706                 rsign = EVP_PKEY_EC;
2707                 default_nid = NID_ecdsa_with_SHA1;
2708                 break;
2709 
2710             case SSL_PKEY_GOST01:
2711                 rsign = NID_id_GostR3410_2001;
2712                 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2713                 break;
2714 
2715             case SSL_PKEY_GOST12_256:
2716                 rsign = NID_id_GostR3410_2012_256;
2717                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2718                 break;
2719 
2720             case SSL_PKEY_GOST12_512:
2721                 rsign = NID_id_GostR3410_2012_512;
2722                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2723                 break;
2724 
2725             default:
2726                 default_nid = -1;
2727                 break;
2728             }
2729         }
2730         /*
2731          * If peer sent no signature algorithms extension and we have set
2732          * preferred signature algorithms check we support sha1.
2733          */
2734         if (default_nid > 0 && c->conf_sigalgs) {
2735             size_t j;
2736             const uint16_t *p = c->conf_sigalgs;
2737             for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2738                 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2739 
2740                 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2741                     break;
2742             }
2743             if (j == c->conf_sigalgslen) {
2744                 if (check_flags)
2745                     goto skip_sigs;
2746                 else
2747                     goto end;
2748             }
2749         }
2750         /* Check signature algorithm of each cert in chain */
2751         if (SSL_IS_TLS13(s)) {
2752             /*
2753              * We only get here if the application has called SSL_check_chain(),
2754              * so check_flags is always set.
2755              */
2756             if (find_sig_alg(s, x, pk) != NULL)
2757                 rv |= CERT_PKEY_EE_SIGNATURE;
2758         } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2759             if (!check_flags)
2760                 goto end;
2761         } else
2762             rv |= CERT_PKEY_EE_SIGNATURE;
2763         rv |= CERT_PKEY_CA_SIGNATURE;
2764         for (i = 0; i < sk_X509_num(chain); i++) {
2765             if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2766                 if (check_flags) {
2767                     rv &= ~CERT_PKEY_CA_SIGNATURE;
2768                     break;
2769                 } else
2770                     goto end;
2771             }
2772         }
2773     }
2774     /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2775     else if (check_flags)
2776         rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2777  skip_sigs:
2778     /* Check cert parameters are consistent */
2779     if (tls1_check_cert_param(s, x, 1))
2780         rv |= CERT_PKEY_EE_PARAM;
2781     else if (!check_flags)
2782         goto end;
2783     if (!s->server)
2784         rv |= CERT_PKEY_CA_PARAM;
2785     /* In strict mode check rest of chain too */
2786     else if (strict_mode) {
2787         rv |= CERT_PKEY_CA_PARAM;
2788         for (i = 0; i < sk_X509_num(chain); i++) {
2789             X509 *ca = sk_X509_value(chain, i);
2790             if (!tls1_check_cert_param(s, ca, 0)) {
2791                 if (check_flags) {
2792                     rv &= ~CERT_PKEY_CA_PARAM;
2793                     break;
2794                 } else
2795                     goto end;
2796             }
2797         }
2798     }
2799     if (!s->server && strict_mode) {
2800         STACK_OF(X509_NAME) *ca_dn;
2801         int check_type = 0;
2802 
2803         if (EVP_PKEY_is_a(pk, "RSA"))
2804             check_type = TLS_CT_RSA_SIGN;
2805         else if (EVP_PKEY_is_a(pk, "DSA"))
2806             check_type = TLS_CT_DSS_SIGN;
2807         else if (EVP_PKEY_is_a(pk, "EC"))
2808             check_type = TLS_CT_ECDSA_SIGN;
2809 
2810         if (check_type) {
2811             const uint8_t *ctypes = s->s3.tmp.ctype;
2812             size_t j;
2813 
2814             for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2815                 if (*ctypes == check_type) {
2816                     rv |= CERT_PKEY_CERT_TYPE;
2817                     break;
2818                 }
2819             }
2820             if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2821                 goto end;
2822         } else {
2823             rv |= CERT_PKEY_CERT_TYPE;
2824         }
2825 
2826         ca_dn = s->s3.tmp.peer_ca_names;
2827 
2828         if (ca_dn == NULL
2829             || sk_X509_NAME_num(ca_dn) == 0
2830             || ssl_check_ca_name(ca_dn, x))
2831             rv |= CERT_PKEY_ISSUER_NAME;
2832         else
2833             for (i = 0; i < sk_X509_num(chain); i++) {
2834                 X509 *xtmp = sk_X509_value(chain, i);
2835 
2836                 if (ssl_check_ca_name(ca_dn, xtmp)) {
2837                     rv |= CERT_PKEY_ISSUER_NAME;
2838                     break;
2839                 }
2840             }
2841 
2842         if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2843             goto end;
2844     } else
2845         rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2846 
2847     if (!check_flags || (rv & check_flags) == check_flags)
2848         rv |= CERT_PKEY_VALID;
2849 
2850  end:
2851 
2852     if (TLS1_get_version(s) >= TLS1_2_VERSION)
2853         rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2854     else
2855         rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2856 
2857     /*
2858      * When checking a CERT_PKEY structure all flags are irrelevant if the
2859      * chain is invalid.
2860      */
2861     if (!check_flags) {
2862         if (rv & CERT_PKEY_VALID) {
2863             *pvalid = rv;
2864         } else {
2865             /* Preserve sign and explicit sign flag, clear rest */
2866             *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2867             return 0;
2868         }
2869     }
2870     return rv;
2871 }
2872 
2873 /* Set validity of certificates in an SSL structure */
tls1_set_cert_validity(SSL * s)2874 void tls1_set_cert_validity(SSL *s)
2875 {
2876     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2877     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2878     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2879     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2880     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2881     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2882     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2883     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2884     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2885 }
2886 
2887 /* User level utility function to check a chain is suitable */
SSL_check_chain(SSL * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain)2888 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2889 {
2890     return tls1_check_chain(s, x, pk, chain, -1);
2891 }
2892 
ssl_get_auto_dh(SSL * s)2893 EVP_PKEY *ssl_get_auto_dh(SSL *s)
2894 {
2895     EVP_PKEY *dhp = NULL;
2896     BIGNUM *p;
2897     int dh_secbits = 80, sec_level_bits;
2898     EVP_PKEY_CTX *pctx = NULL;
2899     OSSL_PARAM_BLD *tmpl = NULL;
2900     OSSL_PARAM *params = NULL;
2901 
2902     if (s->cert->dh_tmp_auto != 2) {
2903         if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2904             if (s->s3.tmp.new_cipher->strength_bits == 256)
2905                 dh_secbits = 128;
2906             else
2907                 dh_secbits = 80;
2908         } else {
2909             if (s->s3.tmp.cert == NULL)
2910                 return NULL;
2911             dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
2912         }
2913     }
2914 
2915     /* Do not pick a prime that is too weak for the current security level */
2916     sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
2917     if (dh_secbits < sec_level_bits)
2918         dh_secbits = sec_level_bits;
2919 
2920     if (dh_secbits >= 192)
2921         p = BN_get_rfc3526_prime_8192(NULL);
2922     else if (dh_secbits >= 152)
2923         p = BN_get_rfc3526_prime_4096(NULL);
2924     else if (dh_secbits >= 128)
2925         p = BN_get_rfc3526_prime_3072(NULL);
2926     else if (dh_secbits >= 112)
2927         p = BN_get_rfc3526_prime_2048(NULL);
2928     else
2929         p = BN_get_rfc2409_prime_1024(NULL);
2930     if (p == NULL)
2931         goto err;
2932 
2933     pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
2934     if (pctx == NULL
2935             || EVP_PKEY_fromdata_init(pctx) != 1)
2936         goto err;
2937 
2938     tmpl = OSSL_PARAM_BLD_new();
2939     if (tmpl == NULL
2940             || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
2941             || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
2942         goto err;
2943 
2944     params = OSSL_PARAM_BLD_to_param(tmpl);
2945     if (params == NULL
2946             || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
2947         goto err;
2948 
2949 err:
2950     OSSL_PARAM_free(params);
2951     OSSL_PARAM_BLD_free(tmpl);
2952     EVP_PKEY_CTX_free(pctx);
2953     BN_free(p);
2954     return dhp;
2955 }
2956 
ssl_security_cert_key(SSL * s,SSL_CTX * ctx,X509 * x,int op)2957 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2958 {
2959     int secbits = -1;
2960     EVP_PKEY *pkey = X509_get0_pubkey(x);
2961     if (pkey) {
2962         /*
2963          * If no parameters this will return -1 and fail using the default
2964          * security callback for any non-zero security level. This will
2965          * reject keys which omit parameters but this only affects DSA and
2966          * omission of parameters is never (?) done in practice.
2967          */
2968         secbits = EVP_PKEY_get_security_bits(pkey);
2969     }
2970     if (s)
2971         return ssl_security(s, op, secbits, 0, x);
2972     else
2973         return ssl_ctx_security(ctx, op, secbits, 0, x);
2974 }
2975 
ssl_security_cert_sig(SSL * s,SSL_CTX * ctx,X509 * x,int op)2976 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2977 {
2978     /* Lookup signature algorithm digest */
2979     int secbits, nid, pknid;
2980     /* Don't check signature if self signed */
2981     if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2982         return 1;
2983     if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2984         secbits = -1;
2985     /* If digest NID not defined use signature NID */
2986     if (nid == NID_undef)
2987         nid = pknid;
2988     if (s)
2989         return ssl_security(s, op, secbits, nid, x);
2990     else
2991         return ssl_ctx_security(ctx, op, secbits, nid, x);
2992 }
2993 
ssl_security_cert(SSL * s,SSL_CTX * ctx,X509 * x,int vfy,int is_ee)2994 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2995 {
2996     if (vfy)
2997         vfy = SSL_SECOP_PEER;
2998     if (is_ee) {
2999         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3000             return SSL_R_EE_KEY_TOO_SMALL;
3001     } else {
3002         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3003             return SSL_R_CA_KEY_TOO_SMALL;
3004     }
3005     if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3006         return SSL_R_CA_MD_TOO_WEAK;
3007     return 1;
3008 }
3009 
3010 /*
3011  * Check security of a chain, if |sk| includes the end entity certificate then
3012  * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3013  * one to the peer. Return values: 1 if ok otherwise error code to use
3014  */
3015 
ssl_security_cert_chain(SSL * s,STACK_OF (X509)* sk,X509 * x,int vfy)3016 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
3017 {
3018     int rv, start_idx, i;
3019     if (x == NULL) {
3020         x = sk_X509_value(sk, 0);
3021         if (x == NULL)
3022             return ERR_R_INTERNAL_ERROR;
3023         start_idx = 1;
3024     } else
3025         start_idx = 0;
3026 
3027     rv = ssl_security_cert(s, NULL, x, vfy, 1);
3028     if (rv != 1)
3029         return rv;
3030 
3031     for (i = start_idx; i < sk_X509_num(sk); i++) {
3032         x = sk_X509_value(sk, i);
3033         rv = ssl_security_cert(s, NULL, x, vfy, 0);
3034         if (rv != 1)
3035             return rv;
3036     }
3037     return 1;
3038 }
3039 
3040 /*
3041  * For TLS 1.2 servers check if we have a certificate which can be used
3042  * with the signature algorithm "lu" and return index of certificate.
3043  */
3044 
tls12_get_cert_sigalg_idx(const SSL * s,const SIGALG_LOOKUP * lu)3045 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3046 {
3047     int sig_idx = lu->sig_idx;
3048     const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3049 
3050     /* If not recognised or not supported by cipher mask it is not suitable */
3051     if (clu == NULL
3052             || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3053             || (clu->nid == EVP_PKEY_RSA_PSS
3054                 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3055         return -1;
3056 
3057     return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3058 }
3059 
3060 /*
3061  * Checks the given cert against signature_algorithm_cert restrictions sent by
3062  * the peer (if any) as well as whether the hash from the sigalg is usable with
3063  * the key.
3064  * Returns true if the cert is usable and false otherwise.
3065  */
check_cert_usable(SSL * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)3066 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3067                              EVP_PKEY *pkey)
3068 {
3069     const SIGALG_LOOKUP *lu;
3070     int mdnid, pknid, supported;
3071     size_t i;
3072     const char *mdname = NULL;
3073 
3074     /*
3075      * If the given EVP_PKEY cannot support signing with this digest,
3076      * the answer is simply 'no'.
3077      */
3078     if (sig->hash != NID_undef)
3079         mdname = OBJ_nid2sn(sig->hash);
3080     supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
3081                                                     mdname,
3082                                                     s->ctx->propq);
3083     if (supported <= 0)
3084         return 0;
3085 
3086     /*
3087      * The TLS 1.3 signature_algorithms_cert extension places restrictions
3088      * on the sigalg with which the certificate was signed (by its issuer).
3089      */
3090     if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3091         if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3092             return 0;
3093         for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3094             lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3095             if (lu == NULL)
3096                 continue;
3097 
3098             /*
3099              * This does not differentiate between the
3100              * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3101              * have a chain here that lets us look at the key OID in the
3102              * signing certificate.
3103              */
3104             if (mdnid == lu->hash && pknid == lu->sig)
3105                 return 1;
3106         }
3107         return 0;
3108     }
3109 
3110     /*
3111      * Without signat_algorithms_cert, any certificate for which we have
3112      * a viable public key is permitted.
3113      */
3114     return 1;
3115 }
3116 
3117 /*
3118  * Returns true if |s| has a usable certificate configured for use
3119  * with signature scheme |sig|.
3120  * "Usable" includes a check for presence as well as applying
3121  * the signature_algorithm_cert restrictions sent by the peer (if any).
3122  * Returns false if no usable certificate is found.
3123  */
has_usable_cert(SSL * s,const SIGALG_LOOKUP * sig,int idx)3124 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3125 {
3126     /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3127     if (idx == -1)
3128         idx = sig->sig_idx;
3129     if (!ssl_has_cert(s, idx))
3130         return 0;
3131 
3132     return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3133                              s->cert->pkeys[idx].privatekey);
3134 }
3135 
3136 /*
3137  * Returns true if the supplied cert |x| and key |pkey| is usable with the
3138  * specified signature scheme |sig|, or false otherwise.
3139  */
is_cert_usable(SSL * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)3140 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3141                           EVP_PKEY *pkey)
3142 {
3143     size_t idx;
3144 
3145     if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3146         return 0;
3147 
3148     /* Check the key is consistent with the sig alg */
3149     if ((int)idx != sig->sig_idx)
3150         return 0;
3151 
3152     return check_cert_usable(s, sig, x, pkey);
3153 }
3154 
3155 /*
3156  * Find a signature scheme that works with the supplied certificate |x| and key
3157  * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3158  * available certs/keys to find one that works.
3159  */
find_sig_alg(SSL * s,X509 * x,EVP_PKEY * pkey)3160 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3161 {
3162     const SIGALG_LOOKUP *lu = NULL;
3163     size_t i;
3164     int curve = -1;
3165     EVP_PKEY *tmppkey;
3166 
3167     /* Look for a shared sigalgs matching possible certificates */
3168     for (i = 0; i < s->shared_sigalgslen; i++) {
3169         lu = s->shared_sigalgs[i];
3170 
3171         /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3172         if (lu->hash == NID_sha1
3173             || lu->hash == NID_sha224
3174             || lu->sig == EVP_PKEY_DSA
3175             || lu->sig == EVP_PKEY_RSA)
3176             continue;
3177         /* Check that we have a cert, and signature_algorithms_cert */
3178         if (!tls1_lookup_md(s->ctx, lu, NULL))
3179             continue;
3180         if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3181                 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3182             continue;
3183 
3184         tmppkey = (pkey != NULL) ? pkey
3185                                  : s->cert->pkeys[lu->sig_idx].privatekey;
3186 
3187         if (lu->sig == EVP_PKEY_EC) {
3188             if (curve == -1)
3189                 curve = ssl_get_EC_curve_nid(tmppkey);
3190             if (lu->curve != NID_undef && curve != lu->curve)
3191                 continue;
3192         } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3193             /* validate that key is large enough for the signature algorithm */
3194             if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3195                 continue;
3196         }
3197         break;
3198     }
3199 
3200     if (i == s->shared_sigalgslen)
3201         return NULL;
3202 
3203     return lu;
3204 }
3205 
3206 /*
3207  * Choose an appropriate signature algorithm based on available certificates
3208  * Sets chosen certificate and signature algorithm.
3209  *
3210  * For servers if we fail to find a required certificate it is a fatal error,
3211  * an appropriate error code is set and a TLS alert is sent.
3212  *
3213  * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3214  * a fatal error: we will either try another certificate or not present one
3215  * to the server. In this case no error is set.
3216  */
tls_choose_sigalg(SSL * s,int fatalerrs)3217 int tls_choose_sigalg(SSL *s, int fatalerrs)
3218 {
3219     const SIGALG_LOOKUP *lu = NULL;
3220     int sig_idx = -1;
3221 
3222     s->s3.tmp.cert = NULL;
3223     s->s3.tmp.sigalg = NULL;
3224 
3225     if (SSL_IS_TLS13(s)) {
3226         lu = find_sig_alg(s, NULL, NULL);
3227         if (lu == NULL) {
3228             if (!fatalerrs)
3229                 return 1;
3230             SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3231                      SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3232             return 0;
3233         }
3234     } else {
3235         /* If ciphersuite doesn't require a cert nothing to do */
3236         if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3237             return 1;
3238         if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3239                 return 1;
3240 
3241         if (SSL_USE_SIGALGS(s)) {
3242             size_t i;
3243             if (s->s3.tmp.peer_sigalgs != NULL) {
3244                 int curve = -1;
3245 
3246                 /* For Suite B need to match signature algorithm to curve */
3247                 if (tls1_suiteb(s))
3248                     curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3249                                                  .privatekey);
3250 
3251                 /*
3252                  * Find highest preference signature algorithm matching
3253                  * cert type
3254                  */
3255                 for (i = 0; i < s->shared_sigalgslen; i++) {
3256                     lu = s->shared_sigalgs[i];
3257 
3258                     if (s->server) {
3259                         if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3260                             continue;
3261                     } else {
3262                         int cc_idx = s->cert->key - s->cert->pkeys;
3263 
3264                         sig_idx = lu->sig_idx;
3265                         if (cc_idx != sig_idx)
3266                             continue;
3267                     }
3268                     /* Check that we have a cert, and sig_algs_cert */
3269                     if (!has_usable_cert(s, lu, sig_idx))
3270                         continue;
3271                     if (lu->sig == EVP_PKEY_RSA_PSS) {
3272                         /* validate that key is large enough for the signature algorithm */
3273                         EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3274 
3275                         if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3276                             continue;
3277                     }
3278                     if (curve == -1 || lu->curve == curve)
3279                         break;
3280                 }
3281 #ifndef OPENSSL_NO_GOST
3282                 /*
3283                  * Some Windows-based implementations do not send GOST algorithms indication
3284                  * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3285                  * we have to assume GOST support.
3286                  */
3287                 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3288                   if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3289                     if (!fatalerrs)
3290                       return 1;
3291                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3292                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3293                     return 0;
3294                   } else {
3295                     i = 0;
3296                     sig_idx = lu->sig_idx;
3297                   }
3298                 }
3299 #endif
3300                 if (i == s->shared_sigalgslen) {
3301                     if (!fatalerrs)
3302                         return 1;
3303                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3304                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3305                     return 0;
3306                 }
3307             } else {
3308                 /*
3309                  * If we have no sigalg use defaults
3310                  */
3311                 const uint16_t *sent_sigs;
3312                 size_t sent_sigslen;
3313 
3314                 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3315                     if (!fatalerrs)
3316                         return 1;
3317                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3318                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3319                     return 0;
3320                 }
3321 
3322                 /* Check signature matches a type we sent */
3323                 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3324                 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3325                     if (lu->sigalg == *sent_sigs
3326                             && has_usable_cert(s, lu, lu->sig_idx))
3327                         break;
3328                 }
3329                 if (i == sent_sigslen) {
3330                     if (!fatalerrs)
3331                         return 1;
3332                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3333                              SSL_R_WRONG_SIGNATURE_TYPE);
3334                     return 0;
3335                 }
3336             }
3337         } else {
3338             if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3339                 if (!fatalerrs)
3340                     return 1;
3341                 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3342                          SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3343                 return 0;
3344             }
3345         }
3346     }
3347     if (sig_idx == -1)
3348         sig_idx = lu->sig_idx;
3349     s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3350     s->cert->key = s->s3.tmp.cert;
3351     s->s3.tmp.sigalg = lu;
3352     return 1;
3353 }
3354 
SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX * ctx,uint8_t mode)3355 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3356 {
3357     if (mode != TLSEXT_max_fragment_length_DISABLED
3358             && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3359         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3360         return 0;
3361     }
3362 
3363     ctx->ext.max_fragment_len_mode = mode;
3364     return 1;
3365 }
3366 
SSL_set_tlsext_max_fragment_length(SSL * ssl,uint8_t mode)3367 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3368 {
3369     if (mode != TLSEXT_max_fragment_length_DISABLED
3370             && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3371         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3372         return 0;
3373     }
3374 
3375     ssl->ext.max_fragment_len_mode = mode;
3376     return 1;
3377 }
3378 
SSL_SESSION_get_max_fragment_length(const SSL_SESSION * session)3379 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3380 {
3381     return session->ext.max_fragment_len_mode;
3382 }
3383 
3384 /*
3385  * Helper functions for HMAC access with legacy support included.
3386  */
ssl_hmac_new(const SSL_CTX * ctx)3387 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3388 {
3389     SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3390     EVP_MAC *mac = NULL;
3391 
3392     if (ret == NULL)
3393         return NULL;
3394 #ifndef OPENSSL_NO_DEPRECATED_3_0
3395     if (ctx->ext.ticket_key_evp_cb == NULL
3396             && ctx->ext.ticket_key_cb != NULL) {
3397         if (!ssl_hmac_old_new(ret))
3398             goto err;
3399         return ret;
3400     }
3401 #endif
3402     mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3403     if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3404         goto err;
3405     EVP_MAC_free(mac);
3406     return ret;
3407  err:
3408     EVP_MAC_CTX_free(ret->ctx);
3409     EVP_MAC_free(mac);
3410     OPENSSL_free(ret);
3411     return NULL;
3412 }
3413 
ssl_hmac_free(SSL_HMAC * ctx)3414 void ssl_hmac_free(SSL_HMAC *ctx)
3415 {
3416     if (ctx != NULL) {
3417         EVP_MAC_CTX_free(ctx->ctx);
3418 #ifndef OPENSSL_NO_DEPRECATED_3_0
3419         ssl_hmac_old_free(ctx);
3420 #endif
3421         OPENSSL_free(ctx);
3422     }
3423 }
3424 
ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC * ctx)3425 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3426 {
3427     return ctx->ctx;
3428 }
3429 
ssl_hmac_init(SSL_HMAC * ctx,void * key,size_t len,char * md)3430 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3431 {
3432     OSSL_PARAM params[2], *p = params;
3433 
3434     if (ctx->ctx != NULL) {
3435         *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3436         *p = OSSL_PARAM_construct_end();
3437         if (EVP_MAC_init(ctx->ctx, key, len, params))
3438             return 1;
3439     }
3440 #ifndef OPENSSL_NO_DEPRECATED_3_0
3441     if (ctx->old_ctx != NULL)
3442         return ssl_hmac_old_init(ctx, key, len, md);
3443 #endif
3444     return 0;
3445 }
3446 
ssl_hmac_update(SSL_HMAC * ctx,const unsigned char * data,size_t len)3447 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3448 {
3449     if (ctx->ctx != NULL)
3450         return EVP_MAC_update(ctx->ctx, data, len);
3451 #ifndef OPENSSL_NO_DEPRECATED_3_0
3452     if (ctx->old_ctx != NULL)
3453         return ssl_hmac_old_update(ctx, data, len);
3454 #endif
3455     return 0;
3456 }
3457 
ssl_hmac_final(SSL_HMAC * ctx,unsigned char * md,size_t * len,size_t max_size)3458 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3459                    size_t max_size)
3460 {
3461     if (ctx->ctx != NULL)
3462         return EVP_MAC_final(ctx->ctx, md, len, max_size);
3463 #ifndef OPENSSL_NO_DEPRECATED_3_0
3464     if (ctx->old_ctx != NULL)
3465         return ssl_hmac_old_final(ctx, md, len);
3466 #endif
3467     return 0;
3468 }
3469 
ssl_hmac_size(const SSL_HMAC * ctx)3470 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3471 {
3472     if (ctx->ctx != NULL)
3473         return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3474 #ifndef OPENSSL_NO_DEPRECATED_3_0
3475     if (ctx->old_ctx != NULL)
3476         return ssl_hmac_old_size(ctx);
3477 #endif
3478     return 0;
3479 }
3480 
ssl_get_EC_curve_nid(const EVP_PKEY * pkey)3481 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3482 {
3483     char gname[OSSL_MAX_NAME_SIZE];
3484 
3485     if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3486         return OBJ_txt2nid(gname);
3487 
3488     return NID_undef;
3489 }
3490 
tls13_set_encoded_pub_key(EVP_PKEY * pkey,const unsigned char * enckey,size_t enckeylen)3491 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3492                                      const unsigned char *enckey,
3493                                      size_t enckeylen)
3494 {
3495     if (EVP_PKEY_is_a(pkey, "DH")) {
3496         int bits = EVP_PKEY_get_bits(pkey);
3497 
3498         if (bits <= 0 || enckeylen != (size_t)bits / 8)
3499             /* the encoded key must be padded to the length of the p */
3500             return 0;
3501     } else if (EVP_PKEY_is_a(pkey, "EC")) {
3502         if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3503             || enckey[0] != 0x04)
3504             return 0;
3505     }
3506 
3507     return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
3508 }
3509