• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 			      struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 			      struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 				 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 			       int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
__udf_clear_extent_cache(struct inode * inode)71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 
75 	if (iinfo->cached_extent.lstart != -1) {
76 		brelse(iinfo->cached_extent.epos.bh);
77 		iinfo->cached_extent.lstart = -1;
78 	}
79 }
80 
81 /* Invalidate extent cache */
udf_clear_extent_cache(struct inode * inode)82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 	struct udf_inode_info *iinfo = UDF_I(inode);
85 
86 	spin_lock(&iinfo->i_extent_cache_lock);
87 	__udf_clear_extent_cache(inode);
88 	spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90 
91 /* Return contents of extent cache */
udf_read_extent_cache(struct inode * inode,loff_t bcount,loff_t * lbcount,struct extent_position * pos)92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 				 loff_t *lbcount, struct extent_position *pos)
94 {
95 	struct udf_inode_info *iinfo = UDF_I(inode);
96 	int ret = 0;
97 
98 	spin_lock(&iinfo->i_extent_cache_lock);
99 	if ((iinfo->cached_extent.lstart <= bcount) &&
100 	    (iinfo->cached_extent.lstart != -1)) {
101 		/* Cache hit */
102 		*lbcount = iinfo->cached_extent.lstart;
103 		memcpy(pos, &iinfo->cached_extent.epos,
104 		       sizeof(struct extent_position));
105 		if (pos->bh)
106 			get_bh(pos->bh);
107 		ret = 1;
108 	}
109 	spin_unlock(&iinfo->i_extent_cache_lock);
110 	return ret;
111 }
112 
113 /* Add extent to extent cache */
udf_update_extent_cache(struct inode * inode,loff_t estart,struct extent_position * pos)114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 				    struct extent_position *pos)
116 {
117 	struct udf_inode_info *iinfo = UDF_I(inode);
118 
119 	spin_lock(&iinfo->i_extent_cache_lock);
120 	/* Invalidate previously cached extent */
121 	__udf_clear_extent_cache(inode);
122 	if (pos->bh)
123 		get_bh(pos->bh);
124 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 	iinfo->cached_extent.lstart = estart;
126 	switch (iinfo->i_alloc_type) {
127 	case ICBTAG_FLAG_AD_SHORT:
128 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 		break;
130 	case ICBTAG_FLAG_AD_LONG:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 		break;
133 	}
134 	spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136 
udf_evict_inode(struct inode * inode)137 void udf_evict_inode(struct inode *inode)
138 {
139 	struct udf_inode_info *iinfo = UDF_I(inode);
140 	int want_delete = 0;
141 
142 	if (!is_bad_inode(inode)) {
143 		if (!inode->i_nlink) {
144 			want_delete = 1;
145 			udf_setsize(inode, 0);
146 			udf_update_inode(inode, IS_SYNC(inode));
147 		}
148 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 		    inode->i_size != iinfo->i_lenExtents) {
150 			udf_warn(inode->i_sb,
151 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 				 inode->i_ino, inode->i_mode,
153 				 (unsigned long long)inode->i_size,
154 				 (unsigned long long)iinfo->i_lenExtents);
155 		}
156 	}
157 	truncate_inode_pages_final(&inode->i_data);
158 	invalidate_inode_buffers(inode);
159 	clear_inode(inode);
160 	kfree(iinfo->i_data);
161 	iinfo->i_data = NULL;
162 	udf_clear_extent_cache(inode);
163 	if (want_delete) {
164 		udf_free_inode(inode);
165 	}
166 }
167 
udf_write_failed(struct address_space * mapping,loff_t to)168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 	struct inode *inode = mapping->host;
171 	struct udf_inode_info *iinfo = UDF_I(inode);
172 	loff_t isize = inode->i_size;
173 
174 	if (to > isize) {
175 		truncate_pagecache(inode, isize);
176 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 			down_write(&iinfo->i_data_sem);
178 			udf_clear_extent_cache(inode);
179 			udf_truncate_extents(inode);
180 			up_write(&iinfo->i_data_sem);
181 		}
182 	}
183 }
184 
udf_writepage(struct page * page,struct writeback_control * wbc)185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187 	return block_write_full_page(page, udf_get_block, wbc);
188 }
189 
udf_writepages(struct address_space * mapping,struct writeback_control * wbc)190 static int udf_writepages(struct address_space *mapping,
191 			struct writeback_control *wbc)
192 {
193 	return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195 
udf_readpage(struct file * file,struct page * page)196 static int udf_readpage(struct file *file, struct page *page)
197 {
198 	return mpage_readpage(page, udf_get_block);
199 }
200 
udf_readahead(struct readahead_control * rac)201 static void udf_readahead(struct readahead_control *rac)
202 {
203 	mpage_readahead(rac, udf_get_block);
204 }
205 
udf_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 			loff_t pos, unsigned len, unsigned flags,
208 			struct page **pagep, void **fsdata)
209 {
210 	int ret;
211 
212 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 	if (unlikely(ret))
214 		udf_write_failed(mapping, pos + len);
215 	return ret;
216 }
217 
udf_direct_IO(struct kiocb * iocb,struct iov_iter * iter)218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220 	struct file *file = iocb->ki_filp;
221 	struct address_space *mapping = file->f_mapping;
222 	struct inode *inode = mapping->host;
223 	size_t count = iov_iter_count(iter);
224 	ssize_t ret;
225 
226 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 		udf_write_failed(mapping, iocb->ki_pos + count);
229 	return ret;
230 }
231 
udf_bmap(struct address_space * mapping,sector_t block)232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234 	return generic_block_bmap(mapping, block, udf_get_block);
235 }
236 
237 const struct address_space_operations udf_aops = {
238 	.readpage	= udf_readpage,
239 	.readahead	= udf_readahead,
240 	.writepage	= udf_writepage,
241 	.writepages	= udf_writepages,
242 	.write_begin	= udf_write_begin,
243 	.write_end	= generic_write_end,
244 	.direct_IO	= udf_direct_IO,
245 	.bmap		= udf_bmap,
246 };
247 
248 /*
249  * Expand file stored in ICB to a normal one-block-file
250  *
251  * This function requires i_data_sem for writing and releases it.
252  * This function requires i_mutex held
253  */
udf_expand_file_adinicb(struct inode * inode)254 int udf_expand_file_adinicb(struct inode *inode)
255 {
256 	struct page *page;
257 	char *kaddr;
258 	struct udf_inode_info *iinfo = UDF_I(inode);
259 	int err;
260 
261 	WARN_ON_ONCE(!inode_is_locked(inode));
262 	if (!iinfo->i_lenAlloc) {
263 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
264 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
265 		else
266 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
267 		/* from now on we have normal address_space methods */
268 		inode->i_data.a_ops = &udf_aops;
269 		up_write(&iinfo->i_data_sem);
270 		mark_inode_dirty(inode);
271 		return 0;
272 	}
273 	/*
274 	 * Release i_data_sem so that we can lock a page - page lock ranks
275 	 * above i_data_sem. i_mutex still protects us against file changes.
276 	 */
277 	up_write(&iinfo->i_data_sem);
278 
279 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
280 	if (!page)
281 		return -ENOMEM;
282 
283 	if (!PageUptodate(page)) {
284 		kaddr = kmap_atomic(page);
285 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
286 		       PAGE_SIZE - iinfo->i_lenAlloc);
287 		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
288 			iinfo->i_lenAlloc);
289 		flush_dcache_page(page);
290 		SetPageUptodate(page);
291 		kunmap_atomic(kaddr);
292 	}
293 	down_write(&iinfo->i_data_sem);
294 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
295 	       iinfo->i_lenAlloc);
296 	iinfo->i_lenAlloc = 0;
297 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
298 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
299 	else
300 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
301 	/* from now on we have normal address_space methods */
302 	inode->i_data.a_ops = &udf_aops;
303 	set_page_dirty(page);
304 	unlock_page(page);
305 	up_write(&iinfo->i_data_sem);
306 	err = filemap_fdatawrite(inode->i_mapping);
307 	if (err) {
308 		/* Restore everything back so that we don't lose data... */
309 		lock_page(page);
310 		down_write(&iinfo->i_data_sem);
311 		kaddr = kmap_atomic(page);
312 		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
313 		kunmap_atomic(kaddr);
314 		unlock_page(page);
315 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
316 		inode->i_data.a_ops = &udf_adinicb_aops;
317 		iinfo->i_lenAlloc = inode->i_size;
318 		up_write(&iinfo->i_data_sem);
319 	}
320 	put_page(page);
321 	mark_inode_dirty(inode);
322 
323 	return err;
324 }
325 
udf_expand_dir_adinicb(struct inode * inode,udf_pblk_t * block,int * err)326 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
327 					    udf_pblk_t *block, int *err)
328 {
329 	udf_pblk_t newblock;
330 	struct buffer_head *dbh = NULL;
331 	struct kernel_lb_addr eloc;
332 	uint8_t alloctype;
333 	struct extent_position epos;
334 
335 	struct udf_fileident_bh sfibh, dfibh;
336 	loff_t f_pos = udf_ext0_offset(inode);
337 	int size = udf_ext0_offset(inode) + inode->i_size;
338 	struct fileIdentDesc cfi, *sfi, *dfi;
339 	struct udf_inode_info *iinfo = UDF_I(inode);
340 
341 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
342 		alloctype = ICBTAG_FLAG_AD_SHORT;
343 	else
344 		alloctype = ICBTAG_FLAG_AD_LONG;
345 
346 	if (!inode->i_size) {
347 		iinfo->i_alloc_type = alloctype;
348 		mark_inode_dirty(inode);
349 		return NULL;
350 	}
351 
352 	/* alloc block, and copy data to it */
353 	*block = udf_new_block(inode->i_sb, inode,
354 			       iinfo->i_location.partitionReferenceNum,
355 			       iinfo->i_location.logicalBlockNum, err);
356 	if (!(*block))
357 		return NULL;
358 	newblock = udf_get_pblock(inode->i_sb, *block,
359 				  iinfo->i_location.partitionReferenceNum,
360 				0);
361 	if (!newblock)
362 		return NULL;
363 	dbh = udf_tgetblk(inode->i_sb, newblock);
364 	if (!dbh)
365 		return NULL;
366 	lock_buffer(dbh);
367 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
368 	set_buffer_uptodate(dbh);
369 	unlock_buffer(dbh);
370 	mark_buffer_dirty_inode(dbh, inode);
371 
372 	sfibh.soffset = sfibh.eoffset =
373 			f_pos & (inode->i_sb->s_blocksize - 1);
374 	sfibh.sbh = sfibh.ebh = NULL;
375 	dfibh.soffset = dfibh.eoffset = 0;
376 	dfibh.sbh = dfibh.ebh = dbh;
377 	while (f_pos < size) {
378 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
379 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
380 					 NULL, NULL, NULL);
381 		if (!sfi) {
382 			brelse(dbh);
383 			return NULL;
384 		}
385 		iinfo->i_alloc_type = alloctype;
386 		sfi->descTag.tagLocation = cpu_to_le32(*block);
387 		dfibh.soffset = dfibh.eoffset;
388 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
389 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
390 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
391 				 sfi->fileIdent +
392 					le16_to_cpu(sfi->lengthOfImpUse))) {
393 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
394 			brelse(dbh);
395 			return NULL;
396 		}
397 	}
398 	mark_buffer_dirty_inode(dbh, inode);
399 
400 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
401 	iinfo->i_lenAlloc = 0;
402 	eloc.logicalBlockNum = *block;
403 	eloc.partitionReferenceNum =
404 				iinfo->i_location.partitionReferenceNum;
405 	iinfo->i_lenExtents = inode->i_size;
406 	epos.bh = NULL;
407 	epos.block = iinfo->i_location;
408 	epos.offset = udf_file_entry_alloc_offset(inode);
409 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
410 	/* UniqueID stuff */
411 
412 	brelse(epos.bh);
413 	mark_inode_dirty(inode);
414 	return dbh;
415 }
416 
udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)417 static int udf_get_block(struct inode *inode, sector_t block,
418 			 struct buffer_head *bh_result, int create)
419 {
420 	int err, new;
421 	sector_t phys = 0;
422 	struct udf_inode_info *iinfo;
423 
424 	if (!create) {
425 		phys = udf_block_map(inode, block);
426 		if (phys)
427 			map_bh(bh_result, inode->i_sb, phys);
428 		return 0;
429 	}
430 
431 	err = -EIO;
432 	new = 0;
433 	iinfo = UDF_I(inode);
434 
435 	down_write(&iinfo->i_data_sem);
436 	if (block == iinfo->i_next_alloc_block + 1) {
437 		iinfo->i_next_alloc_block++;
438 		iinfo->i_next_alloc_goal++;
439 	}
440 
441 	/*
442 	 * Block beyond EOF and prealloc extents? Just discard preallocation
443 	 * as it is not useful and complicates things.
444 	 */
445 	if (((loff_t)block) << inode->i_blkbits > iinfo->i_lenExtents)
446 		udf_discard_prealloc(inode);
447 	udf_clear_extent_cache(inode);
448 	phys = inode_getblk(inode, block, &err, &new);
449 	if (!phys)
450 		goto abort;
451 
452 	if (new)
453 		set_buffer_new(bh_result);
454 	map_bh(bh_result, inode->i_sb, phys);
455 
456 abort:
457 	up_write(&iinfo->i_data_sem);
458 	return err;
459 }
460 
udf_getblk(struct inode * inode,udf_pblk_t block,int create,int * err)461 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
462 				      int create, int *err)
463 {
464 	struct buffer_head *bh;
465 	struct buffer_head dummy;
466 
467 	dummy.b_state = 0;
468 	dummy.b_blocknr = -1000;
469 	*err = udf_get_block(inode, block, &dummy, create);
470 	if (!*err && buffer_mapped(&dummy)) {
471 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
472 		if (buffer_new(&dummy)) {
473 			lock_buffer(bh);
474 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
475 			set_buffer_uptodate(bh);
476 			unlock_buffer(bh);
477 			mark_buffer_dirty_inode(bh, inode);
478 		}
479 		return bh;
480 	}
481 
482 	return NULL;
483 }
484 
485 /* Extend the file with new blocks totaling 'new_block_bytes',
486  * return the number of extents added
487  */
udf_do_extend_file(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,loff_t new_block_bytes)488 static int udf_do_extend_file(struct inode *inode,
489 			      struct extent_position *last_pos,
490 			      struct kernel_long_ad *last_ext,
491 			      loff_t new_block_bytes)
492 {
493 	uint32_t add;
494 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
495 	struct super_block *sb = inode->i_sb;
496 	struct udf_inode_info *iinfo;
497 	int err;
498 
499 	/* The previous extent is fake and we should not extend by anything
500 	 * - there's nothing to do... */
501 	if (!new_block_bytes && fake)
502 		return 0;
503 
504 	iinfo = UDF_I(inode);
505 	/* Round the last extent up to a multiple of block size */
506 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
507 		last_ext->extLength =
508 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
509 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
510 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
511 		iinfo->i_lenExtents =
512 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
513 			~(sb->s_blocksize - 1);
514 	}
515 
516 	/* Can we merge with the previous extent? */
517 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
518 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
519 		add = (1 << 30) - sb->s_blocksize -
520 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
521 		if (add > new_block_bytes)
522 			add = new_block_bytes;
523 		new_block_bytes -= add;
524 		last_ext->extLength += add;
525 	}
526 
527 	if (fake) {
528 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
529 			     last_ext->extLength, 1);
530 		count++;
531 	} else {
532 		struct kernel_lb_addr tmploc;
533 		uint32_t tmplen;
534 
535 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
536 				last_ext->extLength, 1);
537 
538 		/*
539 		 * We've rewritten the last extent. If we are going to add
540 		 * more extents, we may need to enter possible following
541 		 * empty indirect extent.
542 		 */
543 		if (new_block_bytes)
544 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
545 	}
546 
547 	/* Managed to do everything necessary? */
548 	if (!new_block_bytes)
549 		goto out;
550 
551 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
552 	last_ext->extLocation.logicalBlockNum = 0;
553 	last_ext->extLocation.partitionReferenceNum = 0;
554 	add = (1 << 30) - sb->s_blocksize;
555 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
556 
557 	/* Create enough extents to cover the whole hole */
558 	while (new_block_bytes > add) {
559 		new_block_bytes -= add;
560 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561 				   last_ext->extLength, 1);
562 		if (err)
563 			return err;
564 		count++;
565 	}
566 	if (new_block_bytes) {
567 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568 			new_block_bytes;
569 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 				   last_ext->extLength, 1);
571 		if (err)
572 			return err;
573 		count++;
574 	}
575 
576 out:
577 	/* last_pos should point to the last written extent... */
578 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
579 		last_pos->offset -= sizeof(struct short_ad);
580 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
581 		last_pos->offset -= sizeof(struct long_ad);
582 	else
583 		return -EIO;
584 
585 	return count;
586 }
587 
588 /* Extend the final block of the file to final_block_len bytes */
udf_do_extend_final_block(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,uint32_t new_elen)589 static void udf_do_extend_final_block(struct inode *inode,
590 				      struct extent_position *last_pos,
591 				      struct kernel_long_ad *last_ext,
592 				      uint32_t new_elen)
593 {
594 	uint32_t added_bytes;
595 
596 	/*
597 	 * Extent already large enough? It may be already rounded up to block
598 	 * size...
599 	 */
600 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
601 		return;
602 	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
603 	last_ext->extLength += added_bytes;
604 	UDF_I(inode)->i_lenExtents += added_bytes;
605 
606 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
607 			last_ext->extLength, 1);
608 }
609 
udf_extend_file(struct inode * inode,loff_t newsize)610 static int udf_extend_file(struct inode *inode, loff_t newsize)
611 {
612 
613 	struct extent_position epos;
614 	struct kernel_lb_addr eloc;
615 	uint32_t elen;
616 	int8_t etype;
617 	struct super_block *sb = inode->i_sb;
618 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
619 	loff_t new_elen;
620 	int adsize;
621 	struct udf_inode_info *iinfo = UDF_I(inode);
622 	struct kernel_long_ad extent;
623 	int err = 0;
624 	bool within_last_ext;
625 
626 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
627 		adsize = sizeof(struct short_ad);
628 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
629 		adsize = sizeof(struct long_ad);
630 	else
631 		BUG();
632 
633 	/*
634 	 * When creating hole in file, just don't bother with preserving
635 	 * preallocation. It likely won't be very useful anyway.
636 	 */
637 	udf_discard_prealloc(inode);
638 
639 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
640 	within_last_ext = (etype != -1);
641 	/* We don't expect extents past EOF... */
642 	WARN_ON_ONCE(within_last_ext &&
643 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
644 
645 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
646 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
647 		/* File has no extents at all or has empty last
648 		 * indirect extent! Create a fake extent... */
649 		extent.extLocation.logicalBlockNum = 0;
650 		extent.extLocation.partitionReferenceNum = 0;
651 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
652 	} else {
653 		epos.offset -= adsize;
654 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
655 				      &extent.extLength, 0);
656 		extent.extLength |= etype << 30;
657 	}
658 
659 	new_elen = ((loff_t)offset << inode->i_blkbits) |
660 					(newsize & (sb->s_blocksize - 1));
661 
662 	/* File has extent covering the new size (could happen when extending
663 	 * inside a block)?
664 	 */
665 	if (within_last_ext) {
666 		/* Extending file within the last file block */
667 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
668 	} else {
669 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
670 	}
671 
672 	if (err < 0)
673 		goto out;
674 	err = 0;
675 	iinfo->i_lenExtents = newsize;
676 out:
677 	brelse(epos.bh);
678 	return err;
679 }
680 
inode_getblk(struct inode * inode,sector_t block,int * err,int * new)681 static sector_t inode_getblk(struct inode *inode, sector_t block,
682 			     int *err, int *new)
683 {
684 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
685 	struct extent_position prev_epos, cur_epos, next_epos;
686 	int count = 0, startnum = 0, endnum = 0;
687 	uint32_t elen = 0, tmpelen;
688 	struct kernel_lb_addr eloc, tmpeloc;
689 	int c = 1;
690 	loff_t lbcount = 0, b_off = 0;
691 	udf_pblk_t newblocknum, newblock;
692 	sector_t offset = 0;
693 	int8_t etype;
694 	struct udf_inode_info *iinfo = UDF_I(inode);
695 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
696 	int lastblock = 0;
697 	bool isBeyondEOF;
698 
699 	*err = 0;
700 	*new = 0;
701 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
702 	prev_epos.block = iinfo->i_location;
703 	prev_epos.bh = NULL;
704 	cur_epos = next_epos = prev_epos;
705 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
706 
707 	/* find the extent which contains the block we are looking for.
708 	   alternate between laarr[0] and laarr[1] for locations of the
709 	   current extent, and the previous extent */
710 	do {
711 		if (prev_epos.bh != cur_epos.bh) {
712 			brelse(prev_epos.bh);
713 			get_bh(cur_epos.bh);
714 			prev_epos.bh = cur_epos.bh;
715 		}
716 		if (cur_epos.bh != next_epos.bh) {
717 			brelse(cur_epos.bh);
718 			get_bh(next_epos.bh);
719 			cur_epos.bh = next_epos.bh;
720 		}
721 
722 		lbcount += elen;
723 
724 		prev_epos.block = cur_epos.block;
725 		cur_epos.block = next_epos.block;
726 
727 		prev_epos.offset = cur_epos.offset;
728 		cur_epos.offset = next_epos.offset;
729 
730 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
731 		if (etype == -1)
732 			break;
733 
734 		c = !c;
735 
736 		laarr[c].extLength = (etype << 30) | elen;
737 		laarr[c].extLocation = eloc;
738 
739 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
740 			pgoal = eloc.logicalBlockNum +
741 				((elen + inode->i_sb->s_blocksize - 1) >>
742 				 inode->i_sb->s_blocksize_bits);
743 
744 		count++;
745 	} while (lbcount + elen <= b_off);
746 
747 	b_off -= lbcount;
748 	offset = b_off >> inode->i_sb->s_blocksize_bits;
749 	/*
750 	 * Move prev_epos and cur_epos into indirect extent if we are at
751 	 * the pointer to it
752 	 */
753 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
754 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
755 
756 	/* if the extent is allocated and recorded, return the block
757 	   if the extent is not a multiple of the blocksize, round up */
758 
759 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
760 		if (elen & (inode->i_sb->s_blocksize - 1)) {
761 			elen = EXT_RECORDED_ALLOCATED |
762 				((elen + inode->i_sb->s_blocksize - 1) &
763 				 ~(inode->i_sb->s_blocksize - 1));
764 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
765 		}
766 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
767 		goto out_free;
768 	}
769 
770 	/* Are we beyond EOF and preallocated extent? */
771 	if (etype == -1) {
772 		int ret;
773 		loff_t hole_len;
774 
775 		isBeyondEOF = true;
776 		if (count) {
777 			if (c)
778 				laarr[0] = laarr[1];
779 			startnum = 1;
780 		} else {
781 			/* Create a fake extent when there's not one */
782 			memset(&laarr[0].extLocation, 0x00,
783 				sizeof(struct kernel_lb_addr));
784 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
785 			/* Will udf_do_extend_file() create real extent from
786 			   a fake one? */
787 			startnum = (offset > 0);
788 		}
789 		/* Create extents for the hole between EOF and offset */
790 		hole_len = (loff_t)offset << inode->i_blkbits;
791 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
792 		if (ret < 0) {
793 			*err = ret;
794 			newblock = 0;
795 			goto out_free;
796 		}
797 		c = 0;
798 		offset = 0;
799 		count += ret;
800 		/* We are not covered by a preallocated extent? */
801 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
802 						EXT_NOT_RECORDED_ALLOCATED) {
803 			/* Is there any real extent? - otherwise we overwrite
804 			 * the fake one... */
805 			if (count)
806 				c = !c;
807 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
808 				inode->i_sb->s_blocksize;
809 			memset(&laarr[c].extLocation, 0x00,
810 				sizeof(struct kernel_lb_addr));
811 			count++;
812 		}
813 		endnum = c + 1;
814 		lastblock = 1;
815 	} else {
816 		isBeyondEOF = false;
817 		endnum = startnum = ((count > 2) ? 2 : count);
818 
819 		/* if the current extent is in position 0,
820 		   swap it with the previous */
821 		if (!c && count != 1) {
822 			laarr[2] = laarr[0];
823 			laarr[0] = laarr[1];
824 			laarr[1] = laarr[2];
825 			c = 1;
826 		}
827 
828 		/* if the current block is located in an extent,
829 		   read the next extent */
830 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
831 		if (etype != -1) {
832 			laarr[c + 1].extLength = (etype << 30) | elen;
833 			laarr[c + 1].extLocation = eloc;
834 			count++;
835 			startnum++;
836 			endnum++;
837 		} else
838 			lastblock = 1;
839 	}
840 
841 	/* if the current extent is not recorded but allocated, get the
842 	 * block in the extent corresponding to the requested block */
843 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
844 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
845 	else { /* otherwise, allocate a new block */
846 		if (iinfo->i_next_alloc_block == block)
847 			goal = iinfo->i_next_alloc_goal;
848 
849 		if (!goal) {
850 			if (!(goal = pgoal)) /* XXX: what was intended here? */
851 				goal = iinfo->i_location.logicalBlockNum + 1;
852 		}
853 
854 		newblocknum = udf_new_block(inode->i_sb, inode,
855 				iinfo->i_location.partitionReferenceNum,
856 				goal, err);
857 		if (!newblocknum) {
858 			*err = -ENOSPC;
859 			newblock = 0;
860 			goto out_free;
861 		}
862 		if (isBeyondEOF)
863 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
864 	}
865 
866 	/* if the extent the requsted block is located in contains multiple
867 	 * blocks, split the extent into at most three extents. blocks prior
868 	 * to requested block, requested block, and blocks after requested
869 	 * block */
870 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
871 
872 	/* We preallocate blocks only for regular files. It also makes sense
873 	 * for directories but there's a problem when to drop the
874 	 * preallocation. We might use some delayed work for that but I feel
875 	 * it's overengineering for a filesystem like UDF. */
876 	if (S_ISREG(inode->i_mode))
877 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
878 
879 	/* merge any continuous blocks in laarr */
880 	udf_merge_extents(inode, laarr, &endnum);
881 
882 	/* write back the new extents, inserting new extents if the new number
883 	 * of extents is greater than the old number, and deleting extents if
884 	 * the new number of extents is less than the old number */
885 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
886 
887 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
888 				iinfo->i_location.partitionReferenceNum, 0);
889 	if (!newblock) {
890 		*err = -EIO;
891 		goto out_free;
892 	}
893 	*new = 1;
894 	iinfo->i_next_alloc_block = block;
895 	iinfo->i_next_alloc_goal = newblocknum;
896 	inode->i_ctime = current_time(inode);
897 
898 	if (IS_SYNC(inode))
899 		udf_sync_inode(inode);
900 	else
901 		mark_inode_dirty(inode);
902 out_free:
903 	brelse(prev_epos.bh);
904 	brelse(cur_epos.bh);
905 	brelse(next_epos.bh);
906 	return newblock;
907 }
908 
udf_split_extents(struct inode * inode,int * c,int offset,udf_pblk_t newblocknum,struct kernel_long_ad * laarr,int * endnum)909 static void udf_split_extents(struct inode *inode, int *c, int offset,
910 			       udf_pblk_t newblocknum,
911 			       struct kernel_long_ad *laarr, int *endnum)
912 {
913 	unsigned long blocksize = inode->i_sb->s_blocksize;
914 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
915 
916 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
917 	    (laarr[*c].extLength >> 30) ==
918 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
919 		int curr = *c;
920 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
921 			    blocksize - 1) >> blocksize_bits;
922 		int8_t etype = (laarr[curr].extLength >> 30);
923 
924 		if (blen == 1)
925 			;
926 		else if (!offset || blen == offset + 1) {
927 			laarr[curr + 2] = laarr[curr + 1];
928 			laarr[curr + 1] = laarr[curr];
929 		} else {
930 			laarr[curr + 3] = laarr[curr + 1];
931 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
932 		}
933 
934 		if (offset) {
935 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
936 				udf_free_blocks(inode->i_sb, inode,
937 						&laarr[curr].extLocation,
938 						0, offset);
939 				laarr[curr].extLength =
940 					EXT_NOT_RECORDED_NOT_ALLOCATED |
941 					(offset << blocksize_bits);
942 				laarr[curr].extLocation.logicalBlockNum = 0;
943 				laarr[curr].extLocation.
944 						partitionReferenceNum = 0;
945 			} else
946 				laarr[curr].extLength = (etype << 30) |
947 					(offset << blocksize_bits);
948 			curr++;
949 			(*c)++;
950 			(*endnum)++;
951 		}
952 
953 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
954 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
955 			laarr[curr].extLocation.partitionReferenceNum =
956 				UDF_I(inode)->i_location.partitionReferenceNum;
957 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
958 			blocksize;
959 		curr++;
960 
961 		if (blen != offset + 1) {
962 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
963 				laarr[curr].extLocation.logicalBlockNum +=
964 								offset + 1;
965 			laarr[curr].extLength = (etype << 30) |
966 				((blen - (offset + 1)) << blocksize_bits);
967 			curr++;
968 			(*endnum)++;
969 		}
970 	}
971 }
972 
udf_prealloc_extents(struct inode * inode,int c,int lastblock,struct kernel_long_ad * laarr,int * endnum)973 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
974 				 struct kernel_long_ad *laarr,
975 				 int *endnum)
976 {
977 	int start, length = 0, currlength = 0, i;
978 
979 	if (*endnum >= (c + 1)) {
980 		if (!lastblock)
981 			return;
982 		else
983 			start = c;
984 	} else {
985 		if ((laarr[c + 1].extLength >> 30) ==
986 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
987 			start = c + 1;
988 			length = currlength =
989 				(((laarr[c + 1].extLength &
990 					UDF_EXTENT_LENGTH_MASK) +
991 				inode->i_sb->s_blocksize - 1) >>
992 				inode->i_sb->s_blocksize_bits);
993 		} else
994 			start = c;
995 	}
996 
997 	for (i = start + 1; i <= *endnum; i++) {
998 		if (i == *endnum) {
999 			if (lastblock)
1000 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1001 		} else if ((laarr[i].extLength >> 30) ==
1002 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1003 			length += (((laarr[i].extLength &
1004 						UDF_EXTENT_LENGTH_MASK) +
1005 				    inode->i_sb->s_blocksize - 1) >>
1006 				    inode->i_sb->s_blocksize_bits);
1007 		} else
1008 			break;
1009 	}
1010 
1011 	if (length) {
1012 		int next = laarr[start].extLocation.logicalBlockNum +
1013 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1014 			  inode->i_sb->s_blocksize - 1) >>
1015 			  inode->i_sb->s_blocksize_bits);
1016 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1017 				laarr[start].extLocation.partitionReferenceNum,
1018 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1019 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1020 				currlength);
1021 		if (numalloc) 	{
1022 			if (start == (c + 1))
1023 				laarr[start].extLength +=
1024 					(numalloc <<
1025 					 inode->i_sb->s_blocksize_bits);
1026 			else {
1027 				memmove(&laarr[c + 2], &laarr[c + 1],
1028 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1029 				(*endnum)++;
1030 				laarr[c + 1].extLocation.logicalBlockNum = next;
1031 				laarr[c + 1].extLocation.partitionReferenceNum =
1032 					laarr[c].extLocation.
1033 							partitionReferenceNum;
1034 				laarr[c + 1].extLength =
1035 					EXT_NOT_RECORDED_ALLOCATED |
1036 					(numalloc <<
1037 					 inode->i_sb->s_blocksize_bits);
1038 				start = c + 1;
1039 			}
1040 
1041 			for (i = start + 1; numalloc && i < *endnum; i++) {
1042 				int elen = ((laarr[i].extLength &
1043 						UDF_EXTENT_LENGTH_MASK) +
1044 					    inode->i_sb->s_blocksize - 1) >>
1045 					    inode->i_sb->s_blocksize_bits;
1046 
1047 				if (elen > numalloc) {
1048 					laarr[i].extLength -=
1049 						(numalloc <<
1050 						 inode->i_sb->s_blocksize_bits);
1051 					numalloc = 0;
1052 				} else {
1053 					numalloc -= elen;
1054 					if (*endnum > (i + 1))
1055 						memmove(&laarr[i],
1056 							&laarr[i + 1],
1057 							sizeof(struct long_ad) *
1058 							(*endnum - (i + 1)));
1059 					i--;
1060 					(*endnum)--;
1061 				}
1062 			}
1063 			UDF_I(inode)->i_lenExtents +=
1064 				numalloc << inode->i_sb->s_blocksize_bits;
1065 		}
1066 	}
1067 }
1068 
udf_merge_extents(struct inode * inode,struct kernel_long_ad * laarr,int * endnum)1069 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1070 			      int *endnum)
1071 {
1072 	int i;
1073 	unsigned long blocksize = inode->i_sb->s_blocksize;
1074 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1075 
1076 	for (i = 0; i < (*endnum - 1); i++) {
1077 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1078 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1079 
1080 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1081 			(((li->extLength >> 30) ==
1082 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1083 			((lip1->extLocation.logicalBlockNum -
1084 			  li->extLocation.logicalBlockNum) ==
1085 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1086 			blocksize - 1) >> blocksize_bits)))) {
1087 
1088 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1089 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1090 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1091 				lip1->extLength = (lip1->extLength -
1092 						  (li->extLength &
1093 						   UDF_EXTENT_LENGTH_MASK) +
1094 						   UDF_EXTENT_LENGTH_MASK) &
1095 							~(blocksize - 1);
1096 				li->extLength = (li->extLength &
1097 						 UDF_EXTENT_FLAG_MASK) +
1098 						(UDF_EXTENT_LENGTH_MASK + 1) -
1099 						blocksize;
1100 				lip1->extLocation.logicalBlockNum =
1101 					li->extLocation.logicalBlockNum +
1102 					((li->extLength &
1103 						UDF_EXTENT_LENGTH_MASK) >>
1104 						blocksize_bits);
1105 			} else {
1106 				li->extLength = lip1->extLength +
1107 					(((li->extLength &
1108 						UDF_EXTENT_LENGTH_MASK) +
1109 					 blocksize - 1) & ~(blocksize - 1));
1110 				if (*endnum > (i + 2))
1111 					memmove(&laarr[i + 1], &laarr[i + 2],
1112 						sizeof(struct long_ad) *
1113 						(*endnum - (i + 2)));
1114 				i--;
1115 				(*endnum)--;
1116 			}
1117 		} else if (((li->extLength >> 30) ==
1118 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1119 			   ((lip1->extLength >> 30) ==
1120 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1121 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1122 					((li->extLength &
1123 					  UDF_EXTENT_LENGTH_MASK) +
1124 					 blocksize - 1) >> blocksize_bits);
1125 			li->extLocation.logicalBlockNum = 0;
1126 			li->extLocation.partitionReferenceNum = 0;
1127 
1128 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1129 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1130 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1131 				lip1->extLength = (lip1->extLength -
1132 						   (li->extLength &
1133 						   UDF_EXTENT_LENGTH_MASK) +
1134 						   UDF_EXTENT_LENGTH_MASK) &
1135 						   ~(blocksize - 1);
1136 				li->extLength = (li->extLength &
1137 						 UDF_EXTENT_FLAG_MASK) +
1138 						(UDF_EXTENT_LENGTH_MASK + 1) -
1139 						blocksize;
1140 			} else {
1141 				li->extLength = lip1->extLength +
1142 					(((li->extLength &
1143 						UDF_EXTENT_LENGTH_MASK) +
1144 					  blocksize - 1) & ~(blocksize - 1));
1145 				if (*endnum > (i + 2))
1146 					memmove(&laarr[i + 1], &laarr[i + 2],
1147 						sizeof(struct long_ad) *
1148 						(*endnum - (i + 2)));
1149 				i--;
1150 				(*endnum)--;
1151 			}
1152 		} else if ((li->extLength >> 30) ==
1153 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1154 			udf_free_blocks(inode->i_sb, inode,
1155 					&li->extLocation, 0,
1156 					((li->extLength &
1157 						UDF_EXTENT_LENGTH_MASK) +
1158 					 blocksize - 1) >> blocksize_bits);
1159 			li->extLocation.logicalBlockNum = 0;
1160 			li->extLocation.partitionReferenceNum = 0;
1161 			li->extLength = (li->extLength &
1162 						UDF_EXTENT_LENGTH_MASK) |
1163 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1164 		}
1165 	}
1166 }
1167 
udf_update_extents(struct inode * inode,struct kernel_long_ad * laarr,int startnum,int endnum,struct extent_position * epos)1168 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1169 			       int startnum, int endnum,
1170 			       struct extent_position *epos)
1171 {
1172 	int start = 0, i;
1173 	struct kernel_lb_addr tmploc;
1174 	uint32_t tmplen;
1175 
1176 	if (startnum > endnum) {
1177 		for (i = 0; i < (startnum - endnum); i++)
1178 			udf_delete_aext(inode, *epos);
1179 	} else if (startnum < endnum) {
1180 		for (i = 0; i < (endnum - startnum); i++) {
1181 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1182 					laarr[i].extLength);
1183 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1184 				      &laarr[i].extLength, 1);
1185 			start++;
1186 		}
1187 	}
1188 
1189 	for (i = start; i < endnum; i++) {
1190 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1191 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1192 			       laarr[i].extLength, 1);
1193 	}
1194 }
1195 
udf_bread(struct inode * inode,udf_pblk_t block,int create,int * err)1196 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1197 			      int create, int *err)
1198 {
1199 	struct buffer_head *bh = NULL;
1200 
1201 	bh = udf_getblk(inode, block, create, err);
1202 	if (!bh)
1203 		return NULL;
1204 
1205 	if (buffer_uptodate(bh))
1206 		return bh;
1207 
1208 	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1209 
1210 	wait_on_buffer(bh);
1211 	if (buffer_uptodate(bh))
1212 		return bh;
1213 
1214 	brelse(bh);
1215 	*err = -EIO;
1216 	return NULL;
1217 }
1218 
udf_setsize(struct inode * inode,loff_t newsize)1219 int udf_setsize(struct inode *inode, loff_t newsize)
1220 {
1221 	int err;
1222 	struct udf_inode_info *iinfo;
1223 	unsigned int bsize = i_blocksize(inode);
1224 
1225 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1226 	      S_ISLNK(inode->i_mode)))
1227 		return -EINVAL;
1228 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1229 		return -EPERM;
1230 
1231 	iinfo = UDF_I(inode);
1232 	if (newsize > inode->i_size) {
1233 		down_write(&iinfo->i_data_sem);
1234 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1235 			if (bsize <
1236 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1237 				err = udf_expand_file_adinicb(inode);
1238 				if (err)
1239 					return err;
1240 				down_write(&iinfo->i_data_sem);
1241 			} else {
1242 				iinfo->i_lenAlloc = newsize;
1243 				goto set_size;
1244 			}
1245 		}
1246 		err = udf_extend_file(inode, newsize);
1247 		if (err) {
1248 			up_write(&iinfo->i_data_sem);
1249 			return err;
1250 		}
1251 set_size:
1252 		up_write(&iinfo->i_data_sem);
1253 		truncate_setsize(inode, newsize);
1254 	} else {
1255 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1256 			down_write(&iinfo->i_data_sem);
1257 			udf_clear_extent_cache(inode);
1258 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1259 			       0x00, bsize - newsize -
1260 			       udf_file_entry_alloc_offset(inode));
1261 			iinfo->i_lenAlloc = newsize;
1262 			truncate_setsize(inode, newsize);
1263 			up_write(&iinfo->i_data_sem);
1264 			goto update_time;
1265 		}
1266 		err = block_truncate_page(inode->i_mapping, newsize,
1267 					  udf_get_block);
1268 		if (err)
1269 			return err;
1270 		truncate_setsize(inode, newsize);
1271 		down_write(&iinfo->i_data_sem);
1272 		udf_clear_extent_cache(inode);
1273 		err = udf_truncate_extents(inode);
1274 		up_write(&iinfo->i_data_sem);
1275 		if (err)
1276 			return err;
1277 	}
1278 update_time:
1279 	inode->i_mtime = inode->i_ctime = current_time(inode);
1280 	if (IS_SYNC(inode))
1281 		udf_sync_inode(inode);
1282 	else
1283 		mark_inode_dirty(inode);
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1289  * arbitrary - just that we hopefully don't limit any real use of rewritten
1290  * inode on write-once media but avoid looping for too long on corrupted media.
1291  */
1292 #define UDF_MAX_ICB_NESTING 1024
1293 
udf_read_inode(struct inode * inode,bool hidden_inode)1294 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1295 {
1296 	struct buffer_head *bh = NULL;
1297 	struct fileEntry *fe;
1298 	struct extendedFileEntry *efe;
1299 	uint16_t ident;
1300 	struct udf_inode_info *iinfo = UDF_I(inode);
1301 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1302 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1303 	unsigned int link_count;
1304 	unsigned int indirections = 0;
1305 	int bs = inode->i_sb->s_blocksize;
1306 	int ret = -EIO;
1307 	uint32_t uid, gid;
1308 
1309 reread:
1310 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1311 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1312 			  iloc->partitionReferenceNum, sbi->s_partitions);
1313 		return -EIO;
1314 	}
1315 
1316 	if (iloc->logicalBlockNum >=
1317 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1318 		udf_debug("block=%u, partition=%u out of range\n",
1319 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1320 		return -EIO;
1321 	}
1322 
1323 	/*
1324 	 * Set defaults, but the inode is still incomplete!
1325 	 * Note: get_new_inode() sets the following on a new inode:
1326 	 *      i_sb = sb
1327 	 *      i_no = ino
1328 	 *      i_flags = sb->s_flags
1329 	 *      i_state = 0
1330 	 * clean_inode(): zero fills and sets
1331 	 *      i_count = 1
1332 	 *      i_nlink = 1
1333 	 *      i_op = NULL;
1334 	 */
1335 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1336 	if (!bh) {
1337 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1338 		return -EIO;
1339 	}
1340 
1341 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1342 	    ident != TAG_IDENT_USE) {
1343 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1344 			inode->i_ino, ident);
1345 		goto out;
1346 	}
1347 
1348 	fe = (struct fileEntry *)bh->b_data;
1349 	efe = (struct extendedFileEntry *)bh->b_data;
1350 
1351 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1352 		struct buffer_head *ibh;
1353 
1354 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1355 		if (ident == TAG_IDENT_IE && ibh) {
1356 			struct kernel_lb_addr loc;
1357 			struct indirectEntry *ie;
1358 
1359 			ie = (struct indirectEntry *)ibh->b_data;
1360 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1361 
1362 			if (ie->indirectICB.extLength) {
1363 				brelse(ibh);
1364 				memcpy(&iinfo->i_location, &loc,
1365 				       sizeof(struct kernel_lb_addr));
1366 				if (++indirections > UDF_MAX_ICB_NESTING) {
1367 					udf_err(inode->i_sb,
1368 						"too many ICBs in ICB hierarchy"
1369 						" (max %d supported)\n",
1370 						UDF_MAX_ICB_NESTING);
1371 					goto out;
1372 				}
1373 				brelse(bh);
1374 				goto reread;
1375 			}
1376 		}
1377 		brelse(ibh);
1378 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1379 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1380 			le16_to_cpu(fe->icbTag.strategyType));
1381 		goto out;
1382 	}
1383 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1384 		iinfo->i_strat4096 = 0;
1385 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1386 		iinfo->i_strat4096 = 1;
1387 
1388 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1389 							ICBTAG_FLAG_AD_MASK;
1390 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1391 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1392 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1393 		ret = -EIO;
1394 		goto out;
1395 	}
1396 	iinfo->i_unique = 0;
1397 	iinfo->i_lenEAttr = 0;
1398 	iinfo->i_lenExtents = 0;
1399 	iinfo->i_lenAlloc = 0;
1400 	iinfo->i_next_alloc_block = 0;
1401 	iinfo->i_next_alloc_goal = 0;
1402 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1403 		iinfo->i_efe = 1;
1404 		iinfo->i_use = 0;
1405 		ret = udf_alloc_i_data(inode, bs -
1406 					sizeof(struct extendedFileEntry));
1407 		if (ret)
1408 			goto out;
1409 		memcpy(iinfo->i_data,
1410 		       bh->b_data + sizeof(struct extendedFileEntry),
1411 		       bs - sizeof(struct extendedFileEntry));
1412 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1413 		iinfo->i_efe = 0;
1414 		iinfo->i_use = 0;
1415 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1416 		if (ret)
1417 			goto out;
1418 		memcpy(iinfo->i_data,
1419 		       bh->b_data + sizeof(struct fileEntry),
1420 		       bs - sizeof(struct fileEntry));
1421 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1422 		iinfo->i_efe = 0;
1423 		iinfo->i_use = 1;
1424 		iinfo->i_lenAlloc = le32_to_cpu(
1425 				((struct unallocSpaceEntry *)bh->b_data)->
1426 				 lengthAllocDescs);
1427 		ret = udf_alloc_i_data(inode, bs -
1428 					sizeof(struct unallocSpaceEntry));
1429 		if (ret)
1430 			goto out;
1431 		memcpy(iinfo->i_data,
1432 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1433 		       bs - sizeof(struct unallocSpaceEntry));
1434 		return 0;
1435 	}
1436 
1437 	ret = -EIO;
1438 	read_lock(&sbi->s_cred_lock);
1439 	uid = le32_to_cpu(fe->uid);
1440 	if (uid == UDF_INVALID_ID ||
1441 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1442 		inode->i_uid = sbi->s_uid;
1443 	else
1444 		i_uid_write(inode, uid);
1445 
1446 	gid = le32_to_cpu(fe->gid);
1447 	if (gid == UDF_INVALID_ID ||
1448 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1449 		inode->i_gid = sbi->s_gid;
1450 	else
1451 		i_gid_write(inode, gid);
1452 
1453 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1454 			sbi->s_fmode != UDF_INVALID_MODE)
1455 		inode->i_mode = sbi->s_fmode;
1456 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1457 			sbi->s_dmode != UDF_INVALID_MODE)
1458 		inode->i_mode = sbi->s_dmode;
1459 	else
1460 		inode->i_mode = udf_convert_permissions(fe);
1461 	inode->i_mode &= ~sbi->s_umask;
1462 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1463 
1464 	read_unlock(&sbi->s_cred_lock);
1465 
1466 	link_count = le16_to_cpu(fe->fileLinkCount);
1467 	if (!link_count) {
1468 		if (!hidden_inode) {
1469 			ret = -ESTALE;
1470 			goto out;
1471 		}
1472 		link_count = 1;
1473 	}
1474 	set_nlink(inode, link_count);
1475 
1476 	inode->i_size = le64_to_cpu(fe->informationLength);
1477 	iinfo->i_lenExtents = inode->i_size;
1478 
1479 	if (iinfo->i_efe == 0) {
1480 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1481 			(inode->i_sb->s_blocksize_bits - 9);
1482 
1483 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1484 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1485 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1486 
1487 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1488 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1489 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1490 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1491 		iinfo->i_streamdir = 0;
1492 		iinfo->i_lenStreams = 0;
1493 	} else {
1494 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1495 		    (inode->i_sb->s_blocksize_bits - 9);
1496 
1497 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1498 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1499 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1500 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1501 
1502 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1503 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1504 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1505 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1506 
1507 		/* Named streams */
1508 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1509 		iinfo->i_locStreamdir =
1510 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1511 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1512 		if (iinfo->i_lenStreams >= inode->i_size)
1513 			iinfo->i_lenStreams -= inode->i_size;
1514 		else
1515 			iinfo->i_lenStreams = 0;
1516 	}
1517 	inode->i_generation = iinfo->i_unique;
1518 
1519 	/*
1520 	 * Sanity check length of allocation descriptors and extended attrs to
1521 	 * avoid integer overflows
1522 	 */
1523 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1524 		goto out;
1525 	/* Now do exact checks */
1526 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1527 		goto out;
1528 	/* Sanity checks for files in ICB so that we don't get confused later */
1529 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1530 		/*
1531 		 * For file in ICB data is stored in allocation descriptor
1532 		 * so sizes should match
1533 		 */
1534 		if (iinfo->i_lenAlloc != inode->i_size)
1535 			goto out;
1536 		/* File in ICB has to fit in there... */
1537 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1538 			goto out;
1539 	}
1540 
1541 	switch (fe->icbTag.fileType) {
1542 	case ICBTAG_FILE_TYPE_DIRECTORY:
1543 		inode->i_op = &udf_dir_inode_operations;
1544 		inode->i_fop = &udf_dir_operations;
1545 		inode->i_mode |= S_IFDIR;
1546 		inc_nlink(inode);
1547 		break;
1548 	case ICBTAG_FILE_TYPE_REALTIME:
1549 	case ICBTAG_FILE_TYPE_REGULAR:
1550 	case ICBTAG_FILE_TYPE_UNDEF:
1551 	case ICBTAG_FILE_TYPE_VAT20:
1552 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1553 			inode->i_data.a_ops = &udf_adinicb_aops;
1554 		else
1555 			inode->i_data.a_ops = &udf_aops;
1556 		inode->i_op = &udf_file_inode_operations;
1557 		inode->i_fop = &udf_file_operations;
1558 		inode->i_mode |= S_IFREG;
1559 		break;
1560 	case ICBTAG_FILE_TYPE_BLOCK:
1561 		inode->i_mode |= S_IFBLK;
1562 		break;
1563 	case ICBTAG_FILE_TYPE_CHAR:
1564 		inode->i_mode |= S_IFCHR;
1565 		break;
1566 	case ICBTAG_FILE_TYPE_FIFO:
1567 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1568 		break;
1569 	case ICBTAG_FILE_TYPE_SOCKET:
1570 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1571 		break;
1572 	case ICBTAG_FILE_TYPE_SYMLINK:
1573 		inode->i_data.a_ops = &udf_symlink_aops;
1574 		inode->i_op = &udf_symlink_inode_operations;
1575 		inode_nohighmem(inode);
1576 		inode->i_mode = S_IFLNK | 0777;
1577 		break;
1578 	case ICBTAG_FILE_TYPE_MAIN:
1579 		udf_debug("METADATA FILE-----\n");
1580 		break;
1581 	case ICBTAG_FILE_TYPE_MIRROR:
1582 		udf_debug("METADATA MIRROR FILE-----\n");
1583 		break;
1584 	case ICBTAG_FILE_TYPE_BITMAP:
1585 		udf_debug("METADATA BITMAP FILE-----\n");
1586 		break;
1587 	default:
1588 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1589 			inode->i_ino, fe->icbTag.fileType);
1590 		goto out;
1591 	}
1592 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1593 		struct deviceSpec *dsea =
1594 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1595 		if (dsea) {
1596 			init_special_inode(inode, inode->i_mode,
1597 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1598 				      le32_to_cpu(dsea->minorDeviceIdent)));
1599 			/* Developer ID ??? */
1600 		} else
1601 			goto out;
1602 	}
1603 	ret = 0;
1604 out:
1605 	brelse(bh);
1606 	return ret;
1607 }
1608 
udf_alloc_i_data(struct inode * inode,size_t size)1609 static int udf_alloc_i_data(struct inode *inode, size_t size)
1610 {
1611 	struct udf_inode_info *iinfo = UDF_I(inode);
1612 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1613 	if (!iinfo->i_data)
1614 		return -ENOMEM;
1615 	return 0;
1616 }
1617 
udf_convert_permissions(struct fileEntry * fe)1618 static umode_t udf_convert_permissions(struct fileEntry *fe)
1619 {
1620 	umode_t mode;
1621 	uint32_t permissions;
1622 	uint32_t flags;
1623 
1624 	permissions = le32_to_cpu(fe->permissions);
1625 	flags = le16_to_cpu(fe->icbTag.flags);
1626 
1627 	mode =	((permissions) & 0007) |
1628 		((permissions >> 2) & 0070) |
1629 		((permissions >> 4) & 0700) |
1630 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1631 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1632 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1633 
1634 	return mode;
1635 }
1636 
udf_update_extra_perms(struct inode * inode,umode_t mode)1637 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1638 {
1639 	struct udf_inode_info *iinfo = UDF_I(inode);
1640 
1641 	/*
1642 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1643 	 * In Unix, delete permission tracks write
1644 	 */
1645 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1646 	if (mode & 0200)
1647 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1648 	if (mode & 0020)
1649 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1650 	if (mode & 0002)
1651 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1652 }
1653 
udf_write_inode(struct inode * inode,struct writeback_control * wbc)1654 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1655 {
1656 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1657 }
1658 
udf_sync_inode(struct inode * inode)1659 static int udf_sync_inode(struct inode *inode)
1660 {
1661 	return udf_update_inode(inode, 1);
1662 }
1663 
udf_adjust_time(struct udf_inode_info * iinfo,struct timespec64 time)1664 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1665 {
1666 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1667 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1668 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1669 		iinfo->i_crtime = time;
1670 }
1671 
udf_update_inode(struct inode * inode,int do_sync)1672 static int udf_update_inode(struct inode *inode, int do_sync)
1673 {
1674 	struct buffer_head *bh = NULL;
1675 	struct fileEntry *fe;
1676 	struct extendedFileEntry *efe;
1677 	uint64_t lb_recorded;
1678 	uint32_t udfperms;
1679 	uint16_t icbflags;
1680 	uint16_t crclen;
1681 	int err = 0;
1682 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1683 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1684 	struct udf_inode_info *iinfo = UDF_I(inode);
1685 
1686 	bh = udf_tgetblk(inode->i_sb,
1687 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1688 	if (!bh) {
1689 		udf_debug("getblk failure\n");
1690 		return -EIO;
1691 	}
1692 
1693 	lock_buffer(bh);
1694 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1695 	fe = (struct fileEntry *)bh->b_data;
1696 	efe = (struct extendedFileEntry *)bh->b_data;
1697 
1698 	if (iinfo->i_use) {
1699 		struct unallocSpaceEntry *use =
1700 			(struct unallocSpaceEntry *)bh->b_data;
1701 
1702 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1703 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1704 		       iinfo->i_data, inode->i_sb->s_blocksize -
1705 					sizeof(struct unallocSpaceEntry));
1706 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1707 		crclen = sizeof(struct unallocSpaceEntry);
1708 
1709 		goto finish;
1710 	}
1711 
1712 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1713 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1714 	else
1715 		fe->uid = cpu_to_le32(i_uid_read(inode));
1716 
1717 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1718 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1719 	else
1720 		fe->gid = cpu_to_le32(i_gid_read(inode));
1721 
1722 	udfperms = ((inode->i_mode & 0007)) |
1723 		   ((inode->i_mode & 0070) << 2) |
1724 		   ((inode->i_mode & 0700) << 4);
1725 
1726 	udfperms |= iinfo->i_extraPerms;
1727 	fe->permissions = cpu_to_le32(udfperms);
1728 
1729 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1730 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1731 	else
1732 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1733 
1734 	fe->informationLength = cpu_to_le64(inode->i_size);
1735 
1736 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1737 		struct regid *eid;
1738 		struct deviceSpec *dsea =
1739 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1740 		if (!dsea) {
1741 			dsea = (struct deviceSpec *)
1742 				udf_add_extendedattr(inode,
1743 						     sizeof(struct deviceSpec) +
1744 						     sizeof(struct regid), 12, 0x3);
1745 			dsea->attrType = cpu_to_le32(12);
1746 			dsea->attrSubtype = 1;
1747 			dsea->attrLength = cpu_to_le32(
1748 						sizeof(struct deviceSpec) +
1749 						sizeof(struct regid));
1750 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1751 		}
1752 		eid = (struct regid *)dsea->impUse;
1753 		memset(eid, 0, sizeof(*eid));
1754 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1755 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1756 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1757 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1758 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1759 	}
1760 
1761 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1762 		lb_recorded = 0; /* No extents => no blocks! */
1763 	else
1764 		lb_recorded =
1765 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1766 			(blocksize_bits - 9);
1767 
1768 	if (iinfo->i_efe == 0) {
1769 		memcpy(bh->b_data + sizeof(struct fileEntry),
1770 		       iinfo->i_data,
1771 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1772 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1773 
1774 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1775 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1776 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1777 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1778 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1779 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1780 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1781 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1782 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1783 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1784 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1785 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1786 		crclen = sizeof(struct fileEntry);
1787 	} else {
1788 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1789 		       iinfo->i_data,
1790 		       inode->i_sb->s_blocksize -
1791 					sizeof(struct extendedFileEntry));
1792 		efe->objectSize =
1793 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1794 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1795 
1796 		if (iinfo->i_streamdir) {
1797 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1798 
1799 			icb_lad->extLocation =
1800 				cpu_to_lelb(iinfo->i_locStreamdir);
1801 			icb_lad->extLength =
1802 				cpu_to_le32(inode->i_sb->s_blocksize);
1803 		}
1804 
1805 		udf_adjust_time(iinfo, inode->i_atime);
1806 		udf_adjust_time(iinfo, inode->i_mtime);
1807 		udf_adjust_time(iinfo, inode->i_ctime);
1808 
1809 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1810 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1811 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1812 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1813 
1814 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1815 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1816 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1817 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1818 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1819 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1820 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1821 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1822 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1823 		crclen = sizeof(struct extendedFileEntry);
1824 	}
1825 
1826 finish:
1827 	if (iinfo->i_strat4096) {
1828 		fe->icbTag.strategyType = cpu_to_le16(4096);
1829 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1830 		fe->icbTag.numEntries = cpu_to_le16(2);
1831 	} else {
1832 		fe->icbTag.strategyType = cpu_to_le16(4);
1833 		fe->icbTag.numEntries = cpu_to_le16(1);
1834 	}
1835 
1836 	if (iinfo->i_use)
1837 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1838 	else if (S_ISDIR(inode->i_mode))
1839 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1840 	else if (S_ISREG(inode->i_mode))
1841 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1842 	else if (S_ISLNK(inode->i_mode))
1843 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1844 	else if (S_ISBLK(inode->i_mode))
1845 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1846 	else if (S_ISCHR(inode->i_mode))
1847 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1848 	else if (S_ISFIFO(inode->i_mode))
1849 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1850 	else if (S_ISSOCK(inode->i_mode))
1851 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1852 
1853 	icbflags =	iinfo->i_alloc_type |
1854 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1855 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1856 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1857 			(le16_to_cpu(fe->icbTag.flags) &
1858 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1859 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1860 
1861 	fe->icbTag.flags = cpu_to_le16(icbflags);
1862 	if (sbi->s_udfrev >= 0x0200)
1863 		fe->descTag.descVersion = cpu_to_le16(3);
1864 	else
1865 		fe->descTag.descVersion = cpu_to_le16(2);
1866 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1867 	fe->descTag.tagLocation = cpu_to_le32(
1868 					iinfo->i_location.logicalBlockNum);
1869 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1870 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1871 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1872 						  crclen));
1873 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1874 
1875 	set_buffer_uptodate(bh);
1876 	unlock_buffer(bh);
1877 
1878 	/* write the data blocks */
1879 	mark_buffer_dirty(bh);
1880 	if (do_sync) {
1881 		sync_dirty_buffer(bh);
1882 		if (buffer_write_io_error(bh)) {
1883 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1884 				 inode->i_ino);
1885 			err = -EIO;
1886 		}
1887 	}
1888 	brelse(bh);
1889 
1890 	return err;
1891 }
1892 
__udf_iget(struct super_block * sb,struct kernel_lb_addr * ino,bool hidden_inode)1893 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1894 			 bool hidden_inode)
1895 {
1896 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1897 	struct inode *inode = iget_locked(sb, block);
1898 	int err;
1899 
1900 	if (!inode)
1901 		return ERR_PTR(-ENOMEM);
1902 
1903 	if (!(inode->i_state & I_NEW))
1904 		return inode;
1905 
1906 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1907 	err = udf_read_inode(inode, hidden_inode);
1908 	if (err < 0) {
1909 		iget_failed(inode);
1910 		return ERR_PTR(err);
1911 	}
1912 	unlock_new_inode(inode);
1913 
1914 	return inode;
1915 }
1916 
udf_setup_indirect_aext(struct inode * inode,udf_pblk_t block,struct extent_position * epos)1917 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1918 			    struct extent_position *epos)
1919 {
1920 	struct super_block *sb = inode->i_sb;
1921 	struct buffer_head *bh;
1922 	struct allocExtDesc *aed;
1923 	struct extent_position nepos;
1924 	struct kernel_lb_addr neloc;
1925 	int ver, adsize;
1926 
1927 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1928 		adsize = sizeof(struct short_ad);
1929 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1930 		adsize = sizeof(struct long_ad);
1931 	else
1932 		return -EIO;
1933 
1934 	neloc.logicalBlockNum = block;
1935 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1936 
1937 	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1938 	if (!bh)
1939 		return -EIO;
1940 	lock_buffer(bh);
1941 	memset(bh->b_data, 0x00, sb->s_blocksize);
1942 	set_buffer_uptodate(bh);
1943 	unlock_buffer(bh);
1944 	mark_buffer_dirty_inode(bh, inode);
1945 
1946 	aed = (struct allocExtDesc *)(bh->b_data);
1947 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1948 		aed->previousAllocExtLocation =
1949 				cpu_to_le32(epos->block.logicalBlockNum);
1950 	}
1951 	aed->lengthAllocDescs = cpu_to_le32(0);
1952 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1953 		ver = 3;
1954 	else
1955 		ver = 2;
1956 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1957 		    sizeof(struct tag));
1958 
1959 	nepos.block = neloc;
1960 	nepos.offset = sizeof(struct allocExtDesc);
1961 	nepos.bh = bh;
1962 
1963 	/*
1964 	 * Do we have to copy current last extent to make space for indirect
1965 	 * one?
1966 	 */
1967 	if (epos->offset + adsize > sb->s_blocksize) {
1968 		struct kernel_lb_addr cp_loc;
1969 		uint32_t cp_len;
1970 		int cp_type;
1971 
1972 		epos->offset -= adsize;
1973 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1974 		cp_len |= ((uint32_t)cp_type) << 30;
1975 
1976 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1977 		udf_write_aext(inode, epos, &nepos.block,
1978 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1979 	} else {
1980 		__udf_add_aext(inode, epos, &nepos.block,
1981 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1982 	}
1983 
1984 	brelse(epos->bh);
1985 	*epos = nepos;
1986 
1987 	return 0;
1988 }
1989 
1990 /*
1991  * Append extent at the given position - should be the first free one in inode
1992  * / indirect extent. This function assumes there is enough space in the inode
1993  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1994  */
__udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)1995 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1996 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1997 {
1998 	struct udf_inode_info *iinfo = UDF_I(inode);
1999 	struct allocExtDesc *aed;
2000 	int adsize;
2001 
2002 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2003 		adsize = sizeof(struct short_ad);
2004 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2005 		adsize = sizeof(struct long_ad);
2006 	else
2007 		return -EIO;
2008 
2009 	if (!epos->bh) {
2010 		WARN_ON(iinfo->i_lenAlloc !=
2011 			epos->offset - udf_file_entry_alloc_offset(inode));
2012 	} else {
2013 		aed = (struct allocExtDesc *)epos->bh->b_data;
2014 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2015 			epos->offset - sizeof(struct allocExtDesc));
2016 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2017 	}
2018 
2019 	udf_write_aext(inode, epos, eloc, elen, inc);
2020 
2021 	if (!epos->bh) {
2022 		iinfo->i_lenAlloc += adsize;
2023 		mark_inode_dirty(inode);
2024 	} else {
2025 		aed = (struct allocExtDesc *)epos->bh->b_data;
2026 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2027 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2028 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2029 			udf_update_tag(epos->bh->b_data,
2030 					epos->offset + (inc ? 0 : adsize));
2031 		else
2032 			udf_update_tag(epos->bh->b_data,
2033 					sizeof(struct allocExtDesc));
2034 		mark_buffer_dirty_inode(epos->bh, inode);
2035 	}
2036 
2037 	return 0;
2038 }
2039 
2040 /*
2041  * Append extent at given position - should be the first free one in inode
2042  * / indirect extent. Takes care of allocating and linking indirect blocks.
2043  */
udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2044 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2045 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2046 {
2047 	int adsize;
2048 	struct super_block *sb = inode->i_sb;
2049 
2050 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2051 		adsize = sizeof(struct short_ad);
2052 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2053 		adsize = sizeof(struct long_ad);
2054 	else
2055 		return -EIO;
2056 
2057 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2058 		int err;
2059 		udf_pblk_t new_block;
2060 
2061 		new_block = udf_new_block(sb, NULL,
2062 					  epos->block.partitionReferenceNum,
2063 					  epos->block.logicalBlockNum, &err);
2064 		if (!new_block)
2065 			return -ENOSPC;
2066 
2067 		err = udf_setup_indirect_aext(inode, new_block, epos);
2068 		if (err)
2069 			return err;
2070 	}
2071 
2072 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2073 }
2074 
udf_write_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2075 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2076 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2077 {
2078 	int adsize;
2079 	uint8_t *ptr;
2080 	struct short_ad *sad;
2081 	struct long_ad *lad;
2082 	struct udf_inode_info *iinfo = UDF_I(inode);
2083 
2084 	if (!epos->bh)
2085 		ptr = iinfo->i_data + epos->offset -
2086 			udf_file_entry_alloc_offset(inode) +
2087 			iinfo->i_lenEAttr;
2088 	else
2089 		ptr = epos->bh->b_data + epos->offset;
2090 
2091 	switch (iinfo->i_alloc_type) {
2092 	case ICBTAG_FLAG_AD_SHORT:
2093 		sad = (struct short_ad *)ptr;
2094 		sad->extLength = cpu_to_le32(elen);
2095 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2096 		adsize = sizeof(struct short_ad);
2097 		break;
2098 	case ICBTAG_FLAG_AD_LONG:
2099 		lad = (struct long_ad *)ptr;
2100 		lad->extLength = cpu_to_le32(elen);
2101 		lad->extLocation = cpu_to_lelb(*eloc);
2102 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2103 		adsize = sizeof(struct long_ad);
2104 		break;
2105 	default:
2106 		return;
2107 	}
2108 
2109 	if (epos->bh) {
2110 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2111 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2112 			struct allocExtDesc *aed =
2113 				(struct allocExtDesc *)epos->bh->b_data;
2114 			udf_update_tag(epos->bh->b_data,
2115 				       le32_to_cpu(aed->lengthAllocDescs) +
2116 				       sizeof(struct allocExtDesc));
2117 		}
2118 		mark_buffer_dirty_inode(epos->bh, inode);
2119 	} else {
2120 		mark_inode_dirty(inode);
2121 	}
2122 
2123 	if (inc)
2124 		epos->offset += adsize;
2125 }
2126 
2127 /*
2128  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2129  * someone does some weird stuff.
2130  */
2131 #define UDF_MAX_INDIR_EXTS 16
2132 
udf_next_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2133 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2134 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2135 {
2136 	int8_t etype;
2137 	unsigned int indirections = 0;
2138 
2139 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2140 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2141 		udf_pblk_t block;
2142 
2143 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2144 			udf_err(inode->i_sb,
2145 				"too many indirect extents in inode %lu\n",
2146 				inode->i_ino);
2147 			return -1;
2148 		}
2149 
2150 		epos->block = *eloc;
2151 		epos->offset = sizeof(struct allocExtDesc);
2152 		brelse(epos->bh);
2153 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2154 		epos->bh = udf_tread(inode->i_sb, block);
2155 		if (!epos->bh) {
2156 			udf_debug("reading block %u failed!\n", block);
2157 			return -1;
2158 		}
2159 	}
2160 
2161 	return etype;
2162 }
2163 
udf_current_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2164 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2165 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2166 {
2167 	int alen;
2168 	int8_t etype;
2169 	uint8_t *ptr;
2170 	struct short_ad *sad;
2171 	struct long_ad *lad;
2172 	struct udf_inode_info *iinfo = UDF_I(inode);
2173 
2174 	if (!epos->bh) {
2175 		if (!epos->offset)
2176 			epos->offset = udf_file_entry_alloc_offset(inode);
2177 		ptr = iinfo->i_data + epos->offset -
2178 			udf_file_entry_alloc_offset(inode) +
2179 			iinfo->i_lenEAttr;
2180 		alen = udf_file_entry_alloc_offset(inode) +
2181 							iinfo->i_lenAlloc;
2182 	} else {
2183 		if (!epos->offset)
2184 			epos->offset = sizeof(struct allocExtDesc);
2185 		ptr = epos->bh->b_data + epos->offset;
2186 		alen = sizeof(struct allocExtDesc) +
2187 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2188 							lengthAllocDescs);
2189 	}
2190 
2191 	switch (iinfo->i_alloc_type) {
2192 	case ICBTAG_FLAG_AD_SHORT:
2193 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2194 		if (!sad)
2195 			return -1;
2196 		etype = le32_to_cpu(sad->extLength) >> 30;
2197 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2198 		eloc->partitionReferenceNum =
2199 				iinfo->i_location.partitionReferenceNum;
2200 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2201 		break;
2202 	case ICBTAG_FLAG_AD_LONG:
2203 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2204 		if (!lad)
2205 			return -1;
2206 		etype = le32_to_cpu(lad->extLength) >> 30;
2207 		*eloc = lelb_to_cpu(lad->extLocation);
2208 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2209 		break;
2210 	default:
2211 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2212 		return -1;
2213 	}
2214 
2215 	return etype;
2216 }
2217 
udf_insert_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr neloc,uint32_t nelen)2218 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2219 			      struct kernel_lb_addr neloc, uint32_t nelen)
2220 {
2221 	struct kernel_lb_addr oeloc;
2222 	uint32_t oelen;
2223 	int8_t etype;
2224 
2225 	if (epos.bh)
2226 		get_bh(epos.bh);
2227 
2228 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2229 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2230 		neloc = oeloc;
2231 		nelen = (etype << 30) | oelen;
2232 	}
2233 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2234 	brelse(epos.bh);
2235 
2236 	return (nelen >> 30);
2237 }
2238 
udf_delete_aext(struct inode * inode,struct extent_position epos)2239 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2240 {
2241 	struct extent_position oepos;
2242 	int adsize;
2243 	int8_t etype;
2244 	struct allocExtDesc *aed;
2245 	struct udf_inode_info *iinfo;
2246 	struct kernel_lb_addr eloc;
2247 	uint32_t elen;
2248 
2249 	if (epos.bh) {
2250 		get_bh(epos.bh);
2251 		get_bh(epos.bh);
2252 	}
2253 
2254 	iinfo = UDF_I(inode);
2255 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2256 		adsize = sizeof(struct short_ad);
2257 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2258 		adsize = sizeof(struct long_ad);
2259 	else
2260 		adsize = 0;
2261 
2262 	oepos = epos;
2263 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2264 		return -1;
2265 
2266 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2267 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2268 		if (oepos.bh != epos.bh) {
2269 			oepos.block = epos.block;
2270 			brelse(oepos.bh);
2271 			get_bh(epos.bh);
2272 			oepos.bh = epos.bh;
2273 			oepos.offset = epos.offset - adsize;
2274 		}
2275 	}
2276 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2277 	elen = 0;
2278 
2279 	if (epos.bh != oepos.bh) {
2280 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2281 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2282 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2283 		if (!oepos.bh) {
2284 			iinfo->i_lenAlloc -= (adsize * 2);
2285 			mark_inode_dirty(inode);
2286 		} else {
2287 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2288 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2289 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2290 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2291 				udf_update_tag(oepos.bh->b_data,
2292 						oepos.offset - (2 * adsize));
2293 			else
2294 				udf_update_tag(oepos.bh->b_data,
2295 						sizeof(struct allocExtDesc));
2296 			mark_buffer_dirty_inode(oepos.bh, inode);
2297 		}
2298 	} else {
2299 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2300 		if (!oepos.bh) {
2301 			iinfo->i_lenAlloc -= adsize;
2302 			mark_inode_dirty(inode);
2303 		} else {
2304 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2305 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2306 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2307 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2308 				udf_update_tag(oepos.bh->b_data,
2309 						epos.offset - adsize);
2310 			else
2311 				udf_update_tag(oepos.bh->b_data,
2312 						sizeof(struct allocExtDesc));
2313 			mark_buffer_dirty_inode(oepos.bh, inode);
2314 		}
2315 	}
2316 
2317 	brelse(epos.bh);
2318 	brelse(oepos.bh);
2319 
2320 	return (elen >> 30);
2321 }
2322 
inode_bmap(struct inode * inode,sector_t block,struct extent_position * pos,struct kernel_lb_addr * eloc,uint32_t * elen,sector_t * offset)2323 int8_t inode_bmap(struct inode *inode, sector_t block,
2324 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2325 		  uint32_t *elen, sector_t *offset)
2326 {
2327 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2328 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2329 	int8_t etype;
2330 	struct udf_inode_info *iinfo;
2331 
2332 	iinfo = UDF_I(inode);
2333 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2334 		pos->offset = 0;
2335 		pos->block = iinfo->i_location;
2336 		pos->bh = NULL;
2337 	}
2338 	*elen = 0;
2339 	do {
2340 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2341 		if (etype == -1) {
2342 			*offset = (bcount - lbcount) >> blocksize_bits;
2343 			iinfo->i_lenExtents = lbcount;
2344 			return -1;
2345 		}
2346 		lbcount += *elen;
2347 	} while (lbcount <= bcount);
2348 	/* update extent cache */
2349 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2350 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2351 
2352 	return etype;
2353 }
2354 
udf_block_map(struct inode * inode,sector_t block)2355 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2356 {
2357 	struct kernel_lb_addr eloc;
2358 	uint32_t elen;
2359 	sector_t offset;
2360 	struct extent_position epos = {};
2361 	udf_pblk_t ret;
2362 
2363 	down_read(&UDF_I(inode)->i_data_sem);
2364 
2365 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2366 						(EXT_RECORDED_ALLOCATED >> 30))
2367 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2368 	else
2369 		ret = 0;
2370 
2371 	up_read(&UDF_I(inode)->i_data_sem);
2372 	brelse(epos.bh);
2373 
2374 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2375 		return udf_fixed_to_variable(ret);
2376 	else
2377 		return ret;
2378 }
2379