1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40
41 #include "usb.h"
42 #include "phy.h"
43
44
45 /*-------------------------------------------------------------------------*/
46
47 /*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78 /*-------------------------------------------------------------------------*/
79
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS 64
90
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107 /*-------------------------------------------------------------------------*/
108
109 /*
110 * Sharable chunks of root hub code.
111 */
112
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
115 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
116
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136 };
137
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157 };
158
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178 };
179
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182 0x12, /* __u8 bLength; */
183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
185
186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
187 0x00, /* __u8 bDeviceSubClass; */
188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
190
191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
194
195 0x03, /* __u8 iManufacturer; */
196 0x02, /* __u8 iProduct; */
197 0x01, /* __u8 iSerialNumber; */
198 0x01 /* __u8 bNumConfigurations; */
199 };
200
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205 0x12, /* __u8 bLength; */
206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
208
209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
210 0x00, /* __u8 bDeviceSubClass; */
211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
213
214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
217
218 0x03, /* __u8 iManufacturer; */
219 0x02, /* __u8 iProduct; */
220 0x01, /* __u8 iSerialNumber; */
221 0x01 /* __u8 bNumConfigurations; */
222 };
223
224
225 /*-------------------------------------------------------------------------*/
226
227 /* Configuration descriptors for our root hubs */
228
229 static const u8 fs_rh_config_descriptor[] = {
230
231 /* one configuration */
232 0x09, /* __u8 bLength; */
233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 0x19, 0x00, /* __le16 wTotalLength; */
235 0x01, /* __u8 bNumInterfaces; (1) */
236 0x01, /* __u8 bConfigurationValue; */
237 0x00, /* __u8 iConfiguration; */
238 0xc0, /* __u8 bmAttributes;
239 Bit 7: must be set,
240 6: Self-powered,
241 5: Remote wakeup,
242 4..0: resvd */
243 0x00, /* __u8 MaxPower; */
244
245 /* USB 1.1:
246 * USB 2.0, single TT organization (mandatory):
247 * one interface, protocol 0
248 *
249 * USB 2.0, multiple TT organization (optional):
250 * two interfaces, protocols 1 (like single TT)
251 * and 2 (multiple TT mode) ... config is
252 * sometimes settable
253 * NOT IMPLEMENTED
254 */
255
256 /* one interface */
257 0x09, /* __u8 if_bLength; */
258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
259 0x00, /* __u8 if_bInterfaceNumber; */
260 0x00, /* __u8 if_bAlternateSetting; */
261 0x01, /* __u8 if_bNumEndpoints; */
262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
263 0x00, /* __u8 if_bInterfaceSubClass; */
264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
265 0x00, /* __u8 if_iInterface; */
266
267 /* one endpoint (status change endpoint) */
268 0x07, /* __u8 ep_bLength; */
269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
271 0x03, /* __u8 ep_bmAttributes; Interrupt */
272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275
276 static const u8 hs_rh_config_descriptor[] = {
277
278 /* one configuration */
279 0x09, /* __u8 bLength; */
280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 0x19, 0x00, /* __le16 wTotalLength; */
282 0x01, /* __u8 bNumInterfaces; (1) */
283 0x01, /* __u8 bConfigurationValue; */
284 0x00, /* __u8 iConfiguration; */
285 0xc0, /* __u8 bmAttributes;
286 Bit 7: must be set,
287 6: Self-powered,
288 5: Remote wakeup,
289 4..0: resvd */
290 0x00, /* __u8 MaxPower; */
291
292 /* USB 1.1:
293 * USB 2.0, single TT organization (mandatory):
294 * one interface, protocol 0
295 *
296 * USB 2.0, multiple TT organization (optional):
297 * two interfaces, protocols 1 (like single TT)
298 * and 2 (multiple TT mode) ... config is
299 * sometimes settable
300 * NOT IMPLEMENTED
301 */
302
303 /* one interface */
304 0x09, /* __u8 if_bLength; */
305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 0x00, /* __u8 if_bInterfaceNumber; */
307 0x00, /* __u8 if_bAlternateSetting; */
308 0x01, /* __u8 if_bNumEndpoints; */
309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
310 0x00, /* __u8 if_bInterfaceSubClass; */
311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
312 0x00, /* __u8 if_iInterface; */
313
314 /* one endpoint (status change endpoint) */
315 0x07, /* __u8 ep_bLength; */
316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
318 0x03, /* __u8 ep_bmAttributes; Interrupt */
319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 * see hub.c:hub_configure() for details. */
321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324
325 static const u8 ss_rh_config_descriptor[] = {
326 /* one configuration */
327 0x09, /* __u8 bLength; */
328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 0x1f, 0x00, /* __le16 wTotalLength; */
330 0x01, /* __u8 bNumInterfaces; (1) */
331 0x01, /* __u8 bConfigurationValue; */
332 0x00, /* __u8 iConfiguration; */
333 0xc0, /* __u8 bmAttributes;
334 Bit 7: must be set,
335 6: Self-powered,
336 5: Remote wakeup,
337 4..0: resvd */
338 0x00, /* __u8 MaxPower; */
339
340 /* one interface */
341 0x09, /* __u8 if_bLength; */
342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 0x00, /* __u8 if_bInterfaceNumber; */
344 0x00, /* __u8 if_bAlternateSetting; */
345 0x01, /* __u8 if_bNumEndpoints; */
346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
347 0x00, /* __u8 if_bInterfaceSubClass; */
348 0x00, /* __u8 if_bInterfaceProtocol; */
349 0x00, /* __u8 if_iInterface; */
350
351 /* one endpoint (status change endpoint) */
352 0x07, /* __u8 ep_bLength; */
353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
355 0x03, /* __u8 ep_bmAttributes; Interrupt */
356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 * see hub.c:hub_configure() for details. */
358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
360
361 /* one SuperSpeed endpoint companion descriptor */
362 0x06, /* __u8 ss_bLength */
363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 /* Companion */
365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369
370 /* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
375 */
376 #define USB_AUTHORIZE_WIRED -1
377 #define USB_AUTHORIZE_NONE 0
378 #define USB_AUTHORIZE_ALL 1
379 #define USB_AUTHORIZE_INTERNAL 2
380
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384 "Default USB device authorization: 0 is not authorized, 1 is "
385 "authorized, 2 is authorized for internal devices, -1 is "
386 "authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388
389 /**
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
394 *
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396 * whichever is less.
397 *
398 * Note:
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
401 */
402 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405 unsigned n, t = 2 + 2*strlen(s);
406
407 if (t > 254)
408 t = 254; /* Longest possible UTF string descriptor */
409 if (len > t)
410 len = t;
411
412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
413
414 n = len;
415 while (n--) {
416 *buf++ = t;
417 if (!n--)
418 break;
419 *buf++ = t >> 8;
420 t = (unsigned char)*s++;
421 }
422 return len;
423 }
424
425 /**
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
431 *
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
434 *
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
437 */
438 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441 char buf[100];
442 char const *s;
443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445 /* language ids */
446 switch (id) {
447 case 0:
448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 if (len > 4)
451 len = 4;
452 memcpy(data, langids, len);
453 return len;
454 case 1:
455 /* Serial number */
456 s = hcd->self.bus_name;
457 break;
458 case 2:
459 /* Product name */
460 s = hcd->product_desc;
461 break;
462 case 3:
463 /* Manufacturer */
464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 init_utsname()->release, hcd->driver->description);
466 s = buf;
467 break;
468 default:
469 /* Can't happen; caller guarantees it */
470 return 0;
471 }
472
473 return ascii2desc(s, data, len);
474 }
475
476
477 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480 struct usb_ctrlrequest *cmd;
481 u16 typeReq, wValue, wIndex, wLength;
482 u8 *ubuf = urb->transfer_buffer;
483 unsigned len = 0;
484 int status;
485 u8 patch_wakeup = 0;
486 u8 patch_protocol = 0;
487 u16 tbuf_size;
488 u8 *tbuf = NULL;
489 const u8 *bufp;
490
491 might_sleep();
492
493 spin_lock_irq(&hcd_root_hub_lock);
494 status = usb_hcd_link_urb_to_ep(hcd, urb);
495 spin_unlock_irq(&hcd_root_hub_lock);
496 if (status)
497 return status;
498 urb->hcpriv = hcd; /* Indicate it's queued */
499
500 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
502 wValue = le16_to_cpu (cmd->wValue);
503 wIndex = le16_to_cpu (cmd->wIndex);
504 wLength = le16_to_cpu (cmd->wLength);
505
506 if (wLength > urb->transfer_buffer_length)
507 goto error;
508
509 /*
510 * tbuf should be at least as big as the
511 * USB hub descriptor.
512 */
513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 if (!tbuf) {
516 status = -ENOMEM;
517 goto err_alloc;
518 }
519
520 bufp = tbuf;
521
522
523 urb->actual_length = 0;
524 switch (typeReq) {
525
526 /* DEVICE REQUESTS */
527
528 /* The root hub's remote wakeup enable bit is implemented using
529 * driver model wakeup flags. If this system supports wakeup
530 * through USB, userspace may change the default "allow wakeup"
531 * policy through sysfs or these calls.
532 *
533 * Most root hubs support wakeup from downstream devices, for
534 * runtime power management (disabling USB clocks and reducing
535 * VBUS power usage). However, not all of them do so; silicon,
536 * board, and BIOS bugs here are not uncommon, so these can't
537 * be treated quite like external hubs.
538 *
539 * Likewise, not all root hubs will pass wakeup events upstream,
540 * to wake up the whole system. So don't assume root hub and
541 * controller capabilities are identical.
542 */
543
544 case DeviceRequest | USB_REQ_GET_STATUS:
545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 << USB_DEVICE_REMOTE_WAKEUP)
547 | (1 << USB_DEVICE_SELF_POWERED);
548 tbuf[1] = 0;
549 len = 2;
550 break;
551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 else
555 goto error;
556 break;
557 case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 if (device_can_wakeup(&hcd->self.root_hub->dev)
559 && wValue == USB_DEVICE_REMOTE_WAKEUP)
560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 else
562 goto error;
563 break;
564 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 tbuf[0] = 1;
566 len = 1;
567 fallthrough;
568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 break;
570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 switch (wValue & 0xff00) {
572 case USB_DT_DEVICE << 8:
573 switch (hcd->speed) {
574 case HCD_USB32:
575 case HCD_USB31:
576 bufp = usb31_rh_dev_descriptor;
577 break;
578 case HCD_USB3:
579 bufp = usb3_rh_dev_descriptor;
580 break;
581 case HCD_USB25:
582 bufp = usb25_rh_dev_descriptor;
583 break;
584 case HCD_USB2:
585 bufp = usb2_rh_dev_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = usb11_rh_dev_descriptor;
589 break;
590 default:
591 goto error;
592 }
593 len = 18;
594 if (hcd->has_tt)
595 patch_protocol = 1;
596 break;
597 case USB_DT_CONFIG << 8:
598 switch (hcd->speed) {
599 case HCD_USB32:
600 case HCD_USB31:
601 case HCD_USB3:
602 bufp = ss_rh_config_descriptor;
603 len = sizeof ss_rh_config_descriptor;
604 break;
605 case HCD_USB25:
606 case HCD_USB2:
607 bufp = hs_rh_config_descriptor;
608 len = sizeof hs_rh_config_descriptor;
609 break;
610 case HCD_USB11:
611 bufp = fs_rh_config_descriptor;
612 len = sizeof fs_rh_config_descriptor;
613 break;
614 default:
615 goto error;
616 }
617 if (device_can_wakeup(&hcd->self.root_hub->dev))
618 patch_wakeup = 1;
619 break;
620 case USB_DT_STRING << 8:
621 if ((wValue & 0xff) < 4)
622 urb->actual_length = rh_string(wValue & 0xff,
623 hcd, ubuf, wLength);
624 else /* unsupported IDs --> "protocol stall" */
625 goto error;
626 break;
627 case USB_DT_BOS << 8:
628 goto nongeneric;
629 default:
630 goto error;
631 }
632 break;
633 case DeviceRequest | USB_REQ_GET_INTERFACE:
634 tbuf[0] = 0;
635 len = 1;
636 fallthrough;
637 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 break;
639 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 /* wValue == urb->dev->devaddr */
641 dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 wValue);
643 break;
644
645 /* INTERFACE REQUESTS (no defined feature/status flags) */
646
647 /* ENDPOINT REQUESTS */
648
649 case EndpointRequest | USB_REQ_GET_STATUS:
650 /* ENDPOINT_HALT flag */
651 tbuf[0] = 0;
652 tbuf[1] = 0;
653 len = 2;
654 fallthrough;
655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 break;
659
660 /* CLASS REQUESTS (and errors) */
661
662 default:
663 nongeneric:
664 /* non-generic request */
665 switch (typeReq) {
666 case GetHubStatus:
667 len = 4;
668 break;
669 case GetPortStatus:
670 if (wValue == HUB_PORT_STATUS)
671 len = 4;
672 else
673 /* other port status types return 8 bytes */
674 len = 8;
675 break;
676 case GetHubDescriptor:
677 len = sizeof (struct usb_hub_descriptor);
678 break;
679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 /* len is returned by hub_control */
681 break;
682 }
683 status = hcd->driver->hub_control (hcd,
684 typeReq, wValue, wIndex,
685 tbuf, wLength);
686
687 if (typeReq == GetHubDescriptor)
688 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 (struct usb_hub_descriptor *)tbuf);
690 break;
691 error:
692 /* "protocol stall" on error */
693 status = -EPIPE;
694 }
695
696 if (status < 0) {
697 len = 0;
698 if (status != -EPIPE) {
699 dev_dbg (hcd->self.controller,
700 "CTRL: TypeReq=0x%x val=0x%x "
701 "idx=0x%x len=%d ==> %d\n",
702 typeReq, wValue, wIndex,
703 wLength, status);
704 }
705 } else if (status > 0) {
706 /* hub_control may return the length of data copied. */
707 len = status;
708 status = 0;
709 }
710 if (len) {
711 if (urb->transfer_buffer_length < len)
712 len = urb->transfer_buffer_length;
713 urb->actual_length = len;
714 /* always USB_DIR_IN, toward host */
715 memcpy (ubuf, bufp, len);
716
717 /* report whether RH hardware supports remote wakeup */
718 if (patch_wakeup &&
719 len > offsetof (struct usb_config_descriptor,
720 bmAttributes))
721 ((struct usb_config_descriptor *)ubuf)->bmAttributes
722 |= USB_CONFIG_ATT_WAKEUP;
723
724 /* report whether RH hardware has an integrated TT */
725 if (patch_protocol &&
726 len > offsetof(struct usb_device_descriptor,
727 bDeviceProtocol))
728 ((struct usb_device_descriptor *) ubuf)->
729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 }
731
732 kfree(tbuf);
733 err_alloc:
734
735 /* any errors get returned through the urb completion */
736 spin_lock_irq(&hcd_root_hub_lock);
737 usb_hcd_unlink_urb_from_ep(hcd, urb);
738 usb_hcd_giveback_urb(hcd, urb, status);
739 spin_unlock_irq(&hcd_root_hub_lock);
740 return 0;
741 }
742
743 /*-------------------------------------------------------------------------*/
744
745 /*
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
749 *
750 * Completions are called in_interrupt(), but they may or may not
751 * be in_irq().
752 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)753 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
754 {
755 struct urb *urb;
756 int length;
757 int status;
758 unsigned long flags;
759 char buffer[6]; /* Any root hubs with > 31 ports? */
760
761 if (unlikely(!hcd->rh_pollable))
762 return;
763 if (!hcd->uses_new_polling && !hcd->status_urb)
764 return;
765
766 length = hcd->driver->hub_status_data(hcd, buffer);
767 if (length > 0) {
768
769 /* try to complete the status urb */
770 spin_lock_irqsave(&hcd_root_hub_lock, flags);
771 urb = hcd->status_urb;
772 if (urb) {
773 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
774 hcd->status_urb = NULL;
775 if (urb->transfer_buffer_length >= length) {
776 status = 0;
777 } else {
778 status = -EOVERFLOW;
779 length = urb->transfer_buffer_length;
780 }
781 urb->actual_length = length;
782 memcpy(urb->transfer_buffer, buffer, length);
783
784 usb_hcd_unlink_urb_from_ep(hcd, urb);
785 usb_hcd_giveback_urb(hcd, urb, status);
786 } else {
787 length = 0;
788 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
789 }
790 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
791 }
792
793 /* The USB 2.0 spec says 256 ms. This is close enough and won't
794 * exceed that limit if HZ is 100. The math is more clunky than
795 * maybe expected, this is to make sure that all timers for USB devices
796 * fire at the same time to give the CPU a break in between */
797 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
798 (length == 0 && hcd->status_urb != NULL))
799 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
800 }
801 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
802
803 /* timer callback */
rh_timer_func(struct timer_list * t)804 static void rh_timer_func (struct timer_list *t)
805 {
806 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
807
808 usb_hcd_poll_rh_status(_hcd);
809 }
810
811 /*-------------------------------------------------------------------------*/
812
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)813 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
814 {
815 int retval;
816 unsigned long flags;
817 unsigned len = 1 + (urb->dev->maxchild / 8);
818
819 spin_lock_irqsave (&hcd_root_hub_lock, flags);
820 if (hcd->status_urb || urb->transfer_buffer_length < len) {
821 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
822 retval = -EINVAL;
823 goto done;
824 }
825
826 retval = usb_hcd_link_urb_to_ep(hcd, urb);
827 if (retval)
828 goto done;
829
830 hcd->status_urb = urb;
831 urb->hcpriv = hcd; /* indicate it's queued */
832 if (!hcd->uses_new_polling)
833 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
834
835 /* If a status change has already occurred, report it ASAP */
836 else if (HCD_POLL_PENDING(hcd))
837 mod_timer(&hcd->rh_timer, jiffies);
838 retval = 0;
839 done:
840 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
841 return retval;
842 }
843
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)844 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
845 {
846 if (usb_endpoint_xfer_int(&urb->ep->desc))
847 return rh_queue_status (hcd, urb);
848 if (usb_endpoint_xfer_control(&urb->ep->desc))
849 return rh_call_control (hcd, urb);
850 return -EINVAL;
851 }
852
853 /*-------------------------------------------------------------------------*/
854
855 /* Unlinks of root-hub control URBs are legal, but they don't do anything
856 * since these URBs always execute synchronously.
857 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)858 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
859 {
860 unsigned long flags;
861 int rc;
862
863 spin_lock_irqsave(&hcd_root_hub_lock, flags);
864 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
865 if (rc)
866 goto done;
867
868 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
869 ; /* Do nothing */
870
871 } else { /* Status URB */
872 if (!hcd->uses_new_polling)
873 del_timer (&hcd->rh_timer);
874 if (urb == hcd->status_urb) {
875 hcd->status_urb = NULL;
876 usb_hcd_unlink_urb_from_ep(hcd, urb);
877 usb_hcd_giveback_urb(hcd, urb, status);
878 }
879 }
880 done:
881 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
882 return rc;
883 }
884
885
886 /*-------------------------------------------------------------------------*/
887
888 /**
889 * usb_bus_init - shared initialization code
890 * @bus: the bus structure being initialized
891 *
892 * This code is used to initialize a usb_bus structure, memory for which is
893 * separately managed.
894 */
usb_bus_init(struct usb_bus * bus)895 static void usb_bus_init (struct usb_bus *bus)
896 {
897 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
898
899 bus->devnum_next = 1;
900
901 bus->root_hub = NULL;
902 bus->busnum = -1;
903 bus->bandwidth_allocated = 0;
904 bus->bandwidth_int_reqs = 0;
905 bus->bandwidth_isoc_reqs = 0;
906 mutex_init(&bus->devnum_next_mutex);
907 }
908
909 /*-------------------------------------------------------------------------*/
910
911 /**
912 * usb_register_bus - registers the USB host controller with the usb core
913 * @bus: pointer to the bus to register
914 * Context: !in_interrupt()
915 *
916 * Assigns a bus number, and links the controller into usbcore data
917 * structures so that it can be seen by scanning the bus list.
918 *
919 * Return: 0 if successful. A negative error code otherwise.
920 */
usb_register_bus(struct usb_bus * bus)921 static int usb_register_bus(struct usb_bus *bus)
922 {
923 int result = -E2BIG;
924 int busnum;
925
926 mutex_lock(&usb_bus_idr_lock);
927 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928 if (busnum < 0) {
929 pr_err("%s: failed to get bus number\n", usbcore_name);
930 goto error_find_busnum;
931 }
932 bus->busnum = busnum;
933 mutex_unlock(&usb_bus_idr_lock);
934
935 usb_notify_add_bus(bus);
936
937 dev_info (bus->controller, "new USB bus registered, assigned bus "
938 "number %d\n", bus->busnum);
939 return 0;
940
941 error_find_busnum:
942 mutex_unlock(&usb_bus_idr_lock);
943 return result;
944 }
945
946 /**
947 * usb_deregister_bus - deregisters the USB host controller
948 * @bus: pointer to the bus to deregister
949 * Context: !in_interrupt()
950 *
951 * Recycles the bus number, and unlinks the controller from usbcore data
952 * structures so that it won't be seen by scanning the bus list.
953 */
usb_deregister_bus(struct usb_bus * bus)954 static void usb_deregister_bus (struct usb_bus *bus)
955 {
956 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
957
958 /*
959 * NOTE: make sure that all the devices are removed by the
960 * controller code, as well as having it call this when cleaning
961 * itself up
962 */
963 mutex_lock(&usb_bus_idr_lock);
964 idr_remove(&usb_bus_idr, bus->busnum);
965 mutex_unlock(&usb_bus_idr_lock);
966
967 usb_notify_remove_bus(bus);
968 }
969
970 /**
971 * register_root_hub - called by usb_add_hcd() to register a root hub
972 * @hcd: host controller for this root hub
973 *
974 * This function registers the root hub with the USB subsystem. It sets up
975 * the device properly in the device tree and then calls usb_new_device()
976 * to register the usb device. It also assigns the root hub's USB address
977 * (always 1).
978 *
979 * Return: 0 if successful. A negative error code otherwise.
980 */
register_root_hub(struct usb_hcd * hcd)981 static int register_root_hub(struct usb_hcd *hcd)
982 {
983 struct device *parent_dev = hcd->self.controller;
984 struct usb_device *usb_dev = hcd->self.root_hub;
985 const int devnum = 1;
986 int retval;
987
988 usb_dev->devnum = devnum;
989 usb_dev->bus->devnum_next = devnum + 1;
990 set_bit (devnum, usb_dev->bus->devmap.devicemap);
991 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
992
993 mutex_lock(&usb_bus_idr_lock);
994
995 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
996 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
997 if (retval != sizeof usb_dev->descriptor) {
998 mutex_unlock(&usb_bus_idr_lock);
999 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1000 dev_name(&usb_dev->dev), retval);
1001 return (retval < 0) ? retval : -EMSGSIZE;
1002 }
1003
1004 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1005 retval = usb_get_bos_descriptor(usb_dev);
1006 if (!retval) {
1007 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1008 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1009 mutex_unlock(&usb_bus_idr_lock);
1010 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1011 dev_name(&usb_dev->dev), retval);
1012 return retval;
1013 }
1014 }
1015
1016 retval = usb_new_device (usb_dev);
1017 if (retval) {
1018 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1019 dev_name(&usb_dev->dev), retval);
1020 } else {
1021 spin_lock_irq (&hcd_root_hub_lock);
1022 hcd->rh_registered = 1;
1023 spin_unlock_irq (&hcd_root_hub_lock);
1024
1025 /* Did the HC die before the root hub was registered? */
1026 if (HCD_DEAD(hcd))
1027 usb_hc_died (hcd); /* This time clean up */
1028 }
1029 mutex_unlock(&usb_bus_idr_lock);
1030
1031 return retval;
1032 }
1033
1034 /*
1035 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1036 * @bus: the bus which the root hub belongs to
1037 * @portnum: the port which is being resumed
1038 *
1039 * HCDs should call this function when they know that a resume signal is
1040 * being sent to a root-hub port. The root hub will be prevented from
1041 * going into autosuspend until usb_hcd_end_port_resume() is called.
1042 *
1043 * The bus's private lock must be held by the caller.
1044 */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1045 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1046 {
1047 unsigned bit = 1 << portnum;
1048
1049 if (!(bus->resuming_ports & bit)) {
1050 bus->resuming_ports |= bit;
1051 pm_runtime_get_noresume(&bus->root_hub->dev);
1052 }
1053 }
1054 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1055
1056 /*
1057 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1058 * @bus: the bus which the root hub belongs to
1059 * @portnum: the port which is being resumed
1060 *
1061 * HCDs should call this function when they know that a resume signal has
1062 * stopped being sent to a root-hub port. The root hub will be allowed to
1063 * autosuspend again.
1064 *
1065 * The bus's private lock must be held by the caller.
1066 */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1067 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1068 {
1069 unsigned bit = 1 << portnum;
1070
1071 if (bus->resuming_ports & bit) {
1072 bus->resuming_ports &= ~bit;
1073 pm_runtime_put_noidle(&bus->root_hub->dev);
1074 }
1075 }
1076 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1077
1078 /*-------------------------------------------------------------------------*/
1079
1080 /**
1081 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1082 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1083 * @is_input: true iff the transaction sends data to the host
1084 * @isoc: true for isochronous transactions, false for interrupt ones
1085 * @bytecount: how many bytes in the transaction.
1086 *
1087 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1088 *
1089 * Note:
1090 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1091 * scheduled in software, this function is only used for such scheduling.
1092 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1093 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1094 {
1095 unsigned long tmp;
1096
1097 switch (speed) {
1098 case USB_SPEED_LOW: /* INTR only */
1099 if (is_input) {
1100 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1101 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1102 } else {
1103 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1104 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1105 }
1106 case USB_SPEED_FULL: /* ISOC or INTR */
1107 if (isoc) {
1108 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1109 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1110 } else {
1111 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1112 return 9107L + BW_HOST_DELAY + tmp;
1113 }
1114 case USB_SPEED_HIGH: /* ISOC or INTR */
1115 /* FIXME adjust for input vs output */
1116 if (isoc)
1117 tmp = HS_NSECS_ISO (bytecount);
1118 else
1119 tmp = HS_NSECS (bytecount);
1120 return tmp;
1121 default:
1122 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1123 return -1;
1124 }
1125 }
1126 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1127
1128
1129 /*-------------------------------------------------------------------------*/
1130
1131 /*
1132 * Generic HC operations.
1133 */
1134
1135 /*-------------------------------------------------------------------------*/
1136
1137 /**
1138 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1139 * @hcd: host controller to which @urb was submitted
1140 * @urb: URB being submitted
1141 *
1142 * Host controller drivers should call this routine in their enqueue()
1143 * method. The HCD's private spinlock must be held and interrupts must
1144 * be disabled. The actions carried out here are required for URB
1145 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1146 *
1147 * Return: 0 for no error, otherwise a negative error code (in which case
1148 * the enqueue() method must fail). If no error occurs but enqueue() fails
1149 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1150 * the private spinlock and returning.
1151 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1152 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1153 {
1154 int rc = 0;
1155
1156 spin_lock(&hcd_urb_list_lock);
1157
1158 /* Check that the URB isn't being killed */
1159 if (unlikely(atomic_read(&urb->reject))) {
1160 rc = -EPERM;
1161 goto done;
1162 }
1163
1164 if (unlikely(!urb->ep->enabled)) {
1165 rc = -ENOENT;
1166 goto done;
1167 }
1168
1169 if (unlikely(!urb->dev->can_submit)) {
1170 rc = -EHOSTUNREACH;
1171 goto done;
1172 }
1173
1174 /*
1175 * Check the host controller's state and add the URB to the
1176 * endpoint's queue.
1177 */
1178 if (HCD_RH_RUNNING(hcd)) {
1179 urb->unlinked = 0;
1180 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1181 } else {
1182 rc = -ESHUTDOWN;
1183 goto done;
1184 }
1185 done:
1186 spin_unlock(&hcd_urb_list_lock);
1187 return rc;
1188 }
1189 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1190
1191 /**
1192 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1193 * @hcd: host controller to which @urb was submitted
1194 * @urb: URB being checked for unlinkability
1195 * @status: error code to store in @urb if the unlink succeeds
1196 *
1197 * Host controller drivers should call this routine in their dequeue()
1198 * method. The HCD's private spinlock must be held and interrupts must
1199 * be disabled. The actions carried out here are required for making
1200 * sure than an unlink is valid.
1201 *
1202 * Return: 0 for no error, otherwise a negative error code (in which case
1203 * the dequeue() method must fail). The possible error codes are:
1204 *
1205 * -EIDRM: @urb was not submitted or has already completed.
1206 * The completion function may not have been called yet.
1207 *
1208 * -EBUSY: @urb has already been unlinked.
1209 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1210 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1211 int status)
1212 {
1213 struct list_head *tmp;
1214
1215 /* insist the urb is still queued */
1216 list_for_each(tmp, &urb->ep->urb_list) {
1217 if (tmp == &urb->urb_list)
1218 break;
1219 }
1220 if (tmp != &urb->urb_list)
1221 return -EIDRM;
1222
1223 /* Any status except -EINPROGRESS means something already started to
1224 * unlink this URB from the hardware. So there's no more work to do.
1225 */
1226 if (urb->unlinked)
1227 return -EBUSY;
1228 urb->unlinked = status;
1229 return 0;
1230 }
1231 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1232
1233 /**
1234 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1235 * @hcd: host controller to which @urb was submitted
1236 * @urb: URB being unlinked
1237 *
1238 * Host controller drivers should call this routine before calling
1239 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1240 * interrupts must be disabled. The actions carried out here are required
1241 * for URB completion.
1242 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1243 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1244 {
1245 /* clear all state linking urb to this dev (and hcd) */
1246 spin_lock(&hcd_urb_list_lock);
1247 list_del_init(&urb->urb_list);
1248 spin_unlock(&hcd_urb_list_lock);
1249 }
1250 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1251
1252 /*
1253 * Some usb host controllers can only perform dma using a small SRAM area.
1254 * The usb core itself is however optimized for host controllers that can dma
1255 * using regular system memory - like pci devices doing bus mastering.
1256 *
1257 * To support host controllers with limited dma capabilities we provide dma
1258 * bounce buffers. This feature can be enabled by initializing
1259 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1260 *
1261 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1262 * data for dma using the genalloc API.
1263 *
1264 * So, to summarize...
1265 *
1266 * - We need "local" memory, canonical example being
1267 * a small SRAM on a discrete controller being the
1268 * only memory that the controller can read ...
1269 * (a) "normal" kernel memory is no good, and
1270 * (b) there's not enough to share
1271 *
1272 * - So we use that, even though the primary requirement
1273 * is that the memory be "local" (hence addressable
1274 * by that device), not "coherent".
1275 *
1276 */
1277
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1278 static int hcd_alloc_coherent(struct usb_bus *bus,
1279 gfp_t mem_flags, dma_addr_t *dma_handle,
1280 void **vaddr_handle, size_t size,
1281 enum dma_data_direction dir)
1282 {
1283 unsigned char *vaddr;
1284
1285 if (*vaddr_handle == NULL) {
1286 WARN_ON_ONCE(1);
1287 return -EFAULT;
1288 }
1289
1290 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1291 mem_flags, dma_handle);
1292 if (!vaddr)
1293 return -ENOMEM;
1294
1295 /*
1296 * Store the virtual address of the buffer at the end
1297 * of the allocated dma buffer. The size of the buffer
1298 * may be uneven so use unaligned functions instead
1299 * of just rounding up. It makes sense to optimize for
1300 * memory footprint over access speed since the amount
1301 * of memory available for dma may be limited.
1302 */
1303 put_unaligned((unsigned long)*vaddr_handle,
1304 (unsigned long *)(vaddr + size));
1305
1306 if (dir == DMA_TO_DEVICE)
1307 memcpy(vaddr, *vaddr_handle, size);
1308
1309 *vaddr_handle = vaddr;
1310 return 0;
1311 }
1312
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1313 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1314 void **vaddr_handle, size_t size,
1315 enum dma_data_direction dir)
1316 {
1317 unsigned char *vaddr = *vaddr_handle;
1318
1319 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1320
1321 if (dir == DMA_FROM_DEVICE)
1322 memcpy(vaddr, *vaddr_handle, size);
1323
1324 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1325
1326 *vaddr_handle = vaddr;
1327 *dma_handle = 0;
1328 }
1329
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1330 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1331 {
1332 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1333 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1334 dma_unmap_single(hcd->self.sysdev,
1335 urb->setup_dma,
1336 sizeof(struct usb_ctrlrequest),
1337 DMA_TO_DEVICE);
1338 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1339 hcd_free_coherent(urb->dev->bus,
1340 &urb->setup_dma,
1341 (void **) &urb->setup_packet,
1342 sizeof(struct usb_ctrlrequest),
1343 DMA_TO_DEVICE);
1344
1345 /* Make it safe to call this routine more than once */
1346 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1347 }
1348 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1349
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1350 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1351 {
1352 if (hcd->driver->unmap_urb_for_dma)
1353 hcd->driver->unmap_urb_for_dma(hcd, urb);
1354 else
1355 usb_hcd_unmap_urb_for_dma(hcd, urb);
1356 }
1357
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1358 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1359 {
1360 enum dma_data_direction dir;
1361
1362 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1363
1364 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1365 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1366 (urb->transfer_flags & URB_DMA_MAP_SG))
1367 dma_unmap_sg(hcd->self.sysdev,
1368 urb->sg,
1369 urb->num_sgs,
1370 dir);
1371 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1372 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1373 dma_unmap_page(hcd->self.sysdev,
1374 urb->transfer_dma,
1375 urb->transfer_buffer_length,
1376 dir);
1377 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1378 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1379 dma_unmap_single(hcd->self.sysdev,
1380 urb->transfer_dma,
1381 urb->transfer_buffer_length,
1382 dir);
1383 else if (urb->transfer_flags & URB_MAP_LOCAL)
1384 hcd_free_coherent(urb->dev->bus,
1385 &urb->transfer_dma,
1386 &urb->transfer_buffer,
1387 urb->transfer_buffer_length,
1388 dir);
1389
1390 /* Make it safe to call this routine more than once */
1391 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1392 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1393 }
1394 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1395
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1396 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1397 gfp_t mem_flags)
1398 {
1399 if (hcd->driver->map_urb_for_dma)
1400 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1401 else
1402 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1403 }
1404
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1405 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1406 gfp_t mem_flags)
1407 {
1408 enum dma_data_direction dir;
1409 int ret = 0;
1410
1411 /* Map the URB's buffers for DMA access.
1412 * Lower level HCD code should use *_dma exclusively,
1413 * unless it uses pio or talks to another transport,
1414 * or uses the provided scatter gather list for bulk.
1415 */
1416
1417 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1418 if (hcd->self.uses_pio_for_control)
1419 return ret;
1420 if (hcd->localmem_pool) {
1421 ret = hcd_alloc_coherent(
1422 urb->dev->bus, mem_flags,
1423 &urb->setup_dma,
1424 (void **)&urb->setup_packet,
1425 sizeof(struct usb_ctrlrequest),
1426 DMA_TO_DEVICE);
1427 if (ret)
1428 return ret;
1429 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1430 } else if (hcd_uses_dma(hcd)) {
1431 if (object_is_on_stack(urb->setup_packet)) {
1432 WARN_ONCE(1, "setup packet is on stack\n");
1433 return -EAGAIN;
1434 }
1435
1436 urb->setup_dma = dma_map_single(
1437 hcd->self.sysdev,
1438 urb->setup_packet,
1439 sizeof(struct usb_ctrlrequest),
1440 DMA_TO_DEVICE);
1441 if (dma_mapping_error(hcd->self.sysdev,
1442 urb->setup_dma))
1443 return -EAGAIN;
1444 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1445 }
1446 }
1447
1448 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1449 if (urb->transfer_buffer_length != 0
1450 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1451 if (hcd->localmem_pool) {
1452 ret = hcd_alloc_coherent(
1453 urb->dev->bus, mem_flags,
1454 &urb->transfer_dma,
1455 &urb->transfer_buffer,
1456 urb->transfer_buffer_length,
1457 dir);
1458 if (ret == 0)
1459 urb->transfer_flags |= URB_MAP_LOCAL;
1460 } else if (hcd_uses_dma(hcd)) {
1461 if (urb->num_sgs) {
1462 int n;
1463
1464 /* We don't support sg for isoc transfers ! */
1465 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1466 WARN_ON(1);
1467 return -EINVAL;
1468 }
1469
1470 n = dma_map_sg(
1471 hcd->self.sysdev,
1472 urb->sg,
1473 urb->num_sgs,
1474 dir);
1475 if (n <= 0)
1476 ret = -EAGAIN;
1477 else
1478 urb->transfer_flags |= URB_DMA_MAP_SG;
1479 urb->num_mapped_sgs = n;
1480 if (n != urb->num_sgs)
1481 urb->transfer_flags |=
1482 URB_DMA_SG_COMBINED;
1483 } else if (urb->sg) {
1484 struct scatterlist *sg = urb->sg;
1485 urb->transfer_dma = dma_map_page(
1486 hcd->self.sysdev,
1487 sg_page(sg),
1488 sg->offset,
1489 urb->transfer_buffer_length,
1490 dir);
1491 if (dma_mapping_error(hcd->self.sysdev,
1492 urb->transfer_dma))
1493 ret = -EAGAIN;
1494 else
1495 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1496 } else if (object_is_on_stack(urb->transfer_buffer)) {
1497 WARN_ONCE(1, "transfer buffer is on stack\n");
1498 ret = -EAGAIN;
1499 } else {
1500 urb->transfer_dma = dma_map_single(
1501 hcd->self.sysdev,
1502 urb->transfer_buffer,
1503 urb->transfer_buffer_length,
1504 dir);
1505 if (dma_mapping_error(hcd->self.sysdev,
1506 urb->transfer_dma))
1507 ret = -EAGAIN;
1508 else
1509 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1510 }
1511 }
1512 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1513 URB_SETUP_MAP_LOCAL)))
1514 usb_hcd_unmap_urb_for_dma(hcd, urb);
1515 }
1516 return ret;
1517 }
1518 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1519
1520 /*-------------------------------------------------------------------------*/
1521
1522 /* may be called in any context with a valid urb->dev usecount
1523 * caller surrenders "ownership" of urb
1524 * expects usb_submit_urb() to have sanity checked and conditioned all
1525 * inputs in the urb
1526 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1527 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1528 {
1529 int status;
1530 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1531
1532 /* increment urb's reference count as part of giving it to the HCD
1533 * (which will control it). HCD guarantees that it either returns
1534 * an error or calls giveback(), but not both.
1535 */
1536 usb_get_urb(urb);
1537 atomic_inc(&urb->use_count);
1538 atomic_inc(&urb->dev->urbnum);
1539 usbmon_urb_submit(&hcd->self, urb);
1540
1541 /* NOTE requirements on root-hub callers (usbfs and the hub
1542 * driver, for now): URBs' urb->transfer_buffer must be
1543 * valid and usb_buffer_{sync,unmap}() not be needed, since
1544 * they could clobber root hub response data. Also, control
1545 * URBs must be submitted in process context with interrupts
1546 * enabled.
1547 */
1548
1549 if (is_root_hub(urb->dev)) {
1550 status = rh_urb_enqueue(hcd, urb);
1551 } else {
1552 status = map_urb_for_dma(hcd, urb, mem_flags);
1553 if (likely(status == 0)) {
1554 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1555 if (unlikely(status))
1556 unmap_urb_for_dma(hcd, urb);
1557 }
1558 }
1559
1560 if (unlikely(status)) {
1561 usbmon_urb_submit_error(&hcd->self, urb, status);
1562 urb->hcpriv = NULL;
1563 INIT_LIST_HEAD(&urb->urb_list);
1564 atomic_dec(&urb->use_count);
1565 /*
1566 * Order the write of urb->use_count above before the read
1567 * of urb->reject below. Pairs with the memory barriers in
1568 * usb_kill_urb() and usb_poison_urb().
1569 */
1570 smp_mb__after_atomic();
1571
1572 atomic_dec(&urb->dev->urbnum);
1573 if (atomic_read(&urb->reject))
1574 wake_up(&usb_kill_urb_queue);
1575 usb_put_urb(urb);
1576 }
1577 return status;
1578 }
1579
1580 /*-------------------------------------------------------------------------*/
1581
1582 /* this makes the hcd giveback() the urb more quickly, by kicking it
1583 * off hardware queues (which may take a while) and returning it as
1584 * soon as practical. we've already set up the urb's return status,
1585 * but we can't know if the callback completed already.
1586 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1587 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1588 {
1589 int value;
1590
1591 if (is_root_hub(urb->dev))
1592 value = usb_rh_urb_dequeue(hcd, urb, status);
1593 else {
1594
1595 /* The only reason an HCD might fail this call is if
1596 * it has not yet fully queued the urb to begin with.
1597 * Such failures should be harmless. */
1598 value = hcd->driver->urb_dequeue(hcd, urb, status);
1599 }
1600 return value;
1601 }
1602
1603 /*
1604 * called in any context
1605 *
1606 * caller guarantees urb won't be recycled till both unlink()
1607 * and the urb's completion function return
1608 */
usb_hcd_unlink_urb(struct urb * urb,int status)1609 int usb_hcd_unlink_urb (struct urb *urb, int status)
1610 {
1611 struct usb_hcd *hcd;
1612 struct usb_device *udev = urb->dev;
1613 int retval = -EIDRM;
1614 unsigned long flags;
1615
1616 /* Prevent the device and bus from going away while
1617 * the unlink is carried out. If they are already gone
1618 * then urb->use_count must be 0, since disconnected
1619 * devices can't have any active URBs.
1620 */
1621 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1622 if (atomic_read(&urb->use_count) > 0) {
1623 retval = 0;
1624 usb_get_dev(udev);
1625 }
1626 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1627 if (retval == 0) {
1628 hcd = bus_to_hcd(urb->dev->bus);
1629 retval = unlink1(hcd, urb, status);
1630 if (retval == 0)
1631 retval = -EINPROGRESS;
1632 else if (retval != -EIDRM && retval != -EBUSY)
1633 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1634 urb, retval);
1635 usb_put_dev(udev);
1636 }
1637 return retval;
1638 }
1639
1640 /*-------------------------------------------------------------------------*/
1641
__usb_hcd_giveback_urb(struct urb * urb)1642 static void __usb_hcd_giveback_urb(struct urb *urb)
1643 {
1644 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1645 struct usb_anchor *anchor = urb->anchor;
1646 int status = urb->unlinked;
1647
1648 urb->hcpriv = NULL;
1649 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1650 urb->actual_length < urb->transfer_buffer_length &&
1651 !status))
1652 status = -EREMOTEIO;
1653
1654 unmap_urb_for_dma(hcd, urb);
1655 usbmon_urb_complete(&hcd->self, urb, status);
1656 usb_anchor_suspend_wakeups(anchor);
1657 usb_unanchor_urb(urb);
1658 if (likely(status == 0))
1659 usb_led_activity(USB_LED_EVENT_HOST);
1660
1661 /* pass ownership to the completion handler */
1662 urb->status = status;
1663 /*
1664 * This function can be called in task context inside another remote
1665 * coverage collection section, but KCOV doesn't support that kind of
1666 * recursion yet. Only collect coverage in softirq context for now.
1667 */
1668 if (in_serving_softirq())
1669 kcov_remote_start_usb((u64)urb->dev->bus->busnum);
1670 urb->complete(urb);
1671 if (in_serving_softirq())
1672 kcov_remote_stop();
1673
1674 usb_anchor_resume_wakeups(anchor);
1675 atomic_dec(&urb->use_count);
1676 /*
1677 * Order the write of urb->use_count above before the read
1678 * of urb->reject below. Pairs with the memory barriers in
1679 * usb_kill_urb() and usb_poison_urb().
1680 */
1681 smp_mb__after_atomic();
1682
1683 if (unlikely(atomic_read(&urb->reject)))
1684 wake_up(&usb_kill_urb_queue);
1685 usb_put_urb(urb);
1686 }
1687
usb_giveback_urb_bh(struct tasklet_struct * t)1688 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1689 {
1690 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1691 struct list_head local_list;
1692
1693 spin_lock_irq(&bh->lock);
1694 bh->running = true;
1695 list_replace_init(&bh->head, &local_list);
1696 spin_unlock_irq(&bh->lock);
1697
1698 while (!list_empty(&local_list)) {
1699 struct urb *urb;
1700
1701 urb = list_entry(local_list.next, struct urb, urb_list);
1702 list_del_init(&urb->urb_list);
1703 bh->completing_ep = urb->ep;
1704 __usb_hcd_giveback_urb(urb);
1705 bh->completing_ep = NULL;
1706 }
1707
1708 /*
1709 * giveback new URBs next time to prevent this function
1710 * from not exiting for a long time.
1711 */
1712 spin_lock_irq(&bh->lock);
1713 if (!list_empty(&bh->head)) {
1714 if (bh->high_prio)
1715 tasklet_hi_schedule(&bh->bh);
1716 else
1717 tasklet_schedule(&bh->bh);
1718 }
1719 bh->running = false;
1720 spin_unlock_irq(&bh->lock);
1721 }
1722
1723 /**
1724 * usb_hcd_giveback_urb - return URB from HCD to device driver
1725 * @hcd: host controller returning the URB
1726 * @urb: urb being returned to the USB device driver.
1727 * @status: completion status code for the URB.
1728 * Context: in_interrupt()
1729 *
1730 * This hands the URB from HCD to its USB device driver, using its
1731 * completion function. The HCD has freed all per-urb resources
1732 * (and is done using urb->hcpriv). It also released all HCD locks;
1733 * the device driver won't cause problems if it frees, modifies,
1734 * or resubmits this URB.
1735 *
1736 * If @urb was unlinked, the value of @status will be overridden by
1737 * @urb->unlinked. Erroneous short transfers are detected in case
1738 * the HCD hasn't checked for them.
1739 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1740 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1741 {
1742 struct giveback_urb_bh *bh;
1743 bool running;
1744
1745 /* pass status to tasklet via unlinked */
1746 if (likely(!urb->unlinked))
1747 urb->unlinked = status;
1748
1749 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1750 __usb_hcd_giveback_urb(urb);
1751 return;
1752 }
1753
1754 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1755 bh = &hcd->high_prio_bh;
1756 else
1757 bh = &hcd->low_prio_bh;
1758
1759 spin_lock(&bh->lock);
1760 list_add_tail(&urb->urb_list, &bh->head);
1761 running = bh->running;
1762 spin_unlock(&bh->lock);
1763
1764 if (running)
1765 ;
1766 else if (bh->high_prio)
1767 tasklet_hi_schedule(&bh->bh);
1768 else
1769 tasklet_schedule(&bh->bh);
1770 }
1771 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1772
1773 /*-------------------------------------------------------------------------*/
1774
1775 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1776 * queue to drain completely. The caller must first insure that no more
1777 * URBs can be submitted for this endpoint.
1778 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1779 void usb_hcd_flush_endpoint(struct usb_device *udev,
1780 struct usb_host_endpoint *ep)
1781 {
1782 struct usb_hcd *hcd;
1783 struct urb *urb;
1784
1785 if (!ep)
1786 return;
1787 might_sleep();
1788 hcd = bus_to_hcd(udev->bus);
1789
1790 /* No more submits can occur */
1791 spin_lock_irq(&hcd_urb_list_lock);
1792 rescan:
1793 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1794 int is_in;
1795
1796 if (urb->unlinked)
1797 continue;
1798 usb_get_urb (urb);
1799 is_in = usb_urb_dir_in(urb);
1800 spin_unlock(&hcd_urb_list_lock);
1801
1802 /* kick hcd */
1803 unlink1(hcd, urb, -ESHUTDOWN);
1804 dev_dbg (hcd->self.controller,
1805 "shutdown urb %pK ep%d%s-%s\n",
1806 urb, usb_endpoint_num(&ep->desc),
1807 is_in ? "in" : "out",
1808 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1809 usb_put_urb (urb);
1810
1811 /* list contents may have changed */
1812 spin_lock(&hcd_urb_list_lock);
1813 goto rescan;
1814 }
1815 spin_unlock_irq(&hcd_urb_list_lock);
1816
1817 /* Wait until the endpoint queue is completely empty */
1818 while (!list_empty (&ep->urb_list)) {
1819 spin_lock_irq(&hcd_urb_list_lock);
1820
1821 /* The list may have changed while we acquired the spinlock */
1822 urb = NULL;
1823 if (!list_empty (&ep->urb_list)) {
1824 urb = list_entry (ep->urb_list.prev, struct urb,
1825 urb_list);
1826 usb_get_urb (urb);
1827 }
1828 spin_unlock_irq(&hcd_urb_list_lock);
1829
1830 if (urb) {
1831 usb_kill_urb (urb);
1832 usb_put_urb (urb);
1833 }
1834 }
1835 }
1836
1837 /**
1838 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1839 * the bus bandwidth
1840 * @udev: target &usb_device
1841 * @new_config: new configuration to install
1842 * @cur_alt: the current alternate interface setting
1843 * @new_alt: alternate interface setting that is being installed
1844 *
1845 * To change configurations, pass in the new configuration in new_config,
1846 * and pass NULL for cur_alt and new_alt.
1847 *
1848 * To reset a device's configuration (put the device in the ADDRESSED state),
1849 * pass in NULL for new_config, cur_alt, and new_alt.
1850 *
1851 * To change alternate interface settings, pass in NULL for new_config,
1852 * pass in the current alternate interface setting in cur_alt,
1853 * and pass in the new alternate interface setting in new_alt.
1854 *
1855 * Return: An error if the requested bandwidth change exceeds the
1856 * bus bandwidth or host controller internal resources.
1857 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1858 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1859 struct usb_host_config *new_config,
1860 struct usb_host_interface *cur_alt,
1861 struct usb_host_interface *new_alt)
1862 {
1863 int num_intfs, i, j;
1864 struct usb_host_interface *alt = NULL;
1865 int ret = 0;
1866 struct usb_hcd *hcd;
1867 struct usb_host_endpoint *ep;
1868
1869 hcd = bus_to_hcd(udev->bus);
1870 if (!hcd->driver->check_bandwidth)
1871 return 0;
1872
1873 /* Configuration is being removed - set configuration 0 */
1874 if (!new_config && !cur_alt) {
1875 for (i = 1; i < 16; ++i) {
1876 ep = udev->ep_out[i];
1877 if (ep)
1878 hcd->driver->drop_endpoint(hcd, udev, ep);
1879 ep = udev->ep_in[i];
1880 if (ep)
1881 hcd->driver->drop_endpoint(hcd, udev, ep);
1882 }
1883 hcd->driver->check_bandwidth(hcd, udev);
1884 return 0;
1885 }
1886 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1887 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1888 * of the bus. There will always be bandwidth for endpoint 0, so it's
1889 * ok to exclude it.
1890 */
1891 if (new_config) {
1892 num_intfs = new_config->desc.bNumInterfaces;
1893 /* Remove endpoints (except endpoint 0, which is always on the
1894 * schedule) from the old config from the schedule
1895 */
1896 for (i = 1; i < 16; ++i) {
1897 ep = udev->ep_out[i];
1898 if (ep) {
1899 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1900 if (ret < 0)
1901 goto reset;
1902 }
1903 ep = udev->ep_in[i];
1904 if (ep) {
1905 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1906 if (ret < 0)
1907 goto reset;
1908 }
1909 }
1910 for (i = 0; i < num_intfs; ++i) {
1911 struct usb_host_interface *first_alt;
1912 int iface_num;
1913
1914 first_alt = &new_config->intf_cache[i]->altsetting[0];
1915 iface_num = first_alt->desc.bInterfaceNumber;
1916 /* Set up endpoints for alternate interface setting 0 */
1917 alt = usb_find_alt_setting(new_config, iface_num, 0);
1918 if (!alt)
1919 /* No alt setting 0? Pick the first setting. */
1920 alt = first_alt;
1921
1922 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1923 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1924 if (ret < 0)
1925 goto reset;
1926 }
1927 }
1928 }
1929 if (cur_alt && new_alt) {
1930 struct usb_interface *iface = usb_ifnum_to_if(udev,
1931 cur_alt->desc.bInterfaceNumber);
1932
1933 if (!iface)
1934 return -EINVAL;
1935 if (iface->resetting_device) {
1936 /*
1937 * The USB core just reset the device, so the xHCI host
1938 * and the device will think alt setting 0 is installed.
1939 * However, the USB core will pass in the alternate
1940 * setting installed before the reset as cur_alt. Dig
1941 * out the alternate setting 0 structure, or the first
1942 * alternate setting if a broken device doesn't have alt
1943 * setting 0.
1944 */
1945 cur_alt = usb_altnum_to_altsetting(iface, 0);
1946 if (!cur_alt)
1947 cur_alt = &iface->altsetting[0];
1948 }
1949
1950 /* Drop all the endpoints in the current alt setting */
1951 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1952 ret = hcd->driver->drop_endpoint(hcd, udev,
1953 &cur_alt->endpoint[i]);
1954 if (ret < 0)
1955 goto reset;
1956 }
1957 /* Add all the endpoints in the new alt setting */
1958 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1959 ret = hcd->driver->add_endpoint(hcd, udev,
1960 &new_alt->endpoint[i]);
1961 if (ret < 0)
1962 goto reset;
1963 }
1964 }
1965 ret = hcd->driver->check_bandwidth(hcd, udev);
1966 reset:
1967 if (ret < 0)
1968 hcd->driver->reset_bandwidth(hcd, udev);
1969 return ret;
1970 }
1971
1972 /* Disables the endpoint: synchronizes with the hcd to make sure all
1973 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1974 * have been called previously. Use for set_configuration, set_interface,
1975 * driver removal, physical disconnect.
1976 *
1977 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1978 * type, maxpacket size, toggle, halt status, and scheduling.
1979 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1980 void usb_hcd_disable_endpoint(struct usb_device *udev,
1981 struct usb_host_endpoint *ep)
1982 {
1983 struct usb_hcd *hcd;
1984
1985 might_sleep();
1986 hcd = bus_to_hcd(udev->bus);
1987 if (hcd->driver->endpoint_disable)
1988 hcd->driver->endpoint_disable(hcd, ep);
1989 }
1990
1991 /**
1992 * usb_hcd_reset_endpoint - reset host endpoint state
1993 * @udev: USB device.
1994 * @ep: the endpoint to reset.
1995 *
1996 * Resets any host endpoint state such as the toggle bit, sequence
1997 * number and current window.
1998 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1999 void usb_hcd_reset_endpoint(struct usb_device *udev,
2000 struct usb_host_endpoint *ep)
2001 {
2002 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2003
2004 if (hcd->driver->endpoint_reset)
2005 hcd->driver->endpoint_reset(hcd, ep);
2006 else {
2007 int epnum = usb_endpoint_num(&ep->desc);
2008 int is_out = usb_endpoint_dir_out(&ep->desc);
2009 int is_control = usb_endpoint_xfer_control(&ep->desc);
2010
2011 usb_settoggle(udev, epnum, is_out, 0);
2012 if (is_control)
2013 usb_settoggle(udev, epnum, !is_out, 0);
2014 }
2015 }
2016
2017 /**
2018 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2019 * @interface: alternate setting that includes all endpoints.
2020 * @eps: array of endpoints that need streams.
2021 * @num_eps: number of endpoints in the array.
2022 * @num_streams: number of streams to allocate.
2023 * @mem_flags: flags hcd should use to allocate memory.
2024 *
2025 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2026 * Drivers may queue multiple transfers to different stream IDs, which may
2027 * complete in a different order than they were queued.
2028 *
2029 * Return: On success, the number of allocated streams. On failure, a negative
2030 * error code.
2031 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2032 int usb_alloc_streams(struct usb_interface *interface,
2033 struct usb_host_endpoint **eps, unsigned int num_eps,
2034 unsigned int num_streams, gfp_t mem_flags)
2035 {
2036 struct usb_hcd *hcd;
2037 struct usb_device *dev;
2038 int i, ret;
2039
2040 dev = interface_to_usbdev(interface);
2041 hcd = bus_to_hcd(dev->bus);
2042 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2043 return -EINVAL;
2044 if (dev->speed < USB_SPEED_SUPER)
2045 return -EINVAL;
2046 if (dev->state < USB_STATE_CONFIGURED)
2047 return -ENODEV;
2048
2049 for (i = 0; i < num_eps; i++) {
2050 /* Streams only apply to bulk endpoints. */
2051 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2052 return -EINVAL;
2053 /* Re-alloc is not allowed */
2054 if (eps[i]->streams)
2055 return -EINVAL;
2056 }
2057
2058 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2059 num_streams, mem_flags);
2060 if (ret < 0)
2061 return ret;
2062
2063 for (i = 0; i < num_eps; i++)
2064 eps[i]->streams = ret;
2065
2066 return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2069
2070 /**
2071 * usb_free_streams - free bulk endpoint stream IDs.
2072 * @interface: alternate setting that includes all endpoints.
2073 * @eps: array of endpoints to remove streams from.
2074 * @num_eps: number of endpoints in the array.
2075 * @mem_flags: flags hcd should use to allocate memory.
2076 *
2077 * Reverts a group of bulk endpoints back to not using stream IDs.
2078 * Can fail if we are given bad arguments, or HCD is broken.
2079 *
2080 * Return: 0 on success. On failure, a negative error code.
2081 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2082 int usb_free_streams(struct usb_interface *interface,
2083 struct usb_host_endpoint **eps, unsigned int num_eps,
2084 gfp_t mem_flags)
2085 {
2086 struct usb_hcd *hcd;
2087 struct usb_device *dev;
2088 int i, ret;
2089
2090 dev = interface_to_usbdev(interface);
2091 hcd = bus_to_hcd(dev->bus);
2092 if (dev->speed < USB_SPEED_SUPER)
2093 return -EINVAL;
2094
2095 /* Double-free is not allowed */
2096 for (i = 0; i < num_eps; i++)
2097 if (!eps[i] || !eps[i]->streams)
2098 return -EINVAL;
2099
2100 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2101 if (ret < 0)
2102 return ret;
2103
2104 for (i = 0; i < num_eps; i++)
2105 eps[i]->streams = 0;
2106
2107 return ret;
2108 }
2109 EXPORT_SYMBOL_GPL(usb_free_streams);
2110
2111 /* Protect against drivers that try to unlink URBs after the device
2112 * is gone, by waiting until all unlinks for @udev are finished.
2113 * Since we don't currently track URBs by device, simply wait until
2114 * nothing is running in the locked region of usb_hcd_unlink_urb().
2115 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2116 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2117 {
2118 spin_lock_irq(&hcd_urb_unlink_lock);
2119 spin_unlock_irq(&hcd_urb_unlink_lock);
2120 }
2121
2122 /*-------------------------------------------------------------------------*/
2123
2124 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2125 int usb_hcd_get_frame_number (struct usb_device *udev)
2126 {
2127 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2128
2129 if (!HCD_RH_RUNNING(hcd))
2130 return -ESHUTDOWN;
2131 return hcd->driver->get_frame_number (hcd);
2132 }
2133
2134 /*-------------------------------------------------------------------------*/
2135
2136 #ifdef CONFIG_PM
2137
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2138 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2139 {
2140 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2141 int status;
2142 int old_state = hcd->state;
2143
2144 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2145 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2146 rhdev->do_remote_wakeup);
2147 if (HCD_DEAD(hcd)) {
2148 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2149 return 0;
2150 }
2151
2152 if (!hcd->driver->bus_suspend) {
2153 status = -ENOENT;
2154 } else {
2155 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2156 hcd->state = HC_STATE_QUIESCING;
2157 status = hcd->driver->bus_suspend(hcd);
2158 }
2159 if (status == 0) {
2160 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2161 hcd->state = HC_STATE_SUSPENDED;
2162
2163 if (!PMSG_IS_AUTO(msg))
2164 usb_phy_roothub_suspend(hcd->self.sysdev,
2165 hcd->phy_roothub);
2166
2167 /* Did we race with a root-hub wakeup event? */
2168 if (rhdev->do_remote_wakeup) {
2169 char buffer[6];
2170
2171 status = hcd->driver->hub_status_data(hcd, buffer);
2172 if (status != 0) {
2173 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2174 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2175 status = -EBUSY;
2176 }
2177 }
2178 } else {
2179 spin_lock_irq(&hcd_root_hub_lock);
2180 if (!HCD_DEAD(hcd)) {
2181 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2182 hcd->state = old_state;
2183 }
2184 spin_unlock_irq(&hcd_root_hub_lock);
2185 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2186 "suspend", status);
2187 }
2188 return status;
2189 }
2190
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2191 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2192 {
2193 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2194 int status;
2195 int old_state = hcd->state;
2196
2197 dev_dbg(&rhdev->dev, "usb %sresume\n",
2198 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2199 if (HCD_DEAD(hcd)) {
2200 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2201 return 0;
2202 }
2203
2204 if (!PMSG_IS_AUTO(msg)) {
2205 status = usb_phy_roothub_resume(hcd->self.sysdev,
2206 hcd->phy_roothub);
2207 if (status)
2208 return status;
2209 }
2210
2211 if (!hcd->driver->bus_resume)
2212 return -ENOENT;
2213 if (HCD_RH_RUNNING(hcd))
2214 return 0;
2215
2216 hcd->state = HC_STATE_RESUMING;
2217 status = hcd->driver->bus_resume(hcd);
2218 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2219 if (status == 0)
2220 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2221
2222 if (status == 0) {
2223 struct usb_device *udev;
2224 int port1;
2225
2226 spin_lock_irq(&hcd_root_hub_lock);
2227 if (!HCD_DEAD(hcd)) {
2228 usb_set_device_state(rhdev, rhdev->actconfig
2229 ? USB_STATE_CONFIGURED
2230 : USB_STATE_ADDRESS);
2231 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2232 hcd->state = HC_STATE_RUNNING;
2233 }
2234 spin_unlock_irq(&hcd_root_hub_lock);
2235
2236 /*
2237 * Check whether any of the enabled ports on the root hub are
2238 * unsuspended. If they are then a TRSMRCY delay is needed
2239 * (this is what the USB-2 spec calls a "global resume").
2240 * Otherwise we can skip the delay.
2241 */
2242 usb_hub_for_each_child(rhdev, port1, udev) {
2243 if (udev->state != USB_STATE_NOTATTACHED &&
2244 !udev->port_is_suspended) {
2245 usleep_range(10000, 11000); /* TRSMRCY */
2246 break;
2247 }
2248 }
2249 } else {
2250 hcd->state = old_state;
2251 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2252 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2253 "resume", status);
2254 if (status != -ESHUTDOWN)
2255 usb_hc_died(hcd);
2256 }
2257 return status;
2258 }
2259
2260 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2261 static void hcd_resume_work(struct work_struct *work)
2262 {
2263 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2264 struct usb_device *udev = hcd->self.root_hub;
2265
2266 usb_remote_wakeup(udev);
2267 }
2268
2269 /**
2270 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2271 * @hcd: host controller for this root hub
2272 *
2273 * The USB host controller calls this function when its root hub is
2274 * suspended (with the remote wakeup feature enabled) and a remote
2275 * wakeup request is received. The routine submits a workqueue request
2276 * to resume the root hub (that is, manage its downstream ports again).
2277 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2278 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2279 {
2280 unsigned long flags;
2281
2282 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2283 if (hcd->rh_registered) {
2284 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2285 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2286 queue_work(pm_wq, &hcd->wakeup_work);
2287 }
2288 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2289 }
2290 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2291
2292 #endif /* CONFIG_PM */
2293
2294 /*-------------------------------------------------------------------------*/
2295
2296 #ifdef CONFIG_USB_OTG
2297
2298 /**
2299 * usb_bus_start_enum - start immediate enumeration (for OTG)
2300 * @bus: the bus (must use hcd framework)
2301 * @port_num: 1-based number of port; usually bus->otg_port
2302 * Context: in_interrupt()
2303 *
2304 * Starts enumeration, with an immediate reset followed later by
2305 * hub_wq identifying and possibly configuring the device.
2306 * This is needed by OTG controller drivers, where it helps meet
2307 * HNP protocol timing requirements for starting a port reset.
2308 *
2309 * Return: 0 if successful.
2310 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2311 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2312 {
2313 struct usb_hcd *hcd;
2314 int status = -EOPNOTSUPP;
2315
2316 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2317 * boards with root hubs hooked up to internal devices (instead of
2318 * just the OTG port) may need more attention to resetting...
2319 */
2320 hcd = bus_to_hcd(bus);
2321 if (port_num && hcd->driver->start_port_reset)
2322 status = hcd->driver->start_port_reset(hcd, port_num);
2323
2324 /* allocate hub_wq shortly after (first) root port reset finishes;
2325 * it may issue others, until at least 50 msecs have passed.
2326 */
2327 if (status == 0)
2328 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2329 return status;
2330 }
2331 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2332
2333 #endif
2334
2335 /*-------------------------------------------------------------------------*/
2336
2337 /**
2338 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2339 * @irq: the IRQ being raised
2340 * @__hcd: pointer to the HCD whose IRQ is being signaled
2341 *
2342 * If the controller isn't HALTed, calls the driver's irq handler.
2343 * Checks whether the controller is now dead.
2344 *
2345 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2346 */
usb_hcd_irq(int irq,void * __hcd)2347 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2348 {
2349 struct usb_hcd *hcd = __hcd;
2350 irqreturn_t rc;
2351
2352 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2353 rc = IRQ_NONE;
2354 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2355 rc = IRQ_NONE;
2356 else
2357 rc = IRQ_HANDLED;
2358
2359 return rc;
2360 }
2361 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2362
2363 /*-------------------------------------------------------------------------*/
2364
2365 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2366 static void hcd_died_work(struct work_struct *work)
2367 {
2368 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2369 static char *env[] = {
2370 "ERROR=DEAD",
2371 NULL
2372 };
2373
2374 /* Notify user space that the host controller has died */
2375 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2376 }
2377
2378 /**
2379 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2380 * @hcd: pointer to the HCD representing the controller
2381 *
2382 * This is called by bus glue to report a USB host controller that died
2383 * while operations may still have been pending. It's called automatically
2384 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2385 *
2386 * Only call this function with the primary HCD.
2387 */
usb_hc_died(struct usb_hcd * hcd)2388 void usb_hc_died (struct usb_hcd *hcd)
2389 {
2390 unsigned long flags;
2391
2392 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2393
2394 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2395 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2396 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2397 if (hcd->rh_registered) {
2398 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2399
2400 /* make hub_wq clean up old urbs and devices */
2401 usb_set_device_state (hcd->self.root_hub,
2402 USB_STATE_NOTATTACHED);
2403 usb_kick_hub_wq(hcd->self.root_hub);
2404 }
2405 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2406 hcd = hcd->shared_hcd;
2407 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2408 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2409 if (hcd->rh_registered) {
2410 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2411
2412 /* make hub_wq clean up old urbs and devices */
2413 usb_set_device_state(hcd->self.root_hub,
2414 USB_STATE_NOTATTACHED);
2415 usb_kick_hub_wq(hcd->self.root_hub);
2416 }
2417 }
2418
2419 /* Handle the case where this function gets called with a shared HCD */
2420 if (usb_hcd_is_primary_hcd(hcd))
2421 schedule_work(&hcd->died_work);
2422 else
2423 schedule_work(&hcd->primary_hcd->died_work);
2424
2425 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2426 /* Make sure that the other roothub is also deallocated. */
2427 }
2428 EXPORT_SYMBOL_GPL (usb_hc_died);
2429
2430 /*-------------------------------------------------------------------------*/
2431
init_giveback_urb_bh(struct giveback_urb_bh * bh)2432 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2433 {
2434
2435 spin_lock_init(&bh->lock);
2436 INIT_LIST_HEAD(&bh->head);
2437 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2438 }
2439
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2440 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2441 struct device *sysdev, struct device *dev, const char *bus_name,
2442 struct usb_hcd *primary_hcd)
2443 {
2444 struct usb_hcd *hcd;
2445
2446 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2447 if (!hcd)
2448 return NULL;
2449 if (primary_hcd == NULL) {
2450 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2451 GFP_KERNEL);
2452 if (!hcd->address0_mutex) {
2453 kfree(hcd);
2454 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2455 return NULL;
2456 }
2457 mutex_init(hcd->address0_mutex);
2458 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2459 GFP_KERNEL);
2460 if (!hcd->bandwidth_mutex) {
2461 kfree(hcd->address0_mutex);
2462 kfree(hcd);
2463 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2464 return NULL;
2465 }
2466 mutex_init(hcd->bandwidth_mutex);
2467 dev_set_drvdata(dev, hcd);
2468 } else {
2469 mutex_lock(&usb_port_peer_mutex);
2470 hcd->address0_mutex = primary_hcd->address0_mutex;
2471 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2472 hcd->primary_hcd = primary_hcd;
2473 primary_hcd->primary_hcd = primary_hcd;
2474 hcd->shared_hcd = primary_hcd;
2475 primary_hcd->shared_hcd = hcd;
2476 mutex_unlock(&usb_port_peer_mutex);
2477 }
2478
2479 kref_init(&hcd->kref);
2480
2481 usb_bus_init(&hcd->self);
2482 hcd->self.controller = dev;
2483 hcd->self.sysdev = sysdev;
2484 hcd->self.bus_name = bus_name;
2485
2486 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2487 #ifdef CONFIG_PM
2488 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2489 #endif
2490
2491 INIT_WORK(&hcd->died_work, hcd_died_work);
2492
2493 hcd->driver = driver;
2494 hcd->speed = driver->flags & HCD_MASK;
2495 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2496 "USB Host Controller";
2497 return hcd;
2498 }
2499 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2500
2501 /**
2502 * usb_create_shared_hcd - create and initialize an HCD structure
2503 * @driver: HC driver that will use this hcd
2504 * @dev: device for this HC, stored in hcd->self.controller
2505 * @bus_name: value to store in hcd->self.bus_name
2506 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2507 * PCI device. Only allocate certain resources for the primary HCD
2508 * Context: !in_interrupt()
2509 *
2510 * Allocate a struct usb_hcd, with extra space at the end for the
2511 * HC driver's private data. Initialize the generic members of the
2512 * hcd structure.
2513 *
2514 * Return: On success, a pointer to the created and initialized HCD structure.
2515 * On failure (e.g. if memory is unavailable), %NULL.
2516 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2517 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2518 struct device *dev, const char *bus_name,
2519 struct usb_hcd *primary_hcd)
2520 {
2521 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2522 }
2523 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2524
2525 /**
2526 * usb_create_hcd - create and initialize an HCD structure
2527 * @driver: HC driver that will use this hcd
2528 * @dev: device for this HC, stored in hcd->self.controller
2529 * @bus_name: value to store in hcd->self.bus_name
2530 * Context: !in_interrupt()
2531 *
2532 * Allocate a struct usb_hcd, with extra space at the end for the
2533 * HC driver's private data. Initialize the generic members of the
2534 * hcd structure.
2535 *
2536 * Return: On success, a pointer to the created and initialized HCD
2537 * structure. On failure (e.g. if memory is unavailable), %NULL.
2538 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2539 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2540 struct device *dev, const char *bus_name)
2541 {
2542 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2543 }
2544 EXPORT_SYMBOL_GPL(usb_create_hcd);
2545
2546 /*
2547 * Roothubs that share one PCI device must also share the bandwidth mutex.
2548 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2549 * deallocated.
2550 *
2551 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2552 * freed. When hcd_release() is called for either hcd in a peer set,
2553 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2554 */
hcd_release(struct kref * kref)2555 static void hcd_release(struct kref *kref)
2556 {
2557 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2558
2559 mutex_lock(&usb_port_peer_mutex);
2560 if (hcd->shared_hcd) {
2561 struct usb_hcd *peer = hcd->shared_hcd;
2562
2563 peer->shared_hcd = NULL;
2564 peer->primary_hcd = NULL;
2565 } else {
2566 kfree(hcd->address0_mutex);
2567 kfree(hcd->bandwidth_mutex);
2568 }
2569 mutex_unlock(&usb_port_peer_mutex);
2570 kfree(hcd);
2571 }
2572
usb_get_hcd(struct usb_hcd * hcd)2573 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2574 {
2575 if (hcd)
2576 kref_get (&hcd->kref);
2577 return hcd;
2578 }
2579 EXPORT_SYMBOL_GPL(usb_get_hcd);
2580
usb_put_hcd(struct usb_hcd * hcd)2581 void usb_put_hcd (struct usb_hcd *hcd)
2582 {
2583 if (hcd)
2584 kref_put (&hcd->kref, hcd_release);
2585 }
2586 EXPORT_SYMBOL_GPL(usb_put_hcd);
2587
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2588 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2589 {
2590 if (!hcd->primary_hcd)
2591 return 1;
2592 return hcd == hcd->primary_hcd;
2593 }
2594 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2595
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2596 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2597 {
2598 if (!hcd->driver->find_raw_port_number)
2599 return port1;
2600
2601 return hcd->driver->find_raw_port_number(hcd, port1);
2602 }
2603
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2604 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2605 unsigned int irqnum, unsigned long irqflags)
2606 {
2607 int retval;
2608
2609 if (hcd->driver->irq) {
2610
2611 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2612 hcd->driver->description, hcd->self.busnum);
2613 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2614 hcd->irq_descr, hcd);
2615 if (retval != 0) {
2616 dev_err(hcd->self.controller,
2617 "request interrupt %d failed\n",
2618 irqnum);
2619 return retval;
2620 }
2621 hcd->irq = irqnum;
2622 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2623 (hcd->driver->flags & HCD_MEMORY) ?
2624 "io mem" : "io base",
2625 (unsigned long long)hcd->rsrc_start);
2626 } else {
2627 hcd->irq = 0;
2628 if (hcd->rsrc_start)
2629 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2630 (hcd->driver->flags & HCD_MEMORY) ?
2631 "io mem" : "io base",
2632 (unsigned long long)hcd->rsrc_start);
2633 }
2634 return 0;
2635 }
2636
2637 /*
2638 * Before we free this root hub, flush in-flight peering attempts
2639 * and disable peer lookups
2640 */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2641 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2642 {
2643 struct usb_device *rhdev;
2644
2645 mutex_lock(&usb_port_peer_mutex);
2646 rhdev = hcd->self.root_hub;
2647 hcd->self.root_hub = NULL;
2648 mutex_unlock(&usb_port_peer_mutex);
2649 usb_put_dev(rhdev);
2650 }
2651
2652 /**
2653 * usb_add_hcd - finish generic HCD structure initialization and register
2654 * @hcd: the usb_hcd structure to initialize
2655 * @irqnum: Interrupt line to allocate
2656 * @irqflags: Interrupt type flags
2657 *
2658 * Finish the remaining parts of generic HCD initialization: allocate the
2659 * buffers of consistent memory, register the bus, request the IRQ line,
2660 * and call the driver's reset() and start() routines.
2661 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2662 int usb_add_hcd(struct usb_hcd *hcd,
2663 unsigned int irqnum, unsigned long irqflags)
2664 {
2665 int retval;
2666 struct usb_device *rhdev;
2667 struct usb_hcd *shared_hcd;
2668
2669 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2670 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2671 if (IS_ERR(hcd->phy_roothub))
2672 return PTR_ERR(hcd->phy_roothub);
2673
2674 retval = usb_phy_roothub_init(hcd->phy_roothub);
2675 if (retval)
2676 return retval;
2677
2678 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2679 PHY_MODE_USB_HOST_SS);
2680 if (retval)
2681 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2682 PHY_MODE_USB_HOST);
2683 if (retval)
2684 goto err_usb_phy_roothub_power_on;
2685
2686 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2687 if (retval)
2688 goto err_usb_phy_roothub_power_on;
2689 }
2690
2691 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2692
2693 switch (authorized_default) {
2694 case USB_AUTHORIZE_NONE:
2695 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2696 break;
2697
2698 case USB_AUTHORIZE_ALL:
2699 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2700 break;
2701
2702 case USB_AUTHORIZE_INTERNAL:
2703 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2704 break;
2705
2706 case USB_AUTHORIZE_WIRED:
2707 default:
2708 hcd->dev_policy = hcd->wireless ?
2709 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2710 break;
2711 }
2712
2713 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2714
2715 /* per default all interfaces are authorized */
2716 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2717
2718 /* HC is in reset state, but accessible. Now do the one-time init,
2719 * bottom up so that hcds can customize the root hubs before hub_wq
2720 * starts talking to them. (Note, bus id is assigned early too.)
2721 */
2722 retval = hcd_buffer_create(hcd);
2723 if (retval != 0) {
2724 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2725 goto err_create_buf;
2726 }
2727
2728 retval = usb_register_bus(&hcd->self);
2729 if (retval < 0)
2730 goto err_register_bus;
2731
2732 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2733 if (rhdev == NULL) {
2734 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2735 retval = -ENOMEM;
2736 goto err_allocate_root_hub;
2737 }
2738 mutex_lock(&usb_port_peer_mutex);
2739 hcd->self.root_hub = rhdev;
2740 mutex_unlock(&usb_port_peer_mutex);
2741
2742 rhdev->rx_lanes = 1;
2743 rhdev->tx_lanes = 1;
2744
2745 switch (hcd->speed) {
2746 case HCD_USB11:
2747 rhdev->speed = USB_SPEED_FULL;
2748 break;
2749 case HCD_USB2:
2750 rhdev->speed = USB_SPEED_HIGH;
2751 break;
2752 case HCD_USB25:
2753 rhdev->speed = USB_SPEED_WIRELESS;
2754 break;
2755 case HCD_USB3:
2756 rhdev->speed = USB_SPEED_SUPER;
2757 break;
2758 case HCD_USB32:
2759 rhdev->rx_lanes = 2;
2760 rhdev->tx_lanes = 2;
2761 fallthrough;
2762 case HCD_USB31:
2763 rhdev->speed = USB_SPEED_SUPER_PLUS;
2764 break;
2765 default:
2766 retval = -EINVAL;
2767 goto err_set_rh_speed;
2768 }
2769
2770 /* wakeup flag init defaults to "everything works" for root hubs,
2771 * but drivers can override it in reset() if needed, along with
2772 * recording the overall controller's system wakeup capability.
2773 */
2774 device_set_wakeup_capable(&rhdev->dev, 1);
2775
2776 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2777 * registered. But since the controller can die at any time,
2778 * let's initialize the flag before touching the hardware.
2779 */
2780 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2781
2782 /* "reset" is misnamed; its role is now one-time init. the controller
2783 * should already have been reset (and boot firmware kicked off etc).
2784 */
2785 if (hcd->driver->reset) {
2786 retval = hcd->driver->reset(hcd);
2787 if (retval < 0) {
2788 dev_err(hcd->self.controller, "can't setup: %d\n",
2789 retval);
2790 goto err_hcd_driver_setup;
2791 }
2792 }
2793 hcd->rh_pollable = 1;
2794
2795 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2796 if (retval)
2797 goto err_hcd_driver_setup;
2798
2799 /* NOTE: root hub and controller capabilities may not be the same */
2800 if (device_can_wakeup(hcd->self.controller)
2801 && device_can_wakeup(&hcd->self.root_hub->dev))
2802 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2803
2804 /* initialize tasklets */
2805 init_giveback_urb_bh(&hcd->high_prio_bh);
2806 hcd->high_prio_bh.high_prio = true;
2807 init_giveback_urb_bh(&hcd->low_prio_bh);
2808
2809 /* enable irqs just before we start the controller,
2810 * if the BIOS provides legacy PCI irqs.
2811 */
2812 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2813 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2814 if (retval)
2815 goto err_request_irq;
2816 }
2817
2818 hcd->state = HC_STATE_RUNNING;
2819 retval = hcd->driver->start(hcd);
2820 if (retval < 0) {
2821 dev_err(hcd->self.controller, "startup error %d\n", retval);
2822 goto err_hcd_driver_start;
2823 }
2824
2825 /* starting here, usbcore will pay attention to the shared HCD roothub */
2826 shared_hcd = hcd->shared_hcd;
2827 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2828 retval = register_root_hub(shared_hcd);
2829 if (retval != 0)
2830 goto err_register_root_hub;
2831
2832 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2833 usb_hcd_poll_rh_status(shared_hcd);
2834 }
2835
2836 /* starting here, usbcore will pay attention to this root hub */
2837 if (!HCD_DEFER_RH_REGISTER(hcd)) {
2838 retval = register_root_hub(hcd);
2839 if (retval != 0)
2840 goto err_register_root_hub;
2841
2842 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2843 usb_hcd_poll_rh_status(hcd);
2844 }
2845
2846 return retval;
2847
2848 err_register_root_hub:
2849 hcd->rh_pollable = 0;
2850 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2851 del_timer_sync(&hcd->rh_timer);
2852 hcd->driver->stop(hcd);
2853 hcd->state = HC_STATE_HALT;
2854 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2855 del_timer_sync(&hcd->rh_timer);
2856 err_hcd_driver_start:
2857 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2858 free_irq(irqnum, hcd);
2859 err_request_irq:
2860 err_hcd_driver_setup:
2861 err_set_rh_speed:
2862 usb_put_invalidate_rhdev(hcd);
2863 err_allocate_root_hub:
2864 usb_deregister_bus(&hcd->self);
2865 err_register_bus:
2866 hcd_buffer_destroy(hcd);
2867 err_create_buf:
2868 usb_phy_roothub_power_off(hcd->phy_roothub);
2869 err_usb_phy_roothub_power_on:
2870 usb_phy_roothub_exit(hcd->phy_roothub);
2871
2872 return retval;
2873 }
2874 EXPORT_SYMBOL_GPL(usb_add_hcd);
2875
2876 /**
2877 * usb_remove_hcd - shutdown processing for generic HCDs
2878 * @hcd: the usb_hcd structure to remove
2879 * Context: !in_interrupt()
2880 *
2881 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2882 * invoking the HCD's stop() method.
2883 */
usb_remove_hcd(struct usb_hcd * hcd)2884 void usb_remove_hcd(struct usb_hcd *hcd)
2885 {
2886 struct usb_device *rhdev = hcd->self.root_hub;
2887 bool rh_registered;
2888
2889 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2890
2891 usb_get_dev(rhdev);
2892 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2893 if (HC_IS_RUNNING (hcd->state))
2894 hcd->state = HC_STATE_QUIESCING;
2895
2896 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2897 spin_lock_irq (&hcd_root_hub_lock);
2898 rh_registered = hcd->rh_registered;
2899 hcd->rh_registered = 0;
2900 spin_unlock_irq (&hcd_root_hub_lock);
2901
2902 #ifdef CONFIG_PM
2903 cancel_work_sync(&hcd->wakeup_work);
2904 #endif
2905 cancel_work_sync(&hcd->died_work);
2906
2907 mutex_lock(&usb_bus_idr_lock);
2908 if (rh_registered)
2909 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2910 mutex_unlock(&usb_bus_idr_lock);
2911
2912 /*
2913 * tasklet_kill() isn't needed here because:
2914 * - driver's disconnect() called from usb_disconnect() should
2915 * make sure its URBs are completed during the disconnect()
2916 * callback
2917 *
2918 * - it is too late to run complete() here since driver may have
2919 * been removed already now
2920 */
2921
2922 /* Prevent any more root-hub status calls from the timer.
2923 * The HCD might still restart the timer (if a port status change
2924 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2925 * the hub_status_data() callback.
2926 */
2927 hcd->rh_pollable = 0;
2928 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2929 del_timer_sync(&hcd->rh_timer);
2930
2931 hcd->driver->stop(hcd);
2932 hcd->state = HC_STATE_HALT;
2933
2934 /* In case the HCD restarted the timer, stop it again. */
2935 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2936 del_timer_sync(&hcd->rh_timer);
2937
2938 if (usb_hcd_is_primary_hcd(hcd)) {
2939 if (hcd->irq > 0)
2940 free_irq(hcd->irq, hcd);
2941 }
2942
2943 usb_deregister_bus(&hcd->self);
2944 hcd_buffer_destroy(hcd);
2945
2946 usb_phy_roothub_power_off(hcd->phy_roothub);
2947 usb_phy_roothub_exit(hcd->phy_roothub);
2948
2949 usb_put_invalidate_rhdev(hcd);
2950 hcd->flags = 0;
2951 }
2952 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2953
2954 void
usb_hcd_platform_shutdown(struct platform_device * dev)2955 usb_hcd_platform_shutdown(struct platform_device *dev)
2956 {
2957 struct usb_hcd *hcd = platform_get_drvdata(dev);
2958
2959 /* No need for pm_runtime_put(), we're shutting down */
2960 pm_runtime_get_sync(&dev->dev);
2961
2962 if (hcd->driver->shutdown)
2963 hcd->driver->shutdown(hcd);
2964 }
2965 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2966
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)2967 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2968 dma_addr_t dma, size_t size)
2969 {
2970 int err;
2971 void *local_mem;
2972
2973 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2974 dev_to_node(hcd->self.sysdev),
2975 dev_name(hcd->self.sysdev));
2976 if (IS_ERR(hcd->localmem_pool))
2977 return PTR_ERR(hcd->localmem_pool);
2978
2979 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2980 size, MEMREMAP_WC);
2981 if (IS_ERR(local_mem))
2982 return PTR_ERR(local_mem);
2983
2984 /*
2985 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2986 * It's not backed by system memory and thus there's no kernel mapping
2987 * for it.
2988 */
2989 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2990 dma, size, dev_to_node(hcd->self.sysdev));
2991 if (err < 0) {
2992 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2993 err);
2994 return err;
2995 }
2996
2997 return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3000
3001 /*-------------------------------------------------------------------------*/
3002
3003 #if IS_ENABLED(CONFIG_USB_MON)
3004
3005 const struct usb_mon_operations *mon_ops;
3006
3007 /*
3008 * The registration is unlocked.
3009 * We do it this way because we do not want to lock in hot paths.
3010 *
3011 * Notice that the code is minimally error-proof. Because usbmon needs
3012 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3013 */
3014
usb_mon_register(const struct usb_mon_operations * ops)3015 int usb_mon_register(const struct usb_mon_operations *ops)
3016 {
3017
3018 if (mon_ops)
3019 return -EBUSY;
3020
3021 mon_ops = ops;
3022 mb();
3023 return 0;
3024 }
3025 EXPORT_SYMBOL_GPL (usb_mon_register);
3026
usb_mon_deregister(void)3027 void usb_mon_deregister (void)
3028 {
3029
3030 if (mon_ops == NULL) {
3031 printk(KERN_ERR "USB: monitor was not registered\n");
3032 return;
3033 }
3034 mon_ops = NULL;
3035 mb();
3036 }
3037 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3038
3039 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3040