• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright Linus Torvalds 1999
4  * (C) Copyright Johannes Erdfelt 1999-2001
5  * (C) Copyright Andreas Gal 1999
6  * (C) Copyright Gregory P. Smith 1999
7  * (C) Copyright Deti Fliegl 1999
8  * (C) Copyright Randy Dunlap 2000
9  * (C) Copyright David Brownell 2000-2002
10  */
11 
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35 
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40 
41 #include "usb.h"
42 #include "phy.h"
43 
44 
45 /*-------------------------------------------------------------------------*/
46 
47 /*
48  * USB Host Controller Driver framework
49  *
50  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51  * HCD-specific behaviors/bugs.
52  *
53  * This does error checks, tracks devices and urbs, and delegates to a
54  * "hc_driver" only for code (and data) that really needs to know about
55  * hardware differences.  That includes root hub registers, i/o queues,
56  * and so on ... but as little else as possible.
57  *
58  * Shared code includes most of the "root hub" code (these are emulated,
59  * though each HC's hardware works differently) and PCI glue, plus request
60  * tracking overhead.  The HCD code should only block on spinlocks or on
61  * hardware handshaking; blocking on software events (such as other kernel
62  * threads releasing resources, or completing actions) is all generic.
63  *
64  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66  * only by the hub driver ... and that neither should be seen or used by
67  * usb client device drivers.
68  *
69  * Contributors of ideas or unattributed patches include: David Brownell,
70  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71  *
72  * HISTORY:
73  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
74  *		associated cleanup.  "usb_hcd" still != "usb_bus".
75  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
76  */
77 
78 /*-------------------------------------------------------------------------*/
79 
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83 
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87 
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS		64
90 
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94 
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97 
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100 
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103 
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106 
107 /*-------------------------------------------------------------------------*/
108 
109 /*
110  * Sharable chunks of root hub code.
111  */
112 
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
115 #define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
116 
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 	0x12,       /*  __u8  bLength; */
120 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
122 
123 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
124 	0x00,	    /*  __u8  bDeviceSubClass; */
125 	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
126 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
127 
128 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
129 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
130 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
131 
132 	0x03,       /*  __u8  iManufacturer; */
133 	0x02,       /*  __u8  iProduct; */
134 	0x01,       /*  __u8  iSerialNumber; */
135 	0x01        /*  __u8  bNumConfigurations; */
136 };
137 
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 	0x12,       /*  __u8  bLength; */
141 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
143 
144 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
145 	0x00,	    /*  __u8  bDeviceSubClass; */
146 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
147 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
148 
149 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
150 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
151 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
152 
153 	0x03,       /*  __u8  iManufacturer; */
154 	0x02,       /*  __u8  iProduct; */
155 	0x01,       /*  __u8  iSerialNumber; */
156 	0x01        /*  __u8  bNumConfigurations; */
157 };
158 
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161 	0x12,       /*  __u8  bLength; */
162 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
164 
165 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
166 	0x00,	    /*  __u8  bDeviceSubClass; */
167 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
168 	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169 
170 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
171 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
172 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
173 
174 	0x03,       /*  __u8  iManufacturer; */
175 	0x02,       /*  __u8  iProduct; */
176 	0x01,       /*  __u8  iSerialNumber; */
177 	0x01        /*  __u8  bNumConfigurations; */
178 };
179 
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182 	0x12,       /*  __u8  bLength; */
183 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
185 
186 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
187 	0x00,	    /*  __u8  bDeviceSubClass; */
188 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
189 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
190 
191 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
192 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
193 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
194 
195 	0x03,       /*  __u8  iManufacturer; */
196 	0x02,       /*  __u8  iProduct; */
197 	0x01,       /*  __u8  iSerialNumber; */
198 	0x01        /*  __u8  bNumConfigurations; */
199 };
200 
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202 
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205 	0x12,       /*  __u8  bLength; */
206 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
208 
209 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
210 	0x00,	    /*  __u8  bDeviceSubClass; */
211 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
212 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
213 
214 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
215 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
216 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
217 
218 	0x03,       /*  __u8  iManufacturer; */
219 	0x02,       /*  __u8  iProduct; */
220 	0x01,       /*  __u8  iSerialNumber; */
221 	0x01        /*  __u8  bNumConfigurations; */
222 };
223 
224 
225 /*-------------------------------------------------------------------------*/
226 
227 /* Configuration descriptors for our root hubs */
228 
229 static const u8 fs_rh_config_descriptor[] = {
230 
231 	/* one configuration */
232 	0x09,       /*  __u8  bLength; */
233 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 	0x19, 0x00, /*  __le16 wTotalLength; */
235 	0x01,       /*  __u8  bNumInterfaces; (1) */
236 	0x01,       /*  __u8  bConfigurationValue; */
237 	0x00,       /*  __u8  iConfiguration; */
238 	0xc0,       /*  __u8  bmAttributes;
239 				 Bit 7: must be set,
240 				     6: Self-powered,
241 				     5: Remote wakeup,
242 				     4..0: resvd */
243 	0x00,       /*  __u8  MaxPower; */
244 
245 	/* USB 1.1:
246 	 * USB 2.0, single TT organization (mandatory):
247 	 *	one interface, protocol 0
248 	 *
249 	 * USB 2.0, multiple TT organization (optional):
250 	 *	two interfaces, protocols 1 (like single TT)
251 	 *	and 2 (multiple TT mode) ... config is
252 	 *	sometimes settable
253 	 *	NOT IMPLEMENTED
254 	 */
255 
256 	/* one interface */
257 	0x09,       /*  __u8  if_bLength; */
258 	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
259 	0x00,       /*  __u8  if_bInterfaceNumber; */
260 	0x00,       /*  __u8  if_bAlternateSetting; */
261 	0x01,       /*  __u8  if_bNumEndpoints; */
262 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
263 	0x00,       /*  __u8  if_bInterfaceSubClass; */
264 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
265 	0x00,       /*  __u8  if_iInterface; */
266 
267 	/* one endpoint (status change endpoint) */
268 	0x07,       /*  __u8  ep_bLength; */
269 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
271 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
272 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275 
276 static const u8 hs_rh_config_descriptor[] = {
277 
278 	/* one configuration */
279 	0x09,       /*  __u8  bLength; */
280 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 	0x19, 0x00, /*  __le16 wTotalLength; */
282 	0x01,       /*  __u8  bNumInterfaces; (1) */
283 	0x01,       /*  __u8  bConfigurationValue; */
284 	0x00,       /*  __u8  iConfiguration; */
285 	0xc0,       /*  __u8  bmAttributes;
286 				 Bit 7: must be set,
287 				     6: Self-powered,
288 				     5: Remote wakeup,
289 				     4..0: resvd */
290 	0x00,       /*  __u8  MaxPower; */
291 
292 	/* USB 1.1:
293 	 * USB 2.0, single TT organization (mandatory):
294 	 *	one interface, protocol 0
295 	 *
296 	 * USB 2.0, multiple TT organization (optional):
297 	 *	two interfaces, protocols 1 (like single TT)
298 	 *	and 2 (multiple TT mode) ... config is
299 	 *	sometimes settable
300 	 *	NOT IMPLEMENTED
301 	 */
302 
303 	/* one interface */
304 	0x09,       /*  __u8  if_bLength; */
305 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 	0x00,       /*  __u8  if_bInterfaceNumber; */
307 	0x00,       /*  __u8  if_bAlternateSetting; */
308 	0x01,       /*  __u8  if_bNumEndpoints; */
309 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
310 	0x00,       /*  __u8  if_bInterfaceSubClass; */
311 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
312 	0x00,       /*  __u8  if_iInterface; */
313 
314 	/* one endpoint (status change endpoint) */
315 	0x07,       /*  __u8  ep_bLength; */
316 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
318 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
319 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 		     * see hub.c:hub_configure() for details. */
321 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324 
325 static const u8 ss_rh_config_descriptor[] = {
326 	/* one configuration */
327 	0x09,       /*  __u8  bLength; */
328 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 	0x1f, 0x00, /*  __le16 wTotalLength; */
330 	0x01,       /*  __u8  bNumInterfaces; (1) */
331 	0x01,       /*  __u8  bConfigurationValue; */
332 	0x00,       /*  __u8  iConfiguration; */
333 	0xc0,       /*  __u8  bmAttributes;
334 				 Bit 7: must be set,
335 				     6: Self-powered,
336 				     5: Remote wakeup,
337 				     4..0: resvd */
338 	0x00,       /*  __u8  MaxPower; */
339 
340 	/* one interface */
341 	0x09,       /*  __u8  if_bLength; */
342 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 	0x00,       /*  __u8  if_bInterfaceNumber; */
344 	0x00,       /*  __u8  if_bAlternateSetting; */
345 	0x01,       /*  __u8  if_bNumEndpoints; */
346 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
347 	0x00,       /*  __u8  if_bInterfaceSubClass; */
348 	0x00,       /*  __u8  if_bInterfaceProtocol; */
349 	0x00,       /*  __u8  if_iInterface; */
350 
351 	/* one endpoint (status change endpoint) */
352 	0x07,       /*  __u8  ep_bLength; */
353 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
355 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
356 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 		     * see hub.c:hub_configure() for details. */
358 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
360 
361 	/* one SuperSpeed endpoint companion descriptor */
362 	0x06,        /* __u8 ss_bLength */
363 	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 		     /* Companion */
365 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
367 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369 
370 /* authorized_default behaviour:
371  * -1 is authorized for all devices except wireless (old behaviour)
372  * 0 is unauthorized for all devices
373  * 1 is authorized for all devices
374  * 2 is authorized for internal devices
375  */
376 #define USB_AUTHORIZE_WIRED	-1
377 #define USB_AUTHORIZE_NONE	0
378 #define USB_AUTHORIZE_ALL	1
379 #define USB_AUTHORIZE_INTERNAL	2
380 
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384 		"Default USB device authorization: 0 is not authorized, 1 is "
385 		"authorized, 2 is authorized for internal devices, -1 is "
386 		"authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388 
389 /**
390  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391  * @s: Null-terminated ASCII (actually ISO-8859-1) string
392  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393  * @len: Length (in bytes; may be odd) of descriptor buffer.
394  *
395  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396  * whichever is less.
397  *
398  * Note:
399  * USB String descriptors can contain at most 126 characters; input
400  * strings longer than that are truncated.
401  */
402 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405 	unsigned n, t = 2 + 2*strlen(s);
406 
407 	if (t > 254)
408 		t = 254;	/* Longest possible UTF string descriptor */
409 	if (len > t)
410 		len = t;
411 
412 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
413 
414 	n = len;
415 	while (n--) {
416 		*buf++ = t;
417 		if (!n--)
418 			break;
419 		*buf++ = t >> 8;
420 		t = (unsigned char)*s++;
421 	}
422 	return len;
423 }
424 
425 /**
426  * rh_string() - provides string descriptors for root hub
427  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428  * @hcd: the host controller for this root hub
429  * @data: buffer for output packet
430  * @len: length of the provided buffer
431  *
432  * Produces either a manufacturer, product or serial number string for the
433  * virtual root hub device.
434  *
435  * Return: The number of bytes filled in: the length of the descriptor or
436  * of the provided buffer, whichever is less.
437  */
438 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441 	char buf[100];
442 	char const *s;
443 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444 
445 	/* language ids */
446 	switch (id) {
447 	case 0:
448 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 		if (len > 4)
451 			len = 4;
452 		memcpy(data, langids, len);
453 		return len;
454 	case 1:
455 		/* Serial number */
456 		s = hcd->self.bus_name;
457 		break;
458 	case 2:
459 		/* Product name */
460 		s = hcd->product_desc;
461 		break;
462 	case 3:
463 		/* Manufacturer */
464 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 			init_utsname()->release, hcd->driver->description);
466 		s = buf;
467 		break;
468 	default:
469 		/* Can't happen; caller guarantees it */
470 		return 0;
471 	}
472 
473 	return ascii2desc(s, data, len);
474 }
475 
476 
477 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480 	struct usb_ctrlrequest *cmd;
481 	u16		typeReq, wValue, wIndex, wLength;
482 	u8		*ubuf = urb->transfer_buffer;
483 	unsigned	len = 0;
484 	int		status;
485 	u8		patch_wakeup = 0;
486 	u8		patch_protocol = 0;
487 	u16		tbuf_size;
488 	u8		*tbuf = NULL;
489 	const u8	*bufp;
490 
491 	might_sleep();
492 
493 	spin_lock_irq(&hcd_root_hub_lock);
494 	status = usb_hcd_link_urb_to_ep(hcd, urb);
495 	spin_unlock_irq(&hcd_root_hub_lock);
496 	if (status)
497 		return status;
498 	urb->hcpriv = hcd;	/* Indicate it's queued */
499 
500 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
502 	wValue   = le16_to_cpu (cmd->wValue);
503 	wIndex   = le16_to_cpu (cmd->wIndex);
504 	wLength  = le16_to_cpu (cmd->wLength);
505 
506 	if (wLength > urb->transfer_buffer_length)
507 		goto error;
508 
509 	/*
510 	 * tbuf should be at least as big as the
511 	 * USB hub descriptor.
512 	 */
513 	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 	if (!tbuf) {
516 		status = -ENOMEM;
517 		goto err_alloc;
518 	}
519 
520 	bufp = tbuf;
521 
522 
523 	urb->actual_length = 0;
524 	switch (typeReq) {
525 
526 	/* DEVICE REQUESTS */
527 
528 	/* The root hub's remote wakeup enable bit is implemented using
529 	 * driver model wakeup flags.  If this system supports wakeup
530 	 * through USB, userspace may change the default "allow wakeup"
531 	 * policy through sysfs or these calls.
532 	 *
533 	 * Most root hubs support wakeup from downstream devices, for
534 	 * runtime power management (disabling USB clocks and reducing
535 	 * VBUS power usage).  However, not all of them do so; silicon,
536 	 * board, and BIOS bugs here are not uncommon, so these can't
537 	 * be treated quite like external hubs.
538 	 *
539 	 * Likewise, not all root hubs will pass wakeup events upstream,
540 	 * to wake up the whole system.  So don't assume root hub and
541 	 * controller capabilities are identical.
542 	 */
543 
544 	case DeviceRequest | USB_REQ_GET_STATUS:
545 		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 					<< USB_DEVICE_REMOTE_WAKEUP)
547 				| (1 << USB_DEVICE_SELF_POWERED);
548 		tbuf[1] = 0;
549 		len = 2;
550 		break;
551 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 		else
555 			goto error;
556 		break;
557 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 		if (device_can_wakeup(&hcd->self.root_hub->dev)
559 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
560 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 		else
562 			goto error;
563 		break;
564 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 		tbuf[0] = 1;
566 		len = 1;
567 		fallthrough;
568 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 		break;
570 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 		switch (wValue & 0xff00) {
572 		case USB_DT_DEVICE << 8:
573 			switch (hcd->speed) {
574 			case HCD_USB32:
575 			case HCD_USB31:
576 				bufp = usb31_rh_dev_descriptor;
577 				break;
578 			case HCD_USB3:
579 				bufp = usb3_rh_dev_descriptor;
580 				break;
581 			case HCD_USB25:
582 				bufp = usb25_rh_dev_descriptor;
583 				break;
584 			case HCD_USB2:
585 				bufp = usb2_rh_dev_descriptor;
586 				break;
587 			case HCD_USB11:
588 				bufp = usb11_rh_dev_descriptor;
589 				break;
590 			default:
591 				goto error;
592 			}
593 			len = 18;
594 			if (hcd->has_tt)
595 				patch_protocol = 1;
596 			break;
597 		case USB_DT_CONFIG << 8:
598 			switch (hcd->speed) {
599 			case HCD_USB32:
600 			case HCD_USB31:
601 			case HCD_USB3:
602 				bufp = ss_rh_config_descriptor;
603 				len = sizeof ss_rh_config_descriptor;
604 				break;
605 			case HCD_USB25:
606 			case HCD_USB2:
607 				bufp = hs_rh_config_descriptor;
608 				len = sizeof hs_rh_config_descriptor;
609 				break;
610 			case HCD_USB11:
611 				bufp = fs_rh_config_descriptor;
612 				len = sizeof fs_rh_config_descriptor;
613 				break;
614 			default:
615 				goto error;
616 			}
617 			if (device_can_wakeup(&hcd->self.root_hub->dev))
618 				patch_wakeup = 1;
619 			break;
620 		case USB_DT_STRING << 8:
621 			if ((wValue & 0xff) < 4)
622 				urb->actual_length = rh_string(wValue & 0xff,
623 						hcd, ubuf, wLength);
624 			else /* unsupported IDs --> "protocol stall" */
625 				goto error;
626 			break;
627 		case USB_DT_BOS << 8:
628 			goto nongeneric;
629 		default:
630 			goto error;
631 		}
632 		break;
633 	case DeviceRequest | USB_REQ_GET_INTERFACE:
634 		tbuf[0] = 0;
635 		len = 1;
636 		fallthrough;
637 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 		break;
639 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 		/* wValue == urb->dev->devaddr */
641 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 			wValue);
643 		break;
644 
645 	/* INTERFACE REQUESTS (no defined feature/status flags) */
646 
647 	/* ENDPOINT REQUESTS */
648 
649 	case EndpointRequest | USB_REQ_GET_STATUS:
650 		/* ENDPOINT_HALT flag */
651 		tbuf[0] = 0;
652 		tbuf[1] = 0;
653 		len = 2;
654 		fallthrough;
655 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 		break;
659 
660 	/* CLASS REQUESTS (and errors) */
661 
662 	default:
663 nongeneric:
664 		/* non-generic request */
665 		switch (typeReq) {
666 		case GetHubStatus:
667 			len = 4;
668 			break;
669 		case GetPortStatus:
670 			if (wValue == HUB_PORT_STATUS)
671 				len = 4;
672 			else
673 				/* other port status types return 8 bytes */
674 				len = 8;
675 			break;
676 		case GetHubDescriptor:
677 			len = sizeof (struct usb_hub_descriptor);
678 			break;
679 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 			/* len is returned by hub_control */
681 			break;
682 		}
683 		status = hcd->driver->hub_control (hcd,
684 			typeReq, wValue, wIndex,
685 			tbuf, wLength);
686 
687 		if (typeReq == GetHubDescriptor)
688 			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 				(struct usb_hub_descriptor *)tbuf);
690 		break;
691 error:
692 		/* "protocol stall" on error */
693 		status = -EPIPE;
694 	}
695 
696 	if (status < 0) {
697 		len = 0;
698 		if (status != -EPIPE) {
699 			dev_dbg (hcd->self.controller,
700 				"CTRL: TypeReq=0x%x val=0x%x "
701 				"idx=0x%x len=%d ==> %d\n",
702 				typeReq, wValue, wIndex,
703 				wLength, status);
704 		}
705 	} else if (status > 0) {
706 		/* hub_control may return the length of data copied. */
707 		len = status;
708 		status = 0;
709 	}
710 	if (len) {
711 		if (urb->transfer_buffer_length < len)
712 			len = urb->transfer_buffer_length;
713 		urb->actual_length = len;
714 		/* always USB_DIR_IN, toward host */
715 		memcpy (ubuf, bufp, len);
716 
717 		/* report whether RH hardware supports remote wakeup */
718 		if (patch_wakeup &&
719 				len > offsetof (struct usb_config_descriptor,
720 						bmAttributes))
721 			((struct usb_config_descriptor *)ubuf)->bmAttributes
722 				|= USB_CONFIG_ATT_WAKEUP;
723 
724 		/* report whether RH hardware has an integrated TT */
725 		if (patch_protocol &&
726 				len > offsetof(struct usb_device_descriptor,
727 						bDeviceProtocol))
728 			((struct usb_device_descriptor *) ubuf)->
729 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 	}
731 
732 	kfree(tbuf);
733  err_alloc:
734 
735 	/* any errors get returned through the urb completion */
736 	spin_lock_irq(&hcd_root_hub_lock);
737 	usb_hcd_unlink_urb_from_ep(hcd, urb);
738 	usb_hcd_giveback_urb(hcd, urb, status);
739 	spin_unlock_irq(&hcd_root_hub_lock);
740 	return 0;
741 }
742 
743 /*-------------------------------------------------------------------------*/
744 
745 /*
746  * Root Hub interrupt transfers are polled using a timer if the
747  * driver requests it; otherwise the driver is responsible for
748  * calling usb_hcd_poll_rh_status() when an event occurs.
749  *
750  * Completions are called in_interrupt(), but they may or may not
751  * be in_irq().
752  */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)753 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
754 {
755 	struct urb	*urb;
756 	int		length;
757 	int		status;
758 	unsigned long	flags;
759 	char		buffer[6];	/* Any root hubs with > 31 ports? */
760 
761 	if (unlikely(!hcd->rh_pollable))
762 		return;
763 	if (!hcd->uses_new_polling && !hcd->status_urb)
764 		return;
765 
766 	length = hcd->driver->hub_status_data(hcd, buffer);
767 	if (length > 0) {
768 
769 		/* try to complete the status urb */
770 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
771 		urb = hcd->status_urb;
772 		if (urb) {
773 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
774 			hcd->status_urb = NULL;
775 			if (urb->transfer_buffer_length >= length) {
776 				status = 0;
777 			} else {
778 				status = -EOVERFLOW;
779 				length = urb->transfer_buffer_length;
780 			}
781 			urb->actual_length = length;
782 			memcpy(urb->transfer_buffer, buffer, length);
783 
784 			usb_hcd_unlink_urb_from_ep(hcd, urb);
785 			usb_hcd_giveback_urb(hcd, urb, status);
786 		} else {
787 			length = 0;
788 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
789 		}
790 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
791 	}
792 
793 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
794 	 * exceed that limit if HZ is 100. The math is more clunky than
795 	 * maybe expected, this is to make sure that all timers for USB devices
796 	 * fire at the same time to give the CPU a break in between */
797 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
798 			(length == 0 && hcd->status_urb != NULL))
799 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
800 }
801 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
802 
803 /* timer callback */
rh_timer_func(struct timer_list * t)804 static void rh_timer_func (struct timer_list *t)
805 {
806 	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
807 
808 	usb_hcd_poll_rh_status(_hcd);
809 }
810 
811 /*-------------------------------------------------------------------------*/
812 
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)813 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
814 {
815 	int		retval;
816 	unsigned long	flags;
817 	unsigned	len = 1 + (urb->dev->maxchild / 8);
818 
819 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
820 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
821 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
822 		retval = -EINVAL;
823 		goto done;
824 	}
825 
826 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
827 	if (retval)
828 		goto done;
829 
830 	hcd->status_urb = urb;
831 	urb->hcpriv = hcd;	/* indicate it's queued */
832 	if (!hcd->uses_new_polling)
833 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
834 
835 	/* If a status change has already occurred, report it ASAP */
836 	else if (HCD_POLL_PENDING(hcd))
837 		mod_timer(&hcd->rh_timer, jiffies);
838 	retval = 0;
839  done:
840 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
841 	return retval;
842 }
843 
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)844 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
845 {
846 	if (usb_endpoint_xfer_int(&urb->ep->desc))
847 		return rh_queue_status (hcd, urb);
848 	if (usb_endpoint_xfer_control(&urb->ep->desc))
849 		return rh_call_control (hcd, urb);
850 	return -EINVAL;
851 }
852 
853 /*-------------------------------------------------------------------------*/
854 
855 /* Unlinks of root-hub control URBs are legal, but they don't do anything
856  * since these URBs always execute synchronously.
857  */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)858 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
859 {
860 	unsigned long	flags;
861 	int		rc;
862 
863 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
864 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
865 	if (rc)
866 		goto done;
867 
868 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
869 		;	/* Do nothing */
870 
871 	} else {				/* Status URB */
872 		if (!hcd->uses_new_polling)
873 			del_timer (&hcd->rh_timer);
874 		if (urb == hcd->status_urb) {
875 			hcd->status_urb = NULL;
876 			usb_hcd_unlink_urb_from_ep(hcd, urb);
877 			usb_hcd_giveback_urb(hcd, urb, status);
878 		}
879 	}
880  done:
881 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
882 	return rc;
883 }
884 
885 
886 /*-------------------------------------------------------------------------*/
887 
888 /**
889  * usb_bus_init - shared initialization code
890  * @bus: the bus structure being initialized
891  *
892  * This code is used to initialize a usb_bus structure, memory for which is
893  * separately managed.
894  */
usb_bus_init(struct usb_bus * bus)895 static void usb_bus_init (struct usb_bus *bus)
896 {
897 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
898 
899 	bus->devnum_next = 1;
900 
901 	bus->root_hub = NULL;
902 	bus->busnum = -1;
903 	bus->bandwidth_allocated = 0;
904 	bus->bandwidth_int_reqs  = 0;
905 	bus->bandwidth_isoc_reqs = 0;
906 	mutex_init(&bus->devnum_next_mutex);
907 }
908 
909 /*-------------------------------------------------------------------------*/
910 
911 /**
912  * usb_register_bus - registers the USB host controller with the usb core
913  * @bus: pointer to the bus to register
914  * Context: !in_interrupt()
915  *
916  * Assigns a bus number, and links the controller into usbcore data
917  * structures so that it can be seen by scanning the bus list.
918  *
919  * Return: 0 if successful. A negative error code otherwise.
920  */
usb_register_bus(struct usb_bus * bus)921 static int usb_register_bus(struct usb_bus *bus)
922 {
923 	int result = -E2BIG;
924 	int busnum;
925 
926 	mutex_lock(&usb_bus_idr_lock);
927 	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928 	if (busnum < 0) {
929 		pr_err("%s: failed to get bus number\n", usbcore_name);
930 		goto error_find_busnum;
931 	}
932 	bus->busnum = busnum;
933 	mutex_unlock(&usb_bus_idr_lock);
934 
935 	usb_notify_add_bus(bus);
936 
937 	dev_info (bus->controller, "new USB bus registered, assigned bus "
938 		  "number %d\n", bus->busnum);
939 	return 0;
940 
941 error_find_busnum:
942 	mutex_unlock(&usb_bus_idr_lock);
943 	return result;
944 }
945 
946 /**
947  * usb_deregister_bus - deregisters the USB host controller
948  * @bus: pointer to the bus to deregister
949  * Context: !in_interrupt()
950  *
951  * Recycles the bus number, and unlinks the controller from usbcore data
952  * structures so that it won't be seen by scanning the bus list.
953  */
usb_deregister_bus(struct usb_bus * bus)954 static void usb_deregister_bus (struct usb_bus *bus)
955 {
956 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
957 
958 	/*
959 	 * NOTE: make sure that all the devices are removed by the
960 	 * controller code, as well as having it call this when cleaning
961 	 * itself up
962 	 */
963 	mutex_lock(&usb_bus_idr_lock);
964 	idr_remove(&usb_bus_idr, bus->busnum);
965 	mutex_unlock(&usb_bus_idr_lock);
966 
967 	usb_notify_remove_bus(bus);
968 }
969 
970 /**
971  * register_root_hub - called by usb_add_hcd() to register a root hub
972  * @hcd: host controller for this root hub
973  *
974  * This function registers the root hub with the USB subsystem.  It sets up
975  * the device properly in the device tree and then calls usb_new_device()
976  * to register the usb device.  It also assigns the root hub's USB address
977  * (always 1).
978  *
979  * Return: 0 if successful. A negative error code otherwise.
980  */
register_root_hub(struct usb_hcd * hcd)981 static int register_root_hub(struct usb_hcd *hcd)
982 {
983 	struct device *parent_dev = hcd->self.controller;
984 	struct usb_device *usb_dev = hcd->self.root_hub;
985 	const int devnum = 1;
986 	int retval;
987 
988 	usb_dev->devnum = devnum;
989 	usb_dev->bus->devnum_next = devnum + 1;
990 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
991 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
992 
993 	mutex_lock(&usb_bus_idr_lock);
994 
995 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
996 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
997 	if (retval != sizeof usb_dev->descriptor) {
998 		mutex_unlock(&usb_bus_idr_lock);
999 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1000 				dev_name(&usb_dev->dev), retval);
1001 		return (retval < 0) ? retval : -EMSGSIZE;
1002 	}
1003 
1004 	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1005 		retval = usb_get_bos_descriptor(usb_dev);
1006 		if (!retval) {
1007 			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1008 		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1009 			mutex_unlock(&usb_bus_idr_lock);
1010 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1011 					dev_name(&usb_dev->dev), retval);
1012 			return retval;
1013 		}
1014 	}
1015 
1016 	retval = usb_new_device (usb_dev);
1017 	if (retval) {
1018 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1019 				dev_name(&usb_dev->dev), retval);
1020 	} else {
1021 		spin_lock_irq (&hcd_root_hub_lock);
1022 		hcd->rh_registered = 1;
1023 		spin_unlock_irq (&hcd_root_hub_lock);
1024 
1025 		/* Did the HC die before the root hub was registered? */
1026 		if (HCD_DEAD(hcd))
1027 			usb_hc_died (hcd);	/* This time clean up */
1028 	}
1029 	mutex_unlock(&usb_bus_idr_lock);
1030 
1031 	return retval;
1032 }
1033 
1034 /*
1035  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1036  * @bus: the bus which the root hub belongs to
1037  * @portnum: the port which is being resumed
1038  *
1039  * HCDs should call this function when they know that a resume signal is
1040  * being sent to a root-hub port.  The root hub will be prevented from
1041  * going into autosuspend until usb_hcd_end_port_resume() is called.
1042  *
1043  * The bus's private lock must be held by the caller.
1044  */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1045 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1046 {
1047 	unsigned bit = 1 << portnum;
1048 
1049 	if (!(bus->resuming_ports & bit)) {
1050 		bus->resuming_ports |= bit;
1051 		pm_runtime_get_noresume(&bus->root_hub->dev);
1052 	}
1053 }
1054 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1055 
1056 /*
1057  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1058  * @bus: the bus which the root hub belongs to
1059  * @portnum: the port which is being resumed
1060  *
1061  * HCDs should call this function when they know that a resume signal has
1062  * stopped being sent to a root-hub port.  The root hub will be allowed to
1063  * autosuspend again.
1064  *
1065  * The bus's private lock must be held by the caller.
1066  */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1067 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1068 {
1069 	unsigned bit = 1 << portnum;
1070 
1071 	if (bus->resuming_ports & bit) {
1072 		bus->resuming_ports &= ~bit;
1073 		pm_runtime_put_noidle(&bus->root_hub->dev);
1074 	}
1075 }
1076 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1077 
1078 /*-------------------------------------------------------------------------*/
1079 
1080 /**
1081  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1082  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1083  * @is_input: true iff the transaction sends data to the host
1084  * @isoc: true for isochronous transactions, false for interrupt ones
1085  * @bytecount: how many bytes in the transaction.
1086  *
1087  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1088  *
1089  * Note:
1090  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1091  * scheduled in software, this function is only used for such scheduling.
1092  */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1093 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1094 {
1095 	unsigned long	tmp;
1096 
1097 	switch (speed) {
1098 	case USB_SPEED_LOW: 	/* INTR only */
1099 		if (is_input) {
1100 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1101 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1102 		} else {
1103 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1104 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1105 		}
1106 	case USB_SPEED_FULL:	/* ISOC or INTR */
1107 		if (isoc) {
1108 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1109 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1110 		} else {
1111 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1112 			return 9107L + BW_HOST_DELAY + tmp;
1113 		}
1114 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1115 		/* FIXME adjust for input vs output */
1116 		if (isoc)
1117 			tmp = HS_NSECS_ISO (bytecount);
1118 		else
1119 			tmp = HS_NSECS (bytecount);
1120 		return tmp;
1121 	default:
1122 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1123 		return -1;
1124 	}
1125 }
1126 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1127 
1128 
1129 /*-------------------------------------------------------------------------*/
1130 
1131 /*
1132  * Generic HC operations.
1133  */
1134 
1135 /*-------------------------------------------------------------------------*/
1136 
1137 /**
1138  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1139  * @hcd: host controller to which @urb was submitted
1140  * @urb: URB being submitted
1141  *
1142  * Host controller drivers should call this routine in their enqueue()
1143  * method.  The HCD's private spinlock must be held and interrupts must
1144  * be disabled.  The actions carried out here are required for URB
1145  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1146  *
1147  * Return: 0 for no error, otherwise a negative error code (in which case
1148  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1149  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1150  * the private spinlock and returning.
1151  */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1152 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1153 {
1154 	int		rc = 0;
1155 
1156 	spin_lock(&hcd_urb_list_lock);
1157 
1158 	/* Check that the URB isn't being killed */
1159 	if (unlikely(atomic_read(&urb->reject))) {
1160 		rc = -EPERM;
1161 		goto done;
1162 	}
1163 
1164 	if (unlikely(!urb->ep->enabled)) {
1165 		rc = -ENOENT;
1166 		goto done;
1167 	}
1168 
1169 	if (unlikely(!urb->dev->can_submit)) {
1170 		rc = -EHOSTUNREACH;
1171 		goto done;
1172 	}
1173 
1174 	/*
1175 	 * Check the host controller's state and add the URB to the
1176 	 * endpoint's queue.
1177 	 */
1178 	if (HCD_RH_RUNNING(hcd)) {
1179 		urb->unlinked = 0;
1180 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1181 	} else {
1182 		rc = -ESHUTDOWN;
1183 		goto done;
1184 	}
1185  done:
1186 	spin_unlock(&hcd_urb_list_lock);
1187 	return rc;
1188 }
1189 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1190 
1191 /**
1192  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1193  * @hcd: host controller to which @urb was submitted
1194  * @urb: URB being checked for unlinkability
1195  * @status: error code to store in @urb if the unlink succeeds
1196  *
1197  * Host controller drivers should call this routine in their dequeue()
1198  * method.  The HCD's private spinlock must be held and interrupts must
1199  * be disabled.  The actions carried out here are required for making
1200  * sure than an unlink is valid.
1201  *
1202  * Return: 0 for no error, otherwise a negative error code (in which case
1203  * the dequeue() method must fail).  The possible error codes are:
1204  *
1205  *	-EIDRM: @urb was not submitted or has already completed.
1206  *		The completion function may not have been called yet.
1207  *
1208  *	-EBUSY: @urb has already been unlinked.
1209  */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1210 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1211 		int status)
1212 {
1213 	struct list_head	*tmp;
1214 
1215 	/* insist the urb is still queued */
1216 	list_for_each(tmp, &urb->ep->urb_list) {
1217 		if (tmp == &urb->urb_list)
1218 			break;
1219 	}
1220 	if (tmp != &urb->urb_list)
1221 		return -EIDRM;
1222 
1223 	/* Any status except -EINPROGRESS means something already started to
1224 	 * unlink this URB from the hardware.  So there's no more work to do.
1225 	 */
1226 	if (urb->unlinked)
1227 		return -EBUSY;
1228 	urb->unlinked = status;
1229 	return 0;
1230 }
1231 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1232 
1233 /**
1234  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1235  * @hcd: host controller to which @urb was submitted
1236  * @urb: URB being unlinked
1237  *
1238  * Host controller drivers should call this routine before calling
1239  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1240  * interrupts must be disabled.  The actions carried out here are required
1241  * for URB completion.
1242  */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1243 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1244 {
1245 	/* clear all state linking urb to this dev (and hcd) */
1246 	spin_lock(&hcd_urb_list_lock);
1247 	list_del_init(&urb->urb_list);
1248 	spin_unlock(&hcd_urb_list_lock);
1249 }
1250 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1251 
1252 /*
1253  * Some usb host controllers can only perform dma using a small SRAM area.
1254  * The usb core itself is however optimized for host controllers that can dma
1255  * using regular system memory - like pci devices doing bus mastering.
1256  *
1257  * To support host controllers with limited dma capabilities we provide dma
1258  * bounce buffers. This feature can be enabled by initializing
1259  * hcd->localmem_pool using usb_hcd_setup_local_mem().
1260  *
1261  * The initialized hcd->localmem_pool then tells the usb code to allocate all
1262  * data for dma using the genalloc API.
1263  *
1264  * So, to summarize...
1265  *
1266  * - We need "local" memory, canonical example being
1267  *   a small SRAM on a discrete controller being the
1268  *   only memory that the controller can read ...
1269  *   (a) "normal" kernel memory is no good, and
1270  *   (b) there's not enough to share
1271  *
1272  * - So we use that, even though the primary requirement
1273  *   is that the memory be "local" (hence addressable
1274  *   by that device), not "coherent".
1275  *
1276  */
1277 
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1278 static int hcd_alloc_coherent(struct usb_bus *bus,
1279 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1280 			      void **vaddr_handle, size_t size,
1281 			      enum dma_data_direction dir)
1282 {
1283 	unsigned char *vaddr;
1284 
1285 	if (*vaddr_handle == NULL) {
1286 		WARN_ON_ONCE(1);
1287 		return -EFAULT;
1288 	}
1289 
1290 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1291 				 mem_flags, dma_handle);
1292 	if (!vaddr)
1293 		return -ENOMEM;
1294 
1295 	/*
1296 	 * Store the virtual address of the buffer at the end
1297 	 * of the allocated dma buffer. The size of the buffer
1298 	 * may be uneven so use unaligned functions instead
1299 	 * of just rounding up. It makes sense to optimize for
1300 	 * memory footprint over access speed since the amount
1301 	 * of memory available for dma may be limited.
1302 	 */
1303 	put_unaligned((unsigned long)*vaddr_handle,
1304 		      (unsigned long *)(vaddr + size));
1305 
1306 	if (dir == DMA_TO_DEVICE)
1307 		memcpy(vaddr, *vaddr_handle, size);
1308 
1309 	*vaddr_handle = vaddr;
1310 	return 0;
1311 }
1312 
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1313 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1314 			      void **vaddr_handle, size_t size,
1315 			      enum dma_data_direction dir)
1316 {
1317 	unsigned char *vaddr = *vaddr_handle;
1318 
1319 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1320 
1321 	if (dir == DMA_FROM_DEVICE)
1322 		memcpy(vaddr, *vaddr_handle, size);
1323 
1324 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1325 
1326 	*vaddr_handle = vaddr;
1327 	*dma_handle = 0;
1328 }
1329 
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1330 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1331 {
1332 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1333 	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1334 		dma_unmap_single(hcd->self.sysdev,
1335 				urb->setup_dma,
1336 				sizeof(struct usb_ctrlrequest),
1337 				DMA_TO_DEVICE);
1338 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1339 		hcd_free_coherent(urb->dev->bus,
1340 				&urb->setup_dma,
1341 				(void **) &urb->setup_packet,
1342 				sizeof(struct usb_ctrlrequest),
1343 				DMA_TO_DEVICE);
1344 
1345 	/* Make it safe to call this routine more than once */
1346 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1347 }
1348 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1349 
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1350 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1351 {
1352 	if (hcd->driver->unmap_urb_for_dma)
1353 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1354 	else
1355 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1356 }
1357 
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1358 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1359 {
1360 	enum dma_data_direction dir;
1361 
1362 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1363 
1364 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1365 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1366 	    (urb->transfer_flags & URB_DMA_MAP_SG))
1367 		dma_unmap_sg(hcd->self.sysdev,
1368 				urb->sg,
1369 				urb->num_sgs,
1370 				dir);
1371 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1372 		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1373 		dma_unmap_page(hcd->self.sysdev,
1374 				urb->transfer_dma,
1375 				urb->transfer_buffer_length,
1376 				dir);
1377 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1378 		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1379 		dma_unmap_single(hcd->self.sysdev,
1380 				urb->transfer_dma,
1381 				urb->transfer_buffer_length,
1382 				dir);
1383 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1384 		hcd_free_coherent(urb->dev->bus,
1385 				&urb->transfer_dma,
1386 				&urb->transfer_buffer,
1387 				urb->transfer_buffer_length,
1388 				dir);
1389 
1390 	/* Make it safe to call this routine more than once */
1391 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1392 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1393 }
1394 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1395 
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1396 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1397 			   gfp_t mem_flags)
1398 {
1399 	if (hcd->driver->map_urb_for_dma)
1400 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1401 	else
1402 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1403 }
1404 
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1405 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1406 			    gfp_t mem_flags)
1407 {
1408 	enum dma_data_direction dir;
1409 	int ret = 0;
1410 
1411 	/* Map the URB's buffers for DMA access.
1412 	 * Lower level HCD code should use *_dma exclusively,
1413 	 * unless it uses pio or talks to another transport,
1414 	 * or uses the provided scatter gather list for bulk.
1415 	 */
1416 
1417 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1418 		if (hcd->self.uses_pio_for_control)
1419 			return ret;
1420 		if (hcd->localmem_pool) {
1421 			ret = hcd_alloc_coherent(
1422 					urb->dev->bus, mem_flags,
1423 					&urb->setup_dma,
1424 					(void **)&urb->setup_packet,
1425 					sizeof(struct usb_ctrlrequest),
1426 					DMA_TO_DEVICE);
1427 			if (ret)
1428 				return ret;
1429 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1430 		} else if (hcd_uses_dma(hcd)) {
1431 			if (object_is_on_stack(urb->setup_packet)) {
1432 				WARN_ONCE(1, "setup packet is on stack\n");
1433 				return -EAGAIN;
1434 			}
1435 
1436 			urb->setup_dma = dma_map_single(
1437 					hcd->self.sysdev,
1438 					urb->setup_packet,
1439 					sizeof(struct usb_ctrlrequest),
1440 					DMA_TO_DEVICE);
1441 			if (dma_mapping_error(hcd->self.sysdev,
1442 						urb->setup_dma))
1443 				return -EAGAIN;
1444 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1445 		}
1446 	}
1447 
1448 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1449 	if (urb->transfer_buffer_length != 0
1450 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1451 		if (hcd->localmem_pool) {
1452 			ret = hcd_alloc_coherent(
1453 					urb->dev->bus, mem_flags,
1454 					&urb->transfer_dma,
1455 					&urb->transfer_buffer,
1456 					urb->transfer_buffer_length,
1457 					dir);
1458 			if (ret == 0)
1459 				urb->transfer_flags |= URB_MAP_LOCAL;
1460 		} else if (hcd_uses_dma(hcd)) {
1461 			if (urb->num_sgs) {
1462 				int n;
1463 
1464 				/* We don't support sg for isoc transfers ! */
1465 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1466 					WARN_ON(1);
1467 					return -EINVAL;
1468 				}
1469 
1470 				n = dma_map_sg(
1471 						hcd->self.sysdev,
1472 						urb->sg,
1473 						urb->num_sgs,
1474 						dir);
1475 				if (n <= 0)
1476 					ret = -EAGAIN;
1477 				else
1478 					urb->transfer_flags |= URB_DMA_MAP_SG;
1479 				urb->num_mapped_sgs = n;
1480 				if (n != urb->num_sgs)
1481 					urb->transfer_flags |=
1482 							URB_DMA_SG_COMBINED;
1483 			} else if (urb->sg) {
1484 				struct scatterlist *sg = urb->sg;
1485 				urb->transfer_dma = dma_map_page(
1486 						hcd->self.sysdev,
1487 						sg_page(sg),
1488 						sg->offset,
1489 						urb->transfer_buffer_length,
1490 						dir);
1491 				if (dma_mapping_error(hcd->self.sysdev,
1492 						urb->transfer_dma))
1493 					ret = -EAGAIN;
1494 				else
1495 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1496 			} else if (object_is_on_stack(urb->transfer_buffer)) {
1497 				WARN_ONCE(1, "transfer buffer is on stack\n");
1498 				ret = -EAGAIN;
1499 			} else {
1500 				urb->transfer_dma = dma_map_single(
1501 						hcd->self.sysdev,
1502 						urb->transfer_buffer,
1503 						urb->transfer_buffer_length,
1504 						dir);
1505 				if (dma_mapping_error(hcd->self.sysdev,
1506 						urb->transfer_dma))
1507 					ret = -EAGAIN;
1508 				else
1509 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1510 			}
1511 		}
1512 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1513 				URB_SETUP_MAP_LOCAL)))
1514 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1515 	}
1516 	return ret;
1517 }
1518 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1519 
1520 /*-------------------------------------------------------------------------*/
1521 
1522 /* may be called in any context with a valid urb->dev usecount
1523  * caller surrenders "ownership" of urb
1524  * expects usb_submit_urb() to have sanity checked and conditioned all
1525  * inputs in the urb
1526  */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1527 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1528 {
1529 	int			status;
1530 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1531 
1532 	/* increment urb's reference count as part of giving it to the HCD
1533 	 * (which will control it).  HCD guarantees that it either returns
1534 	 * an error or calls giveback(), but not both.
1535 	 */
1536 	usb_get_urb(urb);
1537 	atomic_inc(&urb->use_count);
1538 	atomic_inc(&urb->dev->urbnum);
1539 	usbmon_urb_submit(&hcd->self, urb);
1540 
1541 	/* NOTE requirements on root-hub callers (usbfs and the hub
1542 	 * driver, for now):  URBs' urb->transfer_buffer must be
1543 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1544 	 * they could clobber root hub response data.  Also, control
1545 	 * URBs must be submitted in process context with interrupts
1546 	 * enabled.
1547 	 */
1548 
1549 	if (is_root_hub(urb->dev)) {
1550 		status = rh_urb_enqueue(hcd, urb);
1551 	} else {
1552 		status = map_urb_for_dma(hcd, urb, mem_flags);
1553 		if (likely(status == 0)) {
1554 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1555 			if (unlikely(status))
1556 				unmap_urb_for_dma(hcd, urb);
1557 		}
1558 	}
1559 
1560 	if (unlikely(status)) {
1561 		usbmon_urb_submit_error(&hcd->self, urb, status);
1562 		urb->hcpriv = NULL;
1563 		INIT_LIST_HEAD(&urb->urb_list);
1564 		atomic_dec(&urb->use_count);
1565 		/*
1566 		 * Order the write of urb->use_count above before the read
1567 		 * of urb->reject below.  Pairs with the memory barriers in
1568 		 * usb_kill_urb() and usb_poison_urb().
1569 		 */
1570 		smp_mb__after_atomic();
1571 
1572 		atomic_dec(&urb->dev->urbnum);
1573 		if (atomic_read(&urb->reject))
1574 			wake_up(&usb_kill_urb_queue);
1575 		usb_put_urb(urb);
1576 	}
1577 	return status;
1578 }
1579 
1580 /*-------------------------------------------------------------------------*/
1581 
1582 /* this makes the hcd giveback() the urb more quickly, by kicking it
1583  * off hardware queues (which may take a while) and returning it as
1584  * soon as practical.  we've already set up the urb's return status,
1585  * but we can't know if the callback completed already.
1586  */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1587 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1588 {
1589 	int		value;
1590 
1591 	if (is_root_hub(urb->dev))
1592 		value = usb_rh_urb_dequeue(hcd, urb, status);
1593 	else {
1594 
1595 		/* The only reason an HCD might fail this call is if
1596 		 * it has not yet fully queued the urb to begin with.
1597 		 * Such failures should be harmless. */
1598 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1599 	}
1600 	return value;
1601 }
1602 
1603 /*
1604  * called in any context
1605  *
1606  * caller guarantees urb won't be recycled till both unlink()
1607  * and the urb's completion function return
1608  */
usb_hcd_unlink_urb(struct urb * urb,int status)1609 int usb_hcd_unlink_urb (struct urb *urb, int status)
1610 {
1611 	struct usb_hcd		*hcd;
1612 	struct usb_device	*udev = urb->dev;
1613 	int			retval = -EIDRM;
1614 	unsigned long		flags;
1615 
1616 	/* Prevent the device and bus from going away while
1617 	 * the unlink is carried out.  If they are already gone
1618 	 * then urb->use_count must be 0, since disconnected
1619 	 * devices can't have any active URBs.
1620 	 */
1621 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1622 	if (atomic_read(&urb->use_count) > 0) {
1623 		retval = 0;
1624 		usb_get_dev(udev);
1625 	}
1626 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1627 	if (retval == 0) {
1628 		hcd = bus_to_hcd(urb->dev->bus);
1629 		retval = unlink1(hcd, urb, status);
1630 		if (retval == 0)
1631 			retval = -EINPROGRESS;
1632 		else if (retval != -EIDRM && retval != -EBUSY)
1633 			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1634 					urb, retval);
1635 		usb_put_dev(udev);
1636 	}
1637 	return retval;
1638 }
1639 
1640 /*-------------------------------------------------------------------------*/
1641 
__usb_hcd_giveback_urb(struct urb * urb)1642 static void __usb_hcd_giveback_urb(struct urb *urb)
1643 {
1644 	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1645 	struct usb_anchor *anchor = urb->anchor;
1646 	int status = urb->unlinked;
1647 
1648 	urb->hcpriv = NULL;
1649 	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1650 	    urb->actual_length < urb->transfer_buffer_length &&
1651 	    !status))
1652 		status = -EREMOTEIO;
1653 
1654 	unmap_urb_for_dma(hcd, urb);
1655 	usbmon_urb_complete(&hcd->self, urb, status);
1656 	usb_anchor_suspend_wakeups(anchor);
1657 	usb_unanchor_urb(urb);
1658 	if (likely(status == 0))
1659 		usb_led_activity(USB_LED_EVENT_HOST);
1660 
1661 	/* pass ownership to the completion handler */
1662 	urb->status = status;
1663 	/*
1664 	 * This function can be called in task context inside another remote
1665 	 * coverage collection section, but KCOV doesn't support that kind of
1666 	 * recursion yet. Only collect coverage in softirq context for now.
1667 	 */
1668 	if (in_serving_softirq())
1669 		kcov_remote_start_usb((u64)urb->dev->bus->busnum);
1670 	urb->complete(urb);
1671 	if (in_serving_softirq())
1672 		kcov_remote_stop();
1673 
1674 	usb_anchor_resume_wakeups(anchor);
1675 	atomic_dec(&urb->use_count);
1676 	/*
1677 	 * Order the write of urb->use_count above before the read
1678 	 * of urb->reject below.  Pairs with the memory barriers in
1679 	 * usb_kill_urb() and usb_poison_urb().
1680 	 */
1681 	smp_mb__after_atomic();
1682 
1683 	if (unlikely(atomic_read(&urb->reject)))
1684 		wake_up(&usb_kill_urb_queue);
1685 	usb_put_urb(urb);
1686 }
1687 
usb_giveback_urb_bh(struct tasklet_struct * t)1688 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1689 {
1690 	struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1691 	struct list_head local_list;
1692 
1693 	spin_lock_irq(&bh->lock);
1694 	bh->running = true;
1695 	list_replace_init(&bh->head, &local_list);
1696 	spin_unlock_irq(&bh->lock);
1697 
1698 	while (!list_empty(&local_list)) {
1699 		struct urb *urb;
1700 
1701 		urb = list_entry(local_list.next, struct urb, urb_list);
1702 		list_del_init(&urb->urb_list);
1703 		bh->completing_ep = urb->ep;
1704 		__usb_hcd_giveback_urb(urb);
1705 		bh->completing_ep = NULL;
1706 	}
1707 
1708 	/*
1709 	 * giveback new URBs next time to prevent this function
1710 	 * from not exiting for a long time.
1711 	 */
1712 	spin_lock_irq(&bh->lock);
1713 	if (!list_empty(&bh->head)) {
1714 		if (bh->high_prio)
1715 			tasklet_hi_schedule(&bh->bh);
1716 		else
1717 			tasklet_schedule(&bh->bh);
1718 	}
1719 	bh->running = false;
1720 	spin_unlock_irq(&bh->lock);
1721 }
1722 
1723 /**
1724  * usb_hcd_giveback_urb - return URB from HCD to device driver
1725  * @hcd: host controller returning the URB
1726  * @urb: urb being returned to the USB device driver.
1727  * @status: completion status code for the URB.
1728  * Context: in_interrupt()
1729  *
1730  * This hands the URB from HCD to its USB device driver, using its
1731  * completion function.  The HCD has freed all per-urb resources
1732  * (and is done using urb->hcpriv).  It also released all HCD locks;
1733  * the device driver won't cause problems if it frees, modifies,
1734  * or resubmits this URB.
1735  *
1736  * If @urb was unlinked, the value of @status will be overridden by
1737  * @urb->unlinked.  Erroneous short transfers are detected in case
1738  * the HCD hasn't checked for them.
1739  */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1740 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1741 {
1742 	struct giveback_urb_bh *bh;
1743 	bool running;
1744 
1745 	/* pass status to tasklet via unlinked */
1746 	if (likely(!urb->unlinked))
1747 		urb->unlinked = status;
1748 
1749 	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1750 		__usb_hcd_giveback_urb(urb);
1751 		return;
1752 	}
1753 
1754 	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1755 		bh = &hcd->high_prio_bh;
1756 	else
1757 		bh = &hcd->low_prio_bh;
1758 
1759 	spin_lock(&bh->lock);
1760 	list_add_tail(&urb->urb_list, &bh->head);
1761 	running = bh->running;
1762 	spin_unlock(&bh->lock);
1763 
1764 	if (running)
1765 		;
1766 	else if (bh->high_prio)
1767 		tasklet_hi_schedule(&bh->bh);
1768 	else
1769 		tasklet_schedule(&bh->bh);
1770 }
1771 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1772 
1773 /*-------------------------------------------------------------------------*/
1774 
1775 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1776  * queue to drain completely.  The caller must first insure that no more
1777  * URBs can be submitted for this endpoint.
1778  */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1779 void usb_hcd_flush_endpoint(struct usb_device *udev,
1780 		struct usb_host_endpoint *ep)
1781 {
1782 	struct usb_hcd		*hcd;
1783 	struct urb		*urb;
1784 
1785 	if (!ep)
1786 		return;
1787 	might_sleep();
1788 	hcd = bus_to_hcd(udev->bus);
1789 
1790 	/* No more submits can occur */
1791 	spin_lock_irq(&hcd_urb_list_lock);
1792 rescan:
1793 	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1794 		int	is_in;
1795 
1796 		if (urb->unlinked)
1797 			continue;
1798 		usb_get_urb (urb);
1799 		is_in = usb_urb_dir_in(urb);
1800 		spin_unlock(&hcd_urb_list_lock);
1801 
1802 		/* kick hcd */
1803 		unlink1(hcd, urb, -ESHUTDOWN);
1804 		dev_dbg (hcd->self.controller,
1805 			"shutdown urb %pK ep%d%s-%s\n",
1806 			urb, usb_endpoint_num(&ep->desc),
1807 			is_in ? "in" : "out",
1808 			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1809 		usb_put_urb (urb);
1810 
1811 		/* list contents may have changed */
1812 		spin_lock(&hcd_urb_list_lock);
1813 		goto rescan;
1814 	}
1815 	spin_unlock_irq(&hcd_urb_list_lock);
1816 
1817 	/* Wait until the endpoint queue is completely empty */
1818 	while (!list_empty (&ep->urb_list)) {
1819 		spin_lock_irq(&hcd_urb_list_lock);
1820 
1821 		/* The list may have changed while we acquired the spinlock */
1822 		urb = NULL;
1823 		if (!list_empty (&ep->urb_list)) {
1824 			urb = list_entry (ep->urb_list.prev, struct urb,
1825 					urb_list);
1826 			usb_get_urb (urb);
1827 		}
1828 		spin_unlock_irq(&hcd_urb_list_lock);
1829 
1830 		if (urb) {
1831 			usb_kill_urb (urb);
1832 			usb_put_urb (urb);
1833 		}
1834 	}
1835 }
1836 
1837 /**
1838  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1839  *				the bus bandwidth
1840  * @udev: target &usb_device
1841  * @new_config: new configuration to install
1842  * @cur_alt: the current alternate interface setting
1843  * @new_alt: alternate interface setting that is being installed
1844  *
1845  * To change configurations, pass in the new configuration in new_config,
1846  * and pass NULL for cur_alt and new_alt.
1847  *
1848  * To reset a device's configuration (put the device in the ADDRESSED state),
1849  * pass in NULL for new_config, cur_alt, and new_alt.
1850  *
1851  * To change alternate interface settings, pass in NULL for new_config,
1852  * pass in the current alternate interface setting in cur_alt,
1853  * and pass in the new alternate interface setting in new_alt.
1854  *
1855  * Return: An error if the requested bandwidth change exceeds the
1856  * bus bandwidth or host controller internal resources.
1857  */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1858 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1859 		struct usb_host_config *new_config,
1860 		struct usb_host_interface *cur_alt,
1861 		struct usb_host_interface *new_alt)
1862 {
1863 	int num_intfs, i, j;
1864 	struct usb_host_interface *alt = NULL;
1865 	int ret = 0;
1866 	struct usb_hcd *hcd;
1867 	struct usb_host_endpoint *ep;
1868 
1869 	hcd = bus_to_hcd(udev->bus);
1870 	if (!hcd->driver->check_bandwidth)
1871 		return 0;
1872 
1873 	/* Configuration is being removed - set configuration 0 */
1874 	if (!new_config && !cur_alt) {
1875 		for (i = 1; i < 16; ++i) {
1876 			ep = udev->ep_out[i];
1877 			if (ep)
1878 				hcd->driver->drop_endpoint(hcd, udev, ep);
1879 			ep = udev->ep_in[i];
1880 			if (ep)
1881 				hcd->driver->drop_endpoint(hcd, udev, ep);
1882 		}
1883 		hcd->driver->check_bandwidth(hcd, udev);
1884 		return 0;
1885 	}
1886 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1887 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1888 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1889 	 * ok to exclude it.
1890 	 */
1891 	if (new_config) {
1892 		num_intfs = new_config->desc.bNumInterfaces;
1893 		/* Remove endpoints (except endpoint 0, which is always on the
1894 		 * schedule) from the old config from the schedule
1895 		 */
1896 		for (i = 1; i < 16; ++i) {
1897 			ep = udev->ep_out[i];
1898 			if (ep) {
1899 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1900 				if (ret < 0)
1901 					goto reset;
1902 			}
1903 			ep = udev->ep_in[i];
1904 			if (ep) {
1905 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1906 				if (ret < 0)
1907 					goto reset;
1908 			}
1909 		}
1910 		for (i = 0; i < num_intfs; ++i) {
1911 			struct usb_host_interface *first_alt;
1912 			int iface_num;
1913 
1914 			first_alt = &new_config->intf_cache[i]->altsetting[0];
1915 			iface_num = first_alt->desc.bInterfaceNumber;
1916 			/* Set up endpoints for alternate interface setting 0 */
1917 			alt = usb_find_alt_setting(new_config, iface_num, 0);
1918 			if (!alt)
1919 				/* No alt setting 0? Pick the first setting. */
1920 				alt = first_alt;
1921 
1922 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1923 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1924 				if (ret < 0)
1925 					goto reset;
1926 			}
1927 		}
1928 	}
1929 	if (cur_alt && new_alt) {
1930 		struct usb_interface *iface = usb_ifnum_to_if(udev,
1931 				cur_alt->desc.bInterfaceNumber);
1932 
1933 		if (!iface)
1934 			return -EINVAL;
1935 		if (iface->resetting_device) {
1936 			/*
1937 			 * The USB core just reset the device, so the xHCI host
1938 			 * and the device will think alt setting 0 is installed.
1939 			 * However, the USB core will pass in the alternate
1940 			 * setting installed before the reset as cur_alt.  Dig
1941 			 * out the alternate setting 0 structure, or the first
1942 			 * alternate setting if a broken device doesn't have alt
1943 			 * setting 0.
1944 			 */
1945 			cur_alt = usb_altnum_to_altsetting(iface, 0);
1946 			if (!cur_alt)
1947 				cur_alt = &iface->altsetting[0];
1948 		}
1949 
1950 		/* Drop all the endpoints in the current alt setting */
1951 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1952 			ret = hcd->driver->drop_endpoint(hcd, udev,
1953 					&cur_alt->endpoint[i]);
1954 			if (ret < 0)
1955 				goto reset;
1956 		}
1957 		/* Add all the endpoints in the new alt setting */
1958 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1959 			ret = hcd->driver->add_endpoint(hcd, udev,
1960 					&new_alt->endpoint[i]);
1961 			if (ret < 0)
1962 				goto reset;
1963 		}
1964 	}
1965 	ret = hcd->driver->check_bandwidth(hcd, udev);
1966 reset:
1967 	if (ret < 0)
1968 		hcd->driver->reset_bandwidth(hcd, udev);
1969 	return ret;
1970 }
1971 
1972 /* Disables the endpoint: synchronizes with the hcd to make sure all
1973  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1974  * have been called previously.  Use for set_configuration, set_interface,
1975  * driver removal, physical disconnect.
1976  *
1977  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1978  * type, maxpacket size, toggle, halt status, and scheduling.
1979  */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1980 void usb_hcd_disable_endpoint(struct usb_device *udev,
1981 		struct usb_host_endpoint *ep)
1982 {
1983 	struct usb_hcd		*hcd;
1984 
1985 	might_sleep();
1986 	hcd = bus_to_hcd(udev->bus);
1987 	if (hcd->driver->endpoint_disable)
1988 		hcd->driver->endpoint_disable(hcd, ep);
1989 }
1990 
1991 /**
1992  * usb_hcd_reset_endpoint - reset host endpoint state
1993  * @udev: USB device.
1994  * @ep:   the endpoint to reset.
1995  *
1996  * Resets any host endpoint state such as the toggle bit, sequence
1997  * number and current window.
1998  */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1999 void usb_hcd_reset_endpoint(struct usb_device *udev,
2000 			    struct usb_host_endpoint *ep)
2001 {
2002 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2003 
2004 	if (hcd->driver->endpoint_reset)
2005 		hcd->driver->endpoint_reset(hcd, ep);
2006 	else {
2007 		int epnum = usb_endpoint_num(&ep->desc);
2008 		int is_out = usb_endpoint_dir_out(&ep->desc);
2009 		int is_control = usb_endpoint_xfer_control(&ep->desc);
2010 
2011 		usb_settoggle(udev, epnum, is_out, 0);
2012 		if (is_control)
2013 			usb_settoggle(udev, epnum, !is_out, 0);
2014 	}
2015 }
2016 
2017 /**
2018  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2019  * @interface:		alternate setting that includes all endpoints.
2020  * @eps:		array of endpoints that need streams.
2021  * @num_eps:		number of endpoints in the array.
2022  * @num_streams:	number of streams to allocate.
2023  * @mem_flags:		flags hcd should use to allocate memory.
2024  *
2025  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2026  * Drivers may queue multiple transfers to different stream IDs, which may
2027  * complete in a different order than they were queued.
2028  *
2029  * Return: On success, the number of allocated streams. On failure, a negative
2030  * error code.
2031  */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2032 int usb_alloc_streams(struct usb_interface *interface,
2033 		struct usb_host_endpoint **eps, unsigned int num_eps,
2034 		unsigned int num_streams, gfp_t mem_flags)
2035 {
2036 	struct usb_hcd *hcd;
2037 	struct usb_device *dev;
2038 	int i, ret;
2039 
2040 	dev = interface_to_usbdev(interface);
2041 	hcd = bus_to_hcd(dev->bus);
2042 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2043 		return -EINVAL;
2044 	if (dev->speed < USB_SPEED_SUPER)
2045 		return -EINVAL;
2046 	if (dev->state < USB_STATE_CONFIGURED)
2047 		return -ENODEV;
2048 
2049 	for (i = 0; i < num_eps; i++) {
2050 		/* Streams only apply to bulk endpoints. */
2051 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2052 			return -EINVAL;
2053 		/* Re-alloc is not allowed */
2054 		if (eps[i]->streams)
2055 			return -EINVAL;
2056 	}
2057 
2058 	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2059 			num_streams, mem_flags);
2060 	if (ret < 0)
2061 		return ret;
2062 
2063 	for (i = 0; i < num_eps; i++)
2064 		eps[i]->streams = ret;
2065 
2066 	return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2069 
2070 /**
2071  * usb_free_streams - free bulk endpoint stream IDs.
2072  * @interface:	alternate setting that includes all endpoints.
2073  * @eps:	array of endpoints to remove streams from.
2074  * @num_eps:	number of endpoints in the array.
2075  * @mem_flags:	flags hcd should use to allocate memory.
2076  *
2077  * Reverts a group of bulk endpoints back to not using stream IDs.
2078  * Can fail if we are given bad arguments, or HCD is broken.
2079  *
2080  * Return: 0 on success. On failure, a negative error code.
2081  */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2082 int usb_free_streams(struct usb_interface *interface,
2083 		struct usb_host_endpoint **eps, unsigned int num_eps,
2084 		gfp_t mem_flags)
2085 {
2086 	struct usb_hcd *hcd;
2087 	struct usb_device *dev;
2088 	int i, ret;
2089 
2090 	dev = interface_to_usbdev(interface);
2091 	hcd = bus_to_hcd(dev->bus);
2092 	if (dev->speed < USB_SPEED_SUPER)
2093 		return -EINVAL;
2094 
2095 	/* Double-free is not allowed */
2096 	for (i = 0; i < num_eps; i++)
2097 		if (!eps[i] || !eps[i]->streams)
2098 			return -EINVAL;
2099 
2100 	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2101 	if (ret < 0)
2102 		return ret;
2103 
2104 	for (i = 0; i < num_eps; i++)
2105 		eps[i]->streams = 0;
2106 
2107 	return ret;
2108 }
2109 EXPORT_SYMBOL_GPL(usb_free_streams);
2110 
2111 /* Protect against drivers that try to unlink URBs after the device
2112  * is gone, by waiting until all unlinks for @udev are finished.
2113  * Since we don't currently track URBs by device, simply wait until
2114  * nothing is running in the locked region of usb_hcd_unlink_urb().
2115  */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2116 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2117 {
2118 	spin_lock_irq(&hcd_urb_unlink_lock);
2119 	spin_unlock_irq(&hcd_urb_unlink_lock);
2120 }
2121 
2122 /*-------------------------------------------------------------------------*/
2123 
2124 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2125 int usb_hcd_get_frame_number (struct usb_device *udev)
2126 {
2127 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2128 
2129 	if (!HCD_RH_RUNNING(hcd))
2130 		return -ESHUTDOWN;
2131 	return hcd->driver->get_frame_number (hcd);
2132 }
2133 
2134 /*-------------------------------------------------------------------------*/
2135 
2136 #ifdef	CONFIG_PM
2137 
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2138 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2139 {
2140 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2141 	int		status;
2142 	int		old_state = hcd->state;
2143 
2144 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2145 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2146 			rhdev->do_remote_wakeup);
2147 	if (HCD_DEAD(hcd)) {
2148 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2149 		return 0;
2150 	}
2151 
2152 	if (!hcd->driver->bus_suspend) {
2153 		status = -ENOENT;
2154 	} else {
2155 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2156 		hcd->state = HC_STATE_QUIESCING;
2157 		status = hcd->driver->bus_suspend(hcd);
2158 	}
2159 	if (status == 0) {
2160 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2161 		hcd->state = HC_STATE_SUSPENDED;
2162 
2163 		if (!PMSG_IS_AUTO(msg))
2164 			usb_phy_roothub_suspend(hcd->self.sysdev,
2165 						hcd->phy_roothub);
2166 
2167 		/* Did we race with a root-hub wakeup event? */
2168 		if (rhdev->do_remote_wakeup) {
2169 			char	buffer[6];
2170 
2171 			status = hcd->driver->hub_status_data(hcd, buffer);
2172 			if (status != 0) {
2173 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2174 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2175 				status = -EBUSY;
2176 			}
2177 		}
2178 	} else {
2179 		spin_lock_irq(&hcd_root_hub_lock);
2180 		if (!HCD_DEAD(hcd)) {
2181 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2182 			hcd->state = old_state;
2183 		}
2184 		spin_unlock_irq(&hcd_root_hub_lock);
2185 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2186 				"suspend", status);
2187 	}
2188 	return status;
2189 }
2190 
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2191 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2192 {
2193 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2194 	int		status;
2195 	int		old_state = hcd->state;
2196 
2197 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2198 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2199 	if (HCD_DEAD(hcd)) {
2200 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2201 		return 0;
2202 	}
2203 
2204 	if (!PMSG_IS_AUTO(msg)) {
2205 		status = usb_phy_roothub_resume(hcd->self.sysdev,
2206 						hcd->phy_roothub);
2207 		if (status)
2208 			return status;
2209 	}
2210 
2211 	if (!hcd->driver->bus_resume)
2212 		return -ENOENT;
2213 	if (HCD_RH_RUNNING(hcd))
2214 		return 0;
2215 
2216 	hcd->state = HC_STATE_RESUMING;
2217 	status = hcd->driver->bus_resume(hcd);
2218 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2219 	if (status == 0)
2220 		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2221 
2222 	if (status == 0) {
2223 		struct usb_device *udev;
2224 		int port1;
2225 
2226 		spin_lock_irq(&hcd_root_hub_lock);
2227 		if (!HCD_DEAD(hcd)) {
2228 			usb_set_device_state(rhdev, rhdev->actconfig
2229 					? USB_STATE_CONFIGURED
2230 					: USB_STATE_ADDRESS);
2231 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2232 			hcd->state = HC_STATE_RUNNING;
2233 		}
2234 		spin_unlock_irq(&hcd_root_hub_lock);
2235 
2236 		/*
2237 		 * Check whether any of the enabled ports on the root hub are
2238 		 * unsuspended.  If they are then a TRSMRCY delay is needed
2239 		 * (this is what the USB-2 spec calls a "global resume").
2240 		 * Otherwise we can skip the delay.
2241 		 */
2242 		usb_hub_for_each_child(rhdev, port1, udev) {
2243 			if (udev->state != USB_STATE_NOTATTACHED &&
2244 					!udev->port_is_suspended) {
2245 				usleep_range(10000, 11000);	/* TRSMRCY */
2246 				break;
2247 			}
2248 		}
2249 	} else {
2250 		hcd->state = old_state;
2251 		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2252 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2253 				"resume", status);
2254 		if (status != -ESHUTDOWN)
2255 			usb_hc_died(hcd);
2256 	}
2257 	return status;
2258 }
2259 
2260 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2261 static void hcd_resume_work(struct work_struct *work)
2262 {
2263 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2264 	struct usb_device *udev = hcd->self.root_hub;
2265 
2266 	usb_remote_wakeup(udev);
2267 }
2268 
2269 /**
2270  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2271  * @hcd: host controller for this root hub
2272  *
2273  * The USB host controller calls this function when its root hub is
2274  * suspended (with the remote wakeup feature enabled) and a remote
2275  * wakeup request is received.  The routine submits a workqueue request
2276  * to resume the root hub (that is, manage its downstream ports again).
2277  */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2278 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2279 {
2280 	unsigned long flags;
2281 
2282 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2283 	if (hcd->rh_registered) {
2284 		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2285 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2286 		queue_work(pm_wq, &hcd->wakeup_work);
2287 	}
2288 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2289 }
2290 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2291 
2292 #endif	/* CONFIG_PM */
2293 
2294 /*-------------------------------------------------------------------------*/
2295 
2296 #ifdef	CONFIG_USB_OTG
2297 
2298 /**
2299  * usb_bus_start_enum - start immediate enumeration (for OTG)
2300  * @bus: the bus (must use hcd framework)
2301  * @port_num: 1-based number of port; usually bus->otg_port
2302  * Context: in_interrupt()
2303  *
2304  * Starts enumeration, with an immediate reset followed later by
2305  * hub_wq identifying and possibly configuring the device.
2306  * This is needed by OTG controller drivers, where it helps meet
2307  * HNP protocol timing requirements for starting a port reset.
2308  *
2309  * Return: 0 if successful.
2310  */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2311 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2312 {
2313 	struct usb_hcd		*hcd;
2314 	int			status = -EOPNOTSUPP;
2315 
2316 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2317 	 * boards with root hubs hooked up to internal devices (instead of
2318 	 * just the OTG port) may need more attention to resetting...
2319 	 */
2320 	hcd = bus_to_hcd(bus);
2321 	if (port_num && hcd->driver->start_port_reset)
2322 		status = hcd->driver->start_port_reset(hcd, port_num);
2323 
2324 	/* allocate hub_wq shortly after (first) root port reset finishes;
2325 	 * it may issue others, until at least 50 msecs have passed.
2326 	 */
2327 	if (status == 0)
2328 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2329 	return status;
2330 }
2331 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2332 
2333 #endif
2334 
2335 /*-------------------------------------------------------------------------*/
2336 
2337 /**
2338  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2339  * @irq: the IRQ being raised
2340  * @__hcd: pointer to the HCD whose IRQ is being signaled
2341  *
2342  * If the controller isn't HALTed, calls the driver's irq handler.
2343  * Checks whether the controller is now dead.
2344  *
2345  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2346  */
usb_hcd_irq(int irq,void * __hcd)2347 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2348 {
2349 	struct usb_hcd		*hcd = __hcd;
2350 	irqreturn_t		rc;
2351 
2352 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2353 		rc = IRQ_NONE;
2354 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2355 		rc = IRQ_NONE;
2356 	else
2357 		rc = IRQ_HANDLED;
2358 
2359 	return rc;
2360 }
2361 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2362 
2363 /*-------------------------------------------------------------------------*/
2364 
2365 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2366 static void hcd_died_work(struct work_struct *work)
2367 {
2368 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2369 	static char *env[] = {
2370 		"ERROR=DEAD",
2371 		NULL
2372 	};
2373 
2374 	/* Notify user space that the host controller has died */
2375 	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2376 }
2377 
2378 /**
2379  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2380  * @hcd: pointer to the HCD representing the controller
2381  *
2382  * This is called by bus glue to report a USB host controller that died
2383  * while operations may still have been pending.  It's called automatically
2384  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2385  *
2386  * Only call this function with the primary HCD.
2387  */
usb_hc_died(struct usb_hcd * hcd)2388 void usb_hc_died (struct usb_hcd *hcd)
2389 {
2390 	unsigned long flags;
2391 
2392 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2393 
2394 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2395 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2396 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2397 	if (hcd->rh_registered) {
2398 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2399 
2400 		/* make hub_wq clean up old urbs and devices */
2401 		usb_set_device_state (hcd->self.root_hub,
2402 				USB_STATE_NOTATTACHED);
2403 		usb_kick_hub_wq(hcd->self.root_hub);
2404 	}
2405 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2406 		hcd = hcd->shared_hcd;
2407 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2408 		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2409 		if (hcd->rh_registered) {
2410 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2411 
2412 			/* make hub_wq clean up old urbs and devices */
2413 			usb_set_device_state(hcd->self.root_hub,
2414 					USB_STATE_NOTATTACHED);
2415 			usb_kick_hub_wq(hcd->self.root_hub);
2416 		}
2417 	}
2418 
2419 	/* Handle the case where this function gets called with a shared HCD */
2420 	if (usb_hcd_is_primary_hcd(hcd))
2421 		schedule_work(&hcd->died_work);
2422 	else
2423 		schedule_work(&hcd->primary_hcd->died_work);
2424 
2425 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2426 	/* Make sure that the other roothub is also deallocated. */
2427 }
2428 EXPORT_SYMBOL_GPL (usb_hc_died);
2429 
2430 /*-------------------------------------------------------------------------*/
2431 
init_giveback_urb_bh(struct giveback_urb_bh * bh)2432 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2433 {
2434 
2435 	spin_lock_init(&bh->lock);
2436 	INIT_LIST_HEAD(&bh->head);
2437 	tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2438 }
2439 
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2440 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2441 		struct device *sysdev, struct device *dev, const char *bus_name,
2442 		struct usb_hcd *primary_hcd)
2443 {
2444 	struct usb_hcd *hcd;
2445 
2446 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2447 	if (!hcd)
2448 		return NULL;
2449 	if (primary_hcd == NULL) {
2450 		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2451 				GFP_KERNEL);
2452 		if (!hcd->address0_mutex) {
2453 			kfree(hcd);
2454 			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2455 			return NULL;
2456 		}
2457 		mutex_init(hcd->address0_mutex);
2458 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2459 				GFP_KERNEL);
2460 		if (!hcd->bandwidth_mutex) {
2461 			kfree(hcd->address0_mutex);
2462 			kfree(hcd);
2463 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2464 			return NULL;
2465 		}
2466 		mutex_init(hcd->bandwidth_mutex);
2467 		dev_set_drvdata(dev, hcd);
2468 	} else {
2469 		mutex_lock(&usb_port_peer_mutex);
2470 		hcd->address0_mutex = primary_hcd->address0_mutex;
2471 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2472 		hcd->primary_hcd = primary_hcd;
2473 		primary_hcd->primary_hcd = primary_hcd;
2474 		hcd->shared_hcd = primary_hcd;
2475 		primary_hcd->shared_hcd = hcd;
2476 		mutex_unlock(&usb_port_peer_mutex);
2477 	}
2478 
2479 	kref_init(&hcd->kref);
2480 
2481 	usb_bus_init(&hcd->self);
2482 	hcd->self.controller = dev;
2483 	hcd->self.sysdev = sysdev;
2484 	hcd->self.bus_name = bus_name;
2485 
2486 	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2487 #ifdef CONFIG_PM
2488 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2489 #endif
2490 
2491 	INIT_WORK(&hcd->died_work, hcd_died_work);
2492 
2493 	hcd->driver = driver;
2494 	hcd->speed = driver->flags & HCD_MASK;
2495 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2496 			"USB Host Controller";
2497 	return hcd;
2498 }
2499 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2500 
2501 /**
2502  * usb_create_shared_hcd - create and initialize an HCD structure
2503  * @driver: HC driver that will use this hcd
2504  * @dev: device for this HC, stored in hcd->self.controller
2505  * @bus_name: value to store in hcd->self.bus_name
2506  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2507  *              PCI device.  Only allocate certain resources for the primary HCD
2508  * Context: !in_interrupt()
2509  *
2510  * Allocate a struct usb_hcd, with extra space at the end for the
2511  * HC driver's private data.  Initialize the generic members of the
2512  * hcd structure.
2513  *
2514  * Return: On success, a pointer to the created and initialized HCD structure.
2515  * On failure (e.g. if memory is unavailable), %NULL.
2516  */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2517 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2518 		struct device *dev, const char *bus_name,
2519 		struct usb_hcd *primary_hcd)
2520 {
2521 	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2522 }
2523 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2524 
2525 /**
2526  * usb_create_hcd - create and initialize an HCD structure
2527  * @driver: HC driver that will use this hcd
2528  * @dev: device for this HC, stored in hcd->self.controller
2529  * @bus_name: value to store in hcd->self.bus_name
2530  * Context: !in_interrupt()
2531  *
2532  * Allocate a struct usb_hcd, with extra space at the end for the
2533  * HC driver's private data.  Initialize the generic members of the
2534  * hcd structure.
2535  *
2536  * Return: On success, a pointer to the created and initialized HCD
2537  * structure. On failure (e.g. if memory is unavailable), %NULL.
2538  */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2539 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2540 		struct device *dev, const char *bus_name)
2541 {
2542 	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2543 }
2544 EXPORT_SYMBOL_GPL(usb_create_hcd);
2545 
2546 /*
2547  * Roothubs that share one PCI device must also share the bandwidth mutex.
2548  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2549  * deallocated.
2550  *
2551  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2552  * freed.  When hcd_release() is called for either hcd in a peer set,
2553  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2554  */
hcd_release(struct kref * kref)2555 static void hcd_release(struct kref *kref)
2556 {
2557 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2558 
2559 	mutex_lock(&usb_port_peer_mutex);
2560 	if (hcd->shared_hcd) {
2561 		struct usb_hcd *peer = hcd->shared_hcd;
2562 
2563 		peer->shared_hcd = NULL;
2564 		peer->primary_hcd = NULL;
2565 	} else {
2566 		kfree(hcd->address0_mutex);
2567 		kfree(hcd->bandwidth_mutex);
2568 	}
2569 	mutex_unlock(&usb_port_peer_mutex);
2570 	kfree(hcd);
2571 }
2572 
usb_get_hcd(struct usb_hcd * hcd)2573 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2574 {
2575 	if (hcd)
2576 		kref_get (&hcd->kref);
2577 	return hcd;
2578 }
2579 EXPORT_SYMBOL_GPL(usb_get_hcd);
2580 
usb_put_hcd(struct usb_hcd * hcd)2581 void usb_put_hcd (struct usb_hcd *hcd)
2582 {
2583 	if (hcd)
2584 		kref_put (&hcd->kref, hcd_release);
2585 }
2586 EXPORT_SYMBOL_GPL(usb_put_hcd);
2587 
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2588 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2589 {
2590 	if (!hcd->primary_hcd)
2591 		return 1;
2592 	return hcd == hcd->primary_hcd;
2593 }
2594 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2595 
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2596 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2597 {
2598 	if (!hcd->driver->find_raw_port_number)
2599 		return port1;
2600 
2601 	return hcd->driver->find_raw_port_number(hcd, port1);
2602 }
2603 
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2604 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2605 		unsigned int irqnum, unsigned long irqflags)
2606 {
2607 	int retval;
2608 
2609 	if (hcd->driver->irq) {
2610 
2611 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2612 				hcd->driver->description, hcd->self.busnum);
2613 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2614 				hcd->irq_descr, hcd);
2615 		if (retval != 0) {
2616 			dev_err(hcd->self.controller,
2617 					"request interrupt %d failed\n",
2618 					irqnum);
2619 			return retval;
2620 		}
2621 		hcd->irq = irqnum;
2622 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2623 				(hcd->driver->flags & HCD_MEMORY) ?
2624 					"io mem" : "io base",
2625 					(unsigned long long)hcd->rsrc_start);
2626 	} else {
2627 		hcd->irq = 0;
2628 		if (hcd->rsrc_start)
2629 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2630 					(hcd->driver->flags & HCD_MEMORY) ?
2631 					"io mem" : "io base",
2632 					(unsigned long long)hcd->rsrc_start);
2633 	}
2634 	return 0;
2635 }
2636 
2637 /*
2638  * Before we free this root hub, flush in-flight peering attempts
2639  * and disable peer lookups
2640  */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2641 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2642 {
2643 	struct usb_device *rhdev;
2644 
2645 	mutex_lock(&usb_port_peer_mutex);
2646 	rhdev = hcd->self.root_hub;
2647 	hcd->self.root_hub = NULL;
2648 	mutex_unlock(&usb_port_peer_mutex);
2649 	usb_put_dev(rhdev);
2650 }
2651 
2652 /**
2653  * usb_add_hcd - finish generic HCD structure initialization and register
2654  * @hcd: the usb_hcd structure to initialize
2655  * @irqnum: Interrupt line to allocate
2656  * @irqflags: Interrupt type flags
2657  *
2658  * Finish the remaining parts of generic HCD initialization: allocate the
2659  * buffers of consistent memory, register the bus, request the IRQ line,
2660  * and call the driver's reset() and start() routines.
2661  */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2662 int usb_add_hcd(struct usb_hcd *hcd,
2663 		unsigned int irqnum, unsigned long irqflags)
2664 {
2665 	int retval;
2666 	struct usb_device *rhdev;
2667 	struct usb_hcd *shared_hcd;
2668 
2669 	if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2670 		hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2671 		if (IS_ERR(hcd->phy_roothub))
2672 			return PTR_ERR(hcd->phy_roothub);
2673 
2674 		retval = usb_phy_roothub_init(hcd->phy_roothub);
2675 		if (retval)
2676 			return retval;
2677 
2678 		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2679 						  PHY_MODE_USB_HOST_SS);
2680 		if (retval)
2681 			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2682 							  PHY_MODE_USB_HOST);
2683 		if (retval)
2684 			goto err_usb_phy_roothub_power_on;
2685 
2686 		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2687 		if (retval)
2688 			goto err_usb_phy_roothub_power_on;
2689 	}
2690 
2691 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2692 
2693 	switch (authorized_default) {
2694 	case USB_AUTHORIZE_NONE:
2695 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2696 		break;
2697 
2698 	case USB_AUTHORIZE_ALL:
2699 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2700 		break;
2701 
2702 	case USB_AUTHORIZE_INTERNAL:
2703 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2704 		break;
2705 
2706 	case USB_AUTHORIZE_WIRED:
2707 	default:
2708 		hcd->dev_policy = hcd->wireless ?
2709 			USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2710 		break;
2711 	}
2712 
2713 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2714 
2715 	/* per default all interfaces are authorized */
2716 	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2717 
2718 	/* HC is in reset state, but accessible.  Now do the one-time init,
2719 	 * bottom up so that hcds can customize the root hubs before hub_wq
2720 	 * starts talking to them.  (Note, bus id is assigned early too.)
2721 	 */
2722 	retval = hcd_buffer_create(hcd);
2723 	if (retval != 0) {
2724 		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2725 		goto err_create_buf;
2726 	}
2727 
2728 	retval = usb_register_bus(&hcd->self);
2729 	if (retval < 0)
2730 		goto err_register_bus;
2731 
2732 	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2733 	if (rhdev == NULL) {
2734 		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2735 		retval = -ENOMEM;
2736 		goto err_allocate_root_hub;
2737 	}
2738 	mutex_lock(&usb_port_peer_mutex);
2739 	hcd->self.root_hub = rhdev;
2740 	mutex_unlock(&usb_port_peer_mutex);
2741 
2742 	rhdev->rx_lanes = 1;
2743 	rhdev->tx_lanes = 1;
2744 
2745 	switch (hcd->speed) {
2746 	case HCD_USB11:
2747 		rhdev->speed = USB_SPEED_FULL;
2748 		break;
2749 	case HCD_USB2:
2750 		rhdev->speed = USB_SPEED_HIGH;
2751 		break;
2752 	case HCD_USB25:
2753 		rhdev->speed = USB_SPEED_WIRELESS;
2754 		break;
2755 	case HCD_USB3:
2756 		rhdev->speed = USB_SPEED_SUPER;
2757 		break;
2758 	case HCD_USB32:
2759 		rhdev->rx_lanes = 2;
2760 		rhdev->tx_lanes = 2;
2761 		fallthrough;
2762 	case HCD_USB31:
2763 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2764 		break;
2765 	default:
2766 		retval = -EINVAL;
2767 		goto err_set_rh_speed;
2768 	}
2769 
2770 	/* wakeup flag init defaults to "everything works" for root hubs,
2771 	 * but drivers can override it in reset() if needed, along with
2772 	 * recording the overall controller's system wakeup capability.
2773 	 */
2774 	device_set_wakeup_capable(&rhdev->dev, 1);
2775 
2776 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2777 	 * registered.  But since the controller can die at any time,
2778 	 * let's initialize the flag before touching the hardware.
2779 	 */
2780 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2781 
2782 	/* "reset" is misnamed; its role is now one-time init. the controller
2783 	 * should already have been reset (and boot firmware kicked off etc).
2784 	 */
2785 	if (hcd->driver->reset) {
2786 		retval = hcd->driver->reset(hcd);
2787 		if (retval < 0) {
2788 			dev_err(hcd->self.controller, "can't setup: %d\n",
2789 					retval);
2790 			goto err_hcd_driver_setup;
2791 		}
2792 	}
2793 	hcd->rh_pollable = 1;
2794 
2795 	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2796 	if (retval)
2797 		goto err_hcd_driver_setup;
2798 
2799 	/* NOTE: root hub and controller capabilities may not be the same */
2800 	if (device_can_wakeup(hcd->self.controller)
2801 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2802 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2803 
2804 	/* initialize tasklets */
2805 	init_giveback_urb_bh(&hcd->high_prio_bh);
2806 	hcd->high_prio_bh.high_prio = true;
2807 	init_giveback_urb_bh(&hcd->low_prio_bh);
2808 
2809 	/* enable irqs just before we start the controller,
2810 	 * if the BIOS provides legacy PCI irqs.
2811 	 */
2812 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2813 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2814 		if (retval)
2815 			goto err_request_irq;
2816 	}
2817 
2818 	hcd->state = HC_STATE_RUNNING;
2819 	retval = hcd->driver->start(hcd);
2820 	if (retval < 0) {
2821 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2822 		goto err_hcd_driver_start;
2823 	}
2824 
2825 	/* starting here, usbcore will pay attention to the shared HCD roothub */
2826 	shared_hcd = hcd->shared_hcd;
2827 	if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2828 		retval = register_root_hub(shared_hcd);
2829 		if (retval != 0)
2830 			goto err_register_root_hub;
2831 
2832 		if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2833 			usb_hcd_poll_rh_status(shared_hcd);
2834 	}
2835 
2836 	/* starting here, usbcore will pay attention to this root hub */
2837 	if (!HCD_DEFER_RH_REGISTER(hcd)) {
2838 		retval = register_root_hub(hcd);
2839 		if (retval != 0)
2840 			goto err_register_root_hub;
2841 
2842 		if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2843 			usb_hcd_poll_rh_status(hcd);
2844 	}
2845 
2846 	return retval;
2847 
2848 err_register_root_hub:
2849 	hcd->rh_pollable = 0;
2850 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2851 	del_timer_sync(&hcd->rh_timer);
2852 	hcd->driver->stop(hcd);
2853 	hcd->state = HC_STATE_HALT;
2854 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2855 	del_timer_sync(&hcd->rh_timer);
2856 err_hcd_driver_start:
2857 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2858 		free_irq(irqnum, hcd);
2859 err_request_irq:
2860 err_hcd_driver_setup:
2861 err_set_rh_speed:
2862 	usb_put_invalidate_rhdev(hcd);
2863 err_allocate_root_hub:
2864 	usb_deregister_bus(&hcd->self);
2865 err_register_bus:
2866 	hcd_buffer_destroy(hcd);
2867 err_create_buf:
2868 	usb_phy_roothub_power_off(hcd->phy_roothub);
2869 err_usb_phy_roothub_power_on:
2870 	usb_phy_roothub_exit(hcd->phy_roothub);
2871 
2872 	return retval;
2873 }
2874 EXPORT_SYMBOL_GPL(usb_add_hcd);
2875 
2876 /**
2877  * usb_remove_hcd - shutdown processing for generic HCDs
2878  * @hcd: the usb_hcd structure to remove
2879  * Context: !in_interrupt()
2880  *
2881  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2882  * invoking the HCD's stop() method.
2883  */
usb_remove_hcd(struct usb_hcd * hcd)2884 void usb_remove_hcd(struct usb_hcd *hcd)
2885 {
2886 	struct usb_device *rhdev = hcd->self.root_hub;
2887 	bool rh_registered;
2888 
2889 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2890 
2891 	usb_get_dev(rhdev);
2892 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2893 	if (HC_IS_RUNNING (hcd->state))
2894 		hcd->state = HC_STATE_QUIESCING;
2895 
2896 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2897 	spin_lock_irq (&hcd_root_hub_lock);
2898 	rh_registered = hcd->rh_registered;
2899 	hcd->rh_registered = 0;
2900 	spin_unlock_irq (&hcd_root_hub_lock);
2901 
2902 #ifdef CONFIG_PM
2903 	cancel_work_sync(&hcd->wakeup_work);
2904 #endif
2905 	cancel_work_sync(&hcd->died_work);
2906 
2907 	mutex_lock(&usb_bus_idr_lock);
2908 	if (rh_registered)
2909 		usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2910 	mutex_unlock(&usb_bus_idr_lock);
2911 
2912 	/*
2913 	 * tasklet_kill() isn't needed here because:
2914 	 * - driver's disconnect() called from usb_disconnect() should
2915 	 *   make sure its URBs are completed during the disconnect()
2916 	 *   callback
2917 	 *
2918 	 * - it is too late to run complete() here since driver may have
2919 	 *   been removed already now
2920 	 */
2921 
2922 	/* Prevent any more root-hub status calls from the timer.
2923 	 * The HCD might still restart the timer (if a port status change
2924 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2925 	 * the hub_status_data() callback.
2926 	 */
2927 	hcd->rh_pollable = 0;
2928 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2929 	del_timer_sync(&hcd->rh_timer);
2930 
2931 	hcd->driver->stop(hcd);
2932 	hcd->state = HC_STATE_HALT;
2933 
2934 	/* In case the HCD restarted the timer, stop it again. */
2935 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2936 	del_timer_sync(&hcd->rh_timer);
2937 
2938 	if (usb_hcd_is_primary_hcd(hcd)) {
2939 		if (hcd->irq > 0)
2940 			free_irq(hcd->irq, hcd);
2941 	}
2942 
2943 	usb_deregister_bus(&hcd->self);
2944 	hcd_buffer_destroy(hcd);
2945 
2946 	usb_phy_roothub_power_off(hcd->phy_roothub);
2947 	usb_phy_roothub_exit(hcd->phy_roothub);
2948 
2949 	usb_put_invalidate_rhdev(hcd);
2950 	hcd->flags = 0;
2951 }
2952 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2953 
2954 void
usb_hcd_platform_shutdown(struct platform_device * dev)2955 usb_hcd_platform_shutdown(struct platform_device *dev)
2956 {
2957 	struct usb_hcd *hcd = platform_get_drvdata(dev);
2958 
2959 	/* No need for pm_runtime_put(), we're shutting down */
2960 	pm_runtime_get_sync(&dev->dev);
2961 
2962 	if (hcd->driver->shutdown)
2963 		hcd->driver->shutdown(hcd);
2964 }
2965 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2966 
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)2967 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2968 			    dma_addr_t dma, size_t size)
2969 {
2970 	int err;
2971 	void *local_mem;
2972 
2973 	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2974 						  dev_to_node(hcd->self.sysdev),
2975 						  dev_name(hcd->self.sysdev));
2976 	if (IS_ERR(hcd->localmem_pool))
2977 		return PTR_ERR(hcd->localmem_pool);
2978 
2979 	local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2980 				  size, MEMREMAP_WC);
2981 	if (IS_ERR(local_mem))
2982 		return PTR_ERR(local_mem);
2983 
2984 	/*
2985 	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2986 	 * It's not backed by system memory and thus there's no kernel mapping
2987 	 * for it.
2988 	 */
2989 	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2990 				dma, size, dev_to_node(hcd->self.sysdev));
2991 	if (err < 0) {
2992 		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2993 			err);
2994 		return err;
2995 	}
2996 
2997 	return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3000 
3001 /*-------------------------------------------------------------------------*/
3002 
3003 #if IS_ENABLED(CONFIG_USB_MON)
3004 
3005 const struct usb_mon_operations *mon_ops;
3006 
3007 /*
3008  * The registration is unlocked.
3009  * We do it this way because we do not want to lock in hot paths.
3010  *
3011  * Notice that the code is minimally error-proof. Because usbmon needs
3012  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3013  */
3014 
usb_mon_register(const struct usb_mon_operations * ops)3015 int usb_mon_register(const struct usb_mon_operations *ops)
3016 {
3017 
3018 	if (mon_ops)
3019 		return -EBUSY;
3020 
3021 	mon_ops = ops;
3022 	mb();
3023 	return 0;
3024 }
3025 EXPORT_SYMBOL_GPL (usb_mon_register);
3026 
usb_mon_deregister(void)3027 void usb_mon_deregister (void)
3028 {
3029 
3030 	if (mon_ops == NULL) {
3031 		printk(KERN_ERR "USB: monitor was not registered\n");
3032 		return;
3033 	}
3034 	mon_ops = NULL;
3035 	mb();
3036 }
3037 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3038 
3039 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3040