• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* $FreeBSD$ */
2 /*-
3  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
4  *
5  * Copyright (c) 2008 Hans Petter Selasky. All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "implementation/global_implementation.h"
30 
31 struct usb_process usb_process[USB_PROC_MAX];
32 struct mtx sched_lock;
33 
34 #undef USB_DEBUG_VAR
35 #define USB_DEBUG_VAR   usb_proc_debug
36 #ifdef LOSCFG_USB_DEBUG
37 static int usb_proc_debug;
38 void
usb_process_debug_func(int level)39 usb_process_debug_func(int level)
40 {
41 	usb_proc_debug = level;
42 	PRINTK("The level of usb process debug is %d\n", level);
43 }
44 DEBUG_MODULE(process, usb_process_debug_func);
45 #endif
46 
47 SPIN_LOCK_INIT(g_usb_process_queue_spinlock);
48 
49 /*------------------------------------------------------------------------*
50  *	usb_process
51  *
52  * This function is the USB process dispatcher.
53  *------------------------------------------------------------------------*/
54 static void*
usb_process_thread(UINTPTR para)55 usb_process_thread(UINTPTR para)
56 {
57 	struct usb_process *up = (struct usb_process*)para;
58 	struct usb_proc_msg *pm;
59 	struct thread *td;
60 	uint32_t int_save;
61 
62 	/* in case of attach error, check for suspended */
63 	USB_THREAD_SUSPEND_CHECK();
64 
65 	/* adjust priority */
66 	td = (struct thread *)(UINTPTR)curthread;
67 	thread_lock(td);
68 	sched_prio(td, up->up_prio);
69 	thread_unlock(td);
70 
71 	mtx_lock(up->up_mtx);
72 
73 	up->up_curtd = td;
74 	while (1) {
75 		if (up->up_gone)
76 			break;
77 
78 		/*
79 		 * NOTE to reimplementors: dequeueing a command from the
80 		 * "used" queue and executing it must be atomic, with regard
81 		 * to the "up_mtx" mutex. That means any attempt to queue a
82 		 * command by another thread must be blocked until either:
83 		 *
84 		 * 1) the command sleeps
85 		 *
86 		 * 2) the command returns
87 		 *
88 		 * Here is a practical example that shows how this helps
89 		 * solving a problem:
90 		 *
91 		 * Assume that you want to set the baud rate on a USB serial
92 		 * device. During the programming of the device you don't
93 		 * want to receive nor transmit any data, because it will be
94 		 * garbage most likely anyway. The programming of our USB
95 		 * device takes 20 milliseconds and it needs to call
96 		 * functions that sleep.
97 		 *
98 		 * Non-working solution: Before we queue the programming
99 		 * command, we stop transmission and reception of data. Then
100 		 * we queue a programming command. At the end of the
101 		 * programming command we enable transmission and reception
102 		 * of data.
103 		 *
104 		 * Problem: If a second programming command is queued while the
105 		 * first one is sleeping, we end up enabling transmission
106 		 * and reception of data too early.
107 		 *
108 		 * Working solution: Before we queue the programming command,
109 		 * we stop transmission and reception of data. Then we queue
110 		 * a programming command. Then we queue a second command
111 		 * that only enables transmission and reception of data.
112 		 *
113 		 * Why it works: If a second programming command is queued
114 		 * while the first one is sleeping, then the queueing of a
115 		 * second command to enable the data transfers, will cause
116 		 * the previous one, which is still on the queue, to be
117 		 * removed from the queue, and re-inserted after the last
118 		 * baud rate programming command, which then gives the
119 		 * desired result.
120 		 */
121 
122 		LOS_SpinLockSave(&g_usb_process_queue_spinlock, &int_save);
123 		pm = TAILQ_FIRST(&up->up_qhead);
124 		LOS_SpinUnlockRestore(&g_usb_process_queue_spinlock, int_save);
125 		if (pm) {
126 			DPRINTF("Message pm=%p, cb=%p (enter)\n",
127 			    pm, pm->pm_callback);
128 
129 			if (pm->pm_callback)
130 				(pm->pm_callback) (pm);
131 
132 			LOS_SpinLockSave(&g_usb_process_queue_spinlock, &int_save);
133 			if (pm == TAILQ_FIRST(&up->up_qhead)) {
134 				/* nothing changed */
135 				TAILQ_REMOVE(&up->up_qhead, pm, pm_qentry);
136 				pm->pm_qentry.tqe_prev = NULL;
137 			}
138 			LOS_SpinUnlockRestore(&g_usb_process_queue_spinlock, int_save);
139 			DPRINTF("Message pm=%p (leave)\n", pm);
140 
141 			continue;
142 		}
143 		/* end if messages - check if anyone is waiting for sync */
144 		if (up->up_dsleep) {
145 			up->up_dsleep = 0;
146 			(void)cv_broadcast(&up->up_drain);
147 		}
148 		up->up_msleep = 1;
149 		(void)cv_wait(&up->up_cv, up->up_mtx);
150 	}
151 
152 	up->up_ptr = NULL;
153 	(void)cv_signal(&up->up_cv);
154 	mtx_unlock(up->up_mtx);
155 	USB_THREAD_EXIT(0);
156 	return NULL;
157 }
158 
159 uint32_t
usb_os_task_creat(pthread_t * taskid,TSK_ENTRY_FUNC func,uint32_t prio,const char * nm,UINTPTR para)160 usb_os_task_creat(pthread_t *taskid, TSK_ENTRY_FUNC func, uint32_t prio, const char *nm, UINTPTR para)
161 {
162 	uint32_t ret;
163 	TSK_INIT_PARAM_S attr;
164 
165 	(void)memset_s(&attr, sizeof(TSK_INIT_PARAM_S), 0, sizeof(TSK_INIT_PARAM_S));
166 
167 	attr.pfnTaskEntry = func;
168 	attr.uwStackSize = LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE;
169 	attr.auwArgs[0] = (UINTPTR)para;
170 	attr.usTaskPrio = prio;
171 	attr.pcName = (char *)nm;
172 	attr.uwResved = LOS_TASK_STATUS_DETACHED;
173 
174 	ret = LOS_TaskCreate((uint32_t *)taskid, &attr);
175 	if (ret != LOS_OK) {
176 		PRINTK("create %s task error!\n",nm);
177 	}
178 	return (ret);
179 }
180 
181 uint32_t
usb_os_task_delete(pthread_t taskid)182 usb_os_task_delete(pthread_t taskid)
183 {
184 	uint32_t ret;
185 
186 	ret = LOS_TaskDelete(taskid);
187 	if (ret != LOS_OK) {
188 		PRINTK("delete task error!\n");
189 	}
190 	return (ret);
191 }
192 
193 /*------------------------------------------------------------------------*
194  *	usb_proc_create
195  *
196  * This function will create a process using the given "prio" that can
197  * execute callbacks. The mutex pointed to by "p_mtx" will be applied
198  * before calling the callbacks and released after that the callback
199  * has returned. The structure pointed to by "up" is assumed to be
200  * zeroed before this function is called.
201  *
202  * Return values:
203  *    0: success
204  * Else: failure
205  *------------------------------------------------------------------------*/
206 int
usb_proc_create(struct usb_process * up,struct mtx * p_mtx,const char * pmesg,uint8_t prio)207 usb_proc_create(struct usb_process *up, struct mtx *p_mtx,
208     const char *pmesg, uint8_t prio)
209 {
210 	uint32_t ret;
211 	pthread_t td = 0;
212 	up->up_mtx = p_mtx;
213 	up->up_prio = prio;
214 
215 	TAILQ_INIT(&up->up_qhead);
216 
217 	cv_init(&up->up_cv, "-");
218 	cv_init(&up->up_drain, "usbdrain");
219 
220 	ret = usb_os_task_creat(&td, (TSK_ENTRY_FUNC)usb_process_thread, prio, pmesg, (UINTPTR)up);
221 	if (ret != LOS_OK) {
222 		DPRINTFN(0, "Unable to create USB process.");
223 		up->up_ptr = NULL;
224 		goto error;
225 	}
226 	up->up_ptr = (struct thread *)(UINTPTR)td;
227 	return (0);
228 
229 error:
230 	usb_proc_free(up);
231 	return (ENOMEM);
232 }
233 
234 /*------------------------------------------------------------------------*
235  *	usb_proc_free
236  *
237  * NOTE: If the structure pointed to by "up" is all zero, this
238  * function does nothing.
239  *
240  * NOTE: Messages that are pending on the process queue will not be
241  * removed nor called.
242  *------------------------------------------------------------------------*/
243 void
usb_proc_free(struct usb_process * up)244 usb_proc_free(struct usb_process *up)
245 {
246 	/* check if not initialised */
247 	if (up->up_mtx == NULL)
248 		return;
249 
250 	usb_proc_drain(up);
251 
252 	cv_destroy(&up->up_cv);
253 	cv_destroy(&up->up_drain);
254 
255 	/* make sure that we do not enter here again */
256 	up->up_mtx = NULL;
257 }
258 
259 /*------------------------------------------------------------------------*
260  *	usb_proc_msignal
261  *
262  * This function will queue one of the passed USB process messages on
263  * the USB process queue. The first message that is not already queued
264  * will get queued. If both messages are already queued the one queued
265  * last will be removed from the queue and queued in the end. The USB
266  * process mutex must be locked when calling this function. This
267  * function exploits the fact that a process can only do one callback
268  * at a time. The message that was queued is returned.
269  *------------------------------------------------------------------------*/
270 void   *
usb_proc_msignal(struct usb_process * up,void * _pm0,void * _pm1)271 usb_proc_msignal(struct usb_process *up, void *_pm0, void *_pm1)
272 {
273 	struct usb_proc_msg *pm0 = _pm0;
274 	struct usb_proc_msg *pm1 = _pm1;
275 	struct usb_proc_msg *pm2;
276 	usb_size_t d;
277 	uint8_t t;
278 	uint32_t int_save;
279 
280 	/* check if gone, return dummy value */
281 	if (up->up_gone)
282 		return (_pm0);
283 
284 	t = 0;
285 
286 	LOS_SpinLockSave(&g_usb_process_queue_spinlock, &int_save);
287 	if (pm0->pm_qentry.tqe_prev) {
288 		t |= 1;
289 	}
290 	if (pm1->pm_qentry.tqe_prev) {
291 		t |= 2;
292 	}
293 	if (t == 0) {
294 		/*
295 		 * No entries are queued. Queue "pm0" and use the existing
296 		 * message number.
297 		 */
298 		pm2 = pm0;
299 	} else if (t == 1) {
300 		/* Check if we need to increment the message number. */
301 		if (pm0->pm_num == up->up_msg_num) {
302 			up->up_msg_num++;
303 		}
304 		pm2 = pm1;
305 	} else if (t == 2) {
306 		/* Check if we need to increment the message number. */
307 		if (pm1->pm_num == up->up_msg_num) {
308 			up->up_msg_num++;
309 		}
310 		pm2 = pm0;
311 	} else if (t == 3) {
312 		/*
313 		 * Both entries are queued. Re-queue the entry closest to
314 		 * the end.
315 		 */
316 		d = (pm1->pm_num - pm0->pm_num);
317 
318 		/* Check sign after subtraction */
319 		if (d & 0x80000000) {
320 			pm2 = pm0;
321 		} else {
322 			pm2 = pm1;
323 		}
324 
325 		TAILQ_REMOVE(&up->up_qhead, pm2, pm_qentry);
326 		pm2->pm_qentry.tqe_prev = NULL;
327 	} else {
328 		pm2 = NULL;		/* panic - should not happen */
329 	}
330 
331 	DPRINTF(" t=%u, num=%u\n", t, up->up_msg_num);
332 
333 	/* Put message last on queue */
334 
335 	pm2->pm_num = up->up_msg_num;
336 	TAILQ_INSERT_TAIL(&up->up_qhead, pm2, pm_qentry);
337 	LOS_SpinUnlockRestore(&g_usb_process_queue_spinlock, int_save);
338 
339 	/* Check if we need to wakeup the USB process. */
340 
341 	up->up_msleep = 0;	/* save "cv_signal()" calls */
342 	(void)cv_signal(&up->up_cv);
343 
344 	return (pm2);
345 }
346 
347 /*------------------------------------------------------------------------*
348  *	usb_proc_is_gone
349  *
350  * Return values:
351  *    0: USB process is running
352  * Else: USB process is tearing down
353  *------------------------------------------------------------------------*/
354 uint8_t
usb_proc_is_gone(struct usb_process * up)355 usb_proc_is_gone(struct usb_process *up)
356 {
357 	if (up->up_gone) {
358 		return (1);
359 	}
360 
361 	/*
362 	 * Allow calls when up_mtx is NULL, before the USB process
363 	 * structure is initialised.
364 	 */
365 	if (up->up_mtx != NULL) {
366 		mtx_assert(up->up_mtx, MA_OWNED);
367 	}
368 	return (0);
369 }
370 
371 /*------------------------------------------------------------------------*
372  *	usb_proc_mwait
373  *
374  * This function will return when the USB process message pointed to
375  * by "pm" is no longer on a queue. This function must be called
376  * having "up->up_mtx" locked.
377  *------------------------------------------------------------------------*/
378 void
usb_proc_mwait(struct usb_process * up,void * _pm0,void * _pm1)379 usb_proc_mwait(struct usb_process *up, void *_pm0, void *_pm1)
380 {
381 	struct usb_proc_msg *pm0 = _pm0;
382 	struct usb_proc_msg *pm1 = _pm1;
383 	uint32_t int_save;
384 
385 	/* check if gone */
386 	if (up->up_gone)
387 		return;
388 
389 	mtx_assert(up->up_mtx, MA_OWNED);
390 
391 	if (up->up_curtd == (struct thread *)(UINTPTR)curthread) {
392 		LOS_SpinLockSave(&g_usb_process_queue_spinlock, &int_save);
393 		/* Just remove the messages from the queue. */
394 		if (pm0->pm_qentry.tqe_prev) {
395 			TAILQ_REMOVE(&up->up_qhead, pm0, pm_qentry);
396 			pm0->pm_qentry.tqe_prev = NULL;
397 		}
398 		if (pm1->pm_qentry.tqe_prev) {
399 			TAILQ_REMOVE(&up->up_qhead, pm1, pm_qentry);
400 			pm1->pm_qentry.tqe_prev = NULL;
401 		}
402 		LOS_SpinUnlockRestore(&g_usb_process_queue_spinlock, int_save);
403 	} else
404 		while (pm0->pm_qentry.tqe_prev ||
405 		    pm1->pm_qentry.tqe_prev) {
406 			/* check if config thread is gone */
407 			if (up->up_gone)
408 				break;
409 			up->up_dsleep = 1;
410 			(void)cv_wait(&up->up_drain, up->up_mtx);
411 		}
412 }
413 
414 /*------------------------------------------------------------------------*
415  *	usb_proc_drain
416  *
417  * This function will tear down an USB process, waiting for the
418  * currently executing command to return.
419  *
420  * NOTE: If the structure pointed to by "up" is all zero,
421  * this function does nothing.
422  *------------------------------------------------------------------------*/
423 void
usb_proc_drain(struct usb_process * up)424 usb_proc_drain(struct usb_process *up)
425 {
426 	/* check if not initialised */
427 	if (up->up_mtx == NULL) {
428 		return;
429 	}
430 
431 	/* handle special case with Giant */
432 	if (up->up_mtx != &Giant) {
433 		mtx_assert(up->up_mtx, MA_NOTOWNED);
434 	}
435 
436 	mtx_lock(up->up_mtx);
437 
438 	/* Set the gone flag */
439 
440 	up->up_gone = 1;
441 
442 	while (up->up_ptr) {
443 
444 		/* Check if we need to wakeup the USB process */
445 
446 		if (up->up_msleep || up->up_csleep) {
447 			up->up_msleep = 0;
448 			up->up_csleep = 0;
449 			(void)cv_signal(&up->up_cv);
450 		}
451 		(void)cv_wait(&up->up_cv, up->up_mtx);
452 	}
453 	/* Check if someone is waiting - should not happen */
454 
455 	if (up->up_dsleep) {
456 		up->up_dsleep = 0;
457 		(void)cv_broadcast(&up->up_drain);
458 		DPRINTF("WARNING: Someone is waiting "
459 		    "for USB process drain!\n");
460 	}
461 	mtx_unlock(up->up_mtx);
462 }
463 
464 /*------------------------------------------------------------------------*
465  *	usb_proc_rewakeup
466  *
467  * This function is called to re-wakeup the given USB
468  * process. This usually happens after that the USB system has been in
469  * polling mode, like during a panic. This function must be called
470  * having "up->up_mtx" locked.
471  *------------------------------------------------------------------------*/
472 void
usb_proc_rewakeup(struct usb_process * up)473 usb_proc_rewakeup(struct usb_process *up)
474 {
475 	/* check if not initialised */
476 	if (up->up_mtx == NULL)
477 		return;
478 	/* check if gone */
479 	if (up->up_gone)
480 		return;
481 
482 	mtx_assert(up->up_mtx, MA_OWNED);
483 
484 	if (up->up_msleep == 0) {
485 		/* re-wakeup */
486 		(void)cv_signal(&up->up_cv);
487 	}
488 }
489 
490 /*------------------------------------------------------------------------*
491  *	usb_proc_is_called_from
492  *
493  * This function will return non-zero if called from inside the USB
494  * process passed as first argument. Else this function returns zero.
495  *------------------------------------------------------------------------*/
496 int
usb_proc_is_called_from(struct usb_process * up)497 usb_proc_is_called_from(struct usb_process *up)
498 {
499 	return (up->up_curtd == (struct thread *)(UINTPTR)curthread);
500 }
501 
502 #undef USB_DEBUG_VAR
503