1 /* $FreeBSD$ */
2 /*-
3 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
4 *
5 * Copyright (c) 2008 Hans Petter Selasky. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "implementation/global_implementation.h"
30
31 struct usb_process usb_process[USB_PROC_MAX];
32 struct mtx sched_lock;
33
34 #undef USB_DEBUG_VAR
35 #define USB_DEBUG_VAR usb_proc_debug
36 #ifdef LOSCFG_USB_DEBUG
37 static int usb_proc_debug;
38 void
usb_process_debug_func(int level)39 usb_process_debug_func(int level)
40 {
41 usb_proc_debug = level;
42 PRINTK("The level of usb process debug is %d\n", level);
43 }
44 DEBUG_MODULE(process, usb_process_debug_func);
45 #endif
46
47 SPIN_LOCK_INIT(g_usb_process_queue_spinlock);
48
49 /*------------------------------------------------------------------------*
50 * usb_process
51 *
52 * This function is the USB process dispatcher.
53 *------------------------------------------------------------------------*/
54 static void*
usb_process_thread(UINTPTR para)55 usb_process_thread(UINTPTR para)
56 {
57 struct usb_process *up = (struct usb_process*)para;
58 struct usb_proc_msg *pm;
59 struct thread *td;
60 uint32_t int_save;
61
62 /* in case of attach error, check for suspended */
63 USB_THREAD_SUSPEND_CHECK();
64
65 /* adjust priority */
66 td = (struct thread *)(UINTPTR)curthread;
67 thread_lock(td);
68 sched_prio(td, up->up_prio);
69 thread_unlock(td);
70
71 mtx_lock(up->up_mtx);
72
73 up->up_curtd = td;
74 while (1) {
75 if (up->up_gone)
76 break;
77
78 /*
79 * NOTE to reimplementors: dequeueing a command from the
80 * "used" queue and executing it must be atomic, with regard
81 * to the "up_mtx" mutex. That means any attempt to queue a
82 * command by another thread must be blocked until either:
83 *
84 * 1) the command sleeps
85 *
86 * 2) the command returns
87 *
88 * Here is a practical example that shows how this helps
89 * solving a problem:
90 *
91 * Assume that you want to set the baud rate on a USB serial
92 * device. During the programming of the device you don't
93 * want to receive nor transmit any data, because it will be
94 * garbage most likely anyway. The programming of our USB
95 * device takes 20 milliseconds and it needs to call
96 * functions that sleep.
97 *
98 * Non-working solution: Before we queue the programming
99 * command, we stop transmission and reception of data. Then
100 * we queue a programming command. At the end of the
101 * programming command we enable transmission and reception
102 * of data.
103 *
104 * Problem: If a second programming command is queued while the
105 * first one is sleeping, we end up enabling transmission
106 * and reception of data too early.
107 *
108 * Working solution: Before we queue the programming command,
109 * we stop transmission and reception of data. Then we queue
110 * a programming command. Then we queue a second command
111 * that only enables transmission and reception of data.
112 *
113 * Why it works: If a second programming command is queued
114 * while the first one is sleeping, then the queueing of a
115 * second command to enable the data transfers, will cause
116 * the previous one, which is still on the queue, to be
117 * removed from the queue, and re-inserted after the last
118 * baud rate programming command, which then gives the
119 * desired result.
120 */
121
122 LOS_SpinLockSave(&g_usb_process_queue_spinlock, &int_save);
123 pm = TAILQ_FIRST(&up->up_qhead);
124 LOS_SpinUnlockRestore(&g_usb_process_queue_spinlock, int_save);
125 if (pm) {
126 DPRINTF("Message pm=%p, cb=%p (enter)\n",
127 pm, pm->pm_callback);
128
129 if (pm->pm_callback)
130 (pm->pm_callback) (pm);
131
132 LOS_SpinLockSave(&g_usb_process_queue_spinlock, &int_save);
133 if (pm == TAILQ_FIRST(&up->up_qhead)) {
134 /* nothing changed */
135 TAILQ_REMOVE(&up->up_qhead, pm, pm_qentry);
136 pm->pm_qentry.tqe_prev = NULL;
137 }
138 LOS_SpinUnlockRestore(&g_usb_process_queue_spinlock, int_save);
139 DPRINTF("Message pm=%p (leave)\n", pm);
140
141 continue;
142 }
143 /* end if messages - check if anyone is waiting for sync */
144 if (up->up_dsleep) {
145 up->up_dsleep = 0;
146 (void)cv_broadcast(&up->up_drain);
147 }
148 up->up_msleep = 1;
149 (void)cv_wait(&up->up_cv, up->up_mtx);
150 }
151
152 up->up_ptr = NULL;
153 (void)cv_signal(&up->up_cv);
154 mtx_unlock(up->up_mtx);
155 USB_THREAD_EXIT(0);
156 return NULL;
157 }
158
159 uint32_t
usb_os_task_creat(pthread_t * taskid,TSK_ENTRY_FUNC func,uint32_t prio,const char * nm,UINTPTR para)160 usb_os_task_creat(pthread_t *taskid, TSK_ENTRY_FUNC func, uint32_t prio, const char *nm, UINTPTR para)
161 {
162 uint32_t ret;
163 TSK_INIT_PARAM_S attr;
164
165 (void)memset_s(&attr, sizeof(TSK_INIT_PARAM_S), 0, sizeof(TSK_INIT_PARAM_S));
166
167 attr.pfnTaskEntry = func;
168 attr.uwStackSize = LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE;
169 attr.auwArgs[0] = (UINTPTR)para;
170 attr.usTaskPrio = prio;
171 attr.pcName = (char *)nm;
172 attr.uwResved = LOS_TASK_STATUS_DETACHED;
173
174 ret = LOS_TaskCreate((uint32_t *)taskid, &attr);
175 if (ret != LOS_OK) {
176 PRINTK("create %s task error!\n",nm);
177 }
178 return (ret);
179 }
180
181 uint32_t
usb_os_task_delete(pthread_t taskid)182 usb_os_task_delete(pthread_t taskid)
183 {
184 uint32_t ret;
185
186 ret = LOS_TaskDelete(taskid);
187 if (ret != LOS_OK) {
188 PRINTK("delete task error!\n");
189 }
190 return (ret);
191 }
192
193 /*------------------------------------------------------------------------*
194 * usb_proc_create
195 *
196 * This function will create a process using the given "prio" that can
197 * execute callbacks. The mutex pointed to by "p_mtx" will be applied
198 * before calling the callbacks and released after that the callback
199 * has returned. The structure pointed to by "up" is assumed to be
200 * zeroed before this function is called.
201 *
202 * Return values:
203 * 0: success
204 * Else: failure
205 *------------------------------------------------------------------------*/
206 int
usb_proc_create(struct usb_process * up,struct mtx * p_mtx,const char * pmesg,uint8_t prio)207 usb_proc_create(struct usb_process *up, struct mtx *p_mtx,
208 const char *pmesg, uint8_t prio)
209 {
210 uint32_t ret;
211 pthread_t td = 0;
212 up->up_mtx = p_mtx;
213 up->up_prio = prio;
214
215 TAILQ_INIT(&up->up_qhead);
216
217 cv_init(&up->up_cv, "-");
218 cv_init(&up->up_drain, "usbdrain");
219
220 ret = usb_os_task_creat(&td, (TSK_ENTRY_FUNC)usb_process_thread, prio, pmesg, (UINTPTR)up);
221 if (ret != LOS_OK) {
222 DPRINTFN(0, "Unable to create USB process.");
223 up->up_ptr = NULL;
224 goto error;
225 }
226 up->up_ptr = (struct thread *)(UINTPTR)td;
227 return (0);
228
229 error:
230 usb_proc_free(up);
231 return (ENOMEM);
232 }
233
234 /*------------------------------------------------------------------------*
235 * usb_proc_free
236 *
237 * NOTE: If the structure pointed to by "up" is all zero, this
238 * function does nothing.
239 *
240 * NOTE: Messages that are pending on the process queue will not be
241 * removed nor called.
242 *------------------------------------------------------------------------*/
243 void
usb_proc_free(struct usb_process * up)244 usb_proc_free(struct usb_process *up)
245 {
246 /* check if not initialised */
247 if (up->up_mtx == NULL)
248 return;
249
250 usb_proc_drain(up);
251
252 cv_destroy(&up->up_cv);
253 cv_destroy(&up->up_drain);
254
255 /* make sure that we do not enter here again */
256 up->up_mtx = NULL;
257 }
258
259 /*------------------------------------------------------------------------*
260 * usb_proc_msignal
261 *
262 * This function will queue one of the passed USB process messages on
263 * the USB process queue. The first message that is not already queued
264 * will get queued. If both messages are already queued the one queued
265 * last will be removed from the queue and queued in the end. The USB
266 * process mutex must be locked when calling this function. This
267 * function exploits the fact that a process can only do one callback
268 * at a time. The message that was queued is returned.
269 *------------------------------------------------------------------------*/
270 void *
usb_proc_msignal(struct usb_process * up,void * _pm0,void * _pm1)271 usb_proc_msignal(struct usb_process *up, void *_pm0, void *_pm1)
272 {
273 struct usb_proc_msg *pm0 = _pm0;
274 struct usb_proc_msg *pm1 = _pm1;
275 struct usb_proc_msg *pm2;
276 usb_size_t d;
277 uint8_t t;
278 uint32_t int_save;
279
280 /* check if gone, return dummy value */
281 if (up->up_gone)
282 return (_pm0);
283
284 t = 0;
285
286 LOS_SpinLockSave(&g_usb_process_queue_spinlock, &int_save);
287 if (pm0->pm_qentry.tqe_prev) {
288 t |= 1;
289 }
290 if (pm1->pm_qentry.tqe_prev) {
291 t |= 2;
292 }
293 if (t == 0) {
294 /*
295 * No entries are queued. Queue "pm0" and use the existing
296 * message number.
297 */
298 pm2 = pm0;
299 } else if (t == 1) {
300 /* Check if we need to increment the message number. */
301 if (pm0->pm_num == up->up_msg_num) {
302 up->up_msg_num++;
303 }
304 pm2 = pm1;
305 } else if (t == 2) {
306 /* Check if we need to increment the message number. */
307 if (pm1->pm_num == up->up_msg_num) {
308 up->up_msg_num++;
309 }
310 pm2 = pm0;
311 } else if (t == 3) {
312 /*
313 * Both entries are queued. Re-queue the entry closest to
314 * the end.
315 */
316 d = (pm1->pm_num - pm0->pm_num);
317
318 /* Check sign after subtraction */
319 if (d & 0x80000000) {
320 pm2 = pm0;
321 } else {
322 pm2 = pm1;
323 }
324
325 TAILQ_REMOVE(&up->up_qhead, pm2, pm_qentry);
326 pm2->pm_qentry.tqe_prev = NULL;
327 } else {
328 pm2 = NULL; /* panic - should not happen */
329 }
330
331 DPRINTF(" t=%u, num=%u\n", t, up->up_msg_num);
332
333 /* Put message last on queue */
334
335 pm2->pm_num = up->up_msg_num;
336 TAILQ_INSERT_TAIL(&up->up_qhead, pm2, pm_qentry);
337 LOS_SpinUnlockRestore(&g_usb_process_queue_spinlock, int_save);
338
339 /* Check if we need to wakeup the USB process. */
340
341 up->up_msleep = 0; /* save "cv_signal()" calls */
342 (void)cv_signal(&up->up_cv);
343
344 return (pm2);
345 }
346
347 /*------------------------------------------------------------------------*
348 * usb_proc_is_gone
349 *
350 * Return values:
351 * 0: USB process is running
352 * Else: USB process is tearing down
353 *------------------------------------------------------------------------*/
354 uint8_t
usb_proc_is_gone(struct usb_process * up)355 usb_proc_is_gone(struct usb_process *up)
356 {
357 if (up->up_gone) {
358 return (1);
359 }
360
361 /*
362 * Allow calls when up_mtx is NULL, before the USB process
363 * structure is initialised.
364 */
365 if (up->up_mtx != NULL) {
366 mtx_assert(up->up_mtx, MA_OWNED);
367 }
368 return (0);
369 }
370
371 /*------------------------------------------------------------------------*
372 * usb_proc_mwait
373 *
374 * This function will return when the USB process message pointed to
375 * by "pm" is no longer on a queue. This function must be called
376 * having "up->up_mtx" locked.
377 *------------------------------------------------------------------------*/
378 void
usb_proc_mwait(struct usb_process * up,void * _pm0,void * _pm1)379 usb_proc_mwait(struct usb_process *up, void *_pm0, void *_pm1)
380 {
381 struct usb_proc_msg *pm0 = _pm0;
382 struct usb_proc_msg *pm1 = _pm1;
383 uint32_t int_save;
384
385 /* check if gone */
386 if (up->up_gone)
387 return;
388
389 mtx_assert(up->up_mtx, MA_OWNED);
390
391 if (up->up_curtd == (struct thread *)(UINTPTR)curthread) {
392 LOS_SpinLockSave(&g_usb_process_queue_spinlock, &int_save);
393 /* Just remove the messages from the queue. */
394 if (pm0->pm_qentry.tqe_prev) {
395 TAILQ_REMOVE(&up->up_qhead, pm0, pm_qentry);
396 pm0->pm_qentry.tqe_prev = NULL;
397 }
398 if (pm1->pm_qentry.tqe_prev) {
399 TAILQ_REMOVE(&up->up_qhead, pm1, pm_qentry);
400 pm1->pm_qentry.tqe_prev = NULL;
401 }
402 LOS_SpinUnlockRestore(&g_usb_process_queue_spinlock, int_save);
403 } else
404 while (pm0->pm_qentry.tqe_prev ||
405 pm1->pm_qentry.tqe_prev) {
406 /* check if config thread is gone */
407 if (up->up_gone)
408 break;
409 up->up_dsleep = 1;
410 (void)cv_wait(&up->up_drain, up->up_mtx);
411 }
412 }
413
414 /*------------------------------------------------------------------------*
415 * usb_proc_drain
416 *
417 * This function will tear down an USB process, waiting for the
418 * currently executing command to return.
419 *
420 * NOTE: If the structure pointed to by "up" is all zero,
421 * this function does nothing.
422 *------------------------------------------------------------------------*/
423 void
usb_proc_drain(struct usb_process * up)424 usb_proc_drain(struct usb_process *up)
425 {
426 /* check if not initialised */
427 if (up->up_mtx == NULL) {
428 return;
429 }
430
431 /* handle special case with Giant */
432 if (up->up_mtx != &Giant) {
433 mtx_assert(up->up_mtx, MA_NOTOWNED);
434 }
435
436 mtx_lock(up->up_mtx);
437
438 /* Set the gone flag */
439
440 up->up_gone = 1;
441
442 while (up->up_ptr) {
443
444 /* Check if we need to wakeup the USB process */
445
446 if (up->up_msleep || up->up_csleep) {
447 up->up_msleep = 0;
448 up->up_csleep = 0;
449 (void)cv_signal(&up->up_cv);
450 }
451 (void)cv_wait(&up->up_cv, up->up_mtx);
452 }
453 /* Check if someone is waiting - should not happen */
454
455 if (up->up_dsleep) {
456 up->up_dsleep = 0;
457 (void)cv_broadcast(&up->up_drain);
458 DPRINTF("WARNING: Someone is waiting "
459 "for USB process drain!\n");
460 }
461 mtx_unlock(up->up_mtx);
462 }
463
464 /*------------------------------------------------------------------------*
465 * usb_proc_rewakeup
466 *
467 * This function is called to re-wakeup the given USB
468 * process. This usually happens after that the USB system has been in
469 * polling mode, like during a panic. This function must be called
470 * having "up->up_mtx" locked.
471 *------------------------------------------------------------------------*/
472 void
usb_proc_rewakeup(struct usb_process * up)473 usb_proc_rewakeup(struct usb_process *up)
474 {
475 /* check if not initialised */
476 if (up->up_mtx == NULL)
477 return;
478 /* check if gone */
479 if (up->up_gone)
480 return;
481
482 mtx_assert(up->up_mtx, MA_OWNED);
483
484 if (up->up_msleep == 0) {
485 /* re-wakeup */
486 (void)cv_signal(&up->up_cv);
487 }
488 }
489
490 /*------------------------------------------------------------------------*
491 * usb_proc_is_called_from
492 *
493 * This function will return non-zero if called from inside the USB
494 * process passed as first argument. Else this function returns zero.
495 *------------------------------------------------------------------------*/
496 int
usb_proc_is_called_from(struct usb_process * up)497 usb_proc_is_called_from(struct usb_process *up)
498 {
499 return (up->up_curtd == (struct thread *)(UINTPTR)curthread);
500 }
501
502 #undef USB_DEBUG_VAR
503