• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2022 Collabora Ltd.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "va_compiler.h"
25 #include "valhall_enums.h"
26 
27 /*
28  * Valhall sources may marked as the last use of a register, according
29  * to the following rules:
30  *
31  * 1. The last use of a register should be marked allowing the hardware
32  *    to elide register writes.
33  * 2. Staging sources may be read at any time before the asynchronous
34  *    instruction completes. If a register is used as both a staging source and
35  *    a regular source, the regular source cannot be marked until the program
36  *    waits for the asynchronous instruction.
37  * 3. Marking a register pair marks both registers in the pair.
38  *
39  * Last use information follows immediately from (post-RA) liveness analysis:
40  * a register is dead immediately after its last use.
41  *
42  * Staging information follows from scoreboard analysis: do not mark registers
43  * that are read by a pending asynchronous instruction. Note that the Valhall
44  * scoreboard analysis does not track reads, so we handle that with our own
45  * (simplified) scoreboard analysis.
46  *
47  * Register pairs are marked conservatively: if either register in a pair cannot
48  * be marked, do not mark either register.
49  */
50 
51 static uint64_t
bi_staging_read_mask(const bi_instr * I)52 bi_staging_read_mask(const bi_instr *I)
53 {
54    uint64_t mask = 0;
55 
56    bi_foreach_src(I, s) {
57       if (bi_is_staging_src(I, s) && !bi_is_null(I->src[s])) {
58          assert(I->src[s].type == BI_INDEX_REGISTER);
59          unsigned reg = I->src[s].value;
60          unsigned count = bi_count_read_registers(I, s);
61 
62          mask |= (BITFIELD64_MASK(count) << reg);
63       }
64    }
65 
66    return mask;
67 }
68 
69 static bool
bi_writes_reg(const bi_instr * I,unsigned reg)70 bi_writes_reg(const bi_instr *I, unsigned reg)
71 {
72    bi_foreach_dest(I, d) {
73       if (bi_is_null(I->dest[d]))
74          continue;
75 
76       assert(I->dest[d].type == BI_INDEX_REGISTER);
77 
78       unsigned count = bi_count_write_registers(I, d);
79 
80       if (reg >= I->dest[d].value && (reg - I->dest[d].value) < count)
81          return true;
82    }
83 
84    return false;
85 }
86 
87 static unsigned
waits_on_slot(enum va_flow flow,unsigned slot)88 waits_on_slot(enum va_flow flow, unsigned slot)
89 {
90    return (flow == VA_FLOW_WAIT) || (flow == VA_FLOW_WAIT0126) ||
91           (va_flow_is_wait_or_none(flow) && (flow & BITFIELD_BIT(slot)));
92 }
93 
94 static void
scoreboard_update(struct bi_scoreboard_state * st,const bi_instr * I)95 scoreboard_update(struct bi_scoreboard_state *st, const bi_instr *I)
96 {
97    /* Mark read staging registers */
98    st->read[I->slot] |= bi_staging_read_mask(I);
99 
100    /* Unmark registers after they are waited on */
101    for (unsigned i = 0; i < VA_NUM_GENERAL_SLOTS; ++i) {
102       if (waits_on_slot(I->flow, i))
103             st->read[i] = 0;
104    }
105 }
106 
107 static void
va_analyze_scoreboard_reads(bi_context * ctx)108 va_analyze_scoreboard_reads(bi_context *ctx)
109 {
110    u_worklist worklist;
111    bi_worklist_init(ctx, &worklist);
112 
113    bi_foreach_block(ctx, block) {
114       bi_worklist_push_tail(&worklist, block);
115 
116       /* Reset analysis from previous pass */
117       block->scoreboard_in = (struct bi_scoreboard_state){ 0 };
118       block->scoreboard_out = (struct bi_scoreboard_state){ 0 };
119    }
120 
121    /* Perform forward data flow analysis to calculate dependencies */
122    while (!u_worklist_is_empty(&worklist)) {
123       /* Pop from the front for forward analysis */
124       bi_block *blk = bi_worklist_pop_head(&worklist);
125 
126       bi_foreach_predecessor(blk, pred) {
127          for (unsigned i = 0; i < VA_NUM_GENERAL_SLOTS; ++i)
128             blk->scoreboard_in.read[i] |= (*pred)->scoreboard_out.read[i];
129       }
130 
131       struct bi_scoreboard_state state = blk->scoreboard_in;
132 
133       bi_foreach_instr_in_block(blk, I)
134          scoreboard_update(&state, I);
135 
136       /* If there was progress, reprocess successors */
137       if (memcmp(&state, &blk->scoreboard_out, sizeof(state)) != 0) {
138          bi_foreach_successor(blk, succ)
139             bi_worklist_push_tail(&worklist, succ);
140       }
141 
142       blk->scoreboard_out = state;
143    }
144 
145    u_worklist_fini(&worklist);
146 }
147 
148 void
va_mark_last(bi_context * ctx)149 va_mark_last(bi_context *ctx)
150 {
151    /* Analyze the shader globally */
152    bi_postra_liveness(ctx);
153    va_analyze_scoreboard_reads(ctx);
154 
155    bi_foreach_block(ctx, block) {
156       uint64_t live = block->reg_live_out;
157 
158       /* Mark all last uses */
159       bi_foreach_instr_in_block_rev(block, I) {
160          bi_foreach_src(I, s) {
161             if (I->src[s].type != BI_INDEX_REGISTER)
162                continue;
163 
164             unsigned nr = bi_count_read_registers(I, s);
165             uint64_t mask = BITFIELD64_MASK(nr) << I->src[s].value;
166 
167             /* If the register dead after this instruction, it's the last use */
168             I->src[s].discard = (live & mask) == 0;
169 
170             /* If the register is overwritten this cycle, it is implicitly
171              * discarded, but that won't show up in the liveness analysis.
172              */
173             I->src[s].discard |= bi_writes_reg(I, I->src[s].value);
174          }
175 
176          live = bi_postra_liveness_ins(live, I);
177       }
178 
179       struct bi_scoreboard_state st = block->scoreboard_in;
180 
181       bi_foreach_instr_in_block(block, I) {
182          /* Unmark registers read by a pending async instruction */
183          bi_foreach_src(I, s) {
184             if (!I->src[s].discard)
185                continue;
186 
187             assert(I->src[s].type == BI_INDEX_REGISTER);
188 
189             uint64_t pending_regs = st.read[0] | st.read[1] | st.read[2];
190             bool pending = (pending_regs & BITFIELD64_BIT(I->src[s].value));
191 
192             if (bi_is_staging_src(I, s) || pending)
193                I->src[s].discard = false;
194          }
195 
196          /* Unmark register pairs where one half must be preserved */
197          bi_foreach_src(I, s) {
198             /* Only look for "real" architectural registers */
199             if (s >= 3)
200                break;
201 
202             if (va_src_info(I->op, s).size == VA_SIZE_64) {
203                bool both_discard = I->src[s].discard && I->src[s + 1].discard;
204 
205                I->src[s + 0].discard = both_discard;
206                I->src[s + 1].discard = both_discard;
207             }
208          }
209 
210          scoreboard_update(&st, I);
211       }
212    }
213 }
214