• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 plane module
8  *
9  * Each DRM plane is a layer of pixels being scanned out by the HVS.
10  *
11  * At atomic modeset check time, we compute the HVS display element
12  * state that would be necessary for displaying the plane (giving us a
13  * chance to figure out if a plane configuration is invalid), then at
14  * atomic flush time the CRTC will ask us to write our element state
15  * into the region of the HVS that it has allocated for us.
16  */
17 
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_atomic_uapi.h>
21 #include <drm/drm_fb_cma_helper.h>
22 #include <drm/drm_fourcc.h>
23 #include <drm/drm_gem_framebuffer_helper.h>
24 #include <drm/drm_plane_helper.h>
25 
26 #include "uapi/drm/vc4_drm.h"
27 
28 #include "vc4_drv.h"
29 #include "vc4_regs.h"
30 
31 static const struct hvs_format {
32 	u32 drm; /* DRM_FORMAT_* */
33 	u32 hvs; /* HVS_FORMAT_* */
34 	u32 pixel_order;
35 	u32 pixel_order_hvs5;
36 } hvs_formats[] = {
37 	{
38 		.drm = DRM_FORMAT_XRGB8888,
39 		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
40 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
41 		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
42 	},
43 	{
44 		.drm = DRM_FORMAT_ARGB8888,
45 		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
46 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
47 		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
48 	},
49 	{
50 		.drm = DRM_FORMAT_ABGR8888,
51 		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
52 		.pixel_order = HVS_PIXEL_ORDER_ARGB,
53 		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
54 	},
55 	{
56 		.drm = DRM_FORMAT_XBGR8888,
57 		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
58 		.pixel_order = HVS_PIXEL_ORDER_ARGB,
59 		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
60 	},
61 	{
62 		.drm = DRM_FORMAT_RGB565,
63 		.hvs = HVS_PIXEL_FORMAT_RGB565,
64 		.pixel_order = HVS_PIXEL_ORDER_XRGB,
65 	},
66 	{
67 		.drm = DRM_FORMAT_BGR565,
68 		.hvs = HVS_PIXEL_FORMAT_RGB565,
69 		.pixel_order = HVS_PIXEL_ORDER_XBGR,
70 	},
71 	{
72 		.drm = DRM_FORMAT_ARGB1555,
73 		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
74 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
75 	},
76 	{
77 		.drm = DRM_FORMAT_XRGB1555,
78 		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
79 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
80 	},
81 	{
82 		.drm = DRM_FORMAT_RGB888,
83 		.hvs = HVS_PIXEL_FORMAT_RGB888,
84 		.pixel_order = HVS_PIXEL_ORDER_XRGB,
85 	},
86 	{
87 		.drm = DRM_FORMAT_BGR888,
88 		.hvs = HVS_PIXEL_FORMAT_RGB888,
89 		.pixel_order = HVS_PIXEL_ORDER_XBGR,
90 	},
91 	{
92 		.drm = DRM_FORMAT_YUV422,
93 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
94 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
95 	},
96 	{
97 		.drm = DRM_FORMAT_YVU422,
98 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
99 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
100 	},
101 	{
102 		.drm = DRM_FORMAT_YUV420,
103 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
104 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
105 	},
106 	{
107 		.drm = DRM_FORMAT_YVU420,
108 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
109 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
110 	},
111 	{
112 		.drm = DRM_FORMAT_NV12,
113 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
114 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
115 	},
116 	{
117 		.drm = DRM_FORMAT_NV21,
118 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
119 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
120 	},
121 	{
122 		.drm = DRM_FORMAT_NV16,
123 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
124 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
125 	},
126 	{
127 		.drm = DRM_FORMAT_NV61,
128 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
129 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
130 	},
131 };
132 
vc4_get_hvs_format(u32 drm_format)133 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
134 {
135 	unsigned i;
136 
137 	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
138 		if (hvs_formats[i].drm == drm_format)
139 			return &hvs_formats[i];
140 	}
141 
142 	return NULL;
143 }
144 
vc4_get_scaling_mode(u32 src,u32 dst)145 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
146 {
147 	if (dst == src)
148 		return VC4_SCALING_NONE;
149 	if (3 * dst >= 2 * src)
150 		return VC4_SCALING_PPF;
151 	else
152 		return VC4_SCALING_TPZ;
153 }
154 
plane_enabled(struct drm_plane_state * state)155 static bool plane_enabled(struct drm_plane_state *state)
156 {
157 	return state->fb && !WARN_ON(!state->crtc);
158 }
159 
vc4_plane_duplicate_state(struct drm_plane * plane)160 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
161 {
162 	struct vc4_plane_state *vc4_state;
163 
164 	if (WARN_ON(!plane->state))
165 		return NULL;
166 
167 	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
168 	if (!vc4_state)
169 		return NULL;
170 
171 	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
172 	vc4_state->dlist_initialized = 0;
173 
174 	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
175 
176 	if (vc4_state->dlist) {
177 		vc4_state->dlist = kmemdup(vc4_state->dlist,
178 					   vc4_state->dlist_count * 4,
179 					   GFP_KERNEL);
180 		if (!vc4_state->dlist) {
181 			kfree(vc4_state);
182 			return NULL;
183 		}
184 		vc4_state->dlist_size = vc4_state->dlist_count;
185 	}
186 
187 	return &vc4_state->base;
188 }
189 
vc4_plane_destroy_state(struct drm_plane * plane,struct drm_plane_state * state)190 static void vc4_plane_destroy_state(struct drm_plane *plane,
191 				    struct drm_plane_state *state)
192 {
193 	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
194 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
195 
196 	if (drm_mm_node_allocated(&vc4_state->lbm)) {
197 		unsigned long irqflags;
198 
199 		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
200 		drm_mm_remove_node(&vc4_state->lbm);
201 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
202 	}
203 
204 	kfree(vc4_state->dlist);
205 	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
206 	kfree(state);
207 }
208 
209 /* Called during init to allocate the plane's atomic state. */
vc4_plane_reset(struct drm_plane * plane)210 static void vc4_plane_reset(struct drm_plane *plane)
211 {
212 	struct vc4_plane_state *vc4_state;
213 
214 	WARN_ON(plane->state);
215 
216 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
217 	if (!vc4_state)
218 		return;
219 
220 	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
221 }
222 
vc4_dlist_counter_increment(struct vc4_plane_state * vc4_state)223 static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
224 {
225 	if (vc4_state->dlist_count == vc4_state->dlist_size) {
226 		u32 new_size = max(4u, vc4_state->dlist_count * 2);
227 		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
228 
229 		if (!new_dlist)
230 			return;
231 		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
232 
233 		kfree(vc4_state->dlist);
234 		vc4_state->dlist = new_dlist;
235 		vc4_state->dlist_size = new_size;
236 	}
237 
238 	vc4_state->dlist_count++;
239 }
240 
vc4_dlist_write(struct vc4_plane_state * vc4_state,u32 val)241 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
242 {
243 	unsigned int idx = vc4_state->dlist_count;
244 
245 	vc4_dlist_counter_increment(vc4_state);
246 	vc4_state->dlist[idx] = val;
247 }
248 
249 /* Returns the scl0/scl1 field based on whether the dimensions need to
250  * be up/down/non-scaled.
251  *
252  * This is a replication of a table from the spec.
253  */
vc4_get_scl_field(struct drm_plane_state * state,int plane)254 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
255 {
256 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
257 
258 	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
259 	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
260 		return SCALER_CTL0_SCL_H_PPF_V_PPF;
261 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
262 		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
263 	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
264 		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
265 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
266 		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
267 	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
268 		return SCALER_CTL0_SCL_H_PPF_V_NONE;
269 	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
270 		return SCALER_CTL0_SCL_H_NONE_V_PPF;
271 	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
272 		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
273 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
274 		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
275 	default:
276 	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
277 		/* The unity case is independently handled by
278 		 * SCALER_CTL0_UNITY.
279 		 */
280 		return 0;
281 	}
282 }
283 
vc4_plane_margins_adj(struct drm_plane_state * pstate)284 static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
285 {
286 	struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
287 	unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
288 	struct drm_crtc_state *crtc_state;
289 
290 	crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
291 						   pstate->crtc);
292 
293 	vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
294 	if (!left && !right && !top && !bottom)
295 		return 0;
296 
297 	if (left + right >= crtc_state->mode.hdisplay ||
298 	    top + bottom >= crtc_state->mode.vdisplay)
299 		return -EINVAL;
300 
301 	adjhdisplay = crtc_state->mode.hdisplay - (left + right);
302 	vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
303 					       adjhdisplay,
304 					       crtc_state->mode.hdisplay);
305 	vc4_pstate->crtc_x += left;
306 	if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - right)
307 		vc4_pstate->crtc_x = crtc_state->mode.hdisplay - right;
308 
309 	adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
310 	vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
311 					       adjvdisplay,
312 					       crtc_state->mode.vdisplay);
313 	vc4_pstate->crtc_y += top;
314 	if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - bottom)
315 		vc4_pstate->crtc_y = crtc_state->mode.vdisplay - bottom;
316 
317 	vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
318 					       adjhdisplay,
319 					       crtc_state->mode.hdisplay);
320 	vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
321 					       adjvdisplay,
322 					       crtc_state->mode.vdisplay);
323 
324 	if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
325 		return -EINVAL;
326 
327 	return 0;
328 }
329 
vc4_plane_setup_clipping_and_scaling(struct drm_plane_state * state)330 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
331 {
332 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
333 	struct drm_framebuffer *fb = state->fb;
334 	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
335 	int num_planes = fb->format->num_planes;
336 	struct drm_crtc_state *crtc_state;
337 	u32 h_subsample = fb->format->hsub;
338 	u32 v_subsample = fb->format->vsub;
339 	int i, ret;
340 
341 	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
342 							state->crtc);
343 	if (!crtc_state) {
344 		DRM_DEBUG_KMS("Invalid crtc state\n");
345 		return -EINVAL;
346 	}
347 
348 	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
349 						  INT_MAX, true, true);
350 	if (ret)
351 		return ret;
352 
353 	for (i = 0; i < num_planes; i++)
354 		vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
355 
356 	/*
357 	 * We don't support subpixel source positioning for scaling,
358 	 * but fractional coordinates can be generated by clipping
359 	 * so just round for now
360 	 */
361 	vc4_state->src_x = DIV_ROUND_CLOSEST(state->src.x1, 1 << 16);
362 	vc4_state->src_y = DIV_ROUND_CLOSEST(state->src.y1, 1 << 16);
363 	vc4_state->src_w[0] = DIV_ROUND_CLOSEST(state->src.x2, 1 << 16) - vc4_state->src_x;
364 	vc4_state->src_h[0] = DIV_ROUND_CLOSEST(state->src.y2, 1 << 16) - vc4_state->src_y;
365 
366 	vc4_state->crtc_x = state->dst.x1;
367 	vc4_state->crtc_y = state->dst.y1;
368 	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
369 	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
370 
371 	ret = vc4_plane_margins_adj(state);
372 	if (ret)
373 		return ret;
374 
375 	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
376 						       vc4_state->crtc_w);
377 	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
378 						       vc4_state->crtc_h);
379 
380 	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
381 			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);
382 
383 	if (num_planes > 1) {
384 		vc4_state->is_yuv = true;
385 
386 		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
387 		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
388 
389 		vc4_state->x_scaling[1] =
390 			vc4_get_scaling_mode(vc4_state->src_w[1],
391 					     vc4_state->crtc_w);
392 		vc4_state->y_scaling[1] =
393 			vc4_get_scaling_mode(vc4_state->src_h[1],
394 					     vc4_state->crtc_h);
395 
396 		/* YUV conversion requires that horizontal scaling be enabled
397 		 * on the UV plane even if vc4_get_scaling_mode() returned
398 		 * VC4_SCALING_NONE (which can happen when the down-scaling
399 		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
400 		 * case.
401 		 */
402 		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
403 			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
404 	} else {
405 		vc4_state->is_yuv = false;
406 		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
407 		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
408 	}
409 
410 	return 0;
411 }
412 
vc4_write_tpz(struct vc4_plane_state * vc4_state,u32 src,u32 dst)413 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
414 {
415 	u32 scale, recip;
416 
417 	scale = (1 << 16) * src / dst;
418 
419 	/* The specs note that while the reciprocal would be defined
420 	 * as (1<<32)/scale, ~0 is close enough.
421 	 */
422 	recip = ~0 / scale;
423 
424 	vc4_dlist_write(vc4_state,
425 			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
426 			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
427 	vc4_dlist_write(vc4_state,
428 			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
429 }
430 
vc4_write_ppf(struct vc4_plane_state * vc4_state,u32 src,u32 dst)431 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
432 {
433 	u32 scale = (1 << 16) * src / dst;
434 
435 	vc4_dlist_write(vc4_state,
436 			SCALER_PPF_AGC |
437 			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
438 			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
439 }
440 
vc4_lbm_size(struct drm_plane_state * state)441 static u32 vc4_lbm_size(struct drm_plane_state *state)
442 {
443 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
444 	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
445 	u32 pix_per_line;
446 	u32 lbm;
447 
448 	/* LBM is not needed when there's no vertical scaling. */
449 	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
450 	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
451 		return 0;
452 
453 	/*
454 	 * This can be further optimized in the RGB/YUV444 case if the PPF
455 	 * decimation factor is between 0.5 and 1.0 by using crtc_w.
456 	 *
457 	 * It's not an issue though, since in that case since src_w[0] is going
458 	 * to be greater than or equal to crtc_w.
459 	 */
460 	if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
461 		pix_per_line = vc4_state->crtc_w;
462 	else
463 		pix_per_line = vc4_state->src_w[0];
464 
465 	if (!vc4_state->is_yuv) {
466 		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
467 			lbm = pix_per_line * 8;
468 		else {
469 			/* In special cases, this multiplier might be 12. */
470 			lbm = pix_per_line * 16;
471 		}
472 	} else {
473 		/* There are cases for this going down to a multiplier
474 		 * of 2, but according to the firmware source, the
475 		 * table in the docs is somewhat wrong.
476 		 */
477 		lbm = pix_per_line * 16;
478 	}
479 
480 	/* Align it to 64 or 128 (hvs5) bytes */
481 	lbm = roundup(lbm, vc4->hvs->hvs5 ? 128 : 64);
482 
483 	/* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
484 	lbm /= vc4->hvs->hvs5 ? 4 : 2;
485 
486 	return lbm;
487 }
488 
vc4_write_scaling_parameters(struct drm_plane_state * state,int channel)489 static void vc4_write_scaling_parameters(struct drm_plane_state *state,
490 					 int channel)
491 {
492 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
493 
494 	/* Ch0 H-PPF Word 0: Scaling Parameters */
495 	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
496 		vc4_write_ppf(vc4_state,
497 			      vc4_state->src_w[channel], vc4_state->crtc_w);
498 	}
499 
500 	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
501 	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
502 		vc4_write_ppf(vc4_state,
503 			      vc4_state->src_h[channel], vc4_state->crtc_h);
504 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
505 	}
506 
507 	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
508 	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
509 		vc4_write_tpz(vc4_state,
510 			      vc4_state->src_w[channel], vc4_state->crtc_w);
511 	}
512 
513 	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
514 	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
515 		vc4_write_tpz(vc4_state,
516 			      vc4_state->src_h[channel], vc4_state->crtc_h);
517 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
518 	}
519 }
520 
vc4_plane_calc_load(struct drm_plane_state * state)521 static void vc4_plane_calc_load(struct drm_plane_state *state)
522 {
523 	unsigned int hvs_load_shift, vrefresh, i;
524 	struct drm_framebuffer *fb = state->fb;
525 	struct vc4_plane_state *vc4_state;
526 	struct drm_crtc_state *crtc_state;
527 	unsigned int vscale_factor;
528 	struct vc4_dev *vc4;
529 
530 	vc4 = to_vc4_dev(state->plane->dev);
531 	if (!vc4->load_tracker_available)
532 		return;
533 
534 	vc4_state = to_vc4_plane_state(state);
535 	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
536 							state->crtc);
537 	vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
538 
539 	/* The HVS is able to process 2 pixels/cycle when scaling the source,
540 	 * 4 pixels/cycle otherwise.
541 	 * Alpha blending step seems to be pipelined and it's always operating
542 	 * at 4 pixels/cycle, so the limiting aspect here seems to be the
543 	 * scaler block.
544 	 * HVS load is expressed in clk-cycles/sec (AKA Hz).
545 	 */
546 	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
547 	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
548 	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
549 	    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
550 		hvs_load_shift = 1;
551 	else
552 		hvs_load_shift = 2;
553 
554 	vc4_state->membus_load = 0;
555 	vc4_state->hvs_load = 0;
556 	for (i = 0; i < fb->format->num_planes; i++) {
557 		/* Even if the bandwidth/plane required for a single frame is
558 		 *
559 		 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
560 		 *
561 		 * when downscaling, we have to read more pixels per line in
562 		 * the time frame reserved for a single line, so the bandwidth
563 		 * demand can be punctually higher. To account for that, we
564 		 * calculate the down-scaling factor and multiply the plane
565 		 * load by this number. We're likely over-estimating the read
566 		 * demand, but that's better than under-estimating it.
567 		 */
568 		vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
569 					     vc4_state->crtc_h);
570 		vc4_state->membus_load += vc4_state->src_w[i] *
571 					  vc4_state->src_h[i] * vscale_factor *
572 					  fb->format->cpp[i];
573 		vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
574 	}
575 
576 	vc4_state->hvs_load *= vrefresh;
577 	vc4_state->hvs_load >>= hvs_load_shift;
578 	vc4_state->membus_load *= vrefresh;
579 }
580 
vc4_plane_allocate_lbm(struct drm_plane_state * state)581 static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
582 {
583 	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
584 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
585 	unsigned long irqflags;
586 	u32 lbm_size;
587 
588 	lbm_size = vc4_lbm_size(state);
589 	if (!lbm_size)
590 		return 0;
591 
592 	if (WARN_ON(!vc4_state->lbm_offset))
593 		return -EINVAL;
594 
595 	/* Allocate the LBM memory that the HVS will use for temporary
596 	 * storage due to our scaling/format conversion.
597 	 */
598 	if (!drm_mm_node_allocated(&vc4_state->lbm)) {
599 		int ret;
600 
601 		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
602 		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
603 						 &vc4_state->lbm,
604 						 lbm_size,
605 						 vc4->hvs->hvs5 ? 64 : 32,
606 						 0, 0);
607 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
608 
609 		if (ret)
610 			return ret;
611 	} else {
612 		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
613 	}
614 
615 	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
616 
617 	return 0;
618 }
619 
620 /* Writes out a full display list for an active plane to the plane's
621  * private dlist state.
622  */
vc4_plane_mode_set(struct drm_plane * plane,struct drm_plane_state * state)623 static int vc4_plane_mode_set(struct drm_plane *plane,
624 			      struct drm_plane_state *state)
625 {
626 	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
627 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
628 	struct drm_framebuffer *fb = state->fb;
629 	u32 ctl0_offset = vc4_state->dlist_count;
630 	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
631 	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
632 	int num_planes = fb->format->num_planes;
633 	u32 h_subsample = fb->format->hsub;
634 	u32 v_subsample = fb->format->vsub;
635 	bool mix_plane_alpha;
636 	bool covers_screen;
637 	u32 scl0, scl1, pitch0;
638 	u32 tiling, src_y;
639 	u32 hvs_format = format->hvs;
640 	unsigned int rotation;
641 	int ret, i;
642 
643 	if (vc4_state->dlist_initialized)
644 		return 0;
645 
646 	ret = vc4_plane_setup_clipping_and_scaling(state);
647 	if (ret)
648 		return ret;
649 
650 	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
651 	 * and 4:4:4, scl1 should be set to scl0 so both channels of
652 	 * the scaler do the same thing.  For YUV, the Y plane needs
653 	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
654 	 * the scl fields here.
655 	 */
656 	if (num_planes == 1) {
657 		scl0 = vc4_get_scl_field(state, 0);
658 		scl1 = scl0;
659 	} else {
660 		scl0 = vc4_get_scl_field(state, 1);
661 		scl1 = vc4_get_scl_field(state, 0);
662 	}
663 
664 	rotation = drm_rotation_simplify(state->rotation,
665 					 DRM_MODE_ROTATE_0 |
666 					 DRM_MODE_REFLECT_X |
667 					 DRM_MODE_REFLECT_Y);
668 
669 	/* We must point to the last line when Y reflection is enabled. */
670 	src_y = vc4_state->src_y;
671 	if (rotation & DRM_MODE_REFLECT_Y)
672 		src_y += vc4_state->src_h[0] - 1;
673 
674 	switch (base_format_mod) {
675 	case DRM_FORMAT_MOD_LINEAR:
676 		tiling = SCALER_CTL0_TILING_LINEAR;
677 		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
678 
679 		/* Adjust the base pointer to the first pixel to be scanned
680 		 * out.
681 		 */
682 		for (i = 0; i < num_planes; i++) {
683 			vc4_state->offsets[i] += src_y /
684 						 (i ? v_subsample : 1) *
685 						 fb->pitches[i];
686 
687 			vc4_state->offsets[i] += vc4_state->src_x /
688 						 (i ? h_subsample : 1) *
689 						 fb->format->cpp[i];
690 		}
691 
692 		break;
693 
694 	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
695 		u32 tile_size_shift = 12; /* T tiles are 4kb */
696 		/* Whole-tile offsets, mostly for setting the pitch. */
697 		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
698 		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
699 		u32 tile_w_mask = (1 << tile_w_shift) - 1;
700 		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
701 		 * the height (in pixels) of a 4k tile.
702 		 */
703 		u32 tile_h_mask = (2 << tile_h_shift) - 1;
704 		/* For T-tiled, the FB pitch is "how many bytes from one row to
705 		 * the next, such that
706 		 *
707 		 *	pitch * tile_h == tile_size * tiles_per_row
708 		 */
709 		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
710 		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
711 		u32 tiles_r = tiles_w - tiles_l;
712 		u32 tiles_t = src_y >> tile_h_shift;
713 		/* Intra-tile offsets, which modify the base address (the
714 		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
715 		 * base address).
716 		 */
717 		u32 tile_y = (src_y >> 4) & 1;
718 		u32 subtile_y = (src_y >> 2) & 3;
719 		u32 utile_y = src_y & 3;
720 		u32 x_off = vc4_state->src_x & tile_w_mask;
721 		u32 y_off = src_y & tile_h_mask;
722 
723 		/* When Y reflection is requested we must set the
724 		 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
725 		 * after the initial one should be fetched in descending order,
726 		 * which makes sense since we start from the last line and go
727 		 * backward.
728 		 * Don't know why we need y_off = max_y_off - y_off, but it's
729 		 * definitely required (I guess it's also related to the "going
730 		 * backward" situation).
731 		 */
732 		if (rotation & DRM_MODE_REFLECT_Y) {
733 			y_off = tile_h_mask - y_off;
734 			pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
735 		} else {
736 			pitch0 = 0;
737 		}
738 
739 		tiling = SCALER_CTL0_TILING_256B_OR_T;
740 		pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
741 			   VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
742 			   VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
743 			   VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
744 		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
745 		vc4_state->offsets[0] += subtile_y << 8;
746 		vc4_state->offsets[0] += utile_y << 4;
747 
748 		/* Rows of tiles alternate left-to-right and right-to-left. */
749 		if (tiles_t & 1) {
750 			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
751 			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
752 						 tile_size_shift;
753 			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
754 		} else {
755 			vc4_state->offsets[0] += tiles_l << tile_size_shift;
756 			vc4_state->offsets[0] += tile_y << 10;
757 		}
758 
759 		break;
760 	}
761 
762 	case DRM_FORMAT_MOD_BROADCOM_SAND64:
763 	case DRM_FORMAT_MOD_BROADCOM_SAND128:
764 	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
765 		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
766 		u32 tile_w, tile, x_off, pix_per_tile;
767 
768 		hvs_format = HVS_PIXEL_FORMAT_H264;
769 
770 		switch (base_format_mod) {
771 		case DRM_FORMAT_MOD_BROADCOM_SAND64:
772 			tiling = SCALER_CTL0_TILING_64B;
773 			tile_w = 64;
774 			break;
775 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
776 			tiling = SCALER_CTL0_TILING_128B;
777 			tile_w = 128;
778 			break;
779 		case DRM_FORMAT_MOD_BROADCOM_SAND256:
780 			tiling = SCALER_CTL0_TILING_256B_OR_T;
781 			tile_w = 256;
782 			break;
783 		default:
784 			break;
785 		}
786 
787 		if (param > SCALER_TILE_HEIGHT_MASK) {
788 			DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
789 			return -EINVAL;
790 		}
791 
792 		pix_per_tile = tile_w / fb->format->cpp[0];
793 		tile = vc4_state->src_x / pix_per_tile;
794 		x_off = vc4_state->src_x % pix_per_tile;
795 
796 		/* Adjust the base pointer to the first pixel to be scanned
797 		 * out.
798 		 */
799 		for (i = 0; i < num_planes; i++) {
800 			vc4_state->offsets[i] += param * tile_w * tile;
801 			vc4_state->offsets[i] += src_y /
802 						 (i ? v_subsample : 1) *
803 						 tile_w;
804 			vc4_state->offsets[i] += x_off /
805 						 (i ? h_subsample : 1) *
806 						 fb->format->cpp[i];
807 		}
808 
809 		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
810 		break;
811 	}
812 
813 	default:
814 		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
815 			      (long long)fb->modifier);
816 		return -EINVAL;
817 	}
818 
819 	/* Don't waste cycles mixing with plane alpha if the set alpha
820 	 * is opaque or there is no per-pixel alpha information.
821 	 * In any case we use the alpha property value as the fixed alpha.
822 	 */
823 	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
824 			  fb->format->has_alpha;
825 
826 	if (!vc4->hvs->hvs5) {
827 	/* Control word */
828 		vc4_dlist_write(vc4_state,
829 				SCALER_CTL0_VALID |
830 				(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
831 				(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
832 				VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
833 				(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
834 				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
835 				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
836 				(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
837 				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
838 				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
839 
840 		/* Position Word 0: Image Positions and Alpha Value */
841 		vc4_state->pos0_offset = vc4_state->dlist_count;
842 		vc4_dlist_write(vc4_state,
843 				VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
844 				VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
845 				VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
846 
847 		/* Position Word 1: Scaled Image Dimensions. */
848 		if (!vc4_state->is_unity) {
849 			vc4_dlist_write(vc4_state,
850 					VC4_SET_FIELD(vc4_state->crtc_w,
851 						      SCALER_POS1_SCL_WIDTH) |
852 					VC4_SET_FIELD(vc4_state->crtc_h,
853 						      SCALER_POS1_SCL_HEIGHT));
854 		}
855 
856 		/* Position Word 2: Source Image Size, Alpha */
857 		vc4_state->pos2_offset = vc4_state->dlist_count;
858 		vc4_dlist_write(vc4_state,
859 				VC4_SET_FIELD(fb->format->has_alpha ?
860 					      SCALER_POS2_ALPHA_MODE_PIPELINE :
861 					      SCALER_POS2_ALPHA_MODE_FIXED,
862 					      SCALER_POS2_ALPHA_MODE) |
863 				(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
864 				(fb->format->has_alpha ?
865 						SCALER_POS2_ALPHA_PREMULT : 0) |
866 				VC4_SET_FIELD(vc4_state->src_w[0],
867 					      SCALER_POS2_WIDTH) |
868 				VC4_SET_FIELD(vc4_state->src_h[0],
869 					      SCALER_POS2_HEIGHT));
870 
871 		/* Position Word 3: Context.  Written by the HVS. */
872 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
873 
874 	} else {
875 		u32 hvs_pixel_order = format->pixel_order;
876 
877 		if (format->pixel_order_hvs5)
878 			hvs_pixel_order = format->pixel_order_hvs5;
879 
880 		/* Control word */
881 		vc4_dlist_write(vc4_state,
882 				SCALER_CTL0_VALID |
883 				(hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) |
884 				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
885 				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
886 				(vc4_state->is_unity ?
887 						SCALER5_CTL0_UNITY : 0) |
888 				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
889 				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
890 				SCALER5_CTL0_ALPHA_EXPAND |
891 				SCALER5_CTL0_RGB_EXPAND);
892 
893 		/* Position Word 0: Image Positions and Alpha Value */
894 		vc4_state->pos0_offset = vc4_state->dlist_count;
895 		vc4_dlist_write(vc4_state,
896 				(rotation & DRM_MODE_REFLECT_Y ?
897 						SCALER5_POS0_VFLIP : 0) |
898 				VC4_SET_FIELD(vc4_state->crtc_x,
899 					      SCALER_POS0_START_X) |
900 				(rotation & DRM_MODE_REFLECT_X ?
901 					      SCALER5_POS0_HFLIP : 0) |
902 				VC4_SET_FIELD(vc4_state->crtc_y,
903 					      SCALER5_POS0_START_Y)
904 			       );
905 
906 		/* Control Word 2 */
907 		vc4_dlist_write(vc4_state,
908 				VC4_SET_FIELD(state->alpha >> 4,
909 					      SCALER5_CTL2_ALPHA) |
910 				(fb->format->has_alpha ?
911 					SCALER5_CTL2_ALPHA_PREMULT : 0) |
912 				(mix_plane_alpha ?
913 					SCALER5_CTL2_ALPHA_MIX : 0) |
914 				VC4_SET_FIELD(fb->format->has_alpha ?
915 				      SCALER5_CTL2_ALPHA_MODE_PIPELINE :
916 				      SCALER5_CTL2_ALPHA_MODE_FIXED,
917 				      SCALER5_CTL2_ALPHA_MODE)
918 			       );
919 
920 		/* Position Word 1: Scaled Image Dimensions. */
921 		if (!vc4_state->is_unity) {
922 			vc4_dlist_write(vc4_state,
923 					VC4_SET_FIELD(vc4_state->crtc_w,
924 						      SCALER5_POS1_SCL_WIDTH) |
925 					VC4_SET_FIELD(vc4_state->crtc_h,
926 						      SCALER5_POS1_SCL_HEIGHT));
927 		}
928 
929 		/* Position Word 2: Source Image Size */
930 		vc4_state->pos2_offset = vc4_state->dlist_count;
931 		vc4_dlist_write(vc4_state,
932 				VC4_SET_FIELD(vc4_state->src_w[0],
933 					      SCALER5_POS2_WIDTH) |
934 				VC4_SET_FIELD(vc4_state->src_h[0],
935 					      SCALER5_POS2_HEIGHT));
936 
937 		/* Position Word 3: Context.  Written by the HVS. */
938 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
939 	}
940 
941 
942 	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
943 	 *
944 	 * The pointers may be any byte address.
945 	 */
946 	vc4_state->ptr0_offset = vc4_state->dlist_count;
947 	for (i = 0; i < num_planes; i++)
948 		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
949 
950 	/* Pointer Context Word 0/1/2: Written by the HVS */
951 	for (i = 0; i < num_planes; i++)
952 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
953 
954 	/* Pitch word 0 */
955 	vc4_dlist_write(vc4_state, pitch0);
956 
957 	/* Pitch word 1/2 */
958 	for (i = 1; i < num_planes; i++) {
959 		if (hvs_format != HVS_PIXEL_FORMAT_H264) {
960 			vc4_dlist_write(vc4_state,
961 					VC4_SET_FIELD(fb->pitches[i],
962 						      SCALER_SRC_PITCH));
963 		} else {
964 			vc4_dlist_write(vc4_state, pitch0);
965 		}
966 	}
967 
968 	/* Colorspace conversion words */
969 	if (vc4_state->is_yuv) {
970 		vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
971 		vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
972 		vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
973 	}
974 
975 	vc4_state->lbm_offset = 0;
976 
977 	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
978 	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
979 	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
980 	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
981 		/* Reserve a slot for the LBM Base Address. The real value will
982 		 * be set when calling vc4_plane_allocate_lbm().
983 		 */
984 		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
985 		    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
986 			vc4_state->lbm_offset = vc4_state->dlist_count;
987 			vc4_dlist_counter_increment(vc4_state);
988 		}
989 
990 		if (num_planes > 1) {
991 			/* Emit Cb/Cr as channel 0 and Y as channel
992 			 * 1. This matches how we set up scl0/scl1
993 			 * above.
994 			 */
995 			vc4_write_scaling_parameters(state, 1);
996 		}
997 		vc4_write_scaling_parameters(state, 0);
998 
999 		/* If any PPF setup was done, then all the kernel
1000 		 * pointers get uploaded.
1001 		 */
1002 		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
1003 		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
1004 		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
1005 		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
1006 			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
1007 						   SCALER_PPF_KERNEL_OFFSET);
1008 
1009 			/* HPPF plane 0 */
1010 			vc4_dlist_write(vc4_state, kernel);
1011 			/* VPPF plane 0 */
1012 			vc4_dlist_write(vc4_state, kernel);
1013 			/* HPPF plane 1 */
1014 			vc4_dlist_write(vc4_state, kernel);
1015 			/* VPPF plane 1 */
1016 			vc4_dlist_write(vc4_state, kernel);
1017 		}
1018 	}
1019 
1020 	vc4_state->dlist[ctl0_offset] |=
1021 		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
1022 
1023 	/* crtc_* are already clipped coordinates. */
1024 	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
1025 			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
1026 			vc4_state->crtc_h == state->crtc->mode.vdisplay;
1027 	/* Background fill might be necessary when the plane has per-pixel
1028 	 * alpha content or a non-opaque plane alpha and could blend from the
1029 	 * background or does not cover the entire screen.
1030 	 */
1031 	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
1032 				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1033 
1034 	/* Flag the dlist as initialized to avoid checking it twice in case
1035 	 * the async update check already called vc4_plane_mode_set() and
1036 	 * decided to fallback to sync update because async update was not
1037 	 * possible.
1038 	 */
1039 	vc4_state->dlist_initialized = 1;
1040 
1041 	vc4_plane_calc_load(state);
1042 
1043 	return 0;
1044 }
1045 
1046 /* If a modeset involves changing the setup of a plane, the atomic
1047  * infrastructure will call this to validate a proposed plane setup.
1048  * However, if a plane isn't getting updated, this (and the
1049  * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
1050  * compute the dlist here and have all active plane dlists get updated
1051  * in the CRTC's flush.
1052  */
vc4_plane_atomic_check(struct drm_plane * plane,struct drm_plane_state * state)1053 static int vc4_plane_atomic_check(struct drm_plane *plane,
1054 				  struct drm_plane_state *state)
1055 {
1056 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
1057 	int ret;
1058 
1059 	vc4_state->dlist_count = 0;
1060 
1061 	if (!plane_enabled(state))
1062 		return 0;
1063 
1064 	ret = vc4_plane_mode_set(plane, state);
1065 	if (ret)
1066 		return ret;
1067 
1068 	return vc4_plane_allocate_lbm(state);
1069 }
1070 
vc4_plane_atomic_update(struct drm_plane * plane,struct drm_plane_state * old_state)1071 static void vc4_plane_atomic_update(struct drm_plane *plane,
1072 				    struct drm_plane_state *old_state)
1073 {
1074 	/* No contents here.  Since we don't know where in the CRTC's
1075 	 * dlist we should be stored, our dlist is uploaded to the
1076 	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
1077 	 * time.
1078 	 */
1079 }
1080 
vc4_plane_write_dlist(struct drm_plane * plane,u32 __iomem * dlist)1081 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
1082 {
1083 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1084 	int i;
1085 
1086 	vc4_state->hw_dlist = dlist;
1087 
1088 	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
1089 	for (i = 0; i < vc4_state->dlist_count; i++)
1090 		writel(vc4_state->dlist[i], &dlist[i]);
1091 
1092 	return vc4_state->dlist_count;
1093 }
1094 
vc4_plane_dlist_size(const struct drm_plane_state * state)1095 u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1096 {
1097 	const struct vc4_plane_state *vc4_state =
1098 		container_of(state, typeof(*vc4_state), base);
1099 
1100 	return vc4_state->dlist_count;
1101 }
1102 
1103 /* Updates the plane to immediately (well, once the FIFO needs
1104  * refilling) scan out from at a new framebuffer.
1105  */
vc4_plane_async_set_fb(struct drm_plane * plane,struct drm_framebuffer * fb)1106 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
1107 {
1108 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1109 	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
1110 	uint32_t addr;
1111 
1112 	/* We're skipping the address adjustment for negative origin,
1113 	 * because this is only called on the primary plane.
1114 	 */
1115 	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1116 	addr = bo->paddr + fb->offsets[0];
1117 
1118 	/* Write the new address into the hardware immediately.  The
1119 	 * scanout will start from this address as soon as the FIFO
1120 	 * needs to refill with pixels.
1121 	 */
1122 	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1123 
1124 	/* Also update the CPU-side dlist copy, so that any later
1125 	 * atomic updates that don't do a new modeset on our plane
1126 	 * also use our updated address.
1127 	 */
1128 	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1129 }
1130 
vc4_plane_atomic_async_update(struct drm_plane * plane,struct drm_plane_state * state)1131 static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1132 					  struct drm_plane_state *state)
1133 {
1134 	struct vc4_plane_state *vc4_state, *new_vc4_state;
1135 
1136 	swap(plane->state->fb, state->fb);
1137 	plane->state->crtc_x = state->crtc_x;
1138 	plane->state->crtc_y = state->crtc_y;
1139 	plane->state->crtc_w = state->crtc_w;
1140 	plane->state->crtc_h = state->crtc_h;
1141 	plane->state->src_x = state->src_x;
1142 	plane->state->src_y = state->src_y;
1143 	plane->state->src_w = state->src_w;
1144 	plane->state->src_h = state->src_h;
1145 	plane->state->src_h = state->src_h;
1146 	plane->state->alpha = state->alpha;
1147 	plane->state->pixel_blend_mode = state->pixel_blend_mode;
1148 	plane->state->rotation = state->rotation;
1149 	plane->state->zpos = state->zpos;
1150 	plane->state->normalized_zpos = state->normalized_zpos;
1151 	plane->state->color_encoding = state->color_encoding;
1152 	plane->state->color_range = state->color_range;
1153 	plane->state->src = state->src;
1154 	plane->state->dst = state->dst;
1155 	plane->state->visible = state->visible;
1156 
1157 	new_vc4_state = to_vc4_plane_state(state);
1158 	vc4_state = to_vc4_plane_state(plane->state);
1159 
1160 	vc4_state->crtc_x = new_vc4_state->crtc_x;
1161 	vc4_state->crtc_y = new_vc4_state->crtc_y;
1162 	vc4_state->crtc_h = new_vc4_state->crtc_h;
1163 	vc4_state->crtc_w = new_vc4_state->crtc_w;
1164 	vc4_state->src_x = new_vc4_state->src_x;
1165 	vc4_state->src_y = new_vc4_state->src_y;
1166 	memcpy(vc4_state->src_w, new_vc4_state->src_w,
1167 	       sizeof(vc4_state->src_w));
1168 	memcpy(vc4_state->src_h, new_vc4_state->src_h,
1169 	       sizeof(vc4_state->src_h));
1170 	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1171 	       sizeof(vc4_state->x_scaling));
1172 	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1173 	       sizeof(vc4_state->y_scaling));
1174 	vc4_state->is_unity = new_vc4_state->is_unity;
1175 	vc4_state->is_yuv = new_vc4_state->is_yuv;
1176 	memcpy(vc4_state->offsets, new_vc4_state->offsets,
1177 	       sizeof(vc4_state->offsets));
1178 	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1179 
1180 	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1181 	vc4_state->dlist[vc4_state->pos0_offset] =
1182 		new_vc4_state->dlist[vc4_state->pos0_offset];
1183 	vc4_state->dlist[vc4_state->pos2_offset] =
1184 		new_vc4_state->dlist[vc4_state->pos2_offset];
1185 	vc4_state->dlist[vc4_state->ptr0_offset] =
1186 		new_vc4_state->dlist[vc4_state->ptr0_offset];
1187 
1188 	/* Note that we can't just call vc4_plane_write_dlist()
1189 	 * because that would smash the context data that the HVS is
1190 	 * currently using.
1191 	 */
1192 	writel(vc4_state->dlist[vc4_state->pos0_offset],
1193 	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1194 	writel(vc4_state->dlist[vc4_state->pos2_offset],
1195 	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1196 	writel(vc4_state->dlist[vc4_state->ptr0_offset],
1197 	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1198 }
1199 
vc4_plane_atomic_async_check(struct drm_plane * plane,struct drm_plane_state * state)1200 static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1201 					struct drm_plane_state *state)
1202 {
1203 	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1204 	int ret;
1205 	u32 i;
1206 
1207 	ret = vc4_plane_mode_set(plane, state);
1208 	if (ret)
1209 		return ret;
1210 
1211 	old_vc4_state = to_vc4_plane_state(plane->state);
1212 	new_vc4_state = to_vc4_plane_state(state);
1213 	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1214 	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1215 	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1216 	    old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
1217 	    vc4_lbm_size(plane->state) != vc4_lbm_size(state))
1218 		return -EINVAL;
1219 
1220 	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1221 	 * if anything else has changed, fallback to a sync update.
1222 	 */
1223 	for (i = 0; i < new_vc4_state->dlist_count; i++) {
1224 		if (i == new_vc4_state->pos0_offset ||
1225 		    i == new_vc4_state->pos2_offset ||
1226 		    i == new_vc4_state->ptr0_offset ||
1227 		    (new_vc4_state->lbm_offset &&
1228 		     i == new_vc4_state->lbm_offset))
1229 			continue;
1230 
1231 		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1232 			return -EINVAL;
1233 	}
1234 
1235 	return 0;
1236 }
1237 
vc4_prepare_fb(struct drm_plane * plane,struct drm_plane_state * state)1238 static int vc4_prepare_fb(struct drm_plane *plane,
1239 			  struct drm_plane_state *state)
1240 {
1241 	struct vc4_bo *bo;
1242 	int ret;
1243 
1244 	if (!state->fb)
1245 		return 0;
1246 
1247 	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1248 
1249 	drm_gem_fb_prepare_fb(plane, state);
1250 
1251 	if (plane->state->fb == state->fb)
1252 		return 0;
1253 
1254 	ret = vc4_bo_inc_usecnt(bo);
1255 	if (ret)
1256 		return ret;
1257 
1258 	return 0;
1259 }
1260 
vc4_cleanup_fb(struct drm_plane * plane,struct drm_plane_state * state)1261 static void vc4_cleanup_fb(struct drm_plane *plane,
1262 			   struct drm_plane_state *state)
1263 {
1264 	struct vc4_bo *bo;
1265 
1266 	if (plane->state->fb == state->fb || !state->fb)
1267 		return;
1268 
1269 	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1270 	vc4_bo_dec_usecnt(bo);
1271 }
1272 
1273 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1274 	.atomic_check = vc4_plane_atomic_check,
1275 	.atomic_update = vc4_plane_atomic_update,
1276 	.prepare_fb = vc4_prepare_fb,
1277 	.cleanup_fb = vc4_cleanup_fb,
1278 	.atomic_async_check = vc4_plane_atomic_async_check,
1279 	.atomic_async_update = vc4_plane_atomic_async_update,
1280 };
1281 
vc4_plane_destroy(struct drm_plane * plane)1282 static void vc4_plane_destroy(struct drm_plane *plane)
1283 {
1284 	drm_plane_cleanup(plane);
1285 }
1286 
vc4_format_mod_supported(struct drm_plane * plane,uint32_t format,uint64_t modifier)1287 static bool vc4_format_mod_supported(struct drm_plane *plane,
1288 				     uint32_t format,
1289 				     uint64_t modifier)
1290 {
1291 	/* Support T_TILING for RGB formats only. */
1292 	switch (format) {
1293 	case DRM_FORMAT_XRGB8888:
1294 	case DRM_FORMAT_ARGB8888:
1295 	case DRM_FORMAT_ABGR8888:
1296 	case DRM_FORMAT_XBGR8888:
1297 	case DRM_FORMAT_RGB565:
1298 	case DRM_FORMAT_BGR565:
1299 	case DRM_FORMAT_ARGB1555:
1300 	case DRM_FORMAT_XRGB1555:
1301 		switch (fourcc_mod_broadcom_mod(modifier)) {
1302 		case DRM_FORMAT_MOD_LINEAR:
1303 		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1304 			return true;
1305 		default:
1306 			return false;
1307 		}
1308 	case DRM_FORMAT_NV12:
1309 	case DRM_FORMAT_NV21:
1310 		switch (fourcc_mod_broadcom_mod(modifier)) {
1311 		case DRM_FORMAT_MOD_LINEAR:
1312 		case DRM_FORMAT_MOD_BROADCOM_SAND64:
1313 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1314 		case DRM_FORMAT_MOD_BROADCOM_SAND256:
1315 			return true;
1316 		default:
1317 			return false;
1318 		}
1319 	case DRM_FORMAT_RGBX1010102:
1320 	case DRM_FORMAT_BGRX1010102:
1321 	case DRM_FORMAT_RGBA1010102:
1322 	case DRM_FORMAT_BGRA1010102:
1323 	case DRM_FORMAT_YUV422:
1324 	case DRM_FORMAT_YVU422:
1325 	case DRM_FORMAT_YUV420:
1326 	case DRM_FORMAT_YVU420:
1327 	case DRM_FORMAT_NV16:
1328 	case DRM_FORMAT_NV61:
1329 	default:
1330 		return (modifier == DRM_FORMAT_MOD_LINEAR);
1331 	}
1332 }
1333 
1334 static const struct drm_plane_funcs vc4_plane_funcs = {
1335 	.update_plane = drm_atomic_helper_update_plane,
1336 	.disable_plane = drm_atomic_helper_disable_plane,
1337 	.destroy = vc4_plane_destroy,
1338 	.set_property = NULL,
1339 	.reset = vc4_plane_reset,
1340 	.atomic_duplicate_state = vc4_plane_duplicate_state,
1341 	.atomic_destroy_state = vc4_plane_destroy_state,
1342 	.format_mod_supported = vc4_format_mod_supported,
1343 };
1344 
vc4_plane_init(struct drm_device * dev,enum drm_plane_type type)1345 struct drm_plane *vc4_plane_init(struct drm_device *dev,
1346 				 enum drm_plane_type type)
1347 {
1348 	struct drm_plane *plane = NULL;
1349 	struct vc4_plane *vc4_plane;
1350 	u32 formats[ARRAY_SIZE(hvs_formats)];
1351 	int ret = 0;
1352 	unsigned i;
1353 	static const uint64_t modifiers[] = {
1354 		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1355 		DRM_FORMAT_MOD_BROADCOM_SAND128,
1356 		DRM_FORMAT_MOD_BROADCOM_SAND64,
1357 		DRM_FORMAT_MOD_BROADCOM_SAND256,
1358 		DRM_FORMAT_MOD_LINEAR,
1359 		DRM_FORMAT_MOD_INVALID
1360 	};
1361 
1362 	vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
1363 				 GFP_KERNEL);
1364 	if (!vc4_plane)
1365 		return ERR_PTR(-ENOMEM);
1366 
1367 	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
1368 		formats[i] = hvs_formats[i].drm;
1369 
1370 	plane = &vc4_plane->base;
1371 	ret = drm_universal_plane_init(dev, plane, 0,
1372 				       &vc4_plane_funcs,
1373 				       formats, ARRAY_SIZE(formats),
1374 				       modifiers, type, NULL);
1375 	if (ret)
1376 		return ERR_PTR(ret);
1377 
1378 	drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1379 
1380 	drm_plane_create_alpha_property(plane);
1381 	drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1382 					   DRM_MODE_ROTATE_0 |
1383 					   DRM_MODE_ROTATE_180 |
1384 					   DRM_MODE_REFLECT_X |
1385 					   DRM_MODE_REFLECT_Y);
1386 
1387 	return plane;
1388 }
1389 
vc4_plane_create_additional_planes(struct drm_device * drm)1390 int vc4_plane_create_additional_planes(struct drm_device *drm)
1391 {
1392 	struct drm_plane *cursor_plane;
1393 	struct drm_crtc *crtc;
1394 	unsigned int i;
1395 
1396 	/* Set up some arbitrary number of planes.  We're not limited
1397 	 * by a set number of physical registers, just the space in
1398 	 * the HVS (16k) and how small an plane can be (28 bytes).
1399 	 * However, each plane we set up takes up some memory, and
1400 	 * increases the cost of looping over planes, which atomic
1401 	 * modesetting does quite a bit.  As a result, we pick a
1402 	 * modest number of planes to expose, that should hopefully
1403 	 * still cover any sane usecase.
1404 	 */
1405 	for (i = 0; i < 16; i++) {
1406 		struct drm_plane *plane =
1407 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1408 
1409 		if (IS_ERR(plane))
1410 			continue;
1411 
1412 		plane->possible_crtcs =
1413 			GENMASK(drm->mode_config.num_crtc - 1, 0);
1414 	}
1415 
1416 	drm_for_each_crtc(crtc, drm) {
1417 		/* Set up the legacy cursor after overlay initialization,
1418 		 * since we overlay planes on the CRTC in the order they were
1419 		 * initialized.
1420 		 */
1421 		cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1422 		if (!IS_ERR(cursor_plane)) {
1423 			cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1424 			crtc->cursor = cursor_plane;
1425 		}
1426 	}
1427 
1428 	return 0;
1429 }
1430