1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct file_ra_state;
39 struct user_struct;
40 struct writeback_control;
41 struct bdi_writeback;
42 struct pt_regs;
43
44 extern int sysctl_page_lock_unfairness;
45
46 void init_mm_internals(void);
47
48 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
49 extern unsigned long max_mapnr;
50
set_max_mapnr(unsigned long limit)51 static inline void set_max_mapnr(unsigned long limit)
52 {
53 max_mapnr = limit;
54 }
55 #else
set_max_mapnr(unsigned long limit)56 static inline void set_max_mapnr(unsigned long limit)
57 {
58 }
59 #endif
60
61 extern atomic_long_t _totalram_pages;
totalram_pages(void)62 static inline unsigned long totalram_pages(void)
63 {
64 return (unsigned long)atomic_long_read(&_totalram_pages);
65 }
66
totalram_pages_inc(void)67 static inline void totalram_pages_inc(void)
68 {
69 atomic_long_inc(&_totalram_pages);
70 }
71
totalram_pages_dec(void)72 static inline void totalram_pages_dec(void)
73 {
74 atomic_long_dec(&_totalram_pages);
75 }
76
totalram_pages_add(long count)77 static inline void totalram_pages_add(long count)
78 {
79 atomic_long_add(count, &_totalram_pages);
80 }
81
82 extern void *high_memory;
83 extern int page_cluster;
84
85 #ifdef CONFIG_SYSCTL
86 extern int sysctl_legacy_va_layout;
87 #else
88 #define sysctl_legacy_va_layout 0
89 #endif
90
91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
92 extern const int mmap_rnd_bits_min;
93 extern const int mmap_rnd_bits_max;
94 extern int mmap_rnd_bits __read_mostly;
95 #endif
96 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
97 extern const int mmap_rnd_compat_bits_min;
98 extern const int mmap_rnd_compat_bits_max;
99 extern int mmap_rnd_compat_bits __read_mostly;
100 #endif
101
102 #include <asm/page.h>
103 #include <asm/processor.h>
104
105 /*
106 * Architectures that support memory tagging (assigning tags to memory regions,
107 * embedding these tags into addresses that point to these memory regions, and
108 * checking that the memory and the pointer tags match on memory accesses)
109 * redefine this macro to strip tags from pointers.
110 * It's defined as noop for arcitectures that don't support memory tagging.
111 */
112 #ifndef untagged_addr
113 #define untagged_addr(addr) (addr)
114 #endif
115
116 #ifndef __pa_symbol
117 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
118 #endif
119
120 #ifndef page_to_virt
121 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
122 #endif
123
124 #ifndef lm_alias
125 #define lm_alias(x) __va(__pa_symbol(x))
126 #endif
127
128 /*
129 * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
130 * instrumented C code with jump table addresses. Architectures that
131 * support CFI can define this macro to return the actual function address
132 * when needed.
133 */
134 #ifndef function_nocfi
135 #define function_nocfi(x) (x)
136 #endif
137
138 #define MM_ZERO 0
139 #define MM_ONE 1
140 #define MM_TWO 2
141 #define MM_THREE 3
142 #define MM_FOUR 4
143 #define MM_FIVE 5
144 #define MM_SIX 6
145 #define MM_SEVEN 7
146 #define MM_EIGHT 8
147 #define MM_NINE 9
148 #define MM_FIFTYSIX 56
149 #define MM_SIXTYFOUR 64
150 #define MM_SEVENTYTWO 72
151 #define MM_EIGHTY 80
152
153 /*
154 * To prevent common memory management code establishing
155 * a zero page mapping on a read fault.
156 * This macro should be defined within <asm/pgtable.h>.
157 * s390 does this to prevent multiplexing of hardware bits
158 * related to the physical page in case of virtualization.
159 */
160 #ifndef mm_forbids_zeropage
161 #define mm_forbids_zeropage(X) (0)
162 #endif
163
164 /*
165 * On some architectures it is expensive to call memset() for small sizes.
166 * If an architecture decides to implement their own version of
167 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
168 * define their own version of this macro in <asm/pgtable.h>
169 */
170 #if BITS_PER_LONG == 64
171 /* This function must be updated when the size of struct page grows above 80
172 * or reduces below 56. The idea that compiler optimizes out switch()
173 * statement, and only leaves move/store instructions. Also the compiler can
174 * combine write statments if they are both assignments and can be reordered,
175 * this can result in several of the writes here being dropped.
176 */
177 #define mm_zero_struct_page(pp) _mm_zero_struct_page(pp)
_mm_zero_struct_page(struct page * page)178 static inline void _mm_zero_struct_page(struct page *page)
179 {
180 unsigned long *_pp = (void *)page;
181
182 /* Check that struct page is either 56, 64, 72, or 80 bytes */
183 BUILD_BUG_ON(sizeof(struct page) & MM_SEVEN);
184 BUILD_BUG_ON(sizeof(struct page) < MM_FIFTYSIX);
185 BUILD_BUG_ON(sizeof(struct page) > MM_EIGHTY);
186
187 switch (sizeof(struct page)) {
188 case MM_EIGHTY:
189 _pp[MM_NINE] = 0;
190 fallthrough;
191 case MM_SEVENTYTWO:
192 _pp[MM_EIGHT] = 0;
193 fallthrough;
194 case MM_SIXTYFOUR:
195 _pp[MM_SEVEN] = 0;
196 fallthrough;
197 case MM_FIFTYSIX:
198 _pp[MM_SIX] = 0;
199 _pp[MM_FIVE] = 0;
200 _pp[MM_FOUR] = 0;
201 _pp[MM_THREE] = 0;
202 _pp[MM_TWO] = 0;
203 _pp[MM_ONE] = 0;
204 _pp[MM_ZERO] = 0;
205 }
206 }
207 #else
208 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
209 #endif
210
211 /*
212 * Default maximum number of active map areas, this limits the number of vmas
213 * per mm struct. Users can overwrite this number by sysctl but there is a
214 * problem.
215 *
216 * When a program's coredump is generated as ELF format, a section is created
217 * per a vma. In ELF, the number of sections is represented in unsigned short.
218 * This means the number of sections should be smaller than 65535 at coredump.
219 * Because the kernel adds some informative sections to a image of program at
220 * generating coredump, we need some margin. The number of extra sections is
221 * 1-3 now and depends on arch. We use "5" as safe margin, here.
222 *
223 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
224 * not a hard limit any more. Although some userspace tools can be surprised by
225 * that.
226 */
227 #define MAPCOUNT_ELF_CORE_MARGIN (5)
228 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
229
230 extern int sysctl_max_map_count;
231
232 extern unsigned long sysctl_user_reserve_kbytes;
233 extern unsigned long sysctl_admin_reserve_kbytes;
234
235 extern int sysctl_overcommit_memory;
236 extern int sysctl_overcommit_ratio;
237 extern unsigned long sysctl_overcommit_kbytes;
238
239 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
240 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
241 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
242
243 #define nth_page(page, n) pfn_to_page(page_to_pfn((page)) + (n))
244
245 /* to align the pointer to the (next) page boundary */
246 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
247
248 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
249 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
250
251 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
252
253 /*
254 * Linux kernel virtual memory manager primitives.
255 * The idea being to have a "virtual" mm in the same way
256 * we have a virtual fs - giving a cleaner interface to the
257 * mm details, and allowing different kinds of memory mappings
258 * (from shared memory to executable loading to arbitrary
259 * mmap() functions).
260 */
261
262 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
263 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
264 void vm_area_free(struct vm_area_struct *);
265
266 #ifndef CONFIG_MMU
267 extern struct rb_root nommu_region_tree;
268 extern struct rw_semaphore nommu_region_sem;
269
270 extern unsigned int kobjsize(const void *objp);
271 #endif
272
273 /*
274 * vm_flags in vm_area_struct, see mm_types.h.
275 * When changing, update also include/trace/events/mmflags.h
276 */
277 #define VM_NONE 0x00000000
278
279 #define VM_READ 0x00000001 /* currently active flags */
280 #define VM_WRITE 0x00000002
281 #define VM_EXEC 0x00000004
282 #define VM_SHARED 0x00000008
283
284 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
285 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
286 #define VM_MAYWRITE 0x00000020
287 #define VM_MAYEXEC 0x00000040
288 #define VM_MAYSHARE 0x00000080
289
290 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
291 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
292 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
293 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
294 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
295
296 #define VM_LOCKED 0x00002000
297 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
298
299 /* Used by sys_madvise() */
300 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
301 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
302
303 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
304 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
305 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
306 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
307 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
308 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
309 #define VM_SYNC 0x00800000 /* Synchronous page faults */
310 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
311 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
312 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
313
314 #ifdef CONFIG_MEM_SOFT_DIRTY
315 #define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
316 #else
317 #define VM_SOFTDIRTY 0
318 #endif
319
320 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
321 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
322 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
323 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
324
325 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
326 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_BIT_7 39 /* bit only usable on 64-bit architectures */
334 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
335 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
336 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
337 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
338 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
339 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
340 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
341 #define VM_HIGH_ARCH_7 BIT(VM_HIGH_ARCH_BIT_7)
342 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
343
344 #ifdef CONFIG_MEM_PURGEABLE
345 #define VM_PURGEABLE VM_HIGH_ARCH_5
346 #define VM_USEREXPTE VM_HIGH_ARCH_6
347 #else /* CONFIG_MEM_PURGEABLE */
348 #define VM_PURGEABLE 0
349 #define VM_USEREXPTE 0
350 #endif /* CONFIG_MEM_PURGEABLE */
351
352 #ifdef CONFIG_SECURITY_XPM
353 #define VM_XPM VM_HIGH_ARCH_7
354 #else /* CONFIG_MEM_PURGEABLE */
355 #define VM_XPM VM_NONE
356 #endif /* CONFIG_MEM_PURGEABLE */
357
358 #ifdef CONFIG_ARCH_HAS_PKEYS
359 #define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
360 #define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
361 #define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
362 #define VM_PKEY_BIT2 VM_HIGH_ARCH_2
363 #define VM_PKEY_BIT3 VM_HIGH_ARCH_3
364 #ifdef CONFIG_PPC
365 #define VM_PKEY_BIT4 VM_HIGH_ARCH_4
366 #else
367 #define VM_PKEY_BIT4 0
368 #endif
369 #endif /* CONFIG_ARCH_HAS_PKEYS */
370
371 #if defined(CONFIG_X86)
372 #define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
373 #elif defined(CONFIG_PPC)
374 #define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
375 #elif defined(CONFIG_PARISC)
376 #define VM_GROWSUP VM_ARCH_1
377 #elif defined(CONFIG_IA64)
378 #define VM_GROWSUP VM_ARCH_1
379 #elif defined(CONFIG_SPARC64)
380 #define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
381 #define VM_ARCH_CLEAR VM_SPARC_ADI
382 #elif defined(CONFIG_ARM64)
383 #define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
384 #define VM_ARCH_CLEAR VM_ARM64_BTI
385 #elif !defined(CONFIG_MMU)
386 #define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
387 #endif
388
389 #if defined(CONFIG_ARM64_MTE)
390 #define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
391 #define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
392 #else
393 #define VM_MTE VM_NONE
394 #define VM_MTE_ALLOWED VM_NONE
395 #endif
396
397 #ifndef VM_GROWSUP
398 #define VM_GROWSUP VM_NONE
399 #endif
400
401 /* Bits set in the VMA until the stack is in its final location */
402 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
403
404 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
405
406 /* Common data flag combinations */
407 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
408 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
409 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
410
411 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
412 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
413 #endif
414
415 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
416 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
417 #endif
418
419 #ifdef CONFIG_STACK_GROWSUP
420 #define VM_STACK VM_GROWSUP
421 #else
422 #define VM_STACK VM_GROWSDOWN
423 #endif
424
425 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
426
427 /* VMA basic access permission flags */
428 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
429
430 /*
431 * Special vmas that are non-mergable, non-mlock()able.
432 */
433 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
434
435 /* This mask prevents VMA from being scanned with khugepaged */
436 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
437
438 /* This mask defines which mm->def_flags a process can inherit its parent */
439 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
440
441 /* This mask is used to clear all the VMA flags used by mlock */
442 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
443
444 /* Arch-specific flags to clear when updating VM flags on protection change */
445 #ifndef VM_ARCH_CLEAR
446 #define VM_ARCH_CLEAR VM_NONE
447 #endif
448 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
449
450 /*
451 * mapping from the currently active vm_flags protection bits (the
452 * low four bits) to a page protection mask..
453 */
454 extern pgprot_t protection_map[16];
455
456 /**
457 * Fault flag definitions.
458 *
459 * @FAULT_FLAG_WRITE: Fault was a write fault.
460 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
461 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
462 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
463 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
464 * @FAULT_FLAG_TRIED: The fault has been tried once.
465 * @FAULT_FLAG_USER: The fault originated in userspace.
466 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
467 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
468 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
469 *
470 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
471 * whether we would allow page faults to retry by specifying these two
472 * fault flags correctly. Currently there can be three legal combinations:
473 *
474 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
475 * this is the first try
476 *
477 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
478 * we've already tried at least once
479 *
480 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
481 *
482 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
483 * be used. Note that page faults can be allowed to retry for multiple times,
484 * in which case we'll have an initial fault with flags (a) then later on
485 * continuous faults with flags (b). We should always try to detect pending
486 * signals before a retry to make sure the continuous page faults can still be
487 * interrupted if necessary.
488 */
489 #define FAULT_FLAG_WRITE 0x01
490 #define FAULT_FLAG_MKWRITE 0x02
491 #define FAULT_FLAG_ALLOW_RETRY 0x04
492 #define FAULT_FLAG_RETRY_NOWAIT 0x08
493 #define FAULT_FLAG_KILLABLE 0x10
494 #define FAULT_FLAG_TRIED 0x20
495 #define FAULT_FLAG_USER 0x40
496 #define FAULT_FLAG_REMOTE 0x80
497 #define FAULT_FLAG_INSTRUCTION 0x100
498 #define FAULT_FLAG_INTERRUPTIBLE 0x200
499
500 /*
501 * The default fault flags that should be used by most of the
502 * arch-specific page fault handlers.
503 */
504 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE | FAULT_FLAG_INTERRUPTIBLE)
505
506 /**
507 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
508 *
509 * This is mostly used for places where we want to try to avoid taking
510 * the mmap_lock for too long a time when waiting for another condition
511 * to change, in which case we can try to be polite to release the
512 * mmap_lock in the first round to avoid potential starvation of other
513 * processes that would also want the mmap_lock.
514 *
515 * Return: true if the page fault allows retry and this is the first
516 * attempt of the fault handling; false otherwise.
517 */
fault_flag_allow_retry_first(unsigned int flags)518 static inline bool fault_flag_allow_retry_first(unsigned int flags)
519 {
520 return (flags & FAULT_FLAG_ALLOW_RETRY) && (!(flags & FAULT_FLAG_TRIED));
521 }
522
523 #define FAULT_FLAG_TRACE \
524 {FAULT_FLAG_WRITE, "WRITE"}, {FAULT_FLAG_MKWRITE, "MKWRITE"}, {FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY"}, \
525 {FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT"}, {FAULT_FLAG_KILLABLE, "KILLABLE"}, {FAULT_FLAG_TRIED, "TRIED"}, \
526 {FAULT_FLAG_USER, "USER"}, {FAULT_FLAG_REMOTE, "REMOTE"}, {FAULT_FLAG_INSTRUCTION, "INSTRUCTION"}, \
527 { \
528 FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" \
529 }
530
531 /*
532 * vm_fault is filled by the pagefault handler and passed to the vma's
533 * ->fault function. The vma's ->fault is responsible for returning a bitmask
534 * of VM_FAULT_xxx flags that give details about how the fault was handled.
535 *
536 * MM layer fills up gfp_mask for page allocations but fault handler might
537 * alter it if its implementation requires a different allocation context.
538 *
539 * pgoff should be used in favour of virtual_address, if possible.
540 */
541 struct vm_fault {
542 struct vm_area_struct *vma; /* Target VMA */
543 unsigned int flags; /* FAULT_FLAG_xxx flags */
544 gfp_t gfp_mask; /* gfp mask to be used for allocations */
545 pgoff_t pgoff; /* Logical page offset based on vma */
546 unsigned long address; /* Faulting virtual address */
547 pmd_t *pmd; /* Pointer to pmd entry matching
548 * the 'address' */
549 pud_t *pud; /* Pointer to pud entry matching
550 * the 'address'
551 */
552 pte_t orig_pte; /* Value of PTE at the time of fault */
553
554 struct page *cow_page; /* Page handler may use for COW fault */
555 struct page *page; /* ->fault handlers should return a
556 * page here, unless VM_FAULT_NOPAGE
557 * is set (which is also implied by
558 * VM_FAULT_ERROR).
559 */
560 /* These three entries are valid only while holding ptl lock */
561 pte_t *pte; /* Pointer to pte entry matching
562 * the 'address'. NULL if the page
563 * table hasn't been allocated.
564 */
565 spinlock_t *ptl; /* Page table lock.
566 * Protects pte page table if 'pte'
567 * is not NULL, otherwise pmd.
568 */
569 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
570 * vm_ops->map_pages() calls
571 * alloc_set_pte() from atomic context.
572 * do_fault_around() pre-allocates
573 * page table to avoid allocation from
574 * atomic context.
575 */
576 };
577
578 /* page entry size for vm->huge_fault() */
579 enum page_entry_size {
580 PE_SIZE_PTE = 0,
581 PE_SIZE_PMD,
582 PE_SIZE_PUD,
583 };
584
585 /*
586 * These are the virtual MM functions - opening of an area, closing and
587 * unmapping it (needed to keep files on disk up-to-date etc), pointer
588 * to the functions called when a no-page or a wp-page exception occurs.
589 */
590 struct vm_operations_struct {
591 void (*open)(struct vm_area_struct *area);
592 void (*close)(struct vm_area_struct *area);
593 int (*split)(struct vm_area_struct *area, unsigned long addr);
594 int (*mremap)(struct vm_area_struct *area);
595 vm_fault_t (*fault)(struct vm_fault *vmf);
596 vm_fault_t (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
597 void (*map_pages)(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff);
598 unsigned long (*pagesize)(struct vm_area_struct *area);
599
600 /* notification that a previously read-only page is about to become
601 * writable, if an error is returned it will cause a SIGBUS */
602 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
603
604 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
605 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
606
607 /* called by access_process_vm when get_user_pages() fails, typically
608 * for use by special VMAs that can switch between memory and hardware
609 */
610 int (*access)(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write);
611
612 /* Called by the /proc/PID/maps code to ask the vma whether it
613 * has a special name. Returning non-NULL will also cause this
614 * vma to be dumped unconditionally. */
615 const char *(*name)(struct vm_area_struct *vma);
616
617 #ifdef CONFIG_NUMA
618 /*
619 * set_policy() op must add a reference to any non-NULL @new mempolicy
620 * to hold the policy upon return. Caller should pass NULL @new to
621 * remove a policy and fall back to surrounding context--i.e. do not
622 * install a MPOL_DEFAULT policy, nor the task or system default
623 * mempolicy.
624 */
625 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
626
627 /*
628 * get_policy() op must add reference [mpol_get()] to any policy at
629 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
630 * in mm/mempolicy.c will do this automatically.
631 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
632 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
633 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
634 * must return NULL--i.e., do not "fallback" to task or system default
635 * policy.
636 */
637 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, unsigned long addr);
638 #endif
639 /*
640 * Called by vm_normal_page() for special PTEs to find the
641 * page for @addr. This is useful if the default behavior
642 * (using pte_page()) would not find the correct page.
643 */
644 struct page *(*find_special_page)(struct vm_area_struct *vma, unsigned long addr);
645 };
646
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)647 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
648 {
649 static const struct vm_operations_struct dummy_vm_ops = {};
650
651 memset(vma, 0, sizeof(*vma));
652 vma->vm_mm = mm;
653 vma->vm_ops = &dummy_vm_ops;
654 INIT_LIST_HEAD(&vma->anon_vma_chain);
655 }
656
vma_set_anonymous(struct vm_area_struct * vma)657 static inline void vma_set_anonymous(struct vm_area_struct *vma)
658 {
659 vma->vm_ops = NULL;
660 }
661
vma_is_anonymous(struct vm_area_struct * vma)662 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
663 {
664 return !vma->vm_ops;
665 }
666
vma_is_temporary_stack(struct vm_area_struct * vma)667 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
668 {
669 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
670
671 if (!maybe_stack) {
672 return false;
673 }
674
675 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == VM_STACK_INCOMPLETE_SETUP) {
676 return true;
677 }
678
679 return false;
680 }
681
vma_is_foreign(struct vm_area_struct * vma)682 static inline bool vma_is_foreign(struct vm_area_struct *vma)
683 {
684 if (!current->mm) {
685 return true;
686 }
687
688 if (current->mm != vma->vm_mm) {
689 return true;
690 }
691
692 return false;
693 }
694
vma_is_accessible(struct vm_area_struct * vma)695 static inline bool vma_is_accessible(struct vm_area_struct *vma)
696 {
697 return vma->vm_flags & VM_ACCESS_FLAGS;
698 }
699
700 #ifdef CONFIG_SHMEM
701 /*
702 * The vma_is_shmem is not inline because it is used only by slow
703 * paths in userfault.
704 */
705 bool vma_is_shmem(struct vm_area_struct *vma);
706 #else
vma_is_shmem(struct vm_area_struct * vma)707 static inline bool vma_is_shmem(struct vm_area_struct *vma)
708 {
709 return false;
710 }
711 #endif
712
713 int vma_is_stack_for_current(struct vm_area_struct *vma);
714
715 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
716 #define TLB_FLUSH_VMA(mm, flags) \
717 { \
718 .vm_mm = (mm), .vm_flags = (flags) \
719 }
720
721 struct mmu_gather;
722 struct inode;
723
724 #include <linux/huge_mm.h>
725
726 /*
727 * Methods to modify the page usage count.
728 *
729 * What counts for a page usage:
730 * - cache mapping (page->mapping)
731 * - private data (page->private)
732 * - page mapped in a task's page tables, each mapping
733 * is counted separately
734 *
735 * Also, many kernel routines increase the page count before a critical
736 * routine so they can be sure the page doesn't go away from under them.
737 */
738
739 /*
740 * Drop a ref, return true if the refcount fell to zero (the page has no users)
741 */
put_page_testzero(struct page * page)742 static inline int put_page_testzero(struct page *page)
743 {
744 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
745 return page_ref_dec_and_test(page);
746 }
747
748 /*
749 * Try to grab a ref unless the page has a refcount of zero, return false if
750 * that is the case.
751 * This can be called when MMU is off so it must not access
752 * any of the virtual mappings.
753 */
get_page_unless_zero(struct page * page)754 static inline int get_page_unless_zero(struct page *page)
755 {
756 return page_ref_add_unless(page, 1, 0);
757 }
758
759 extern int page_is_ram(unsigned long pfn);
760
761 enum {
762 REGION_INTERSECTS,
763 REGION_DISJOINT,
764 REGION_MIXED,
765 };
766
767 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, unsigned long desc);
768
769 /* Support for virtually mapped pages */
770 struct page *vmalloc_to_page(const void *addr);
771 unsigned long vmalloc_to_pfn(const void *addr);
772
773 /*
774 * Determine if an address is within the vmalloc range
775 *
776 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
777 * is no special casing required.
778 */
779
780 #ifndef is_ioremap_addr
781 #define is_ioremap_addr(x) is_vmalloc_addr(x)
782 #endif
783
784 #ifdef CONFIG_MMU
785 extern bool is_vmalloc_addr(const void *x);
786 extern int is_vmalloc_or_module_addr(const void *x);
787 #else
is_vmalloc_addr(const void * x)788 static inline bool is_vmalloc_addr(const void *x)
789 {
790 return false;
791 }
is_vmalloc_or_module_addr(const void * x)792 static inline int is_vmalloc_or_module_addr(const void *x)
793 {
794 return 0;
795 }
796 #endif
797
798 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)799 static inline void *kvmalloc(size_t size, gfp_t flags)
800 {
801 return kvmalloc_node(size, flags, NUMA_NO_NODE);
802 }
kvzalloc_node(size_t size,gfp_t flags,int node)803 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
804 {
805 return kvmalloc_node(size, flags | __GFP_ZERO, node);
806 }
kvzalloc(size_t size,gfp_t flags)807 static inline void *kvzalloc(size_t size, gfp_t flags)
808 {
809 return kvmalloc(size, flags | __GFP_ZERO);
810 }
811
kvmalloc_array(size_t n,size_t size,gfp_t flags)812 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
813 {
814 size_t bytes;
815
816 if (unlikely(check_mul_overflow(n, size, &bytes))) {
817 return NULL;
818 }
819
820 return kvmalloc(bytes, flags);
821 }
822
kvcalloc(size_t n,size_t size,gfp_t flags)823 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
824 {
825 return kvmalloc_array(n, size, flags | __GFP_ZERO);
826 }
827
828 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags);
829 extern void kvfree(const void *addr);
830 extern void kvfree_sensitive(const void *addr, size_t len);
831
head_compound_mapcount(struct page * head)832 static inline int head_compound_mapcount(struct page *head)
833 {
834 return atomic_read(compound_mapcount_ptr(head)) + 1;
835 }
836
837 /*
838 * Mapcount of compound page as a whole, does not include mapped sub-pages.
839 *
840 * Must be called only for compound pages or any their tail sub-pages.
841 */
compound_mapcount(struct page * page)842 static inline int compound_mapcount(struct page *page)
843 {
844 VM_BUG_ON_PAGE(!PageCompound(page), page);
845 page = compound_head(page);
846 return head_compound_mapcount(page);
847 }
848
849 /*
850 * The atomic page->_mapcount, starts from -1: so that transitions
851 * both from it and to it can be tracked, using atomic_inc_and_test
852 * and atomic_add_negative(-1).
853 */
page_mapcount_reset(struct page * page)854 static inline void page_mapcount_reset(struct page *page)
855 {
856 atomic_set(&(page)->_mapcount, -1);
857 }
858
859 int __page_mapcount(struct page *page);
860
861 /*
862 * Mapcount of 0-order page; when compound sub-page, includes
863 * compound_mapcount().
864 *
865 * Result is undefined for pages which cannot be mapped into userspace.
866 * For example SLAB or special types of pages. See function page_has_type().
867 * They use this place in struct page differently.
868 */
page_mapcount(struct page * page)869 static inline int page_mapcount(struct page *page)
870 {
871 if (unlikely(PageCompound(page))) {
872 return __page_mapcount(page);
873 }
874 return atomic_read(&page->_mapcount) + 1;
875 }
876
877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
878 int total_mapcount(struct page *page);
879 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
880 #else
total_mapcount(struct page * page)881 static inline int total_mapcount(struct page *page)
882 {
883 return page_mapcount(page);
884 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)885 static inline int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
886 {
887 int mapcount = page_mapcount(page);
888 if (total_mapcount) {
889 *total_mapcount = mapcount;
890 }
891 return mapcount;
892 }
893 #endif
894
virt_to_head_page(const void * x)895 static inline struct page *virt_to_head_page(const void *x)
896 {
897 struct page *page = virt_to_page(x);
898
899 return compound_head(page);
900 }
901
902 void __put_page(struct page *page);
903
904 void put_pages_list(struct list_head *pages);
905
906 void split_page(struct page *page, unsigned int order);
907
908 /*
909 * Compound pages have a destructor function. Provide a
910 * prototype for that function and accessor functions.
911 * These are _only_ valid on the head of a compound page.
912 */
913 typedef void compound_page_dtor(struct page *);
914
915 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
916 enum compound_dtor_id {
917 NULL_COMPOUND_DTOR,
918 COMPOUND_PAGE_DTOR,
919 #ifdef CONFIG_HUGETLB_PAGE
920 HUGETLB_PAGE_DTOR,
921 #endif
922 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
923 TRANSHUGE_PAGE_DTOR,
924 #endif
925 NR_COMPOUND_DTORS,
926 };
927 extern compound_page_dtor *const compound_page_dtors[NR_COMPOUND_DTORS];
928
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)929 static inline void set_compound_page_dtor(struct page *page, enum compound_dtor_id compound_dtor)
930 {
931 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
932 page[1].compound_dtor = compound_dtor;
933 }
934
destroy_compound_page(struct page * page)935 static inline void destroy_compound_page(struct page *page)
936 {
937 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
938 compound_page_dtors[page[1].compound_dtor](page);
939 }
940
compound_order(struct page * page)941 static inline unsigned int compound_order(struct page *page)
942 {
943 if (!PageHead(page)) {
944 return 0;
945 }
946 return page[1].compound_order;
947 }
948
hpage_pincount_available(struct page * page)949 static inline bool hpage_pincount_available(struct page *page)
950 {
951 /*
952 * Can the page->hpage_pinned_refcount field be used? That field is in
953 * the 3rd page of the compound page, so the smallest (2-page) compound
954 * pages cannot support it.
955 */
956 page = compound_head(page);
957 return PageCompound(page) && compound_order(page) > 1;
958 }
959
head_compound_pincount(struct page * head)960 static inline int head_compound_pincount(struct page *head)
961 {
962 return atomic_read(compound_pincount_ptr(head));
963 }
964
compound_pincount(struct page * page)965 static inline int compound_pincount(struct page *page)
966 {
967 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
968 page = compound_head(page);
969 return head_compound_pincount(page);
970 }
971
set_compound_order(struct page * page,unsigned int order)972 static inline void set_compound_order(struct page *page, unsigned int order)
973 {
974 page[1].compound_order = order;
975 page[1].compound_nr = 1U << order;
976 }
977
978 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)979 static inline unsigned long compound_nr(struct page *page)
980 {
981 if (!PageHead(page)) {
982 return 1;
983 }
984 return page[1].compound_nr;
985 }
986
987 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)988 static inline unsigned long page_size(struct page *page)
989 {
990 return PAGE_SIZE << compound_order(page);
991 }
992
993 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)994 static inline unsigned int page_shift(struct page *page)
995 {
996 return PAGE_SHIFT + compound_order(page);
997 }
998
999 void free_compound_page(struct page *page);
1000
1001 #ifdef CONFIG_MMU
1002 /*
1003 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1004 * servicing faults for write access. In the normal case, do always want
1005 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1006 * that do not have writing enabled, when used by access_process_vm.
1007 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1008 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1009 {
1010 if (likely(vma->vm_flags & VM_WRITE)) {
1011 pte = pte_mkwrite(pte);
1012 }
1013 return pte;
1014 }
1015
1016 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
1017 vm_fault_t finish_fault(struct vm_fault *vmf);
1018 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1019 #endif
1020
1021 /*
1022 * Multiple processes may "see" the same page. E.g. for untouched
1023 * mappings of /dev/null, all processes see the same page full of
1024 * zeroes, and text pages of executables and shared libraries have
1025 * only one copy in memory, at most, normally.
1026 *
1027 * For the non-reserved pages, page_count(page) denotes a reference count.
1028 * page_count() == 0 means the page is free. page->lru is then used for
1029 * freelist management in the buddy allocator.
1030 * page_count() > 0 means the page has been allocated.
1031 *
1032 * Pages are allocated by the slab allocator in order to provide memory
1033 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1034 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1035 * unless a particular usage is carefully commented. (the responsibility of
1036 * freeing the kmalloc memory is the caller's, of course).
1037 *
1038 * A page may be used by anyone else who does a __get_free_page().
1039 * In this case, page_count still tracks the references, and should only
1040 * be used through the normal accessor functions. The top bits of page->flags
1041 * and page->virtual store page management information, but all other fields
1042 * are unused and could be used privately, carefully. The management of this
1043 * page is the responsibility of the one who allocated it, and those who have
1044 * subsequently been given references to it.
1045 *
1046 * The other pages (we may call them "pagecache pages") are completely
1047 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1048 * The following discussion applies only to them.
1049 *
1050 * A pagecache page contains an opaque `private' member, which belongs to the
1051 * page's address_space. Usually, this is the address of a circular list of
1052 * the page's disk buffers. PG_private must be set to tell the VM to call
1053 * into the filesystem to release these pages.
1054 *
1055 * A page may belong to an inode's memory mapping. In this case, page->mapping
1056 * is the pointer to the inode, and page->index is the file offset of the page,
1057 * in units of PAGE_SIZE.
1058 *
1059 * If pagecache pages are not associated with an inode, they are said to be
1060 * anonymous pages. These may become associated with the swapcache, and in that
1061 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1062 *
1063 * In either case (swapcache or inode backed), the pagecache itself holds one
1064 * reference to the page. Setting PG_private should also increment the
1065 * refcount. The each user mapping also has a reference to the page.
1066 *
1067 * The pagecache pages are stored in a per-mapping radix tree, which is
1068 * rooted at mapping->i_pages, and indexed by offset.
1069 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1070 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1071 *
1072 * All pagecache pages may be subject to I/O:
1073 * - inode pages may need to be read from disk,
1074 * - inode pages which have been modified and are MAP_SHARED may need
1075 * to be written back to the inode on disk,
1076 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1077 * modified may need to be swapped out to swap space and (later) to be read
1078 * back into memory.
1079 */
1080
1081 /*
1082 * The zone field is never updated after free_area_init_core()
1083 * sets it, so none of the operations on it need to be atomic.
1084 */
1085
1086 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1087 #define SECTIONS_PGOFF ((sizeof(unsigned long) * 8) - SECTIONS_WIDTH)
1088 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1089 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1090 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1091 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1092
1093 /*
1094 * Define the bit shifts to access each section. For non-existent
1095 * sections we define the shift as 0; that plus a 0 mask ensures
1096 * the compiler will optimise away reference to them.
1097 */
1098 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1099 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1100 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1101 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1102 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1103
1104 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1105 #ifdef NODE_NOT_IN_PAGE_FLAGS
1106 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1107 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? SECTIONS_PGOFF : ZONES_PGOFF)
1108 #else
1109 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1110 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? NODES_PGOFF : ZONES_PGOFF)
1111 #endif
1112
1113 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1114
1115 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1116 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1117 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1118 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1119 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1120 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1121
page_zonenum(const struct page * page)1122 static inline enum zone_type page_zonenum(const struct page *page)
1123 {
1124 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1125 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1126 }
1127
1128 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1129 static inline bool is_zone_device_page(const struct page *page)
1130 {
1131 return page_zonenum(page) == ZONE_DEVICE;
1132 }
1133 extern void memmap_init_zone_device(struct zone *, unsigned long, unsigned long, struct dev_pagemap *);
1134 #else
is_zone_device_page(const struct page * page)1135 static inline bool is_zone_device_page(const struct page *page)
1136 {
1137 return false;
1138 }
1139 #endif
1140
1141 #ifdef CONFIG_DEV_PAGEMAP_OPS
1142 void free_devmap_managed_page(struct page *page);
1143 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1144
page_is_devmap_managed(struct page * page)1145 static inline bool page_is_devmap_managed(struct page *page)
1146 {
1147 if (!static_branch_unlikely(&devmap_managed_key)) {
1148 return false;
1149 }
1150 if (!is_zone_device_page(page)) {
1151 return false;
1152 }
1153 switch (page->pgmap->type) {
1154 case MEMORY_DEVICE_PRIVATE:
1155 case MEMORY_DEVICE_FS_DAX:
1156 return true;
1157 default:
1158 break;
1159 }
1160 return false;
1161 }
1162
1163 void put_devmap_managed_page(struct page *page);
1164
1165 #else /* CONFIG_DEV_PAGEMAP_OPS */
page_is_devmap_managed(struct page * page)1166 static inline bool page_is_devmap_managed(struct page *page)
1167 {
1168 return false;
1169 }
1170
put_devmap_managed_page(struct page * page)1171 static inline void put_devmap_managed_page(struct page *page)
1172 {
1173 }
1174 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1175
is_device_private_page(const struct page * page)1176 static inline bool is_device_private_page(const struct page *page)
1177 {
1178 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_DEVICE_PRIVATE) && is_zone_device_page(page) &&
1179 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1180 }
1181
is_pci_p2pdma_page(const struct page * page)1182 static inline bool is_pci_p2pdma_page(const struct page *page)
1183 {
1184 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_PCI_P2PDMA) && is_zone_device_page(page) &&
1185 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1186 }
1187
1188 /* 127: arbitrary random number, small enough to assemble well */
1189 #define page_ref_zero_or_close_to_overflow(page) ((unsigned int)page_ref_count(page) + 127u <= 127u)
1190
get_page(struct page * page)1191 static inline void get_page(struct page *page)
1192 {
1193 page = compound_head(page);
1194 /*
1195 * Getting a normal page or the head of a compound page
1196 * requires to already have an elevated page->_refcount.
1197 */
1198 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1199 page_ref_inc(page);
1200 }
1201
1202 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1203
try_get_page(struct page * page)1204 static inline __must_check bool try_get_page(struct page *page)
1205 {
1206 page = compound_head(page);
1207 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) {
1208 return false;
1209 }
1210 page_ref_inc(page);
1211 return true;
1212 }
1213
put_page(struct page * page)1214 static inline void put_page(struct page *page)
1215 {
1216 page = compound_head(page);
1217 /*
1218 * For devmap managed pages we need to catch refcount transition from
1219 * 2 to 1, when refcount reach one it means the page is free and we
1220 * need to inform the device driver through callback. See
1221 * include/linux/memremap.h and HMM for details.
1222 */
1223 if (page_is_devmap_managed(page)) {
1224 put_devmap_managed_page(page);
1225 return;
1226 }
1227
1228 if (put_page_testzero(page)) {
1229 __put_page(page);
1230 }
1231 }
1232
1233 /*
1234 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1235 * the page's refcount so that two separate items are tracked: the original page
1236 * reference count, and also a new count of how many pin_user_pages() calls were
1237 * made against the page. ("gup-pinned" is another term for the latter).
1238 *
1239 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1240 * distinct from normal pages. As such, the unpin_user_page() call (and its
1241 * variants) must be used in order to release gup-pinned pages.
1242 *
1243 * Choice of value:
1244 *
1245 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1246 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1247 * simpler, due to the fact that adding an even power of two to the page
1248 * refcount has the effect of using only the upper N bits, for the code that
1249 * counts up using the bias value. This means that the lower bits are left for
1250 * the exclusive use of the original code that increments and decrements by one
1251 * (or at least, by much smaller values than the bias value).
1252 *
1253 * Of course, once the lower bits overflow into the upper bits (and this is
1254 * OK, because subtraction recovers the original values), then visual inspection
1255 * no longer suffices to directly view the separate counts. However, for normal
1256 * applications that don't have huge page reference counts, this won't be an
1257 * issue.
1258 *
1259 * Locking: the lockless algorithm described in page_cache_get_speculative()
1260 * and page_cache_gup_pin_speculative() provides safe operation for
1261 * get_user_pages and page_mkclean and other calls that race to set up page
1262 * table entries.
1263 */
1264 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1265
1266 void unpin_user_page(struct page *page);
1267 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, bool make_dirty);
1268 void unpin_user_pages(struct page **pages, unsigned long npages);
1269
1270 /**
1271 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1272 *
1273 * This function checks if a page has been pinned via a call to
1274 * pin_user_pages*().
1275 *
1276 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1277 * because it means "definitely not pinned for DMA", but true means "probably
1278 * pinned for DMA, but possibly a false positive due to having at least
1279 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1280 *
1281 * False positives are OK, because: a) it's unlikely for a page to get that many
1282 * refcounts, and b) all the callers of this routine are expected to be able to
1283 * deal gracefully with a false positive.
1284 *
1285 * For huge pages, the result will be exactly correct. That's because we have
1286 * more tracking data available: the 3rd struct page in the compound page is
1287 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1288 * scheme).
1289 *
1290 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1291 *
1292 * @page: pointer to page to be queried.
1293 * @Return: True, if it is likely that the page has been "dma-pinned".
1294 * False, if the page is definitely not dma-pinned.
1295 */
page_maybe_dma_pinned(struct page * page)1296 static inline bool page_maybe_dma_pinned(struct page *page)
1297 {
1298 if (hpage_pincount_available(page)) {
1299 return compound_pincount(page) > 0;
1300 }
1301
1302 /*
1303 * page_ref_count() is signed. If that refcount overflows, then
1304 * page_ref_count() returns a negative value, and callers will avoid
1305 * further incrementing the refcount.
1306 *
1307 * Here, for that overflow case, use the signed bit to count a little
1308 * bit higher via unsigned math, and thus still get an accurate result.
1309 */
1310 return ((unsigned int)page_ref_count(compound_head(page))) >= GUP_PIN_COUNTING_BIAS;
1311 }
1312
1313 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1314 #define SECTION_IN_PAGE_FLAGS
1315 #endif
1316
1317 /*
1318 * The identification function is mainly used by the buddy allocator for
1319 * determining if two pages could be buddies. We are not really identifying
1320 * the zone since we could be using the section number id if we do not have
1321 * node id available in page flags.
1322 * We only guarantee that it will return the same value for two combinable
1323 * pages in a zone.
1324 */
page_zone_id(struct page * page)1325 static inline int page_zone_id(struct page *page)
1326 {
1327 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1328 }
1329
1330 #ifdef NODE_NOT_IN_PAGE_FLAGS
1331 extern int page_to_nid(const struct page *page);
1332 #else
page_to_nid(const struct page * page)1333 static inline int page_to_nid(const struct page *page)
1334 {
1335 struct page *p = (struct page *)page;
1336
1337 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1338 }
1339 #endif
1340
1341 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1342 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1343 {
1344 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1345 }
1346
cpupid_to_pid(int cpupid)1347 static inline int cpupid_to_pid(int cpupid)
1348 {
1349 return cpupid & LAST__PID_MASK;
1350 }
1351
cpupid_to_cpu(int cpupid)1352 static inline int cpupid_to_cpu(int cpupid)
1353 {
1354 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1355 }
1356
cpupid_to_nid(int cpupid)1357 static inline int cpupid_to_nid(int cpupid)
1358 {
1359 return cpu_to_node(cpupid_to_cpu(cpupid));
1360 }
1361
cpupid_pid_unset(int cpupid)1362 static inline bool cpupid_pid_unset(int cpupid)
1363 {
1364 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1365 }
1366
cpupid_cpu_unset(int cpupid)1367 static inline bool cpupid_cpu_unset(int cpupid)
1368 {
1369 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1370 }
1371
_cpupid_match_pid(pid_t task_pid,int cpupid)1372 static inline bool _cpupid_match_pid(pid_t task_pid, int cpupid)
1373 {
1374 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1375 }
1376
1377 #define cpupid_match_pid(task, cpupid) _cpupid_match_pid(task->pid, cpupid)
1378 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1379 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1380 {
1381 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1382 }
1383
page_cpupid_last(struct page * page)1384 static inline int page_cpupid_last(struct page *page)
1385 {
1386 return page->_last_cpupid;
1387 }
page_cpupid_reset_last(struct page * page)1388 static inline void page_cpupid_reset_last(struct page *page)
1389 {
1390 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1391 }
1392 #else
page_cpupid_last(struct page * page)1393 static inline int page_cpupid_last(struct page *page)
1394 {
1395 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1396 }
1397
1398 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1399
page_cpupid_reset_last(struct page * page)1400 static inline void page_cpupid_reset_last(struct page *page)
1401 {
1402 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1403 }
1404 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1405 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1406 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1407 {
1408 return page_to_nid(page); /* XXX */
1409 }
1410
page_cpupid_last(struct page * page)1411 static inline int page_cpupid_last(struct page *page)
1412 {
1413 return page_to_nid(page); /* XXX */
1414 }
1415
cpupid_to_nid(int cpupid)1416 static inline int cpupid_to_nid(int cpupid)
1417 {
1418 return -1;
1419 }
1420
cpupid_to_pid(int cpupid)1421 static inline int cpupid_to_pid(int cpupid)
1422 {
1423 return -1;
1424 }
1425
cpupid_to_cpu(int cpupid)1426 static inline int cpupid_to_cpu(int cpupid)
1427 {
1428 return -1;
1429 }
1430
cpu_pid_to_cpupid(int nid,int pid)1431 static inline int cpu_pid_to_cpupid(int nid, int pid)
1432 {
1433 return -1;
1434 }
1435
cpupid_pid_unset(int cpupid)1436 static inline bool cpupid_pid_unset(int cpupid)
1437 {
1438 return true;
1439 }
1440
page_cpupid_reset_last(struct page * page)1441 static inline void page_cpupid_reset_last(struct page *page)
1442 {
1443 }
1444
cpupid_match_pid(struct task_struct * task,int cpupid)1445 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1446 {
1447 return false;
1448 }
1449 #endif /* CONFIG_NUMA_BALANCING */
1450
1451 #ifdef CONFIG_KASAN_SW_TAGS
1452
1453 /*
1454 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1455 * setting tags for all pages to native kernel tag value 0xff, as the default
1456 * value 0x00 maps to 0xff.
1457 */
1458
page_kasan_tag(const struct page * page)1459 static inline u8 page_kasan_tag(const struct page *page)
1460 {
1461 u8 tag;
1462
1463 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1464 tag ^= 0xff;
1465
1466 return tag;
1467 }
1468
page_kasan_tag_set(struct page * page,u8 tag)1469 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1470 {
1471 tag ^= 0xff;
1472 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1473 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1474 }
1475
page_kasan_tag_reset(struct page * page)1476 static inline void page_kasan_tag_reset(struct page *page)
1477 {
1478 page_kasan_tag_set(page, 0xff);
1479 }
1480 #else
page_kasan_tag(const struct page * page)1481 static inline u8 page_kasan_tag(const struct page *page)
1482 {
1483 return 0xff;
1484 }
1485
page_kasan_tag_set(struct page * page,u8 tag)1486 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1487 {
1488 }
page_kasan_tag_reset(struct page * page)1489 static inline void page_kasan_tag_reset(struct page *page)
1490 {
1491 }
1492 #endif
1493
page_zone(const struct page * page)1494 static inline struct zone *page_zone(const struct page *page)
1495 {
1496 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1497 }
1498
page_pgdat(const struct page * page)1499 static inline pg_data_t *page_pgdat(const struct page *page)
1500 {
1501 return NODE_DATA(page_to_nid(page));
1502 }
1503
1504 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1505 static inline void set_page_section(struct page *page, unsigned long section)
1506 {
1507 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1508 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1509 }
1510
page_to_section(const struct page * page)1511 static inline unsigned long page_to_section(const struct page *page)
1512 {
1513 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1514 }
1515 #endif
1516
set_page_zone(struct page * page,enum zone_type zone)1517 static inline void set_page_zone(struct page *page, enum zone_type zone)
1518 {
1519 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1520 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1521 }
1522
set_page_node(struct page * page,unsigned long node)1523 static inline void set_page_node(struct page *page, unsigned long node)
1524 {
1525 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1526 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1527 }
1528
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1529 static inline void set_page_links(struct page *page, enum zone_type zone, unsigned long node, unsigned long pfn)
1530 {
1531 set_page_zone(page, zone);
1532 set_page_node(page, node);
1533 #ifdef SECTION_IN_PAGE_FLAGS
1534 set_page_section(page, pfn_to_section_nr(pfn));
1535 #endif
1536 }
1537
1538 #ifdef CONFIG_MEMCG
page_memcg(struct page * page)1539 static inline struct mem_cgroup *page_memcg(struct page *page)
1540 {
1541 return page->mem_cgroup;
1542 }
page_memcg_rcu(struct page * page)1543 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1544 {
1545 WARN_ON_ONCE(!rcu_read_lock_held());
1546 return READ_ONCE(page->mem_cgroup);
1547 }
1548 #else
page_memcg(struct page * page)1549 static inline struct mem_cgroup *page_memcg(struct page *page)
1550 {
1551 return NULL;
1552 }
page_memcg_rcu(struct page * page)1553 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1554 {
1555 WARN_ON_ONCE(!rcu_read_lock_held());
1556 return NULL;
1557 }
1558 #endif
1559
1560 /*
1561 * Some inline functions in vmstat.h depend on page_zone()
1562 */
1563 #include <linux/vmstat.h>
1564
lowmem_page_address(const struct page * page)1565 static __always_inline void *lowmem_page_address(const struct page *page)
1566 {
1567 return page_to_virt(page);
1568 }
1569
1570 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1571 #define HASHED_PAGE_VIRTUAL
1572 #endif
1573
1574 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1575 static inline void *page_address(const struct page *page)
1576 {
1577 return page->virtual;
1578 }
set_page_address(struct page * page,void * address)1579 static inline void set_page_address(struct page *page, void *address)
1580 {
1581 page->virtual = address;
1582 }
1583 #define page_address_init() \
1584 do { \
1585 } while (0)
1586 #endif
1587
1588 #if defined(HASHED_PAGE_VIRTUAL)
1589 void *page_address(const struct page *page);
1590 void set_page_address(struct page *page, void *virtual);
1591 void page_address_init(void);
1592 #endif
1593
1594 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1595 #define page_address(page) lowmem_page_address(page)
1596 #define set_page_address(page, address) \
1597 do { \
1598 } while (0)
1599 #define page_address_init() \
1600 do { \
1601 } while (0)
1602 #endif
1603
1604 extern void *page_rmapping(struct page *page);
1605 extern struct anon_vma *page_anon_vma(struct page *page);
1606 extern struct address_space *page_mapping(struct page *page);
1607
1608 extern struct address_space *__page_file_mapping(struct page *);
1609
page_file_mapping(struct page * page)1610 static inline struct address_space *page_file_mapping(struct page *page)
1611 {
1612 if (unlikely(PageSwapCache(page))) {
1613 return __page_file_mapping(page);
1614 }
1615
1616 return page->mapping;
1617 }
1618
1619 extern pgoff_t __page_file_index(struct page *page);
1620
1621 /*
1622 * Return the pagecache index of the passed page. Regular pagecache pages
1623 * use ->index whereas swapcache pages use swp_offset(->private)
1624 */
page_index(struct page * page)1625 static inline pgoff_t page_index(struct page *page)
1626 {
1627 if (unlikely(PageSwapCache(page))) {
1628 return __page_file_index(page);
1629 }
1630 return page->index;
1631 }
1632
1633 bool page_mapped(struct page *page);
1634 struct address_space *page_mapping(struct page *page);
1635 struct address_space *page_mapping_file(struct page *page);
1636
1637 /*
1638 * Return true only if the page has been allocated with
1639 * ALLOC_NO_WATERMARKS and the low watermark was not
1640 * met implying that the system is under some pressure.
1641 */
page_is_pfmemalloc(struct page * page)1642 static inline bool page_is_pfmemalloc(struct page *page)
1643 {
1644 /*
1645 * Page index cannot be this large so this must be
1646 * a pfmemalloc page.
1647 */
1648 return page->index == -1UL;
1649 }
1650
1651 /*
1652 * Only to be called by the page allocator on a freshly allocated
1653 * page.
1654 */
set_page_pfmemalloc(struct page * page)1655 static inline void set_page_pfmemalloc(struct page *page)
1656 {
1657 page->index = -1UL;
1658 }
1659
clear_page_pfmemalloc(struct page * page)1660 static inline void clear_page_pfmemalloc(struct page *page)
1661 {
1662 page->index = 0;
1663 }
1664
1665 /*
1666 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1667 */
1668 extern void pagefault_out_of_memory(void);
1669
1670 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1671 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1672
1673 /*
1674 * Flags passed to show_mem() and show_free_areas() to suppress output in
1675 * various contexts.
1676 */
1677 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1678
1679 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1680
1681 #ifdef CONFIG_MMU
1682 extern bool can_do_mlock(void);
1683 #else
can_do_mlock(void)1684 static inline bool can_do_mlock(void)
1685 {
1686 return false;
1687 }
1688 #endif
1689 extern int user_shm_lock(size_t, struct user_struct *);
1690 extern void user_shm_unlock(size_t, struct user_struct *);
1691
1692 /*
1693 * Parameter block passed down to zap_pte_range in exceptional cases.
1694 */
1695 struct zap_details {
1696 struct address_space *check_mapping; /* Check page->mapping if set */
1697 pgoff_t first_index; /* Lowest page->index to unmap */
1698 pgoff_t last_index; /* Highest page->index to unmap */
1699 struct page *single_page; /* Locked page to be unmapped */
1700 };
1701
1702 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte);
1703 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd);
1704
1705 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size);
1706 void zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size);
1707 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long start, unsigned long end);
1708
1709 struct mmu_notifier_range;
1710
1711 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor,
1712 unsigned long ceiling);
1713 int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1714 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp,
1715 pmd_t **pmdpp, spinlock_t **ptlp);
1716 int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp);
1717 int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn);
1718 int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot,
1719 resource_size_t *phys);
1720 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write);
1721
1722 extern void truncate_pagecache(struct inode *inode, loff_t new);
1723 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1724 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1725 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1726 int truncate_inode_page(struct address_space *mapping, struct page *page);
1727 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1728 int invalidate_inode_page(struct page *page);
1729
1730 #ifdef CONFIG_MMU
1731 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags,
1732 struct pt_regs *regs);
1733 extern int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked);
1734 void unmap_mapping_page(struct page *page);
1735 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows);
1736 void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows);
1737 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1738 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags,
1739 struct pt_regs *regs)
1740 {
1741 /* should never happen if there's no MMU */
1742 BUG();
1743 return VM_FAULT_SIGBUS;
1744 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1745 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags,
1746 bool *unlocked)
1747 {
1748 /* should never happen if there's no MMU */
1749 BUG();
1750 return -EFAULT;
1751 }
unmap_mapping_page(struct page * page)1752 static inline void unmap_mapping_page(struct page *page)
1753 {
1754 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1755 static inline void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows)
1756 {
1757 }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1758 static inline void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen,
1759 int even_cows)
1760 {
1761 }
1762 #endif
1763
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1764 static inline void unmap_shared_mapping_range(struct address_space *mapping, loff_t const holebegin,
1765 loff_t const holelen)
1766 {
1767 unmap_mapping_range(mapping, holebegin, holelen, 0);
1768 }
1769
1770 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags);
1771 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags);
1772 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len,
1773 unsigned int gup_flags);
1774
1775 long get_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags,
1776 struct page **pages, struct vm_area_struct **vmas, int *locked);
1777 long pin_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags,
1778 struct page **pages, struct vm_area_struct **vmas, int *locked);
1779 long get_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages,
1780 struct vm_area_struct **vmas);
1781 long pin_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages,
1782 struct vm_area_struct **vmas);
1783 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages,
1784 int *locked);
1785 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages,
1786 int *locked);
1787 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags);
1788 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags);
1789
1790 int get_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages);
1791 int pin_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages);
1792
1793 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1794 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, struct task_struct *task,
1795 bool bypass_rlim);
1796
1797 /* Container for pinned pfns / pages */
1798 struct frame_vector {
1799 unsigned int nr_allocated; /* Number of frames we have space for */
1800 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1801 bool got_ref; /* Did we pin pages by getting page ref? */
1802 bool is_pfns; /* Does array contain pages or pfns? */
1803 void *ptrs[]; /* Array of pinned pfns / pages. Use
1804 * pfns_vector_pages() or pfns_vector_pfns()
1805 * for access */
1806 };
1807
1808 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1809 void frame_vector_destroy(struct frame_vector *vec);
1810 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, unsigned int gup_flags, struct frame_vector *vec);
1811 void put_vaddr_frames(struct frame_vector *vec);
1812 int frame_vector_to_pages(struct frame_vector *vec);
1813 void frame_vector_to_pfns(struct frame_vector *vec);
1814
frame_vector_count(struct frame_vector * vec)1815 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1816 {
1817 return vec->nr_frames;
1818 }
1819
frame_vector_pages(struct frame_vector * vec)1820 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1821 {
1822 if (vec->is_pfns) {
1823 int err = frame_vector_to_pages(vec);
1824 if (err) {
1825 return ERR_PTR(err);
1826 }
1827 }
1828 return (struct page **)(vec->ptrs);
1829 }
1830
frame_vector_pfns(struct frame_vector * vec)1831 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1832 {
1833 if (!vec->is_pfns) {
1834 frame_vector_to_pfns(vec);
1835 }
1836 return (unsigned long *)(vec->ptrs);
1837 }
1838
1839 struct kvec;
1840 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, struct page **pages);
1841 int get_kernel_page(unsigned long start, int write, struct page **pages);
1842 struct page *get_dump_page(unsigned long addr);
1843
1844 extern int try_to_release_page(struct page *page, gfp_t gfp_mask);
1845 extern void do_invalidatepage(struct page *page, unsigned int offset, unsigned int length);
1846
1847 void __set_page_dirty(struct page *, struct address_space *, int warn);
1848 int __set_page_dirty_nobuffers(struct page *page);
1849 int __set_page_dirty_no_writeback(struct page *page);
1850 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page);
1851 void account_page_dirtied(struct page *page, struct address_space *mapping);
1852 void account_page_cleaned(struct page *page, struct address_space *mapping, struct bdi_writeback *wb);
1853 int set_page_dirty(struct page *page);
1854 int set_page_dirty_lock(struct page *page);
1855 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1856 static inline void cancel_dirty_page(struct page *page)
1857 {
1858 /* Avoid atomic ops, locking, etc. when not actually needed. */
1859 if (PageDirty(page)) {
1860 __cancel_dirty_page(page);
1861 }
1862 }
1863 int clear_page_dirty_for_io(struct page *page);
1864
1865 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1866
1867 extern unsigned long move_page_tables(struct vm_area_struct *vma, unsigned long old_addr,
1868 struct vm_area_struct *new_vma, unsigned long new_addr, unsigned long len,
1869 bool need_rmap_locks);
1870
1871 /*
1872 * Flags used by change_protection(). For now we make it a bitmap so
1873 * that we can pass in multiple flags just like parameters. However
1874 * for now all the callers are only use one of the flags at the same
1875 * time.
1876 */
1877 /* Whether we should allow dirty bit accounting */
1878 #define MM_CP_DIRTY_ACCT (1UL << 0)
1879 /* Whether this protection change is for NUMA hints */
1880 #define MM_CP_PROT_NUMA (1UL << 1)
1881 /* Whether this change is for write protecting */
1882 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1883 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1884 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | MM_CP_UFFD_WP_RESOLVE)
1885
1886 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, unsigned long end,
1887 pgprot_t newprot, unsigned long cp_flags);
1888 extern int mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, unsigned long start,
1889 unsigned long end, unsigned long newflags);
1890
1891 /*
1892 * doesn't attempt to fault and will return short.
1893 */
1894 int get_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages);
1895 int pin_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages);
1896
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)1897 static inline bool get_user_page_fast_only(unsigned long addr, unsigned int gup_flags, struct page **pagep)
1898 {
1899 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1900 }
1901 /*
1902 * per-process(per-mm_struct) statistics.
1903 */
get_mm_counter(struct mm_struct * mm,int member)1904 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1905 {
1906 long val = atomic_long_read(&mm->rss_stat.count[member]);
1907 #ifdef SPLIT_RSS_COUNTING
1908 /*
1909 * counter is updated in asynchronous manner and may go to minus.
1910 * But it's never be expected number for users.
1911 */
1912 if (val < 0) {
1913 val = 0;
1914 }
1915 #endif
1916 return (unsigned long)val;
1917 }
1918
1919 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1920
1921 #ifdef CONFIG_RSS_THRESHOLD
1922 void listen_rss_threshold(struct mm_struct *mm);
1923 #endif
1924
add_mm_counter(struct mm_struct * mm,int member,long value)1925 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1926 {
1927 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1928
1929 #ifdef CONFIG_RSS_THRESHOLD
1930 listen_rss_threshold(mm);
1931 #endif
1932
1933 mm_trace_rss_stat(mm, member, count);
1934 }
1935
inc_mm_counter(struct mm_struct * mm,int member)1936 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1937 {
1938 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1939
1940 #ifdef CONFIG_RSS_THRESHOLD
1941 listen_rss_threshold(mm);
1942 #endif
1943
1944 mm_trace_rss_stat(mm, member, count);
1945 }
1946
dec_mm_counter(struct mm_struct * mm,int member)1947 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1948 {
1949 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1950
1951 mm_trace_rss_stat(mm, member, count);
1952 }
1953
1954 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1955 static inline int mm_counter_file(struct page *page)
1956 {
1957 if (PageSwapBacked(page)) {
1958 return MM_SHMEMPAGES;
1959 }
1960 return MM_FILEPAGES;
1961 }
1962
mm_counter(struct page * page)1963 static inline int mm_counter(struct page *page)
1964 {
1965 if (PageAnon(page)) {
1966 return MM_ANONPAGES;
1967 }
1968 return mm_counter_file(page);
1969 }
1970
get_mm_rss(struct mm_struct * mm)1971 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1972 {
1973 return get_mm_counter(mm, MM_FILEPAGES) + get_mm_counter(mm, MM_ANONPAGES) + get_mm_counter(mm, MM_SHMEMPAGES);
1974 }
1975
get_mm_hiwater_rss(struct mm_struct * mm)1976 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1977 {
1978 return max(mm->hiwater_rss, get_mm_rss(mm));
1979 }
1980
get_mm_hiwater_vm(struct mm_struct * mm)1981 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1982 {
1983 return max(mm->hiwater_vm, mm->total_vm);
1984 }
1985
update_hiwater_rss(struct mm_struct * mm)1986 static inline void update_hiwater_rss(struct mm_struct *mm)
1987 {
1988 unsigned long _rss = get_mm_rss(mm);
1989 if ((mm)->hiwater_rss < _rss) {
1990 (mm)->hiwater_rss = _rss;
1991 }
1992 }
1993
update_hiwater_vm(struct mm_struct * mm)1994 static inline void update_hiwater_vm(struct mm_struct *mm)
1995 {
1996 if (mm->hiwater_vm < mm->total_vm) {
1997 mm->hiwater_vm = mm->total_vm;
1998 }
1999 }
2000
reset_mm_hiwater_rss(struct mm_struct * mm)2001 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2002 {
2003 mm->hiwater_rss = get_mm_rss(mm);
2004 }
2005
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2006 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, struct mm_struct *mm)
2007 {
2008 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2009 if (*maxrss < hiwater_rss) {
2010 *maxrss = hiwater_rss;
2011 }
2012 }
2013
2014 #if defined(SPLIT_RSS_COUNTING)
2015 void sync_mm_rss(struct mm_struct *mm);
2016 #else
sync_mm_rss(struct mm_struct * mm)2017 static inline void sync_mm_rss(struct mm_struct *mm)
2018 {
2019 }
2020 #endif
2021
2022 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2023 static inline int pte_special(pte_t pte)
2024 {
2025 return 0;
2026 }
2027
pte_mkspecial(pte_t pte)2028 static inline pte_t pte_mkspecial(pte_t pte)
2029 {
2030 return pte;
2031 }
2032 #endif
2033
2034 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2035 static inline int pte_devmap(pte_t pte)
2036 {
2037 return 0;
2038 }
2039 #endif
2040
2041 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2042
2043 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2044 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
2045 {
2046 pte_t *ptep;
2047 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2048 return ptep;
2049 }
2050
2051 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2052 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2053 {
2054 return 0;
2055 }
2056 #else
2057 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2058 #endif
2059
2060 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2061 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
2062 {
2063 return 0;
2064 }
mm_inc_nr_puds(struct mm_struct * mm)2065 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2066 {
2067 }
mm_dec_nr_puds(struct mm_struct * mm)2068 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2069 {
2070 }
2071
2072 #else
2073 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2074
mm_inc_nr_puds(struct mm_struct * mm)2075 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2076 {
2077 if (mm_pud_folded(mm)) {
2078 return;
2079 }
2080 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2081 }
2082
mm_dec_nr_puds(struct mm_struct * mm)2083 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2084 {
2085 if (mm_pud_folded(mm)) {
2086 return;
2087 }
2088 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2089 }
2090 #endif
2091
2092 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2093 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2094 {
2095 return 0;
2096 }
2097
mm_inc_nr_pmds(struct mm_struct * mm)2098 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2099 {
2100 }
mm_dec_nr_pmds(struct mm_struct * mm)2101 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2102 {
2103 }
2104
2105 #else
2106 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2107
mm_inc_nr_pmds(struct mm_struct * mm)2108 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2109 {
2110 if (mm_pmd_folded(mm)) {
2111 return;
2112 }
2113 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2114 }
2115
mm_dec_nr_pmds(struct mm_struct * mm)2116 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2117 {
2118 if (mm_pmd_folded(mm)) {
2119 return;
2120 }
2121 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2122 }
2123 #endif
2124
2125 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2126 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2127 {
2128 atomic_long_set(&mm->pgtables_bytes, 0);
2129 }
2130
mm_pgtables_bytes(const struct mm_struct * mm)2131 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2132 {
2133 return atomic_long_read(&mm->pgtables_bytes);
2134 }
2135
mm_inc_nr_ptes(struct mm_struct * mm)2136 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2137 {
2138 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2139 }
2140
mm_dec_nr_ptes(struct mm_struct * mm)2141 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2142 {
2143 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2144 }
2145 #else
2146
mm_pgtables_bytes_init(struct mm_struct * mm)2147 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2148 {
2149 }
mm_pgtables_bytes(const struct mm_struct * mm)2150 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2151 {
2152 return 0;
2153 }
2154
mm_inc_nr_ptes(struct mm_struct * mm)2155 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2156 {
2157 }
mm_dec_nr_ptes(struct mm_struct * mm)2158 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2159 {
2160 }
2161 #endif
2162
2163 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2164 int __pte_alloc_kernel(pmd_t *pmd);
2165
2166 #if defined(CONFIG_MMU)
2167
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2168 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2169 {
2170 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? NULL : p4d_offset(pgd, address);
2171 }
2172
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2173 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
2174 {
2175 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? NULL : pud_offset(p4d, address);
2176 }
2177
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2178 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2179 {
2180 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address)) ? NULL : pmd_offset(pud, address);
2181 }
2182 #endif /* CONFIG_MMU */
2183
2184 #if USE_SPLIT_PTE_PTLOCKS
2185 #if ALLOC_SPLIT_PTLOCKS
2186 void __init ptlock_cache_init(void);
2187 extern bool ptlock_alloc(struct page *page);
2188 extern void ptlock_free(struct page *page);
2189
ptlock_ptr(struct page * page)2190 static inline spinlock_t *ptlock_ptr(struct page *page)
2191 {
2192 return page->ptl;
2193 }
2194 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2195 static inline void ptlock_cache_init(void)
2196 {
2197 }
2198
ptlock_alloc(struct page * page)2199 static inline bool ptlock_alloc(struct page *page)
2200 {
2201 return true;
2202 }
2203
ptlock_free(struct page * page)2204 static inline void ptlock_free(struct page *page)
2205 {
2206 }
2207
ptlock_ptr(struct page * page)2208 static inline spinlock_t *ptlock_ptr(struct page *page)
2209 {
2210 return &page->ptl;
2211 }
2212 #endif /* ALLOC_SPLIT_PTLOCKS */
2213
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2214 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2215 {
2216 return ptlock_ptr(pmd_page(*pmd));
2217 }
2218
ptlock_init(struct page * page)2219 static inline bool ptlock_init(struct page *page)
2220 {
2221 /*
2222 * prep_new_page() initialize page->private (and therefore page->ptl)
2223 * with 0. Make sure nobody took it in use in between.
2224 *
2225 * It can happen if arch try to use slab for page table allocation:
2226 * slab code uses page->slab_cache, which share storage with page->ptl.
2227 */
2228 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2229 if (!ptlock_alloc(page)) {
2230 return false;
2231 }
2232 spin_lock_init(ptlock_ptr(page));
2233 return true;
2234 }
2235
2236 #else /* !USE_SPLIT_PTE_PTLOCKS */
2237 /*
2238 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2239 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2240 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2241 {
2242 return &mm->page_table_lock;
2243 }
ptlock_cache_init(void)2244 static inline void ptlock_cache_init(void)
2245 {
2246 }
ptlock_init(struct page * page)2247 static inline bool ptlock_init(struct page *page)
2248 {
2249 return true;
2250 }
ptlock_free(struct page * page)2251 static inline void ptlock_free(struct page *page)
2252 {
2253 }
2254 #endif /* USE_SPLIT_PTE_PTLOCKS */
2255
pgtable_init(void)2256 static inline void pgtable_init(void)
2257 {
2258 ptlock_cache_init();
2259 pgtable_cache_init();
2260 }
2261
pgtable_pte_page_ctor(struct page * page)2262 static inline bool pgtable_pte_page_ctor(struct page *page)
2263 {
2264 if (!ptlock_init(page)) {
2265 return false;
2266 }
2267 __SetPageTable(page);
2268 inc_zone_page_state(page, NR_PAGETABLE);
2269 return true;
2270 }
2271
pgtable_pte_page_dtor(struct page * page)2272 static inline void pgtable_pte_page_dtor(struct page *page)
2273 {
2274 ptlock_free(page);
2275 __ClearPageTable(page);
2276 dec_zone_page_state(page, NR_PAGETABLE);
2277 }
2278
2279 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2280 ( { \
2281 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2282 pte_t *__pte = pte_offset_map(pmd, address); \
2283 *(ptlp) = __ptl; \
2284 spin_lock(__ptl); \
2285 __pte; \
2286 })
2287
2288 #define pte_unmap_unlock(pte, ptl) \
2289 do { \
2290 spin_unlock(ptl); \
2291 pte_unmap(pte); \
2292 } while (0)
2293
2294 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2295
2296 #define pte_alloc_map(mm, pmd, address) (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2297
2298 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2299 (pte_alloc(mm, pmd) ? NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2300
2301 #define pte_alloc_kernel(pmd, address) \
2302 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd)) ? NULL : pte_offset_kernel(pmd, address))
2303
2304 #if USE_SPLIT_PMD_PTLOCKS
2305
pmd_to_page(pmd_t * pmd)2306 static struct page *pmd_to_page(pmd_t *pmd)
2307 {
2308 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2309 return virt_to_page((void *)((unsigned long)pmd & mask));
2310 }
2311
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2312 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2313 {
2314 return ptlock_ptr(pmd_to_page(pmd));
2315 }
2316
pmd_ptlock_init(struct page * page)2317 static inline bool pmd_ptlock_init(struct page *page)
2318 {
2319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2320 page->pmd_huge_pte = NULL;
2321 #endif
2322 return ptlock_init(page);
2323 }
2324
pmd_ptlock_free(struct page * page)2325 static inline void pmd_ptlock_free(struct page *page)
2326 {
2327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2328 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2329 #endif
2330 ptlock_free(page);
2331 }
2332
2333 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2334
2335 #else
2336
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2337 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2338 {
2339 return &mm->page_table_lock;
2340 }
2341
pmd_ptlock_init(struct page * page)2342 static inline bool pmd_ptlock_init(struct page *page)
2343 {
2344 return true;
2345 }
pmd_ptlock_free(struct page * page)2346 static inline void pmd_ptlock_free(struct page *page)
2347 {
2348 }
2349
2350 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2351
2352 #endif
2353
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2354 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2355 {
2356 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2357 spin_lock(ptl);
2358 return ptl;
2359 }
2360
pgtable_pmd_page_ctor(struct page * page)2361 static inline bool pgtable_pmd_page_ctor(struct page *page)
2362 {
2363 if (!pmd_ptlock_init(page)) {
2364 return false;
2365 }
2366 __SetPageTable(page);
2367 inc_zone_page_state(page, NR_PAGETABLE);
2368 return true;
2369 }
2370
pgtable_pmd_page_dtor(struct page * page)2371 static inline void pgtable_pmd_page_dtor(struct page *page)
2372 {
2373 pmd_ptlock_free(page);
2374 __ClearPageTable(page);
2375 dec_zone_page_state(page, NR_PAGETABLE);
2376 }
2377
2378 /*
2379 * No scalability reason to split PUD locks yet, but follow the same pattern
2380 * as the PMD locks to make it easier if we decide to. The VM should not be
2381 * considered ready to switch to split PUD locks yet; there may be places
2382 * which need to be converted from page_table_lock.
2383 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2384 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2385 {
2386 return &mm->page_table_lock;
2387 }
2388
pud_lock(struct mm_struct * mm,pud_t * pud)2389 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2390 {
2391 spinlock_t *ptl = pud_lockptr(mm, pud);
2392
2393 spin_lock(ptl);
2394 return ptl;
2395 }
2396
2397 extern void __init pagecache_init(void);
2398 extern void __init free_area_init_memoryless_node(int nid);
2399 extern void free_initmem(void);
2400
2401 /*
2402 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2403 * into the buddy system. The freed pages will be poisoned with pattern
2404 * "poison" if it's within range [0, UCHAR_MAX].
2405 * Return pages freed into the buddy system.
2406 */
2407 extern unsigned long free_reserved_area(void *start, void *end, int poison, const char *s);
2408
2409 #ifdef CONFIG_HIGHMEM
2410 /*
2411 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2412 * and totalram_pages.
2413 */
2414 extern void free_highmem_page(struct page *page);
2415 #endif
2416
2417 extern void adjust_managed_page_count(struct page *page, long count);
2418 extern void mem_init_print_info(const char *str);
2419
2420 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2421
2422 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)2423 static inline void __free_reserved_page(struct page *page)
2424 {
2425 ClearPageReserved(page);
2426 init_page_count(page);
2427 __free_page(page);
2428 }
2429
free_reserved_page(struct page * page)2430 static inline void free_reserved_page(struct page *page)
2431 {
2432 __free_reserved_page(page);
2433 adjust_managed_page_count(page, 1);
2434 }
2435
mark_page_reserved(struct page * page)2436 static inline void mark_page_reserved(struct page *page)
2437 {
2438 SetPageReserved(page);
2439 adjust_managed_page_count(page, -1);
2440 }
2441
2442 /*
2443 * Default method to free all the __init memory into the buddy system.
2444 * The freed pages will be poisoned with pattern "poison" if it's within
2445 * range [0, UCHAR_MAX].
2446 * Return pages freed into the buddy system.
2447 */
free_initmem_default(int poison)2448 static inline unsigned long free_initmem_default(int poison)
2449 {
2450 extern char __init_begin[], __init_end[];
2451
2452 return free_reserved_area(&__init_begin, &__init_end, poison, "unused kernel");
2453 }
2454
get_num_physpages(void)2455 static inline unsigned long get_num_physpages(void)
2456 {
2457 int nid;
2458 unsigned long phys_pages = 0;
2459
2460 for_each_online_node(nid) phys_pages += node_present_pages(nid);
2461
2462 return phys_pages;
2463 }
2464
2465 /*
2466 * Using memblock node mappings, an architecture may initialise its
2467 * zones, allocate the backing mem_map and account for memory holes in an
2468 * architecture independent manner.
2469 *
2470 * An architecture is expected to register range of page frames backed by
2471 * physical memory with memblock_add[_node]() before calling
2472 * free_area_init() passing in the PFN each zone ends at. At a basic
2473 * usage, an architecture is expected to do something like
2474 *
2475 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2476 * max_highmem_pfn};
2477 * for_each_valid_physical_page_range()
2478 * memblock_add_node(base, size, nid)
2479 * free_area_init(max_zone_pfns);
2480 */
2481 void free_area_init(unsigned long *max_zone_pfn);
2482 unsigned long node_map_pfn_alignment(void);
2483 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, unsigned long end_pfn);
2484 extern unsigned long absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn);
2485 extern void get_pfn_range_for_nid(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn);
2486 extern unsigned long find_min_pfn_with_active_regions(void);
2487
2488 #ifndef CONFIG_NEED_MULTIPLE_NODES
early_pfn_to_nid(unsigned long pfn)2489 static inline int early_pfn_to_nid(unsigned long pfn)
2490 {
2491 return 0;
2492 }
2493 #else
2494 /* please see mm/page_alloc.c */
2495 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2496 /* there is a per-arch backend function. */
2497 extern int __meminit __early_pfn_to_nid(unsigned long pfn, struct mminit_pfnnid_cache *state);
2498 #endif
2499
2500 extern void set_dma_reserve(unsigned long new_dma_reserve);
2501 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, unsigned long, enum meminit_context,
2502 struct vmem_altmap *, int migratetype);
2503 extern void setup_per_zone_wmarks(void);
2504 extern int __meminit init_per_zone_wmark_min(void);
2505 extern void mem_init(void);
2506 extern void __init mmap_init(void);
2507 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2508 extern long si_mem_available(void);
2509 extern void si_meminfo(struct sysinfo *val);
2510 extern void si_meminfo_node(struct sysinfo *val, int nid);
2511 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2512 extern unsigned long arch_reserved_kernel_pages(void);
2513 #endif
2514
2515 extern __printf(3, 4) void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2516
2517 extern void setup_per_cpu_pageset(void);
2518
2519 /* page_alloc.c */
2520 extern int min_free_kbytes;
2521 extern int watermark_boost_factor;
2522 extern int watermark_scale_factor;
2523 extern bool arch_has_descending_max_zone_pfns(void);
2524
2525 /* nommu.c */
2526 extern atomic_long_t mmap_pages_allocated;
2527 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2528
2529 /* interval_tree.c */
2530 void vma_interval_tree_insert(struct vm_area_struct *node, struct rb_root_cached *root);
2531 void vma_interval_tree_insert_after(struct vm_area_struct *node, struct vm_area_struct *prev,
2532 struct rb_root_cached *root);
2533 void vma_interval_tree_remove(struct vm_area_struct *node, struct rb_root_cached *root);
2534 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start,
2535 unsigned long last);
2536 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, unsigned long start,
2537 unsigned long last);
2538
2539 #define vma_interval_tree_foreach(vma, root, start, last) \
2540 for (vma = vma_interval_tree_iter_first(root, start, last); vma; \
2541 vma = vma_interval_tree_iter_next(vma, start, last))
2542
2543 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, struct rb_root_cached *root);
2544 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, struct rb_root_cached *root);
2545 struct anon_vma_chain *anon_vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start,
2546 unsigned long last);
2547 struct anon_vma_chain *anon_vma_interval_tree_iter_next(struct anon_vma_chain *node, unsigned long start,
2548 unsigned long last);
2549 #ifdef CONFIG_DEBUG_VM_RB
2550 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2551 #endif
2552
2553 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2554 for (avc = anon_vma_interval_tree_iter_first(root, start, last); avc; \
2555 avc = anon_vma_interval_tree_iter_next(avc, start, last))
2556
2557 /* mmap.c */
2558 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2559 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff,
2560 struct vm_area_struct *insert, struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2561 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff,
2562 struct vm_area_struct *insert)
2563 {
2564 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2565 }
2566 extern struct vm_area_struct *vma_merge(struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
2567 unsigned long end, unsigned long vm_flags, struct anon_vma *, struct file *,
2568 pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2569 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2570 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below);
2571 extern int split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below);
2572 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2573 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, struct rb_node **, struct rb_node *);
2574 extern void unlink_file_vma(struct vm_area_struct *);
2575 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, unsigned long addr, unsigned long len, pgoff_t pgoff,
2576 bool *need_rmap_locks);
2577 extern void exit_mmap(struct mm_struct *);
2578
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2579 static inline int check_data_rlimit(unsigned long rlim, unsigned long new, unsigned long start, unsigned long end_data,
2580 unsigned long start_data)
2581 {
2582 if (rlim < RLIM_INFINITY) {
2583 if (((new - start) + (end_data - start_data)) > rlim) {
2584 return -ENOSPC;
2585 }
2586 }
2587
2588 return 0;
2589 }
2590
2591 extern int mm_take_all_locks(struct mm_struct *mm);
2592 extern void mm_drop_all_locks(struct mm_struct *mm);
2593
2594 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2595 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2596 extern struct file *get_task_exe_file(struct task_struct *task);
2597
2598 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2599 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2600
2601 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, const struct vm_special_mapping *sm);
2602 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len,
2603 unsigned long flags, const struct vm_special_mapping *spec);
2604 /* This is an obsolete alternative to _install_special_mapping. */
2605 extern int install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags,
2606 struct page **pages);
2607
2608 unsigned long randomize_stack_top(unsigned long stack_top);
2609 unsigned long randomize_page(unsigned long start, unsigned long range);
2610
2611 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2612
2613 extern unsigned long mmap_region(struct file *file, unsigned long addr, unsigned long len, vm_flags_t vm_flags,
2614 unsigned long pgoff, struct list_head *uf);
2615 extern unsigned long do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot,
2616 unsigned long flags, unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2617 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf, bool downgrade);
2618 extern int do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf);
2619 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2620
2621 #ifdef CONFIG_MMU
2622 extern int __mm_populate(unsigned long addr, unsigned long len, int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2623 static inline void mm_populate(unsigned long addr, unsigned long len)
2624 {
2625 /* Ignore errors */
2626 (void)__mm_populate(addr, len, 1);
2627 }
2628 #else
mm_populate(unsigned long addr,unsigned long len)2629 static inline void mm_populate(unsigned long addr, unsigned long len)
2630 {
2631 }
2632 #endif
2633
2634 /* These take the mm semaphore themselves */
2635 extern int __must_check vm_brk(unsigned long, unsigned long);
2636 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2637 extern int vm_munmap(unsigned long, size_t);
2638 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, unsigned long, unsigned long, unsigned long,
2639 unsigned long);
2640
2641 struct vm_unmapped_area_info {
2642 #define VM_UNMAPPED_AREA_TOPDOWN 1
2643 unsigned long flags;
2644 unsigned long length;
2645 unsigned long low_limit;
2646 unsigned long high_limit;
2647 unsigned long align_mask;
2648 unsigned long align_offset;
2649 };
2650
2651 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2652
2653 /* truncate.c */
2654 extern void truncate_inode_pages(struct address_space *, loff_t);
2655 extern void truncate_inode_pages_range(struct address_space *, loff_t lstart, loff_t lend);
2656 extern void truncate_inode_pages_final(struct address_space *);
2657
2658 /* generic vm_area_ops exported for stackable file systems */
2659 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2660 extern void filemap_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff);
2661 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2662
2663 /* mm/page-writeback.c */
2664 int __must_check write_one_page(struct page *page);
2665 void task_dirty_inc(struct task_struct *tsk);
2666
2667 extern unsigned long stack_guard_gap;
2668 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2669 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2670
2671 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2672 extern int expand_downwards(struct vm_area_struct *vma, unsigned long address);
2673 #if VM_GROWSUP
2674 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2675 #else
2676 #define expand_upwards(vma, address) (0)
2677 #endif
2678
2679 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2680 extern struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr);
2681 extern struct vm_area_struct *find_vma_prev(struct mm_struct *mm, unsigned long addr, struct vm_area_struct **pprev);
2682
2683 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2684 NULL if none. Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2685 static inline struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, unsigned long start_addr,
2686 unsigned long end_addr)
2687 {
2688 struct vm_area_struct *vma = find_vma(mm, start_addr);
2689
2690 if (vma && end_addr <= vma->vm_start) {
2691 vma = NULL;
2692 }
2693 return vma;
2694 }
2695
vm_start_gap(struct vm_area_struct * vma)2696 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2697 {
2698 unsigned long vm_start = vma->vm_start;
2699
2700 if (vma->vm_flags & VM_GROWSDOWN) {
2701 vm_start -= stack_guard_gap;
2702 if (vm_start > vma->vm_start) {
2703 vm_start = 0;
2704 }
2705 }
2706 return vm_start;
2707 }
2708
vm_end_gap(struct vm_area_struct * vma)2709 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2710 {
2711 unsigned long vm_end = vma->vm_end;
2712
2713 if (vma->vm_flags & VM_GROWSUP) {
2714 vm_end += stack_guard_gap;
2715 if (vm_end < vma->vm_end) {
2716 vm_end = -PAGE_SIZE;
2717 }
2718 }
2719 return vm_end;
2720 }
2721
vma_pages(struct vm_area_struct * vma)2722 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2723 {
2724 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2725 }
2726
2727 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2728 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, unsigned long vm_start, unsigned long vm_end)
2729 {
2730 struct vm_area_struct *vma = find_vma(mm, vm_start);
2731
2732 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) {
2733 vma = NULL;
2734 }
2735
2736 return vma;
2737 }
2738
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2739 static inline bool range_in_vma(struct vm_area_struct *vma, unsigned long start, unsigned long end)
2740 {
2741 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2742 }
2743
2744 #ifdef CONFIG_MMU
2745 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2746 void vma_set_page_prot(struct vm_area_struct *vma);
2747 #else
vm_get_page_prot(unsigned long vm_flags)2748 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2749 {
2750 return __pgprot(0);
2751 }
vma_set_page_prot(struct vm_area_struct * vma)2752 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2753 {
2754 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2755 }
2756 #endif
2757
2758 #ifdef CONFIG_NUMA_BALANCING
2759 unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long start, unsigned long end);
2760 #endif
2761
2762 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2763 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t);
2764 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2765 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num);
2766 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num);
2767 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num);
2768 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn);
2769 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot);
2770 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn);
2771 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot);
2772 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn);
2773 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2774
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2775 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
2776 {
2777 int err = vm_insert_page(vma, addr, page);
2778 if (err == -ENOMEM) {
2779 return VM_FAULT_OOM;
2780 }
2781 if (err < 0 && err != -EBUSY) {
2782 return VM_FAULT_SIGBUS;
2783 }
2784 return VM_FAULT_NOPAGE;
2785 }
2786
2787 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2788 static inline int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn,
2789 unsigned long size, pgprot_t prot)
2790 {
2791 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2792 }
2793 #endif
2794
vmf_error(int err)2795 static inline vm_fault_t vmf_error(int err)
2796 {
2797 if (err == -ENOMEM) {
2798 return VM_FAULT_OOM;
2799 }
2800 return VM_FAULT_SIGBUS;
2801 }
2802
2803 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, unsigned int foll_flags);
2804
2805 #define FOLL_WRITE 0x01 /* check pte is writable */
2806 #define FOLL_TOUCH 0x02 /* mark page accessed */
2807 #define FOLL_GET 0x04 /* do get_page on page */
2808 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2809 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2810 #define FOLL_NOWAIT \
2811 0x20 /* if a disk transfer is needed, start the IO \
2812 * and return without waiting upon it */
2813 #define FOLL_POPULATE 0x40 /* fault in page */
2814 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2815 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2816 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2817 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2818 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2819 #define FOLL_MLOCK 0x1000 /* lock present pages */
2820 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2821 #define FOLL_COW 0x4000 /* internal GUP flag */
2822 #define FOLL_ANON 0x8000 /* don't do file mappings */
2823 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2824 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2825 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2826 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2827
2828 /*
2829 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2830 * other. Here is what they mean, and how to use them:
2831 *
2832 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2833 * period _often_ under userspace control. This is in contrast to
2834 * iov_iter_get_pages(), whose usages are transient.
2835 *
2836 * For pages which are part of a filesystem, mappings are subject to the
2837 * lifetime enforced by the filesystem and we need guarantees that longterm
2838 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2839 * the filesystem. Ideas for this coordination include revoking the longterm
2840 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2841 * added after the problem with filesystems was found FS DAX VMAs are
2842 * specifically failed. Filesystem pages are still subject to bugs and use of
2843 * FOLL_LONGTERM should be avoided on those pages.
2844 *
2845 * Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2846 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2847 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2848 * is due to an incompatibility with the FS DAX check and
2849 * FAULT_FLAG_ALLOW_RETRY.
2850 *
2851 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2852 * that region. And so, CMA attempts to migrate the page before pinning, when
2853 * FOLL_LONGTERM is specified.
2854 *
2855 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2856 * but an additional pin counting system) will be invoked. This is intended for
2857 * anything that gets a page reference and then touches page data (for example,
2858 * Direct IO). This lets the filesystem know that some non-file-system entity is
2859 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2860 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2861 * a call to unpin_user_page().
2862 *
2863 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2864 * and separate refcounting mechanisms, however, and that means that each has
2865 * its own acquire and release mechanisms:
2866 *
2867 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2868 *
2869 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2870 *
2871 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2872 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2873 * calls applied to them, and that's perfectly OK. This is a constraint on the
2874 * callers, not on the pages.)
2875 *
2876 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2877 * directly by the caller. That's in order to help avoid mismatches when
2878 * releasing pages: get_user_pages*() pages must be released via put_page(),
2879 * while pin_user_pages*() pages must be released via unpin_user_page().
2880 *
2881 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2882 */
2883
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)2884 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2885 {
2886 if (vm_fault & VM_FAULT_OOM) {
2887 return -ENOMEM;
2888 }
2889 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
2890 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2891 }
2892 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) {
2893 return -EFAULT;
2894 }
2895 return 0;
2896 }
2897
2898 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2899 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn,
2900 void *data);
2901 extern int apply_to_existing_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn,
2902 void *data);
2903
2904 #ifdef CONFIG_PAGE_POISONING
2905 extern bool page_poisoning_enabled(void);
2906 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2907 #else
page_poisoning_enabled(void)2908 static inline bool page_poisoning_enabled(void)
2909 {
2910 return false;
2911 }
page_poisoning_enabled_static(void)2912 static inline bool page_poisoning_enabled_static(void)
2913 {
2914 return false;
2915 }
_kernel_poison_pages(struct page * page,int nunmpages)2916 static inline void _kernel_poison_pages(struct page *page, int nunmpages)
2917 {
2918 }
kernel_poison_pages(struct page * page,int numpages,int enable)2919 static inline void kernel_poison_pages(struct page *page, int numpages, int enable)
2920 {
2921 }
2922 #endif
2923
2924 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2925 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2926 #else
2927 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2928 #endif
want_init_on_alloc(gfp_t flags)2929 static inline bool want_init_on_alloc(gfp_t flags)
2930 {
2931 if (static_branch_unlikely(&init_on_alloc) && !page_poisoning_enabled()) {
2932 return true;
2933 }
2934 return flags & __GFP_ZERO;
2935 }
2936
2937 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2938 DECLARE_STATIC_KEY_TRUE(init_on_free);
2939 #else
2940 DECLARE_STATIC_KEY_FALSE(init_on_free);
2941 #endif
want_init_on_free(void)2942 static inline bool want_init_on_free(void)
2943 {
2944 return static_branch_unlikely(&init_on_free) && !page_poisoning_enabled();
2945 }
2946
2947 #ifdef CONFIG_DEBUG_PAGEALLOC
2948 extern void init_debug_pagealloc(void);
2949 #else
init_debug_pagealloc(void)2950 static inline void init_debug_pagealloc(void)
2951 {
2952 }
2953 #endif
2954 extern bool _debug_pagealloc_enabled_early;
2955 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2956
debug_pagealloc_enabled(void)2957 static inline bool debug_pagealloc_enabled(void)
2958 {
2959 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled_early;
2960 }
2961
2962 /*
2963 * For use in fast paths after init_debug_pagealloc() has run, or when a
2964 * false negative result is not harmful when called too early.
2965 */
debug_pagealloc_enabled_static(void)2966 static inline bool debug_pagealloc_enabled_static(void)
2967 {
2968 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
2969 return false;
2970 }
2971
2972 return static_branch_unlikely(&_debug_pagealloc_enabled);
2973 }
2974
2975 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2976 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2977
2978 /*
2979 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2980 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2981 */
kernel_map_pages(struct page * page,int numpages,int enable)2982 static inline void kernel_map_pages(struct page *page, int numpages, int enable)
2983 {
2984 __kernel_map_pages(page, numpages, enable);
2985 }
2986 #ifdef CONFIG_HIBERNATION
2987 extern bool kernel_page_present(struct page *page);
2988 #endif /* CONFIG_HIBERNATION */
2989 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
kernel_map_pages(struct page * page,int numpages,int enable)2990 static inline void kernel_map_pages(struct page *page, int numpages, int enable)
2991 {
2992 }
2993 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2994 static inline bool kernel_page_present(struct page *page)
2995 {
2996 return true;
2997 }
2998 #endif /* CONFIG_HIBERNATION */
2999 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
3000
3001 #ifdef __HAVE_ARCH_GATE_AREA
3002 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3003 extern int in_gate_area_no_mm(unsigned long addr);
3004 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3005 #else
get_gate_vma(struct mm_struct * mm)3006 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3007 {
3008 return NULL;
3009 }
in_gate_area_no_mm(unsigned long addr)3010 static inline int in_gate_area_no_mm(unsigned long addr)
3011 {
3012 return 0;
3013 }
in_gate_area(struct mm_struct * mm,unsigned long addr)3014 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3015 {
3016 return 0;
3017 }
3018 #endif /* __HAVE_ARCH_GATE_AREA */
3019
3020 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3021
3022 #ifdef CONFIG_SYSCTL
3023 extern int sysctl_drop_caches;
3024 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
3025 #endif
3026
3027 void drop_slab(void);
3028 void drop_slab_node(int nid);
3029
3030 #ifndef CONFIG_MMU
3031 #define randomize_va_space 0
3032 #else
3033 extern int randomize_va_space;
3034 #endif
3035
3036 const char *arch_vma_name(struct vm_area_struct *vma);
3037 #ifdef CONFIG_MMU
3038 void print_vma_addr(char *prefix, unsigned long rip);
3039 #else
print_vma_addr(char * prefix,unsigned long rip)3040 static inline void print_vma_addr(char *prefix, unsigned long rip)
3041 {
3042 }
3043 #endif
3044
3045 void *sparse_buffer_alloc(unsigned long size);
3046 struct page *__populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3047 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3048 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3049 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3050 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3051 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, struct vmem_altmap *altmap);
3052 void *vmemmap_alloc_block(unsigned long size, int node);
3053 struct vmem_altmap;
3054 void *vmemmap_alloc_block_buf(unsigned long size, int node, struct vmem_altmap *altmap);
3055 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3056 int vmemmap_populate_basepages(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap);
3057 int vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap);
3058 void vmemmap_populate_print_last(void);
3059 #ifdef CONFIG_MEMORY_HOTPLUG
3060 void vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap);
3061 #endif
3062 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, unsigned long nr_pages);
3063
3064 enum mf_flags {
3065 MF_COUNT_INCREASED = 1 << 0,
3066 MF_ACTION_REQUIRED = 1 << 1,
3067 MF_MUST_KILL = 1 << 2,
3068 MF_SOFT_OFFLINE = 1 << 3,
3069 };
3070 extern int memory_failure(unsigned long pfn, int flags);
3071 extern void memory_failure_queue(unsigned long pfn, int flags);
3072 extern void memory_failure_queue_kick(int cpu);
3073 extern int unpoison_memory(unsigned long pfn);
3074 extern int sysctl_memory_failure_early_kill;
3075 extern int sysctl_memory_failure_recovery;
3076 extern void shake_page(struct page *p, int access);
3077 extern atomic_long_t num_poisoned_pages __read_mostly;
3078 extern int soft_offline_page(unsigned long pfn, int flags);
3079
3080 /*
3081 * Error handlers for various types of pages.
3082 */
3083 enum mf_result {
3084 MF_IGNORED, /* Error: cannot be handled */
3085 MF_FAILED, /* Error: handling failed */
3086 MF_DELAYED, /* Will be handled later */
3087 MF_RECOVERED, /* Successfully recovered */
3088 };
3089
3090 enum mf_action_page_type {
3091 MF_MSG_KERNEL,
3092 MF_MSG_KERNEL_HIGH_ORDER,
3093 MF_MSG_SLAB,
3094 MF_MSG_DIFFERENT_COMPOUND,
3095 MF_MSG_POISONED_HUGE,
3096 MF_MSG_HUGE,
3097 MF_MSG_FREE_HUGE,
3098 MF_MSG_NON_PMD_HUGE,
3099 MF_MSG_UNMAP_FAILED,
3100 MF_MSG_DIRTY_SWAPCACHE,
3101 MF_MSG_CLEAN_SWAPCACHE,
3102 MF_MSG_DIRTY_MLOCKED_LRU,
3103 MF_MSG_CLEAN_MLOCKED_LRU,
3104 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3105 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3106 MF_MSG_DIRTY_LRU,
3107 MF_MSG_CLEAN_LRU,
3108 MF_MSG_TRUNCATED_LRU,
3109 MF_MSG_BUDDY,
3110 MF_MSG_BUDDY_2ND,
3111 MF_MSG_DAX,
3112 MF_MSG_UNSPLIT_THP,
3113 MF_MSG_UNKNOWN,
3114 };
3115
3116 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3117 extern void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page);
3118 extern void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma,
3119 unsigned int pages_per_huge_page);
3120 extern long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src,
3121 unsigned int pages_per_huge_page, bool allow_pagefault);
3122
3123 /**
3124 * vma_is_special_huge - Are transhuge page-table entries considered special?
3125 * @vma: Pointer to the struct vm_area_struct to consider
3126 *
3127 * Whether transhuge page-table entries are considered "special" following
3128 * the definition in vm_normal_page().
3129 *
3130 * Return: true if transhuge page-table entries should be considered special,
3131 * false otherwise.
3132 */
vma_is_special_huge(const struct vm_area_struct * vma)3133 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3134 {
3135 return vma_is_dax(vma) || (vma->vm_file && (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3136 }
3137
3138 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3139
3140 #ifdef CONFIG_DEBUG_PAGEALLOC
3141 extern unsigned int _debug_guardpage_minorder;
3142 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3143
debug_guardpage_minorder(void)3144 static inline unsigned int debug_guardpage_minorder(void)
3145 {
3146 return _debug_guardpage_minorder;
3147 }
3148
debug_guardpage_enabled(void)3149 static inline bool debug_guardpage_enabled(void)
3150 {
3151 return static_branch_unlikely(&_debug_guardpage_enabled);
3152 }
3153
page_is_guard(struct page * page)3154 static inline bool page_is_guard(struct page *page)
3155 {
3156 if (!debug_guardpage_enabled()) {
3157 return false;
3158 }
3159
3160 return PageGuard(page);
3161 }
3162 #else
debug_guardpage_minorder(void)3163 static inline unsigned int debug_guardpage_minorder(void)
3164 {
3165 return 0;
3166 }
debug_guardpage_enabled(void)3167 static inline bool debug_guardpage_enabled(void)
3168 {
3169 return false;
3170 }
page_is_guard(struct page * page)3171 static inline bool page_is_guard(struct page *page)
3172 {
3173 return false;
3174 }
3175 #endif /* CONFIG_DEBUG_PAGEALLOC */
3176
3177 #if MAX_NUMNODES > 1
3178 void __init setup_nr_node_ids(void);
3179 #else
setup_nr_node_ids(void)3180 static inline void setup_nr_node_ids(void)
3181 {
3182 }
3183 #endif
3184
3185 extern int memcmp_pages(struct page *page1, struct page *page2);
3186
pages_identical(struct page * page1,struct page * page2)3187 static inline int pages_identical(struct page *page1, struct page *page2)
3188 {
3189 return !memcmp_pages(page1, page2);
3190 }
3191
3192 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3193 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr,
3194 pgoff_t bitmap_pgoff, unsigned long *bitmap, pgoff_t *start,
3195 pgoff_t *end);
3196
3197 unsigned long wp_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr);
3198 #endif
3199
3200 extern int sysctl_nr_trim_pages;
3201
3202 /**
3203 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3204 * @seals: the seals to check
3205 * @vma: the vma to operate on
3206 *
3207 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3208 * the vma flags. Return 0 if check pass, or <0 for errors.
3209 */
seal_check_future_write(int seals,struct vm_area_struct * vma)3210 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3211 {
3212 if (seals & F_SEAL_FUTURE_WRITE) {
3213 /*
3214 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3215 * "future write" seal active.
3216 */
3217 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) {
3218 return -EPERM;
3219 }
3220
3221 /*
3222 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3223 * MAP_SHARED and read-only, take care to not allow mprotect to
3224 * revert protections on such mappings. Do this only for shared
3225 * mappings. For private mappings, don't need to mask
3226 * VM_MAYWRITE as we still want them to be COW-writable.
3227 */
3228 if (vma->vm_flags & VM_SHARED) {
3229 vma->vm_flags &= ~(VM_MAYWRITE);
3230 }
3231 }
3232
3233 return 0;
3234 }
3235
3236 #ifdef CONFIG_ANON_VMA_NAME
3237 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, unsigned long len_in,
3238 struct anon_vma_name *anon_name);
3239 #else
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)3240 static inline int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, unsigned long len_in,
3241 struct anon_vma_name *anon_name)
3242 {
3243 return 0;
3244 }
3245 #endif
3246
3247 #endif /* __KERNEL__ */
3248 #endif /* _LINUX_MM_H */
3249