• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct file_ra_state;
39 struct user_struct;
40 struct writeback_control;
41 struct bdi_writeback;
42 struct pt_regs;
43 
44 extern int sysctl_page_lock_unfairness;
45 
46 void init_mm_internals(void);
47 
48 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
49 extern unsigned long max_mapnr;
50 
set_max_mapnr(unsigned long limit)51 static inline void set_max_mapnr(unsigned long limit)
52 {
53     max_mapnr = limit;
54 }
55 #else
set_max_mapnr(unsigned long limit)56 static inline void set_max_mapnr(unsigned long limit)
57 {
58 }
59 #endif
60 
61 extern atomic_long_t _totalram_pages;
totalram_pages(void)62 static inline unsigned long totalram_pages(void)
63 {
64     return (unsigned long)atomic_long_read(&_totalram_pages);
65 }
66 
totalram_pages_inc(void)67 static inline void totalram_pages_inc(void)
68 {
69     atomic_long_inc(&_totalram_pages);
70 }
71 
totalram_pages_dec(void)72 static inline void totalram_pages_dec(void)
73 {
74     atomic_long_dec(&_totalram_pages);
75 }
76 
totalram_pages_add(long count)77 static inline void totalram_pages_add(long count)
78 {
79     atomic_long_add(count, &_totalram_pages);
80 }
81 
82 extern void *high_memory;
83 extern int page_cluster;
84 
85 #ifdef CONFIG_SYSCTL
86 extern int sysctl_legacy_va_layout;
87 #else
88 #define sysctl_legacy_va_layout 0
89 #endif
90 
91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
92 extern const int mmap_rnd_bits_min;
93 extern const int mmap_rnd_bits_max;
94 extern int mmap_rnd_bits __read_mostly;
95 #endif
96 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
97 extern const int mmap_rnd_compat_bits_min;
98 extern const int mmap_rnd_compat_bits_max;
99 extern int mmap_rnd_compat_bits __read_mostly;
100 #endif
101 
102 #include <asm/page.h>
103 #include <asm/processor.h>
104 
105 /*
106  * Architectures that support memory tagging (assigning tags to memory regions,
107  * embedding these tags into addresses that point to these memory regions, and
108  * checking that the memory and the pointer tags match on memory accesses)
109  * redefine this macro to strip tags from pointers.
110  * It's defined as noop for arcitectures that don't support memory tagging.
111  */
112 #ifndef untagged_addr
113 #define untagged_addr(addr) (addr)
114 #endif
115 
116 #ifndef __pa_symbol
117 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
118 #endif
119 
120 #ifndef page_to_virt
121 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
122 #endif
123 
124 #ifndef lm_alias
125 #define lm_alias(x) __va(__pa_symbol(x))
126 #endif
127 
128 /*
129  * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
130  * instrumented C code with jump table addresses. Architectures that
131  * support CFI can define this macro to return the actual function address
132  * when needed.
133  */
134 #ifndef function_nocfi
135 #define function_nocfi(x) (x)
136 #endif
137 
138 #define MM_ZERO 0
139 #define MM_ONE 1
140 #define MM_TWO 2
141 #define MM_THREE 3
142 #define MM_FOUR 4
143 #define MM_FIVE 5
144 #define MM_SIX 6
145 #define MM_SEVEN 7
146 #define MM_EIGHT 8
147 #define MM_NINE 9
148 #define MM_FIFTYSIX 56
149 #define MM_SIXTYFOUR 64
150 #define MM_SEVENTYTWO 72
151 #define MM_EIGHTY 80
152 
153 /*
154  * To prevent common memory management code establishing
155  * a zero page mapping on a read fault.
156  * This macro should be defined within <asm/pgtable.h>.
157  * s390 does this to prevent multiplexing of hardware bits
158  * related to the physical page in case of virtualization.
159  */
160 #ifndef mm_forbids_zeropage
161 #define mm_forbids_zeropage(X) (0)
162 #endif
163 
164 /*
165  * On some architectures it is expensive to call memset() for small sizes.
166  * If an architecture decides to implement their own version of
167  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
168  * define their own version of this macro in <asm/pgtable.h>
169  */
170 #if BITS_PER_LONG == 64
171 /* This function must be updated when the size of struct page grows above 80
172  * or reduces below 56. The idea that compiler optimizes out switch()
173  * statement, and only leaves move/store instructions. Also the compiler can
174  * combine write statments if they are both assignments and can be reordered,
175  * this can result in several of the writes here being dropped.
176  */
177 #define mm_zero_struct_page(pp) _mm_zero_struct_page(pp)
_mm_zero_struct_page(struct page * page)178 static inline void _mm_zero_struct_page(struct page *page)
179 {
180     unsigned long *_pp = (void *)page;
181 
182     /* Check that struct page is either 56, 64, 72, or 80 bytes */
183     BUILD_BUG_ON(sizeof(struct page) & MM_SEVEN);
184     BUILD_BUG_ON(sizeof(struct page) < MM_FIFTYSIX);
185     BUILD_BUG_ON(sizeof(struct page) > MM_EIGHTY);
186 
187     switch (sizeof(struct page)) {
188         case MM_EIGHTY:
189             _pp[MM_NINE] = 0;
190             fallthrough;
191         case MM_SEVENTYTWO:
192             _pp[MM_EIGHT] = 0;
193             fallthrough;
194         case MM_SIXTYFOUR:
195             _pp[MM_SEVEN] = 0;
196             fallthrough;
197         case MM_FIFTYSIX:
198             _pp[MM_SIX] = 0;
199             _pp[MM_FIVE] = 0;
200             _pp[MM_FOUR] = 0;
201             _pp[MM_THREE] = 0;
202             _pp[MM_TWO] = 0;
203             _pp[MM_ONE] = 0;
204             _pp[MM_ZERO] = 0;
205     }
206 }
207 #else
208 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
209 #endif
210 
211 /*
212  * Default maximum number of active map areas, this limits the number of vmas
213  * per mm struct. Users can overwrite this number by sysctl but there is a
214  * problem.
215  *
216  * When a program's coredump is generated as ELF format, a section is created
217  * per a vma. In ELF, the number of sections is represented in unsigned short.
218  * This means the number of sections should be smaller than 65535 at coredump.
219  * Because the kernel adds some informative sections to a image of program at
220  * generating coredump, we need some margin. The number of extra sections is
221  * 1-3 now and depends on arch. We use "5" as safe margin, here.
222  *
223  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
224  * not a hard limit any more. Although some userspace tools can be surprised by
225  * that.
226  */
227 #define MAPCOUNT_ELF_CORE_MARGIN (5)
228 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
229 
230 extern int sysctl_max_map_count;
231 
232 extern unsigned long sysctl_user_reserve_kbytes;
233 extern unsigned long sysctl_admin_reserve_kbytes;
234 
235 extern int sysctl_overcommit_memory;
236 extern int sysctl_overcommit_ratio;
237 extern unsigned long sysctl_overcommit_kbytes;
238 
239 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
240 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
241 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
242 
243 #define nth_page(page, n) pfn_to_page(page_to_pfn((page)) + (n))
244 
245 /* to align the pointer to the (next) page boundary */
246 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
247 
248 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
249 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
250 
251 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
252 
253 /*
254  * Linux kernel virtual memory manager primitives.
255  * The idea being to have a "virtual" mm in the same way
256  * we have a virtual fs - giving a cleaner interface to the
257  * mm details, and allowing different kinds of memory mappings
258  * (from shared memory to executable loading to arbitrary
259  * mmap() functions).
260  */
261 
262 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
263 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
264 void vm_area_free(struct vm_area_struct *);
265 
266 #ifndef CONFIG_MMU
267 extern struct rb_root nommu_region_tree;
268 extern struct rw_semaphore nommu_region_sem;
269 
270 extern unsigned int kobjsize(const void *objp);
271 #endif
272 
273 /*
274  * vm_flags in vm_area_struct, see mm_types.h.
275  * When changing, update also include/trace/events/mmflags.h
276  */
277 #define VM_NONE 0x00000000
278 
279 #define VM_READ 0x00000001 /* currently active flags */
280 #define VM_WRITE 0x00000002
281 #define VM_EXEC 0x00000004
282 #define VM_SHARED 0x00000008
283 
284 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
285 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
286 #define VM_MAYWRITE 0x00000020
287 #define VM_MAYEXEC 0x00000040
288 #define VM_MAYSHARE 0x00000080
289 
290 #define VM_GROWSDOWN 0x00000100    /* general info on the segment */
291 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
292 #define VM_PFNMAP 0x00000400       /* Page-ranges managed without "struct page", just pure PFN */
293 #define VM_DENYWRITE 0x00000800    /* ETXTBSY on write attempts.. */
294 #define VM_UFFD_WP 0x00001000      /* wrprotect pages tracking */
295 
296 #define VM_LOCKED 0x00002000
297 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
298 
299 /* Used by sys_madvise() */
300 #define VM_SEQ_READ 0x00008000  /* App will access data sequentially */
301 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
302 
303 #define VM_DONTCOPY 0x00020000    /* Do not copy this vma on fork */
304 #define VM_DONTEXPAND 0x00040000  /* Cannot expand with mremap() */
305 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
306 #define VM_ACCOUNT 0x00100000     /* Is a VM accounted object */
307 #define VM_NORESERVE 0x00200000   /* should the VM suppress accounting */
308 #define VM_HUGETLB 0x00400000     /* Huge TLB Page VM */
309 #define VM_SYNC 0x00800000        /* Synchronous page faults */
310 #define VM_ARCH_1 0x01000000      /* Architecture-specific flag */
311 #define VM_WIPEONFORK 0x02000000  /* Wipe VMA contents in child. */
312 #define VM_DONTDUMP 0x04000000    /* Do not include in the core dump */
313 
314 #ifdef CONFIG_MEM_SOFT_DIRTY
315 #define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
316 #else
317 #define VM_SOFTDIRTY 0
318 #endif
319 
320 #define VM_MIXEDMAP 0x10000000   /* Can contain "struct page" and pure PFN pages */
321 #define VM_HUGEPAGE 0x20000000   /* MADV_HUGEPAGE marked this vma */
322 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
323 #define VM_MERGEABLE 0x80000000  /* KSM may merge identical pages */
324 
325 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
326 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_BIT_7 39 /* bit only usable on 64-bit architectures */
334 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
335 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
336 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
337 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
338 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
339 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
340 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
341 #define VM_HIGH_ARCH_7 BIT(VM_HIGH_ARCH_BIT_7)
342 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
343 
344 #ifdef CONFIG_MEM_PURGEABLE
345 #define VM_PURGEABLE VM_HIGH_ARCH_5
346 #define VM_USEREXPTE VM_HIGH_ARCH_6
347 #else /* CONFIG_MEM_PURGEABLE */
348 #define VM_PURGEABLE 0
349 #define VM_USEREXPTE 0
350 #endif /* CONFIG_MEM_PURGEABLE */
351 
352 #ifdef CONFIG_SECURITY_XPM
353 #define VM_XPM	VM_HIGH_ARCH_7
354 #else /* CONFIG_MEM_PURGEABLE */
355 #define VM_XPM	VM_NONE
356 #endif /* CONFIG_MEM_PURGEABLE */
357 
358 #ifdef CONFIG_ARCH_HAS_PKEYS
359 #define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
360 #define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
361 #define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64   */
362 #define VM_PKEY_BIT2 VM_HIGH_ARCH_2
363 #define VM_PKEY_BIT3 VM_HIGH_ARCH_3
364 #ifdef CONFIG_PPC
365 #define VM_PKEY_BIT4 VM_HIGH_ARCH_4
366 #else
367 #define VM_PKEY_BIT4 0
368 #endif
369 #endif /* CONFIG_ARCH_HAS_PKEYS */
370 
371 #if defined(CONFIG_X86)
372 #define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
373 #elif defined(CONFIG_PPC)
374 #define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
375 #elif defined(CONFIG_PARISC)
376 #define VM_GROWSUP VM_ARCH_1
377 #elif defined(CONFIG_IA64)
378 #define VM_GROWSUP VM_ARCH_1
379 #elif defined(CONFIG_SPARC64)
380 #define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
381 #define VM_ARCH_CLEAR VM_SPARC_ADI
382 #elif defined(CONFIG_ARM64)
383 #define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
384 #define VM_ARCH_CLEAR VM_ARM64_BTI
385 #elif !defined(CONFIG_MMU)
386 #define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
387 #endif
388 
389 #if defined(CONFIG_ARM64_MTE)
390 #define VM_MTE VM_HIGH_ARCH_0         /* Use Tagged memory for access control */
391 #define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
392 #else
393 #define VM_MTE VM_NONE
394 #define VM_MTE_ALLOWED VM_NONE
395 #endif
396 
397 #ifndef VM_GROWSUP
398 #define VM_GROWSUP VM_NONE
399 #endif
400 
401 /* Bits set in the VMA until the stack is in its final location */
402 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
403 
404 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
405 
406 /* Common data flag combinations */
407 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
408 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
409 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
410 
411 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
412 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
413 #endif
414 
415 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
416 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
417 #endif
418 
419 #ifdef CONFIG_STACK_GROWSUP
420 #define VM_STACK VM_GROWSUP
421 #else
422 #define VM_STACK VM_GROWSDOWN
423 #endif
424 
425 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
426 
427 /* VMA basic access permission flags */
428 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
429 
430 /*
431  * Special vmas that are non-mergable, non-mlock()able.
432  */
433 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
434 
435 /* This mask prevents VMA from being scanned with khugepaged */
436 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
437 
438 /* This mask defines which mm->def_flags a process can inherit its parent */
439 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
440 
441 /* This mask is used to clear all the VMA flags used by mlock */
442 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
443 
444 /* Arch-specific flags to clear when updating VM flags on protection change */
445 #ifndef VM_ARCH_CLEAR
446 #define VM_ARCH_CLEAR VM_NONE
447 #endif
448 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
449 
450 /*
451  * mapping from the currently active vm_flags protection bits (the
452  * low four bits) to a page protection mask..
453  */
454 extern pgprot_t protection_map[16];
455 
456 /**
457  * Fault flag definitions.
458  *
459  * @FAULT_FLAG_WRITE: Fault was a write fault.
460  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
461  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
462  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
463  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
464  * @FAULT_FLAG_TRIED: The fault has been tried once.
465  * @FAULT_FLAG_USER: The fault originated in userspace.
466  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
467  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
468  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
469  *
470  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
471  * whether we would allow page faults to retry by specifying these two
472  * fault flags correctly.  Currently there can be three legal combinations:
473  *
474  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
475  *                              this is the first try
476  *
477  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
478  *                              we've already tried at least once
479  *
480  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
481  *
482  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
483  * be used.  Note that page faults can be allowed to retry for multiple times,
484  * in which case we'll have an initial fault with flags (a) then later on
485  * continuous faults with flags (b).  We should always try to detect pending
486  * signals before a retry to make sure the continuous page faults can still be
487  * interrupted if necessary.
488  */
489 #define FAULT_FLAG_WRITE 0x01
490 #define FAULT_FLAG_MKWRITE 0x02
491 #define FAULT_FLAG_ALLOW_RETRY 0x04
492 #define FAULT_FLAG_RETRY_NOWAIT 0x08
493 #define FAULT_FLAG_KILLABLE 0x10
494 #define FAULT_FLAG_TRIED 0x20
495 #define FAULT_FLAG_USER 0x40
496 #define FAULT_FLAG_REMOTE 0x80
497 #define FAULT_FLAG_INSTRUCTION 0x100
498 #define FAULT_FLAG_INTERRUPTIBLE 0x200
499 
500 /*
501  * The default fault flags that should be used by most of the
502  * arch-specific page fault handlers.
503  */
504 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE | FAULT_FLAG_INTERRUPTIBLE)
505 
506 /**
507  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
508  *
509  * This is mostly used for places where we want to try to avoid taking
510  * the mmap_lock for too long a time when waiting for another condition
511  * to change, in which case we can try to be polite to release the
512  * mmap_lock in the first round to avoid potential starvation of other
513  * processes that would also want the mmap_lock.
514  *
515  * Return: true if the page fault allows retry and this is the first
516  * attempt of the fault handling; false otherwise.
517  */
fault_flag_allow_retry_first(unsigned int flags)518 static inline bool fault_flag_allow_retry_first(unsigned int flags)
519 {
520     return (flags & FAULT_FLAG_ALLOW_RETRY) && (!(flags & FAULT_FLAG_TRIED));
521 }
522 
523 #define FAULT_FLAG_TRACE                                                                                               \
524     {FAULT_FLAG_WRITE, "WRITE"}, {FAULT_FLAG_MKWRITE, "MKWRITE"}, {FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY"},             \
525         {FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT"}, {FAULT_FLAG_KILLABLE, "KILLABLE"}, {FAULT_FLAG_TRIED, "TRIED"},     \
526         {FAULT_FLAG_USER, "USER"}, {FAULT_FLAG_REMOTE, "REMOTE"}, {FAULT_FLAG_INSTRUCTION, "INSTRUCTION"},             \
527     {                                                                                                                  \
528         FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE"                                                                      \
529     }
530 
531 /*
532  * vm_fault is filled by the pagefault handler and passed to the vma's
533  * ->fault function. The vma's ->fault is responsible for returning a bitmask
534  * of VM_FAULT_xxx flags that give details about how the fault was handled.
535  *
536  * MM layer fills up gfp_mask for page allocations but fault handler might
537  * alter it if its implementation requires a different allocation context.
538  *
539  * pgoff should be used in favour of virtual_address, if possible.
540  */
541 struct vm_fault {
542     struct vm_area_struct *vma; /* Target VMA */
543     unsigned int flags;         /* FAULT_FLAG_xxx flags */
544     gfp_t gfp_mask;             /* gfp mask to be used for allocations */
545     pgoff_t pgoff;              /* Logical page offset based on vma */
546     unsigned long address;      /* Faulting virtual address */
547     pmd_t *pmd;                 /* Pointer to pmd entry matching
548                                  * the 'address' */
549     pud_t *pud;                 /* Pointer to pud entry matching
550                                  * the 'address'
551                                  */
552     pte_t orig_pte;             /* Value of PTE at the time of fault */
553 
554     struct page *cow_page; /* Page handler may use for COW fault */
555     struct page *page;     /* ->fault handlers should return a
556                             * page here, unless VM_FAULT_NOPAGE
557                             * is set (which is also implied by
558                             * VM_FAULT_ERROR).
559                             */
560     /* These three entries are valid only while holding ptl lock */
561     pte_t *pte;             /* Pointer to pte entry matching
562                              * the 'address'. NULL if the page
563                              * table hasn't been allocated.
564                              */
565     spinlock_t *ptl;        /* Page table lock.
566                              * Protects pte page table if 'pte'
567                              * is not NULL, otherwise pmd.
568                              */
569     pgtable_t prealloc_pte; /* Pre-allocated pte page table.
570                              * vm_ops->map_pages() calls
571                              * alloc_set_pte() from atomic context.
572                              * do_fault_around() pre-allocates
573                              * page table to avoid allocation from
574                              * atomic context.
575                              */
576 };
577 
578 /* page entry size for vm->huge_fault() */
579 enum page_entry_size {
580     PE_SIZE_PTE = 0,
581     PE_SIZE_PMD,
582     PE_SIZE_PUD,
583 };
584 
585 /*
586  * These are the virtual MM functions - opening of an area, closing and
587  * unmapping it (needed to keep files on disk up-to-date etc), pointer
588  * to the functions called when a no-page or a wp-page exception occurs.
589  */
590 struct vm_operations_struct {
591     void (*open)(struct vm_area_struct *area);
592     void (*close)(struct vm_area_struct *area);
593     int (*split)(struct vm_area_struct *area, unsigned long addr);
594     int (*mremap)(struct vm_area_struct *area);
595     vm_fault_t (*fault)(struct vm_fault *vmf);
596     vm_fault_t (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
597     void (*map_pages)(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff);
598     unsigned long (*pagesize)(struct vm_area_struct *area);
599 
600     /* notification that a previously read-only page is about to become
601      * writable, if an error is returned it will cause a SIGBUS */
602     vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
603 
604     /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
605     vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
606 
607     /* called by access_process_vm when get_user_pages() fails, typically
608      * for use by special VMAs that can switch between memory and hardware
609      */
610     int (*access)(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write);
611 
612     /* Called by the /proc/PID/maps code to ask the vma whether it
613      * has a special name.  Returning non-NULL will also cause this
614      * vma to be dumped unconditionally. */
615     const char *(*name)(struct vm_area_struct *vma);
616 
617 #ifdef CONFIG_NUMA
618     /*
619      * set_policy() op must add a reference to any non-NULL @new mempolicy
620      * to hold the policy upon return.  Caller should pass NULL @new to
621      * remove a policy and fall back to surrounding context--i.e. do not
622      * install a MPOL_DEFAULT policy, nor the task or system default
623      * mempolicy.
624      */
625     int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
626 
627     /*
628      * get_policy() op must add reference [mpol_get()] to any policy at
629      * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
630      * in mm/mempolicy.c will do this automatically.
631      * get_policy() must NOT add a ref if the policy at (vma,addr) is not
632      * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
633      * If no [shared/vma] mempolicy exists at the addr, get_policy() op
634      * must return NULL--i.e., do not "fallback" to task or system default
635      * policy.
636      */
637     struct mempolicy *(*get_policy)(struct vm_area_struct *vma, unsigned long addr);
638 #endif
639     /*
640      * Called by vm_normal_page() for special PTEs to find the
641      * page for @addr.  This is useful if the default behavior
642      * (using pte_page()) would not find the correct page.
643      */
644     struct page *(*find_special_page)(struct vm_area_struct *vma, unsigned long addr);
645 };
646 
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)647 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
648 {
649     static const struct vm_operations_struct dummy_vm_ops = {};
650 
651     memset(vma, 0, sizeof(*vma));
652     vma->vm_mm = mm;
653     vma->vm_ops = &dummy_vm_ops;
654     INIT_LIST_HEAD(&vma->anon_vma_chain);
655 }
656 
vma_set_anonymous(struct vm_area_struct * vma)657 static inline void vma_set_anonymous(struct vm_area_struct *vma)
658 {
659     vma->vm_ops = NULL;
660 }
661 
vma_is_anonymous(struct vm_area_struct * vma)662 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
663 {
664     return !vma->vm_ops;
665 }
666 
vma_is_temporary_stack(struct vm_area_struct * vma)667 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
668 {
669     int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
670 
671     if (!maybe_stack) {
672         return false;
673     }
674 
675     if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == VM_STACK_INCOMPLETE_SETUP) {
676         return true;
677     }
678 
679     return false;
680 }
681 
vma_is_foreign(struct vm_area_struct * vma)682 static inline bool vma_is_foreign(struct vm_area_struct *vma)
683 {
684     if (!current->mm) {
685         return true;
686     }
687 
688     if (current->mm != vma->vm_mm) {
689         return true;
690     }
691 
692     return false;
693 }
694 
vma_is_accessible(struct vm_area_struct * vma)695 static inline bool vma_is_accessible(struct vm_area_struct *vma)
696 {
697     return vma->vm_flags & VM_ACCESS_FLAGS;
698 }
699 
700 #ifdef CONFIG_SHMEM
701 /*
702  * The vma_is_shmem is not inline because it is used only by slow
703  * paths in userfault.
704  */
705 bool vma_is_shmem(struct vm_area_struct *vma);
706 #else
vma_is_shmem(struct vm_area_struct * vma)707 static inline bool vma_is_shmem(struct vm_area_struct *vma)
708 {
709     return false;
710 }
711 #endif
712 
713 int vma_is_stack_for_current(struct vm_area_struct *vma);
714 
715 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
716 #define TLB_FLUSH_VMA(mm, flags)                                                                                       \
717     {                                                                                                                  \
718         .vm_mm = (mm), .vm_flags = (flags)                                                                             \
719     }
720 
721 struct mmu_gather;
722 struct inode;
723 
724 #include <linux/huge_mm.h>
725 
726 /*
727  * Methods to modify the page usage count.
728  *
729  * What counts for a page usage:
730  * - cache mapping   (page->mapping)
731  * - private data    (page->private)
732  * - page mapped in a task's page tables, each mapping
733  *   is counted separately
734  *
735  * Also, many kernel routines increase the page count before a critical
736  * routine so they can be sure the page doesn't go away from under them.
737  */
738 
739 /*
740  * Drop a ref, return true if the refcount fell to zero (the page has no users)
741  */
put_page_testzero(struct page * page)742 static inline int put_page_testzero(struct page *page)
743 {
744     VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
745     return page_ref_dec_and_test(page);
746 }
747 
748 /*
749  * Try to grab a ref unless the page has a refcount of zero, return false if
750  * that is the case.
751  * This can be called when MMU is off so it must not access
752  * any of the virtual mappings.
753  */
get_page_unless_zero(struct page * page)754 static inline int get_page_unless_zero(struct page *page)
755 {
756     return page_ref_add_unless(page, 1, 0);
757 }
758 
759 extern int page_is_ram(unsigned long pfn);
760 
761 enum {
762     REGION_INTERSECTS,
763     REGION_DISJOINT,
764     REGION_MIXED,
765 };
766 
767 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, unsigned long desc);
768 
769 /* Support for virtually mapped pages */
770 struct page *vmalloc_to_page(const void *addr);
771 unsigned long vmalloc_to_pfn(const void *addr);
772 
773 /*
774  * Determine if an address is within the vmalloc range
775  *
776  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
777  * is no special casing required.
778  */
779 
780 #ifndef is_ioremap_addr
781 #define is_ioremap_addr(x) is_vmalloc_addr(x)
782 #endif
783 
784 #ifdef CONFIG_MMU
785 extern bool is_vmalloc_addr(const void *x);
786 extern int is_vmalloc_or_module_addr(const void *x);
787 #else
is_vmalloc_addr(const void * x)788 static inline bool is_vmalloc_addr(const void *x)
789 {
790     return false;
791 }
is_vmalloc_or_module_addr(const void * x)792 static inline int is_vmalloc_or_module_addr(const void *x)
793 {
794     return 0;
795 }
796 #endif
797 
798 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)799 static inline void *kvmalloc(size_t size, gfp_t flags)
800 {
801     return kvmalloc_node(size, flags, NUMA_NO_NODE);
802 }
kvzalloc_node(size_t size,gfp_t flags,int node)803 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
804 {
805     return kvmalloc_node(size, flags | __GFP_ZERO, node);
806 }
kvzalloc(size_t size,gfp_t flags)807 static inline void *kvzalloc(size_t size, gfp_t flags)
808 {
809     return kvmalloc(size, flags | __GFP_ZERO);
810 }
811 
kvmalloc_array(size_t n,size_t size,gfp_t flags)812 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
813 {
814     size_t bytes;
815 
816     if (unlikely(check_mul_overflow(n, size, &bytes))) {
817         return NULL;
818     }
819 
820     return kvmalloc(bytes, flags);
821 }
822 
kvcalloc(size_t n,size_t size,gfp_t flags)823 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
824 {
825     return kvmalloc_array(n, size, flags | __GFP_ZERO);
826 }
827 
828 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags);
829 extern void kvfree(const void *addr);
830 extern void kvfree_sensitive(const void *addr, size_t len);
831 
head_compound_mapcount(struct page * head)832 static inline int head_compound_mapcount(struct page *head)
833 {
834     return atomic_read(compound_mapcount_ptr(head)) + 1;
835 }
836 
837 /*
838  * Mapcount of compound page as a whole, does not include mapped sub-pages.
839  *
840  * Must be called only for compound pages or any their tail sub-pages.
841  */
compound_mapcount(struct page * page)842 static inline int compound_mapcount(struct page *page)
843 {
844     VM_BUG_ON_PAGE(!PageCompound(page), page);
845     page = compound_head(page);
846     return head_compound_mapcount(page);
847 }
848 
849 /*
850  * The atomic page->_mapcount, starts from -1: so that transitions
851  * both from it and to it can be tracked, using atomic_inc_and_test
852  * and atomic_add_negative(-1).
853  */
page_mapcount_reset(struct page * page)854 static inline void page_mapcount_reset(struct page *page)
855 {
856     atomic_set(&(page)->_mapcount, -1);
857 }
858 
859 int __page_mapcount(struct page *page);
860 
861 /*
862  * Mapcount of 0-order page; when compound sub-page, includes
863  * compound_mapcount().
864  *
865  * Result is undefined for pages which cannot be mapped into userspace.
866  * For example SLAB or special types of pages. See function page_has_type().
867  * They use this place in struct page differently.
868  */
page_mapcount(struct page * page)869 static inline int page_mapcount(struct page *page)
870 {
871     if (unlikely(PageCompound(page))) {
872         return __page_mapcount(page);
873     }
874     return atomic_read(&page->_mapcount) + 1;
875 }
876 
877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
878 int total_mapcount(struct page *page);
879 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
880 #else
total_mapcount(struct page * page)881 static inline int total_mapcount(struct page *page)
882 {
883     return page_mapcount(page);
884 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)885 static inline int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
886 {
887     int mapcount = page_mapcount(page);
888     if (total_mapcount) {
889         *total_mapcount = mapcount;
890     }
891     return mapcount;
892 }
893 #endif
894 
virt_to_head_page(const void * x)895 static inline struct page *virt_to_head_page(const void *x)
896 {
897     struct page *page = virt_to_page(x);
898 
899     return compound_head(page);
900 }
901 
902 void __put_page(struct page *page);
903 
904 void put_pages_list(struct list_head *pages);
905 
906 void split_page(struct page *page, unsigned int order);
907 
908 /*
909  * Compound pages have a destructor function.  Provide a
910  * prototype for that function and accessor functions.
911  * These are _only_ valid on the head of a compound page.
912  */
913 typedef void compound_page_dtor(struct page *);
914 
915 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
916 enum compound_dtor_id {
917     NULL_COMPOUND_DTOR,
918     COMPOUND_PAGE_DTOR,
919 #ifdef CONFIG_HUGETLB_PAGE
920     HUGETLB_PAGE_DTOR,
921 #endif
922 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
923     TRANSHUGE_PAGE_DTOR,
924 #endif
925     NR_COMPOUND_DTORS,
926 };
927 extern compound_page_dtor *const compound_page_dtors[NR_COMPOUND_DTORS];
928 
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)929 static inline void set_compound_page_dtor(struct page *page, enum compound_dtor_id compound_dtor)
930 {
931     VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
932     page[1].compound_dtor = compound_dtor;
933 }
934 
destroy_compound_page(struct page * page)935 static inline void destroy_compound_page(struct page *page)
936 {
937     VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
938     compound_page_dtors[page[1].compound_dtor](page);
939 }
940 
compound_order(struct page * page)941 static inline unsigned int compound_order(struct page *page)
942 {
943     if (!PageHead(page)) {
944         return 0;
945     }
946     return page[1].compound_order;
947 }
948 
hpage_pincount_available(struct page * page)949 static inline bool hpage_pincount_available(struct page *page)
950 {
951     /*
952      * Can the page->hpage_pinned_refcount field be used? That field is in
953      * the 3rd page of the compound page, so the smallest (2-page) compound
954      * pages cannot support it.
955      */
956     page = compound_head(page);
957     return PageCompound(page) && compound_order(page) > 1;
958 }
959 
head_compound_pincount(struct page * head)960 static inline int head_compound_pincount(struct page *head)
961 {
962     return atomic_read(compound_pincount_ptr(head));
963 }
964 
compound_pincount(struct page * page)965 static inline int compound_pincount(struct page *page)
966 {
967     VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
968     page = compound_head(page);
969     return head_compound_pincount(page);
970 }
971 
set_compound_order(struct page * page,unsigned int order)972 static inline void set_compound_order(struct page *page, unsigned int order)
973 {
974     page[1].compound_order = order;
975     page[1].compound_nr = 1U << order;
976 }
977 
978 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)979 static inline unsigned long compound_nr(struct page *page)
980 {
981     if (!PageHead(page)) {
982         return 1;
983     }
984     return page[1].compound_nr;
985 }
986 
987 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)988 static inline unsigned long page_size(struct page *page)
989 {
990     return PAGE_SIZE << compound_order(page);
991 }
992 
993 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)994 static inline unsigned int page_shift(struct page *page)
995 {
996     return PAGE_SHIFT + compound_order(page);
997 }
998 
999 void free_compound_page(struct page *page);
1000 
1001 #ifdef CONFIG_MMU
1002 /*
1003  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1004  * servicing faults for write access.  In the normal case, do always want
1005  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1006  * that do not have writing enabled, when used by access_process_vm.
1007  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1008 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1009 {
1010     if (likely(vma->vm_flags & VM_WRITE)) {
1011         pte = pte_mkwrite(pte);
1012     }
1013     return pte;
1014 }
1015 
1016 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
1017 vm_fault_t finish_fault(struct vm_fault *vmf);
1018 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1019 #endif
1020 
1021 /*
1022  * Multiple processes may "see" the same page. E.g. for untouched
1023  * mappings of /dev/null, all processes see the same page full of
1024  * zeroes, and text pages of executables and shared libraries have
1025  * only one copy in memory, at most, normally.
1026  *
1027  * For the non-reserved pages, page_count(page) denotes a reference count.
1028  *   page_count() == 0 means the page is free. page->lru is then used for
1029  *   freelist management in the buddy allocator.
1030  *   page_count() > 0  means the page has been allocated.
1031  *
1032  * Pages are allocated by the slab allocator in order to provide memory
1033  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1034  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1035  * unless a particular usage is carefully commented. (the responsibility of
1036  * freeing the kmalloc memory is the caller's, of course).
1037  *
1038  * A page may be used by anyone else who does a __get_free_page().
1039  * In this case, page_count still tracks the references, and should only
1040  * be used through the normal accessor functions. The top bits of page->flags
1041  * and page->virtual store page management information, but all other fields
1042  * are unused and could be used privately, carefully. The management of this
1043  * page is the responsibility of the one who allocated it, and those who have
1044  * subsequently been given references to it.
1045  *
1046  * The other pages (we may call them "pagecache pages") are completely
1047  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1048  * The following discussion applies only to them.
1049  *
1050  * A pagecache page contains an opaque `private' member, which belongs to the
1051  * page's address_space. Usually, this is the address of a circular list of
1052  * the page's disk buffers. PG_private must be set to tell the VM to call
1053  * into the filesystem to release these pages.
1054  *
1055  * A page may belong to an inode's memory mapping. In this case, page->mapping
1056  * is the pointer to the inode, and page->index is the file offset of the page,
1057  * in units of PAGE_SIZE.
1058  *
1059  * If pagecache pages are not associated with an inode, they are said to be
1060  * anonymous pages. These may become associated with the swapcache, and in that
1061  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1062  *
1063  * In either case (swapcache or inode backed), the pagecache itself holds one
1064  * reference to the page. Setting PG_private should also increment the
1065  * refcount. The each user mapping also has a reference to the page.
1066  *
1067  * The pagecache pages are stored in a per-mapping radix tree, which is
1068  * rooted at mapping->i_pages, and indexed by offset.
1069  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1070  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1071  *
1072  * All pagecache pages may be subject to I/O:
1073  * - inode pages may need to be read from disk,
1074  * - inode pages which have been modified and are MAP_SHARED may need
1075  *   to be written back to the inode on disk,
1076  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1077  *   modified may need to be swapped out to swap space and (later) to be read
1078  *   back into memory.
1079  */
1080 
1081 /*
1082  * The zone field is never updated after free_area_init_core()
1083  * sets it, so none of the operations on it need to be atomic.
1084  */
1085 
1086 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1087 #define SECTIONS_PGOFF ((sizeof(unsigned long) * 8) - SECTIONS_WIDTH)
1088 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1089 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1090 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1091 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1092 
1093 /*
1094  * Define the bit shifts to access each section.  For non-existent
1095  * sections we define the shift as 0; that plus a 0 mask ensures
1096  * the compiler will optimise away reference to them.
1097  */
1098 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1099 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1100 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1101 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1102 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1103 
1104 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1105 #ifdef NODE_NOT_IN_PAGE_FLAGS
1106 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1107 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? SECTIONS_PGOFF : ZONES_PGOFF)
1108 #else
1109 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1110 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? NODES_PGOFF : ZONES_PGOFF)
1111 #endif
1112 
1113 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1114 
1115 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1116 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1117 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1118 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1119 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1120 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1121 
page_zonenum(const struct page * page)1122 static inline enum zone_type page_zonenum(const struct page *page)
1123 {
1124     ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1125     return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1126 }
1127 
1128 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1129 static inline bool is_zone_device_page(const struct page *page)
1130 {
1131     return page_zonenum(page) == ZONE_DEVICE;
1132 }
1133 extern void memmap_init_zone_device(struct zone *, unsigned long, unsigned long, struct dev_pagemap *);
1134 #else
is_zone_device_page(const struct page * page)1135 static inline bool is_zone_device_page(const struct page *page)
1136 {
1137     return false;
1138 }
1139 #endif
1140 
1141 #ifdef CONFIG_DEV_PAGEMAP_OPS
1142 void free_devmap_managed_page(struct page *page);
1143 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1144 
page_is_devmap_managed(struct page * page)1145 static inline bool page_is_devmap_managed(struct page *page)
1146 {
1147     if (!static_branch_unlikely(&devmap_managed_key)) {
1148         return false;
1149     }
1150     if (!is_zone_device_page(page)) {
1151         return false;
1152     }
1153     switch (page->pgmap->type) {
1154         case MEMORY_DEVICE_PRIVATE:
1155         case MEMORY_DEVICE_FS_DAX:
1156             return true;
1157         default:
1158             break;
1159     }
1160     return false;
1161 }
1162 
1163 void put_devmap_managed_page(struct page *page);
1164 
1165 #else  /* CONFIG_DEV_PAGEMAP_OPS */
page_is_devmap_managed(struct page * page)1166 static inline bool page_is_devmap_managed(struct page *page)
1167 {
1168     return false;
1169 }
1170 
put_devmap_managed_page(struct page * page)1171 static inline void put_devmap_managed_page(struct page *page)
1172 {
1173 }
1174 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1175 
is_device_private_page(const struct page * page)1176 static inline bool is_device_private_page(const struct page *page)
1177 {
1178     return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_DEVICE_PRIVATE) && is_zone_device_page(page) &&
1179            page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1180 }
1181 
is_pci_p2pdma_page(const struct page * page)1182 static inline bool is_pci_p2pdma_page(const struct page *page)
1183 {
1184     return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_PCI_P2PDMA) && is_zone_device_page(page) &&
1185            page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1186 }
1187 
1188 /* 127: arbitrary random number, small enough to assemble well */
1189 #define page_ref_zero_or_close_to_overflow(page) ((unsigned int)page_ref_count(page) + 127u <= 127u)
1190 
get_page(struct page * page)1191 static inline void get_page(struct page *page)
1192 {
1193     page = compound_head(page);
1194     /*
1195      * Getting a normal page or the head of a compound page
1196      * requires to already have an elevated page->_refcount.
1197      */
1198     VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1199     page_ref_inc(page);
1200 }
1201 
1202 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1203 
try_get_page(struct page * page)1204 static inline __must_check bool try_get_page(struct page *page)
1205 {
1206     page = compound_head(page);
1207     if (WARN_ON_ONCE(page_ref_count(page) <= 0)) {
1208         return false;
1209     }
1210     page_ref_inc(page);
1211     return true;
1212 }
1213 
put_page(struct page * page)1214 static inline void put_page(struct page *page)
1215 {
1216     page = compound_head(page);
1217     /*
1218      * For devmap managed pages we need to catch refcount transition from
1219      * 2 to 1, when refcount reach one it means the page is free and we
1220      * need to inform the device driver through callback. See
1221      * include/linux/memremap.h and HMM for details.
1222      */
1223     if (page_is_devmap_managed(page)) {
1224         put_devmap_managed_page(page);
1225         return;
1226     }
1227 
1228     if (put_page_testzero(page)) {
1229         __put_page(page);
1230     }
1231 }
1232 
1233 /*
1234  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1235  * the page's refcount so that two separate items are tracked: the original page
1236  * reference count, and also a new count of how many pin_user_pages() calls were
1237  * made against the page. ("gup-pinned" is another term for the latter).
1238  *
1239  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1240  * distinct from normal pages. As such, the unpin_user_page() call (and its
1241  * variants) must be used in order to release gup-pinned pages.
1242  *
1243  * Choice of value:
1244  *
1245  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1246  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1247  * simpler, due to the fact that adding an even power of two to the page
1248  * refcount has the effect of using only the upper N bits, for the code that
1249  * counts up using the bias value. This means that the lower bits are left for
1250  * the exclusive use of the original code that increments and decrements by one
1251  * (or at least, by much smaller values than the bias value).
1252  *
1253  * Of course, once the lower bits overflow into the upper bits (and this is
1254  * OK, because subtraction recovers the original values), then visual inspection
1255  * no longer suffices to directly view the separate counts. However, for normal
1256  * applications that don't have huge page reference counts, this won't be an
1257  * issue.
1258  *
1259  * Locking: the lockless algorithm described in page_cache_get_speculative()
1260  * and page_cache_gup_pin_speculative() provides safe operation for
1261  * get_user_pages and page_mkclean and other calls that race to set up page
1262  * table entries.
1263  */
1264 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1265 
1266 void unpin_user_page(struct page *page);
1267 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, bool make_dirty);
1268 void unpin_user_pages(struct page **pages, unsigned long npages);
1269 
1270 /**
1271  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1272  *
1273  * This function checks if a page has been pinned via a call to
1274  * pin_user_pages*().
1275  *
1276  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1277  * because it means "definitely not pinned for DMA", but true means "probably
1278  * pinned for DMA, but possibly a false positive due to having at least
1279  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1280  *
1281  * False positives are OK, because: a) it's unlikely for a page to get that many
1282  * refcounts, and b) all the callers of this routine are expected to be able to
1283  * deal gracefully with a false positive.
1284  *
1285  * For huge pages, the result will be exactly correct. That's because we have
1286  * more tracking data available: the 3rd struct page in the compound page is
1287  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1288  * scheme).
1289  *
1290  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1291  *
1292  * @page:    pointer to page to be queried.
1293  * @Return:    True, if it is likely that the page has been "dma-pinned".
1294  *        False, if the page is definitely not dma-pinned.
1295  */
page_maybe_dma_pinned(struct page * page)1296 static inline bool page_maybe_dma_pinned(struct page *page)
1297 {
1298     if (hpage_pincount_available(page)) {
1299         return compound_pincount(page) > 0;
1300     }
1301 
1302     /*
1303      * page_ref_count() is signed. If that refcount overflows, then
1304      * page_ref_count() returns a negative value, and callers will avoid
1305      * further incrementing the refcount.
1306      *
1307      * Here, for that overflow case, use the signed bit to count a little
1308      * bit higher via unsigned math, and thus still get an accurate result.
1309      */
1310     return ((unsigned int)page_ref_count(compound_head(page))) >= GUP_PIN_COUNTING_BIAS;
1311 }
1312 
1313 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1314 #define SECTION_IN_PAGE_FLAGS
1315 #endif
1316 
1317 /*
1318  * The identification function is mainly used by the buddy allocator for
1319  * determining if two pages could be buddies. We are not really identifying
1320  * the zone since we could be using the section number id if we do not have
1321  * node id available in page flags.
1322  * We only guarantee that it will return the same value for two combinable
1323  * pages in a zone.
1324  */
page_zone_id(struct page * page)1325 static inline int page_zone_id(struct page *page)
1326 {
1327     return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1328 }
1329 
1330 #ifdef NODE_NOT_IN_PAGE_FLAGS
1331 extern int page_to_nid(const struct page *page);
1332 #else
page_to_nid(const struct page * page)1333 static inline int page_to_nid(const struct page *page)
1334 {
1335     struct page *p = (struct page *)page;
1336 
1337     return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1338 }
1339 #endif
1340 
1341 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1342 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1343 {
1344     return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1345 }
1346 
cpupid_to_pid(int cpupid)1347 static inline int cpupid_to_pid(int cpupid)
1348 {
1349     return cpupid & LAST__PID_MASK;
1350 }
1351 
cpupid_to_cpu(int cpupid)1352 static inline int cpupid_to_cpu(int cpupid)
1353 {
1354     return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1355 }
1356 
cpupid_to_nid(int cpupid)1357 static inline int cpupid_to_nid(int cpupid)
1358 {
1359     return cpu_to_node(cpupid_to_cpu(cpupid));
1360 }
1361 
cpupid_pid_unset(int cpupid)1362 static inline bool cpupid_pid_unset(int cpupid)
1363 {
1364     return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1365 }
1366 
cpupid_cpu_unset(int cpupid)1367 static inline bool cpupid_cpu_unset(int cpupid)
1368 {
1369     return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1370 }
1371 
_cpupid_match_pid(pid_t task_pid,int cpupid)1372 static inline bool _cpupid_match_pid(pid_t task_pid, int cpupid)
1373 {
1374     return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1375 }
1376 
1377 #define cpupid_match_pid(task, cpupid) _cpupid_match_pid(task->pid, cpupid)
1378 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1379 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1380 {
1381     return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1382 }
1383 
page_cpupid_last(struct page * page)1384 static inline int page_cpupid_last(struct page *page)
1385 {
1386     return page->_last_cpupid;
1387 }
page_cpupid_reset_last(struct page * page)1388 static inline void page_cpupid_reset_last(struct page *page)
1389 {
1390     page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1391 }
1392 #else
page_cpupid_last(struct page * page)1393 static inline int page_cpupid_last(struct page *page)
1394 {
1395     return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1396 }
1397 
1398 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1399 
page_cpupid_reset_last(struct page * page)1400 static inline void page_cpupid_reset_last(struct page *page)
1401 {
1402     page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1403 }
1404 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1405 #else  /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1406 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1407 {
1408     return page_to_nid(page); /* XXX */
1409 }
1410 
page_cpupid_last(struct page * page)1411 static inline int page_cpupid_last(struct page *page)
1412 {
1413     return page_to_nid(page); /* XXX */
1414 }
1415 
cpupid_to_nid(int cpupid)1416 static inline int cpupid_to_nid(int cpupid)
1417 {
1418     return -1;
1419 }
1420 
cpupid_to_pid(int cpupid)1421 static inline int cpupid_to_pid(int cpupid)
1422 {
1423     return -1;
1424 }
1425 
cpupid_to_cpu(int cpupid)1426 static inline int cpupid_to_cpu(int cpupid)
1427 {
1428     return -1;
1429 }
1430 
cpu_pid_to_cpupid(int nid,int pid)1431 static inline int cpu_pid_to_cpupid(int nid, int pid)
1432 {
1433     return -1;
1434 }
1435 
cpupid_pid_unset(int cpupid)1436 static inline bool cpupid_pid_unset(int cpupid)
1437 {
1438     return true;
1439 }
1440 
page_cpupid_reset_last(struct page * page)1441 static inline void page_cpupid_reset_last(struct page *page)
1442 {
1443 }
1444 
cpupid_match_pid(struct task_struct * task,int cpupid)1445 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1446 {
1447     return false;
1448 }
1449 #endif /* CONFIG_NUMA_BALANCING */
1450 
1451 #ifdef CONFIG_KASAN_SW_TAGS
1452 
1453 /*
1454  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1455  * setting tags for all pages to native kernel tag value 0xff, as the default
1456  * value 0x00 maps to 0xff.
1457  */
1458 
page_kasan_tag(const struct page * page)1459 static inline u8 page_kasan_tag(const struct page *page)
1460 {
1461     u8 tag;
1462 
1463     tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1464     tag ^= 0xff;
1465 
1466     return tag;
1467 }
1468 
page_kasan_tag_set(struct page * page,u8 tag)1469 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1470 {
1471     tag ^= 0xff;
1472     page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1473     page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1474 }
1475 
page_kasan_tag_reset(struct page * page)1476 static inline void page_kasan_tag_reset(struct page *page)
1477 {
1478     page_kasan_tag_set(page, 0xff);
1479 }
1480 #else
page_kasan_tag(const struct page * page)1481 static inline u8 page_kasan_tag(const struct page *page)
1482 {
1483     return 0xff;
1484 }
1485 
page_kasan_tag_set(struct page * page,u8 tag)1486 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1487 {
1488 }
page_kasan_tag_reset(struct page * page)1489 static inline void page_kasan_tag_reset(struct page *page)
1490 {
1491 }
1492 #endif
1493 
page_zone(const struct page * page)1494 static inline struct zone *page_zone(const struct page *page)
1495 {
1496     return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1497 }
1498 
page_pgdat(const struct page * page)1499 static inline pg_data_t *page_pgdat(const struct page *page)
1500 {
1501     return NODE_DATA(page_to_nid(page));
1502 }
1503 
1504 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1505 static inline void set_page_section(struct page *page, unsigned long section)
1506 {
1507     page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1508     page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1509 }
1510 
page_to_section(const struct page * page)1511 static inline unsigned long page_to_section(const struct page *page)
1512 {
1513     return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1514 }
1515 #endif
1516 
set_page_zone(struct page * page,enum zone_type zone)1517 static inline void set_page_zone(struct page *page, enum zone_type zone)
1518 {
1519     page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1520     page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1521 }
1522 
set_page_node(struct page * page,unsigned long node)1523 static inline void set_page_node(struct page *page, unsigned long node)
1524 {
1525     page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1526     page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1527 }
1528 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1529 static inline void set_page_links(struct page *page, enum zone_type zone, unsigned long node, unsigned long pfn)
1530 {
1531     set_page_zone(page, zone);
1532     set_page_node(page, node);
1533 #ifdef SECTION_IN_PAGE_FLAGS
1534     set_page_section(page, pfn_to_section_nr(pfn));
1535 #endif
1536 }
1537 
1538 #ifdef CONFIG_MEMCG
page_memcg(struct page * page)1539 static inline struct mem_cgroup *page_memcg(struct page *page)
1540 {
1541     return page->mem_cgroup;
1542 }
page_memcg_rcu(struct page * page)1543 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1544 {
1545     WARN_ON_ONCE(!rcu_read_lock_held());
1546     return READ_ONCE(page->mem_cgroup);
1547 }
1548 #else
page_memcg(struct page * page)1549 static inline struct mem_cgroup *page_memcg(struct page *page)
1550 {
1551     return NULL;
1552 }
page_memcg_rcu(struct page * page)1553 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1554 {
1555     WARN_ON_ONCE(!rcu_read_lock_held());
1556     return NULL;
1557 }
1558 #endif
1559 
1560 /*
1561  * Some inline functions in vmstat.h depend on page_zone()
1562  */
1563 #include <linux/vmstat.h>
1564 
lowmem_page_address(const struct page * page)1565 static __always_inline void *lowmem_page_address(const struct page *page)
1566 {
1567     return page_to_virt(page);
1568 }
1569 
1570 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1571 #define HASHED_PAGE_VIRTUAL
1572 #endif
1573 
1574 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1575 static inline void *page_address(const struct page *page)
1576 {
1577     return page->virtual;
1578 }
set_page_address(struct page * page,void * address)1579 static inline void set_page_address(struct page *page, void *address)
1580 {
1581     page->virtual = address;
1582 }
1583 #define page_address_init()                                                                                            \
1584     do {                                                                                                               \
1585     } while (0)
1586 #endif
1587 
1588 #if defined(HASHED_PAGE_VIRTUAL)
1589 void *page_address(const struct page *page);
1590 void set_page_address(struct page *page, void *virtual);
1591 void page_address_init(void);
1592 #endif
1593 
1594 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1595 #define page_address(page) lowmem_page_address(page)
1596 #define set_page_address(page, address)                                                                                \
1597     do {                                                                                                               \
1598     } while (0)
1599 #define page_address_init()                                                                                            \
1600     do {                                                                                                               \
1601     } while (0)
1602 #endif
1603 
1604 extern void *page_rmapping(struct page *page);
1605 extern struct anon_vma *page_anon_vma(struct page *page);
1606 extern struct address_space *page_mapping(struct page *page);
1607 
1608 extern struct address_space *__page_file_mapping(struct page *);
1609 
page_file_mapping(struct page * page)1610 static inline struct address_space *page_file_mapping(struct page *page)
1611 {
1612     if (unlikely(PageSwapCache(page))) {
1613         return __page_file_mapping(page);
1614     }
1615 
1616     return page->mapping;
1617 }
1618 
1619 extern pgoff_t __page_file_index(struct page *page);
1620 
1621 /*
1622  * Return the pagecache index of the passed page.  Regular pagecache pages
1623  * use ->index whereas swapcache pages use swp_offset(->private)
1624  */
page_index(struct page * page)1625 static inline pgoff_t page_index(struct page *page)
1626 {
1627     if (unlikely(PageSwapCache(page))) {
1628         return __page_file_index(page);
1629     }
1630     return page->index;
1631 }
1632 
1633 bool page_mapped(struct page *page);
1634 struct address_space *page_mapping(struct page *page);
1635 struct address_space *page_mapping_file(struct page *page);
1636 
1637 /*
1638  * Return true only if the page has been allocated with
1639  * ALLOC_NO_WATERMARKS and the low watermark was not
1640  * met implying that the system is under some pressure.
1641  */
page_is_pfmemalloc(struct page * page)1642 static inline bool page_is_pfmemalloc(struct page *page)
1643 {
1644     /*
1645      * Page index cannot be this large so this must be
1646      * a pfmemalloc page.
1647      */
1648     return page->index == -1UL;
1649 }
1650 
1651 /*
1652  * Only to be called by the page allocator on a freshly allocated
1653  * page.
1654  */
set_page_pfmemalloc(struct page * page)1655 static inline void set_page_pfmemalloc(struct page *page)
1656 {
1657     page->index = -1UL;
1658 }
1659 
clear_page_pfmemalloc(struct page * page)1660 static inline void clear_page_pfmemalloc(struct page *page)
1661 {
1662     page->index = 0;
1663 }
1664 
1665 /*
1666  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1667  */
1668 extern void pagefault_out_of_memory(void);
1669 
1670 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1671 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1672 
1673 /*
1674  * Flags passed to show_mem() and show_free_areas() to suppress output in
1675  * various contexts.
1676  */
1677 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1678 
1679 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1680 
1681 #ifdef CONFIG_MMU
1682 extern bool can_do_mlock(void);
1683 #else
can_do_mlock(void)1684 static inline bool can_do_mlock(void)
1685 {
1686     return false;
1687 }
1688 #endif
1689 extern int user_shm_lock(size_t, struct user_struct *);
1690 extern void user_shm_unlock(size_t, struct user_struct *);
1691 
1692 /*
1693  * Parameter block passed down to zap_pte_range in exceptional cases.
1694  */
1695 struct zap_details {
1696     struct address_space *check_mapping; /* Check page->mapping if set */
1697     pgoff_t first_index;                 /* Lowest page->index to unmap */
1698     pgoff_t last_index;                  /* Highest page->index to unmap */
1699     struct page *single_page;            /* Locked page to be unmapped */
1700 };
1701 
1702 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte);
1703 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd);
1704 
1705 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size);
1706 void zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size);
1707 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long start, unsigned long end);
1708 
1709 struct mmu_notifier_range;
1710 
1711 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor,
1712                     unsigned long ceiling);
1713 int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1714 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp,
1715                           pmd_t **pmdpp, spinlock_t **ptlp);
1716 int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp);
1717 int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn);
1718 int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot,
1719                 resource_size_t *phys);
1720 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write);
1721 
1722 extern void truncate_pagecache(struct inode *inode, loff_t new);
1723 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1724 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1725 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1726 int truncate_inode_page(struct address_space *mapping, struct page *page);
1727 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1728 int invalidate_inode_page(struct page *page);
1729 
1730 #ifdef CONFIG_MMU
1731 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags,
1732                                   struct pt_regs *regs);
1733 extern int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked);
1734 void unmap_mapping_page(struct page *page);
1735 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows);
1736 void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows);
1737 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1738 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags,
1739                                          struct pt_regs *regs)
1740 {
1741     /* should never happen if there's no MMU */
1742     BUG();
1743     return VM_FAULT_SIGBUS;
1744 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1745 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags,
1746                                    bool *unlocked)
1747 {
1748     /* should never happen if there's no MMU */
1749     BUG();
1750     return -EFAULT;
1751 }
unmap_mapping_page(struct page * page)1752 static inline void unmap_mapping_page(struct page *page)
1753 {
1754 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1755 static inline void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows)
1756 {
1757 }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1758 static inline void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen,
1759                                        int even_cows)
1760 {
1761 }
1762 #endif
1763 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1764 static inline void unmap_shared_mapping_range(struct address_space *mapping, loff_t const holebegin,
1765                                               loff_t const holelen)
1766 {
1767     unmap_mapping_range(mapping, holebegin, holelen, 0);
1768 }
1769 
1770 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags);
1771 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags);
1772 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len,
1773                               unsigned int gup_flags);
1774 
1775 long get_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags,
1776                            struct page **pages, struct vm_area_struct **vmas, int *locked);
1777 long pin_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags,
1778                            struct page **pages, struct vm_area_struct **vmas, int *locked);
1779 long get_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages,
1780                     struct vm_area_struct **vmas);
1781 long pin_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages,
1782                     struct vm_area_struct **vmas);
1783 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages,
1784                            int *locked);
1785 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages,
1786                            int *locked);
1787 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags);
1788 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags);
1789 
1790 int get_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages);
1791 int pin_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages);
1792 
1793 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1794 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, struct task_struct *task,
1795                         bool bypass_rlim);
1796 
1797 /* Container for pinned pfns / pages */
1798 struct frame_vector {
1799     unsigned int nr_allocated; /* Number of frames we have space for */
1800     unsigned int nr_frames;    /* Number of frames stored in ptrs array */
1801     bool got_ref;              /* Did we pin pages by getting page ref? */
1802     bool is_pfns;              /* Does array contain pages or pfns? */
1803     void *ptrs[];              /* Array of pinned pfns / pages. Use
1804                                 * pfns_vector_pages() or pfns_vector_pfns()
1805                                 * for access */
1806 };
1807 
1808 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1809 void frame_vector_destroy(struct frame_vector *vec);
1810 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, unsigned int gup_flags, struct frame_vector *vec);
1811 void put_vaddr_frames(struct frame_vector *vec);
1812 int frame_vector_to_pages(struct frame_vector *vec);
1813 void frame_vector_to_pfns(struct frame_vector *vec);
1814 
frame_vector_count(struct frame_vector * vec)1815 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1816 {
1817     return vec->nr_frames;
1818 }
1819 
frame_vector_pages(struct frame_vector * vec)1820 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1821 {
1822     if (vec->is_pfns) {
1823         int err = frame_vector_to_pages(vec);
1824         if (err) {
1825             return ERR_PTR(err);
1826         }
1827     }
1828     return (struct page **)(vec->ptrs);
1829 }
1830 
frame_vector_pfns(struct frame_vector * vec)1831 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1832 {
1833     if (!vec->is_pfns) {
1834         frame_vector_to_pfns(vec);
1835     }
1836     return (unsigned long *)(vec->ptrs);
1837 }
1838 
1839 struct kvec;
1840 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, struct page **pages);
1841 int get_kernel_page(unsigned long start, int write, struct page **pages);
1842 struct page *get_dump_page(unsigned long addr);
1843 
1844 extern int try_to_release_page(struct page *page, gfp_t gfp_mask);
1845 extern void do_invalidatepage(struct page *page, unsigned int offset, unsigned int length);
1846 
1847 void __set_page_dirty(struct page *, struct address_space *, int warn);
1848 int __set_page_dirty_nobuffers(struct page *page);
1849 int __set_page_dirty_no_writeback(struct page *page);
1850 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page);
1851 void account_page_dirtied(struct page *page, struct address_space *mapping);
1852 void account_page_cleaned(struct page *page, struct address_space *mapping, struct bdi_writeback *wb);
1853 int set_page_dirty(struct page *page);
1854 int set_page_dirty_lock(struct page *page);
1855 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1856 static inline void cancel_dirty_page(struct page *page)
1857 {
1858     /* Avoid atomic ops, locking, etc. when not actually needed. */
1859     if (PageDirty(page)) {
1860         __cancel_dirty_page(page);
1861     }
1862 }
1863 int clear_page_dirty_for_io(struct page *page);
1864 
1865 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1866 
1867 extern unsigned long move_page_tables(struct vm_area_struct *vma, unsigned long old_addr,
1868                                       struct vm_area_struct *new_vma, unsigned long new_addr, unsigned long len,
1869                                       bool need_rmap_locks);
1870 
1871 /*
1872  * Flags used by change_protection().  For now we make it a bitmap so
1873  * that we can pass in multiple flags just like parameters.  However
1874  * for now all the callers are only use one of the flags at the same
1875  * time.
1876  */
1877 /* Whether we should allow dirty bit accounting */
1878 #define MM_CP_DIRTY_ACCT (1UL << 0)
1879 /* Whether this protection change is for NUMA hints */
1880 #define MM_CP_PROT_NUMA (1UL << 1)
1881 /* Whether this change is for write protecting */
1882 #define MM_CP_UFFD_WP (1UL << 2)         /* do wp */
1883 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1884 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | MM_CP_UFFD_WP_RESOLVE)
1885 
1886 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, unsigned long end,
1887                                        pgprot_t newprot, unsigned long cp_flags);
1888 extern int mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, unsigned long start,
1889                           unsigned long end, unsigned long newflags);
1890 
1891 /*
1892  * doesn't attempt to fault and will return short.
1893  */
1894 int get_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages);
1895 int pin_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages);
1896 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)1897 static inline bool get_user_page_fast_only(unsigned long addr, unsigned int gup_flags, struct page **pagep)
1898 {
1899     return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1900 }
1901 /*
1902  * per-process(per-mm_struct) statistics.
1903  */
get_mm_counter(struct mm_struct * mm,int member)1904 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1905 {
1906     long val = atomic_long_read(&mm->rss_stat.count[member]);
1907 #ifdef SPLIT_RSS_COUNTING
1908     /*
1909      * counter is updated in asynchronous manner and may go to minus.
1910      * But it's never be expected number for users.
1911      */
1912     if (val < 0) {
1913         val = 0;
1914     }
1915 #endif
1916     return (unsigned long)val;
1917 }
1918 
1919 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1920 
1921 #ifdef CONFIG_RSS_THRESHOLD
1922 void listen_rss_threshold(struct mm_struct *mm);
1923 #endif
1924 
add_mm_counter(struct mm_struct * mm,int member,long value)1925 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1926 {
1927     long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1928 
1929 #ifdef CONFIG_RSS_THRESHOLD
1930     listen_rss_threshold(mm);
1931 #endif
1932 
1933     mm_trace_rss_stat(mm, member, count);
1934 }
1935 
inc_mm_counter(struct mm_struct * mm,int member)1936 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1937 {
1938     long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1939 
1940 #ifdef CONFIG_RSS_THRESHOLD
1941     listen_rss_threshold(mm);
1942 #endif
1943 
1944     mm_trace_rss_stat(mm, member, count);
1945 }
1946 
dec_mm_counter(struct mm_struct * mm,int member)1947 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1948 {
1949     long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1950 
1951     mm_trace_rss_stat(mm, member, count);
1952 }
1953 
1954 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1955 static inline int mm_counter_file(struct page *page)
1956 {
1957     if (PageSwapBacked(page)) {
1958         return MM_SHMEMPAGES;
1959     }
1960     return MM_FILEPAGES;
1961 }
1962 
mm_counter(struct page * page)1963 static inline int mm_counter(struct page *page)
1964 {
1965     if (PageAnon(page)) {
1966         return MM_ANONPAGES;
1967     }
1968     return mm_counter_file(page);
1969 }
1970 
get_mm_rss(struct mm_struct * mm)1971 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1972 {
1973     return get_mm_counter(mm, MM_FILEPAGES) + get_mm_counter(mm, MM_ANONPAGES) + get_mm_counter(mm, MM_SHMEMPAGES);
1974 }
1975 
get_mm_hiwater_rss(struct mm_struct * mm)1976 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1977 {
1978     return max(mm->hiwater_rss, get_mm_rss(mm));
1979 }
1980 
get_mm_hiwater_vm(struct mm_struct * mm)1981 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1982 {
1983     return max(mm->hiwater_vm, mm->total_vm);
1984 }
1985 
update_hiwater_rss(struct mm_struct * mm)1986 static inline void update_hiwater_rss(struct mm_struct *mm)
1987 {
1988     unsigned long _rss = get_mm_rss(mm);
1989     if ((mm)->hiwater_rss < _rss) {
1990         (mm)->hiwater_rss = _rss;
1991     }
1992 }
1993 
update_hiwater_vm(struct mm_struct * mm)1994 static inline void update_hiwater_vm(struct mm_struct *mm)
1995 {
1996     if (mm->hiwater_vm < mm->total_vm) {
1997         mm->hiwater_vm = mm->total_vm;
1998     }
1999 }
2000 
reset_mm_hiwater_rss(struct mm_struct * mm)2001 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2002 {
2003     mm->hiwater_rss = get_mm_rss(mm);
2004 }
2005 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2006 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, struct mm_struct *mm)
2007 {
2008     unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2009     if (*maxrss < hiwater_rss) {
2010         *maxrss = hiwater_rss;
2011     }
2012 }
2013 
2014 #if defined(SPLIT_RSS_COUNTING)
2015 void sync_mm_rss(struct mm_struct *mm);
2016 #else
sync_mm_rss(struct mm_struct * mm)2017 static inline void sync_mm_rss(struct mm_struct *mm)
2018 {
2019 }
2020 #endif
2021 
2022 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2023 static inline int pte_special(pte_t pte)
2024 {
2025     return 0;
2026 }
2027 
pte_mkspecial(pte_t pte)2028 static inline pte_t pte_mkspecial(pte_t pte)
2029 {
2030     return pte;
2031 }
2032 #endif
2033 
2034 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2035 static inline int pte_devmap(pte_t pte)
2036 {
2037     return 0;
2038 }
2039 #endif
2040 
2041 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2042 
2043 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2044 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
2045 {
2046     pte_t *ptep;
2047     __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2048     return ptep;
2049 }
2050 
2051 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2052 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2053 {
2054     return 0;
2055 }
2056 #else
2057 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2058 #endif
2059 
2060 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2061 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
2062 {
2063     return 0;
2064 }
mm_inc_nr_puds(struct mm_struct * mm)2065 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2066 {
2067 }
mm_dec_nr_puds(struct mm_struct * mm)2068 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2069 {
2070 }
2071 
2072 #else
2073 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2074 
mm_inc_nr_puds(struct mm_struct * mm)2075 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2076 {
2077     if (mm_pud_folded(mm)) {
2078         return;
2079     }
2080     atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2081 }
2082 
mm_dec_nr_puds(struct mm_struct * mm)2083 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2084 {
2085     if (mm_pud_folded(mm)) {
2086         return;
2087     }
2088     atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2089 }
2090 #endif
2091 
2092 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2093 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2094 {
2095     return 0;
2096 }
2097 
mm_inc_nr_pmds(struct mm_struct * mm)2098 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2099 {
2100 }
mm_dec_nr_pmds(struct mm_struct * mm)2101 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2102 {
2103 }
2104 
2105 #else
2106 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2107 
mm_inc_nr_pmds(struct mm_struct * mm)2108 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2109 {
2110     if (mm_pmd_folded(mm)) {
2111         return;
2112     }
2113     atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2114 }
2115 
mm_dec_nr_pmds(struct mm_struct * mm)2116 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2117 {
2118     if (mm_pmd_folded(mm)) {
2119         return;
2120     }
2121     atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2122 }
2123 #endif
2124 
2125 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2126 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2127 {
2128     atomic_long_set(&mm->pgtables_bytes, 0);
2129 }
2130 
mm_pgtables_bytes(const struct mm_struct * mm)2131 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2132 {
2133     return atomic_long_read(&mm->pgtables_bytes);
2134 }
2135 
mm_inc_nr_ptes(struct mm_struct * mm)2136 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2137 {
2138     atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2139 }
2140 
mm_dec_nr_ptes(struct mm_struct * mm)2141 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2142 {
2143     atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2144 }
2145 #else
2146 
mm_pgtables_bytes_init(struct mm_struct * mm)2147 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2148 {
2149 }
mm_pgtables_bytes(const struct mm_struct * mm)2150 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2151 {
2152     return 0;
2153 }
2154 
mm_inc_nr_ptes(struct mm_struct * mm)2155 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2156 {
2157 }
mm_dec_nr_ptes(struct mm_struct * mm)2158 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2159 {
2160 }
2161 #endif
2162 
2163 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2164 int __pte_alloc_kernel(pmd_t *pmd);
2165 
2166 #if defined(CONFIG_MMU)
2167 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2168 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2169 {
2170     return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? NULL : p4d_offset(pgd, address);
2171 }
2172 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2173 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
2174 {
2175     return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? NULL : pud_offset(p4d, address);
2176 }
2177 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2178 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2179 {
2180     return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address)) ? NULL : pmd_offset(pud, address);
2181 }
2182 #endif /* CONFIG_MMU */
2183 
2184 #if USE_SPLIT_PTE_PTLOCKS
2185 #if ALLOC_SPLIT_PTLOCKS
2186 void __init ptlock_cache_init(void);
2187 extern bool ptlock_alloc(struct page *page);
2188 extern void ptlock_free(struct page *page);
2189 
ptlock_ptr(struct page * page)2190 static inline spinlock_t *ptlock_ptr(struct page *page)
2191 {
2192     return page->ptl;
2193 }
2194 #else  /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2195 static inline void ptlock_cache_init(void)
2196 {
2197 }
2198 
ptlock_alloc(struct page * page)2199 static inline bool ptlock_alloc(struct page *page)
2200 {
2201     return true;
2202 }
2203 
ptlock_free(struct page * page)2204 static inline void ptlock_free(struct page *page)
2205 {
2206 }
2207 
ptlock_ptr(struct page * page)2208 static inline spinlock_t *ptlock_ptr(struct page *page)
2209 {
2210     return &page->ptl;
2211 }
2212 #endif /* ALLOC_SPLIT_PTLOCKS */
2213 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2214 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2215 {
2216     return ptlock_ptr(pmd_page(*pmd));
2217 }
2218 
ptlock_init(struct page * page)2219 static inline bool ptlock_init(struct page *page)
2220 {
2221     /*
2222      * prep_new_page() initialize page->private (and therefore page->ptl)
2223      * with 0. Make sure nobody took it in use in between.
2224      *
2225      * It can happen if arch try to use slab for page table allocation:
2226      * slab code uses page->slab_cache, which share storage with page->ptl.
2227      */
2228     VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2229     if (!ptlock_alloc(page)) {
2230         return false;
2231     }
2232     spin_lock_init(ptlock_ptr(page));
2233     return true;
2234 }
2235 
2236 #else  /* !USE_SPLIT_PTE_PTLOCKS */
2237 /*
2238  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2239  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2240 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2241 {
2242     return &mm->page_table_lock;
2243 }
ptlock_cache_init(void)2244 static inline void ptlock_cache_init(void)
2245 {
2246 }
ptlock_init(struct page * page)2247 static inline bool ptlock_init(struct page *page)
2248 {
2249     return true;
2250 }
ptlock_free(struct page * page)2251 static inline void ptlock_free(struct page *page)
2252 {
2253 }
2254 #endif /* USE_SPLIT_PTE_PTLOCKS */
2255 
pgtable_init(void)2256 static inline void pgtable_init(void)
2257 {
2258     ptlock_cache_init();
2259     pgtable_cache_init();
2260 }
2261 
pgtable_pte_page_ctor(struct page * page)2262 static inline bool pgtable_pte_page_ctor(struct page *page)
2263 {
2264     if (!ptlock_init(page)) {
2265         return false;
2266     }
2267     __SetPageTable(page);
2268     inc_zone_page_state(page, NR_PAGETABLE);
2269     return true;
2270 }
2271 
pgtable_pte_page_dtor(struct page * page)2272 static inline void pgtable_pte_page_dtor(struct page *page)
2273 {
2274     ptlock_free(page);
2275     __ClearPageTable(page);
2276     dec_zone_page_state(page, NR_PAGETABLE);
2277 }
2278 
2279 #define pte_offset_map_lock(mm, pmd, address, ptlp)                                                                    \
2280     ( {                                                                                                                \
2281         spinlock_t *__ptl = pte_lockptr(mm, pmd);                                                                      \
2282         pte_t *__pte = pte_offset_map(pmd, address);                                                                   \
2283         *(ptlp) = __ptl;                                                                                               \
2284         spin_lock(__ptl);                                                                                              \
2285         __pte;                                                                                                         \
2286     })
2287 
2288 #define pte_unmap_unlock(pte, ptl)                                                                                     \
2289     do {                                                                                                               \
2290         spin_unlock(ptl);                                                                                              \
2291         pte_unmap(pte);                                                                                                \
2292     } while (0)
2293 
2294 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2295 
2296 #define pte_alloc_map(mm, pmd, address) (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2297 
2298 #define pte_alloc_map_lock(mm, pmd, address, ptlp)                                                                     \
2299     (pte_alloc(mm, pmd) ? NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2300 
2301 #define pte_alloc_kernel(pmd, address)                                                                                 \
2302     ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd)) ? NULL : pte_offset_kernel(pmd, address))
2303 
2304 #if USE_SPLIT_PMD_PTLOCKS
2305 
pmd_to_page(pmd_t * pmd)2306 static struct page *pmd_to_page(pmd_t *pmd)
2307 {
2308     unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2309     return virt_to_page((void *)((unsigned long)pmd & mask));
2310 }
2311 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2312 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2313 {
2314     return ptlock_ptr(pmd_to_page(pmd));
2315 }
2316 
pmd_ptlock_init(struct page * page)2317 static inline bool pmd_ptlock_init(struct page *page)
2318 {
2319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2320     page->pmd_huge_pte = NULL;
2321 #endif
2322     return ptlock_init(page);
2323 }
2324 
pmd_ptlock_free(struct page * page)2325 static inline void pmd_ptlock_free(struct page *page)
2326 {
2327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2328     VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2329 #endif
2330     ptlock_free(page);
2331 }
2332 
2333 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2334 
2335 #else
2336 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2337 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2338 {
2339     return &mm->page_table_lock;
2340 }
2341 
pmd_ptlock_init(struct page * page)2342 static inline bool pmd_ptlock_init(struct page *page)
2343 {
2344     return true;
2345 }
pmd_ptlock_free(struct page * page)2346 static inline void pmd_ptlock_free(struct page *page)
2347 {
2348 }
2349 
2350 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2351 
2352 #endif
2353 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2354 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2355 {
2356     spinlock_t *ptl = pmd_lockptr(mm, pmd);
2357     spin_lock(ptl);
2358     return ptl;
2359 }
2360 
pgtable_pmd_page_ctor(struct page * page)2361 static inline bool pgtable_pmd_page_ctor(struct page *page)
2362 {
2363     if (!pmd_ptlock_init(page)) {
2364         return false;
2365     }
2366     __SetPageTable(page);
2367     inc_zone_page_state(page, NR_PAGETABLE);
2368     return true;
2369 }
2370 
pgtable_pmd_page_dtor(struct page * page)2371 static inline void pgtable_pmd_page_dtor(struct page *page)
2372 {
2373     pmd_ptlock_free(page);
2374     __ClearPageTable(page);
2375     dec_zone_page_state(page, NR_PAGETABLE);
2376 }
2377 
2378 /*
2379  * No scalability reason to split PUD locks yet, but follow the same pattern
2380  * as the PMD locks to make it easier if we decide to.  The VM should not be
2381  * considered ready to switch to split PUD locks yet; there may be places
2382  * which need to be converted from page_table_lock.
2383  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2384 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2385 {
2386     return &mm->page_table_lock;
2387 }
2388 
pud_lock(struct mm_struct * mm,pud_t * pud)2389 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2390 {
2391     spinlock_t *ptl = pud_lockptr(mm, pud);
2392 
2393     spin_lock(ptl);
2394     return ptl;
2395 }
2396 
2397 extern void __init pagecache_init(void);
2398 extern void __init free_area_init_memoryless_node(int nid);
2399 extern void free_initmem(void);
2400 
2401 /*
2402  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2403  * into the buddy system. The freed pages will be poisoned with pattern
2404  * "poison" if it's within range [0, UCHAR_MAX].
2405  * Return pages freed into the buddy system.
2406  */
2407 extern unsigned long free_reserved_area(void *start, void *end, int poison, const char *s);
2408 
2409 #ifdef CONFIG_HIGHMEM
2410 /*
2411  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2412  * and totalram_pages.
2413  */
2414 extern void free_highmem_page(struct page *page);
2415 #endif
2416 
2417 extern void adjust_managed_page_count(struct page *page, long count);
2418 extern void mem_init_print_info(const char *str);
2419 
2420 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2421 
2422 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)2423 static inline void __free_reserved_page(struct page *page)
2424 {
2425     ClearPageReserved(page);
2426     init_page_count(page);
2427     __free_page(page);
2428 }
2429 
free_reserved_page(struct page * page)2430 static inline void free_reserved_page(struct page *page)
2431 {
2432     __free_reserved_page(page);
2433     adjust_managed_page_count(page, 1);
2434 }
2435 
mark_page_reserved(struct page * page)2436 static inline void mark_page_reserved(struct page *page)
2437 {
2438     SetPageReserved(page);
2439     adjust_managed_page_count(page, -1);
2440 }
2441 
2442 /*
2443  * Default method to free all the __init memory into the buddy system.
2444  * The freed pages will be poisoned with pattern "poison" if it's within
2445  * range [0, UCHAR_MAX].
2446  * Return pages freed into the buddy system.
2447  */
free_initmem_default(int poison)2448 static inline unsigned long free_initmem_default(int poison)
2449 {
2450     extern char __init_begin[], __init_end[];
2451 
2452     return free_reserved_area(&__init_begin, &__init_end, poison, "unused kernel");
2453 }
2454 
get_num_physpages(void)2455 static inline unsigned long get_num_physpages(void)
2456 {
2457     int nid;
2458     unsigned long phys_pages = 0;
2459 
2460     for_each_online_node(nid) phys_pages += node_present_pages(nid);
2461 
2462     return phys_pages;
2463 }
2464 
2465 /*
2466  * Using memblock node mappings, an architecture may initialise its
2467  * zones, allocate the backing mem_map and account for memory holes in an
2468  * architecture independent manner.
2469  *
2470  * An architecture is expected to register range of page frames backed by
2471  * physical memory with memblock_add[_node]() before calling
2472  * free_area_init() passing in the PFN each zone ends at. At a basic
2473  * usage, an architecture is expected to do something like
2474  *
2475  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2476  *                              max_highmem_pfn};
2477  * for_each_valid_physical_page_range()
2478  *     memblock_add_node(base, size, nid)
2479  * free_area_init(max_zone_pfns);
2480  */
2481 void free_area_init(unsigned long *max_zone_pfn);
2482 unsigned long node_map_pfn_alignment(void);
2483 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, unsigned long end_pfn);
2484 extern unsigned long absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn);
2485 extern void get_pfn_range_for_nid(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn);
2486 extern unsigned long find_min_pfn_with_active_regions(void);
2487 
2488 #ifndef CONFIG_NEED_MULTIPLE_NODES
early_pfn_to_nid(unsigned long pfn)2489 static inline int early_pfn_to_nid(unsigned long pfn)
2490 {
2491     return 0;
2492 }
2493 #else
2494 /* please see mm/page_alloc.c */
2495 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2496 /* there is a per-arch backend function. */
2497 extern int __meminit __early_pfn_to_nid(unsigned long pfn, struct mminit_pfnnid_cache *state);
2498 #endif
2499 
2500 extern void set_dma_reserve(unsigned long new_dma_reserve);
2501 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, unsigned long, enum meminit_context,
2502                              struct vmem_altmap *, int migratetype);
2503 extern void setup_per_zone_wmarks(void);
2504 extern int __meminit init_per_zone_wmark_min(void);
2505 extern void mem_init(void);
2506 extern void __init mmap_init(void);
2507 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2508 extern long si_mem_available(void);
2509 extern void si_meminfo(struct sysinfo *val);
2510 extern void si_meminfo_node(struct sysinfo *val, int nid);
2511 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2512 extern unsigned long arch_reserved_kernel_pages(void);
2513 #endif
2514 
2515 extern __printf(3, 4) void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2516 
2517 extern void setup_per_cpu_pageset(void);
2518 
2519 /* page_alloc.c */
2520 extern int min_free_kbytes;
2521 extern int watermark_boost_factor;
2522 extern int watermark_scale_factor;
2523 extern bool arch_has_descending_max_zone_pfns(void);
2524 
2525 /* nommu.c */
2526 extern atomic_long_t mmap_pages_allocated;
2527 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2528 
2529 /* interval_tree.c */
2530 void vma_interval_tree_insert(struct vm_area_struct *node, struct rb_root_cached *root);
2531 void vma_interval_tree_insert_after(struct vm_area_struct *node, struct vm_area_struct *prev,
2532                                     struct rb_root_cached *root);
2533 void vma_interval_tree_remove(struct vm_area_struct *node, struct rb_root_cached *root);
2534 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start,
2535                                                     unsigned long last);
2536 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, unsigned long start,
2537                                                    unsigned long last);
2538 
2539 #define vma_interval_tree_foreach(vma, root, start, last)                                                              \
2540     for (vma = vma_interval_tree_iter_first(root, start, last); vma;                                                   \
2541          vma = vma_interval_tree_iter_next(vma, start, last))
2542 
2543 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, struct rb_root_cached *root);
2544 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, struct rb_root_cached *root);
2545 struct anon_vma_chain *anon_vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start,
2546                                                          unsigned long last);
2547 struct anon_vma_chain *anon_vma_interval_tree_iter_next(struct anon_vma_chain *node, unsigned long start,
2548                                                         unsigned long last);
2549 #ifdef CONFIG_DEBUG_VM_RB
2550 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2551 #endif
2552 
2553 #define anon_vma_interval_tree_foreach(avc, root, start, last)                                                         \
2554     for (avc = anon_vma_interval_tree_iter_first(root, start, last); avc;                                              \
2555          avc = anon_vma_interval_tree_iter_next(avc, start, last))
2556 
2557 /* mmap.c */
2558 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2559 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff,
2560                         struct vm_area_struct *insert, struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2561 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff,
2562                              struct vm_area_struct *insert)
2563 {
2564     return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2565 }
2566 extern struct vm_area_struct *vma_merge(struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
2567                                         unsigned long end, unsigned long vm_flags, struct anon_vma *, struct file *,
2568                                         pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2569 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2570 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below);
2571 extern int split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below);
2572 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2573 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, struct rb_node **, struct rb_node *);
2574 extern void unlink_file_vma(struct vm_area_struct *);
2575 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, unsigned long addr, unsigned long len, pgoff_t pgoff,
2576                                        bool *need_rmap_locks);
2577 extern void exit_mmap(struct mm_struct *);
2578 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2579 static inline int check_data_rlimit(unsigned long rlim, unsigned long new, unsigned long start, unsigned long end_data,
2580                                     unsigned long start_data)
2581 {
2582     if (rlim < RLIM_INFINITY) {
2583         if (((new - start) + (end_data - start_data)) > rlim) {
2584             return -ENOSPC;
2585         }
2586     }
2587 
2588     return 0;
2589 }
2590 
2591 extern int mm_take_all_locks(struct mm_struct *mm);
2592 extern void mm_drop_all_locks(struct mm_struct *mm);
2593 
2594 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2595 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2596 extern struct file *get_task_exe_file(struct task_struct *task);
2597 
2598 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2599 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2600 
2601 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, const struct vm_special_mapping *sm);
2602 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len,
2603                                                        unsigned long flags, const struct vm_special_mapping *spec);
2604 /* This is an obsolete alternative to _install_special_mapping. */
2605 extern int install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags,
2606                                    struct page **pages);
2607 
2608 unsigned long randomize_stack_top(unsigned long stack_top);
2609 unsigned long randomize_page(unsigned long start, unsigned long range);
2610 
2611 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2612 
2613 extern unsigned long mmap_region(struct file *file, unsigned long addr, unsigned long len, vm_flags_t vm_flags,
2614                                  unsigned long pgoff, struct list_head *uf);
2615 extern unsigned long do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot,
2616                              unsigned long flags, unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2617 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf, bool downgrade);
2618 extern int do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf);
2619 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2620 
2621 #ifdef CONFIG_MMU
2622 extern int __mm_populate(unsigned long addr, unsigned long len, int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2623 static inline void mm_populate(unsigned long addr, unsigned long len)
2624 {
2625     /* Ignore errors */
2626     (void)__mm_populate(addr, len, 1);
2627 }
2628 #else
mm_populate(unsigned long addr,unsigned long len)2629 static inline void mm_populate(unsigned long addr, unsigned long len)
2630 {
2631 }
2632 #endif
2633 
2634 /* These take the mm semaphore themselves */
2635 extern int __must_check vm_brk(unsigned long, unsigned long);
2636 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2637 extern int vm_munmap(unsigned long, size_t);
2638 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, unsigned long, unsigned long, unsigned long,
2639                                           unsigned long);
2640 
2641 struct vm_unmapped_area_info {
2642 #define VM_UNMAPPED_AREA_TOPDOWN 1
2643     unsigned long flags;
2644     unsigned long length;
2645     unsigned long low_limit;
2646     unsigned long high_limit;
2647     unsigned long align_mask;
2648     unsigned long align_offset;
2649 };
2650 
2651 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2652 
2653 /* truncate.c */
2654 extern void truncate_inode_pages(struct address_space *, loff_t);
2655 extern void truncate_inode_pages_range(struct address_space *, loff_t lstart, loff_t lend);
2656 extern void truncate_inode_pages_final(struct address_space *);
2657 
2658 /* generic vm_area_ops exported for stackable file systems */
2659 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2660 extern void filemap_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff);
2661 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2662 
2663 /* mm/page-writeback.c */
2664 int __must_check write_one_page(struct page *page);
2665 void task_dirty_inc(struct task_struct *tsk);
2666 
2667 extern unsigned long stack_guard_gap;
2668 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2669 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2670 
2671 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2672 extern int expand_downwards(struct vm_area_struct *vma, unsigned long address);
2673 #if VM_GROWSUP
2674 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2675 #else
2676 #define expand_upwards(vma, address) (0)
2677 #endif
2678 
2679 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2680 extern struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr);
2681 extern struct vm_area_struct *find_vma_prev(struct mm_struct *mm, unsigned long addr, struct vm_area_struct **pprev);
2682 
2683 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2684    NULL if none.  Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2685 static inline struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, unsigned long start_addr,
2686                                                            unsigned long end_addr)
2687 {
2688     struct vm_area_struct *vma = find_vma(mm, start_addr);
2689 
2690     if (vma && end_addr <= vma->vm_start) {
2691         vma = NULL;
2692     }
2693     return vma;
2694 }
2695 
vm_start_gap(struct vm_area_struct * vma)2696 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2697 {
2698     unsigned long vm_start = vma->vm_start;
2699 
2700     if (vma->vm_flags & VM_GROWSDOWN) {
2701         vm_start -= stack_guard_gap;
2702         if (vm_start > vma->vm_start) {
2703             vm_start = 0;
2704         }
2705     }
2706     return vm_start;
2707 }
2708 
vm_end_gap(struct vm_area_struct * vma)2709 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2710 {
2711     unsigned long vm_end = vma->vm_end;
2712 
2713     if (vma->vm_flags & VM_GROWSUP) {
2714         vm_end += stack_guard_gap;
2715         if (vm_end < vma->vm_end) {
2716             vm_end = -PAGE_SIZE;
2717         }
2718     }
2719     return vm_end;
2720 }
2721 
vma_pages(struct vm_area_struct * vma)2722 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2723 {
2724     return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2725 }
2726 
2727 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2728 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, unsigned long vm_start, unsigned long vm_end)
2729 {
2730     struct vm_area_struct *vma = find_vma(mm, vm_start);
2731 
2732     if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) {
2733         vma = NULL;
2734     }
2735 
2736     return vma;
2737 }
2738 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2739 static inline bool range_in_vma(struct vm_area_struct *vma, unsigned long start, unsigned long end)
2740 {
2741     return (vma && vma->vm_start <= start && end <= vma->vm_end);
2742 }
2743 
2744 #ifdef CONFIG_MMU
2745 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2746 void vma_set_page_prot(struct vm_area_struct *vma);
2747 #else
vm_get_page_prot(unsigned long vm_flags)2748 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2749 {
2750     return __pgprot(0);
2751 }
vma_set_page_prot(struct vm_area_struct * vma)2752 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2753 {
2754     vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2755 }
2756 #endif
2757 
2758 #ifdef CONFIG_NUMA_BALANCING
2759 unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long start, unsigned long end);
2760 #endif
2761 
2762 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2763 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t);
2764 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2765 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num);
2766 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num);
2767 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num);
2768 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn);
2769 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot);
2770 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn);
2771 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot);
2772 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn);
2773 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2774 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2775 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
2776 {
2777     int err = vm_insert_page(vma, addr, page);
2778     if (err == -ENOMEM) {
2779         return VM_FAULT_OOM;
2780     }
2781     if (err < 0 && err != -EBUSY) {
2782         return VM_FAULT_SIGBUS;
2783     }
2784     return VM_FAULT_NOPAGE;
2785 }
2786 
2787 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2788 static inline int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn,
2789                                      unsigned long size, pgprot_t prot)
2790 {
2791     return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2792 }
2793 #endif
2794 
vmf_error(int err)2795 static inline vm_fault_t vmf_error(int err)
2796 {
2797     if (err == -ENOMEM) {
2798         return VM_FAULT_OOM;
2799     }
2800     return VM_FAULT_SIGBUS;
2801 }
2802 
2803 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, unsigned int foll_flags);
2804 
2805 #define FOLL_WRITE 0x01 /* check pte is writable */
2806 #define FOLL_TOUCH 0x02 /* mark page accessed */
2807 #define FOLL_GET 0x04   /* do get_page on page */
2808 #define FOLL_DUMP 0x08  /* give error on hole if it would be zero */
2809 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2810 #define FOLL_NOWAIT                                                                                                    \
2811     0x20                       /* if a disk transfer is needed, start the IO                                           \
2812                                 * and return without waiting upon it */
2813 #define FOLL_POPULATE 0x40     /* fault in page */
2814 #define FOLL_SPLIT 0x80        /* don't return transhuge pages, split them */
2815 #define FOLL_HWPOISON 0x100    /* check page is hwpoisoned */
2816 #define FOLL_NUMA 0x200        /* force NUMA hinting page fault */
2817 #define FOLL_MIGRATION 0x400   /* wait for page to replace migration entry */
2818 #define FOLL_TRIED 0x800       /* a retry, previous pass started an IO */
2819 #define FOLL_MLOCK 0x1000      /* lock present pages */
2820 #define FOLL_REMOTE 0x2000     /* we are working on non-current tsk/mm */
2821 #define FOLL_COW 0x4000        /* internal GUP flag */
2822 #define FOLL_ANON 0x8000       /* don't do file mappings */
2823 #define FOLL_LONGTERM 0x10000  /* mapping lifetime is indefinite: see below */
2824 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2825 #define FOLL_PIN 0x40000       /* pages must be released via unpin_user_page */
2826 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2827 
2828 /*
2829  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2830  * other. Here is what they mean, and how to use them:
2831  *
2832  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2833  * period _often_ under userspace control.  This is in contrast to
2834  * iov_iter_get_pages(), whose usages are transient.
2835  *
2836  * For pages which are part of a filesystem, mappings are subject to the
2837  * lifetime enforced by the filesystem and we need guarantees that longterm
2838  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2839  * the filesystem.  Ideas for this coordination include revoking the longterm
2840  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2841  * added after the problem with filesystems was found FS DAX VMAs are
2842  * specifically failed.  Filesystem pages are still subject to bugs and use of
2843  * FOLL_LONGTERM should be avoided on those pages.
2844  *
2845  * Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2846  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2847  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2848  * is due to an incompatibility with the FS DAX check and
2849  * FAULT_FLAG_ALLOW_RETRY.
2850  *
2851  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2852  * that region.  And so, CMA attempts to migrate the page before pinning, when
2853  * FOLL_LONGTERM is specified.
2854  *
2855  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2856  * but an additional pin counting system) will be invoked. This is intended for
2857  * anything that gets a page reference and then touches page data (for example,
2858  * Direct IO). This lets the filesystem know that some non-file-system entity is
2859  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2860  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2861  * a call to unpin_user_page().
2862  *
2863  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2864  * and separate refcounting mechanisms, however, and that means that each has
2865  * its own acquire and release mechanisms:
2866  *
2867  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2868  *
2869  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2870  *
2871  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2872  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2873  * calls applied to them, and that's perfectly OK. This is a constraint on the
2874  * callers, not on the pages.)
2875  *
2876  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2877  * directly by the caller. That's in order to help avoid mismatches when
2878  * releasing pages: get_user_pages*() pages must be released via put_page(),
2879  * while pin_user_pages*() pages must be released via unpin_user_page().
2880  *
2881  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2882  */
2883 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)2884 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2885 {
2886     if (vm_fault & VM_FAULT_OOM) {
2887         return -ENOMEM;
2888     }
2889     if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
2890         return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2891     }
2892     if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) {
2893         return -EFAULT;
2894     }
2895     return 0;
2896 }
2897 
2898 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2899 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn,
2900                                void *data);
2901 extern int apply_to_existing_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn,
2902                                         void *data);
2903 
2904 #ifdef CONFIG_PAGE_POISONING
2905 extern bool page_poisoning_enabled(void);
2906 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2907 #else
page_poisoning_enabled(void)2908 static inline bool page_poisoning_enabled(void)
2909 {
2910     return false;
2911 }
page_poisoning_enabled_static(void)2912 static inline bool page_poisoning_enabled_static(void)
2913 {
2914     return false;
2915 }
_kernel_poison_pages(struct page * page,int nunmpages)2916 static inline void _kernel_poison_pages(struct page *page, int nunmpages)
2917 {
2918 }
kernel_poison_pages(struct page * page,int numpages,int enable)2919 static inline void kernel_poison_pages(struct page *page, int numpages, int enable)
2920 {
2921 }
2922 #endif
2923 
2924 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2925 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2926 #else
2927 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2928 #endif
want_init_on_alloc(gfp_t flags)2929 static inline bool want_init_on_alloc(gfp_t flags)
2930 {
2931     if (static_branch_unlikely(&init_on_alloc) && !page_poisoning_enabled()) {
2932         return true;
2933     }
2934     return flags & __GFP_ZERO;
2935 }
2936 
2937 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2938 DECLARE_STATIC_KEY_TRUE(init_on_free);
2939 #else
2940 DECLARE_STATIC_KEY_FALSE(init_on_free);
2941 #endif
want_init_on_free(void)2942 static inline bool want_init_on_free(void)
2943 {
2944     return static_branch_unlikely(&init_on_free) && !page_poisoning_enabled();
2945 }
2946 
2947 #ifdef CONFIG_DEBUG_PAGEALLOC
2948 extern void init_debug_pagealloc(void);
2949 #else
init_debug_pagealloc(void)2950 static inline void init_debug_pagealloc(void)
2951 {
2952 }
2953 #endif
2954 extern bool _debug_pagealloc_enabled_early;
2955 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2956 
debug_pagealloc_enabled(void)2957 static inline bool debug_pagealloc_enabled(void)
2958 {
2959     return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled_early;
2960 }
2961 
2962 /*
2963  * For use in fast paths after init_debug_pagealloc() has run, or when a
2964  * false negative result is not harmful when called too early.
2965  */
debug_pagealloc_enabled_static(void)2966 static inline bool debug_pagealloc_enabled_static(void)
2967 {
2968     if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
2969         return false;
2970     }
2971 
2972     return static_branch_unlikely(&_debug_pagealloc_enabled);
2973 }
2974 
2975 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2976 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2977 
2978 /*
2979  * When called in DEBUG_PAGEALLOC context, the call should most likely be
2980  * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2981  */
kernel_map_pages(struct page * page,int numpages,int enable)2982 static inline void kernel_map_pages(struct page *page, int numpages, int enable)
2983 {
2984     __kernel_map_pages(page, numpages, enable);
2985 }
2986 #ifdef CONFIG_HIBERNATION
2987 extern bool kernel_page_present(struct page *page);
2988 #endif /* CONFIG_HIBERNATION */
2989 #else  /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
kernel_map_pages(struct page * page,int numpages,int enable)2990 static inline void kernel_map_pages(struct page *page, int numpages, int enable)
2991 {
2992 }
2993 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2994 static inline bool kernel_page_present(struct page *page)
2995 {
2996     return true;
2997 }
2998 #endif /* CONFIG_HIBERNATION */
2999 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
3000 
3001 #ifdef __HAVE_ARCH_GATE_AREA
3002 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3003 extern int in_gate_area_no_mm(unsigned long addr);
3004 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3005 #else
get_gate_vma(struct mm_struct * mm)3006 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3007 {
3008     return NULL;
3009 }
in_gate_area_no_mm(unsigned long addr)3010 static inline int in_gate_area_no_mm(unsigned long addr)
3011 {
3012     return 0;
3013 }
in_gate_area(struct mm_struct * mm,unsigned long addr)3014 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3015 {
3016     return 0;
3017 }
3018 #endif /* __HAVE_ARCH_GATE_AREA */
3019 
3020 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3021 
3022 #ifdef CONFIG_SYSCTL
3023 extern int sysctl_drop_caches;
3024 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
3025 #endif
3026 
3027 void drop_slab(void);
3028 void drop_slab_node(int nid);
3029 
3030 #ifndef CONFIG_MMU
3031 #define randomize_va_space 0
3032 #else
3033 extern int randomize_va_space;
3034 #endif
3035 
3036 const char *arch_vma_name(struct vm_area_struct *vma);
3037 #ifdef CONFIG_MMU
3038 void print_vma_addr(char *prefix, unsigned long rip);
3039 #else
print_vma_addr(char * prefix,unsigned long rip)3040 static inline void print_vma_addr(char *prefix, unsigned long rip)
3041 {
3042 }
3043 #endif
3044 
3045 void *sparse_buffer_alloc(unsigned long size);
3046 struct page *__populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3047 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3048 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3049 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3050 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3051 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, struct vmem_altmap *altmap);
3052 void *vmemmap_alloc_block(unsigned long size, int node);
3053 struct vmem_altmap;
3054 void *vmemmap_alloc_block_buf(unsigned long size, int node, struct vmem_altmap *altmap);
3055 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3056 int vmemmap_populate_basepages(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap);
3057 int vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap);
3058 void vmemmap_populate_print_last(void);
3059 #ifdef CONFIG_MEMORY_HOTPLUG
3060 void vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap);
3061 #endif
3062 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, unsigned long nr_pages);
3063 
3064 enum mf_flags {
3065     MF_COUNT_INCREASED = 1 << 0,
3066     MF_ACTION_REQUIRED = 1 << 1,
3067     MF_MUST_KILL = 1 << 2,
3068     MF_SOFT_OFFLINE = 1 << 3,
3069 };
3070 extern int memory_failure(unsigned long pfn, int flags);
3071 extern void memory_failure_queue(unsigned long pfn, int flags);
3072 extern void memory_failure_queue_kick(int cpu);
3073 extern int unpoison_memory(unsigned long pfn);
3074 extern int sysctl_memory_failure_early_kill;
3075 extern int sysctl_memory_failure_recovery;
3076 extern void shake_page(struct page *p, int access);
3077 extern atomic_long_t num_poisoned_pages __read_mostly;
3078 extern int soft_offline_page(unsigned long pfn, int flags);
3079 
3080 /*
3081  * Error handlers for various types of pages.
3082  */
3083 enum mf_result {
3084     MF_IGNORED,   /* Error: cannot be handled */
3085     MF_FAILED,    /* Error: handling failed */
3086     MF_DELAYED,   /* Will be handled later */
3087     MF_RECOVERED, /* Successfully recovered */
3088 };
3089 
3090 enum mf_action_page_type {
3091     MF_MSG_KERNEL,
3092     MF_MSG_KERNEL_HIGH_ORDER,
3093     MF_MSG_SLAB,
3094     MF_MSG_DIFFERENT_COMPOUND,
3095     MF_MSG_POISONED_HUGE,
3096     MF_MSG_HUGE,
3097     MF_MSG_FREE_HUGE,
3098     MF_MSG_NON_PMD_HUGE,
3099     MF_MSG_UNMAP_FAILED,
3100     MF_MSG_DIRTY_SWAPCACHE,
3101     MF_MSG_CLEAN_SWAPCACHE,
3102     MF_MSG_DIRTY_MLOCKED_LRU,
3103     MF_MSG_CLEAN_MLOCKED_LRU,
3104     MF_MSG_DIRTY_UNEVICTABLE_LRU,
3105     MF_MSG_CLEAN_UNEVICTABLE_LRU,
3106     MF_MSG_DIRTY_LRU,
3107     MF_MSG_CLEAN_LRU,
3108     MF_MSG_TRUNCATED_LRU,
3109     MF_MSG_BUDDY,
3110     MF_MSG_BUDDY_2ND,
3111     MF_MSG_DAX,
3112     MF_MSG_UNSPLIT_THP,
3113     MF_MSG_UNKNOWN,
3114 };
3115 
3116 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3117 extern void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page);
3118 extern void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma,
3119                                 unsigned int pages_per_huge_page);
3120 extern long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src,
3121                                      unsigned int pages_per_huge_page, bool allow_pagefault);
3122 
3123 /**
3124  * vma_is_special_huge - Are transhuge page-table entries considered special?
3125  * @vma: Pointer to the struct vm_area_struct to consider
3126  *
3127  * Whether transhuge page-table entries are considered "special" following
3128  * the definition in vm_normal_page().
3129  *
3130  * Return: true if transhuge page-table entries should be considered special,
3131  * false otherwise.
3132  */
vma_is_special_huge(const struct vm_area_struct * vma)3133 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3134 {
3135     return vma_is_dax(vma) || (vma->vm_file && (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3136 }
3137 
3138 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3139 
3140 #ifdef CONFIG_DEBUG_PAGEALLOC
3141 extern unsigned int _debug_guardpage_minorder;
3142 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3143 
debug_guardpage_minorder(void)3144 static inline unsigned int debug_guardpage_minorder(void)
3145 {
3146     return _debug_guardpage_minorder;
3147 }
3148 
debug_guardpage_enabled(void)3149 static inline bool debug_guardpage_enabled(void)
3150 {
3151     return static_branch_unlikely(&_debug_guardpage_enabled);
3152 }
3153 
page_is_guard(struct page * page)3154 static inline bool page_is_guard(struct page *page)
3155 {
3156     if (!debug_guardpage_enabled()) {
3157         return false;
3158     }
3159 
3160     return PageGuard(page);
3161 }
3162 #else
debug_guardpage_minorder(void)3163 static inline unsigned int debug_guardpage_minorder(void)
3164 {
3165     return 0;
3166 }
debug_guardpage_enabled(void)3167 static inline bool debug_guardpage_enabled(void)
3168 {
3169     return false;
3170 }
page_is_guard(struct page * page)3171 static inline bool page_is_guard(struct page *page)
3172 {
3173     return false;
3174 }
3175 #endif /* CONFIG_DEBUG_PAGEALLOC */
3176 
3177 #if MAX_NUMNODES > 1
3178 void __init setup_nr_node_ids(void);
3179 #else
setup_nr_node_ids(void)3180 static inline void setup_nr_node_ids(void)
3181 {
3182 }
3183 #endif
3184 
3185 extern int memcmp_pages(struct page *page1, struct page *page2);
3186 
pages_identical(struct page * page1,struct page * page2)3187 static inline int pages_identical(struct page *page1, struct page *page2)
3188 {
3189     return !memcmp_pages(page1, page2);
3190 }
3191 
3192 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3193 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr,
3194                                                 pgoff_t bitmap_pgoff, unsigned long *bitmap, pgoff_t *start,
3195                                                 pgoff_t *end);
3196 
3197 unsigned long wp_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr);
3198 #endif
3199 
3200 extern int sysctl_nr_trim_pages;
3201 
3202 /**
3203  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3204  * @seals: the seals to check
3205  * @vma: the vma to operate on
3206  *
3207  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3208  * the vma flags.  Return 0 if check pass, or <0 for errors.
3209  */
seal_check_future_write(int seals,struct vm_area_struct * vma)3210 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3211 {
3212     if (seals & F_SEAL_FUTURE_WRITE) {
3213         /*
3214          * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3215          * "future write" seal active.
3216          */
3217         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) {
3218             return -EPERM;
3219         }
3220 
3221         /*
3222          * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3223          * MAP_SHARED and read-only, take care to not allow mprotect to
3224          * revert protections on such mappings. Do this only for shared
3225          * mappings. For private mappings, don't need to mask
3226          * VM_MAYWRITE as we still want them to be COW-writable.
3227          */
3228         if (vma->vm_flags & VM_SHARED) {
3229             vma->vm_flags &= ~(VM_MAYWRITE);
3230         }
3231     }
3232 
3233     return 0;
3234 }
3235 
3236 #ifdef CONFIG_ANON_VMA_NAME
3237 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, unsigned long len_in,
3238                           struct anon_vma_name *anon_name);
3239 #else
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)3240 static inline int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, unsigned long len_in,
3241                                         struct anon_vma_name *anon_name)
3242 {
3243     return 0;
3244 }
3245 #endif
3246 
3247 #endif /* __KERNEL__ */
3248 #endif /* _LINUX_MM_H */
3249