1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for Digigram VX222 V2/Mic soundcards
4 *
5 * VX222-specific low-level routines
6 *
7 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
8 */
9
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/firmware.h>
13 #include <linux/mutex.h>
14 #include <linux/io.h>
15
16 #include <sound/core.h>
17 #include <sound/control.h>
18 #include <sound/tlv.h>
19 #include "vx222.h"
20
21
22 static const int vx2_reg_offset[VX_REG_MAX] = {
23 [VX_ICR] = 0x00,
24 [VX_CVR] = 0x04,
25 [VX_ISR] = 0x08,
26 [VX_IVR] = 0x0c,
27 [VX_RXH] = 0x14,
28 [VX_RXM] = 0x18,
29 [VX_RXL] = 0x1c,
30 [VX_DMA] = 0x10,
31 [VX_CDSP] = 0x20,
32 [VX_CFG] = 0x24,
33 [VX_RUER] = 0x28,
34 [VX_DATA] = 0x2c,
35 [VX_STATUS] = 0x30,
36 [VX_LOFREQ] = 0x34,
37 [VX_HIFREQ] = 0x38,
38 [VX_CSUER] = 0x3c,
39 [VX_SELMIC] = 0x40,
40 [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
41 [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
42 [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
43 [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
44 [VX_CNTRL] = 0x50, // VX_CNTRL_REGISTER_OFFSET
45 [VX_GPIOC] = 0x54, // VX_GPIOC (new with PLX9030)
46 };
47
48 static const int vx2_reg_index[VX_REG_MAX] = {
49 [VX_ICR] = 1,
50 [VX_CVR] = 1,
51 [VX_ISR] = 1,
52 [VX_IVR] = 1,
53 [VX_RXH] = 1,
54 [VX_RXM] = 1,
55 [VX_RXL] = 1,
56 [VX_DMA] = 1,
57 [VX_CDSP] = 1,
58 [VX_CFG] = 1,
59 [VX_RUER] = 1,
60 [VX_DATA] = 1,
61 [VX_STATUS] = 1,
62 [VX_LOFREQ] = 1,
63 [VX_HIFREQ] = 1,
64 [VX_CSUER] = 1,
65 [VX_SELMIC] = 1,
66 [VX_COMPOT] = 1,
67 [VX_SCOMPR] = 1,
68 [VX_GLIMIT] = 1,
69 [VX_INTCSR] = 0, /* on the PLX */
70 [VX_CNTRL] = 0, /* on the PLX */
71 [VX_GPIOC] = 0, /* on the PLX */
72 };
73
vx2_reg_addr(struct vx_core * _chip,int reg)74 static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
75 {
76 struct snd_vx222 *chip = to_vx222(_chip);
77 return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
78 }
79
80 /**
81 * snd_vx_inb - read a byte from the register
82 * @chip: VX core instance
83 * @offset: register enum
84 */
vx2_inb(struct vx_core * chip,int offset)85 static unsigned char vx2_inb(struct vx_core *chip, int offset)
86 {
87 return inb(vx2_reg_addr(chip, offset));
88 }
89
90 /**
91 * snd_vx_outb - write a byte on the register
92 * @chip: VX core instance
93 * @offset: the register offset
94 * @val: the value to write
95 */
vx2_outb(struct vx_core * chip,int offset,unsigned char val)96 static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
97 {
98 outb(val, vx2_reg_addr(chip, offset));
99 /*
100 dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
101 */
102 }
103
104 /**
105 * snd_vx_inl - read a 32bit word from the register
106 * @chip: VX core instance
107 * @offset: register enum
108 */
vx2_inl(struct vx_core * chip,int offset)109 static unsigned int vx2_inl(struct vx_core *chip, int offset)
110 {
111 return inl(vx2_reg_addr(chip, offset));
112 }
113
114 /**
115 * snd_vx_outl - write a 32bit word on the register
116 * @chip: VX core instance
117 * @offset: the register enum
118 * @val: the value to write
119 */
vx2_outl(struct vx_core * chip,int offset,unsigned int val)120 static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
121 {
122 /*
123 dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
124 */
125 outl(val, vx2_reg_addr(chip, offset));
126 }
127
128 /*
129 * redefine macros to call directly
130 */
131 #undef vx_inb
132 #define vx_inb(chip,reg) vx2_inb((struct vx_core*)(chip), VX_##reg)
133 #undef vx_outb
134 #define vx_outb(chip,reg,val) vx2_outb((struct vx_core*)(chip), VX_##reg, val)
135 #undef vx_inl
136 #define vx_inl(chip,reg) vx2_inl((struct vx_core*)(chip), VX_##reg)
137 #undef vx_outl
138 #define vx_outl(chip,reg,val) vx2_outl((struct vx_core*)(chip), VX_##reg, val)
139
140
141 /*
142 * vx_reset_dsp - reset the DSP
143 */
144
145 #define XX_DSP_RESET_WAIT_TIME 2 /* ms */
146
vx2_reset_dsp(struct vx_core * _chip)147 static void vx2_reset_dsp(struct vx_core *_chip)
148 {
149 struct snd_vx222 *chip = to_vx222(_chip);
150
151 /* set the reset dsp bit to 0 */
152 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
153
154 mdelay(XX_DSP_RESET_WAIT_TIME);
155
156 chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
157 /* set the reset dsp bit to 1 */
158 vx_outl(chip, CDSP, chip->regCDSP);
159 }
160
161
vx2_test_xilinx(struct vx_core * _chip)162 static int vx2_test_xilinx(struct vx_core *_chip)
163 {
164 struct snd_vx222 *chip = to_vx222(_chip);
165 unsigned int data;
166
167 dev_dbg(_chip->card->dev, "testing xilinx...\n");
168 /* This test uses several write/read sequences on TEST0 and TEST1 bits
169 * to figure out whever or not the xilinx was correctly loaded
170 */
171
172 /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
173 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
174 vx_inl(chip, ISR);
175 data = vx_inl(chip, STATUS);
176 if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
177 dev_dbg(_chip->card->dev, "bad!\n");
178 return -ENODEV;
179 }
180
181 /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
182 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
183 vx_inl(chip, ISR);
184 data = vx_inl(chip, STATUS);
185 if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
186 dev_dbg(_chip->card->dev, "bad! #2\n");
187 return -ENODEV;
188 }
189
190 if (_chip->type == VX_TYPE_BOARD) {
191 /* not implemented on VX_2_BOARDS */
192 /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
193 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
194 vx_inl(chip, ISR);
195 data = vx_inl(chip, STATUS);
196 if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
197 dev_dbg(_chip->card->dev, "bad! #3\n");
198 return -ENODEV;
199 }
200
201 /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
202 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
203 vx_inl(chip, ISR);
204 data = vx_inl(chip, STATUS);
205 if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
206 dev_dbg(_chip->card->dev, "bad! #4\n");
207 return -ENODEV;
208 }
209 }
210 dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
211 return 0;
212 }
213
214
215 /**
216 * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
217 * @chip: VX core instance
218 * @do_write: 0 = read, 1 = set up for DMA write
219 */
vx2_setup_pseudo_dma(struct vx_core * chip,int do_write)220 static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
221 {
222 /* Interrupt mode and HREQ pin enabled for host transmit data transfers
223 * (in case of the use of the pseudo-dma facility).
224 */
225 vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
226
227 /* Reset the pseudo-dma register (in case of the use of the
228 * pseudo-dma facility).
229 */
230 vx_outl(chip, RESET_DMA, 0);
231 }
232
233 /*
234 * vx_release_pseudo_dma - disable the pseudo-DMA mode
235 */
vx2_release_pseudo_dma(struct vx_core * chip)236 static inline void vx2_release_pseudo_dma(struct vx_core *chip)
237 {
238 /* HREQ pin disabled. */
239 vx_outl(chip, ICR, 0);
240 }
241
242
243
244 /* pseudo-dma write */
vx2_dma_write(struct vx_core * chip,struct snd_pcm_runtime * runtime,struct vx_pipe * pipe,int count)245 static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
246 struct vx_pipe *pipe, int count)
247 {
248 unsigned long port = vx2_reg_addr(chip, VX_DMA);
249 int offset = pipe->hw_ptr;
250 u32 *addr = (u32 *)(runtime->dma_area + offset);
251
252 if (snd_BUG_ON(count % 4))
253 return;
254
255 vx2_setup_pseudo_dma(chip, 1);
256
257 /* Transfer using pseudo-dma.
258 */
259 if (offset + count >= pipe->buffer_bytes) {
260 int length = pipe->buffer_bytes - offset;
261 count -= length;
262 length >>= 2; /* in 32bit words */
263 /* Transfer using pseudo-dma. */
264 for (; length > 0; length--) {
265 outl(*addr, port);
266 addr++;
267 }
268 addr = (u32 *)runtime->dma_area;
269 pipe->hw_ptr = 0;
270 }
271 pipe->hw_ptr += count;
272 count >>= 2; /* in 32bit words */
273 /* Transfer using pseudo-dma. */
274 for (; count > 0; count--) {
275 outl(*addr, port);
276 addr++;
277 }
278
279 vx2_release_pseudo_dma(chip);
280 }
281
282
283 /* pseudo dma read */
vx2_dma_read(struct vx_core * chip,struct snd_pcm_runtime * runtime,struct vx_pipe * pipe,int count)284 static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
285 struct vx_pipe *pipe, int count)
286 {
287 int offset = pipe->hw_ptr;
288 u32 *addr = (u32 *)(runtime->dma_area + offset);
289 unsigned long port = vx2_reg_addr(chip, VX_DMA);
290
291 if (snd_BUG_ON(count % 4))
292 return;
293
294 vx2_setup_pseudo_dma(chip, 0);
295 /* Transfer using pseudo-dma.
296 */
297 if (offset + count >= pipe->buffer_bytes) {
298 int length = pipe->buffer_bytes - offset;
299 count -= length;
300 length >>= 2; /* in 32bit words */
301 /* Transfer using pseudo-dma. */
302 for (; length > 0; length--)
303 *addr++ = inl(port);
304 addr = (u32 *)runtime->dma_area;
305 pipe->hw_ptr = 0;
306 }
307 pipe->hw_ptr += count;
308 count >>= 2; /* in 32bit words */
309 /* Transfer using pseudo-dma. */
310 for (; count > 0; count--)
311 *addr++ = inl(port);
312
313 vx2_release_pseudo_dma(chip);
314 }
315
316 #define VX_XILINX_RESET_MASK 0x40000000
317 #define VX_USERBIT0_MASK 0x00000004
318 #define VX_USERBIT1_MASK 0x00000020
319 #define VX_CNTRL_REGISTER_VALUE 0x00172012
320
321 /*
322 * transfer counts bits to PLX
323 */
put_xilinx_data(struct vx_core * chip,unsigned int port,unsigned int counts,unsigned char data)324 static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
325 {
326 unsigned int i;
327
328 for (i = 0; i < counts; i++) {
329 unsigned int val;
330
331 /* set the clock bit to 0. */
332 val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
333 vx2_outl(chip, port, val);
334 vx2_inl(chip, port);
335 udelay(1);
336
337 if (data & (1 << i))
338 val |= VX_USERBIT1_MASK;
339 else
340 val &= ~VX_USERBIT1_MASK;
341 vx2_outl(chip, port, val);
342 vx2_inl(chip, port);
343
344 /* set the clock bit to 1. */
345 val |= VX_USERBIT0_MASK;
346 vx2_outl(chip, port, val);
347 vx2_inl(chip, port);
348 udelay(1);
349 }
350 return 0;
351 }
352
353 /*
354 * load the xilinx image
355 */
vx2_load_xilinx_binary(struct vx_core * chip,const struct firmware * xilinx)356 static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
357 {
358 unsigned int i;
359 unsigned int port;
360 const unsigned char *image;
361
362 /* XILINX reset (wait at least 1 millisecond between reset on and off). */
363 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
364 vx_inl(chip, CNTRL);
365 msleep(10);
366 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
367 vx_inl(chip, CNTRL);
368 msleep(10);
369
370 if (chip->type == VX_TYPE_BOARD)
371 port = VX_CNTRL;
372 else
373 port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
374
375 image = xilinx->data;
376 for (i = 0; i < xilinx->size; i++, image++) {
377 if (put_xilinx_data(chip, port, 8, *image) < 0)
378 return -EINVAL;
379 /* don't take too much time in this loop... */
380 cond_resched();
381 }
382 put_xilinx_data(chip, port, 4, 0xff); /* end signature */
383
384 msleep(200);
385
386 /* test after loading (is buggy with VX222) */
387 if (chip->type != VX_TYPE_BOARD) {
388 /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
389 i = vx_inl(chip, GPIOC);
390 if (i & 0x0100)
391 return 0;
392 dev_err(chip->card->dev,
393 "xilinx test failed after load, GPIOC=0x%x\n", i);
394 return -EINVAL;
395 }
396
397 return 0;
398 }
399
400
401 /*
402 * load the boot/dsp images
403 */
vx2_load_dsp(struct vx_core * vx,int index,const struct firmware * dsp)404 static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
405 {
406 int err;
407
408 switch (index) {
409 case 1:
410 /* xilinx image */
411 if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
412 return err;
413 if ((err = vx2_test_xilinx(vx)) < 0)
414 return err;
415 return 0;
416 case 2:
417 /* DSP boot */
418 return snd_vx_dsp_boot(vx, dsp);
419 case 3:
420 /* DSP image */
421 return snd_vx_dsp_load(vx, dsp);
422 default:
423 snd_BUG();
424 return -EINVAL;
425 }
426 }
427
428
429 /*
430 * vx_test_and_ack - test and acknowledge interrupt
431 *
432 * called from irq hander, too
433 *
434 * spinlock held!
435 */
vx2_test_and_ack(struct vx_core * chip)436 static int vx2_test_and_ack(struct vx_core *chip)
437 {
438 /* not booted yet? */
439 if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
440 return -ENXIO;
441
442 if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
443 return -EIO;
444
445 /* ok, interrupts generated, now ack it */
446 /* set ACQUIT bit up and down */
447 vx_outl(chip, STATUS, 0);
448 /* useless read just to spend some time and maintain
449 * the ACQUIT signal up for a while ( a bus cycle )
450 */
451 vx_inl(chip, STATUS);
452 /* ack */
453 vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
454 /* useless read just to spend some time and maintain
455 * the ACQUIT signal up for a while ( a bus cycle ) */
456 vx_inl(chip, STATUS);
457 /* clear */
458 vx_outl(chip, STATUS, 0);
459
460 return 0;
461 }
462
463
464 /*
465 * vx_validate_irq - enable/disable IRQ
466 */
vx2_validate_irq(struct vx_core * _chip,int enable)467 static void vx2_validate_irq(struct vx_core *_chip, int enable)
468 {
469 struct snd_vx222 *chip = to_vx222(_chip);
470
471 /* Set the interrupt enable bit to 1 in CDSP register */
472 if (enable) {
473 /* Set the PCI interrupt enable bit to 1.*/
474 vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
475 chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
476 } else {
477 /* Set the PCI interrupt enable bit to 0. */
478 vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
479 chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
480 }
481 vx_outl(chip, CDSP, chip->regCDSP);
482 }
483
484
485 /*
486 * write an AKM codec data (24bit)
487 */
vx2_write_codec_reg(struct vx_core * chip,unsigned int data)488 static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
489 {
490 unsigned int i;
491
492 vx_inl(chip, HIFREQ);
493
494 /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
495 for (i = 0; i < 24; i++, data <<= 1)
496 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
497 /* Terminate access to codec registers */
498 vx_inl(chip, RUER);
499 }
500
501
502 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
503 #define AKM_CODEC_RESET_ON_CMD 0xA100
504 #define AKM_CODEC_RESET_OFF_CMD 0xA103
505 #define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240
506 #define AKM_CODEC_MUTE_CMD 0xA38D
507 #define AKM_CODEC_UNMUTE_CMD 0xA30D
508 #define AKM_CODEC_LEFT_LEVEL_CMD 0xA400
509 #define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500
510
511 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
512 0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB)
513 0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB)
514 0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB)
515 0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB)
516 0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB)
517 0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB)
518 0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB)
519 0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB)
520 0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB)
521 0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB)
522 0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB)
523 0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB)
524 0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB)
525 0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB)
526 0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB)
527 0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB)
528 0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB)
529 0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB)
530 0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB)
531 0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB)
532 0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB)
533 0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB)
534 0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB)
535 0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB)
536 0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB)
537 0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB)
538 0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB)
539 0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB)
540 0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB)
541 0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB)
542 0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB)
543 0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB)
544 0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB)
545 0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB)
546 0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB)
547 0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB)
548 0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB)
549 0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB)
550 0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB)
551 0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB)
552 0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB)
553 0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB)
554 0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB)
555 0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB)
556 0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB)
557 0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB)
558 0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB)
559 0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB)
560 0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB)
561 0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB)
562 0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB)
563 0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB)
564 0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB)
565 0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB)
566 0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB)
567 0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB)
568 0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB)
569 0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB)
570 0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB)
571 0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB)
572 0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB)
573 0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB)
574 0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB)
575 0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB)
576 0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB)
577 0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB)
578 0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB)
579 0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB)
580 0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB)
581 0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB)
582 0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB)
583 0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB)
584 0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB)
585 0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB)
586 0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB)
587 0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB)
588 0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB)
589 0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB)
590 0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB)
591 0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB)
592 0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB)
593 0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB)
594 0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB)
595 0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB)
596 0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB)
597 0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB)
598 0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB)
599 0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB)
600 0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB)
601 0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB)
602 0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB)
603 0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB)
604 0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB)
605 0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB)
606 0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB)
607 0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB)
608 0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB)
609 0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB)
610 0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB)
611 0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB)
612 0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB)
613 0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB)
614 0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB)
615 0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB)
616 0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB)
617 0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB)
618 0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB)
619 0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB)
620 0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB)
621 0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB)
622 0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB)
623 0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB)
624 0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB)
625 0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB)
626 0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB)
627 0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB)
628 0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB)
629 0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB)
630 0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB)
631 0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB)
632 0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB)
633 0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB)
634 0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB)
635 0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB)
636 0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB)
637 0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB)
638 0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB)
639 0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB)
640 0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB)
641 0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB)
642 0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB)
643 0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB)
644 0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB)
645 0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB)
646 0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB)
647 0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB)
648 0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB)
649 0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB)
650 0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB)
651 0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB)
652 0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB)
653 0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB)
654 0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB)
655 0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB)
656 0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB)
657 0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB)
658 0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB)
659 0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini)
660
661 /*
662 * pseudo-codec write entry
663 */
vx2_write_akm(struct vx_core * chip,int reg,unsigned int data)664 static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
665 {
666 unsigned int val;
667
668 if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
669 vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
670 return;
671 }
672
673 /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
674 a look up table, as there is no linear matching between the driver codec values
675 and the real dBu value
676 */
677 if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
678 return;
679
680 switch (reg) {
681 case XX_CODEC_LEVEL_LEFT_REGISTER:
682 val = AKM_CODEC_LEFT_LEVEL_CMD;
683 break;
684 case XX_CODEC_LEVEL_RIGHT_REGISTER:
685 val = AKM_CODEC_RIGHT_LEVEL_CMD;
686 break;
687 default:
688 snd_BUG();
689 return;
690 }
691 val |= vx2_akm_gains_lut[data];
692
693 vx2_write_codec_reg(chip, val);
694 }
695
696
697 /*
698 * write codec bit for old VX222 board
699 */
vx2_old_write_codec_bit(struct vx_core * chip,int codec,unsigned int data)700 static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
701 {
702 int i;
703
704 /* activate access to codec registers */
705 vx_inl(chip, HIFREQ);
706
707 for (i = 0; i < 24; i++, data <<= 1)
708 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
709
710 /* Terminate access to codec registers */
711 vx_inl(chip, RUER);
712 }
713
714
715 /*
716 * reset codec bit
717 */
vx2_reset_codec(struct vx_core * _chip)718 static void vx2_reset_codec(struct vx_core *_chip)
719 {
720 struct snd_vx222 *chip = to_vx222(_chip);
721
722 /* Set the reset CODEC bit to 0. */
723 vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
724 vx_inl(chip, CDSP);
725 msleep(10);
726 /* Set the reset CODEC bit to 1. */
727 chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
728 vx_outl(chip, CDSP, chip->regCDSP);
729 vx_inl(chip, CDSP);
730 if (_chip->type == VX_TYPE_BOARD) {
731 msleep(1);
732 return;
733 }
734
735 msleep(5); /* additionnel wait time for AKM's */
736
737 vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
738
739 vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
740 vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
741 vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
742
743 if (_chip->type == VX_TYPE_MIC) {
744 /* set up the micro input selector */
745 chip->regSELMIC = MICRO_SELECT_INPUT_NORM |
746 MICRO_SELECT_PREAMPLI_G_0 |
747 MICRO_SELECT_NOISE_T_52DB;
748
749 /* reset phantom power supply */
750 chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
751
752 vx_outl(_chip, SELMIC, chip->regSELMIC);
753 }
754 }
755
756
757 /*
758 * change the audio source
759 */
vx2_change_audio_source(struct vx_core * _chip,int src)760 static void vx2_change_audio_source(struct vx_core *_chip, int src)
761 {
762 struct snd_vx222 *chip = to_vx222(_chip);
763
764 switch (src) {
765 case VX_AUDIO_SRC_DIGITAL:
766 chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
767 break;
768 default:
769 chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
770 break;
771 }
772 vx_outl(chip, CFG, chip->regCFG);
773 }
774
775
776 /*
777 * set the clock source
778 */
vx2_set_clock_source(struct vx_core * _chip,int source)779 static void vx2_set_clock_source(struct vx_core *_chip, int source)
780 {
781 struct snd_vx222 *chip = to_vx222(_chip);
782
783 if (source == INTERNAL_QUARTZ)
784 chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
785 else
786 chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
787 vx_outl(chip, CFG, chip->regCFG);
788 }
789
790 /*
791 * reset the board
792 */
vx2_reset_board(struct vx_core * _chip,int cold_reset)793 static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
794 {
795 struct snd_vx222 *chip = to_vx222(_chip);
796
797 /* initialize the register values */
798 chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
799 chip->regCFG = 0;
800 }
801
802
803
804 /*
805 * input level controls for VX222 Mic
806 */
807
808 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
809 * 318 = 210 + 36 + 36 + 36 (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
810 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
811 */
812 #define V2_MICRO_LEVEL_RANGE (318 - 255)
813
vx2_set_input_level(struct snd_vx222 * chip)814 static void vx2_set_input_level(struct snd_vx222 *chip)
815 {
816 int i, miclevel, preamp;
817 unsigned int data;
818
819 miclevel = chip->mic_level;
820 miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
821 preamp = 0;
822 while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
823 preamp++; /* raise pre ampli + 18dB */
824 miclevel -= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */
825 }
826 if (snd_BUG_ON(preamp >= 4))
827 return;
828
829 /* set pre-amp level */
830 chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
831 chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
832 vx_outl(chip, SELMIC, chip->regSELMIC);
833
834 data = (unsigned int)miclevel << 16 |
835 (unsigned int)chip->input_level[1] << 8 |
836 (unsigned int)chip->input_level[0];
837 vx_inl(chip, DATA); /* Activate input level programming */
838
839 /* We have to send 32 bits (4 x 8 bits) */
840 for (i = 0; i < 32; i++, data <<= 1)
841 vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
842
843 vx_inl(chip, RUER); /* Terminate input level programming */
844 }
845
846
847 #define MIC_LEVEL_MAX 0xff
848
849 static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
850
851 /*
852 * controls API for input levels
853 */
854
855 /* input levels */
vx_input_level_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)856 static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
857 {
858 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
859 uinfo->count = 2;
860 uinfo->value.integer.min = 0;
861 uinfo->value.integer.max = MIC_LEVEL_MAX;
862 return 0;
863 }
864
vx_input_level_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)865 static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
866 {
867 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
868 struct snd_vx222 *chip = to_vx222(_chip);
869 mutex_lock(&_chip->mixer_mutex);
870 ucontrol->value.integer.value[0] = chip->input_level[0];
871 ucontrol->value.integer.value[1] = chip->input_level[1];
872 mutex_unlock(&_chip->mixer_mutex);
873 return 0;
874 }
875
vx_input_level_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)876 static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
877 {
878 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
879 struct snd_vx222 *chip = to_vx222(_chip);
880 if (ucontrol->value.integer.value[0] < 0 ||
881 ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
882 return -EINVAL;
883 if (ucontrol->value.integer.value[1] < 0 ||
884 ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
885 return -EINVAL;
886 mutex_lock(&_chip->mixer_mutex);
887 if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
888 chip->input_level[1] != ucontrol->value.integer.value[1]) {
889 chip->input_level[0] = ucontrol->value.integer.value[0];
890 chip->input_level[1] = ucontrol->value.integer.value[1];
891 vx2_set_input_level(chip);
892 mutex_unlock(&_chip->mixer_mutex);
893 return 1;
894 }
895 mutex_unlock(&_chip->mixer_mutex);
896 return 0;
897 }
898
899 /* mic level */
vx_mic_level_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)900 static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
901 {
902 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
903 uinfo->count = 1;
904 uinfo->value.integer.min = 0;
905 uinfo->value.integer.max = MIC_LEVEL_MAX;
906 return 0;
907 }
908
vx_mic_level_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)909 static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
910 {
911 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
912 struct snd_vx222 *chip = to_vx222(_chip);
913 ucontrol->value.integer.value[0] = chip->mic_level;
914 return 0;
915 }
916
vx_mic_level_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)917 static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
918 {
919 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
920 struct snd_vx222 *chip = to_vx222(_chip);
921 if (ucontrol->value.integer.value[0] < 0 ||
922 ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
923 return -EINVAL;
924 mutex_lock(&_chip->mixer_mutex);
925 if (chip->mic_level != ucontrol->value.integer.value[0]) {
926 chip->mic_level = ucontrol->value.integer.value[0];
927 vx2_set_input_level(chip);
928 mutex_unlock(&_chip->mixer_mutex);
929 return 1;
930 }
931 mutex_unlock(&_chip->mixer_mutex);
932 return 0;
933 }
934
935 static const struct snd_kcontrol_new vx_control_input_level = {
936 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
937 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
938 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
939 .name = "Capture Volume",
940 .info = vx_input_level_info,
941 .get = vx_input_level_get,
942 .put = vx_input_level_put,
943 .tlv = { .p = db_scale_mic },
944 };
945
946 static const struct snd_kcontrol_new vx_control_mic_level = {
947 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
948 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
949 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
950 .name = "Mic Capture Volume",
951 .info = vx_mic_level_info,
952 .get = vx_mic_level_get,
953 .put = vx_mic_level_put,
954 .tlv = { .p = db_scale_mic },
955 };
956
957 /*
958 * FIXME: compressor/limiter implementation is missing yet...
959 */
960
vx2_add_mic_controls(struct vx_core * _chip)961 static int vx2_add_mic_controls(struct vx_core *_chip)
962 {
963 struct snd_vx222 *chip = to_vx222(_chip);
964 int err;
965
966 if (_chip->type != VX_TYPE_MIC)
967 return 0;
968
969 /* mute input levels */
970 chip->input_level[0] = chip->input_level[1] = 0;
971 chip->mic_level = 0;
972 vx2_set_input_level(chip);
973
974 /* controls */
975 if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
976 return err;
977 if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
978 return err;
979
980 return 0;
981 }
982
983
984 /*
985 * callbacks
986 */
987 const struct snd_vx_ops vx222_ops = {
988 .in8 = vx2_inb,
989 .in32 = vx2_inl,
990 .out8 = vx2_outb,
991 .out32 = vx2_outl,
992 .test_and_ack = vx2_test_and_ack,
993 .validate_irq = vx2_validate_irq,
994 .akm_write = vx2_write_akm,
995 .reset_codec = vx2_reset_codec,
996 .change_audio_source = vx2_change_audio_source,
997 .set_clock_source = vx2_set_clock_source,
998 .load_dsp = vx2_load_dsp,
999 .reset_dsp = vx2_reset_dsp,
1000 .reset_board = vx2_reset_board,
1001 .dma_write = vx2_dma_write,
1002 .dma_read = vx2_dma_read,
1003 .add_controls = vx2_add_mic_controls,
1004 };
1005
1006 /* for old VX222 board */
1007 const struct snd_vx_ops vx222_old_ops = {
1008 .in8 = vx2_inb,
1009 .in32 = vx2_inl,
1010 .out8 = vx2_outb,
1011 .out32 = vx2_outl,
1012 .test_and_ack = vx2_test_and_ack,
1013 .validate_irq = vx2_validate_irq,
1014 .write_codec = vx2_old_write_codec_bit,
1015 .reset_codec = vx2_reset_codec,
1016 .change_audio_source = vx2_change_audio_source,
1017 .set_clock_source = vx2_set_clock_source,
1018 .load_dsp = vx2_load_dsp,
1019 .reset_dsp = vx2_reset_dsp,
1020 .reset_board = vx2_reset_board,
1021 .dma_write = vx2_dma_write,
1022 .dma_read = vx2_dma_read,
1023 };
1024
1025