• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file ast_to_hir.c
26  * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27  *
28  * During the conversion to HIR, the majority of the symantic checking is
29  * preformed on the program.  This includes:
30  *
31  *    * Symbol table management
32  *    * Type checking
33  *    * Function binding
34  *
35  * The majority of this work could be done during parsing, and the parser could
36  * probably generate HIR directly.  However, this results in frequent changes
37  * to the parser code.  Since we do not assume that every system this complier
38  * is built on will have Flex and Bison installed, we have to store the code
39  * generated by these tools in our version control system.  In other parts of
40  * the system we've seen problems where a parser was changed but the generated
41  * code was not committed, merge conflicts where created because two developers
42  * had slightly different versions of Bison installed, etc.
43  *
44  * I have also noticed that running Bison generated parsers in GDB is very
45  * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46  * well 'print $1' in GDB.
47  *
48  * As a result, my preference is to put as little C code as possible in the
49  * parser (and lexer) sources.
50  */
51 
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/consts_exts.h"
58 #include "main/macros.h"
59 #include "main/shaderobj.h"
60 #include "ir.h"
61 #include "ir_builder.h"
62 #include "builtin_functions.h"
63 
64 using namespace ir_builder;
65 
66 static void
67 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68                                exec_list *instructions);
69 static void
70 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71 
72 static void
73 remove_per_vertex_blocks(exec_list *instructions,
74                          _mesa_glsl_parse_state *state, ir_variable_mode mode);
75 
76 /**
77  * Visitor class that finds the first instance of any write-only variable that
78  * is ever read, if any
79  */
80 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81 {
82 public:
read_from_write_only_variable_visitor()83    read_from_write_only_variable_visitor() : found(NULL)
84    {
85    }
86 
visit(ir_dereference_variable * ir)87    virtual ir_visitor_status visit(ir_dereference_variable *ir)
88    {
89       if (this->in_assignee)
90          return visit_continue;
91 
92       ir_variable *var = ir->variable_referenced();
93       /* We can have memory_write_only set on both images and buffer variables,
94        * but in the former there is a distinction between reads from
95        * the variable itself (write_only) and from the memory they point to
96        * (memory_write_only), while in the case of buffer variables there is
97        * no such distinction, that is why this check here is limited to
98        * buffer variables alone.
99        */
100       if (!var || var->data.mode != ir_var_shader_storage)
101          return visit_continue;
102 
103       if (var->data.memory_write_only) {
104          found = var;
105          return visit_stop;
106       }
107 
108       return visit_continue;
109    }
110 
get_variable()111    ir_variable *get_variable() {
112       return found;
113    }
114 
visit_enter(ir_expression * ir)115    virtual ir_visitor_status visit_enter(ir_expression *ir)
116    {
117       /* .length() doesn't actually read anything */
118       if (ir->operation == ir_unop_ssbo_unsized_array_length)
119          return visit_continue_with_parent;
120 
121       return visit_continue;
122    }
123 
124 private:
125    ir_variable *found;
126 };
127 
128 void
_mesa_ast_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)129 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130 {
131    _mesa_glsl_initialize_variables(instructions, state);
132 
133    state->symbols->separate_function_namespace = state->language_version == 110;
134 
135    state->current_function = NULL;
136 
137    state->toplevel_ir = instructions;
138 
139    state->gs_input_prim_type_specified = false;
140    state->tcs_output_vertices_specified = false;
141    state->cs_input_local_size_specified = false;
142 
143    /* Section 4.2 of the GLSL 1.20 specification states:
144     * "The built-in functions are scoped in a scope outside the global scope
145     *  users declare global variables in.  That is, a shader's global scope,
146     *  available for user-defined functions and global variables, is nested
147     *  inside the scope containing the built-in functions."
148     *
149     * Since built-in functions like ftransform() access built-in variables,
150     * it follows that those must be in the outer scope as well.
151     *
152     * We push scope here to create this nesting effect...but don't pop.
153     * This way, a shader's globals are still in the symbol table for use
154     * by the linker.
155     */
156    state->symbols->push_scope();
157 
158    foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159       ast->hir(instructions, state);
160 
161    verify_subroutine_associated_funcs(state);
162    detect_recursion_unlinked(state, instructions);
163    detect_conflicting_assignments(state, instructions);
164 
165    state->toplevel_ir = NULL;
166 
167    /* Move all of the variable declarations to the front of the IR list, and
168     * reverse the order.  This has the (intended!) side effect that vertex
169     * shader inputs and fragment shader outputs will appear in the IR in the
170     * same order that they appeared in the shader code.  This results in the
171     * locations being assigned in the declared order.  Many (arguably buggy)
172     * applications depend on this behavior, and it matches what nearly all
173     * other drivers do.
174     */
175    foreach_in_list_safe(ir_instruction, node, instructions) {
176       ir_variable *const var = node->as_variable();
177 
178       if (var == NULL)
179          continue;
180 
181       var->remove();
182       instructions->push_head(var);
183    }
184 
185    /* Figure out if gl_FragCoord is actually used in fragment shader */
186    ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187    if (var != NULL)
188       state->fs_uses_gl_fragcoord = var->data.used;
189 
190    /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191     *
192     *     If multiple shaders using members of a built-in block belonging to
193     *     the same interface are linked together in the same program, they
194     *     must all redeclare the built-in block in the same way, as described
195     *     in section 4.3.7 "Interface Blocks" for interface block matching, or
196     *     a link error will result.
197     *
198     * The phrase "using members of a built-in block" implies that if two
199     * shaders are linked together and one of them *does not use* any members
200     * of the built-in block, then that shader does not need to have a matching
201     * redeclaration of the built-in block.
202     *
203     * This appears to be a clarification to the behaviour established for
204     * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205     * version.
206     *
207     * The definition of "interface" in section 4.3.7 that applies here is as
208     * follows:
209     *
210     *     The boundary between adjacent programmable pipeline stages: This
211     *     spans all the outputs in all compilation units of the first stage
212     *     and all the inputs in all compilation units of the second stage.
213     *
214     * Therefore this rule applies to both inter- and intra-stage linking.
215     *
216     * The easiest way to implement this is to check whether the shader uses
217     * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218     * remove all the relevant variable declaration from the IR, so that the
219     * linker won't see them and complain about mismatches.
220     */
221    remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222    remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223 
224    /* Check that we don't have reads from write-only variables */
225    read_from_write_only_variable_visitor v;
226    v.run(instructions);
227    ir_variable *error_var = v.get_variable();
228    if (error_var) {
229       /* It would be nice to have proper location information, but for that
230        * we would need to check this as we process each kind of AST node
231        */
232       YYLTYPE loc;
233       memset(&loc, 0, sizeof(loc));
234       _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235                        error_var->name);
236    }
237 }
238 
239 
240 static ir_expression_operation
get_implicit_conversion_operation(const glsl_type * to,const glsl_type * from,struct _mesa_glsl_parse_state * state)241 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242                                   struct _mesa_glsl_parse_state *state)
243 {
244    switch (to->base_type) {
245    case GLSL_TYPE_FLOAT:
246       switch (from->base_type) {
247       case GLSL_TYPE_INT: return ir_unop_i2f;
248       case GLSL_TYPE_UINT: return ir_unop_u2f;
249       default: return (ir_expression_operation)0;
250       }
251 
252    case GLSL_TYPE_UINT:
253       if (!state->has_implicit_int_to_uint_conversion())
254          return (ir_expression_operation)0;
255       switch (from->base_type) {
256          case GLSL_TYPE_INT: return ir_unop_i2u;
257          default: return (ir_expression_operation)0;
258       }
259 
260    case GLSL_TYPE_DOUBLE:
261       if (!state->has_double())
262          return (ir_expression_operation)0;
263       switch (from->base_type) {
264       case GLSL_TYPE_INT: return ir_unop_i2d;
265       case GLSL_TYPE_UINT: return ir_unop_u2d;
266       case GLSL_TYPE_FLOAT: return ir_unop_f2d;
267       case GLSL_TYPE_INT64: return ir_unop_i642d;
268       case GLSL_TYPE_UINT64: return ir_unop_u642d;
269       default: return (ir_expression_operation)0;
270       }
271 
272    case GLSL_TYPE_UINT64:
273       if (!state->has_int64())
274          return (ir_expression_operation)0;
275       switch (from->base_type) {
276       case GLSL_TYPE_INT: return ir_unop_i2u64;
277       case GLSL_TYPE_UINT: return ir_unop_u2u64;
278       case GLSL_TYPE_INT64: return ir_unop_i642u64;
279       default: return (ir_expression_operation)0;
280       }
281 
282    case GLSL_TYPE_INT64:
283       if (!state->has_int64())
284          return (ir_expression_operation)0;
285       switch (from->base_type) {
286       case GLSL_TYPE_INT: return ir_unop_i2i64;
287       default: return (ir_expression_operation)0;
288       }
289 
290    default: return (ir_expression_operation)0;
291    }
292 }
293 
294 
295 /**
296  * If a conversion is available, convert one operand to a different type
297  *
298  * The \c from \c ir_rvalue is converted "in place".
299  *
300  * \param to     Type that the operand it to be converted to
301  * \param from   Operand that is being converted
302  * \param state  GLSL compiler state
303  *
304  * \return
305  * If a conversion is possible (or unnecessary), \c true is returned.
306  * Otherwise \c false is returned.
307  */
308 static bool
apply_implicit_conversion(const glsl_type * to,ir_rvalue * & from,struct _mesa_glsl_parse_state * state)309 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
310                           struct _mesa_glsl_parse_state *state)
311 {
312    void *ctx = state;
313    if (to->base_type == from->type->base_type)
314       return true;
315 
316    /* Prior to GLSL 1.20, there are no implicit conversions */
317    if (!state->has_implicit_conversions())
318       return false;
319 
320    /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321     *
322     *    "There are no implicit array or structure conversions. For
323     *    example, an array of int cannot be implicitly converted to an
324     *    array of float.
325     */
326    if (!to->is_numeric() || !from->type->is_numeric())
327       return false;
328 
329    /* We don't actually want the specific type `to`, we want a type
330     * with the same base type as `to`, but the same vector width as
331     * `from`.
332     */
333    to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334                                 from->type->matrix_columns);
335 
336    ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337    if (op) {
338       from = new(ctx) ir_expression(op, to, from, NULL);
339       return true;
340    } else {
341       return false;
342    }
343 }
344 
345 
346 static const struct glsl_type *
arithmetic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,bool multiply,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348                        bool multiply,
349                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351    const glsl_type *type_a = value_a->type;
352    const glsl_type *type_b = value_b->type;
353 
354    /* From GLSL 1.50 spec, page 56:
355     *
356     *    "The arithmetic binary operators add (+), subtract (-),
357     *    multiply (*), and divide (/) operate on integer and
358     *    floating-point scalars, vectors, and matrices."
359     */
360    if (!type_a->is_numeric() || !type_b->is_numeric()) {
361       _mesa_glsl_error(loc, state,
362                        "operands to arithmetic operators must be numeric");
363       return glsl_type::error_type;
364    }
365 
366 
367    /*    "If one operand is floating-point based and the other is
368     *    not, then the conversions from Section 4.1.10 "Implicit
369     *    Conversions" are applied to the non-floating-point-based operand."
370     */
371    if (!apply_implicit_conversion(type_a, value_b, state)
372        && !apply_implicit_conversion(type_b, value_a, state)) {
373       _mesa_glsl_error(loc, state,
374                        "could not implicitly convert operands to "
375                        "arithmetic operator");
376       return glsl_type::error_type;
377    }
378    type_a = value_a->type;
379    type_b = value_b->type;
380 
381    /*    "If the operands are integer types, they must both be signed or
382     *    both be unsigned."
383     *
384     * From this rule and the preceeding conversion it can be inferred that
385     * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386     * The is_numeric check above already filtered out the case where either
387     * type is not one of these, so now the base types need only be tested for
388     * equality.
389     */
390    if (type_a->base_type != type_b->base_type) {
391       _mesa_glsl_error(loc, state,
392                        "base type mismatch for arithmetic operator");
393       return glsl_type::error_type;
394    }
395 
396    /*    "All arithmetic binary operators result in the same fundamental type
397     *    (signed integer, unsigned integer, or floating-point) as the
398     *    operands they operate on, after operand type conversion. After
399     *    conversion, the following cases are valid
400     *
401     *    * The two operands are scalars. In this case the operation is
402     *      applied, resulting in a scalar."
403     */
404    if (type_a->is_scalar() && type_b->is_scalar())
405       return type_a;
406 
407    /*   "* One operand is a scalar, and the other is a vector or matrix.
408     *      In this case, the scalar operation is applied independently to each
409     *      component of the vector or matrix, resulting in the same size
410     *      vector or matrix."
411     */
412    if (type_a->is_scalar()) {
413       if (!type_b->is_scalar())
414          return type_b;
415    } else if (type_b->is_scalar()) {
416       return type_a;
417    }
418 
419    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420     * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421     * handled.
422     */
423    assert(!type_a->is_scalar());
424    assert(!type_b->is_scalar());
425 
426    /*   "* The two operands are vectors of the same size. In this case, the
427     *      operation is done component-wise resulting in the same size
428     *      vector."
429     */
430    if (type_a->is_vector() && type_b->is_vector()) {
431       if (type_a == type_b) {
432          return type_a;
433       } else {
434          _mesa_glsl_error(loc, state,
435                           "vector size mismatch for arithmetic operator");
436          return glsl_type::error_type;
437       }
438    }
439 
440    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441     * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442     * <vector, vector> have been handled.  At least one of the operands must
443     * be matrix.  Further, since there are no integer matrix types, the base
444     * type of both operands must be float.
445     */
446    assert(type_a->is_matrix() || type_b->is_matrix());
447    assert(type_a->is_float() || type_a->is_double());
448    assert(type_b->is_float() || type_b->is_double());
449 
450    /*   "* The operator is add (+), subtract (-), or divide (/), and the
451     *      operands are matrices with the same number of rows and the same
452     *      number of columns. In this case, the operation is done component-
453     *      wise resulting in the same size matrix."
454     *    * The operator is multiply (*), where both operands are matrices or
455     *      one operand is a vector and the other a matrix. A right vector
456     *      operand is treated as a column vector and a left vector operand as a
457     *      row vector. In all these cases, it is required that the number of
458     *      columns of the left operand is equal to the number of rows of the
459     *      right operand. Then, the multiply (*) operation does a linear
460     *      algebraic multiply, yielding an object that has the same number of
461     *      rows as the left operand and the same number of columns as the right
462     *      operand. Section 5.10 "Vector and Matrix Operations" explains in
463     *      more detail how vectors and matrices are operated on."
464     */
465    if (! multiply) {
466       if (type_a == type_b)
467          return type_a;
468    } else {
469       const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470 
471       if (type == glsl_type::error_type) {
472          _mesa_glsl_error(loc, state,
473                           "size mismatch for matrix multiplication");
474       }
475 
476       return type;
477    }
478 
479 
480    /*    "All other cases are illegal."
481     */
482    _mesa_glsl_error(loc, state, "type mismatch");
483    return glsl_type::error_type;
484 }
485 
486 
487 static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)488 unary_arithmetic_result_type(const struct glsl_type *type,
489                              struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491    /* From GLSL 1.50 spec, page 57:
492     *
493     *    "The arithmetic unary operators negate (-), post- and pre-increment
494     *     and decrement (-- and ++) operate on integer or floating-point
495     *     values (including vectors and matrices). All unary operators work
496     *     component-wise on their operands. These result with the same type
497     *     they operated on."
498     */
499    if (!type->is_numeric()) {
500       _mesa_glsl_error(loc, state,
501                        "operands to arithmetic operators must be numeric");
502       return glsl_type::error_type;
503    }
504 
505    return type;
506 }
507 
508 /**
509  * \brief Return the result type of a bit-logic operation.
510  *
511  * If the given types to the bit-logic operator are invalid, return
512  * glsl_type::error_type.
513  *
514  * \param value_a LHS of bit-logic op
515  * \param value_b RHS of bit-logic op
516  */
517 static const struct glsl_type *
bit_logic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519                       ast_operators op,
520                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522    const glsl_type *type_a = value_a->type;
523    const glsl_type *type_b = value_b->type;
524 
525    if (!state->check_bitwise_operations_allowed(loc)) {
526       return glsl_type::error_type;
527    }
528 
529    /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530     *
531     *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532     *     (|). The operands must be of type signed or unsigned integers or
533     *     integer vectors."
534     */
535    if (!type_a->is_integer_32_64()) {
536       _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537                         ast_expression::operator_string(op));
538       return glsl_type::error_type;
539    }
540    if (!type_b->is_integer_32_64()) {
541       _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542                        ast_expression::operator_string(op));
543       return glsl_type::error_type;
544    }
545 
546    /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547     * make sense for bitwise operations, as they don't operate on floats.
548     *
549     * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550     * here.  It wasn't clear whether or not we should apply them to bitwise
551     * operations.  However, Khronos has decided that they should in future
552     * language revisions.  Applications also rely on this behavior.  We opt
553     * to apply them in general, but issue a portability warning.
554     *
555     * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556     */
557    if (type_a->base_type != type_b->base_type) {
558       if (!apply_implicit_conversion(type_a, value_b, state)
559           && !apply_implicit_conversion(type_b, value_a, state)) {
560          _mesa_glsl_error(loc, state,
561                           "could not implicitly convert operands to "
562                           "`%s` operator",
563                           ast_expression::operator_string(op));
564          return glsl_type::error_type;
565       } else {
566          _mesa_glsl_warning(loc, state,
567                             "some implementations may not support implicit "
568                             "int -> uint conversions for `%s' operators; "
569                             "consider casting explicitly for portability",
570                             ast_expression::operator_string(op));
571       }
572       type_a = value_a->type;
573       type_b = value_b->type;
574    }
575 
576    /*     "The fundamental types of the operands (signed or unsigned) must
577     *     match,"
578     */
579    if (type_a->base_type != type_b->base_type) {
580       _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581                        "base type", ast_expression::operator_string(op));
582       return glsl_type::error_type;
583    }
584 
585    /*     "The operands cannot be vectors of differing size." */
586    if (type_a->is_vector() &&
587        type_b->is_vector() &&
588        type_a->vector_elements != type_b->vector_elements) {
589       _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590                        "different sizes", ast_expression::operator_string(op));
591       return glsl_type::error_type;
592    }
593 
594    /*     "If one operand is a scalar and the other a vector, the scalar is
595     *     applied component-wise to the vector, resulting in the same type as
596     *     the vector. The fundamental types of the operands [...] will be the
597     *     resulting fundamental type."
598     */
599    if (type_a->is_scalar())
600        return type_b;
601    else
602        return type_a;
603 }
604 
605 static const struct glsl_type *
modulus_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607                     struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609    const glsl_type *type_a = value_a->type;
610    const glsl_type *type_b = value_b->type;
611 
612    if (!state->EXT_gpu_shader4_enable &&
613        !state->check_version(130, 300, loc, "operator '%%' is reserved")) {
614       return glsl_type::error_type;
615    }
616 
617    /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
618     *
619     *    "The operator modulus (%) operates on signed or unsigned integers or
620     *    integer vectors."
621     */
622    if (!type_a->is_integer_32_64()) {
623       _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
624       return glsl_type::error_type;
625    }
626    if (!type_b->is_integer_32_64()) {
627       _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
628       return glsl_type::error_type;
629    }
630 
631    /*    "If the fundamental types in the operands do not match, then the
632     *    conversions from section 4.1.10 "Implicit Conversions" are applied
633     *    to create matching types."
634     *
635     * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
636     * int -> uint conversion rules.  Prior to that, there were no implicit
637     * conversions.  So it's harmless to apply them universally - no implicit
638     * conversions will exist.  If the types don't match, we'll receive false,
639     * and raise an error, satisfying the GLSL 1.50 spec, page 56:
640     *
641     *    "The operand types must both be signed or unsigned."
642     */
643    if (!apply_implicit_conversion(type_a, value_b, state) &&
644        !apply_implicit_conversion(type_b, value_a, state)) {
645       _mesa_glsl_error(loc, state,
646                        "could not implicitly convert operands to "
647                        "modulus (%%) operator");
648       return glsl_type::error_type;
649    }
650    type_a = value_a->type;
651    type_b = value_b->type;
652 
653    /*    "The operands cannot be vectors of differing size. If one operand is
654     *    a scalar and the other vector, then the scalar is applied component-
655     *    wise to the vector, resulting in the same type as the vector. If both
656     *    are vectors of the same size, the result is computed component-wise."
657     */
658    if (type_a->is_vector()) {
659       if (!type_b->is_vector()
660           || (type_a->vector_elements == type_b->vector_elements))
661       return type_a;
662    } else
663       return type_b;
664 
665    /*    "The operator modulus (%) is not defined for any other data types
666     *    (non-integer types)."
667     */
668    _mesa_glsl_error(loc, state, "type mismatch");
669    return glsl_type::error_type;
670 }
671 
672 
673 static const struct glsl_type *
relational_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)674 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
675                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
676 {
677    const glsl_type *type_a = value_a->type;
678    const glsl_type *type_b = value_b->type;
679 
680    /* From GLSL 1.50 spec, page 56:
681     *    "The relational operators greater than (>), less than (<), greater
682     *    than or equal (>=), and less than or equal (<=) operate only on
683     *    scalar integer and scalar floating-point expressions."
684     */
685    if (!type_a->is_numeric()
686        || !type_b->is_numeric()
687        || !type_a->is_scalar()
688        || !type_b->is_scalar()) {
689       _mesa_glsl_error(loc, state,
690                        "operands to relational operators must be scalar and "
691                        "numeric");
692       return glsl_type::error_type;
693    }
694 
695    /*    "Either the operands' types must match, or the conversions from
696     *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
697     *    operand, after which the types must match."
698     */
699    if (!apply_implicit_conversion(type_a, value_b, state)
700        && !apply_implicit_conversion(type_b, value_a, state)) {
701       _mesa_glsl_error(loc, state,
702                        "could not implicitly convert operands to "
703                        "relational operator");
704       return glsl_type::error_type;
705    }
706    type_a = value_a->type;
707    type_b = value_b->type;
708 
709    if (type_a->base_type != type_b->base_type) {
710       _mesa_glsl_error(loc, state, "base type mismatch");
711       return glsl_type::error_type;
712    }
713 
714    /*    "The result is scalar Boolean."
715     */
716    return glsl_type::bool_type;
717 }
718 
719 /**
720  * \brief Return the result type of a bit-shift operation.
721  *
722  * If the given types to the bit-shift operator are invalid, return
723  * glsl_type::error_type.
724  *
725  * \param type_a Type of LHS of bit-shift op
726  * \param type_b Type of RHS of bit-shift op
727  */
728 static const struct glsl_type *
shift_result_type(const struct glsl_type * type_a,const struct glsl_type * type_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)729 shift_result_type(const struct glsl_type *type_a,
730                   const struct glsl_type *type_b,
731                   ast_operators op,
732                   struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
733 {
734    if (!state->check_bitwise_operations_allowed(loc)) {
735       return glsl_type::error_type;
736    }
737 
738    /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
739     *
740     *     "The shift operators (<<) and (>>). For both operators, the operands
741     *     must be signed or unsigned integers or integer vectors. One operand
742     *     can be signed while the other is unsigned."
743     */
744    if (!type_a->is_integer_32_64()) {
745       _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
746                        "integer vector", ast_expression::operator_string(op));
747      return glsl_type::error_type;
748 
749    }
750    if (!type_b->is_integer_32()) {
751       _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
752                        "integer vector", ast_expression::operator_string(op));
753      return glsl_type::error_type;
754    }
755 
756    /*     "If the first operand is a scalar, the second operand has to be
757     *     a scalar as well."
758     */
759    if (type_a->is_scalar() && !type_b->is_scalar()) {
760       _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
761                        "second must be scalar as well",
762                        ast_expression::operator_string(op));
763      return glsl_type::error_type;
764    }
765 
766    /* If both operands are vectors, check that they have same number of
767     * elements.
768     */
769    if (type_a->is_vector() &&
770       type_b->is_vector() &&
771       type_a->vector_elements != type_b->vector_elements) {
772       _mesa_glsl_error(loc, state, "vector operands to operator %s must "
773                        "have same number of elements",
774                        ast_expression::operator_string(op));
775      return glsl_type::error_type;
776    }
777 
778    /*     "In all cases, the resulting type will be the same type as the left
779     *     operand."
780     */
781    return type_a;
782 }
783 
784 /**
785  * Returns the innermost array index expression in an rvalue tree.
786  * This is the largest indexing level -- if an array of blocks, then
787  * it is the block index rather than an indexing expression for an
788  * array-typed member of an array of blocks.
789  */
790 static ir_rvalue *
find_innermost_array_index(ir_rvalue * rv)791 find_innermost_array_index(ir_rvalue *rv)
792 {
793    ir_dereference_array *last = NULL;
794    while (rv) {
795       if (rv->as_dereference_array()) {
796          last = rv->as_dereference_array();
797          rv = last->array;
798       } else if (rv->as_dereference_record())
799          rv = rv->as_dereference_record()->record;
800       else if (rv->as_swizzle())
801          rv = rv->as_swizzle()->val;
802       else
803          rv = NULL;
804    }
805 
806    if (last)
807       return last->array_index;
808 
809    return NULL;
810 }
811 
812 /**
813  * Validates that a value can be assigned to a location with a specified type
814  *
815  * Validates that \c rhs can be assigned to some location.  If the types are
816  * not an exact match but an automatic conversion is possible, \c rhs will be
817  * converted.
818  *
819  * \return
820  * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
821  * Otherwise the actual RHS to be assigned will be returned.  This may be
822  * \c rhs, or it may be \c rhs after some type conversion.
823  *
824  * \note
825  * In addition to being used for assignments, this function is used to
826  * type-check return values.
827  */
828 static ir_rvalue *
validate_assignment(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_rvalue * lhs,ir_rvalue * rhs,bool is_initializer)829 validate_assignment(struct _mesa_glsl_parse_state *state,
830                     YYLTYPE loc, ir_rvalue *lhs,
831                     ir_rvalue *rhs, bool is_initializer)
832 {
833    /* If there is already some error in the RHS, just return it.  Anything
834     * else will lead to an avalanche of error message back to the user.
835     */
836    if (rhs->type->is_error())
837       return rhs;
838 
839    /* In the Tessellation Control Shader:
840     * If a per-vertex output variable is used as an l-value, it is an error
841     * if the expression indicating the vertex number is not the identifier
842     * `gl_InvocationID`.
843     */
844    if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
845       ir_variable *var = lhs->variable_referenced();
846       if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
847          ir_rvalue *index = find_innermost_array_index(lhs);
848          ir_variable *index_var = index ? index->variable_referenced() : NULL;
849          if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
850             _mesa_glsl_error(&loc, state,
851                              "Tessellation control shader outputs can only "
852                              "be indexed by gl_InvocationID");
853             return NULL;
854          }
855       }
856    }
857 
858    /* If the types are identical, the assignment can trivially proceed.
859     */
860    if (rhs->type == lhs->type)
861       return rhs;
862 
863    /* If the array element types are the same and the LHS is unsized,
864     * the assignment is okay for initializers embedded in variable
865     * declarations.
866     *
867     * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
868     * is handled by ir_dereference::is_lvalue.
869     */
870    const glsl_type *lhs_t = lhs->type;
871    const glsl_type *rhs_t = rhs->type;
872    bool unsized_array = false;
873    while(lhs_t->is_array()) {
874       if (rhs_t == lhs_t)
875          break; /* the rest of the inner arrays match so break out early */
876       if (!rhs_t->is_array()) {
877          unsized_array = false;
878          break; /* number of dimensions mismatch */
879       }
880       if (lhs_t->length == rhs_t->length) {
881          lhs_t = lhs_t->fields.array;
882          rhs_t = rhs_t->fields.array;
883          continue;
884       } else if (lhs_t->is_unsized_array()) {
885          unsized_array = true;
886       } else {
887          unsized_array = false;
888          break; /* sized array mismatch */
889       }
890       lhs_t = lhs_t->fields.array;
891       rhs_t = rhs_t->fields.array;
892    }
893    if (unsized_array) {
894       if (is_initializer) {
895          if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
896             return rhs;
897       } else {
898          _mesa_glsl_error(&loc, state,
899                           "implicitly sized arrays cannot be assigned");
900          return NULL;
901       }
902    }
903 
904    /* Check for implicit conversion in GLSL 1.20 */
905    if (apply_implicit_conversion(lhs->type, rhs, state)) {
906       if (rhs->type == lhs->type)
907          return rhs;
908    }
909 
910    _mesa_glsl_error(&loc, state,
911                     "%s of type %s cannot be assigned to "
912                     "variable of type %s",
913                     is_initializer ? "initializer" : "value",
914                     rhs->type->name, lhs->type->name);
915 
916    return NULL;
917 }
918 
919 static void
mark_whole_array_access(ir_rvalue * access)920 mark_whole_array_access(ir_rvalue *access)
921 {
922    ir_dereference_variable *deref = access->as_dereference_variable();
923 
924    if (deref && deref->var) {
925       deref->var->data.max_array_access = deref->type->length - 1;
926    }
927 }
928 
929 static bool
do_assignment(exec_list * instructions,struct _mesa_glsl_parse_state * state,const char * non_lvalue_description,ir_rvalue * lhs,ir_rvalue * rhs,ir_rvalue ** out_rvalue,bool needs_rvalue,bool is_initializer,YYLTYPE lhs_loc)930 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
931               const char *non_lvalue_description,
932               ir_rvalue *lhs, ir_rvalue *rhs,
933               ir_rvalue **out_rvalue, bool needs_rvalue,
934               bool is_initializer,
935               YYLTYPE lhs_loc)
936 {
937    void *ctx = state;
938    bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
939 
940    ir_variable *lhs_var = lhs->variable_referenced();
941    if (lhs_var)
942       lhs_var->data.assigned = true;
943 
944    bool omit_assignment = false;
945    if (!error_emitted) {
946       if (non_lvalue_description != NULL) {
947          _mesa_glsl_error(&lhs_loc, state,
948                           "assignment to %s",
949                           non_lvalue_description);
950          error_emitted = true;
951       } else if (lhs_var != NULL && (lhs_var->data.read_only ||
952                  (lhs_var->data.mode == ir_var_shader_storage &&
953                   lhs_var->data.memory_read_only))) {
954          /* We can have memory_read_only set on both images and buffer variables,
955           * but in the former there is a distinction between assignments to
956           * the variable itself (read_only) and to the memory they point to
957           * (memory_read_only), while in the case of buffer variables there is
958           * no such distinction, that is why this check here is limited to
959           * buffer variables alone.
960           */
961 
962          if (state->ignore_write_to_readonly_var)
963             omit_assignment = true;
964          else {
965             _mesa_glsl_error(&lhs_loc, state,
966                              "assignment to read-only variable '%s'",
967                              lhs_var->name);
968             error_emitted = true;
969          }
970       } else if (lhs->type->is_array() &&
971                  !state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120,
972                                        300, &lhs_loc,
973                                        "whole array assignment forbidden")) {
974          /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
975           *
976           *    "Other binary or unary expressions, non-dereferenced
977           *     arrays, function names, swizzles with repeated fields,
978           *     and constants cannot be l-values."
979           *
980           * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
981           */
982          error_emitted = true;
983       } else if (!lhs->is_lvalue(state)) {
984          _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
985          error_emitted = true;
986       }
987    }
988 
989    ir_rvalue *new_rhs =
990       validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
991    if (new_rhs != NULL) {
992       rhs = new_rhs;
993 
994       /* If the LHS array was not declared with a size, it takes it size from
995        * the RHS.  If the LHS is an l-value and a whole array, it must be a
996        * dereference of a variable.  Any other case would require that the LHS
997        * is either not an l-value or not a whole array.
998        */
999       if (lhs->type->is_unsized_array()) {
1000          ir_dereference *const d = lhs->as_dereference();
1001 
1002          assert(d != NULL);
1003 
1004          ir_variable *const var = d->variable_referenced();
1005 
1006          assert(var != NULL);
1007 
1008          if (var->data.max_array_access >= rhs->type->array_size()) {
1009             /* FINISHME: This should actually log the location of the RHS. */
1010             _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1011                              "previous access",
1012                              var->data.max_array_access);
1013          }
1014 
1015          var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1016                                                    rhs->type->array_size());
1017          d->type = var->type;
1018       }
1019       if (lhs->type->is_array()) {
1020          mark_whole_array_access(rhs);
1021          mark_whole_array_access(lhs);
1022       }
1023    } else {
1024      error_emitted = true;
1025    }
1026 
1027    if (omit_assignment) {
1028       *out_rvalue = needs_rvalue ? ir_rvalue::error_value(ctx) : NULL;
1029       return error_emitted;
1030    }
1031 
1032    /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1033     * but not post_inc) need the converted assigned value as an rvalue
1034     * to handle things like:
1035     *
1036     * i = j += 1;
1037     */
1038    if (needs_rvalue) {
1039       ir_rvalue *rvalue;
1040       if (!error_emitted) {
1041          ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1042                                                  ir_var_temporary);
1043          instructions->push_tail(var);
1044          instructions->push_tail(assign(var, rhs));
1045 
1046          ir_dereference_variable *deref_var =
1047             new(ctx) ir_dereference_variable(var);
1048          instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1049          rvalue = new(ctx) ir_dereference_variable(var);
1050       } else {
1051          rvalue = ir_rvalue::error_value(ctx);
1052       }
1053       *out_rvalue = rvalue;
1054    } else {
1055       if (!error_emitted)
1056          instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1057       *out_rvalue = NULL;
1058    }
1059 
1060    return error_emitted;
1061 }
1062 
1063 static ir_rvalue *
get_lvalue_copy(exec_list * instructions,ir_rvalue * lvalue)1064 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1065 {
1066    void *ctx = ralloc_parent(lvalue);
1067    ir_variable *var;
1068 
1069    var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1070                               ir_var_temporary);
1071    instructions->push_tail(var);
1072 
1073    instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1074                                                   lvalue));
1075 
1076    return new(ctx) ir_dereference_variable(var);
1077 }
1078 
1079 
1080 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1081 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1082 {
1083    (void) instructions;
1084    (void) state;
1085 
1086    return NULL;
1087 }
1088 
1089 bool
has_sequence_subexpression() const1090 ast_node::has_sequence_subexpression() const
1091 {
1092    return false;
1093 }
1094 
1095 void
set_is_lhs(bool)1096 ast_node::set_is_lhs(bool /* new_value */)
1097 {
1098 }
1099 
1100 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1101 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1102                                        struct _mesa_glsl_parse_state *state)
1103 {
1104    (void)hir(instructions, state);
1105 }
1106 
1107 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1108 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1109                                          struct _mesa_glsl_parse_state *state)
1110 {
1111    (void)hir(instructions, state);
1112 }
1113 
1114 static ir_rvalue *
do_comparison(void * mem_ctx,int operation,ir_rvalue * op0,ir_rvalue * op1)1115 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1116 {
1117    int join_op;
1118    ir_rvalue *cmp = NULL;
1119 
1120    if (operation == ir_binop_all_equal)
1121       join_op = ir_binop_logic_and;
1122    else
1123       join_op = ir_binop_logic_or;
1124 
1125    switch (op0->type->base_type) {
1126    case GLSL_TYPE_FLOAT:
1127    case GLSL_TYPE_FLOAT16:
1128    case GLSL_TYPE_UINT:
1129    case GLSL_TYPE_INT:
1130    case GLSL_TYPE_BOOL:
1131    case GLSL_TYPE_DOUBLE:
1132    case GLSL_TYPE_UINT64:
1133    case GLSL_TYPE_INT64:
1134    case GLSL_TYPE_UINT16:
1135    case GLSL_TYPE_INT16:
1136    case GLSL_TYPE_UINT8:
1137    case GLSL_TYPE_INT8:
1138       return new(mem_ctx) ir_expression(operation, op0, op1);
1139 
1140    case GLSL_TYPE_ARRAY: {
1141       for (unsigned int i = 0; i < op0->type->length; i++) {
1142          ir_rvalue *e0, *e1, *result;
1143 
1144          e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1145                                                 new(mem_ctx) ir_constant(i));
1146          e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1147                                                 new(mem_ctx) ir_constant(i));
1148          result = do_comparison(mem_ctx, operation, e0, e1);
1149 
1150          if (cmp) {
1151             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1152          } else {
1153             cmp = result;
1154          }
1155       }
1156 
1157       mark_whole_array_access(op0);
1158       mark_whole_array_access(op1);
1159       break;
1160    }
1161 
1162    case GLSL_TYPE_STRUCT: {
1163       for (unsigned int i = 0; i < op0->type->length; i++) {
1164          ir_rvalue *e0, *e1, *result;
1165          const char *field_name = op0->type->fields.structure[i].name;
1166 
1167          e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1168                                                  field_name);
1169          e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1170                                                  field_name);
1171          result = do_comparison(mem_ctx, operation, e0, e1);
1172 
1173          if (cmp) {
1174             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1175          } else {
1176             cmp = result;
1177          }
1178       }
1179       break;
1180    }
1181 
1182    case GLSL_TYPE_ERROR:
1183    case GLSL_TYPE_VOID:
1184    case GLSL_TYPE_SAMPLER:
1185    case GLSL_TYPE_TEXTURE:
1186    case GLSL_TYPE_IMAGE:
1187    case GLSL_TYPE_INTERFACE:
1188    case GLSL_TYPE_ATOMIC_UINT:
1189    case GLSL_TYPE_SUBROUTINE:
1190    case GLSL_TYPE_FUNCTION:
1191       /* I assume a comparison of a struct containing a sampler just
1192        * ignores the sampler present in the type.
1193        */
1194       break;
1195    }
1196 
1197    if (cmp == NULL)
1198       cmp = new(mem_ctx) ir_constant(true);
1199 
1200    return cmp;
1201 }
1202 
1203 /* For logical operations, we want to ensure that the operands are
1204  * scalar booleans.  If it isn't, emit an error and return a constant
1205  * boolean to avoid triggering cascading error messages.
1206  */
1207 static ir_rvalue *
get_scalar_boolean_operand(exec_list * instructions,struct _mesa_glsl_parse_state * state,ast_expression * parent_expr,int operand,const char * operand_name,bool * error_emitted)1208 get_scalar_boolean_operand(exec_list *instructions,
1209                            struct _mesa_glsl_parse_state *state,
1210                            ast_expression *parent_expr,
1211                            int operand,
1212                            const char *operand_name,
1213                            bool *error_emitted)
1214 {
1215    ast_expression *expr = parent_expr->subexpressions[operand];
1216    void *ctx = state;
1217    ir_rvalue *val = expr->hir(instructions, state);
1218 
1219    if (val->type->is_boolean() && val->type->is_scalar())
1220       return val;
1221 
1222    if (!*error_emitted) {
1223       YYLTYPE loc = expr->get_location();
1224       _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1225                        operand_name,
1226                        parent_expr->operator_string(parent_expr->oper));
1227       *error_emitted = true;
1228    }
1229 
1230    return new(ctx) ir_constant(true);
1231 }
1232 
1233 /**
1234  * If name refers to a builtin array whose maximum allowed size is less than
1235  * size, report an error and return true.  Otherwise return false.
1236  */
1237 void
check_builtin_array_max_size(const char * name,unsigned size,YYLTYPE loc,struct _mesa_glsl_parse_state * state)1238 check_builtin_array_max_size(const char *name, unsigned size,
1239                              YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1240 {
1241    if ((strcmp("gl_TexCoord", name) == 0)
1242        && (size > state->Const.MaxTextureCoords)) {
1243       /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1244        *
1245        *     "The size [of gl_TexCoord] can be at most
1246        *     gl_MaxTextureCoords."
1247        */
1248       _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1249                        "be larger than gl_MaxTextureCoords (%u)",
1250                        state->Const.MaxTextureCoords);
1251    } else if (strcmp("gl_ClipDistance", name) == 0) {
1252       state->clip_dist_size = size;
1253       if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1254          /* From section 7.1 (Vertex Shader Special Variables) of the
1255           * GLSL 1.30 spec:
1256           *
1257           *   "The gl_ClipDistance array is predeclared as unsized and
1258           *   must be sized by the shader either redeclaring it with a
1259           *   size or indexing it only with integral constant
1260           *   expressions. ... The size can be at most
1261           *   gl_MaxClipDistances."
1262           */
1263          _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1264                           "be larger than gl_MaxClipDistances (%u)",
1265                           state->Const.MaxClipPlanes);
1266       }
1267    } else if (strcmp("gl_CullDistance", name) == 0) {
1268       state->cull_dist_size = size;
1269       if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1270          /* From the ARB_cull_distance spec:
1271           *
1272           *   "The gl_CullDistance array is predeclared as unsized and
1273           *    must be sized by the shader either redeclaring it with
1274           *    a size or indexing it only with integral constant
1275           *    expressions. The size determines the number and set of
1276           *    enabled cull distances and can be at most
1277           *    gl_MaxCullDistances."
1278           */
1279          _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1280                           "be larger than gl_MaxCullDistances (%u)",
1281                           state->Const.MaxClipPlanes);
1282       }
1283    }
1284 }
1285 
1286 /**
1287  * Create the constant 1, of a which is appropriate for incrementing and
1288  * decrementing values of the given GLSL type.  For example, if type is vec4,
1289  * this creates a constant value of 1.0 having type float.
1290  *
1291  * If the given type is invalid for increment and decrement operators, return
1292  * a floating point 1--the error will be detected later.
1293  */
1294 static ir_rvalue *
constant_one_for_inc_dec(void * ctx,const glsl_type * type)1295 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1296 {
1297    switch (type->base_type) {
1298    case GLSL_TYPE_UINT:
1299       return new(ctx) ir_constant((unsigned) 1);
1300    case GLSL_TYPE_INT:
1301       return new(ctx) ir_constant(1);
1302    case GLSL_TYPE_UINT64:
1303       return new(ctx) ir_constant((uint64_t) 1);
1304    case GLSL_TYPE_INT64:
1305       return new(ctx) ir_constant((int64_t) 1);
1306    default:
1307    case GLSL_TYPE_FLOAT:
1308       return new(ctx) ir_constant(1.0f);
1309    }
1310 }
1311 
1312 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1313 ast_expression::hir(exec_list *instructions,
1314                     struct _mesa_glsl_parse_state *state)
1315 {
1316    return do_hir(instructions, state, true);
1317 }
1318 
1319 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1320 ast_expression::hir_no_rvalue(exec_list *instructions,
1321                               struct _mesa_glsl_parse_state *state)
1322 {
1323    do_hir(instructions, state, false);
1324 }
1325 
1326 void
set_is_lhs(bool new_value)1327 ast_expression::set_is_lhs(bool new_value)
1328 {
1329    /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1330     * if we lack an identifier we can just skip it.
1331     */
1332    if (this->primary_expression.identifier == NULL)
1333       return;
1334 
1335    this->is_lhs = new_value;
1336 
1337    /* We need to go through the subexpressions tree to cover cases like
1338     * ast_field_selection
1339     */
1340    if (this->subexpressions[0] != NULL)
1341       this->subexpressions[0]->set_is_lhs(new_value);
1342 }
1343 
1344 ir_rvalue *
do_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state,bool needs_rvalue)1345 ast_expression::do_hir(exec_list *instructions,
1346                        struct _mesa_glsl_parse_state *state,
1347                        bool needs_rvalue)
1348 {
1349    void *ctx = state;
1350    static const int operations[AST_NUM_OPERATORS] = {
1351       -1,               /* ast_assign doesn't convert to ir_expression. */
1352       -1,               /* ast_plus doesn't convert to ir_expression. */
1353       ir_unop_neg,
1354       ir_binop_add,
1355       ir_binop_sub,
1356       ir_binop_mul,
1357       ir_binop_div,
1358       ir_binop_mod,
1359       ir_binop_lshift,
1360       ir_binop_rshift,
1361       ir_binop_less,
1362       ir_binop_less,    /* This is correct.  See the ast_greater case below. */
1363       ir_binop_gequal,  /* This is correct.  See the ast_lequal case below. */
1364       ir_binop_gequal,
1365       ir_binop_all_equal,
1366       ir_binop_any_nequal,
1367       ir_binop_bit_and,
1368       ir_binop_bit_xor,
1369       ir_binop_bit_or,
1370       ir_unop_bit_not,
1371       ir_binop_logic_and,
1372       ir_binop_logic_xor,
1373       ir_binop_logic_or,
1374       ir_unop_logic_not,
1375 
1376       /* Note: The following block of expression types actually convert
1377        * to multiple IR instructions.
1378        */
1379       ir_binop_mul,     /* ast_mul_assign */
1380       ir_binop_div,     /* ast_div_assign */
1381       ir_binop_mod,     /* ast_mod_assign */
1382       ir_binop_add,     /* ast_add_assign */
1383       ir_binop_sub,     /* ast_sub_assign */
1384       ir_binop_lshift,  /* ast_ls_assign */
1385       ir_binop_rshift,  /* ast_rs_assign */
1386       ir_binop_bit_and, /* ast_and_assign */
1387       ir_binop_bit_xor, /* ast_xor_assign */
1388       ir_binop_bit_or,  /* ast_or_assign */
1389 
1390       -1,               /* ast_conditional doesn't convert to ir_expression. */
1391       ir_binop_add,     /* ast_pre_inc. */
1392       ir_binop_sub,     /* ast_pre_dec. */
1393       ir_binop_add,     /* ast_post_inc. */
1394       ir_binop_sub,     /* ast_post_dec. */
1395       -1,               /* ast_field_selection doesn't conv to ir_expression. */
1396       -1,               /* ast_array_index doesn't convert to ir_expression. */
1397       -1,               /* ast_function_call doesn't conv to ir_expression. */
1398       -1,               /* ast_identifier doesn't convert to ir_expression. */
1399       -1,               /* ast_int_constant doesn't convert to ir_expression. */
1400       -1,               /* ast_uint_constant doesn't conv to ir_expression. */
1401       -1,               /* ast_float_constant doesn't conv to ir_expression. */
1402       -1,               /* ast_bool_constant doesn't conv to ir_expression. */
1403       -1,               /* ast_sequence doesn't convert to ir_expression. */
1404       -1,               /* ast_aggregate shouldn't ever even get here. */
1405    };
1406    ir_rvalue *result = NULL;
1407    ir_rvalue *op[3];
1408    const struct glsl_type *type, *orig_type;
1409    bool error_emitted = false;
1410    YYLTYPE loc;
1411 
1412    loc = this->get_location();
1413 
1414    switch (this->oper) {
1415    case ast_aggregate:
1416       unreachable("ast_aggregate: Should never get here.");
1417 
1418    case ast_assign: {
1419       this->subexpressions[0]->set_is_lhs(true);
1420       op[0] = this->subexpressions[0]->hir(instructions, state);
1421       op[1] = this->subexpressions[1]->hir(instructions, state);
1422 
1423       error_emitted =
1424          do_assignment(instructions, state,
1425                        this->subexpressions[0]->non_lvalue_description,
1426                        op[0], op[1], &result, needs_rvalue, false,
1427                        this->subexpressions[0]->get_location());
1428       break;
1429    }
1430 
1431    case ast_plus:
1432       op[0] = this->subexpressions[0]->hir(instructions, state);
1433 
1434       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1435 
1436       error_emitted = type->is_error();
1437 
1438       result = op[0];
1439       break;
1440 
1441    case ast_neg:
1442       op[0] = this->subexpressions[0]->hir(instructions, state);
1443 
1444       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1445 
1446       error_emitted = type->is_error();
1447 
1448       result = new(ctx) ir_expression(operations[this->oper], type,
1449                                       op[0], NULL);
1450       break;
1451 
1452    case ast_add:
1453    case ast_sub:
1454    case ast_mul:
1455    case ast_div:
1456       op[0] = this->subexpressions[0]->hir(instructions, state);
1457       op[1] = this->subexpressions[1]->hir(instructions, state);
1458 
1459       type = arithmetic_result_type(op[0], op[1],
1460                                     (this->oper == ast_mul),
1461                                     state, & loc);
1462       error_emitted = type->is_error();
1463 
1464       result = new(ctx) ir_expression(operations[this->oper], type,
1465                                       op[0], op[1]);
1466       break;
1467 
1468    case ast_mod:
1469       op[0] = this->subexpressions[0]->hir(instructions, state);
1470       op[1] = this->subexpressions[1]->hir(instructions, state);
1471 
1472       type = modulus_result_type(op[0], op[1], state, &loc);
1473 
1474       assert(operations[this->oper] == ir_binop_mod);
1475 
1476       result = new(ctx) ir_expression(operations[this->oper], type,
1477                                       op[0], op[1]);
1478       error_emitted = type->is_error();
1479       break;
1480 
1481    case ast_lshift:
1482    case ast_rshift:
1483        if (!state->check_bitwise_operations_allowed(&loc)) {
1484           error_emitted = true;
1485        }
1486 
1487        op[0] = this->subexpressions[0]->hir(instructions, state);
1488        op[1] = this->subexpressions[1]->hir(instructions, state);
1489        type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1490                                 &loc);
1491        result = new(ctx) ir_expression(operations[this->oper], type,
1492                                        op[0], op[1]);
1493        error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1494        break;
1495 
1496    case ast_less:
1497    case ast_greater:
1498    case ast_lequal:
1499    case ast_gequal:
1500       op[0] = this->subexpressions[0]->hir(instructions, state);
1501       op[1] = this->subexpressions[1]->hir(instructions, state);
1502 
1503       type = relational_result_type(op[0], op[1], state, & loc);
1504 
1505       /* The relational operators must either generate an error or result
1506        * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
1507        */
1508       assert(type->is_error()
1509              || (type->is_boolean() && type->is_scalar()));
1510 
1511       /* Like NIR, GLSL IR does not have opcodes for > or <=.  Instead, swap
1512        * the arguments and use < or >=.
1513        */
1514       if (this->oper == ast_greater || this->oper == ast_lequal) {
1515          ir_rvalue *const tmp = op[0];
1516          op[0] = op[1];
1517          op[1] = tmp;
1518       }
1519 
1520       result = new(ctx) ir_expression(operations[this->oper], type,
1521                                       op[0], op[1]);
1522       error_emitted = type->is_error();
1523       break;
1524 
1525    case ast_nequal:
1526    case ast_equal:
1527       op[0] = this->subexpressions[0]->hir(instructions, state);
1528       op[1] = this->subexpressions[1]->hir(instructions, state);
1529 
1530       /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1531        *
1532        *    "The equality operators equal (==), and not equal (!=)
1533        *    operate on all types. They result in a scalar Boolean. If
1534        *    the operand types do not match, then there must be a
1535        *    conversion from Section 4.1.10 "Implicit Conversions"
1536        *    applied to one operand that can make them match, in which
1537        *    case this conversion is done."
1538        */
1539 
1540       if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1541          _mesa_glsl_error(& loc, state, "`%s':  wrong operand types: "
1542                          "no operation `%1$s' exists that takes a left-hand "
1543                          "operand of type 'void' or a right operand of type "
1544                          "'void'", (this->oper == ast_equal) ? "==" : "!=");
1545          error_emitted = true;
1546       } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1547            && !apply_implicit_conversion(op[1]->type, op[0], state))
1548           || (op[0]->type != op[1]->type)) {
1549          _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1550                           "type", (this->oper == ast_equal) ? "==" : "!=");
1551          error_emitted = true;
1552       } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1553                  !state->check_version(120, 300, &loc,
1554                                        "array comparisons forbidden")) {
1555          error_emitted = true;
1556       } else if ((op[0]->type->contains_subroutine() ||
1557                   op[1]->type->contains_subroutine())) {
1558          _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1559          error_emitted = true;
1560       } else if ((op[0]->type->contains_opaque() ||
1561                   op[1]->type->contains_opaque())) {
1562          _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1563          error_emitted = true;
1564       }
1565 
1566       if (error_emitted) {
1567          result = new(ctx) ir_constant(false);
1568       } else {
1569          result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1570          assert(result->type == glsl_type::bool_type);
1571       }
1572       break;
1573 
1574    case ast_bit_and:
1575    case ast_bit_xor:
1576    case ast_bit_or:
1577       op[0] = this->subexpressions[0]->hir(instructions, state);
1578       op[1] = this->subexpressions[1]->hir(instructions, state);
1579       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1580       result = new(ctx) ir_expression(operations[this->oper], type,
1581                                       op[0], op[1]);
1582       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1583       break;
1584 
1585    case ast_bit_not:
1586       op[0] = this->subexpressions[0]->hir(instructions, state);
1587 
1588       if (!state->check_bitwise_operations_allowed(&loc)) {
1589          error_emitted = true;
1590       }
1591 
1592       if (!op[0]->type->is_integer_32_64()) {
1593          _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1594          error_emitted = true;
1595       }
1596 
1597       type = error_emitted ? glsl_type::error_type : op[0]->type;
1598       result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1599       break;
1600 
1601    case ast_logic_and: {
1602       exec_list rhs_instructions;
1603       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1604                                          "LHS", &error_emitted);
1605       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1606                                          "RHS", &error_emitted);
1607 
1608       if (rhs_instructions.is_empty()) {
1609          result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1610       } else {
1611          ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1612                                                        "and_tmp",
1613                                                        ir_var_temporary);
1614          instructions->push_tail(tmp);
1615 
1616          ir_if *const stmt = new(ctx) ir_if(op[0]);
1617          instructions->push_tail(stmt);
1618 
1619          stmt->then_instructions.append_list(&rhs_instructions);
1620          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1621          ir_assignment *const then_assign =
1622             new(ctx) ir_assignment(then_deref, op[1]);
1623          stmt->then_instructions.push_tail(then_assign);
1624 
1625          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1626          ir_assignment *const else_assign =
1627             new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1628          stmt->else_instructions.push_tail(else_assign);
1629 
1630          result = new(ctx) ir_dereference_variable(tmp);
1631       }
1632       break;
1633    }
1634 
1635    case ast_logic_or: {
1636       exec_list rhs_instructions;
1637       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1638                                          "LHS", &error_emitted);
1639       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1640                                          "RHS", &error_emitted);
1641 
1642       if (rhs_instructions.is_empty()) {
1643          result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1644       } else {
1645          ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1646                                                        "or_tmp",
1647                                                        ir_var_temporary);
1648          instructions->push_tail(tmp);
1649 
1650          ir_if *const stmt = new(ctx) ir_if(op[0]);
1651          instructions->push_tail(stmt);
1652 
1653          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1654          ir_assignment *const then_assign =
1655             new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1656          stmt->then_instructions.push_tail(then_assign);
1657 
1658          stmt->else_instructions.append_list(&rhs_instructions);
1659          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1660          ir_assignment *const else_assign =
1661             new(ctx) ir_assignment(else_deref, op[1]);
1662          stmt->else_instructions.push_tail(else_assign);
1663 
1664          result = new(ctx) ir_dereference_variable(tmp);
1665       }
1666       break;
1667    }
1668 
1669    case ast_logic_xor:
1670       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1671        *
1672        *    "The logical binary operators and (&&), or ( | | ), and
1673        *     exclusive or (^^). They operate only on two Boolean
1674        *     expressions and result in a Boolean expression."
1675        */
1676       op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1677                                          &error_emitted);
1678       op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1679                                          &error_emitted);
1680 
1681       result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1682                                       op[0], op[1]);
1683       break;
1684 
1685    case ast_logic_not:
1686       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1687                                          "operand", &error_emitted);
1688 
1689       result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1690                                       op[0], NULL);
1691       break;
1692 
1693    case ast_mul_assign:
1694    case ast_div_assign:
1695    case ast_add_assign:
1696    case ast_sub_assign: {
1697       this->subexpressions[0]->set_is_lhs(true);
1698       op[0] = this->subexpressions[0]->hir(instructions, state);
1699       op[1] = this->subexpressions[1]->hir(instructions, state);
1700 
1701       orig_type = op[0]->type;
1702 
1703       /* Break out if operand types were not parsed successfully. */
1704       if ((op[0]->type == glsl_type::error_type ||
1705            op[1]->type == glsl_type::error_type)) {
1706          error_emitted = true;
1707          result = ir_rvalue::error_value(ctx);
1708          break;
1709       }
1710 
1711       type = arithmetic_result_type(op[0], op[1],
1712                                     (this->oper == ast_mul_assign),
1713                                     state, & loc);
1714 
1715       if (type != orig_type) {
1716          _mesa_glsl_error(& loc, state,
1717                           "could not implicitly convert "
1718                           "%s to %s", type->name, orig_type->name);
1719          type = glsl_type::error_type;
1720       }
1721 
1722       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1723                                                    op[0], op[1]);
1724 
1725       error_emitted =
1726          do_assignment(instructions, state,
1727                        this->subexpressions[0]->non_lvalue_description,
1728                        op[0]->clone(ctx, NULL), temp_rhs,
1729                        &result, needs_rvalue, false,
1730                        this->subexpressions[0]->get_location());
1731 
1732       /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1733        * explicitly test for this because none of the binary expression
1734        * operators allow array operands either.
1735        */
1736 
1737       break;
1738    }
1739 
1740    case ast_mod_assign: {
1741       this->subexpressions[0]->set_is_lhs(true);
1742       op[0] = this->subexpressions[0]->hir(instructions, state);
1743       op[1] = this->subexpressions[1]->hir(instructions, state);
1744 
1745       /* Break out if operand types were not parsed successfully. */
1746       if ((op[0]->type == glsl_type::error_type ||
1747            op[1]->type == glsl_type::error_type)) {
1748          error_emitted = true;
1749          result = ir_rvalue::error_value(ctx);
1750          break;
1751       }
1752 
1753       orig_type = op[0]->type;
1754       type = modulus_result_type(op[0], op[1], state, &loc);
1755 
1756       if (type != orig_type) {
1757          _mesa_glsl_error(& loc, state,
1758                           "could not implicitly convert "
1759                           "%s to %s", type->name, orig_type->name);
1760          type = glsl_type::error_type;
1761       }
1762 
1763       assert(operations[this->oper] == ir_binop_mod);
1764 
1765       ir_rvalue *temp_rhs;
1766       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1767                                         op[0], op[1]);
1768 
1769       error_emitted =
1770          do_assignment(instructions, state,
1771                        this->subexpressions[0]->non_lvalue_description,
1772                        op[0]->clone(ctx, NULL), temp_rhs,
1773                        &result, needs_rvalue, false,
1774                        this->subexpressions[0]->get_location());
1775       break;
1776    }
1777 
1778    case ast_ls_assign:
1779    case ast_rs_assign: {
1780       this->subexpressions[0]->set_is_lhs(true);
1781       op[0] = this->subexpressions[0]->hir(instructions, state);
1782       op[1] = this->subexpressions[1]->hir(instructions, state);
1783 
1784       /* Break out if operand types were not parsed successfully. */
1785       if ((op[0]->type == glsl_type::error_type ||
1786            op[1]->type == glsl_type::error_type)) {
1787          error_emitted = true;
1788          result = ir_rvalue::error_value(ctx);
1789          break;
1790       }
1791 
1792       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1793                                &loc);
1794       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1795                                                    type, op[0], op[1]);
1796       error_emitted =
1797          do_assignment(instructions, state,
1798                        this->subexpressions[0]->non_lvalue_description,
1799                        op[0]->clone(ctx, NULL), temp_rhs,
1800                        &result, needs_rvalue, false,
1801                        this->subexpressions[0]->get_location());
1802       break;
1803    }
1804 
1805    case ast_and_assign:
1806    case ast_xor_assign:
1807    case ast_or_assign: {
1808       this->subexpressions[0]->set_is_lhs(true);
1809       op[0] = this->subexpressions[0]->hir(instructions, state);
1810       op[1] = this->subexpressions[1]->hir(instructions, state);
1811 
1812       /* Break out if operand types were not parsed successfully. */
1813       if ((op[0]->type == glsl_type::error_type ||
1814            op[1]->type == glsl_type::error_type)) {
1815          error_emitted = true;
1816          result = ir_rvalue::error_value(ctx);
1817          break;
1818       }
1819 
1820       orig_type = op[0]->type;
1821       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1822 
1823       if (type != orig_type) {
1824          _mesa_glsl_error(& loc, state,
1825                           "could not implicitly convert "
1826                           "%s to %s", type->name, orig_type->name);
1827          type = glsl_type::error_type;
1828       }
1829 
1830       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1831                                                    type, op[0], op[1]);
1832       error_emitted =
1833          do_assignment(instructions, state,
1834                        this->subexpressions[0]->non_lvalue_description,
1835                        op[0]->clone(ctx, NULL), temp_rhs,
1836                        &result, needs_rvalue, false,
1837                        this->subexpressions[0]->get_location());
1838       break;
1839    }
1840 
1841    case ast_conditional: {
1842       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1843        *
1844        *    "The ternary selection operator (?:). It operates on three
1845        *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1846        *    first expression, which must result in a scalar Boolean."
1847        */
1848       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1849                                          "condition", &error_emitted);
1850 
1851       /* The :? operator is implemented by generating an anonymous temporary
1852        * followed by an if-statement.  The last instruction in each branch of
1853        * the if-statement assigns a value to the anonymous temporary.  This
1854        * temporary is the r-value of the expression.
1855        */
1856       exec_list then_instructions;
1857       exec_list else_instructions;
1858 
1859       op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1860       op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1861 
1862       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1863        *
1864        *     "The second and third expressions can be any type, as
1865        *     long their types match, or there is a conversion in
1866        *     Section 4.1.10 "Implicit Conversions" that can be applied
1867        *     to one of the expressions to make their types match. This
1868        *     resulting matching type is the type of the entire
1869        *     expression."
1870        */
1871       if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1872           && !apply_implicit_conversion(op[2]->type, op[1], state))
1873           || (op[1]->type != op[2]->type)) {
1874          YYLTYPE loc = this->subexpressions[1]->get_location();
1875 
1876          _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1877                           "operator must have matching types");
1878          error_emitted = true;
1879          type = glsl_type::error_type;
1880       } else {
1881          type = op[1]->type;
1882       }
1883 
1884       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1885        *
1886        *    "The second and third expressions must be the same type, but can
1887        *    be of any type other than an array."
1888        */
1889       if (type->is_array() &&
1890           !state->check_version(120, 300, &loc,
1891                                 "second and third operands of ?: operator "
1892                                 "cannot be arrays")) {
1893          error_emitted = true;
1894       }
1895 
1896       /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1897        *
1898        *  "Except for array indexing, structure member selection, and
1899        *   parentheses, opaque variables are not allowed to be operands in
1900        *   expressions; such use results in a compile-time error."
1901        */
1902       if (type->contains_opaque()) {
1903          if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1904             _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1905                              "operands of the ?: operator", type->name);
1906             error_emitted = true;
1907          }
1908       }
1909 
1910       ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1911 
1912       if (then_instructions.is_empty()
1913           && else_instructions.is_empty()
1914           && cond_val != NULL) {
1915          result = cond_val->value.b[0] ? op[1] : op[2];
1916       } else {
1917          /* The copy to conditional_tmp reads the whole array. */
1918          if (type->is_array()) {
1919             mark_whole_array_access(op[1]);
1920             mark_whole_array_access(op[2]);
1921          }
1922 
1923          ir_variable *const tmp =
1924             new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1925          instructions->push_tail(tmp);
1926 
1927          ir_if *const stmt = new(ctx) ir_if(op[0]);
1928          instructions->push_tail(stmt);
1929 
1930          then_instructions.move_nodes_to(& stmt->then_instructions);
1931          ir_dereference *const then_deref =
1932             new(ctx) ir_dereference_variable(tmp);
1933          ir_assignment *const then_assign =
1934             new(ctx) ir_assignment(then_deref, op[1]);
1935          stmt->then_instructions.push_tail(then_assign);
1936 
1937          else_instructions.move_nodes_to(& stmt->else_instructions);
1938          ir_dereference *const else_deref =
1939             new(ctx) ir_dereference_variable(tmp);
1940          ir_assignment *const else_assign =
1941             new(ctx) ir_assignment(else_deref, op[2]);
1942          stmt->else_instructions.push_tail(else_assign);
1943 
1944          result = new(ctx) ir_dereference_variable(tmp);
1945       }
1946       break;
1947    }
1948 
1949    case ast_pre_inc:
1950    case ast_pre_dec: {
1951       this->non_lvalue_description = (this->oper == ast_pre_inc)
1952          ? "pre-increment operation" : "pre-decrement operation";
1953 
1954       op[0] = this->subexpressions[0]->hir(instructions, state);
1955       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1956 
1957       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1958 
1959       ir_rvalue *temp_rhs;
1960       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1961                                         op[0], op[1]);
1962 
1963       error_emitted =
1964          do_assignment(instructions, state,
1965                        this->subexpressions[0]->non_lvalue_description,
1966                        op[0]->clone(ctx, NULL), temp_rhs,
1967                        &result, needs_rvalue, false,
1968                        this->subexpressions[0]->get_location());
1969       break;
1970    }
1971 
1972    case ast_post_inc:
1973    case ast_post_dec: {
1974       this->non_lvalue_description = (this->oper == ast_post_inc)
1975          ? "post-increment operation" : "post-decrement operation";
1976       op[0] = this->subexpressions[0]->hir(instructions, state);
1977       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1978 
1979       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1980 
1981       if (error_emitted) {
1982          result = ir_rvalue::error_value(ctx);
1983          break;
1984       }
1985 
1986       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1987 
1988       ir_rvalue *temp_rhs;
1989       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1990                                         op[0], op[1]);
1991 
1992       /* Get a temporary of a copy of the lvalue before it's modified.
1993        * This may get thrown away later.
1994        */
1995       result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1996 
1997       ir_rvalue *junk_rvalue;
1998       error_emitted =
1999          do_assignment(instructions, state,
2000                        this->subexpressions[0]->non_lvalue_description,
2001                        op[0]->clone(ctx, NULL), temp_rhs,
2002                        &junk_rvalue, false, false,
2003                        this->subexpressions[0]->get_location());
2004 
2005       break;
2006    }
2007 
2008    case ast_field_selection:
2009       result = _mesa_ast_field_selection_to_hir(this, instructions, state);
2010       break;
2011 
2012    case ast_array_index: {
2013       YYLTYPE index_loc = subexpressions[1]->get_location();
2014 
2015       /* Getting if an array is being used uninitialized is beyond what we get
2016        * from ir_value.data.assigned. Setting is_lhs as true would force to
2017        * not raise a uninitialized warning when using an array
2018        */
2019       subexpressions[0]->set_is_lhs(true);
2020       op[0] = subexpressions[0]->hir(instructions, state);
2021       op[1] = subexpressions[1]->hir(instructions, state);
2022 
2023       result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
2024                                             loc, index_loc);
2025 
2026       if (result->type->is_error())
2027          error_emitted = true;
2028 
2029       break;
2030    }
2031 
2032    case ast_unsized_array_dim:
2033       unreachable("ast_unsized_array_dim: Should never get here.");
2034 
2035    case ast_function_call:
2036       /* Should *NEVER* get here.  ast_function_call should always be handled
2037        * by ast_function_expression::hir.
2038        */
2039       unreachable("ast_function_call: handled elsewhere ");
2040 
2041    case ast_identifier: {
2042       /* ast_identifier can appear several places in a full abstract syntax
2043        * tree.  This particular use must be at location specified in the grammar
2044        * as 'variable_identifier'.
2045        */
2046       ir_variable *var =
2047          state->symbols->get_variable(this->primary_expression.identifier);
2048 
2049       if (var == NULL) {
2050          /* the identifier might be a subroutine name */
2051          char *sub_name;
2052          sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2053          var = state->symbols->get_variable(sub_name);
2054          ralloc_free(sub_name);
2055       }
2056 
2057       if (var != NULL) {
2058          var->data.used = true;
2059          result = new(ctx) ir_dereference_variable(var);
2060 
2061          if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2062              && !this->is_lhs
2063              && result->variable_referenced()->data.assigned != true
2064              && !is_gl_identifier(var->name)) {
2065             _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2066                                this->primary_expression.identifier);
2067          }
2068 
2069          if (var->is_fb_fetch_color_output()) {
2070             /* From the EXT_shader_framebuffer_fetch spec:
2071              *
2072              *   "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2073              *    enabled in addition, it's an error to use gl_LastFragData if it
2074              *    hasn't been explicitly redeclared with layout(noncoherent)."
2075              */
2076             if (var->data.memory_coherent && !state->EXT_shader_framebuffer_fetch_enable) {
2077                _mesa_glsl_error(&loc, state,
2078                                 "invalid use of framebuffer fetch output not "
2079                                 "qualified with layout(noncoherent)");
2080             }
2081          } else if (var->data.fb_fetch_output) {
2082             /* From the ARM_shader_framebuffer_fetch_depth_stencil spec:
2083              *
2084              *   "It is not legal for a fragment shader to read from gl_LastFragDepthARM
2085              *    and gl_LastFragStencilARM if the early_fragment_tests layout qualifier
2086              *    is specified. This will result in a compile-time error."
2087              */
2088             if (state->fs_early_fragment_tests) {
2089                _mesa_glsl_error(&loc, state,
2090                                 "invalid use of depth or stencil fetch "
2091                                 "with early fragment tests enabled");
2092             }
2093          }
2094 
2095       } else {
2096          _mesa_glsl_error(& loc, state, "`%s' undeclared",
2097                           this->primary_expression.identifier);
2098 
2099          result = ir_rvalue::error_value(ctx);
2100          error_emitted = true;
2101       }
2102       break;
2103    }
2104 
2105    case ast_int_constant:
2106       result = new(ctx) ir_constant(this->primary_expression.int_constant);
2107       break;
2108 
2109    case ast_uint_constant:
2110       result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2111       break;
2112 
2113    case ast_float_constant:
2114       result = new(ctx) ir_constant(this->primary_expression.float_constant);
2115       break;
2116 
2117    case ast_bool_constant:
2118       result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2119       break;
2120 
2121    case ast_double_constant:
2122       result = new(ctx) ir_constant(this->primary_expression.double_constant);
2123       break;
2124 
2125    case ast_uint64_constant:
2126       result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2127       break;
2128 
2129    case ast_int64_constant:
2130       result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2131       break;
2132 
2133    case ast_sequence: {
2134       /* It should not be possible to generate a sequence in the AST without
2135        * any expressions in it.
2136        */
2137       assert(!this->expressions.is_empty());
2138 
2139       /* The r-value of a sequence is the last expression in the sequence.  If
2140        * the other expressions in the sequence do not have side-effects (and
2141        * therefore add instructions to the instruction list), they get dropped
2142        * on the floor.
2143        */
2144       exec_node *previous_tail = NULL;
2145       YYLTYPE previous_operand_loc = loc;
2146 
2147       foreach_list_typed (ast_node, ast, link, &this->expressions) {
2148          /* If one of the operands of comma operator does not generate any
2149           * code, we want to emit a warning.  At each pass through the loop
2150           * previous_tail will point to the last instruction in the stream
2151           * *before* processing the previous operand.  Naturally,
2152           * instructions->get_tail_raw() will point to the last instruction in
2153           * the stream *after* processing the previous operand.  If the two
2154           * pointers match, then the previous operand had no effect.
2155           *
2156           * The warning behavior here differs slightly from GCC.  GCC will
2157           * only emit a warning if none of the left-hand operands have an
2158           * effect.  However, it will emit a warning for each.  I believe that
2159           * there are some cases in C (especially with GCC extensions) where
2160           * it is useful to have an intermediate step in a sequence have no
2161           * effect, but I don't think these cases exist in GLSL.  Either way,
2162           * it would be a giant hassle to replicate that behavior.
2163           */
2164          if (previous_tail == instructions->get_tail_raw()) {
2165             _mesa_glsl_warning(&previous_operand_loc, state,
2166                                "left-hand operand of comma expression has "
2167                                "no effect");
2168          }
2169 
2170          /* The tail is directly accessed instead of using the get_tail()
2171           * method for performance reasons.  get_tail() has extra code to
2172           * return NULL when the list is empty.  We don't care about that
2173           * here, so using get_tail_raw() is fine.
2174           */
2175          previous_tail = instructions->get_tail_raw();
2176          previous_operand_loc = ast->get_location();
2177 
2178          result = ast->hir(instructions, state);
2179       }
2180 
2181       /* Any errors should have already been emitted in the loop above.
2182        */
2183       error_emitted = true;
2184       break;
2185    }
2186    }
2187    type = NULL; /* use result->type, not type. */
2188    assert(error_emitted || (result != NULL || !needs_rvalue));
2189 
2190    if (result && result->type->is_error() && !error_emitted)
2191       _mesa_glsl_error(& loc, state, "type mismatch");
2192 
2193    return result;
2194 }
2195 
2196 bool
has_sequence_subexpression() const2197 ast_expression::has_sequence_subexpression() const
2198 {
2199    switch (this->oper) {
2200    case ast_plus:
2201    case ast_neg:
2202    case ast_bit_not:
2203    case ast_logic_not:
2204    case ast_pre_inc:
2205    case ast_pre_dec:
2206    case ast_post_inc:
2207    case ast_post_dec:
2208       return this->subexpressions[0]->has_sequence_subexpression();
2209 
2210    case ast_assign:
2211    case ast_add:
2212    case ast_sub:
2213    case ast_mul:
2214    case ast_div:
2215    case ast_mod:
2216    case ast_lshift:
2217    case ast_rshift:
2218    case ast_less:
2219    case ast_greater:
2220    case ast_lequal:
2221    case ast_gequal:
2222    case ast_nequal:
2223    case ast_equal:
2224    case ast_bit_and:
2225    case ast_bit_xor:
2226    case ast_bit_or:
2227    case ast_logic_and:
2228    case ast_logic_or:
2229    case ast_logic_xor:
2230    case ast_array_index:
2231    case ast_mul_assign:
2232    case ast_div_assign:
2233    case ast_add_assign:
2234    case ast_sub_assign:
2235    case ast_mod_assign:
2236    case ast_ls_assign:
2237    case ast_rs_assign:
2238    case ast_and_assign:
2239    case ast_xor_assign:
2240    case ast_or_assign:
2241       return this->subexpressions[0]->has_sequence_subexpression() ||
2242              this->subexpressions[1]->has_sequence_subexpression();
2243 
2244    case ast_conditional:
2245       return this->subexpressions[0]->has_sequence_subexpression() ||
2246              this->subexpressions[1]->has_sequence_subexpression() ||
2247              this->subexpressions[2]->has_sequence_subexpression();
2248 
2249    case ast_sequence:
2250       return true;
2251 
2252    case ast_field_selection:
2253    case ast_identifier:
2254    case ast_int_constant:
2255    case ast_uint_constant:
2256    case ast_float_constant:
2257    case ast_bool_constant:
2258    case ast_double_constant:
2259    case ast_int64_constant:
2260    case ast_uint64_constant:
2261       return false;
2262 
2263    case ast_aggregate:
2264       return false;
2265 
2266    case ast_function_call:
2267       unreachable("should be handled by ast_function_expression::hir");
2268 
2269    case ast_unsized_array_dim:
2270       unreachable("ast_unsized_array_dim: Should never get here.");
2271    }
2272 
2273    return false;
2274 }
2275 
2276 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2277 ast_expression_statement::hir(exec_list *instructions,
2278                               struct _mesa_glsl_parse_state *state)
2279 {
2280    /* It is possible to have expression statements that don't have an
2281     * expression.  This is the solitary semicolon:
2282     *
2283     * for (i = 0; i < 5; i++)
2284     *     ;
2285     *
2286     * In this case the expression will be NULL.  Test for NULL and don't do
2287     * anything in that case.
2288     */
2289    if (expression != NULL)
2290       expression->hir_no_rvalue(instructions, state);
2291 
2292    /* Statements do not have r-values.
2293     */
2294    return NULL;
2295 }
2296 
2297 
2298 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2299 ast_compound_statement::hir(exec_list *instructions,
2300                             struct _mesa_glsl_parse_state *state)
2301 {
2302    if (new_scope)
2303       state->symbols->push_scope();
2304 
2305    foreach_list_typed (ast_node, ast, link, &this->statements)
2306       ast->hir(instructions, state);
2307 
2308    if (new_scope)
2309       state->symbols->pop_scope();
2310 
2311    /* Compound statements do not have r-values.
2312     */
2313    return NULL;
2314 }
2315 
2316 /**
2317  * Evaluate the given exec_node (which should be an ast_node representing
2318  * a single array dimension) and return its integer value.
2319  */
2320 static unsigned
process_array_size(exec_node * node,struct _mesa_glsl_parse_state * state)2321 process_array_size(exec_node *node,
2322                    struct _mesa_glsl_parse_state *state)
2323 {
2324    void *mem_ctx = state;
2325 
2326    exec_list dummy_instructions;
2327 
2328    ast_node *array_size = exec_node_data(ast_node, node, link);
2329 
2330    /**
2331     * Dimensions other than the outermost dimension can by unsized if they
2332     * are immediately sized by a constructor or initializer.
2333     */
2334    if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2335       return 0;
2336 
2337    ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2338    YYLTYPE loc = array_size->get_location();
2339 
2340    if (ir == NULL) {
2341       _mesa_glsl_error(& loc, state,
2342                        "array size could not be resolved");
2343       return 0;
2344    }
2345 
2346    if (!ir->type->is_integer_32()) {
2347       _mesa_glsl_error(& loc, state,
2348                        "array size must be integer type");
2349       return 0;
2350    }
2351 
2352    if (!ir->type->is_scalar()) {
2353       _mesa_glsl_error(& loc, state,
2354                        "array size must be scalar type");
2355       return 0;
2356    }
2357 
2358    ir_constant *const size = ir->constant_expression_value(mem_ctx);
2359    if (size == NULL ||
2360        (state->is_version(120, 300) &&
2361         array_size->has_sequence_subexpression())) {
2362       _mesa_glsl_error(& loc, state, "array size must be a "
2363                        "constant valued expression");
2364       return 0;
2365    }
2366 
2367    if (size->value.i[0] <= 0) {
2368       _mesa_glsl_error(& loc, state, "array size must be > 0");
2369       return 0;
2370    }
2371 
2372    assert(size->type == ir->type);
2373 
2374    /* If the array size is const (and we've verified that
2375     * it is) then no instructions should have been emitted
2376     * when we converted it to HIR. If they were emitted,
2377     * then either the array size isn't const after all, or
2378     * we are emitting unnecessary instructions.
2379     */
2380    assert(dummy_instructions.is_empty());
2381 
2382    return size->value.u[0];
2383 }
2384 
2385 static const glsl_type *
process_array_type(YYLTYPE * loc,const glsl_type * base,ast_array_specifier * array_specifier,struct _mesa_glsl_parse_state * state)2386 process_array_type(YYLTYPE *loc, const glsl_type *base,
2387                    ast_array_specifier *array_specifier,
2388                    struct _mesa_glsl_parse_state *state)
2389 {
2390    const glsl_type *array_type = base;
2391 
2392    if (array_specifier != NULL) {
2393       if (base->is_array()) {
2394 
2395          /* From page 19 (page 25) of the GLSL 1.20 spec:
2396           *
2397           * "Only one-dimensional arrays may be declared."
2398           */
2399          if (!state->check_arrays_of_arrays_allowed(loc)) {
2400             return glsl_type::error_type;
2401          }
2402       }
2403 
2404       for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2405            !node->is_head_sentinel(); node = node->prev) {
2406          unsigned array_size = process_array_size(node, state);
2407          array_type = glsl_type::get_array_instance(array_type, array_size);
2408       }
2409    }
2410 
2411    return array_type;
2412 }
2413 
2414 static bool
precision_qualifier_allowed(const glsl_type * type)2415 precision_qualifier_allowed(const glsl_type *type)
2416 {
2417    /* Precision qualifiers apply to floating point, integer and opaque
2418     * types.
2419     *
2420     * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2421     *    "Any floating point or any integer declaration can have the type
2422     *    preceded by one of these precision qualifiers [...] Literal
2423     *    constants do not have precision qualifiers. Neither do Boolean
2424     *    variables.
2425     *
2426     * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2427     * spec also says:
2428     *
2429     *     "Precision qualifiers are added for code portability with OpenGL
2430     *     ES, not for functionality. They have the same syntax as in OpenGL
2431     *     ES."
2432     *
2433     * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2434     *
2435     *     "uniform lowp sampler2D sampler;
2436     *     highp vec2 coord;
2437     *     ...
2438     *     lowp vec4 col = texture2D (sampler, coord);
2439     *                                            // texture2D returns lowp"
2440     *
2441     * From this, we infer that GLSL 1.30 (and later) should allow precision
2442     * qualifiers on sampler types just like float and integer types.
2443     */
2444    const glsl_type *const t = type->without_array();
2445 
2446    return (t->is_float() || t->is_integer_32() || t->contains_opaque()) &&
2447           !t->is_struct();
2448 }
2449 
2450 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2451 ast_type_specifier::glsl_type(const char **name,
2452                               struct _mesa_glsl_parse_state *state) const
2453 {
2454    const struct glsl_type *type;
2455 
2456    if (this->type != NULL)
2457       type = this->type;
2458    else if (structure)
2459       type = structure->type;
2460    else
2461       type = state->symbols->get_type(this->type_name);
2462    *name = this->type_name;
2463 
2464    YYLTYPE loc = this->get_location();
2465    type = process_array_type(&loc, type, this->array_specifier, state);
2466 
2467    return type;
2468 }
2469 
2470 /**
2471  * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2472  *
2473  * "The precision statement
2474  *
2475  *    precision precision-qualifier type;
2476  *
2477  *  can be used to establish a default precision qualifier. The type field can
2478  *  be either int or float or any of the sampler types, (...) If type is float,
2479  *  the directive applies to non-precision-qualified floating point type
2480  *  (scalar, vector, and matrix) declarations. If type is int, the directive
2481  *  applies to all non-precision-qualified integer type (scalar, vector, signed,
2482  *  and unsigned) declarations."
2483  *
2484  * We use the symbol table to keep the values of the default precisions for
2485  * each 'type' in each scope and we use the 'type' string from the precision
2486  * statement as key in the symbol table. When we want to retrieve the default
2487  * precision associated with a given glsl_type we need to know the type string
2488  * associated with it. This is what this function returns.
2489  */
2490 static const char *
get_type_name_for_precision_qualifier(const glsl_type * type)2491 get_type_name_for_precision_qualifier(const glsl_type *type)
2492 {
2493    switch (type->base_type) {
2494    case GLSL_TYPE_FLOAT:
2495       return "float";
2496    case GLSL_TYPE_UINT:
2497    case GLSL_TYPE_INT:
2498       return "int";
2499    case GLSL_TYPE_ATOMIC_UINT:
2500       return "atomic_uint";
2501    case GLSL_TYPE_IMAGE:
2502    FALLTHROUGH;
2503    case GLSL_TYPE_SAMPLER: {
2504       const unsigned type_idx =
2505          type->sampler_array + 2 * type->sampler_shadow;
2506       const unsigned offset = type->is_sampler() ? 0 : 4;
2507       assert(type_idx < 4);
2508       switch (type->sampled_type) {
2509       case GLSL_TYPE_FLOAT:
2510          switch (type->sampler_dimensionality) {
2511          case GLSL_SAMPLER_DIM_1D: {
2512             assert(type->is_sampler());
2513             static const char *const names[4] = {
2514               "sampler1D", "sampler1DArray",
2515               "sampler1DShadow", "sampler1DArrayShadow"
2516             };
2517             return names[type_idx];
2518          }
2519          case GLSL_SAMPLER_DIM_2D: {
2520             static const char *const names[8] = {
2521               "sampler2D", "sampler2DArray",
2522               "sampler2DShadow", "sampler2DArrayShadow",
2523               "image2D", "image2DArray", NULL, NULL
2524             };
2525             return names[offset + type_idx];
2526          }
2527          case GLSL_SAMPLER_DIM_3D: {
2528             static const char *const names[8] = {
2529               "sampler3D", NULL, NULL, NULL,
2530               "image3D", NULL, NULL, NULL
2531             };
2532             return names[offset + type_idx];
2533          }
2534          case GLSL_SAMPLER_DIM_CUBE: {
2535             static const char *const names[8] = {
2536               "samplerCube", "samplerCubeArray",
2537               "samplerCubeShadow", "samplerCubeArrayShadow",
2538               "imageCube", NULL, NULL, NULL
2539             };
2540             return names[offset + type_idx];
2541          }
2542          case GLSL_SAMPLER_DIM_MS: {
2543             assert(type->is_sampler());
2544             static const char *const names[4] = {
2545               "sampler2DMS", "sampler2DMSArray", NULL, NULL
2546             };
2547             return names[type_idx];
2548          }
2549          case GLSL_SAMPLER_DIM_RECT: {
2550             assert(type->is_sampler());
2551             static const char *const names[4] = {
2552               "samplerRect", NULL, "samplerRectShadow", NULL
2553             };
2554             return names[type_idx];
2555          }
2556          case GLSL_SAMPLER_DIM_BUF: {
2557             static const char *const names[8] = {
2558               "samplerBuffer", NULL, NULL, NULL,
2559               "imageBuffer", NULL, NULL, NULL
2560             };
2561             return names[offset + type_idx];
2562          }
2563          case GLSL_SAMPLER_DIM_EXTERNAL: {
2564             assert(type->is_sampler());
2565             static const char *const names[4] = {
2566               "samplerExternalOES", NULL, NULL, NULL
2567             };
2568             return names[type_idx];
2569          }
2570          default:
2571             unreachable("Unsupported sampler/image dimensionality");
2572          } /* sampler/image float dimensionality */
2573          break;
2574       case GLSL_TYPE_INT:
2575          switch (type->sampler_dimensionality) {
2576          case GLSL_SAMPLER_DIM_1D: {
2577             assert(type->is_sampler());
2578             static const char *const names[4] = {
2579               "isampler1D", "isampler1DArray", NULL, NULL
2580             };
2581             return names[type_idx];
2582          }
2583          case GLSL_SAMPLER_DIM_2D: {
2584             static const char *const names[8] = {
2585               "isampler2D", "isampler2DArray", NULL, NULL,
2586               "iimage2D", "iimage2DArray", NULL, NULL
2587             };
2588             return names[offset + type_idx];
2589          }
2590          case GLSL_SAMPLER_DIM_3D: {
2591             static const char *const names[8] = {
2592               "isampler3D", NULL, NULL, NULL,
2593               "iimage3D", NULL, NULL, NULL
2594             };
2595             return names[offset + type_idx];
2596          }
2597          case GLSL_SAMPLER_DIM_CUBE: {
2598             static const char *const names[8] = {
2599               "isamplerCube", "isamplerCubeArray", NULL, NULL,
2600               "iimageCube", NULL, NULL, NULL
2601             };
2602             return names[offset + type_idx];
2603          }
2604          case GLSL_SAMPLER_DIM_MS: {
2605             assert(type->is_sampler());
2606             static const char *const names[4] = {
2607               "isampler2DMS", "isampler2DMSArray", NULL, NULL
2608             };
2609             return names[type_idx];
2610          }
2611          case GLSL_SAMPLER_DIM_RECT: {
2612             assert(type->is_sampler());
2613             static const char *const names[4] = {
2614               "isamplerRect", NULL, "isamplerRectShadow", NULL
2615             };
2616             return names[type_idx];
2617          }
2618          case GLSL_SAMPLER_DIM_BUF: {
2619             static const char *const names[8] = {
2620               "isamplerBuffer", NULL, NULL, NULL,
2621               "iimageBuffer", NULL, NULL, NULL
2622             };
2623             return names[offset + type_idx];
2624          }
2625          default:
2626             unreachable("Unsupported isampler/iimage dimensionality");
2627          } /* sampler/image int dimensionality */
2628          break;
2629       case GLSL_TYPE_UINT:
2630          switch (type->sampler_dimensionality) {
2631          case GLSL_SAMPLER_DIM_1D: {
2632             assert(type->is_sampler());
2633             static const char *const names[4] = {
2634               "usampler1D", "usampler1DArray", NULL, NULL
2635             };
2636             return names[type_idx];
2637          }
2638          case GLSL_SAMPLER_DIM_2D: {
2639             static const char *const names[8] = {
2640               "usampler2D", "usampler2DArray", NULL, NULL,
2641               "uimage2D", "uimage2DArray", NULL, NULL
2642             };
2643             return names[offset + type_idx];
2644          }
2645          case GLSL_SAMPLER_DIM_3D: {
2646             static const char *const names[8] = {
2647               "usampler3D", NULL, NULL, NULL,
2648               "uimage3D", NULL, NULL, NULL
2649             };
2650             return names[offset + type_idx];
2651          }
2652          case GLSL_SAMPLER_DIM_CUBE: {
2653             static const char *const names[8] = {
2654               "usamplerCube", "usamplerCubeArray", NULL, NULL,
2655               "uimageCube", NULL, NULL, NULL
2656             };
2657             return names[offset + type_idx];
2658          }
2659          case GLSL_SAMPLER_DIM_MS: {
2660             assert(type->is_sampler());
2661             static const char *const names[4] = {
2662               "usampler2DMS", "usampler2DMSArray", NULL, NULL
2663             };
2664             return names[type_idx];
2665          }
2666          case GLSL_SAMPLER_DIM_RECT: {
2667             assert(type->is_sampler());
2668             static const char *const names[4] = {
2669               "usamplerRect", NULL, "usamplerRectShadow", NULL
2670             };
2671             return names[type_idx];
2672          }
2673          case GLSL_SAMPLER_DIM_BUF: {
2674             static const char *const names[8] = {
2675               "usamplerBuffer", NULL, NULL, NULL,
2676               "uimageBuffer", NULL, NULL, NULL
2677             };
2678             return names[offset + type_idx];
2679          }
2680          default:
2681             unreachable("Unsupported usampler/uimage dimensionality");
2682          } /* sampler/image uint dimensionality */
2683          break;
2684       default:
2685          unreachable("Unsupported sampler/image type");
2686       } /* sampler/image type */
2687       break;
2688    } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2689    break;
2690    default:
2691       unreachable("Unsupported type");
2692    } /* base type */
2693 }
2694 
2695 static unsigned
select_gles_precision(unsigned qual_precision,const glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)2696 select_gles_precision(unsigned qual_precision,
2697                       const glsl_type *type,
2698                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2699 {
2700    /* Precision qualifiers do not have any meaning in Desktop GLSL.
2701     * In GLES we take the precision from the type qualifier if present,
2702     * otherwise, if the type of the variable allows precision qualifiers at
2703     * all, we look for the default precision qualifier for that type in the
2704     * current scope.
2705     */
2706    assert(state->es_shader);
2707 
2708    unsigned precision = GLSL_PRECISION_NONE;
2709    if (qual_precision) {
2710       precision = qual_precision;
2711    } else if (precision_qualifier_allowed(type)) {
2712       const char *type_name =
2713          get_type_name_for_precision_qualifier(type->without_array());
2714       assert(type_name != NULL);
2715 
2716       precision =
2717          state->symbols->get_default_precision_qualifier(type_name);
2718       if (precision == ast_precision_none) {
2719          _mesa_glsl_error(loc, state,
2720                           "No precision specified in this scope for type `%s'",
2721                           type->name);
2722       }
2723    }
2724 
2725 
2726    /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2727     *
2728     *    "The default precision of all atomic types is highp. It is an error to
2729     *    declare an atomic type with a different precision or to specify the
2730     *    default precision for an atomic type to be lowp or mediump."
2731     */
2732    if (type->is_atomic_uint() && precision != ast_precision_high) {
2733       _mesa_glsl_error(loc, state,
2734                        "atomic_uint can only have highp precision qualifier");
2735    }
2736 
2737    return precision;
2738 }
2739 
2740 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2741 ast_fully_specified_type::glsl_type(const char **name,
2742                                     struct _mesa_glsl_parse_state *state) const
2743 {
2744    return this->specifier->glsl_type(name, state);
2745 }
2746 
2747 /**
2748  * Determine whether a toplevel variable declaration declares a varying.  This
2749  * function operates by examining the variable's mode and the shader target,
2750  * so it correctly identifies linkage variables regardless of whether they are
2751  * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2752  *
2753  * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2754  * this function will produce undefined results.
2755  */
2756 static bool
is_varying_var(ir_variable * var,gl_shader_stage target)2757 is_varying_var(ir_variable *var, gl_shader_stage target)
2758 {
2759    switch (target) {
2760    case MESA_SHADER_VERTEX:
2761       return var->data.mode == ir_var_shader_out;
2762    case MESA_SHADER_FRAGMENT:
2763       return var->data.mode == ir_var_shader_in ||
2764              (var->data.mode == ir_var_system_value &&
2765               var->data.location == SYSTEM_VALUE_FRAG_COORD);
2766    default:
2767       return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2768    }
2769 }
2770 
2771 static bool
is_allowed_invariant(ir_variable * var,struct _mesa_glsl_parse_state * state)2772 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2773 {
2774    if (is_varying_var(var, state->stage))
2775       return true;
2776 
2777    /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2778     * "Only variables output from a vertex shader can be candidates
2779     * for invariance".
2780     */
2781    if (!state->is_version(130, 100))
2782       return false;
2783 
2784    /*
2785     * Later specs remove this language - so allowed invariant
2786     * on fragment shader outputs as well.
2787     */
2788    if (state->stage == MESA_SHADER_FRAGMENT &&
2789        var->data.mode == ir_var_shader_out)
2790       return true;
2791    return false;
2792 }
2793 
2794 static void
validate_component_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,unsigned qual_component)2795 validate_component_layout_for_type(struct _mesa_glsl_parse_state *state,
2796                                    YYLTYPE *loc, const glsl_type *type,
2797                                    unsigned qual_component)
2798 {
2799    type = type->without_array();
2800    unsigned components = type->component_slots();
2801 
2802    if (type->is_matrix() || type->is_struct()) {
2803        _mesa_glsl_error(loc, state, "component layout qualifier "
2804                         "cannot be applied to a matrix, a structure, "
2805                         "a block, or an array containing any of these.");
2806    } else if (components > 4 && type->is_64bit()) {
2807       _mesa_glsl_error(loc, state, "component layout qualifier "
2808                        "cannot be applied to dvec%u.",
2809                         components / 2);
2810    } else if (qual_component != 0 && (qual_component + components - 1) > 3) {
2811       _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
2812                        (qual_component + components - 1));
2813    } else if (qual_component == 1 && type->is_64bit()) {
2814       /* We don't bother checking for 3 as it should be caught by the
2815        * overflow check above.
2816        */
2817       _mesa_glsl_error(loc, state, "doubles cannot begin at component 1 or 3");
2818    }
2819 }
2820 
2821 /**
2822  * Matrix layout qualifiers are only allowed on certain types
2823  */
2824 static void
validate_matrix_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,ir_variable * var)2825 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2826                                 YYLTYPE *loc,
2827                                 const glsl_type *type,
2828                                 ir_variable *var)
2829 {
2830    if (var && !var->is_in_buffer_block()) {
2831       /* Layout qualifiers may only apply to interface blocks and fields in
2832        * them.
2833        */
2834       _mesa_glsl_error(loc, state,
2835                        "uniform block layout qualifiers row_major and "
2836                        "column_major may not be applied to variables "
2837                        "outside of uniform blocks");
2838    } else if (!type->without_array()->is_matrix()) {
2839       /* The OpenGL ES 3.0 conformance tests did not originally allow
2840        * matrix layout qualifiers on non-matrices.  However, the OpenGL
2841        * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2842        * amended to specifically allow these layouts on all types.  Emit
2843        * a warning so that people know their code may not be portable.
2844        */
2845       _mesa_glsl_warning(loc, state,
2846                          "uniform block layout qualifiers row_major and "
2847                          "column_major applied to non-matrix types may "
2848                          "be rejected by older compilers");
2849    }
2850 }
2851 
2852 static bool
validate_xfb_buffer_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned xfb_buffer)2853 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2854                               struct _mesa_glsl_parse_state *state,
2855                               unsigned xfb_buffer) {
2856    if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2857       _mesa_glsl_error(loc, state,
2858                        "invalid xfb_buffer specified %d is larger than "
2859                        "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2860                        xfb_buffer,
2861                        state->Const.MaxTransformFeedbackBuffers - 1);
2862       return false;
2863    }
2864 
2865    return true;
2866 }
2867 
2868 /* From the ARB_enhanced_layouts spec:
2869  *
2870  *    "Variables and block members qualified with *xfb_offset* can be
2871  *    scalars, vectors, matrices, structures, and (sized) arrays of these.
2872  *    The offset must be a multiple of the size of the first component of
2873  *    the first qualified variable or block member, or a compile-time error
2874  *    results.  Further, if applied to an aggregate containing a double,
2875  *    the offset must also be a multiple of 8, and the space taken in the
2876  *    buffer will be a multiple of 8.
2877  */
2878 static bool
validate_xfb_offset_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,int xfb_offset,const glsl_type * type,unsigned component_size)2879 validate_xfb_offset_qualifier(YYLTYPE *loc,
2880                               struct _mesa_glsl_parse_state *state,
2881                               int xfb_offset, const glsl_type *type,
2882                               unsigned component_size) {
2883   const glsl_type *t_without_array = type->without_array();
2884 
2885    if (xfb_offset != -1 && type->is_unsized_array()) {
2886       _mesa_glsl_error(loc, state,
2887                        "xfb_offset can't be used with unsized arrays.");
2888       return false;
2889    }
2890 
2891    /* Make sure nested structs don't contain unsized arrays, and validate
2892     * any xfb_offsets on interface members.
2893     */
2894    if (t_without_array->is_struct() || t_without_array->is_interface())
2895       for (unsigned int i = 0; i < t_without_array->length; i++) {
2896          const glsl_type *member_t = t_without_array->fields.structure[i].type;
2897 
2898          /* When the interface block doesn't have an xfb_offset qualifier then
2899           * we apply the component size rules at the member level.
2900           */
2901          if (xfb_offset == -1)
2902             component_size = member_t->contains_double() ? 8 : 4;
2903 
2904          int xfb_offset = t_without_array->fields.structure[i].offset;
2905          validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2906                                        component_size);
2907       }
2908 
2909   /* Nested structs or interface block without offset may not have had an
2910    * offset applied yet so return.
2911    */
2912    if (xfb_offset == -1) {
2913      return true;
2914    }
2915 
2916    if (xfb_offset % component_size) {
2917       _mesa_glsl_error(loc, state,
2918                        "invalid qualifier xfb_offset=%d must be a multiple "
2919                        "of the first component size of the first qualified "
2920                        "variable or block member. Or double if an aggregate "
2921                        "that contains a double (%d).",
2922                        xfb_offset, component_size);
2923       return false;
2924    }
2925 
2926    return true;
2927 }
2928 
2929 static bool
validate_stream_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned stream)2930 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2931                           unsigned stream)
2932 {
2933    if (stream >= state->consts->MaxVertexStreams) {
2934       _mesa_glsl_error(loc, state,
2935                        "invalid stream specified %d is larger than "
2936                        "MAX_VERTEX_STREAMS - 1 (%d).",
2937                        stream, state->consts->MaxVertexStreams - 1);
2938       return false;
2939    }
2940 
2941    return true;
2942 }
2943 
2944 static void
apply_explicit_binding(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,ir_variable * var,const glsl_type * type,const ast_type_qualifier * qual)2945 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2946                        YYLTYPE *loc,
2947                        ir_variable *var,
2948                        const glsl_type *type,
2949                        const ast_type_qualifier *qual)
2950 {
2951    if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2952       _mesa_glsl_error(loc, state,
2953                        "the \"binding\" qualifier only applies to uniforms and "
2954                        "shader storage buffer objects");
2955       return;
2956    }
2957 
2958    unsigned qual_binding;
2959    if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2960                                    &qual_binding)) {
2961       return;
2962    }
2963 
2964    const struct gl_constants *consts = state->consts;
2965    unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2966    unsigned max_index = qual_binding + elements - 1;
2967    const glsl_type *base_type = type->without_array();
2968 
2969    if (base_type->is_interface()) {
2970       /* UBOs.  From page 60 of the GLSL 4.20 specification:
2971        * "If the binding point for any uniform block instance is less than zero,
2972        *  or greater than or equal to the implementation-dependent maximum
2973        *  number of uniform buffer bindings, a compilation error will occur.
2974        *  When the binding identifier is used with a uniform block instanced as
2975        *  an array of size N, all elements of the array from binding through
2976        *  binding + N – 1 must be within this range."
2977        *
2978        * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2979        */
2980       if (qual->flags.q.uniform &&
2981          max_index >= consts->MaxUniformBufferBindings) {
2982          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2983                           "the maximum number of UBO binding points (%d)",
2984                           qual_binding, elements,
2985                           consts->MaxUniformBufferBindings);
2986          return;
2987       }
2988 
2989       /* SSBOs. From page 67 of the GLSL 4.30 specification:
2990        * "If the binding point for any uniform or shader storage block instance
2991        *  is less than zero, or greater than or equal to the
2992        *  implementation-dependent maximum number of uniform buffer bindings, a
2993        *  compile-time error will occur. When the binding identifier is used
2994        *  with a uniform or shader storage block instanced as an array of size
2995        *  N, all elements of the array from binding through binding + N – 1 must
2996        *  be within this range."
2997        */
2998       if (qual->flags.q.buffer &&
2999          max_index >= consts->MaxShaderStorageBufferBindings) {
3000          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
3001                           "the maximum number of SSBO binding points (%d)",
3002                           qual_binding, elements,
3003                           consts->MaxShaderStorageBufferBindings);
3004          return;
3005       }
3006    } else if (base_type->is_sampler()) {
3007       /* Samplers.  From page 63 of the GLSL 4.20 specification:
3008        * "If the binding is less than zero, or greater than or equal to the
3009        *  implementation-dependent maximum supported number of units, a
3010        *  compilation error will occur. When the binding identifier is used
3011        *  with an array of size N, all elements of the array from binding
3012        *  through binding + N - 1 must be within this range."
3013        */
3014       unsigned limit = consts->MaxCombinedTextureImageUnits;
3015 
3016       if (max_index >= limit) {
3017          _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
3018                           "exceeds the maximum number of texture image units "
3019                           "(%u)", qual_binding, elements, limit);
3020 
3021          return;
3022       }
3023    } else if (base_type->contains_atomic()) {
3024       assert(consts->MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
3025       if (qual_binding >= consts->MaxAtomicBufferBindings) {
3026          _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
3027                           "maximum number of atomic counter buffer bindings "
3028                           "(%u)", qual_binding,
3029                           consts->MaxAtomicBufferBindings);
3030 
3031          return;
3032       }
3033    } else if ((state->is_version(420, 310) ||
3034                state->ARB_shading_language_420pack_enable) &&
3035               base_type->is_image()) {
3036       assert(consts->MaxImageUnits <= MAX_IMAGE_UNITS);
3037       if (max_index >= consts->MaxImageUnits) {
3038          _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
3039                           "maximum number of image units (%d)", max_index,
3040                           consts->MaxImageUnits);
3041          return;
3042       }
3043 
3044    } else {
3045       _mesa_glsl_error(loc, state,
3046                        "the \"binding\" qualifier only applies to uniform "
3047                        "blocks, storage blocks, opaque variables, or arrays "
3048                        "thereof");
3049       return;
3050    }
3051 
3052    var->data.explicit_binding = true;
3053    var->data.binding = qual_binding;
3054 
3055    return;
3056 }
3057 
3058 static void
validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct glsl_type * var_type,ir_variable_mode mode)3059 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
3060                                            YYLTYPE *loc,
3061                                            const glsl_interp_mode interpolation,
3062                                            const struct glsl_type *var_type,
3063                                            ir_variable_mode mode)
3064 {
3065    if (state->stage != MESA_SHADER_FRAGMENT ||
3066        interpolation == INTERP_MODE_FLAT ||
3067        mode != ir_var_shader_in)
3068       return;
3069 
3070    /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
3071     * so must integer vertex outputs.
3072     *
3073     * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3074     *    "Fragment shader inputs that are signed or unsigned integers or
3075     *    integer vectors must be qualified with the interpolation qualifier
3076     *    flat."
3077     *
3078     * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3079     *    "Fragment shader inputs that are, or contain, signed or unsigned
3080     *    integers or integer vectors must be qualified with the
3081     *    interpolation qualifier flat."
3082     *
3083     * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3084     *    "Vertex shader outputs that are, or contain, signed or unsigned
3085     *    integers or integer vectors must be qualified with the
3086     *    interpolation qualifier flat."
3087     *
3088     * Note that prior to GLSL 1.50, this requirement applied to vertex
3089     * outputs rather than fragment inputs.  That creates problems in the
3090     * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3091     * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
3092     * apply the restriction to both vertex outputs and fragment inputs.
3093     *
3094     * Note also that the desktop GLSL specs are missing the text "or
3095     * contain"; this is presumably an oversight, since there is no
3096     * reasonable way to interpolate a fragment shader input that contains
3097     * an integer. See Khronos bug #15671.
3098     */
3099    if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3100        && var_type->contains_integer()) {
3101       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3102                        "an integer, then it must be qualified with 'flat'");
3103    }
3104 
3105    /* Double fragment inputs must be qualified with 'flat'.
3106     *
3107     * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3108     *    "This extension does not support interpolation of double-precision
3109     *    values; doubles used as fragment shader inputs must be qualified as
3110     *    "flat"."
3111     *
3112     * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3113     *    "Fragment shader inputs that are signed or unsigned integers, integer
3114     *    vectors, or any double-precision floating-point type must be
3115     *    qualified with the interpolation qualifier flat."
3116     *
3117     * Note that the GLSL specs are missing the text "or contain"; this is
3118     * presumably an oversight. See Khronos bug #15671.
3119     *
3120     * The 'double' type does not exist in GLSL ES so far.
3121     */
3122    if (state->has_double()
3123        && var_type->contains_double()) {
3124       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3125                        "a double, then it must be qualified with 'flat'");
3126    }
3127 
3128    /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3129     *
3130     * From section 4.3.4 of the ARB_bindless_texture spec:
3131     *
3132     *    "(modify last paragraph, p. 35, allowing samplers and images as
3133     *     fragment shader inputs) ... Fragment inputs can only be signed and
3134     *     unsigned integers and integer vectors, floating point scalars,
3135     *     floating-point vectors, matrices, sampler and image types, or arrays
3136     *     or structures of these.  Fragment shader inputs that are signed or
3137     *     unsigned integers, integer vectors, or any double-precision floating-
3138     *     point type, or any sampler or image type must be qualified with the
3139     *     interpolation qualifier "flat"."
3140     */
3141    if (state->has_bindless()
3142        && (var_type->contains_sampler() || var_type->contains_image())) {
3143       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3144                        "a bindless sampler (or image), then it must be "
3145                        "qualified with 'flat'");
3146    }
3147 }
3148 
3149 static void
validate_interpolation_qualifier(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode)3150 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3151                                  YYLTYPE *loc,
3152                                  const glsl_interp_mode interpolation,
3153                                  const struct ast_type_qualifier *qual,
3154                                  const struct glsl_type *var_type,
3155                                  ir_variable_mode mode)
3156 {
3157    /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3158     * not to vertex shader inputs nor fragment shader outputs.
3159     *
3160     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3161     *    "Outputs from a vertex shader (out) and inputs to a fragment
3162     *    shader (in) can be further qualified with one or more of these
3163     *    interpolation qualifiers"
3164     *    ...
3165     *    "These interpolation qualifiers may only precede the qualifiers in,
3166     *    centroid in, out, or centroid out in a declaration. They do not apply
3167     *    to the deprecated storage qualifiers varying or centroid
3168     *    varying. They also do not apply to inputs into a vertex shader or
3169     *    outputs from a fragment shader."
3170     *
3171     * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3172     *    "Outputs from a shader (out) and inputs to a shader (in) can be
3173     *    further qualified with one of these interpolation qualifiers."
3174     *    ...
3175     *    "These interpolation qualifiers may only precede the qualifiers
3176     *    in, centroid in, out, or centroid out in a declaration. They do
3177     *    not apply to inputs into a vertex shader or outputs from a
3178     *    fragment shader."
3179     */
3180    if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3181        && interpolation != INTERP_MODE_NONE) {
3182       const char *i = interpolation_string(interpolation);
3183       if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3184          _mesa_glsl_error(loc, state,
3185                           "interpolation qualifier `%s' can only be applied to "
3186                           "shader inputs or outputs.", i);
3187 
3188       switch (state->stage) {
3189       case MESA_SHADER_VERTEX:
3190          if (mode == ir_var_shader_in) {
3191             _mesa_glsl_error(loc, state,
3192                              "interpolation qualifier '%s' cannot be applied to "
3193                              "vertex shader inputs", i);
3194          }
3195          break;
3196       case MESA_SHADER_FRAGMENT:
3197          if (mode == ir_var_shader_out) {
3198             _mesa_glsl_error(loc, state,
3199                              "interpolation qualifier '%s' cannot be applied to "
3200                              "fragment shader outputs", i);
3201          }
3202          break;
3203       default:
3204          break;
3205       }
3206    }
3207 
3208    /* Interpolation qualifiers cannot be applied to 'centroid' and
3209     * 'centroid varying'.
3210     *
3211     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3212     *    "interpolation qualifiers may only precede the qualifiers in,
3213     *    centroid in, out, or centroid out in a declaration. They do not apply
3214     *    to the deprecated storage qualifiers varying or centroid varying."
3215     *
3216     * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3217     *
3218     * GL_EXT_gpu_shader4 allows this.
3219     */
3220    if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable
3221        && interpolation != INTERP_MODE_NONE
3222        && qual->flags.q.varying) {
3223 
3224       const char *i = interpolation_string(interpolation);
3225       const char *s;
3226       if (qual->flags.q.centroid)
3227          s = "centroid varying";
3228       else
3229          s = "varying";
3230 
3231       _mesa_glsl_error(loc, state,
3232                        "qualifier '%s' cannot be applied to the "
3233                        "deprecated storage qualifier '%s'", i, s);
3234    }
3235 
3236    validate_fragment_flat_interpolation_input(state, loc, interpolation,
3237                                               var_type, mode);
3238 }
3239 
3240 static glsl_interp_mode
interpret_interpolation_qualifier(const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3241 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3242                                   const struct glsl_type *var_type,
3243                                   ir_variable_mode mode,
3244                                   struct _mesa_glsl_parse_state *state,
3245                                   YYLTYPE *loc)
3246 {
3247    glsl_interp_mode interpolation;
3248    if (qual->flags.q.flat)
3249       interpolation = INTERP_MODE_FLAT;
3250    else if (qual->flags.q.noperspective)
3251       interpolation = INTERP_MODE_NOPERSPECTIVE;
3252    else if (qual->flags.q.smooth)
3253       interpolation = INTERP_MODE_SMOOTH;
3254    else
3255       interpolation = INTERP_MODE_NONE;
3256 
3257    validate_interpolation_qualifier(state, loc,
3258                                     interpolation,
3259                                     qual, var_type, mode);
3260 
3261    return interpolation;
3262 }
3263 
3264 
3265 static void
apply_explicit_location(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3266 apply_explicit_location(const struct ast_type_qualifier *qual,
3267                         ir_variable *var,
3268                         struct _mesa_glsl_parse_state *state,
3269                         YYLTYPE *loc)
3270 {
3271    bool fail = false;
3272 
3273    unsigned qual_location;
3274    if (!process_qualifier_constant(state, loc, "location", qual->location,
3275                                    &qual_location)) {
3276       return;
3277    }
3278 
3279    /* Checks for GL_ARB_explicit_uniform_location. */
3280    if (qual->flags.q.uniform) {
3281       if (!state->check_explicit_uniform_location_allowed(loc, var))
3282          return;
3283 
3284       const struct gl_constants *consts = state->consts;
3285       unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3286 
3287       if (max_loc >= consts->MaxUserAssignableUniformLocations) {
3288          _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3289                           ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3290                           consts->MaxUserAssignableUniformLocations);
3291          return;
3292       }
3293 
3294       var->data.explicit_location = true;
3295       var->data.location = qual_location;
3296       return;
3297    }
3298 
3299    /* Between GL_ARB_explicit_attrib_location an
3300     * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3301     * stage can be assigned explicit locations.  The checking here associates
3302     * the correct extension with the correct stage's input / output:
3303     *
3304     *                     input            output
3305     *                     -----            ------
3306     * vertex              explicit_loc     sso
3307     * tess control        sso              sso
3308     * tess eval           sso              sso
3309     * geometry            sso              sso
3310     * fragment            sso              explicit_loc
3311     */
3312    switch (state->stage) {
3313    case MESA_SHADER_VERTEX:
3314       if (var->data.mode == ir_var_shader_in) {
3315          if (!state->check_explicit_attrib_location_allowed(loc, var))
3316             return;
3317 
3318          break;
3319       }
3320 
3321       if (var->data.mode == ir_var_shader_out) {
3322          if (!state->check_separate_shader_objects_allowed(loc, var))
3323             return;
3324 
3325          break;
3326       }
3327 
3328       fail = true;
3329       break;
3330 
3331    case MESA_SHADER_TESS_CTRL:
3332    case MESA_SHADER_TESS_EVAL:
3333    case MESA_SHADER_GEOMETRY:
3334       if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3335          if (!state->check_separate_shader_objects_allowed(loc, var))
3336             return;
3337 
3338          break;
3339       }
3340 
3341       fail = true;
3342       break;
3343 
3344    case MESA_SHADER_FRAGMENT:
3345       if (var->data.mode == ir_var_shader_in) {
3346          if (!state->check_separate_shader_objects_allowed(loc, var))
3347             return;
3348 
3349          break;
3350       }
3351 
3352       if (var->data.mode == ir_var_shader_out) {
3353          if (!state->check_explicit_attrib_location_allowed(loc, var))
3354             return;
3355 
3356          break;
3357       }
3358 
3359       fail = true;
3360       break;
3361 
3362    case MESA_SHADER_COMPUTE:
3363       _mesa_glsl_error(loc, state,
3364                        "compute shader variables cannot be given "
3365                        "explicit locations");
3366       return;
3367    default:
3368       fail = true;
3369       break;
3370    };
3371 
3372    if (fail) {
3373       _mesa_glsl_error(loc, state,
3374                        "%s cannot be given an explicit location in %s shader",
3375                        mode_string(var),
3376       _mesa_shader_stage_to_string(state->stage));
3377    } else {
3378       var->data.explicit_location = true;
3379 
3380       switch (state->stage) {
3381       case MESA_SHADER_VERTEX:
3382          var->data.location = (var->data.mode == ir_var_shader_in)
3383             ? (qual_location + VERT_ATTRIB_GENERIC0)
3384             : (qual_location + VARYING_SLOT_VAR0);
3385          break;
3386 
3387       case MESA_SHADER_TESS_CTRL:
3388       case MESA_SHADER_TESS_EVAL:
3389       case MESA_SHADER_GEOMETRY:
3390          if (var->data.patch)
3391             var->data.location = qual_location + VARYING_SLOT_PATCH0;
3392          else
3393             var->data.location = qual_location + VARYING_SLOT_VAR0;
3394          break;
3395 
3396       case MESA_SHADER_FRAGMENT:
3397          var->data.location = (var->data.mode == ir_var_shader_out)
3398             ? (qual_location + FRAG_RESULT_DATA0)
3399             : (qual_location + VARYING_SLOT_VAR0);
3400          break;
3401       default:
3402          assert(!"Unexpected shader type");
3403          break;
3404       }
3405 
3406       /* Check if index was set for the uniform instead of the function */
3407       if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3408          _mesa_glsl_error(loc, state, "an index qualifier can only be "
3409                           "used with subroutine functions");
3410          return;
3411       }
3412 
3413       unsigned qual_index;
3414       if (qual->flags.q.explicit_index &&
3415           process_qualifier_constant(state, loc, "index", qual->index,
3416                                      &qual_index)) {
3417          /* From the GLSL 4.30 specification, section 4.4.2 (Output
3418           * Layout Qualifiers):
3419           *
3420           * "It is also a compile-time error if a fragment shader
3421           *  sets a layout index to less than 0 or greater than 1."
3422           *
3423           * Older specifications don't mandate a behavior; we take
3424           * this as a clarification and always generate the error.
3425           */
3426          if (qual_index > 1) {
3427             _mesa_glsl_error(loc, state,
3428                              "explicit index may only be 0 or 1");
3429          } else {
3430             var->data.explicit_index = true;
3431             var->data.index = qual_index;
3432          }
3433       }
3434    }
3435 }
3436 
3437 static bool
validate_storage_for_sampler_image_types(ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3438 validate_storage_for_sampler_image_types(ir_variable *var,
3439                                          struct _mesa_glsl_parse_state *state,
3440                                          YYLTYPE *loc)
3441 {
3442    /* From section 4.1.7 of the GLSL 4.40 spec:
3443     *
3444     *    "[Opaque types] can only be declared as function
3445     *     parameters or uniform-qualified variables."
3446     *
3447     * From section 4.1.7 of the ARB_bindless_texture spec:
3448     *
3449     *    "Samplers may be declared as shader inputs and outputs, as uniform
3450     *     variables, as temporary variables, and as function parameters."
3451     *
3452     * From section 4.1.X of the ARB_bindless_texture spec:
3453     *
3454     *    "Images may be declared as shader inputs and outputs, as uniform
3455     *     variables, as temporary variables, and as function parameters."
3456     */
3457    if (state->has_bindless()) {
3458       if (var->data.mode != ir_var_auto &&
3459           var->data.mode != ir_var_uniform &&
3460           var->data.mode != ir_var_shader_in &&
3461           var->data.mode != ir_var_shader_out &&
3462           var->data.mode != ir_var_function_in &&
3463           var->data.mode != ir_var_function_out &&
3464           var->data.mode != ir_var_function_inout) {
3465          _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3466                          "only be declared as shader inputs and outputs, as "
3467                          "uniform variables, as temporary variables and as "
3468                          "function parameters");
3469          return false;
3470       }
3471    } else {
3472       if (var->data.mode != ir_var_uniform &&
3473           var->data.mode != ir_var_function_in) {
3474          _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3475                           "declared as function parameters or "
3476                           "uniform-qualified global variables");
3477          return false;
3478       }
3479    }
3480    return true;
3481 }
3482 
3483 static bool
validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const struct ast_type_qualifier * qual,const glsl_type * type)3484 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3485                                    YYLTYPE *loc,
3486                                    const struct ast_type_qualifier *qual,
3487                                    const glsl_type *type)
3488 {
3489    /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3490     *
3491     * "Memory qualifiers are only supported in the declarations of image
3492     *  variables, buffer variables, and shader storage blocks; it is an error
3493     *  to use such qualifiers in any other declarations.
3494     */
3495    if (!type->is_image() && !qual->flags.q.buffer) {
3496       if (qual->flags.q.read_only ||
3497           qual->flags.q.write_only ||
3498           qual->flags.q.coherent ||
3499           qual->flags.q._volatile ||
3500           qual->flags.q.restrict_flag) {
3501          _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3502                           "in the declarations of image variables, buffer "
3503                           "variables, and shader storage blocks");
3504          return false;
3505       }
3506    }
3507    return true;
3508 }
3509 
3510 static bool
validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const struct ast_type_qualifier * qual,const glsl_type * type)3511 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3512                                          YYLTYPE *loc,
3513                                          const struct ast_type_qualifier *qual,
3514                                          const glsl_type *type)
3515 {
3516    /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3517     *
3518     * "Format layout qualifiers can be used on image variable declarations
3519     *  (those declared with a basic type  having “image ” in its keyword)."
3520     */
3521    if (!type->is_image() && qual->flags.q.explicit_image_format) {
3522       _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3523                        "applied to images");
3524       return false;
3525    }
3526    return true;
3527 }
3528 
3529 static void
apply_image_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3530 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3531                                   ir_variable *var,
3532                                   struct _mesa_glsl_parse_state *state,
3533                                   YYLTYPE *loc)
3534 {
3535    const glsl_type *base_type = var->type->without_array();
3536 
3537    if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3538        !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3539       return;
3540 
3541    if (!base_type->is_image())
3542       return;
3543 
3544    if (!validate_storage_for_sampler_image_types(var, state, loc))
3545       return;
3546 
3547    var->data.memory_read_only |= qual->flags.q.read_only;
3548    var->data.memory_write_only |= qual->flags.q.write_only;
3549    var->data.memory_coherent |= qual->flags.q.coherent;
3550    var->data.memory_volatile |= qual->flags.q._volatile;
3551    var->data.memory_restrict |= qual->flags.q.restrict_flag;
3552 
3553    if (qual->flags.q.explicit_image_format) {
3554       if (var->data.mode == ir_var_function_in) {
3555          _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3556                           "image function parameters");
3557       }
3558 
3559       if (qual->image_base_type != base_type->sampled_type) {
3560          _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3561                           "data type of the image");
3562       }
3563 
3564       var->data.image_format = qual->image_format;
3565    } else if (state->has_image_load_formatted()) {
3566       if (var->data.mode == ir_var_uniform &&
3567           state->EXT_shader_image_load_formatted_warn) {
3568          _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used");
3569       }
3570    } else {
3571       if (var->data.mode == ir_var_uniform) {
3572          if (state->es_shader ||
3573              !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) {
3574             _mesa_glsl_error(loc, state, "all image uniforms must have a "
3575                              "format layout qualifier");
3576          } else if (!qual->flags.q.write_only) {
3577             _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3578                              "`writeonly' must have a format layout qualifier");
3579          }
3580       }
3581       var->data.image_format = PIPE_FORMAT_NONE;
3582    }
3583 
3584    /* From page 70 of the GLSL ES 3.1 specification:
3585     *
3586     * "Except for image variables qualified with the format qualifiers r32f,
3587     *  r32i, and r32ui, image variables must specify either memory qualifier
3588     *  readonly or the memory qualifier writeonly."
3589     */
3590    if (state->es_shader &&
3591        var->data.image_format != PIPE_FORMAT_R32_FLOAT &&
3592        var->data.image_format != PIPE_FORMAT_R32_SINT &&
3593        var->data.image_format != PIPE_FORMAT_R32_UINT &&
3594        !var->data.memory_read_only &&
3595        !var->data.memory_write_only) {
3596       _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3597                        "r32i or r32ui must be qualified `readonly' or "
3598                        "`writeonly'");
3599    }
3600 }
3601 
3602 static inline const char*
get_layout_qualifier_string(bool origin_upper_left,bool pixel_center_integer)3603 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3604 {
3605    if (origin_upper_left && pixel_center_integer)
3606       return "origin_upper_left, pixel_center_integer";
3607    else if (origin_upper_left)
3608       return "origin_upper_left";
3609    else if (pixel_center_integer)
3610       return "pixel_center_integer";
3611    else
3612       return " ";
3613 }
3614 
3615 static inline bool
is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3616 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3617                                        const struct ast_type_qualifier *qual)
3618 {
3619    /* If gl_FragCoord was previously declared, and the qualifiers were
3620     * different in any way, return true.
3621     */
3622    if (state->fs_redeclares_gl_fragcoord) {
3623       return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3624          || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3625    }
3626 
3627    return false;
3628 }
3629 
3630 static inline bool
is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3631 is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state *state,
3632                                    const struct ast_type_qualifier *qual)
3633 {
3634    if (state->redeclares_gl_layer) {
3635       return state->layer_viewport_relative != qual->flags.q.viewport_relative;
3636    }
3637    return false;
3638 }
3639 
3640 static inline void
validate_array_dimensions(const glsl_type * t,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3641 validate_array_dimensions(const glsl_type *t,
3642                           struct _mesa_glsl_parse_state *state,
3643                           YYLTYPE *loc) {
3644    if (t->is_array()) {
3645       t = t->fields.array;
3646       while (t->is_array()) {
3647          if (t->is_unsized_array()) {
3648             _mesa_glsl_error(loc, state,
3649                              "only the outermost array dimension can "
3650                              "be unsized",
3651                              t->name);
3652             break;
3653          }
3654          t = t->fields.array;
3655       }
3656    }
3657 }
3658 
3659 static void
apply_bindless_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3660 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3661                                      ir_variable *var,
3662                                      struct _mesa_glsl_parse_state *state,
3663                                      YYLTYPE *loc)
3664 {
3665    bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3666                                qual->flags.q.bindless_image ||
3667                                qual->flags.q.bound_sampler ||
3668                                qual->flags.q.bound_image;
3669 
3670    /* The ARB_bindless_texture spec says:
3671     *
3672     * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3673     *  spec"
3674     *
3675     * "If these layout qualifiers are applied to other types of default block
3676     *  uniforms, or variables with non-uniform storage, a compile-time error
3677     *  will be generated."
3678     */
3679    if (has_local_qualifiers && !qual->flags.q.uniform) {
3680       _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3681                        "can only be applied to default block uniforms or "
3682                        "variables with uniform storage");
3683       return;
3684    }
3685 
3686    /* The ARB_bindless_texture spec doesn't state anything in this situation,
3687     * but it makes sense to only allow bindless_sampler/bound_sampler for
3688     * sampler types, and respectively bindless_image/bound_image for image
3689     * types.
3690     */
3691    if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3692        !var->type->contains_sampler()) {
3693       _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3694                        "be applied to sampler types");
3695       return;
3696    }
3697 
3698    if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3699        !var->type->contains_image()) {
3700       _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3701                        "applied to image types");
3702       return;
3703    }
3704 
3705    /* The bindless_sampler/bindless_image (and respectively
3706     * bound_sampler/bound_image) layout qualifiers can be set at global and at
3707     * local scope.
3708     */
3709    if (var->type->contains_sampler() || var->type->contains_image()) {
3710       var->data.bindless = qual->flags.q.bindless_sampler ||
3711                            qual->flags.q.bindless_image ||
3712                            state->bindless_sampler_specified ||
3713                            state->bindless_image_specified;
3714 
3715       var->data.bound = qual->flags.q.bound_sampler ||
3716                         qual->flags.q.bound_image ||
3717                         state->bound_sampler_specified ||
3718                         state->bound_image_specified;
3719    }
3720 }
3721 
3722 static void
apply_layout_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3723 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3724                                    ir_variable *var,
3725                                    struct _mesa_glsl_parse_state *state,
3726                                    YYLTYPE *loc)
3727 {
3728    if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3729 
3730       /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3731        *
3732        *    "Within any shader, the first redeclarations of gl_FragCoord
3733        *     must appear before any use of gl_FragCoord."
3734        *
3735        * Generate a compiler error if above condition is not met by the
3736        * fragment shader.
3737        */
3738       ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3739       if (earlier != NULL &&
3740           earlier->data.used &&
3741           !state->fs_redeclares_gl_fragcoord) {
3742          _mesa_glsl_error(loc, state,
3743                           "gl_FragCoord used before its first redeclaration "
3744                           "in fragment shader");
3745       }
3746 
3747       /* Make sure all gl_FragCoord redeclarations specify the same layout
3748        * qualifiers.
3749        */
3750       if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3751          const char *const qual_string =
3752             get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3753                                         qual->flags.q.pixel_center_integer);
3754 
3755          const char *const state_string =
3756             get_layout_qualifier_string(state->fs_origin_upper_left,
3757                                         state->fs_pixel_center_integer);
3758 
3759          _mesa_glsl_error(loc, state,
3760                           "gl_FragCoord redeclared with different layout "
3761                           "qualifiers (%s) and (%s) ",
3762                           state_string,
3763                           qual_string);
3764       }
3765       state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3766       state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3767       state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3768          !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3769       state->fs_redeclares_gl_fragcoord =
3770          state->fs_origin_upper_left ||
3771          state->fs_pixel_center_integer ||
3772          state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3773    }
3774 
3775    if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3776        && (strcmp(var->name, "gl_FragCoord") != 0)) {
3777       const char *const qual_string = (qual->flags.q.origin_upper_left)
3778          ? "origin_upper_left" : "pixel_center_integer";
3779 
3780       _mesa_glsl_error(loc, state,
3781                        "layout qualifier `%s' can only be applied to "
3782                        "fragment shader input `gl_FragCoord'",
3783                        qual_string);
3784    }
3785 
3786    if (qual->flags.q.explicit_location) {
3787       apply_explicit_location(qual, var, state, loc);
3788 
3789       if (qual->flags.q.explicit_component) {
3790          unsigned qual_component;
3791          if (process_qualifier_constant(state, loc, "component",
3792                                         qual->component, &qual_component)) {
3793             validate_component_layout_for_type(state, loc, var->type,
3794                                                qual_component);
3795             var->data.explicit_component = true;
3796             var->data.location_frac = qual_component;
3797          }
3798       }
3799    } else if (qual->flags.q.explicit_index) {
3800       if (!qual->subroutine_list)
3801          _mesa_glsl_error(loc, state,
3802                           "explicit index requires explicit location");
3803    } else if (qual->flags.q.explicit_component) {
3804       _mesa_glsl_error(loc, state,
3805                        "explicit component requires explicit location");
3806    }
3807 
3808    if (qual->flags.q.explicit_binding) {
3809       apply_explicit_binding(state, loc, var, var->type, qual);
3810    }
3811 
3812    if (state->stage == MESA_SHADER_GEOMETRY &&
3813        qual->flags.q.out && qual->flags.q.stream) {
3814       unsigned qual_stream;
3815       if (process_qualifier_constant(state, loc, "stream", qual->stream,
3816                                      &qual_stream) &&
3817           validate_stream_qualifier(loc, state, qual_stream)) {
3818          var->data.stream = qual_stream;
3819       }
3820    }
3821 
3822    if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3823       unsigned qual_xfb_buffer;
3824       if (process_qualifier_constant(state, loc, "xfb_buffer",
3825                                      qual->xfb_buffer, &qual_xfb_buffer) &&
3826           validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3827          var->data.xfb_buffer = qual_xfb_buffer;
3828          if (qual->flags.q.explicit_xfb_buffer)
3829             var->data.explicit_xfb_buffer = true;
3830       }
3831    }
3832 
3833    if (qual->flags.q.explicit_xfb_offset) {
3834       unsigned qual_xfb_offset;
3835       unsigned component_size = var->type->contains_double() ? 8 : 4;
3836 
3837       if (process_qualifier_constant(state, loc, "xfb_offset",
3838                                      qual->offset, &qual_xfb_offset) &&
3839           validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3840                                         var->type, component_size)) {
3841          var->data.offset = qual_xfb_offset;
3842          var->data.explicit_xfb_offset = true;
3843       }
3844    }
3845 
3846    if (qual->flags.q.explicit_xfb_stride) {
3847       unsigned qual_xfb_stride;
3848       if (process_qualifier_constant(state, loc, "xfb_stride",
3849                                      qual->xfb_stride, &qual_xfb_stride)) {
3850          var->data.xfb_stride = qual_xfb_stride;
3851          var->data.explicit_xfb_stride = true;
3852       }
3853    }
3854 
3855    if (var->type->contains_atomic()) {
3856       if (var->data.mode == ir_var_uniform) {
3857          if (var->data.explicit_binding) {
3858             unsigned *offset =
3859                &state->atomic_counter_offsets[var->data.binding];
3860 
3861             if (*offset % ATOMIC_COUNTER_SIZE)
3862                _mesa_glsl_error(loc, state,
3863                                 "misaligned atomic counter offset");
3864 
3865             var->data.offset = *offset;
3866             *offset += var->type->atomic_size();
3867 
3868          } else {
3869             _mesa_glsl_error(loc, state,
3870                              "atomic counters require explicit binding point");
3871          }
3872       } else if (var->data.mode != ir_var_function_in) {
3873          _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3874                           "function parameters or uniform-qualified "
3875                           "global variables");
3876       }
3877    }
3878 
3879    if (var->type->contains_sampler() &&
3880        !validate_storage_for_sampler_image_types(var, state, loc))
3881       return;
3882 
3883    /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3884     * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3885     * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3886     * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3887     * These extensions and all following extensions that add the 'layout'
3888     * keyword have been modified to require the use of 'in' or 'out'.
3889     *
3890     * The following extension do not allow the deprecated keywords:
3891     *
3892     *    GL_AMD_conservative_depth
3893     *    GL_ARB_conservative_depth
3894     *    GL_ARB_gpu_shader5
3895     *    GL_ARB_separate_shader_objects
3896     *    GL_ARB_tessellation_shader
3897     *    GL_ARB_transform_feedback3
3898     *    GL_ARB_uniform_buffer_object
3899     *
3900     * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3901     * allow layout with the deprecated keywords.
3902     */
3903    const bool relaxed_layout_qualifier_checking =
3904       state->ARB_fragment_coord_conventions_enable;
3905 
3906    const bool uses_deprecated_qualifier = qual->flags.q.attribute
3907       || qual->flags.q.varying;
3908    if (qual->has_layout() && uses_deprecated_qualifier) {
3909       if (relaxed_layout_qualifier_checking) {
3910          _mesa_glsl_warning(loc, state,
3911                             "`layout' qualifier may not be used with "
3912                             "`attribute' or `varying'");
3913       } else {
3914          _mesa_glsl_error(loc, state,
3915                           "`layout' qualifier may not be used with "
3916                           "`attribute' or `varying'");
3917       }
3918    }
3919 
3920    /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3921     * AMD_conservative_depth.
3922     */
3923    if (qual->flags.q.depth_type
3924        && !state->is_version(420, 0)
3925        && !state->AMD_conservative_depth_enable
3926        && !state->ARB_conservative_depth_enable) {
3927        _mesa_glsl_error(loc, state,
3928                         "extension GL_AMD_conservative_depth or "
3929                         "GL_ARB_conservative_depth must be enabled "
3930                         "to use depth layout qualifiers");
3931    } else if (qual->flags.q.depth_type
3932               && strcmp(var->name, "gl_FragDepth") != 0) {
3933        _mesa_glsl_error(loc, state,
3934                         "depth layout qualifiers can be applied only to "
3935                         "gl_FragDepth");
3936    }
3937 
3938    switch (qual->depth_type) {
3939    case ast_depth_any:
3940       var->data.depth_layout = ir_depth_layout_any;
3941       break;
3942    case ast_depth_greater:
3943       var->data.depth_layout = ir_depth_layout_greater;
3944       break;
3945    case ast_depth_less:
3946       var->data.depth_layout = ir_depth_layout_less;
3947       break;
3948    case ast_depth_unchanged:
3949       var->data.depth_layout = ir_depth_layout_unchanged;
3950       break;
3951    default:
3952       var->data.depth_layout = ir_depth_layout_none;
3953       break;
3954    }
3955 
3956    if (qual->flags.q.std140 ||
3957        qual->flags.q.std430 ||
3958        qual->flags.q.packed ||
3959        qual->flags.q.shared) {
3960       _mesa_glsl_error(loc, state,
3961                        "uniform and shader storage block layout qualifiers "
3962                        "std140, std430, packed, and shared can only be "
3963                        "applied to uniform or shader storage blocks, not "
3964                        "members");
3965    }
3966 
3967    if (qual->flags.q.row_major || qual->flags.q.column_major) {
3968       validate_matrix_layout_for_type(state, loc, var->type, var);
3969    }
3970 
3971    /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3972     * Inputs):
3973     *
3974     *  "Fragment shaders also allow the following layout qualifier on in only
3975     *   (not with variable declarations)
3976     *     layout-qualifier-id
3977     *        early_fragment_tests
3978     *   [...]"
3979     */
3980    if (qual->flags.q.early_fragment_tests) {
3981       _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3982                        "valid in fragment shader input layout declaration.");
3983    }
3984 
3985    if (qual->flags.q.inner_coverage) {
3986       _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3987                        "valid in fragment shader input layout declaration.");
3988    }
3989 
3990    if (qual->flags.q.post_depth_coverage) {
3991       _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3992                        "valid in fragment shader input layout declaration.");
3993    }
3994 
3995    if (state->has_bindless())
3996       apply_bindless_qualifier_to_variable(qual, var, state, loc);
3997 
3998    if (qual->flags.q.pixel_interlock_ordered ||
3999        qual->flags.q.pixel_interlock_unordered ||
4000        qual->flags.q.sample_interlock_ordered ||
4001        qual->flags.q.sample_interlock_unordered) {
4002       _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
4003                        "pixel_interlock_ordered, pixel_interlock_unordered, "
4004                        "sample_interlock_ordered and sample_interlock_unordered, "
4005                        "only valid in fragment shader input layout declaration.");
4006    }
4007 
4008    if (var->name != NULL && strcmp(var->name, "gl_Layer") == 0) {
4009       if (is_conflicting_layer_redeclaration(state, qual)) {
4010          _mesa_glsl_error(loc, state, "gl_Layer redeclaration with "
4011                           "different viewport_relative setting than earlier");
4012       }
4013       state->redeclares_gl_layer = true;
4014       if (qual->flags.q.viewport_relative) {
4015          state->layer_viewport_relative = true;
4016       }
4017    } else if (qual->flags.q.viewport_relative) {
4018       _mesa_glsl_error(loc, state,
4019                        "viewport_relative qualifier "
4020                        "can only be applied to gl_Layer.");
4021    }
4022 }
4023 
4024 static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc,bool is_parameter)4025 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
4026                                  ir_variable *var,
4027                                  struct _mesa_glsl_parse_state *state,
4028                                  YYLTYPE *loc,
4029                                  bool is_parameter)
4030 {
4031    STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
4032 
4033    if (qual->flags.q.invariant) {
4034       if (var->data.used) {
4035          _mesa_glsl_error(loc, state,
4036                           "variable `%s' may not be redeclared "
4037                           "`invariant' after being used",
4038                           var->name);
4039       } else {
4040          var->data.explicit_invariant = true;
4041          var->data.invariant = true;
4042       }
4043    }
4044 
4045    if (qual->flags.q.precise) {
4046       if (var->data.used) {
4047          _mesa_glsl_error(loc, state,
4048                           "variable `%s' may not be redeclared "
4049                           "`precise' after being used",
4050                           var->name);
4051       } else {
4052          var->data.precise = 1;
4053       }
4054    }
4055 
4056    if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
4057       _mesa_glsl_error(loc, state,
4058                        "`subroutine' may only be applied to uniforms, "
4059                        "subroutine type declarations, or function definitions");
4060    }
4061 
4062    if (qual->flags.q.constant || qual->flags.q.attribute
4063        || qual->flags.q.uniform
4064        || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4065       var->data.read_only = 1;
4066 
4067    if (qual->flags.q.centroid)
4068       var->data.centroid = 1;
4069 
4070    if (qual->flags.q.sample)
4071       var->data.sample = 1;
4072 
4073    /* Precision qualifiers do not hold any meaning in Desktop GLSL */
4074    if (state->es_shader) {
4075       var->data.precision =
4076          select_gles_precision(qual->precision, var->type, state, loc);
4077    }
4078 
4079    if (qual->flags.q.patch)
4080       var->data.patch = 1;
4081 
4082    if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
4083       var->type = glsl_type::error_type;
4084       _mesa_glsl_error(loc, state,
4085                        "`attribute' variables may not be declared in the "
4086                        "%s shader",
4087                        _mesa_shader_stage_to_string(state->stage));
4088    }
4089 
4090    /* Disallow layout qualifiers which may only appear on layout declarations. */
4091    if (qual->flags.q.prim_type) {
4092       _mesa_glsl_error(loc, state,
4093                        "Primitive type may only be specified on GS input or output "
4094                        "layout declaration, not on variables.");
4095    }
4096 
4097    /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4098     *
4099     *     "However, the const qualifier cannot be used with out or inout."
4100     *
4101     * The same section of the GLSL 4.40 spec further clarifies this saying:
4102     *
4103     *     "The const qualifier cannot be used with out or inout, or a
4104     *     compile-time error results."
4105     */
4106    if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4107       _mesa_glsl_error(loc, state,
4108                        "`const' may not be applied to `out' or `inout' "
4109                        "function parameters");
4110    }
4111 
4112    /* If there is no qualifier that changes the mode of the variable, leave
4113     * the setting alone.
4114     */
4115    assert(var->data.mode != ir_var_temporary);
4116    if (qual->flags.q.in && qual->flags.q.out)
4117       var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4118    else if (qual->flags.q.in)
4119       var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4120    else if (qual->flags.q.attribute
4121             || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4122       var->data.mode = ir_var_shader_in;
4123    else if (qual->flags.q.out)
4124       var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4125    else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4126       var->data.mode = ir_var_shader_out;
4127    else if (qual->flags.q.uniform)
4128       var->data.mode = ir_var_uniform;
4129    else if (qual->flags.q.buffer)
4130       var->data.mode = ir_var_shader_storage;
4131    else if (qual->flags.q.shared_storage)
4132       var->data.mode = ir_var_shader_shared;
4133 
4134    if (!is_parameter && state->stage == MESA_SHADER_FRAGMENT) {
4135       if (state->has_framebuffer_fetch()) {
4136          if (state->is_version(130, 300))
4137             var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4138          else
4139             var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4140       }
4141 
4142       if (state->has_framebuffer_fetch_zs() &&
4143           (strcmp(var->name, "gl_LastFragDepthARM") == 0 ||
4144            strcmp(var->name, "gl_LastFragStencilARM") == 0)) {
4145          var->data.fb_fetch_output = 1;
4146       }
4147    }
4148 
4149    if (var->data.fb_fetch_output)
4150       var->data.assigned = true;
4151 
4152    if (var->is_fb_fetch_color_output()) {
4153       var->data.memory_coherent = !qual->flags.q.non_coherent;
4154 
4155       /* From the EXT_shader_framebuffer_fetch spec:
4156        *
4157        *   "It is an error to declare an inout fragment output not qualified
4158        *    with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4159        *    extension hasn't been enabled."
4160        */
4161       if (var->data.memory_coherent &&
4162           !state->EXT_shader_framebuffer_fetch_enable)
4163          _mesa_glsl_error(loc, state,
4164                           "invalid declaration of framebuffer fetch output not "
4165                           "qualified with layout(noncoherent)");
4166 
4167    } else {
4168       /* From the EXT_shader_framebuffer_fetch spec:
4169        *
4170        *   "Fragment outputs declared inout may specify the following layout
4171        *    qualifier: [...] noncoherent"
4172        */
4173       if (qual->flags.q.non_coherent)
4174          _mesa_glsl_error(loc, state,
4175                           "invalid layout(noncoherent) qualifier not part of "
4176                           "framebuffer fetch output declaration");
4177    }
4178 
4179    if (!is_parameter && is_varying_var(var, state->stage)) {
4180       /* User-defined ins/outs are not permitted in compute shaders. */
4181       if (state->stage == MESA_SHADER_COMPUTE) {
4182          _mesa_glsl_error(loc, state,
4183                           "user-defined input and output variables are not "
4184                           "permitted in compute shaders");
4185       }
4186 
4187       /* This variable is being used to link data between shader stages (in
4188        * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
4189        * that is allowed for such purposes.
4190        *
4191        * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4192        *
4193        *     "The varying qualifier can be used only with the data types
4194        *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4195        *     these."
4196        *
4197        * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
4198        * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4199        *
4200        *     "Fragment inputs can only be signed and unsigned integers and
4201        *     integer vectors, float, floating-point vectors, matrices, or
4202        *     arrays of these. Structures cannot be input.
4203        *
4204        * Similar text exists in the section on vertex shader outputs.
4205        *
4206        * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4207        * 3.00 spec allows structs as well.  Varying structs are also allowed
4208        * in GLSL 1.50.
4209        *
4210        * From section 4.3.4 of the ARB_bindless_texture spec:
4211        *
4212        *     "(modify third paragraph of the section to allow sampler and image
4213        *     types) ...  Vertex shader inputs can only be float,
4214        *     single-precision floating-point scalars, single-precision
4215        *     floating-point vectors, matrices, signed and unsigned integers
4216        *     and integer vectors, sampler and image types."
4217        *
4218        * From section 4.3.6 of the ARB_bindless_texture spec:
4219        *
4220        *     "Output variables can only be floating-point scalars,
4221        *     floating-point vectors, matrices, signed or unsigned integers or
4222        *     integer vectors, sampler or image types, or arrays or structures
4223        *     of any these."
4224        */
4225       switch (var->type->without_array()->base_type) {
4226       case GLSL_TYPE_FLOAT:
4227          /* Ok in all GLSL versions */
4228          break;
4229       case GLSL_TYPE_UINT:
4230       case GLSL_TYPE_INT:
4231          if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
4232             break;
4233          _mesa_glsl_error(loc, state,
4234                           "varying variables must be of base type float in %s",
4235                           state->get_version_string());
4236          break;
4237       case GLSL_TYPE_STRUCT:
4238          if (state->is_version(150, 300))
4239             break;
4240          _mesa_glsl_error(loc, state,
4241                           "varying variables may not be of type struct");
4242          break;
4243       case GLSL_TYPE_DOUBLE:
4244       case GLSL_TYPE_UINT64:
4245       case GLSL_TYPE_INT64:
4246          break;
4247       case GLSL_TYPE_SAMPLER:
4248       case GLSL_TYPE_TEXTURE:
4249       case GLSL_TYPE_IMAGE:
4250          if (state->has_bindless())
4251             break;
4252          FALLTHROUGH;
4253       default:
4254          _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4255          break;
4256       }
4257    }
4258 
4259    if (state->all_invariant && var->data.mode == ir_var_shader_out) {
4260       var->data.explicit_invariant = true;
4261       var->data.invariant = true;
4262    }
4263 
4264    var->data.interpolation =
4265       interpret_interpolation_qualifier(qual, var->type,
4266                                         (ir_variable_mode) var->data.mode,
4267                                         state, loc);
4268 
4269    /* Does the declaration use the deprecated 'attribute' or 'varying'
4270     * keywords?
4271     */
4272    const bool uses_deprecated_qualifier = qual->flags.q.attribute
4273       || qual->flags.q.varying;
4274 
4275 
4276    /* Validate auxiliary storage qualifiers */
4277 
4278    /* From section 4.3.4 of the GLSL 1.30 spec:
4279     *    "It is an error to use centroid in in a vertex shader."
4280     *
4281     * From section 4.3.4 of the GLSL ES 3.00 spec:
4282     *    "It is an error to use centroid in or interpolation qualifiers in
4283     *    a vertex shader input."
4284     */
4285 
4286    /* Section 4.3.6 of the GLSL 1.30 specification states:
4287     * "It is an error to use centroid out in a fragment shader."
4288     *
4289     * The GL_ARB_shading_language_420pack extension specification states:
4290     * "It is an error to use auxiliary storage qualifiers or interpolation
4291     *  qualifiers on an output in a fragment shader."
4292     */
4293    if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4294       _mesa_glsl_error(loc, state,
4295                        "sample qualifier may only be used on `in` or `out` "
4296                        "variables between shader stages");
4297    }
4298    if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4299       _mesa_glsl_error(loc, state,
4300                        "centroid qualifier may only be used with `in', "
4301                        "`out' or `varying' variables between shader stages");
4302    }
4303 
4304    if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4305       _mesa_glsl_error(loc, state,
4306                        "the shared storage qualifiers can only be used with "
4307                        "compute shaders");
4308    }
4309 
4310    apply_image_qualifier_to_variable(qual, var, state, loc);
4311 }
4312 
4313 /**
4314  * Get the variable that is being redeclared by this declaration or if it
4315  * does not exist, the current declared variable.
4316  *
4317  * Semantic checks to verify the validity of the redeclaration are also
4318  * performed.  If semantic checks fail, compilation error will be emitted via
4319  * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4320  *
4321  * \returns
4322  * A pointer to an existing variable in the current scope if the declaration
4323  * is a redeclaration, current variable otherwise. \c is_declared boolean
4324  * will return \c true if the declaration is a redeclaration, \c false
4325  * otherwise.
4326  */
4327 static ir_variable *
get_variable_being_redeclared(ir_variable ** var_ptr,YYLTYPE loc,struct _mesa_glsl_parse_state * state,bool allow_all_redeclarations,bool * is_redeclaration)4328 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4329                               struct _mesa_glsl_parse_state *state,
4330                               bool allow_all_redeclarations,
4331                               bool *is_redeclaration)
4332 {
4333    ir_variable *var = *var_ptr;
4334 
4335    /* Check if this declaration is actually a re-declaration, either to
4336     * resize an array or add qualifiers to an existing variable.
4337     *
4338     * This is allowed for variables in the current scope, or when at
4339     * global scope (for built-ins in the implicit outer scope).
4340     */
4341    ir_variable *earlier = state->symbols->get_variable(var->name);
4342    if (earlier == NULL ||
4343        (state->current_function != NULL &&
4344        !state->symbols->name_declared_this_scope(var->name))) {
4345       *is_redeclaration = false;
4346       return var;
4347    }
4348 
4349    *is_redeclaration = true;
4350 
4351    if (earlier->data.how_declared == ir_var_declared_implicitly) {
4352       /* Verify that the redeclaration of a built-in does not change the
4353        * storage qualifier.  There are a couple special cases.
4354        *
4355        * 1. Some built-in variables that are defined as 'in' in the
4356        *    specification are implemented as system values.  Allow
4357        *    ir_var_system_value -> ir_var_shader_in.
4358        *
4359        * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4360        *    specification requires that redeclarations omit any qualifier.
4361        *    Allow ir_var_shader_out -> ir_var_auto for this one variable.
4362        */
4363       if (earlier->data.mode != var->data.mode &&
4364           !(earlier->data.mode == ir_var_system_value &&
4365             var->data.mode == ir_var_shader_in) &&
4366           !(strcmp(var->name, "gl_LastFragData") == 0 &&
4367             var->data.mode == ir_var_auto)) {
4368          _mesa_glsl_error(&loc, state,
4369                           "redeclaration cannot change qualification of `%s'",
4370                           var->name);
4371       }
4372    }
4373 
4374    /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4375     *
4376     * "It is legal to declare an array without a size and then
4377     *  later re-declare the same name as an array of the same
4378     *  type and specify a size."
4379     */
4380    if (earlier->type->is_unsized_array() && var->type->is_array()
4381        && (var->type->fields.array == earlier->type->fields.array)) {
4382       const int size = var->type->array_size();
4383       check_builtin_array_max_size(var->name, size, loc, state);
4384       if ((size > 0) && (size <= earlier->data.max_array_access)) {
4385          _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4386                           "previous access",
4387                           earlier->data.max_array_access);
4388       }
4389 
4390       earlier->type = var->type;
4391       delete var;
4392       var = NULL;
4393       *var_ptr = NULL;
4394    } else if (earlier->type != var->type) {
4395       _mesa_glsl_error(&loc, state,
4396                        "redeclaration of `%s' has incorrect type",
4397                        var->name);
4398    } else if ((state->ARB_fragment_coord_conventions_enable ||
4399               state->is_version(150, 0))
4400               && strcmp(var->name, "gl_FragCoord") == 0) {
4401       /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4402        * qualifiers.
4403        *
4404        * We don't really need to do anything here, just allow the
4405        * redeclaration. Any error on the gl_FragCoord is handled on the ast
4406        * level at apply_layout_qualifier_to_variable using the
4407        * ast_type_qualifier and _mesa_glsl_parse_state, or later at
4408        * linker.cpp.
4409        */
4410       /* According to section 4.3.7 of the GLSL 1.30 spec,
4411        * the following built-in varaibles can be redeclared with an
4412        * interpolation qualifier:
4413        *    * gl_FrontColor
4414        *    * gl_BackColor
4415        *    * gl_FrontSecondaryColor
4416        *    * gl_BackSecondaryColor
4417        *    * gl_Color
4418        *    * gl_SecondaryColor
4419        */
4420    } else if (state->is_version(130, 0)
4421               && (strcmp(var->name, "gl_FrontColor") == 0
4422                   || strcmp(var->name, "gl_BackColor") == 0
4423                   || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4424                   || strcmp(var->name, "gl_BackSecondaryColor") == 0
4425                   || strcmp(var->name, "gl_Color") == 0
4426                   || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4427       earlier->data.interpolation = var->data.interpolation;
4428 
4429       /* Layout qualifiers for gl_FragDepth. */
4430    } else if ((state->is_version(420, 0) ||
4431                state->AMD_conservative_depth_enable ||
4432                state->ARB_conservative_depth_enable)
4433               && strcmp(var->name, "gl_FragDepth") == 0) {
4434 
4435       /** From the AMD_conservative_depth spec:
4436        *     Within any shader, the first redeclarations of gl_FragDepth
4437        *     must appear before any use of gl_FragDepth.
4438        */
4439       if (earlier->data.used) {
4440          _mesa_glsl_error(&loc, state,
4441                           "the first redeclaration of gl_FragDepth "
4442                           "must appear before any use of gl_FragDepth");
4443       }
4444 
4445       /* Prevent inconsistent redeclaration of depth layout qualifier. */
4446       if (earlier->data.depth_layout != ir_depth_layout_none
4447           && earlier->data.depth_layout != var->data.depth_layout) {
4448             _mesa_glsl_error(&loc, state,
4449                              "gl_FragDepth: depth layout is declared here "
4450                              "as '%s, but it was previously declared as "
4451                              "'%s'",
4452                              depth_layout_string(var->data.depth_layout),
4453                              depth_layout_string(earlier->data.depth_layout));
4454       }
4455 
4456       earlier->data.depth_layout = var->data.depth_layout;
4457 
4458    } else if (state->has_framebuffer_fetch() &&
4459               strcmp(var->name, "gl_LastFragData") == 0 &&
4460               var->data.mode == ir_var_auto) {
4461       /* According to the EXT_shader_framebuffer_fetch spec:
4462        *
4463        *   "By default, gl_LastFragData is declared with the mediump precision
4464        *    qualifier. This can be changed by redeclaring the corresponding
4465        *    variables with the desired precision qualifier."
4466        *
4467        *   "Fragment shaders may specify the following layout qualifier only for
4468        *    redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4469        */
4470       earlier->data.precision = var->data.precision;
4471       earlier->data.memory_coherent = var->data.memory_coherent;
4472 
4473    } else if (state->NV_viewport_array2_enable &&
4474               strcmp(var->name, "gl_Layer") == 0 &&
4475               earlier->data.how_declared == ir_var_declared_implicitly) {
4476       /* No need to do anything, just allow it. Qualifier is stored in state */
4477 
4478    } else if (state->is_version(0, 300) &&
4479               state->has_separate_shader_objects() &&
4480               (strcmp(var->name, "gl_Position") == 0 ||
4481               strcmp(var->name, "gl_PointSize") == 0)) {
4482 
4483        /*  EXT_separate_shader_objects spec says:
4484        *
4485        *  "The following vertex shader outputs may be redeclared
4486        *   at global scope to specify a built-in output interface,
4487        *   with or without special qualifiers:
4488        *
4489        *    gl_Position
4490        *    gl_PointSize
4491        *
4492        *    When compiling shaders using either of the above variables,
4493        *    both such variables must be redeclared prior to use."
4494        */
4495       if (earlier->data.used) {
4496          _mesa_glsl_error(&loc, state, "the first redeclaration of "
4497                          "%s must appear before any use", var->name);
4498       }
4499    } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4500                state->allow_builtin_variable_redeclaration) ||
4501               allow_all_redeclarations) {
4502       /* Allow verbatim redeclarations of built-in variables. Not explicitly
4503        * valid, but some applications do it.
4504        */
4505    } else {
4506       _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4507    }
4508 
4509    return earlier;
4510 }
4511 
4512 /**
4513  * Generate the IR for an initializer in a variable declaration
4514  */
4515 static ir_rvalue *
process_initializer(ir_variable * var,ast_declaration * decl,ast_fully_specified_type * type,exec_list * initializer_instructions,struct _mesa_glsl_parse_state * state)4516 process_initializer(ir_variable *var, ast_declaration *decl,
4517                     ast_fully_specified_type *type,
4518                     exec_list *initializer_instructions,
4519                     struct _mesa_glsl_parse_state *state)
4520 {
4521    void *mem_ctx = state;
4522    ir_rvalue *result = NULL;
4523 
4524    YYLTYPE initializer_loc = decl->initializer->get_location();
4525 
4526    /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4527     *
4528     *    "All uniform variables are read-only and are initialized either
4529     *    directly by an application via API commands, or indirectly by
4530     *    OpenGL."
4531     */
4532    if (var->data.mode == ir_var_uniform) {
4533       state->check_version(120, 0, &initializer_loc,
4534                            "cannot initialize uniform %s",
4535                            var->name);
4536    }
4537 
4538    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4539     *
4540     *    "Buffer variables cannot have initializers."
4541     */
4542    if (var->data.mode == ir_var_shader_storage) {
4543       _mesa_glsl_error(&initializer_loc, state,
4544                        "cannot initialize buffer variable %s",
4545                        var->name);
4546    }
4547 
4548    /* From section 4.1.7 of the GLSL 4.40 spec:
4549     *
4550     *    "Opaque variables [...] are initialized only through the
4551     *     OpenGL API; they cannot be declared with an initializer in a
4552     *     shader."
4553     *
4554     * From section 4.1.7 of the ARB_bindless_texture spec:
4555     *
4556     *    "Samplers may be declared as shader inputs and outputs, as uniform
4557     *     variables, as temporary variables, and as function parameters."
4558     *
4559     * From section 4.1.X of the ARB_bindless_texture spec:
4560     *
4561     *    "Images may be declared as shader inputs and outputs, as uniform
4562     *     variables, as temporary variables, and as function parameters."
4563     */
4564    if (var->type->contains_atomic() ||
4565        (!state->has_bindless() && var->type->contains_opaque())) {
4566       _mesa_glsl_error(&initializer_loc, state,
4567                        "cannot initialize %s variable %s",
4568                        var->name, state->has_bindless() ? "atomic" : "opaque");
4569    }
4570 
4571    if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4572       _mesa_glsl_error(&initializer_loc, state,
4573                        "cannot initialize %s shader input / %s %s",
4574                        _mesa_shader_stage_to_string(state->stage),
4575                        (state->stage == MESA_SHADER_VERTEX)
4576                        ? "attribute" : "varying",
4577                        var->name);
4578    }
4579 
4580    if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4581       _mesa_glsl_error(&initializer_loc, state,
4582                        "cannot initialize %s shader output %s",
4583                        _mesa_shader_stage_to_string(state->stage),
4584                        var->name);
4585    }
4586 
4587    /* If the initializer is an ast_aggregate_initializer, recursively store
4588     * type information from the LHS into it, so that its hir() function can do
4589     * type checking.
4590     */
4591    if (decl->initializer->oper == ast_aggregate)
4592       _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4593 
4594    ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4595    ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4596 
4597    /* Calculate the constant value if this is a const or uniform
4598     * declaration.
4599     *
4600     * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4601     *
4602     *     "Declarations of globals without a storage qualifier, or with
4603     *     just the const qualifier, may include initializers, in which case
4604     *     they will be initialized before the first line of main() is
4605     *     executed.  Such initializers must be a constant expression."
4606     *
4607     * The same section of the GLSL ES 3.00.4 spec has similar language.
4608     */
4609    if (type->qualifier.flags.q.constant
4610        || type->qualifier.flags.q.uniform
4611        || (state->es_shader && state->current_function == NULL)) {
4612       ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4613                                                lhs, rhs, true);
4614       if (new_rhs != NULL) {
4615          rhs = new_rhs;
4616 
4617          /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4618           * says:
4619           *
4620           *     "A constant expression is one of
4621           *
4622           *        ...
4623           *
4624           *        - an expression formed by an operator on operands that are
4625           *          all constant expressions, including getting an element of
4626           *          a constant array, or a field of a constant structure, or
4627           *          components of a constant vector.  However, the sequence
4628           *          operator ( , ) and the assignment operators ( =, +=, ...)
4629           *          are not included in the operators that can create a
4630           *          constant expression."
4631           *
4632           * Section 12.43 (Sequence operator and constant expressions) says:
4633           *
4634           *     "Should the following construct be allowed?
4635           *
4636           *         float a[2,3];
4637           *
4638           *     The expression within the brackets uses the sequence operator
4639           *     (',') and returns the integer 3 so the construct is declaring
4640           *     a single-dimensional array of size 3.  In some languages, the
4641           *     construct declares a two-dimensional array.  It would be
4642           *     preferable to make this construct illegal to avoid confusion.
4643           *
4644           *     One possibility is to change the definition of the sequence
4645           *     operator so that it does not return a constant-expression and
4646           *     hence cannot be used to declare an array size.
4647           *
4648           *     RESOLUTION: The result of a sequence operator is not a
4649           *     constant-expression."
4650           *
4651           * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4652           * contains language almost identical to the section 4.3.3 in the
4653           * GLSL ES 3.00.4 spec.  This is a new limitation for these GLSL
4654           * versions.
4655           */
4656          ir_constant *constant_value =
4657             rhs->constant_expression_value(mem_ctx);
4658 
4659          if (!constant_value ||
4660              (state->is_version(430, 300) &&
4661               decl->initializer->has_sequence_subexpression())) {
4662             const char *const variable_mode =
4663                (type->qualifier.flags.q.constant)
4664                ? "const"
4665                : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4666 
4667             /* If ARB_shading_language_420pack is enabled, initializers of
4668              * const-qualified local variables do not have to be constant
4669              * expressions. Const-qualified global variables must still be
4670              * initialized with constant expressions.
4671              */
4672             if (!state->has_420pack()
4673                 || state->current_function == NULL) {
4674                _mesa_glsl_error(& initializer_loc, state,
4675                                 "initializer of %s variable `%s' must be a "
4676                                 "constant expression",
4677                                 variable_mode,
4678                                 decl->identifier);
4679                if (var->type->is_numeric()) {
4680                   /* Reduce cascading errors. */
4681                   var->constant_value = type->qualifier.flags.q.constant
4682                      ? ir_constant::zero(state, var->type) : NULL;
4683                }
4684             }
4685          } else {
4686             rhs = constant_value;
4687             var->constant_value = type->qualifier.flags.q.constant
4688                ? constant_value : NULL;
4689          }
4690       } else {
4691          if (var->type->is_numeric()) {
4692             /* Reduce cascading errors. */
4693             rhs = var->constant_value = type->qualifier.flags.q.constant
4694                ? ir_constant::zero(state, var->type) : NULL;
4695          }
4696       }
4697    }
4698 
4699    if (rhs && !rhs->type->is_error()) {
4700       bool temp = var->data.read_only;
4701       if (type->qualifier.flags.q.constant)
4702          var->data.read_only = false;
4703 
4704       /* Never emit code to initialize a uniform.
4705        */
4706       const glsl_type *initializer_type;
4707       bool error_emitted = false;
4708       if (!type->qualifier.flags.q.uniform) {
4709          error_emitted =
4710             do_assignment(initializer_instructions, state,
4711                           NULL, lhs, rhs,
4712                           &result, true, true,
4713                           type->get_location());
4714          initializer_type = result->type;
4715       } else
4716          initializer_type = rhs->type;
4717 
4718       if (!error_emitted) {
4719          var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4720          var->data.has_initializer = true;
4721          var->data.is_implicit_initializer = false;
4722 
4723          /* If the declared variable is an unsized array, it must inherrit
4724          * its full type from the initializer.  A declaration such as
4725          *
4726          *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4727          *
4728          * becomes
4729          *
4730          *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4731          *
4732          * The assignment generated in the if-statement (below) will also
4733          * automatically handle this case for non-uniforms.
4734          *
4735          * If the declared variable is not an array, the types must
4736          * already match exactly.  As a result, the type assignment
4737          * here can be done unconditionally.  For non-uniforms the call
4738          * to do_assignment can change the type of the initializer (via
4739          * the implicit conversion rules).  For uniforms the initializer
4740          * must be a constant expression, and the type of that expression
4741          * was validated above.
4742          */
4743          var->type = initializer_type;
4744       }
4745 
4746       var->data.read_only = temp;
4747    }
4748 
4749    return result;
4750 }
4751 
4752 static void
validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var,unsigned num_vertices,unsigned * size,const char * var_category)4753 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4754                                        YYLTYPE loc, ir_variable *var,
4755                                        unsigned num_vertices,
4756                                        unsigned *size,
4757                                        const char *var_category)
4758 {
4759    if (var->type->is_unsized_array()) {
4760       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4761        *
4762        *   All geometry shader input unsized array declarations will be
4763        *   sized by an earlier input layout qualifier, when present, as per
4764        *   the following table.
4765        *
4766        * Followed by a table mapping each allowed input layout qualifier to
4767        * the corresponding input length.
4768        *
4769        * Similarly for tessellation control shader outputs.
4770        */
4771       if (num_vertices != 0)
4772          var->type = glsl_type::get_array_instance(var->type->fields.array,
4773                                                    num_vertices);
4774    } else {
4775       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4776        * includes the following examples of compile-time errors:
4777        *
4778        *   // code sequence within one shader...
4779        *   in vec4 Color1[];    // size unknown
4780        *   ...Color1.length()...// illegal, length() unknown
4781        *   in vec4 Color2[2];   // size is 2
4782        *   ...Color1.length()...// illegal, Color1 still has no size
4783        *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
4784        *   layout(lines) in;    // legal, input size is 2, matching
4785        *   in vec4 Color4[3];   // illegal, contradicts layout
4786        *   ...
4787        *
4788        * To detect the case illustrated by Color3, we verify that the size of
4789        * an explicitly-sized array matches the size of any previously declared
4790        * explicitly-sized array.  To detect the case illustrated by Color4, we
4791        * verify that the size of an explicitly-sized array is consistent with
4792        * any previously declared input layout.
4793        */
4794       if (num_vertices != 0 && var->type->length != num_vertices) {
4795          _mesa_glsl_error(&loc, state,
4796                           "%s size contradicts previously declared layout "
4797                           "(size is %u, but layout requires a size of %u)",
4798                           var_category, var->type->length, num_vertices);
4799       } else if (*size != 0 && var->type->length != *size) {
4800          _mesa_glsl_error(&loc, state,
4801                           "%s sizes are inconsistent (size is %u, but a "
4802                           "previous declaration has size %u)",
4803                           var_category, var->type->length, *size);
4804       } else {
4805          *size = var->type->length;
4806       }
4807    }
4808 }
4809 
4810 static void
handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4811 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4812                                     YYLTYPE loc, ir_variable *var)
4813 {
4814    unsigned num_vertices = 0;
4815 
4816    if (state->tcs_output_vertices_specified) {
4817       if (!state->out_qualifier->vertices->
4818              process_qualifier_constant(state, "vertices",
4819                                         &num_vertices, false)) {
4820          return;
4821       }
4822 
4823       if (num_vertices > state->Const.MaxPatchVertices) {
4824          _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4825                           "GL_MAX_PATCH_VERTICES", num_vertices);
4826          return;
4827       }
4828    }
4829 
4830    if (!var->type->is_array() && !var->data.patch) {
4831       _mesa_glsl_error(&loc, state,
4832                        "tessellation control shader outputs must be arrays");
4833 
4834       /* To avoid cascading failures, short circuit the checks below. */
4835       return;
4836    }
4837 
4838    if (var->data.patch)
4839       return;
4840 
4841    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4842                                           &state->tcs_output_size,
4843                                           "tessellation control shader output");
4844 }
4845 
4846 /**
4847  * Do additional processing necessary for tessellation control/evaluation shader
4848  * input declarations. This covers both interface block arrays and bare input
4849  * variables.
4850  */
4851 static void
handle_tess_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4852 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4853                               YYLTYPE loc, ir_variable *var)
4854 {
4855    if (!var->type->is_array() && !var->data.patch) {
4856       _mesa_glsl_error(&loc, state,
4857                        "per-vertex tessellation shader inputs must be arrays");
4858       /* Avoid cascading failures. */
4859       return;
4860    }
4861 
4862    if (var->data.patch)
4863       return;
4864 
4865    /* The ARB_tessellation_shader spec says:
4866     *
4867     *    "Declaring an array size is optional.  If no size is specified, it
4868     *     will be taken from the implementation-dependent maximum patch size
4869     *     (gl_MaxPatchVertices).  If a size is specified, it must match the
4870     *     maximum patch size; otherwise, a compile or link error will occur."
4871     *
4872     * This text appears twice, once for TCS inputs, and again for TES inputs.
4873     */
4874    if (var->type->is_unsized_array()) {
4875       var->type = glsl_type::get_array_instance(var->type->fields.array,
4876             state->Const.MaxPatchVertices);
4877    } else if (var->type->length != state->Const.MaxPatchVertices) {
4878       _mesa_glsl_error(&loc, state,
4879                        "per-vertex tessellation shader input arrays must be "
4880                        "sized to gl_MaxPatchVertices (%d).",
4881                        state->Const.MaxPatchVertices);
4882    }
4883 }
4884 
4885 
4886 /**
4887  * Do additional processing necessary for geometry shader input declarations
4888  * (this covers both interface blocks arrays and bare input variables).
4889  */
4890 static void
handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4891 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4892                                   YYLTYPE loc, ir_variable *var)
4893 {
4894    unsigned num_vertices = 0;
4895 
4896    if (state->gs_input_prim_type_specified) {
4897       num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4898    }
4899 
4900    /* Geometry shader input variables must be arrays.  Caller should have
4901     * reported an error for this.
4902     */
4903    if (!var->type->is_array()) {
4904       assert(state->error);
4905 
4906       /* To avoid cascading failures, short circuit the checks below. */
4907       return;
4908    }
4909 
4910    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4911                                           &state->gs_input_size,
4912                                           "geometry shader input");
4913 }
4914 
4915 static void
validate_identifier(const char * identifier,YYLTYPE loc,struct _mesa_glsl_parse_state * state)4916 validate_identifier(const char *identifier, YYLTYPE loc,
4917                     struct _mesa_glsl_parse_state *state)
4918 {
4919    /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4920     *
4921     *   "Identifiers starting with "gl_" are reserved for use by
4922     *   OpenGL, and may not be declared in a shader as either a
4923     *   variable or a function."
4924     */
4925    if (is_gl_identifier(identifier)) {
4926       _mesa_glsl_error(&loc, state,
4927                        "identifier `%s' uses reserved `gl_' prefix",
4928                        identifier);
4929    } else if (strstr(identifier, "__")) {
4930       /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4931        * spec:
4932        *
4933        *     "In addition, all identifiers containing two
4934        *      consecutive underscores (__) are reserved as
4935        *      possible future keywords."
4936        *
4937        * The intention is that names containing __ are reserved for internal
4938        * use by the implementation, and names prefixed with GL_ are reserved
4939        * for use by Khronos.  Names simply containing __ are dangerous to use,
4940        * but should be allowed.
4941        *
4942        * A future version of the GLSL specification will clarify this.
4943        */
4944       _mesa_glsl_warning(&loc, state,
4945                          "identifier `%s' uses reserved `__' string",
4946                          identifier);
4947    }
4948 }
4949 
4950 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)4951 ast_declarator_list::hir(exec_list *instructions,
4952                          struct _mesa_glsl_parse_state *state)
4953 {
4954    void *ctx = state;
4955    const struct glsl_type *decl_type;
4956    const char *type_name = NULL;
4957    ir_rvalue *result = NULL;
4958    YYLTYPE loc = this->get_location();
4959 
4960    /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4961     *
4962     *     "To ensure that a particular output variable is invariant, it is
4963     *     necessary to use the invariant qualifier. It can either be used to
4964     *     qualify a previously declared variable as being invariant
4965     *
4966     *         invariant gl_Position; // make existing gl_Position be invariant"
4967     *
4968     * In these cases the parser will set the 'invariant' flag in the declarator
4969     * list, and the type will be NULL.
4970     */
4971    if (this->invariant) {
4972       assert(this->type == NULL);
4973 
4974       if (state->current_function != NULL) {
4975          _mesa_glsl_error(& loc, state,
4976                           "all uses of `invariant' keyword must be at global "
4977                           "scope");
4978       }
4979 
4980       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4981          assert(decl->array_specifier == NULL);
4982          assert(decl->initializer == NULL);
4983 
4984          ir_variable *const earlier =
4985             state->symbols->get_variable(decl->identifier);
4986          if (earlier == NULL) {
4987             _mesa_glsl_error(& loc, state,
4988                              "undeclared variable `%s' cannot be marked "
4989                              "invariant", decl->identifier);
4990          } else if (!is_allowed_invariant(earlier, state)) {
4991             _mesa_glsl_error(&loc, state,
4992                              "`%s' cannot be marked invariant; interfaces between "
4993                              "shader stages only.", decl->identifier);
4994          } else if (earlier->data.used) {
4995             _mesa_glsl_error(& loc, state,
4996                             "variable `%s' may not be redeclared "
4997                             "`invariant' after being used",
4998                             earlier->name);
4999          } else {
5000             earlier->data.explicit_invariant = true;
5001             earlier->data.invariant = true;
5002          }
5003       }
5004 
5005       /* Invariant redeclarations do not have r-values.
5006        */
5007       return NULL;
5008    }
5009 
5010    if (this->precise) {
5011       assert(this->type == NULL);
5012 
5013       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5014          assert(decl->array_specifier == NULL);
5015          assert(decl->initializer == NULL);
5016 
5017          ir_variable *const earlier =
5018             state->symbols->get_variable(decl->identifier);
5019          if (earlier == NULL) {
5020             _mesa_glsl_error(& loc, state,
5021                              "undeclared variable `%s' cannot be marked "
5022                              "precise", decl->identifier);
5023          } else if (state->current_function != NULL &&
5024                     !state->symbols->name_declared_this_scope(decl->identifier)) {
5025             /* Note: we have to check if we're in a function, since
5026              * builtins are treated as having come from another scope.
5027              */
5028             _mesa_glsl_error(& loc, state,
5029                              "variable `%s' from an outer scope may not be "
5030                              "redeclared `precise' in this scope",
5031                              earlier->name);
5032          } else if (earlier->data.used) {
5033             _mesa_glsl_error(& loc, state,
5034                              "variable `%s' may not be redeclared "
5035                              "`precise' after being used",
5036                              earlier->name);
5037          } else {
5038             earlier->data.precise = true;
5039          }
5040       }
5041 
5042       /* Precise redeclarations do not have r-values either. */
5043       return NULL;
5044    }
5045 
5046    assert(this->type != NULL);
5047    assert(!this->invariant);
5048    assert(!this->precise);
5049 
5050    /* GL_EXT_shader_image_load_store base type uses GLSL_TYPE_VOID as a special value to
5051     * indicate that it needs to be updated later (see glsl_parser.yy).
5052     * This is done here, based on the layout qualifier and the type of the image var
5053     */
5054    if (this->type->qualifier.flags.q.explicit_image_format &&
5055          this->type->specifier->type->is_image() &&
5056          this->type->qualifier.image_base_type == GLSL_TYPE_VOID) {
5057       /*     "The ARB_shader_image_load_store says:
5058        *     If both extensions are enabled in the shading language, the "size*" layout
5059        *     qualifiers are treated as format qualifiers, and are mapped to equivalent
5060        *     format qualifiers in the table below, according to the type of image
5061        *     variable.
5062        *                     image*    iimage*   uimage*
5063        *                     --------  --------  --------
5064        *       size1x8       n/a       r8i       r8ui
5065        *       size1x16      r16f      r16i      r16ui
5066        *       size1x32      r32f      r32i      r32ui
5067        *       size2x32      rg32f     rg32i     rg32ui
5068        *       size4x32      rgba32f   rgba32i   rgba32ui"
5069        */
5070       if (strncmp(this->type->specifier->type_name, "image", strlen("image")) == 0) {
5071          switch (this->type->qualifier.image_format) {
5072          case PIPE_FORMAT_R8_SINT:
5073             /* The GL_EXT_shader_image_load_store spec says:
5074              *    A layout of "size1x8" is illegal for image variables associated
5075              *    with floating-point data types.
5076              */
5077             _mesa_glsl_error(& loc, state,
5078                              "size1x8 is illegal for image variables "
5079                              "with floating-point data types.");
5080             return NULL;
5081          case PIPE_FORMAT_R16_SINT:
5082             this->type->qualifier.image_format = PIPE_FORMAT_R16_FLOAT;
5083             break;
5084          case PIPE_FORMAT_R32_SINT:
5085             this->type->qualifier.image_format = PIPE_FORMAT_R32_FLOAT;
5086             break;
5087          case PIPE_FORMAT_R32G32_SINT:
5088             this->type->qualifier.image_format = PIPE_FORMAT_R32G32_FLOAT;
5089             break;
5090          case PIPE_FORMAT_R32G32B32A32_SINT:
5091             this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
5092             break;
5093          default:
5094             unreachable("Unknown image format");
5095          }
5096          this->type->qualifier.image_base_type = GLSL_TYPE_FLOAT;
5097       } else if (strncmp(this->type->specifier->type_name, "uimage", strlen("uimage")) == 0) {
5098          switch (this->type->qualifier.image_format) {
5099          case PIPE_FORMAT_R8_SINT:
5100             this->type->qualifier.image_format = PIPE_FORMAT_R8_UINT;
5101             break;
5102          case PIPE_FORMAT_R16_SINT:
5103             this->type->qualifier.image_format = PIPE_FORMAT_R16_UINT;
5104             break;
5105          case PIPE_FORMAT_R32_SINT:
5106             this->type->qualifier.image_format = PIPE_FORMAT_R32_UINT;
5107             break;
5108          case PIPE_FORMAT_R32G32_SINT:
5109             this->type->qualifier.image_format = PIPE_FORMAT_R32G32_UINT;
5110             break;
5111          case PIPE_FORMAT_R32G32B32A32_SINT:
5112             this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_UINT;
5113             break;
5114          default:
5115             unreachable("Unknown image format");
5116          }
5117          this->type->qualifier.image_base_type = GLSL_TYPE_UINT;
5118       } else if (strncmp(this->type->specifier->type_name, "iimage", strlen("iimage")) == 0) {
5119          this->type->qualifier.image_base_type = GLSL_TYPE_INT;
5120       } else {
5121          assert(false);
5122       }
5123    }
5124 
5125    /* The type specifier may contain a structure definition.  Process that
5126     * before any of the variable declarations.
5127     */
5128    (void) this->type->specifier->hir(instructions, state);
5129 
5130    decl_type = this->type->glsl_type(& type_name, state);
5131 
5132    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
5133     *    "Buffer variables may only be declared inside interface blocks
5134     *    (section 4.3.9 “Interface Blocks”), which are then referred to as
5135     *    shader storage blocks. It is a compile-time error to declare buffer
5136     *    variables at global scope (outside a block)."
5137     */
5138    if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
5139       _mesa_glsl_error(&loc, state,
5140                        "buffer variables cannot be declared outside "
5141                        "interface blocks");
5142    }
5143 
5144    /* An offset-qualified atomic counter declaration sets the default
5145     * offset for the next declaration within the same atomic counter
5146     * buffer.
5147     */
5148    if (decl_type && decl_type->contains_atomic()) {
5149       if (type->qualifier.flags.q.explicit_binding &&
5150           type->qualifier.flags.q.explicit_offset) {
5151          unsigned qual_binding;
5152          unsigned qual_offset;
5153          if (process_qualifier_constant(state, &loc, "binding",
5154                                         type->qualifier.binding,
5155                                         &qual_binding)
5156              && process_qualifier_constant(state, &loc, "offset",
5157                                         type->qualifier.offset,
5158                                         &qual_offset)) {
5159             if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
5160                state->atomic_counter_offsets[qual_binding] = qual_offset;
5161          }
5162       }
5163 
5164       ast_type_qualifier allowed_atomic_qual_mask;
5165       allowed_atomic_qual_mask.flags.i = 0;
5166       allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
5167       allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
5168       allowed_atomic_qual_mask.flags.q.uniform = 1;
5169 
5170       type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
5171                                      "invalid layout qualifier for",
5172                                      "atomic_uint");
5173    }
5174 
5175    if (this->declarations.is_empty()) {
5176       /* If there is no structure involved in the program text, there are two
5177        * possible scenarios:
5178        *
5179        * - The program text contained something like 'vec4;'.  This is an
5180        *   empty declaration.  It is valid but weird.  Emit a warning.
5181        *
5182        * - The program text contained something like 'S;' and 'S' is not the
5183        *   name of a known structure type.  This is both invalid and weird.
5184        *   Emit an error.
5185        *
5186        * - The program text contained something like 'mediump float;'
5187        *   when the programmer probably meant 'precision mediump
5188        *   float;' Emit a warning with a description of what they
5189        *   probably meant to do.
5190        *
5191        * Note that if decl_type is NULL and there is a structure involved,
5192        * there must have been some sort of error with the structure.  In this
5193        * case we assume that an error was already generated on this line of
5194        * code for the structure.  There is no need to generate an additional,
5195        * confusing error.
5196        */
5197       assert(this->type->specifier->structure == NULL || decl_type != NULL
5198              || state->error);
5199 
5200       if (decl_type == NULL) {
5201          _mesa_glsl_error(&loc, state,
5202                           "invalid type `%s' in empty declaration",
5203                           type_name);
5204       } else {
5205          if (decl_type->is_array()) {
5206             /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
5207              * spec:
5208              *
5209              *    "... any declaration that leaves the size undefined is
5210              *    disallowed as this would add complexity and there are no
5211              *    use-cases."
5212              */
5213             if (state->es_shader && decl_type->is_unsized_array()) {
5214                _mesa_glsl_error(&loc, state, "array size must be explicitly "
5215                                 "or implicitly defined");
5216             }
5217 
5218             /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5219              *
5220              *    "The combinations of types and qualifiers that cause
5221              *    compile-time or link-time errors are the same whether or not
5222              *    the declaration is empty."
5223              */
5224             validate_array_dimensions(decl_type, state, &loc);
5225          }
5226 
5227          if (decl_type->is_atomic_uint()) {
5228             /* Empty atomic counter declarations are allowed and useful
5229              * to set the default offset qualifier.
5230              */
5231             return NULL;
5232          } else if (this->type->qualifier.precision != ast_precision_none) {
5233             if (this->type->specifier->structure != NULL) {
5234                _mesa_glsl_error(&loc, state,
5235                                 "precision qualifiers can't be applied "
5236                                 "to structures");
5237             } else {
5238                static const char *const precision_names[] = {
5239                   "highp",
5240                   "highp",
5241                   "mediump",
5242                   "lowp"
5243                };
5244 
5245                _mesa_glsl_warning(&loc, state,
5246                                   "empty declaration with precision "
5247                                   "qualifier, to set the default precision, "
5248                                   "use `precision %s %s;'",
5249                                   precision_names[this->type->
5250                                      qualifier.precision],
5251                                   type_name);
5252             }
5253          } else if (this->type->specifier->structure == NULL) {
5254             _mesa_glsl_warning(&loc, state, "empty declaration");
5255          }
5256       }
5257    }
5258 
5259    foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5260       const struct glsl_type *var_type;
5261       ir_variable *var;
5262       const char *identifier = decl->identifier;
5263       /* FINISHME: Emit a warning if a variable declaration shadows a
5264        * FINISHME: declaration at a higher scope.
5265        */
5266 
5267       if ((decl_type == NULL) || decl_type->is_void()) {
5268          if (type_name != NULL) {
5269             _mesa_glsl_error(& loc, state,
5270                              "invalid type `%s' in declaration of `%s'",
5271                              type_name, decl->identifier);
5272          } else {
5273             _mesa_glsl_error(& loc, state,
5274                              "invalid type in declaration of `%s'",
5275                              decl->identifier);
5276          }
5277          continue;
5278       }
5279 
5280       if (this->type->qualifier.is_subroutine_decl()) {
5281          const glsl_type *t;
5282          const char *name;
5283 
5284          t = state->symbols->get_type(this->type->specifier->type_name);
5285          if (!t)
5286             _mesa_glsl_error(& loc, state,
5287                              "invalid type in declaration of `%s'",
5288                              decl->identifier);
5289          name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5290 
5291          identifier = name;
5292 
5293       }
5294       var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5295                                     state);
5296 
5297       var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5298 
5299       /* The 'varying in' and 'varying out' qualifiers can only be used with
5300        * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5301        * yet.
5302        */
5303       if (this->type->qualifier.flags.q.varying) {
5304          if (this->type->qualifier.flags.q.in) {
5305             _mesa_glsl_error(& loc, state,
5306                              "`varying in' qualifier in declaration of "
5307                              "`%s' only valid for geometry shaders using "
5308                              "ARB_geometry_shader4 or EXT_geometry_shader4",
5309                              decl->identifier);
5310          } else if (this->type->qualifier.flags.q.out) {
5311             _mesa_glsl_error(& loc, state,
5312                              "`varying out' qualifier in declaration of "
5313                              "`%s' only valid for geometry shaders using "
5314                              "ARB_geometry_shader4 or EXT_geometry_shader4",
5315                              decl->identifier);
5316          }
5317       }
5318 
5319       /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5320        *
5321        *     "Global variables can only use the qualifiers const,
5322        *     attribute, uniform, or varying. Only one may be
5323        *     specified.
5324        *
5325        *     Local variables can only use the qualifier const."
5326        *
5327        * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
5328        * any extension that adds the 'layout' keyword.
5329        */
5330       if (!state->is_version(130, 300)
5331           && !state->has_explicit_attrib_location()
5332           && !state->has_separate_shader_objects()
5333           && !state->ARB_fragment_coord_conventions_enable) {
5334          /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader
5335           * outputs. (the varying flag is not set by the parser)
5336           */
5337          if (this->type->qualifier.flags.q.out &&
5338              (!state->EXT_gpu_shader4_enable ||
5339               state->stage != MESA_SHADER_FRAGMENT)) {
5340             _mesa_glsl_error(& loc, state,
5341                              "`out' qualifier in declaration of `%s' "
5342                              "only valid for function parameters in %s",
5343                              decl->identifier, state->get_version_string());
5344          }
5345          if (this->type->qualifier.flags.q.in) {
5346             _mesa_glsl_error(& loc, state,
5347                              "`in' qualifier in declaration of `%s' "
5348                              "only valid for function parameters in %s",
5349                              decl->identifier, state->get_version_string());
5350          }
5351          /* FINISHME: Test for other invalid qualifiers. */
5352       }
5353 
5354       apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5355                                        & loc, false);
5356       apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5357                                          &loc);
5358 
5359       if ((state->zero_init & (1u << var->data.mode)) &&
5360           (var->type->is_numeric() || var->type->is_boolean())) {
5361          const ir_constant_data data = { { 0 } };
5362          var->data.has_initializer = true;
5363          var->data.is_implicit_initializer = true;
5364          var->constant_initializer = new(var) ir_constant(var->type, &data);
5365       }
5366 
5367       if (this->type->qualifier.flags.q.invariant) {
5368          if (!is_allowed_invariant(var, state)) {
5369             _mesa_glsl_error(&loc, state,
5370                              "`%s' cannot be marked invariant; interfaces between "
5371                              "shader stages only", var->name);
5372          }
5373       }
5374 
5375       if (state->current_function != NULL) {
5376          const char *mode = NULL;
5377          const char *extra = "";
5378 
5379          /* There is no need to check for 'inout' here because the parser will
5380           * only allow that in function parameter lists.
5381           */
5382          if (this->type->qualifier.flags.q.attribute) {
5383             mode = "attribute";
5384          } else if (this->type->qualifier.is_subroutine_decl()) {
5385             mode = "subroutine uniform";
5386          } else if (this->type->qualifier.flags.q.uniform) {
5387             mode = "uniform";
5388          } else if (this->type->qualifier.flags.q.varying) {
5389             mode = "varying";
5390          } else if (this->type->qualifier.flags.q.in) {
5391             mode = "in";
5392             extra = " or in function parameter list";
5393          } else if (this->type->qualifier.flags.q.out) {
5394             mode = "out";
5395             extra = " or in function parameter list";
5396          }
5397 
5398          if (mode) {
5399             _mesa_glsl_error(& loc, state,
5400                              "%s variable `%s' must be declared at "
5401                              "global scope%s",
5402                              mode, var->name, extra);
5403          }
5404       } else if (var->data.mode == ir_var_shader_in) {
5405          var->data.read_only = true;
5406 
5407          if (state->stage == MESA_SHADER_VERTEX) {
5408             /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5409              *
5410              *    "Vertex shader inputs can only be float, floating-point
5411              *    vectors, matrices, signed and unsigned integers and integer
5412              *    vectors. Vertex shader inputs can also form arrays of these
5413              *    types, but not structures."
5414              *
5415              * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5416              *
5417              *    "Vertex shader inputs can only be float, floating-point
5418              *    vectors, matrices, signed and unsigned integers and integer
5419              *    vectors. They cannot be arrays or structures."
5420              *
5421              * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5422              *
5423              *    "The attribute qualifier can be used only with float,
5424              *    floating-point vectors, and matrices. Attribute variables
5425              *    cannot be declared as arrays or structures."
5426              *
5427              * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5428              *
5429              *    "Vertex shader inputs can only be float, floating-point
5430              *    vectors, matrices, signed and unsigned integers and integer
5431              *    vectors. Vertex shader inputs cannot be arrays or
5432              *    structures."
5433              *
5434              * From section 4.3.4 of the ARB_bindless_texture spec:
5435              *
5436              *    "(modify third paragraph of the section to allow sampler and
5437              *    image types) ...  Vertex shader inputs can only be float,
5438              *    single-precision floating-point scalars, single-precision
5439              *    floating-point vectors, matrices, signed and unsigned
5440              *    integers and integer vectors, sampler and image types."
5441              */
5442             const glsl_type *check_type = var->type->without_array();
5443 
5444             bool error = false;
5445             switch (check_type->base_type) {
5446             case GLSL_TYPE_FLOAT:
5447                break;
5448             case GLSL_TYPE_UINT64:
5449             case GLSL_TYPE_INT64:
5450                break;
5451             case GLSL_TYPE_UINT:
5452             case GLSL_TYPE_INT:
5453                error = !state->is_version(120, 300) && !state->EXT_gpu_shader4_enable;
5454                break;
5455             case GLSL_TYPE_DOUBLE:
5456                error = !state->is_version(410, 0) && !state->ARB_vertex_attrib_64bit_enable;
5457                break;
5458             case GLSL_TYPE_SAMPLER:
5459             case GLSL_TYPE_TEXTURE:
5460             case GLSL_TYPE_IMAGE:
5461                error = !state->has_bindless();
5462                break;
5463             default:
5464                error = true;
5465             }
5466 
5467             if (error) {
5468                _mesa_glsl_error(& loc, state,
5469                                 "vertex shader input / attribute cannot have "
5470                                 "type %s`%s'",
5471                                 var->type->is_array() ? "array of " : "",
5472                                 check_type->name);
5473             } else if (var->type->is_array() &&
5474                 !state->check_version(150, 0, &loc,
5475                                       "vertex shader input / attribute "
5476                                       "cannot have array type")) {
5477             }
5478          } else if (state->stage == MESA_SHADER_GEOMETRY) {
5479             /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5480              *
5481              *     Geometry shader input variables get the per-vertex values
5482              *     written out by vertex shader output variables of the same
5483              *     names. Since a geometry shader operates on a set of
5484              *     vertices, each input varying variable (or input block, see
5485              *     interface blocks below) needs to be declared as an array.
5486              */
5487             if (!var->type->is_array()) {
5488                _mesa_glsl_error(&loc, state,
5489                                 "geometry shader inputs must be arrays");
5490             }
5491 
5492             handle_geometry_shader_input_decl(state, loc, var);
5493          } else if (state->stage == MESA_SHADER_FRAGMENT) {
5494             /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5495              *
5496              *     It is a compile-time error to declare a fragment shader
5497              *     input with, or that contains, any of the following types:
5498              *
5499              *     * A boolean type
5500              *     * An opaque type
5501              *     * An array of arrays
5502              *     * An array of structures
5503              *     * A structure containing an array
5504              *     * A structure containing a structure
5505              */
5506             if (state->es_shader) {
5507                const glsl_type *check_type = var->type->without_array();
5508                if (check_type->is_boolean() ||
5509                    check_type->contains_opaque()) {
5510                   _mesa_glsl_error(&loc, state,
5511                                    "fragment shader input cannot have type %s",
5512                                    check_type->name);
5513                }
5514                if (var->type->is_array() &&
5515                    var->type->fields.array->is_array()) {
5516                   _mesa_glsl_error(&loc, state,
5517                                    "%s shader output "
5518                                    "cannot have an array of arrays",
5519                                    _mesa_shader_stage_to_string(state->stage));
5520                }
5521                if (var->type->is_array() &&
5522                    var->type->fields.array->is_struct()) {
5523                   _mesa_glsl_error(&loc, state,
5524                                    "fragment shader input "
5525                                    "cannot have an array of structs");
5526                }
5527                if (var->type->is_struct()) {
5528                   for (unsigned i = 0; i < var->type->length; i++) {
5529                      if (var->type->fields.structure[i].type->is_array() ||
5530                          var->type->fields.structure[i].type->is_struct())
5531                         _mesa_glsl_error(&loc, state,
5532                                          "fragment shader input cannot have "
5533                                          "a struct that contains an "
5534                                          "array or struct");
5535                   }
5536                }
5537             }
5538          } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5539                     state->stage == MESA_SHADER_TESS_EVAL) {
5540             handle_tess_shader_input_decl(state, loc, var);
5541          }
5542       } else if (var->data.mode == ir_var_shader_out) {
5543          const glsl_type *check_type = var->type->without_array();
5544 
5545          /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5546           *
5547           *     It is a compile-time error to declare a fragment shader output
5548           *     that contains any of the following:
5549           *
5550           *     * A Boolean type (bool, bvec2 ...)
5551           *     * A double-precision scalar or vector (double, dvec2 ...)
5552           *     * An opaque type
5553           *     * Any matrix type
5554           *     * A structure
5555           */
5556          if (state->stage == MESA_SHADER_FRAGMENT) {
5557             if (check_type->is_struct() || check_type->is_matrix())
5558                _mesa_glsl_error(&loc, state,
5559                                 "fragment shader output "
5560                                 "cannot have struct or matrix type");
5561             switch (check_type->base_type) {
5562             case GLSL_TYPE_UINT:
5563             case GLSL_TYPE_INT:
5564             case GLSL_TYPE_FLOAT:
5565                break;
5566             default:
5567                _mesa_glsl_error(&loc, state,
5568                                 "fragment shader output cannot have "
5569                                 "type %s", check_type->name);
5570             }
5571          }
5572 
5573          /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5574           *
5575           *     It is a compile-time error to declare a vertex shader output
5576           *     with, or that contains, any of the following types:
5577           *
5578           *     * A boolean type
5579           *     * An opaque type
5580           *     * An array of arrays
5581           *     * An array of structures
5582           *     * A structure containing an array
5583           *     * A structure containing a structure
5584           *
5585           *     It is a compile-time error to declare a fragment shader output
5586           *     with, or that contains, any of the following types:
5587           *
5588           *     * A boolean type
5589           *     * An opaque type
5590           *     * A matrix
5591           *     * A structure
5592           *     * An array of array
5593           *
5594           * ES 3.20 updates this to apply to tessellation and geometry shaders
5595           * as well.  Because there are per-vertex arrays in the new stages,
5596           * it strikes the "array of..." rules and replaces them with these:
5597           *
5598           *     * For per-vertex-arrayed variables (applies to tessellation
5599           *       control, tessellation evaluation and geometry shaders):
5600           *
5601           *       * Per-vertex-arrayed arrays of arrays
5602           *       * Per-vertex-arrayed arrays of structures
5603           *
5604           *     * For non-per-vertex-arrayed variables:
5605           *
5606           *       * An array of arrays
5607           *       * An array of structures
5608           *
5609           * which basically says to unwrap the per-vertex aspect and apply
5610           * the old rules.
5611           */
5612          if (state->es_shader) {
5613             if (var->type->is_array() &&
5614                 var->type->fields.array->is_array()) {
5615                _mesa_glsl_error(&loc, state,
5616                                 "%s shader output "
5617                                 "cannot have an array of arrays",
5618                                 _mesa_shader_stage_to_string(state->stage));
5619             }
5620             if (state->stage <= MESA_SHADER_GEOMETRY) {
5621                const glsl_type *type = var->type;
5622 
5623                if (state->stage == MESA_SHADER_TESS_CTRL &&
5624                    !var->data.patch && var->type->is_array()) {
5625                   type = var->type->fields.array;
5626                }
5627 
5628                if (type->is_array() && type->fields.array->is_struct()) {
5629                   _mesa_glsl_error(&loc, state,
5630                                    "%s shader output cannot have "
5631                                    "an array of structs",
5632                                    _mesa_shader_stage_to_string(state->stage));
5633                }
5634                if (type->is_struct()) {
5635                   for (unsigned i = 0; i < type->length; i++) {
5636                      if (type->fields.structure[i].type->is_array() ||
5637                          type->fields.structure[i].type->is_struct())
5638                         _mesa_glsl_error(&loc, state,
5639                                          "%s shader output cannot have a "
5640                                          "struct that contains an "
5641                                          "array or struct",
5642                                          _mesa_shader_stage_to_string(state->stage));
5643                   }
5644                }
5645             }
5646          }
5647 
5648          if (state->stage == MESA_SHADER_TESS_CTRL) {
5649             handle_tess_ctrl_shader_output_decl(state, loc, var);
5650          }
5651       } else if (var->type->contains_subroutine()) {
5652          /* declare subroutine uniforms as hidden */
5653          var->data.how_declared = ir_var_hidden;
5654       }
5655 
5656       /* From section 4.3.4 of the GLSL 4.00 spec:
5657        *    "Input variables may not be declared using the patch in qualifier
5658        *    in tessellation control or geometry shaders."
5659        *
5660        * From section 4.3.6 of the GLSL 4.00 spec:
5661        *    "It is an error to use patch out in a vertex, tessellation
5662        *    evaluation, or geometry shader."
5663        *
5664        * This doesn't explicitly forbid using them in a fragment shader, but
5665        * that's probably just an oversight.
5666        */
5667       if (state->stage != MESA_SHADER_TESS_EVAL
5668           && this->type->qualifier.flags.q.patch
5669           && this->type->qualifier.flags.q.in) {
5670 
5671          _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5672                           "tessellation evaluation shader");
5673       }
5674 
5675       if (state->stage != MESA_SHADER_TESS_CTRL
5676           && this->type->qualifier.flags.q.patch
5677           && this->type->qualifier.flags.q.out) {
5678 
5679          _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5680                           "tessellation control shader");
5681       }
5682 
5683       /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5684        */
5685       if (this->type->qualifier.precision != ast_precision_none) {
5686          state->check_precision_qualifiers_allowed(&loc);
5687       }
5688 
5689       if (this->type->qualifier.precision != ast_precision_none &&
5690           !precision_qualifier_allowed(var->type)) {
5691          _mesa_glsl_error(&loc, state,
5692                           "precision qualifiers apply only to floating point"
5693                           ", integer and opaque types");
5694       }
5695 
5696       /* From section 4.1.7 of the GLSL 4.40 spec:
5697        *
5698        *    "[Opaque types] can only be declared as function
5699        *     parameters or uniform-qualified variables."
5700        *
5701        * From section 4.1.7 of the ARB_bindless_texture spec:
5702        *
5703        *    "Samplers may be declared as shader inputs and outputs, as uniform
5704        *     variables, as temporary variables, and as function parameters."
5705        *
5706        * From section 4.1.X of the ARB_bindless_texture spec:
5707        *
5708        *    "Images may be declared as shader inputs and outputs, as uniform
5709        *     variables, as temporary variables, and as function parameters."
5710        */
5711       if (!this->type->qualifier.flags.q.uniform &&
5712           (var_type->contains_atomic() ||
5713            (!state->has_bindless() && var_type->contains_opaque()))) {
5714          _mesa_glsl_error(&loc, state,
5715                           "%s variables must be declared uniform",
5716                           state->has_bindless() ? "atomic" : "opaque");
5717       }
5718 
5719       /* Process the initializer and add its instructions to a temporary
5720        * list.  This list will be added to the instruction stream (below) after
5721        * the declaration is added.  This is done because in some cases (such as
5722        * redeclarations) the declaration may not actually be added to the
5723        * instruction stream.
5724        */
5725       exec_list initializer_instructions;
5726 
5727       /* Examine var name here since var may get deleted in the next call */
5728       bool var_is_gl_id = is_gl_identifier(var->name);
5729 
5730       bool is_redeclaration;
5731       var = get_variable_being_redeclared(&var, decl->get_location(), state,
5732                                           false /* allow_all_redeclarations */,
5733                                           &is_redeclaration);
5734       if (is_redeclaration) {
5735          if (var_is_gl_id &&
5736              var->data.how_declared == ir_var_declared_in_block) {
5737             _mesa_glsl_error(&loc, state,
5738                              "`%s' has already been redeclared using "
5739                              "gl_PerVertex", var->name);
5740          }
5741          var->data.how_declared = ir_var_declared_normally;
5742       }
5743 
5744       if (decl->initializer != NULL) {
5745          result = process_initializer(var,
5746                                       decl, this->type,
5747                                       &initializer_instructions, state);
5748       } else {
5749          validate_array_dimensions(var_type, state, &loc);
5750       }
5751 
5752       /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5753        *
5754        *     "It is an error to write to a const variable outside of
5755        *      its declaration, so they must be initialized when
5756        *      declared."
5757        */
5758       if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5759          _mesa_glsl_error(& loc, state,
5760                           "const declaration of `%s' must be initialized",
5761                           decl->identifier);
5762       }
5763 
5764       if (state->es_shader) {
5765          const glsl_type *const t = var->type;
5766 
5767          /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5768           *
5769           * The GL_OES_tessellation_shader spec says about inputs:
5770           *
5771           *    "Declaring an array size is optional. If no size is specified,
5772           *     it will be taken from the implementation-dependent maximum
5773           *     patch size (gl_MaxPatchVertices)."
5774           *
5775           * and about TCS outputs:
5776           *
5777           *    "If no size is specified, it will be taken from output patch
5778           *     size declared in the shader."
5779           *
5780           * The GL_OES_geometry_shader spec says:
5781           *
5782           *    "All geometry shader input unsized array declarations will be
5783           *     sized by an earlier input primitive layout qualifier, when
5784           *     present, as per the following table."
5785           */
5786          const bool implicitly_sized =
5787             (var->data.mode == ir_var_shader_in &&
5788              state->stage >= MESA_SHADER_TESS_CTRL &&
5789              state->stage <= MESA_SHADER_GEOMETRY) ||
5790             (var->data.mode == ir_var_shader_out &&
5791              state->stage == MESA_SHADER_TESS_CTRL);
5792 
5793          if (t->is_unsized_array() && !implicitly_sized)
5794             /* Section 10.17 of the GLSL ES 1.00 specification states that
5795              * unsized array declarations have been removed from the language.
5796              * Arrays that are sized using an initializer are still explicitly
5797              * sized.  However, GLSL ES 1.00 does not allow array
5798              * initializers.  That is only allowed in GLSL ES 3.00.
5799              *
5800              * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5801              *
5802              *     "An array type can also be formed without specifying a size
5803              *     if the definition includes an initializer:
5804              *
5805              *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
5806              *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5807              *
5808              *         float a[5];
5809              *         float b[] = a;"
5810              */
5811             _mesa_glsl_error(& loc, state,
5812                              "unsized array declarations are not allowed in "
5813                              "GLSL ES");
5814       }
5815 
5816       /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5817        *
5818        *    "It is a compile-time error to declare an unsized array of
5819        *     atomic_uint"
5820        */
5821       if (var->type->is_unsized_array() &&
5822           var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5823          _mesa_glsl_error(& loc, state,
5824                           "Unsized array of atomic_uint is not allowed");
5825       }
5826 
5827       /* If the declaration is not a redeclaration, there are a few additional
5828        * semantic checks that must be applied.  In addition, variable that was
5829        * created for the declaration should be added to the IR stream.
5830        */
5831       if (!is_redeclaration) {
5832          validate_identifier(decl->identifier, loc, state);
5833 
5834          /* Add the variable to the symbol table.  Note that the initializer's
5835           * IR was already processed earlier (though it hasn't been emitted
5836           * yet), without the variable in scope.
5837           *
5838           * This differs from most C-like languages, but it follows the GLSL
5839           * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
5840           * spec:
5841           *
5842           *     "Within a declaration, the scope of a name starts immediately
5843           *     after the initializer if present or immediately after the name
5844           *     being declared if not."
5845           */
5846          if (!state->symbols->add_variable(var)) {
5847             YYLTYPE loc = this->get_location();
5848             _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5849                              "current scope", decl->identifier);
5850             continue;
5851          }
5852 
5853          /* Push the variable declaration to the top.  It means that all the
5854           * variable declarations will appear in a funny last-to-first order,
5855           * but otherwise we run into trouble if a function is prototyped, a
5856           * global var is decled, then the function is defined with usage of
5857           * the global var.  See glslparsertest's CorrectModule.frag.
5858           */
5859          instructions->push_head(var);
5860       }
5861 
5862       instructions->append_list(&initializer_instructions);
5863    }
5864 
5865 
5866    /* Generally, variable declarations do not have r-values.  However,
5867     * one is used for the declaration in
5868     *
5869     * while (bool b = some_condition()) {
5870     *   ...
5871     * }
5872     *
5873     * so we return the rvalue from the last seen declaration here.
5874     */
5875    return result;
5876 }
5877 
5878 
5879 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5880 ast_parameter_declarator::hir(exec_list *instructions,
5881                               struct _mesa_glsl_parse_state *state)
5882 {
5883    void *ctx = state;
5884    const struct glsl_type *type;
5885    const char *name = NULL;
5886    YYLTYPE loc = this->get_location();
5887 
5888    type = this->type->glsl_type(& name, state);
5889 
5890    if (type == NULL) {
5891       if (name != NULL) {
5892          _mesa_glsl_error(& loc, state,
5893                           "invalid type `%s' in declaration of `%s'",
5894                           name, this->identifier);
5895       } else {
5896          _mesa_glsl_error(& loc, state,
5897                           "invalid type in declaration of `%s'",
5898                           this->identifier);
5899       }
5900 
5901       type = glsl_type::error_type;
5902    }
5903 
5904    /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5905     *
5906     *    "Functions that accept no input arguments need not use void in the
5907     *    argument list because prototypes (or definitions) are required and
5908     *    therefore there is no ambiguity when an empty argument list "( )" is
5909     *    declared. The idiom "(void)" as a parameter list is provided for
5910     *    convenience."
5911     *
5912     * Placing this check here prevents a void parameter being set up
5913     * for a function, which avoids tripping up checks for main taking
5914     * parameters and lookups of an unnamed symbol.
5915     */
5916    if (type->is_void()) {
5917       if (this->identifier != NULL)
5918          _mesa_glsl_error(& loc, state,
5919                           "named parameter cannot have type `void'");
5920 
5921       is_void = true;
5922       return NULL;
5923    }
5924 
5925    if (formal_parameter && (this->identifier == NULL)) {
5926       _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5927       return NULL;
5928    }
5929 
5930    /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
5931     * call already handled the "vec4[..] foo" case.
5932     */
5933    type = process_array_type(&loc, type, this->array_specifier, state);
5934 
5935    if (!type->is_error() && type->is_unsized_array()) {
5936       _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5937                        "a declared size");
5938       type = glsl_type::error_type;
5939    }
5940 
5941    is_void = false;
5942    ir_variable *var = new(ctx)
5943       ir_variable(type, this->identifier, ir_var_function_in);
5944 
5945    /* Apply any specified qualifiers to the parameter declaration.  Note that
5946     * for function parameters the default mode is 'in'.
5947     */
5948    apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5949                                     true);
5950 
5951    if (((1u << var->data.mode) & state->zero_init) &&
5952        (var->type->is_numeric() || var->type->is_boolean())) {
5953          const ir_constant_data data = { { 0 } };
5954          var->data.has_initializer = true;
5955          var->data.is_implicit_initializer = true;
5956          var->constant_initializer = new(var) ir_constant(var->type, &data);
5957    }
5958 
5959    /* From section 4.1.7 of the GLSL 4.40 spec:
5960     *
5961     *   "Opaque variables cannot be treated as l-values; hence cannot
5962     *    be used as out or inout function parameters, nor can they be
5963     *    assigned into."
5964     *
5965     * From section 4.1.7 of the ARB_bindless_texture spec:
5966     *
5967     *   "Samplers can be used as l-values, so can be assigned into and used
5968     *    as "out" and "inout" function parameters."
5969     *
5970     * From section 4.1.X of the ARB_bindless_texture spec:
5971     *
5972     *   "Images can be used as l-values, so can be assigned into and used as
5973     *    "out" and "inout" function parameters."
5974     */
5975    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5976        && (type->contains_atomic() ||
5977            (!state->has_bindless() && type->contains_opaque()))) {
5978       _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5979                        "contain %s variables",
5980                        state->has_bindless() ? "atomic" : "opaque");
5981       type = glsl_type::error_type;
5982    }
5983 
5984    /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5985     *
5986     *    "When calling a function, expressions that do not evaluate to
5987     *     l-values cannot be passed to parameters declared as out or inout."
5988     *
5989     * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5990     *
5991     *    "Other binary or unary expressions, non-dereferenced arrays,
5992     *     function names, swizzles with repeated fields, and constants
5993     *     cannot be l-values."
5994     *
5995     * So for GLSL 1.10, passing an array as an out or inout parameter is not
5996     * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
5997     */
5998    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5999        && type->is_array()
6000        && !state->check_version(120, 100, &loc,
6001                                 "arrays cannot be out or inout parameters")) {
6002       type = glsl_type::error_type;
6003    }
6004 
6005    instructions->push_tail(var);
6006 
6007    /* Parameter declarations do not have r-values.
6008     */
6009    return NULL;
6010 }
6011 
6012 
6013 void
parameters_to_hir(exec_list * ast_parameters,bool formal,exec_list * ir_parameters,_mesa_glsl_parse_state * state)6014 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
6015                                             bool formal,
6016                                             exec_list *ir_parameters,
6017                                             _mesa_glsl_parse_state *state)
6018 {
6019    ast_parameter_declarator *void_param = NULL;
6020    unsigned count = 0;
6021 
6022    foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
6023       param->formal_parameter = formal;
6024       param->hir(ir_parameters, state);
6025 
6026       if (param->is_void)
6027          void_param = param;
6028 
6029       count++;
6030    }
6031 
6032    if ((void_param != NULL) && (count > 1)) {
6033       YYLTYPE loc = void_param->get_location();
6034 
6035       _mesa_glsl_error(& loc, state,
6036                        "`void' parameter must be only parameter");
6037    }
6038 }
6039 
6040 
6041 void
emit_function(_mesa_glsl_parse_state * state,ir_function * f)6042 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
6043 {
6044    /* IR invariants disallow function declarations or definitions
6045     * nested within other function definitions.  But there is no
6046     * requirement about the relative order of function declarations
6047     * and definitions with respect to one another.  So simply insert
6048     * the new ir_function block at the end of the toplevel instruction
6049     * list.
6050     */
6051    state->toplevel_ir->push_tail(f);
6052 }
6053 
6054 
6055 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6056 ast_function::hir(exec_list *instructions,
6057                   struct _mesa_glsl_parse_state *state)
6058 {
6059    void *ctx = state;
6060    ir_function *f = NULL;
6061    ir_function_signature *sig = NULL;
6062    exec_list hir_parameters;
6063    YYLTYPE loc = this->get_location();
6064 
6065    const char *const name = identifier;
6066 
6067    /* New functions are always added to the top-level IR instruction stream,
6068     * so this instruction list pointer is ignored.  See also emit_function
6069     * (called below).
6070     */
6071    (void) instructions;
6072 
6073    /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
6074     *
6075     *   "Function declarations (prototypes) cannot occur inside of functions;
6076     *   they must be at global scope, or for the built-in functions, outside
6077     *   the global scope."
6078     *
6079     * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
6080     *
6081     *   "User defined functions may only be defined within the global scope."
6082     *
6083     * Note that this language does not appear in GLSL 1.10.
6084     */
6085    if ((state->current_function != NULL) &&
6086        state->is_version(120, 100)) {
6087       YYLTYPE loc = this->get_location();
6088       _mesa_glsl_error(&loc, state,
6089                        "declaration of function `%s' not allowed within "
6090                        "function body", name);
6091    }
6092 
6093    validate_identifier(name, this->get_location(), state);
6094 
6095    /* Convert the list of function parameters to HIR now so that they can be
6096     * used below to compare this function's signature with previously seen
6097     * signatures for functions with the same name.
6098     */
6099    ast_parameter_declarator::parameters_to_hir(& this->parameters,
6100                                                is_definition,
6101                                                & hir_parameters, state);
6102 
6103    const char *return_type_name;
6104    const glsl_type *return_type =
6105       this->return_type->glsl_type(& return_type_name, state);
6106 
6107    if (!return_type) {
6108       YYLTYPE loc = this->get_location();
6109       _mesa_glsl_error(&loc, state,
6110                        "function `%s' has undeclared return type `%s'",
6111                        name, return_type_name);
6112       return_type = glsl_type::error_type;
6113    }
6114 
6115    /* ARB_shader_subroutine states:
6116     *  "Subroutine declarations cannot be prototyped. It is an error to prepend
6117     *   subroutine(...) to a function declaration."
6118     */
6119    if (this->return_type->qualifier.subroutine_list && !is_definition) {
6120       YYLTYPE loc = this->get_location();
6121       _mesa_glsl_error(&loc, state,
6122                        "function declaration `%s' cannot have subroutine prepended",
6123                        name);
6124    }
6125 
6126    /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
6127     * "No qualifier is allowed on the return type of a function."
6128     */
6129    if (this->return_type->has_qualifiers(state)) {
6130       YYLTYPE loc = this->get_location();
6131       _mesa_glsl_error(& loc, state,
6132                        "function `%s' return type has qualifiers", name);
6133    }
6134 
6135    /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
6136     *
6137     *     "Arrays are allowed as arguments and as the return type. In both
6138     *     cases, the array must be explicitly sized."
6139     */
6140    if (return_type->is_unsized_array()) {
6141       YYLTYPE loc = this->get_location();
6142       _mesa_glsl_error(& loc, state,
6143                        "function `%s' return type array must be explicitly "
6144                        "sized", name);
6145    }
6146 
6147    /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
6148     *
6149     *     "Arrays are allowed as arguments, but not as the return type. [...]
6150     *      The return type can also be a structure if the structure does not
6151     *      contain an array."
6152     */
6153    if (state->language_version == 100 && return_type->contains_array()) {
6154       YYLTYPE loc = this->get_location();
6155       _mesa_glsl_error(& loc, state,
6156                        "function `%s' return type contains an array", name);
6157    }
6158 
6159    /* From section 4.1.7 of the GLSL 4.40 spec:
6160     *
6161     *    "[Opaque types] can only be declared as function parameters
6162     *     or uniform-qualified variables."
6163     *
6164     * The ARB_bindless_texture spec doesn't clearly state this, but as it says
6165     * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
6166     * (Images)", this should be allowed.
6167     */
6168    if (return_type->contains_atomic() ||
6169        (!state->has_bindless() && return_type->contains_opaque())) {
6170       YYLTYPE loc = this->get_location();
6171       _mesa_glsl_error(&loc, state,
6172                        "function `%s' return type can't contain an %s type",
6173                        name, state->has_bindless() ? "atomic" : "opaque");
6174    }
6175 
6176    /**/
6177    if (return_type->is_subroutine()) {
6178       YYLTYPE loc = this->get_location();
6179       _mesa_glsl_error(&loc, state,
6180                        "function `%s' return type can't be a subroutine type",
6181                        name);
6182    }
6183 
6184    /* Get the precision for the return type */
6185    unsigned return_precision;
6186 
6187    if (state->es_shader) {
6188       YYLTYPE loc = this->get_location();
6189       return_precision =
6190          select_gles_precision(this->return_type->qualifier.precision,
6191                                return_type,
6192                                state,
6193                                &loc);
6194    } else {
6195       return_precision = GLSL_PRECISION_NONE;
6196    }
6197 
6198    /* Create an ir_function if one doesn't already exist. */
6199    f = state->symbols->get_function(name);
6200    if (f == NULL) {
6201       f = new(ctx) ir_function(name);
6202       if (!this->return_type->qualifier.is_subroutine_decl()) {
6203          if (!state->symbols->add_function(f)) {
6204             /* This function name shadows a non-function use of the same name. */
6205             YYLTYPE loc = this->get_location();
6206             _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
6207                              "non-function", name);
6208             return NULL;
6209          }
6210       }
6211       emit_function(state, f);
6212    }
6213 
6214    /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
6215     *
6216     * "A shader cannot redefine or overload built-in functions."
6217     *
6218     * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
6219     *
6220     * "User code can overload the built-in functions but cannot redefine
6221     * them."
6222     */
6223    if (state->es_shader) {
6224       /* Local shader has no exact candidates; check the built-ins. */
6225       if (state->language_version >= 300 &&
6226           _mesa_glsl_has_builtin_function(state, name)) {
6227          YYLTYPE loc = this->get_location();
6228          _mesa_glsl_error(& loc, state,
6229                           "A shader cannot redefine or overload built-in "
6230                           "function `%s' in GLSL ES 3.00", name);
6231          return NULL;
6232       }
6233 
6234       if (state->language_version == 100) {
6235          ir_function_signature *sig =
6236             _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6237          if (sig && sig->is_builtin()) {
6238             _mesa_glsl_error(& loc, state,
6239                              "A shader cannot redefine built-in "
6240                              "function `%s' in GLSL ES 1.00", name);
6241          }
6242       }
6243    }
6244 
6245    /* Verify that this function's signature either doesn't match a previously
6246     * seen signature for a function with the same name, or, if a match is found,
6247     * that the previously seen signature does not have an associated definition.
6248     */
6249    if (state->es_shader || f->has_user_signature()) {
6250       sig = f->exact_matching_signature(state, &hir_parameters);
6251       if (sig != NULL) {
6252          const char *badvar = sig->qualifiers_match(&hir_parameters);
6253          if (badvar != NULL) {
6254             YYLTYPE loc = this->get_location();
6255 
6256             _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6257                              "qualifiers don't match prototype", name, badvar);
6258          }
6259 
6260          if (sig->return_type != return_type) {
6261             YYLTYPE loc = this->get_location();
6262 
6263             _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6264                              "match prototype", name);
6265          }
6266 
6267          if (sig->return_precision != return_precision) {
6268             YYLTYPE loc = this->get_location();
6269 
6270             _mesa_glsl_error(&loc, state, "function `%s' return type precision "
6271                              "doesn't match prototype", name);
6272          }
6273 
6274          if (sig->is_defined) {
6275             if (is_definition) {
6276                YYLTYPE loc = this->get_location();
6277                _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6278             } else {
6279                /* We just encountered a prototype that exactly matches a
6280                 * function that's already been defined.  This is redundant,
6281                 * and we should ignore it.
6282                 */
6283                return NULL;
6284             }
6285          } else if (state->language_version == 100 && !is_definition) {
6286             /* From the GLSL 1.00 spec, section 4.2.7:
6287              *
6288              *     "A particular variable, structure or function declaration
6289              *      may occur at most once within a scope with the exception
6290              *      that a single function prototype plus the corresponding
6291              *      function definition are allowed."
6292              */
6293             YYLTYPE loc = this->get_location();
6294             _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6295          }
6296       }
6297    }
6298 
6299    /* Verify the return type of main() */
6300    if (strcmp(name, "main") == 0) {
6301       if (! return_type->is_void()) {
6302          YYLTYPE loc = this->get_location();
6303 
6304          _mesa_glsl_error(& loc, state, "main() must return void");
6305       }
6306 
6307       if (!hir_parameters.is_empty()) {
6308          YYLTYPE loc = this->get_location();
6309 
6310          _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6311       }
6312    }
6313 
6314    /* Finish storing the information about this new function in its signature.
6315     */
6316    if (sig == NULL) {
6317       sig = new(ctx) ir_function_signature(return_type);
6318       sig->return_precision = return_precision;
6319       f->add_signature(sig);
6320    }
6321 
6322    sig->replace_parameters(&hir_parameters);
6323    signature = sig;
6324 
6325    if (this->return_type->qualifier.subroutine_list) {
6326       int idx;
6327 
6328       if (this->return_type->qualifier.flags.q.explicit_index) {
6329          unsigned qual_index;
6330          if (process_qualifier_constant(state, &loc, "index",
6331                                         this->return_type->qualifier.index,
6332                                         &qual_index)) {
6333             if (!state->has_explicit_uniform_location()) {
6334                _mesa_glsl_error(&loc, state, "subroutine index requires "
6335                                 "GL_ARB_explicit_uniform_location or "
6336                                 "GLSL 4.30");
6337             } else if (qual_index >= MAX_SUBROUTINES) {
6338                _mesa_glsl_error(&loc, state,
6339                                 "invalid subroutine index (%d) index must "
6340                                 "be a number between 0 and "
6341                                 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6342                                 MAX_SUBROUTINES - 1);
6343             } else {
6344                f->subroutine_index = qual_index;
6345             }
6346          }
6347       }
6348 
6349       f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6350       f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6351                                          f->num_subroutine_types);
6352       idx = 0;
6353       foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6354          const struct glsl_type *type;
6355          /* the subroutine type must be already declared */
6356          type = state->symbols->get_type(decl->identifier);
6357          if (!type) {
6358             _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6359          }
6360 
6361          for (int i = 0; i < state->num_subroutine_types; i++) {
6362             ir_function *fn = state->subroutine_types[i];
6363             ir_function_signature *tsig = NULL;
6364 
6365             if (strcmp(fn->name, decl->identifier))
6366                continue;
6367 
6368             tsig = fn->matching_signature(state, &sig->parameters,
6369                                           false);
6370             if (!tsig) {
6371                _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6372             } else {
6373                if (tsig->return_type != sig->return_type) {
6374                   _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6375                }
6376             }
6377          }
6378          f->subroutine_types[idx++] = type;
6379       }
6380       state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6381                                                     ir_function *,
6382                                                     state->num_subroutines + 1);
6383       state->subroutines[state->num_subroutines] = f;
6384       state->num_subroutines++;
6385 
6386    }
6387 
6388    if (this->return_type->qualifier.is_subroutine_decl()) {
6389       if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6390          _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6391          return NULL;
6392       }
6393       state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6394                                                          ir_function *,
6395                                                          state->num_subroutine_types + 1);
6396       state->subroutine_types[state->num_subroutine_types] = f;
6397       state->num_subroutine_types++;
6398 
6399       f->is_subroutine = true;
6400    }
6401 
6402    /* Function declarations (prototypes) do not have r-values.
6403     */
6404    return NULL;
6405 }
6406 
6407 
6408 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6409 ast_function_definition::hir(exec_list *instructions,
6410                              struct _mesa_glsl_parse_state *state)
6411 {
6412    prototype->is_definition = true;
6413    prototype->hir(instructions, state);
6414 
6415    ir_function_signature *signature = prototype->signature;
6416    if (signature == NULL)
6417       return NULL;
6418 
6419    assert(state->current_function == NULL);
6420    state->current_function = signature;
6421    state->found_return = false;
6422    state->found_begin_interlock = false;
6423    state->found_end_interlock = false;
6424 
6425    /* Duplicate parameters declared in the prototype as concrete variables.
6426     * Add these to the symbol table.
6427     */
6428    state->symbols->push_scope();
6429    foreach_in_list(ir_variable, var, &signature->parameters) {
6430       assert(var->as_variable() != NULL);
6431 
6432       /* The only way a parameter would "exist" is if two parameters have
6433        * the same name.
6434        */
6435       if (state->symbols->name_declared_this_scope(var->name)) {
6436          YYLTYPE loc = this->get_location();
6437 
6438          _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6439       } else {
6440          state->symbols->add_variable(var);
6441       }
6442    }
6443 
6444    /* Convert the body of the function to HIR. */
6445    this->body->hir(&signature->body, state);
6446    signature->is_defined = true;
6447 
6448    state->symbols->pop_scope();
6449 
6450    assert(state->current_function == signature);
6451    state->current_function = NULL;
6452 
6453    if (!signature->return_type->is_void() && !state->found_return) {
6454       YYLTYPE loc = this->get_location();
6455       _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6456                        "%s, but no return statement",
6457                        signature->function_name(),
6458                        signature->return_type->name);
6459    }
6460 
6461    /* Function definitions do not have r-values.
6462     */
6463    return NULL;
6464 }
6465 
6466 
6467 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6468 ast_jump_statement::hir(exec_list *instructions,
6469                         struct _mesa_glsl_parse_state *state)
6470 {
6471    void *ctx = state;
6472 
6473    switch (mode) {
6474    case ast_return: {
6475       ir_return *inst;
6476       assert(state->current_function);
6477 
6478       if (opt_return_value) {
6479          ir_rvalue *ret = opt_return_value->hir(instructions, state);
6480 
6481          /* The value of the return type can be NULL if the shader says
6482           * 'return foo();' and foo() is a function that returns void.
6483           *
6484           * NOTE: The GLSL spec doesn't say that this is an error.  The type
6485           * of the return value is void.  If the return type of the function is
6486           * also void, then this should compile without error.  Seriously.
6487           */
6488          const glsl_type *const ret_type =
6489             (ret == NULL) ? glsl_type::void_type : ret->type;
6490 
6491          /* Implicit conversions are not allowed for return values prior to
6492           * ARB_shading_language_420pack.
6493           */
6494          if (state->current_function->return_type != ret_type) {
6495             YYLTYPE loc = this->get_location();
6496 
6497             if (state->has_420pack()) {
6498                if (!apply_implicit_conversion(state->current_function->return_type,
6499                                               ret, state)
6500                    || (ret->type != state->current_function->return_type)) {
6501                   _mesa_glsl_error(& loc, state,
6502                                    "could not implicitly convert return value "
6503                                    "to %s, in function `%s'",
6504                                    state->current_function->return_type->name,
6505                                    state->current_function->function_name());
6506                }
6507             } else {
6508                _mesa_glsl_error(& loc, state,
6509                                 "`return' with wrong type %s, in function `%s' "
6510                                 "returning %s",
6511                                 ret_type->name,
6512                                 state->current_function->function_name(),
6513                                 state->current_function->return_type->name);
6514             }
6515          } else if (state->current_function->return_type->base_type ==
6516                     GLSL_TYPE_VOID) {
6517             YYLTYPE loc = this->get_location();
6518 
6519             /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6520              * specs add a clarification:
6521              *
6522              *    "A void function can only use return without a return argument, even if
6523              *     the return argument has void type. Return statements only accept values:
6524              *
6525              *         void func1() { }
6526              *         void func2() { return func1(); } // illegal return statement"
6527              */
6528             _mesa_glsl_error(& loc, state,
6529                              "void functions can only use `return' without a "
6530                              "return argument");
6531          }
6532 
6533          inst = new(ctx) ir_return(ret);
6534       } else {
6535          if (state->current_function->return_type->base_type !=
6536              GLSL_TYPE_VOID) {
6537             YYLTYPE loc = this->get_location();
6538 
6539             _mesa_glsl_error(& loc, state,
6540                              "`return' with no value, in function %s returning "
6541                              "non-void",
6542             state->current_function->function_name());
6543          }
6544          inst = new(ctx) ir_return;
6545       }
6546 
6547       state->found_return = true;
6548       instructions->push_tail(inst);
6549       break;
6550    }
6551 
6552    case ast_discard:
6553       if (state->stage != MESA_SHADER_FRAGMENT) {
6554          YYLTYPE loc = this->get_location();
6555 
6556          _mesa_glsl_error(& loc, state,
6557                           "`discard' may only appear in a fragment shader");
6558       }
6559       instructions->push_tail(new(ctx) ir_discard);
6560       break;
6561 
6562    case ast_break:
6563    case ast_continue:
6564       if (mode == ast_continue &&
6565           state->loop_nesting_ast == NULL) {
6566          YYLTYPE loc = this->get_location();
6567 
6568          _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6569       } else if (mode == ast_break &&
6570          state->loop_nesting_ast == NULL &&
6571          state->switch_state.switch_nesting_ast == NULL) {
6572          YYLTYPE loc = this->get_location();
6573 
6574          _mesa_glsl_error(& loc, state,
6575                           "break may only appear in a loop or a switch");
6576       } else {
6577          /* For a loop, inline the for loop expression again, since we don't
6578           * know where near the end of the loop body the normal copy of it is
6579           * going to be placed.  Same goes for the condition for a do-while
6580           * loop.
6581           */
6582          if (state->loop_nesting_ast != NULL &&
6583              mode == ast_continue && !state->switch_state.is_switch_innermost) {
6584             if (state->loop_nesting_ast->rest_expression) {
6585                clone_ir_list(ctx, instructions,
6586                              &state->loop_nesting_ast->rest_instructions);
6587             }
6588             if (state->loop_nesting_ast->mode ==
6589                 ast_iteration_statement::ast_do_while) {
6590                state->loop_nesting_ast->condition_to_hir(instructions, state);
6591             }
6592          }
6593 
6594          if (state->switch_state.is_switch_innermost &&
6595              mode == ast_continue) {
6596             /* Set 'continue_inside' to true. */
6597             ir_rvalue *const true_val = new (ctx) ir_constant(true);
6598             ir_dereference_variable *deref_continue_inside_var =
6599                new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6600             instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6601                                                            true_val));
6602 
6603             /* Break out from the switch, continue for the loop will
6604              * be called right after switch. */
6605             ir_loop_jump *const jump =
6606                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6607             instructions->push_tail(jump);
6608 
6609          } else if (state->switch_state.is_switch_innermost &&
6610              mode == ast_break) {
6611             /* Force break out of switch by inserting a break. */
6612             ir_loop_jump *const jump =
6613                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6614             instructions->push_tail(jump);
6615          } else {
6616             ir_loop_jump *const jump =
6617                new(ctx) ir_loop_jump((mode == ast_break)
6618                   ? ir_loop_jump::jump_break
6619                   : ir_loop_jump::jump_continue);
6620             instructions->push_tail(jump);
6621          }
6622       }
6623 
6624       break;
6625    }
6626 
6627    /* Jump instructions do not have r-values.
6628     */
6629    return NULL;
6630 }
6631 
6632 
6633 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6634 ast_demote_statement::hir(exec_list *instructions,
6635                           struct _mesa_glsl_parse_state *state)
6636 {
6637    void *ctx = state;
6638 
6639    if (state->stage != MESA_SHADER_FRAGMENT) {
6640       YYLTYPE loc = this->get_location();
6641 
6642       _mesa_glsl_error(& loc, state,
6643                        "`demote' may only appear in a fragment shader");
6644    }
6645 
6646    instructions->push_tail(new(ctx) ir_demote);
6647 
6648    return NULL;
6649 }
6650 
6651 
6652 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6653 ast_selection_statement::hir(exec_list *instructions,
6654                              struct _mesa_glsl_parse_state *state)
6655 {
6656    void *ctx = state;
6657 
6658    ir_rvalue *const condition = this->condition->hir(instructions, state);
6659 
6660    /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6661     *
6662     *    "Any expression whose type evaluates to a Boolean can be used as the
6663     *    conditional expression bool-expression. Vector types are not accepted
6664     *    as the expression to if."
6665     *
6666     * The checks are separated so that higher quality diagnostics can be
6667     * generated for cases where both rules are violated.
6668     */
6669    if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6670       YYLTYPE loc = this->condition->get_location();
6671 
6672       _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6673                        "boolean");
6674    }
6675 
6676    ir_if *const stmt = new(ctx) ir_if(condition);
6677 
6678    if (then_statement != NULL) {
6679       state->symbols->push_scope();
6680       then_statement->hir(& stmt->then_instructions, state);
6681       state->symbols->pop_scope();
6682    }
6683 
6684    if (else_statement != NULL) {
6685       state->symbols->push_scope();
6686       else_statement->hir(& stmt->else_instructions, state);
6687       state->symbols->pop_scope();
6688    }
6689 
6690    instructions->push_tail(stmt);
6691 
6692    /* if-statements do not have r-values.
6693     */
6694    return NULL;
6695 }
6696 
6697 
6698 struct case_label {
6699    /** Value of the case label. */
6700    unsigned value;
6701 
6702    /** Does this label occur after the default? */
6703    bool after_default;
6704 
6705    /**
6706     * AST for the case label.
6707     *
6708     * This is only used to generate error messages for duplicate labels.
6709     */
6710    ast_expression *ast;
6711 };
6712 
6713 /* Used for detection of duplicate case values, compare
6714  * given contents directly.
6715  */
6716 static bool
compare_case_value(const void * a,const void * b)6717 compare_case_value(const void *a, const void *b)
6718 {
6719    return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6720 }
6721 
6722 
6723 /* Used for detection of duplicate case values, just
6724  * returns key contents as is.
6725  */
6726 static unsigned
key_contents(const void * key)6727 key_contents(const void *key)
6728 {
6729    return ((struct case_label *) key)->value;
6730 }
6731 
6732 void
eval_test_expression(exec_list * instructions,struct _mesa_glsl_parse_state * state)6733 ast_switch_statement::eval_test_expression(exec_list *instructions,
6734                                            struct _mesa_glsl_parse_state *state)
6735 {
6736    if (test_val == NULL)
6737       test_val = this->test_expression->hir(instructions, state);
6738 }
6739 
6740 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6741 ast_switch_statement::hir(exec_list *instructions,
6742                           struct _mesa_glsl_parse_state *state)
6743 {
6744    void *ctx = state;
6745 
6746    this->eval_test_expression(instructions, state);
6747 
6748    /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6749     *
6750     *    "The type of init-expression in a switch statement must be a
6751     *     scalar integer."
6752     */
6753    if (!test_val->type->is_scalar() ||
6754        !test_val->type->is_integer_32()) {
6755       YYLTYPE loc = this->test_expression->get_location();
6756 
6757       _mesa_glsl_error(& loc,
6758                        state,
6759                        "switch-statement expression must be scalar "
6760                        "integer");
6761       return NULL;
6762    }
6763 
6764    /* Track the switch-statement nesting in a stack-like manner.
6765     */
6766    struct glsl_switch_state saved = state->switch_state;
6767 
6768    state->switch_state.is_switch_innermost = true;
6769    state->switch_state.switch_nesting_ast = this;
6770    state->switch_state.labels_ht =
6771          _mesa_hash_table_create(NULL, key_contents,
6772                                  compare_case_value);
6773    state->switch_state.previous_default = NULL;
6774 
6775    /* Initalize is_fallthru state to false.
6776     */
6777    ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6778    state->switch_state.is_fallthru_var =
6779       new(ctx) ir_variable(glsl_type::bool_type,
6780                            "switch_is_fallthru_tmp",
6781                            ir_var_temporary);
6782    instructions->push_tail(state->switch_state.is_fallthru_var);
6783 
6784    ir_dereference_variable *deref_is_fallthru_var =
6785       new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6786    instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6787                                                   is_fallthru_val));
6788 
6789    /* Initialize continue_inside state to false.
6790     */
6791    state->switch_state.continue_inside =
6792       new(ctx) ir_variable(glsl_type::bool_type,
6793                            "continue_inside_tmp",
6794                            ir_var_temporary);
6795    instructions->push_tail(state->switch_state.continue_inside);
6796 
6797    ir_rvalue *const false_val = new (ctx) ir_constant(false);
6798    ir_dereference_variable *deref_continue_inside_var =
6799       new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6800    instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6801                                                   false_val));
6802 
6803    state->switch_state.run_default =
6804       new(ctx) ir_variable(glsl_type::bool_type,
6805                              "run_default_tmp",
6806                              ir_var_temporary);
6807    instructions->push_tail(state->switch_state.run_default);
6808 
6809    /* Loop around the switch is used for flow control. */
6810    ir_loop * loop = new(ctx) ir_loop();
6811    instructions->push_tail(loop);
6812 
6813    /* Cache test expression.
6814     */
6815    test_to_hir(&loop->body_instructions, state);
6816 
6817    /* Emit code for body of switch stmt.
6818     */
6819    body->hir(&loop->body_instructions, state);
6820 
6821    /* Insert a break at the end to exit loop. */
6822    ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6823    loop->body_instructions.push_tail(jump);
6824 
6825    /* If we are inside loop, check if continue got called inside switch. */
6826    if (state->loop_nesting_ast != NULL) {
6827       ir_dereference_variable *deref_continue_inside =
6828          new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6829       ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6830       ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6831 
6832       if (state->loop_nesting_ast != NULL) {
6833          if (state->loop_nesting_ast->rest_expression) {
6834             clone_ir_list(ctx, &irif->then_instructions,
6835                           &state->loop_nesting_ast->rest_instructions);
6836          }
6837          if (state->loop_nesting_ast->mode ==
6838              ast_iteration_statement::ast_do_while) {
6839             state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6840          }
6841       }
6842       irif->then_instructions.push_tail(jump);
6843       instructions->push_tail(irif);
6844    }
6845 
6846    _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6847 
6848    state->switch_state = saved;
6849 
6850    /* Switch statements do not have r-values. */
6851    return NULL;
6852 }
6853 
6854 
6855 void
test_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6856 ast_switch_statement::test_to_hir(exec_list *instructions,
6857                                   struct _mesa_glsl_parse_state *state)
6858 {
6859    void *ctx = state;
6860 
6861    /* set to true to avoid a duplicate "use of uninitialized variable" warning
6862     * on the switch test case. The first one would be already raised when
6863     * getting the test_expression at ast_switch_statement::hir
6864     */
6865    test_expression->set_is_lhs(true);
6866    /* Cache value of test expression. */
6867    this->eval_test_expression(instructions, state);
6868 
6869    state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6870                                                        "switch_test_tmp",
6871                                                        ir_var_temporary);
6872    ir_dereference_variable *deref_test_var =
6873       new(ctx) ir_dereference_variable(state->switch_state.test_var);
6874 
6875    instructions->push_tail(state->switch_state.test_var);
6876    instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6877 }
6878 
6879 
6880 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6881 ast_switch_body::hir(exec_list *instructions,
6882                      struct _mesa_glsl_parse_state *state)
6883 {
6884    if (stmts != NULL) {
6885       state->symbols->push_scope();
6886       stmts->hir(instructions, state);
6887       state->symbols->pop_scope();
6888    }
6889 
6890    /* Switch bodies do not have r-values. */
6891    return NULL;
6892 }
6893 
6894 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6895 ast_case_statement_list::hir(exec_list *instructions,
6896                              struct _mesa_glsl_parse_state *state)
6897 {
6898    exec_list default_case, after_default, tmp;
6899 
6900    foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6901       case_stmt->hir(&tmp, state);
6902 
6903       /* Default case. */
6904       if (state->switch_state.previous_default && default_case.is_empty()) {
6905          default_case.append_list(&tmp);
6906          continue;
6907       }
6908 
6909       /* If default case found, append 'after_default' list. */
6910       if (!default_case.is_empty())
6911          after_default.append_list(&tmp);
6912       else
6913          instructions->append_list(&tmp);
6914    }
6915 
6916    /* Handle the default case. This is done here because default might not be
6917     * the last case. We need to add checks against following cases first to see
6918     * if default should be chosen or not.
6919     */
6920    if (!default_case.is_empty()) {
6921       ir_factory body(instructions, state);
6922 
6923       ir_expression *cmp = NULL;
6924 
6925       hash_table_foreach(state->switch_state.labels_ht, entry) {
6926          const struct case_label *const l = (struct case_label *) entry->data;
6927 
6928          /* If the switch init-value is the value of one of the labels that
6929           * occurs after the default case, disable execution of the default
6930           * case.
6931           */
6932          if (l->after_default) {
6933             ir_constant *const cnst =
6934                state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6935                ? body.constant(unsigned(l->value))
6936                : body.constant(int(l->value));
6937 
6938             cmp = cmp == NULL
6939                ? equal(cnst, state->switch_state.test_var)
6940                : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6941          }
6942       }
6943 
6944       if (cmp != NULL)
6945          body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6946       else
6947          body.emit(assign(state->switch_state.run_default, body.constant(true)));
6948 
6949       /* Append default case and all cases after it. */
6950       instructions->append_list(&default_case);
6951       instructions->append_list(&after_default);
6952    }
6953 
6954    /* Case statements do not have r-values. */
6955    return NULL;
6956 }
6957 
6958 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6959 ast_case_statement::hir(exec_list *instructions,
6960                         struct _mesa_glsl_parse_state *state)
6961 {
6962    labels->hir(instructions, state);
6963 
6964    /* Guard case statements depending on fallthru state. */
6965    ir_dereference_variable *const deref_fallthru_guard =
6966       new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6967    ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6968 
6969    foreach_list_typed (ast_node, stmt, link, & this->stmts)
6970       stmt->hir(& test_fallthru->then_instructions, state);
6971 
6972    instructions->push_tail(test_fallthru);
6973 
6974    /* Case statements do not have r-values. */
6975    return NULL;
6976 }
6977 
6978 
6979 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6980 ast_case_label_list::hir(exec_list *instructions,
6981                          struct _mesa_glsl_parse_state *state)
6982 {
6983    foreach_list_typed (ast_case_label, label, link, & this->labels)
6984       label->hir(instructions, state);
6985 
6986    /* Case labels do not have r-values. */
6987    return NULL;
6988 }
6989 
6990 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6991 ast_case_label::hir(exec_list *instructions,
6992                     struct _mesa_glsl_parse_state *state)
6993 {
6994    ir_factory body(instructions, state);
6995 
6996    ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6997 
6998    /* If not default case, ... */
6999    if (this->test_value != NULL) {
7000       /* Conditionally set fallthru state based on
7001        * comparison of cached test expression value to case label.
7002        */
7003       ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
7004       ir_constant *label_const =
7005          label_rval->constant_expression_value(body.mem_ctx);
7006 
7007       if (!label_const) {
7008          YYLTYPE loc = this->test_value->get_location();
7009 
7010          _mesa_glsl_error(& loc, state,
7011                           "switch statement case label must be a "
7012                           "constant expression");
7013 
7014          /* Stuff a dummy value in to allow processing to continue. */
7015          label_const = body.constant(0);
7016       } else {
7017          hash_entry *entry =
7018                _mesa_hash_table_search(state->switch_state.labels_ht,
7019                                        &label_const->value.u[0]);
7020 
7021          if (entry) {
7022             const struct case_label *const l =
7023                (struct case_label *) entry->data;
7024             const ast_expression *const previous_label = l->ast;
7025             YYLTYPE loc = this->test_value->get_location();
7026 
7027             _mesa_glsl_error(& loc, state, "duplicate case value");
7028 
7029             loc = previous_label->get_location();
7030             _mesa_glsl_error(& loc, state, "this is the previous case label");
7031          } else {
7032             struct case_label *l = ralloc(state->switch_state.labels_ht,
7033                                           struct case_label);
7034 
7035             l->value = label_const->value.u[0];
7036             l->after_default = state->switch_state.previous_default != NULL;
7037             l->ast = this->test_value;
7038 
7039             _mesa_hash_table_insert(state->switch_state.labels_ht,
7040                                     &label_const->value.u[0],
7041                                     l);
7042          }
7043       }
7044 
7045       /* Create an r-value version of the ir_constant label here (after we may
7046        * have created a fake one in error cases) that can be passed to
7047        * apply_implicit_conversion below.
7048        */
7049       ir_rvalue *label = label_const;
7050 
7051       ir_rvalue *deref_test_var =
7052          new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
7053 
7054       /*
7055        * From GLSL 4.40 specification section 6.2 ("Selection"):
7056        *
7057        *     "The type of the init-expression value in a switch statement must
7058        *     be a scalar int or uint. The type of the constant-expression value
7059        *     in a case label also must be a scalar int or uint. When any pair
7060        *     of these values is tested for "equal value" and the types do not
7061        *     match, an implicit conversion will be done to convert the int to a
7062        *     uint (see section 4.1.10 “Implicit Conversions”) before the compare
7063        *     is done."
7064        */
7065       if (label->type != state->switch_state.test_var->type) {
7066          YYLTYPE loc = this->test_value->get_location();
7067 
7068          const glsl_type *type_a = label->type;
7069          const glsl_type *type_b = state->switch_state.test_var->type;
7070 
7071          /* Check if int->uint implicit conversion is supported. */
7072          bool integer_conversion_supported =
7073             glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
7074                                                            state);
7075 
7076          if ((!type_a->is_integer_32() || !type_b->is_integer_32()) ||
7077               !integer_conversion_supported) {
7078             _mesa_glsl_error(&loc, state, "type mismatch with switch "
7079                              "init-expression and case label (%s != %s)",
7080                              type_a->name, type_b->name);
7081          } else {
7082             /* Conversion of the case label. */
7083             if (type_a->base_type == GLSL_TYPE_INT) {
7084                if (!apply_implicit_conversion(glsl_type::uint_type,
7085                                               label, state))
7086                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
7087             } else {
7088                /* Conversion of the init-expression value. */
7089                if (!apply_implicit_conversion(glsl_type::uint_type,
7090                                               deref_test_var, state))
7091                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
7092             }
7093          }
7094 
7095          /* If the implicit conversion was allowed, the types will already be
7096           * the same.  If the implicit conversion wasn't allowed, smash the
7097           * type of the label anyway.  This will prevent the expression
7098           * constructor (below) from failing an assertion.
7099           */
7100          label->type = deref_test_var->type;
7101       }
7102 
7103       body.emit(assign(fallthru_var,
7104                        logic_or(fallthru_var, equal(label, deref_test_var))));
7105    } else { /* default case */
7106       if (state->switch_state.previous_default) {
7107          YYLTYPE loc = this->get_location();
7108          _mesa_glsl_error(& loc, state,
7109                           "multiple default labels in one switch");
7110 
7111          loc = state->switch_state.previous_default->get_location();
7112          _mesa_glsl_error(& loc, state, "this is the first default label");
7113       }
7114       state->switch_state.previous_default = this;
7115 
7116       /* Set fallthru condition on 'run_default' bool. */
7117       body.emit(assign(fallthru_var,
7118                        logic_or(fallthru_var,
7119                                 state->switch_state.run_default)));
7120    }
7121 
7122    /* Case statements do not have r-values. */
7123    return NULL;
7124 }
7125 
7126 void
condition_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7127 ast_iteration_statement::condition_to_hir(exec_list *instructions,
7128                                           struct _mesa_glsl_parse_state *state)
7129 {
7130    void *ctx = state;
7131 
7132    if (condition != NULL) {
7133       ir_rvalue *const cond =
7134          condition->hir(instructions, state);
7135 
7136       if ((cond == NULL)
7137           || !cond->type->is_boolean() || !cond->type->is_scalar()) {
7138          YYLTYPE loc = condition->get_location();
7139 
7140          _mesa_glsl_error(& loc, state,
7141                           "loop condition must be scalar boolean");
7142       } else {
7143          /* As the first code in the loop body, generate a block that looks
7144           * like 'if (!condition) break;' as the loop termination condition.
7145           */
7146          ir_rvalue *const not_cond =
7147             new(ctx) ir_expression(ir_unop_logic_not, cond);
7148 
7149          ir_if *const if_stmt = new(ctx) ir_if(not_cond);
7150 
7151          ir_jump *const break_stmt =
7152             new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
7153 
7154          if_stmt->then_instructions.push_tail(break_stmt);
7155          instructions->push_tail(if_stmt);
7156       }
7157    }
7158 }
7159 
7160 
7161 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7162 ast_iteration_statement::hir(exec_list *instructions,
7163                              struct _mesa_glsl_parse_state *state)
7164 {
7165    void *ctx = state;
7166 
7167    /* For-loops and while-loops start a new scope, but do-while loops do not.
7168     */
7169    if (mode != ast_do_while)
7170       state->symbols->push_scope();
7171 
7172    if (init_statement != NULL)
7173       init_statement->hir(instructions, state);
7174 
7175    ir_loop *const stmt = new(ctx) ir_loop();
7176    instructions->push_tail(stmt);
7177 
7178    /* Track the current loop nesting. */
7179    ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
7180 
7181    state->loop_nesting_ast = this;
7182 
7183    /* Likewise, indicate that following code is closest to a loop,
7184     * NOT closest to a switch.
7185     */
7186    bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
7187    state->switch_state.is_switch_innermost = false;
7188 
7189    if (mode != ast_do_while)
7190       condition_to_hir(&stmt->body_instructions, state);
7191 
7192    if (rest_expression != NULL)
7193       rest_expression->hir(&rest_instructions, state);
7194 
7195    if (body != NULL) {
7196       if (mode == ast_do_while)
7197          state->symbols->push_scope();
7198 
7199       body->hir(& stmt->body_instructions, state);
7200 
7201       if (mode == ast_do_while)
7202          state->symbols->pop_scope();
7203    }
7204 
7205    if (rest_expression != NULL)
7206       stmt->body_instructions.append_list(&rest_instructions);
7207 
7208    if (mode == ast_do_while)
7209       condition_to_hir(&stmt->body_instructions, state);
7210 
7211    if (mode != ast_do_while)
7212       state->symbols->pop_scope();
7213 
7214    /* Restore previous nesting before returning. */
7215    state->loop_nesting_ast = nesting_ast;
7216    state->switch_state.is_switch_innermost = saved_is_switch_innermost;
7217 
7218    /* Loops do not have r-values.
7219     */
7220    return NULL;
7221 }
7222 
7223 
7224 /**
7225  * Determine if the given type is valid for establishing a default precision
7226  * qualifier.
7227  *
7228  * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
7229  *
7230  *     "The precision statement
7231  *
7232  *         precision precision-qualifier type;
7233  *
7234  *     can be used to establish a default precision qualifier. The type field
7235  *     can be either int or float or any of the sampler types, and the
7236  *     precision-qualifier can be lowp, mediump, or highp."
7237  *
7238  * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
7239  * qualifiers on sampler types, but this seems like an oversight (since the
7240  * intention of including these in GLSL 1.30 is to allow compatibility with ES
7241  * shaders).  So we allow int, float, and all sampler types regardless of GLSL
7242  * version.
7243  */
7244 static bool
is_valid_default_precision_type(const struct glsl_type * const type)7245 is_valid_default_precision_type(const struct glsl_type *const type)
7246 {
7247    if (type == NULL)
7248       return false;
7249 
7250    switch (type->base_type) {
7251    case GLSL_TYPE_INT:
7252    case GLSL_TYPE_FLOAT:
7253       /* "int" and "float" are valid, but vectors and matrices are not. */
7254       return type->vector_elements == 1 && type->matrix_columns == 1;
7255    case GLSL_TYPE_SAMPLER:
7256    case GLSL_TYPE_TEXTURE:
7257    case GLSL_TYPE_IMAGE:
7258    case GLSL_TYPE_ATOMIC_UINT:
7259       return true;
7260    default:
7261       return false;
7262    }
7263 }
7264 
7265 
7266 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7267 ast_type_specifier::hir(exec_list *instructions,
7268                         struct _mesa_glsl_parse_state *state)
7269 {
7270    if (this->default_precision == ast_precision_none && this->structure == NULL)
7271       return NULL;
7272 
7273    YYLTYPE loc = this->get_location();
7274 
7275    /* If this is a precision statement, check that the type to which it is
7276     * applied is either float or int.
7277     *
7278     * From section 4.5.3 of the GLSL 1.30 spec:
7279     *    "The precision statement
7280     *       precision precision-qualifier type;
7281     *    can be used to establish a default precision qualifier. The type
7282     *    field can be either int or float [...].  Any other types or
7283     *    qualifiers will result in an error.
7284     */
7285    if (this->default_precision != ast_precision_none) {
7286       if (!state->check_precision_qualifiers_allowed(&loc))
7287          return NULL;
7288 
7289       if (this->structure != NULL) {
7290          _mesa_glsl_error(&loc, state,
7291                           "precision qualifiers do not apply to structures");
7292          return NULL;
7293       }
7294 
7295       if (this->array_specifier != NULL) {
7296          _mesa_glsl_error(&loc, state,
7297                           "default precision statements do not apply to "
7298                           "arrays");
7299          return NULL;
7300       }
7301 
7302       const struct glsl_type *const type =
7303          state->symbols->get_type(this->type_name);
7304       if (!is_valid_default_precision_type(type)) {
7305          _mesa_glsl_error(&loc, state,
7306                           "default precision statements apply only to "
7307                           "float, int, and opaque types");
7308          return NULL;
7309       }
7310 
7311       if (state->es_shader) {
7312          /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7313           * spec says:
7314           *
7315           *     "Non-precision qualified declarations will use the precision
7316           *     qualifier specified in the most recent precision statement
7317           *     that is still in scope. The precision statement has the same
7318           *     scoping rules as variable declarations. If it is declared
7319           *     inside a compound statement, its effect stops at the end of
7320           *     the innermost statement it was declared in. Precision
7321           *     statements in nested scopes override precision statements in
7322           *     outer scopes. Multiple precision statements for the same basic
7323           *     type can appear inside the same scope, with later statements
7324           *     overriding earlier statements within that scope."
7325           *
7326           * Default precision specifications follow the same scope rules as
7327           * variables.  So, we can track the state of the default precision
7328           * qualifiers in the symbol table, and the rules will just work.  This
7329           * is a slight abuse of the symbol table, but it has the semantics
7330           * that we want.
7331           */
7332          state->symbols->add_default_precision_qualifier(this->type_name,
7333                                                          this->default_precision);
7334       }
7335 
7336       /* FINISHME: Translate precision statements into IR. */
7337       return NULL;
7338    }
7339 
7340    /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7341     * process_record_constructor() can do type-checking on C-style initializer
7342     * expressions of structs, but ast_struct_specifier should only be translated
7343     * to HIR if it is declaring the type of a structure.
7344     *
7345     * The ->is_declaration field is false for initializers of variables
7346     * declared separately from the struct's type definition.
7347     *
7348     *    struct S { ... };              (is_declaration = true)
7349     *    struct T { ... } t = { ... };  (is_declaration = true)
7350     *    S s = { ... };                 (is_declaration = false)
7351     */
7352    if (this->structure != NULL && this->structure->is_declaration)
7353       return this->structure->hir(instructions, state);
7354 
7355    return NULL;
7356 }
7357 
7358 
7359 /**
7360  * Process a structure or interface block tree into an array of structure fields
7361  *
7362  * After parsing, where there are some syntax differnces, structures and
7363  * interface blocks are almost identical.  They are similar enough that the
7364  * AST for each can be processed the same way into a set of
7365  * \c glsl_struct_field to describe the members.
7366  *
7367  * If we're processing an interface block, var_mode should be the type of the
7368  * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7369  * ir_var_shader_storage).  If we're processing a structure, var_mode should be
7370  * ir_var_auto.
7371  *
7372  * \return
7373  * The number of fields processed.  A pointer to the array structure fields is
7374  * stored in \c *fields_ret.
7375  */
7376 static unsigned
ast_process_struct_or_iface_block_members(exec_list * instructions,struct _mesa_glsl_parse_state * state,exec_list * declarations,glsl_struct_field ** fields_ret,bool is_interface,enum glsl_matrix_layout matrix_layout,bool allow_reserved_names,ir_variable_mode var_mode,ast_type_qualifier * layout,unsigned block_stream,unsigned block_xfb_buffer,unsigned block_xfb_offset,unsigned expl_location,unsigned expl_align)7377 ast_process_struct_or_iface_block_members(exec_list *instructions,
7378                                           struct _mesa_glsl_parse_state *state,
7379                                           exec_list *declarations,
7380                                           glsl_struct_field **fields_ret,
7381                                           bool is_interface,
7382                                           enum glsl_matrix_layout matrix_layout,
7383                                           bool allow_reserved_names,
7384                                           ir_variable_mode var_mode,
7385                                           ast_type_qualifier *layout,
7386                                           unsigned block_stream,
7387                                           unsigned block_xfb_buffer,
7388                                           unsigned block_xfb_offset,
7389                                           unsigned expl_location,
7390                                           unsigned expl_align)
7391 {
7392    unsigned decl_count = 0;
7393    unsigned next_offset = 0;
7394 
7395    /* Make an initial pass over the list of fields to determine how
7396     * many there are.  Each element in this list is an ast_declarator_list.
7397     * This means that we actually need to count the number of elements in the
7398     * 'declarations' list in each of the elements.
7399     */
7400    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7401       decl_count += decl_list->declarations.length();
7402    }
7403 
7404    /* Allocate storage for the fields and process the field
7405     * declarations.  As the declarations are processed, try to also convert
7406     * the types to HIR.  This ensures that structure definitions embedded in
7407     * other structure definitions or in interface blocks are processed.
7408     */
7409    glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7410                                                    decl_count);
7411 
7412    bool first_member = true;
7413    bool first_member_has_explicit_location = false;
7414 
7415    unsigned i = 0;
7416    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7417       const char *type_name;
7418       YYLTYPE loc = decl_list->get_location();
7419 
7420       decl_list->type->specifier->hir(instructions, state);
7421 
7422       /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7423        *
7424        *    "Anonymous structures are not supported; so embedded structures
7425        *    must have a declarator. A name given to an embedded struct is
7426        *    scoped at the same level as the struct it is embedded in."
7427        *
7428        * The same section of the  GLSL 1.20 spec says:
7429        *
7430        *    "Anonymous structures are not supported. Embedded structures are
7431        *    not supported."
7432        *
7433        * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7434        * embedded structures in 1.10 only.
7435        */
7436       if (state->language_version != 110 &&
7437           decl_list->type->specifier->structure != NULL)
7438          _mesa_glsl_error(&loc, state,
7439                           "embedded structure declarations are not allowed");
7440 
7441       const glsl_type *decl_type =
7442          decl_list->type->glsl_type(& type_name, state);
7443 
7444       const struct ast_type_qualifier *const qual =
7445          &decl_list->type->qualifier;
7446 
7447       /* From section 4.3.9 of the GLSL 4.40 spec:
7448        *
7449        *    "[In interface blocks] opaque types are not allowed."
7450        *
7451        * It should be impossible for decl_type to be NULL here.  Cases that
7452        * might naturally lead to decl_type being NULL, especially for the
7453        * is_interface case, will have resulted in compilation having
7454        * already halted due to a syntax error.
7455        */
7456       assert(decl_type);
7457 
7458       if (is_interface) {
7459          /* From section 4.3.7 of the ARB_bindless_texture spec:
7460           *
7461           *    "(remove the following bullet from the last list on p. 39,
7462           *     thereby permitting sampler types in interface blocks; image
7463           *     types are also permitted in blocks by this extension)"
7464           *
7465           *     * sampler types are not allowed
7466           */
7467          if (decl_type->contains_atomic() ||
7468              (!state->has_bindless() && decl_type->contains_opaque())) {
7469             _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7470                              "interface block contains %s variable",
7471                              state->has_bindless() ? "atomic" : "opaque");
7472          }
7473       } else {
7474          if (decl_type->contains_atomic()) {
7475             /* From section 4.1.7.3 of the GLSL 4.40 spec:
7476              *
7477              *    "Members of structures cannot be declared as atomic counter
7478              *     types."
7479              */
7480             _mesa_glsl_error(&loc, state, "atomic counter in structure");
7481          }
7482 
7483          if (!state->has_bindless() && decl_type->contains_image()) {
7484             /* FINISHME: Same problem as with atomic counters.
7485              * FINISHME: Request clarification from Khronos and add
7486              * FINISHME: spec quotation here.
7487              */
7488             _mesa_glsl_error(&loc, state, "image in structure");
7489          }
7490       }
7491 
7492       if (qual->flags.q.explicit_binding) {
7493          _mesa_glsl_error(&loc, state,
7494                           "binding layout qualifier cannot be applied "
7495                           "to struct or interface block members");
7496       }
7497 
7498       if (is_interface) {
7499          if (!first_member) {
7500             if (!layout->flags.q.explicit_location &&
7501                 ((first_member_has_explicit_location &&
7502                   !qual->flags.q.explicit_location) ||
7503                  (!first_member_has_explicit_location &&
7504                   qual->flags.q.explicit_location))) {
7505                _mesa_glsl_error(&loc, state,
7506                                 "when block-level location layout qualifier "
7507                                 "is not supplied either all members must "
7508                                 "have a location layout qualifier or all "
7509                                 "members must not have a location layout "
7510                                 "qualifier");
7511             }
7512          } else {
7513             first_member = false;
7514             first_member_has_explicit_location =
7515                qual->flags.q.explicit_location;
7516          }
7517       }
7518 
7519       if (qual->flags.q.std140 ||
7520           qual->flags.q.std430 ||
7521           qual->flags.q.packed ||
7522           qual->flags.q.shared) {
7523          _mesa_glsl_error(&loc, state,
7524                           "uniform/shader storage block layout qualifiers "
7525                           "std140, std430, packed, and shared can only be "
7526                           "applied to uniform/shader storage blocks, not "
7527                           "members");
7528       }
7529 
7530       if (qual->flags.q.constant) {
7531          _mesa_glsl_error(&loc, state,
7532                           "const storage qualifier cannot be applied "
7533                           "to struct or interface block members");
7534       }
7535 
7536       validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7537       validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7538 
7539       /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7540        *
7541        *   "A block member may be declared with a stream identifier, but
7542        *   the specified stream must match the stream associated with the
7543        *   containing block."
7544        */
7545       if (qual->flags.q.explicit_stream) {
7546          unsigned qual_stream;
7547          if (process_qualifier_constant(state, &loc, "stream",
7548                                         qual->stream, &qual_stream) &&
7549              qual_stream != block_stream) {
7550             _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7551                              "interface block member does not match "
7552                              "the interface block (%u vs %u)", qual_stream,
7553                              block_stream);
7554          }
7555       }
7556 
7557       int xfb_buffer;
7558       unsigned explicit_xfb_buffer = 0;
7559       if (qual->flags.q.explicit_xfb_buffer) {
7560          unsigned qual_xfb_buffer;
7561          if (process_qualifier_constant(state, &loc, "xfb_buffer",
7562                                         qual->xfb_buffer, &qual_xfb_buffer)) {
7563             explicit_xfb_buffer = 1;
7564             if (qual_xfb_buffer != block_xfb_buffer)
7565                _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7566                                 "interface block member does not match "
7567                                 "the interface block (%u vs %u)",
7568                                 qual_xfb_buffer, block_xfb_buffer);
7569          }
7570          xfb_buffer = (int) qual_xfb_buffer;
7571       } else {
7572          if (layout)
7573             explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7574          xfb_buffer = (int) block_xfb_buffer;
7575       }
7576 
7577       int xfb_stride = -1;
7578       if (qual->flags.q.explicit_xfb_stride) {
7579          unsigned qual_xfb_stride;
7580          if (process_qualifier_constant(state, &loc, "xfb_stride",
7581                                         qual->xfb_stride, &qual_xfb_stride)) {
7582             xfb_stride = (int) qual_xfb_stride;
7583          }
7584       }
7585 
7586       if (qual->flags.q.uniform && qual->has_interpolation()) {
7587          _mesa_glsl_error(&loc, state,
7588                           "interpolation qualifiers cannot be used "
7589                           "with uniform interface blocks");
7590       }
7591 
7592       if ((qual->flags.q.uniform || !is_interface) &&
7593           qual->has_auxiliary_storage()) {
7594          _mesa_glsl_error(&loc, state,
7595                           "auxiliary storage qualifiers cannot be used "
7596                           "in uniform blocks or structures.");
7597       }
7598 
7599       if (qual->flags.q.row_major || qual->flags.q.column_major) {
7600          if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7601             _mesa_glsl_error(&loc, state,
7602                              "row_major and column_major can only be "
7603                              "applied to interface blocks");
7604          } else
7605             validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7606       }
7607 
7608       foreach_list_typed (ast_declaration, decl, link,
7609                           &decl_list->declarations) {
7610          YYLTYPE loc = decl->get_location();
7611 
7612          if (!allow_reserved_names)
7613             validate_identifier(decl->identifier, loc, state);
7614 
7615          const struct glsl_type *field_type =
7616             process_array_type(&loc, decl_type, decl->array_specifier, state);
7617          validate_array_dimensions(field_type, state, &loc);
7618          fields[i].type = field_type;
7619          fields[i].name = decl->identifier;
7620          fields[i].interpolation =
7621             interpret_interpolation_qualifier(qual, field_type,
7622                                               var_mode, state, &loc);
7623          fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7624          fields[i].sample = qual->flags.q.sample ? 1 : 0;
7625          fields[i].patch = qual->flags.q.patch ? 1 : 0;
7626          fields[i].offset = -1;
7627          fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7628          fields[i].xfb_buffer = xfb_buffer;
7629          fields[i].xfb_stride = xfb_stride;
7630 
7631          if (qual->flags.q.explicit_location) {
7632             unsigned qual_location;
7633             if (process_qualifier_constant(state, &loc, "location",
7634                                            qual->location, &qual_location)) {
7635                fields[i].location = qual_location +
7636                   (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7637                expl_location = fields[i].location +
7638                   fields[i].type->count_attribute_slots(false);
7639             }
7640          } else {
7641             if (layout && layout->flags.q.explicit_location) {
7642                fields[i].location = expl_location;
7643                expl_location += fields[i].type->count_attribute_slots(false);
7644             } else {
7645                fields[i].location = -1;
7646             }
7647          }
7648 
7649          if (qual->flags.q.explicit_component) {
7650             unsigned qual_component;
7651             if (process_qualifier_constant(state, &loc, "component",
7652                                            qual->component, &qual_component)) {
7653                validate_component_layout_for_type(state, &loc, fields[i].type,
7654                                                   qual_component);
7655                fields[i].component = qual_component;
7656             }
7657          } else {
7658             fields[i].component = -1;
7659          }
7660 
7661          /* Offset can only be used with std430 and std140 layouts an initial
7662           * value of 0 is used for error detection.
7663           */
7664          unsigned align = 0;
7665          unsigned size = 0;
7666          if (layout) {
7667             bool row_major;
7668             if (qual->flags.q.row_major ||
7669                 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7670                row_major = true;
7671             } else {
7672                row_major = false;
7673             }
7674 
7675             if(layout->flags.q.std140) {
7676                align = field_type->std140_base_alignment(row_major);
7677                size = field_type->std140_size(row_major);
7678             } else if (layout->flags.q.std430) {
7679                align = field_type->std430_base_alignment(row_major);
7680                size = field_type->std430_size(row_major);
7681             }
7682          }
7683 
7684          if (qual->flags.q.explicit_offset) {
7685             unsigned qual_offset;
7686             if (process_qualifier_constant(state, &loc, "offset",
7687                                            qual->offset, &qual_offset)) {
7688                if (align != 0 && size != 0) {
7689                    if (next_offset > qual_offset)
7690                       _mesa_glsl_error(&loc, state, "layout qualifier "
7691                                        "offset overlaps previous member");
7692 
7693                   if (qual_offset % align) {
7694                      _mesa_glsl_error(&loc, state, "layout qualifier offset "
7695                                       "must be a multiple of the base "
7696                                       "alignment of %s", field_type->name);
7697                   }
7698                   fields[i].offset = qual_offset;
7699                   next_offset = qual_offset + size;
7700                } else {
7701                   _mesa_glsl_error(&loc, state, "offset can only be used "
7702                                    "with std430 and std140 layouts");
7703                }
7704             }
7705          }
7706 
7707          if (qual->flags.q.explicit_align || expl_align != 0) {
7708             unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7709                next_offset;
7710             if (align == 0 || size == 0) {
7711                _mesa_glsl_error(&loc, state, "align can only be used with "
7712                                 "std430 and std140 layouts");
7713             } else if (qual->flags.q.explicit_align) {
7714                unsigned member_align;
7715                if (process_qualifier_constant(state, &loc, "align",
7716                                               qual->align, &member_align)) {
7717                   if (member_align == 0 ||
7718                       member_align & (member_align - 1)) {
7719                      _mesa_glsl_error(&loc, state, "align layout qualifier "
7720                                       "is not a power of 2");
7721                   } else {
7722                      fields[i].offset = glsl_align(offset, member_align);
7723                      next_offset = fields[i].offset + size;
7724                   }
7725                }
7726             } else {
7727                fields[i].offset = glsl_align(offset, expl_align);
7728                next_offset = fields[i].offset + size;
7729             }
7730          } else if (!qual->flags.q.explicit_offset) {
7731             if (align != 0 && size != 0)
7732                next_offset = glsl_align(next_offset, align) + size;
7733          }
7734 
7735          /* From the ARB_enhanced_layouts spec:
7736           *
7737           *    "The given offset applies to the first component of the first
7738           *    member of the qualified entity.  Then, within the qualified
7739           *    entity, subsequent components are each assigned, in order, to
7740           *    the next available offset aligned to a multiple of that
7741           *    component's size.  Aggregate types are flattened down to the
7742           *    component level to get this sequence of components."
7743           */
7744          if (qual->flags.q.explicit_xfb_offset) {
7745             unsigned xfb_offset;
7746             if (process_qualifier_constant(state, &loc, "xfb_offset",
7747                                            qual->offset, &xfb_offset)) {
7748                fields[i].offset = xfb_offset;
7749                block_xfb_offset = fields[i].offset +
7750                   4 * field_type->component_slots();
7751             }
7752          } else {
7753             if (layout && layout->flags.q.explicit_xfb_offset) {
7754                unsigned align = field_type->is_64bit() ? 8 : 4;
7755                fields[i].offset = glsl_align(block_xfb_offset, align);
7756                block_xfb_offset += 4 * field_type->component_slots();
7757             }
7758          }
7759 
7760          /* Propogate row- / column-major information down the fields of the
7761           * structure or interface block.  Structures need this data because
7762           * the structure may contain a structure that contains ... a matrix
7763           * that need the proper layout.
7764           */
7765          if (is_interface && layout &&
7766              (layout->flags.q.uniform || layout->flags.q.buffer) &&
7767              (field_type->without_array()->is_matrix()
7768               || field_type->without_array()->is_struct())) {
7769             /* If no layout is specified for the field, inherit the layout
7770              * from the block.
7771              */
7772             fields[i].matrix_layout = matrix_layout;
7773 
7774             if (qual->flags.q.row_major)
7775                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7776             else if (qual->flags.q.column_major)
7777                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7778 
7779             /* If we're processing an uniform or buffer block, the matrix
7780              * layout must be decided by this point.
7781              */
7782             assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7783                    || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7784          }
7785 
7786          /* Memory qualifiers are allowed on buffer and image variables, while
7787           * the format qualifier is only accepted for images.
7788           */
7789          if (var_mode == ir_var_shader_storage ||
7790              field_type->without_array()->is_image()) {
7791             /* For readonly and writeonly qualifiers the field definition,
7792              * if set, overwrites the layout qualifier.
7793              */
7794             if (qual->flags.q.read_only || qual->flags.q.write_only) {
7795                fields[i].memory_read_only = qual->flags.q.read_only;
7796                fields[i].memory_write_only = qual->flags.q.write_only;
7797             } else {
7798                fields[i].memory_read_only =
7799                   layout ? layout->flags.q.read_only : 0;
7800                fields[i].memory_write_only =
7801                   layout ? layout->flags.q.write_only : 0;
7802             }
7803 
7804             /* For other qualifiers, we set the flag if either the layout
7805              * qualifier or the field qualifier are set
7806              */
7807             fields[i].memory_coherent = qual->flags.q.coherent ||
7808                                         (layout && layout->flags.q.coherent);
7809             fields[i].memory_volatile = qual->flags.q._volatile ||
7810                                         (layout && layout->flags.q._volatile);
7811             fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7812                                         (layout && layout->flags.q.restrict_flag);
7813 
7814             if (field_type->without_array()->is_image()) {
7815                if (qual->flags.q.explicit_image_format) {
7816                   if (qual->image_base_type !=
7817                       field_type->without_array()->sampled_type) {
7818                      _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7819                                       "match the base data type of the image");
7820                   }
7821 
7822                   fields[i].image_format = qual->image_format;
7823                } else {
7824                   if (!qual->flags.q.write_only) {
7825                      _mesa_glsl_error(&loc, state, "image not qualified with "
7826                                       "`writeonly' must have a format layout "
7827                                       "qualifier");
7828                   }
7829 
7830                   fields[i].image_format = PIPE_FORMAT_NONE;
7831                }
7832             }
7833          }
7834 
7835          /* Precision qualifiers do not hold any meaning in Desktop GLSL */
7836          if (state->es_shader) {
7837             fields[i].precision = select_gles_precision(qual->precision,
7838                                                         field_type,
7839                                                         state,
7840                                                         &loc);
7841          } else {
7842             fields[i].precision = qual->precision;
7843          }
7844 
7845          i++;
7846       }
7847    }
7848 
7849    assert(i == decl_count);
7850 
7851    *fields_ret = fields;
7852    return decl_count;
7853 }
7854 
7855 
7856 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7857 ast_struct_specifier::hir(exec_list *instructions,
7858                           struct _mesa_glsl_parse_state *state)
7859 {
7860    YYLTYPE loc = this->get_location();
7861 
7862    unsigned expl_location = 0;
7863    if (layout && layout->flags.q.explicit_location) {
7864       if (!process_qualifier_constant(state, &loc, "location",
7865                                       layout->location, &expl_location)) {
7866          return NULL;
7867       } else {
7868          expl_location = VARYING_SLOT_VAR0 + expl_location;
7869       }
7870    }
7871 
7872    glsl_struct_field *fields;
7873    unsigned decl_count =
7874       ast_process_struct_or_iface_block_members(instructions,
7875                                                 state,
7876                                                 &this->declarations,
7877                                                 &fields,
7878                                                 false,
7879                                                 GLSL_MATRIX_LAYOUT_INHERITED,
7880                                                 false /* allow_reserved_names */,
7881                                                 ir_var_auto,
7882                                                 layout,
7883                                                 0, /* for interface only */
7884                                                 0, /* for interface only */
7885                                                 0, /* for interface only */
7886                                                 expl_location,
7887                                                 0 /* for interface only */);
7888 
7889    validate_identifier(this->name, loc, state);
7890 
7891    type = glsl_type::get_struct_instance(fields, decl_count, this->name);
7892 
7893    if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7894       const glsl_type *match = state->symbols->get_type(name);
7895       /* allow struct matching for desktop GL - older UE4 does this */
7896       if (match != NULL && state->is_version(130, 0) && match->record_compare(type, true, false))
7897          _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7898       else
7899          _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7900    } else {
7901       const glsl_type **s = reralloc(state, state->user_structures,
7902                                      const glsl_type *,
7903                                      state->num_user_structures + 1);
7904       if (s != NULL) {
7905          s[state->num_user_structures] = type;
7906          state->user_structures = s;
7907          state->num_user_structures++;
7908       }
7909    }
7910 
7911    /* Structure type definitions do not have r-values.
7912     */
7913    return NULL;
7914 }
7915 
7916 
7917 /**
7918  * Visitor class which detects whether a given interface block has been used.
7919  */
7920 class interface_block_usage_visitor : public ir_hierarchical_visitor
7921 {
7922 public:
interface_block_usage_visitor(ir_variable_mode mode,const glsl_type * block)7923    interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7924       : mode(mode), block(block), found(false)
7925    {
7926    }
7927 
visit(ir_dereference_variable * ir)7928    virtual ir_visitor_status visit(ir_dereference_variable *ir)
7929    {
7930       if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7931          found = true;
7932          return visit_stop;
7933       }
7934       return visit_continue;
7935    }
7936 
usage_found() const7937    bool usage_found() const
7938    {
7939       return this->found;
7940    }
7941 
7942 private:
7943    ir_variable_mode mode;
7944    const glsl_type *block;
7945    bool found;
7946 };
7947 
7948 static bool
is_unsized_array_last_element(ir_variable * v)7949 is_unsized_array_last_element(ir_variable *v)
7950 {
7951    const glsl_type *interface_type = v->get_interface_type();
7952    int length = interface_type->length;
7953 
7954    assert(v->type->is_unsized_array());
7955 
7956    /* Check if it is the last element of the interface */
7957    if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7958       return true;
7959    return false;
7960 }
7961 
7962 static void
apply_memory_qualifiers(ir_variable * var,glsl_struct_field field)7963 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7964 {
7965    var->data.memory_read_only = field.memory_read_only;
7966    var->data.memory_write_only = field.memory_write_only;
7967    var->data.memory_coherent = field.memory_coherent;
7968    var->data.memory_volatile = field.memory_volatile;
7969    var->data.memory_restrict = field.memory_restrict;
7970 }
7971 
7972 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7973 ast_interface_block::hir(exec_list *instructions,
7974                          struct _mesa_glsl_parse_state *state)
7975 {
7976    YYLTYPE loc = this->get_location();
7977 
7978    /* Interface blocks must be declared at global scope */
7979    if (state->current_function != NULL) {
7980       _mesa_glsl_error(&loc, state,
7981                        "Interface block `%s' must be declared "
7982                        "at global scope",
7983                        this->block_name);
7984    }
7985 
7986    /* Validate qualifiers:
7987     *
7988     * - Layout Qualifiers as per the table in Section 4.4
7989     *   ("Layout Qualifiers") of the GLSL 4.50 spec.
7990     *
7991     * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7992     *   GLSL 4.50 spec:
7993     *
7994     *     "Additionally, memory qualifiers may also be used in the declaration
7995     *      of shader storage blocks"
7996     *
7997     * Note the table in Section 4.4 says std430 is allowed on both uniform and
7998     * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7999     * Layout Qualifiers) of the GLSL 4.50 spec says:
8000     *
8001     *    "The std430 qualifier is supported only for shader storage blocks;
8002     *    using std430 on a uniform block will result in a compile-time error."
8003     */
8004    ast_type_qualifier allowed_blk_qualifiers;
8005    allowed_blk_qualifiers.flags.i = 0;
8006    if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
8007       allowed_blk_qualifiers.flags.q.shared = 1;
8008       allowed_blk_qualifiers.flags.q.packed = 1;
8009       allowed_blk_qualifiers.flags.q.std140 = 1;
8010       allowed_blk_qualifiers.flags.q.row_major = 1;
8011       allowed_blk_qualifiers.flags.q.column_major = 1;
8012       allowed_blk_qualifiers.flags.q.explicit_align = 1;
8013       allowed_blk_qualifiers.flags.q.explicit_binding = 1;
8014       if (this->layout.flags.q.buffer) {
8015          allowed_blk_qualifiers.flags.q.buffer = 1;
8016          allowed_blk_qualifiers.flags.q.std430 = 1;
8017          allowed_blk_qualifiers.flags.q.coherent = 1;
8018          allowed_blk_qualifiers.flags.q._volatile = 1;
8019          allowed_blk_qualifiers.flags.q.restrict_flag = 1;
8020          allowed_blk_qualifiers.flags.q.read_only = 1;
8021          allowed_blk_qualifiers.flags.q.write_only = 1;
8022       } else {
8023          allowed_blk_qualifiers.flags.q.uniform = 1;
8024       }
8025    } else {
8026       /* Interface block */
8027       assert(this->layout.flags.q.in || this->layout.flags.q.out);
8028 
8029       allowed_blk_qualifiers.flags.q.explicit_location = 1;
8030       if (this->layout.flags.q.out) {
8031          allowed_blk_qualifiers.flags.q.out = 1;
8032          if (state->stage == MESA_SHADER_GEOMETRY ||
8033              state->stage == MESA_SHADER_TESS_CTRL ||
8034              state->stage == MESA_SHADER_TESS_EVAL ||
8035              state->stage == MESA_SHADER_VERTEX ) {
8036             allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
8037             allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
8038             allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
8039             allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
8040             allowed_blk_qualifiers.flags.q.xfb_stride = 1;
8041          }
8042          if (state->stage == MESA_SHADER_GEOMETRY) {
8043             allowed_blk_qualifiers.flags.q.stream = 1;
8044             allowed_blk_qualifiers.flags.q.explicit_stream = 1;
8045          }
8046          if (state->stage == MESA_SHADER_TESS_CTRL) {
8047             allowed_blk_qualifiers.flags.q.patch = 1;
8048          }
8049       } else {
8050          allowed_blk_qualifiers.flags.q.in = 1;
8051          if (state->stage == MESA_SHADER_TESS_EVAL) {
8052             allowed_blk_qualifiers.flags.q.patch = 1;
8053          }
8054       }
8055    }
8056 
8057    this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
8058                                "invalid qualifier for block",
8059                                this->block_name);
8060 
8061    enum glsl_interface_packing packing;
8062    if (this->layout.flags.q.std140) {
8063       packing = GLSL_INTERFACE_PACKING_STD140;
8064    } else if (this->layout.flags.q.packed) {
8065       packing = GLSL_INTERFACE_PACKING_PACKED;
8066    } else if (this->layout.flags.q.std430) {
8067       packing = GLSL_INTERFACE_PACKING_STD430;
8068    } else {
8069       /* The default layout is shared.
8070        */
8071       packing = GLSL_INTERFACE_PACKING_SHARED;
8072    }
8073 
8074    ir_variable_mode var_mode;
8075    const char *iface_type_name;
8076    if (this->layout.flags.q.in) {
8077       var_mode = ir_var_shader_in;
8078       iface_type_name = "in";
8079    } else if (this->layout.flags.q.out) {
8080       var_mode = ir_var_shader_out;
8081       iface_type_name = "out";
8082    } else if (this->layout.flags.q.uniform) {
8083       var_mode = ir_var_uniform;
8084       iface_type_name = "uniform";
8085    } else if (this->layout.flags.q.buffer) {
8086       var_mode = ir_var_shader_storage;
8087       iface_type_name = "buffer";
8088    } else {
8089       var_mode = ir_var_auto;
8090       iface_type_name = "UNKNOWN";
8091       assert(!"interface block layout qualifier not found!");
8092    }
8093 
8094    enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
8095    if (this->layout.flags.q.row_major)
8096       matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
8097    else if (this->layout.flags.q.column_major)
8098       matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
8099 
8100    bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
8101    exec_list declared_variables;
8102    glsl_struct_field *fields;
8103 
8104    /* For blocks that accept memory qualifiers (i.e. shader storage), verify
8105     * that we don't have incompatible qualifiers
8106     */
8107    if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
8108       _mesa_glsl_error(&loc, state,
8109                        "Interface block sets both readonly and writeonly");
8110    }
8111 
8112    unsigned qual_stream;
8113    if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
8114                                    &qual_stream) ||
8115        !validate_stream_qualifier(&loc, state, qual_stream)) {
8116       /* If the stream qualifier is invalid it doesn't make sense to continue
8117        * on and try to compare stream layouts on member variables against it
8118        * so just return early.
8119        */
8120       return NULL;
8121    }
8122 
8123    unsigned qual_xfb_buffer = 0;
8124    if (layout.flags.q.xfb_buffer) {
8125       if (!process_qualifier_constant(state, &loc, "xfb_buffer",
8126                                       layout.xfb_buffer, &qual_xfb_buffer) ||
8127           !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
8128          return NULL;
8129       }
8130    }
8131 
8132    unsigned qual_xfb_offset = 0;
8133    if (layout.flags.q.explicit_xfb_offset) {
8134       if (!process_qualifier_constant(state, &loc, "xfb_offset",
8135                                       layout.offset, &qual_xfb_offset)) {
8136          return NULL;
8137       }
8138    }
8139 
8140    unsigned qual_xfb_stride = 0;
8141    if (layout.flags.q.explicit_xfb_stride) {
8142       if (!process_qualifier_constant(state, &loc, "xfb_stride",
8143                                       layout.xfb_stride, &qual_xfb_stride)) {
8144          return NULL;
8145       }
8146    }
8147 
8148    unsigned expl_location = 0;
8149    if (layout.flags.q.explicit_location) {
8150       if (!process_qualifier_constant(state, &loc, "location",
8151                                       layout.location, &expl_location)) {
8152          return NULL;
8153       } else {
8154          expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
8155                                                      : VARYING_SLOT_VAR0;
8156       }
8157    }
8158 
8159    unsigned expl_align = 0;
8160    if (layout.flags.q.explicit_align) {
8161       if (!process_qualifier_constant(state, &loc, "align",
8162                                       layout.align, &expl_align)) {
8163          return NULL;
8164       } else {
8165          if (expl_align == 0 || expl_align & (expl_align - 1)) {
8166             _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
8167                              "power of 2.");
8168             return NULL;
8169          }
8170       }
8171    }
8172 
8173    unsigned int num_variables =
8174       ast_process_struct_or_iface_block_members(&declared_variables,
8175                                                 state,
8176                                                 &this->declarations,
8177                                                 &fields,
8178                                                 true,
8179                                                 matrix_layout,
8180                                                 redeclaring_per_vertex,
8181                                                 var_mode,
8182                                                 &this->layout,
8183                                                 qual_stream,
8184                                                 qual_xfb_buffer,
8185                                                 qual_xfb_offset,
8186                                                 expl_location,
8187                                                 expl_align);
8188 
8189    if (!redeclaring_per_vertex) {
8190       validate_identifier(this->block_name, loc, state);
8191 
8192       /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
8193        *
8194        *     "Block names have no other use within a shader beyond interface
8195        *     matching; it is a compile-time error to use a block name at global
8196        *     scope for anything other than as a block name."
8197        */
8198       ir_variable *var = state->symbols->get_variable(this->block_name);
8199       if (var && !var->type->is_interface()) {
8200          _mesa_glsl_error(&loc, state, "Block name `%s' is "
8201                           "already used in the scope.",
8202                           this->block_name);
8203       }
8204    }
8205 
8206    const glsl_type *earlier_per_vertex = NULL;
8207    if (redeclaring_per_vertex) {
8208       /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
8209        * the named interface block gl_in, we can find it by looking at the
8210        * previous declaration of gl_in.  Otherwise we can find it by looking
8211        * at the previous decalartion of any of the built-in outputs,
8212        * e.g. gl_Position.
8213        *
8214        * Also check that the instance name and array-ness of the redeclaration
8215        * are correct.
8216        */
8217       switch (var_mode) {
8218       case ir_var_shader_in:
8219          if (ir_variable *earlier_gl_in =
8220              state->symbols->get_variable("gl_in")) {
8221             earlier_per_vertex = earlier_gl_in->get_interface_type();
8222          } else {
8223             _mesa_glsl_error(&loc, state,
8224                              "redeclaration of gl_PerVertex input not allowed "
8225                              "in the %s shader",
8226                              _mesa_shader_stage_to_string(state->stage));
8227          }
8228          if (this->instance_name == NULL ||
8229              strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
8230              !this->array_specifier->is_single_dimension()) {
8231             _mesa_glsl_error(&loc, state,
8232                              "gl_PerVertex input must be redeclared as "
8233                              "gl_in[]");
8234          }
8235          break;
8236       case ir_var_shader_out:
8237          if (ir_variable *earlier_gl_Position =
8238              state->symbols->get_variable("gl_Position")) {
8239             earlier_per_vertex = earlier_gl_Position->get_interface_type();
8240          } else if (ir_variable *earlier_gl_out =
8241                state->symbols->get_variable("gl_out")) {
8242             earlier_per_vertex = earlier_gl_out->get_interface_type();
8243          } else {
8244             _mesa_glsl_error(&loc, state,
8245                              "redeclaration of gl_PerVertex output not "
8246                              "allowed in the %s shader",
8247                              _mesa_shader_stage_to_string(state->stage));
8248          }
8249          if (state->stage == MESA_SHADER_TESS_CTRL) {
8250             if (this->instance_name == NULL ||
8251                 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
8252                _mesa_glsl_error(&loc, state,
8253                                 "gl_PerVertex output must be redeclared as "
8254                                 "gl_out[]");
8255             }
8256          } else {
8257             if (this->instance_name != NULL) {
8258                _mesa_glsl_error(&loc, state,
8259                                 "gl_PerVertex output may not be redeclared with "
8260                                 "an instance name");
8261             }
8262          }
8263          break;
8264       default:
8265          _mesa_glsl_error(&loc, state,
8266                           "gl_PerVertex must be declared as an input or an "
8267                           "output");
8268          break;
8269       }
8270 
8271       if (earlier_per_vertex == NULL) {
8272          /* An error has already been reported.  Bail out to avoid null
8273           * dereferences later in this function.
8274           */
8275          return NULL;
8276       }
8277 
8278       /* Copy locations from the old gl_PerVertex interface block. */
8279       for (unsigned i = 0; i < num_variables; i++) {
8280          int j = earlier_per_vertex->field_index(fields[i].name);
8281          if (j == -1) {
8282             _mesa_glsl_error(&loc, state,
8283                              "redeclaration of gl_PerVertex must be a subset "
8284                              "of the built-in members of gl_PerVertex");
8285          } else {
8286             fields[i].location =
8287                earlier_per_vertex->fields.structure[j].location;
8288             fields[i].offset =
8289                earlier_per_vertex->fields.structure[j].offset;
8290             fields[i].interpolation =
8291                earlier_per_vertex->fields.structure[j].interpolation;
8292             fields[i].centroid =
8293                earlier_per_vertex->fields.structure[j].centroid;
8294             fields[i].sample =
8295                earlier_per_vertex->fields.structure[j].sample;
8296             fields[i].patch =
8297                earlier_per_vertex->fields.structure[j].patch;
8298             fields[i].precision =
8299                earlier_per_vertex->fields.structure[j].precision;
8300             fields[i].explicit_xfb_buffer =
8301                earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
8302             fields[i].xfb_buffer =
8303                earlier_per_vertex->fields.structure[j].xfb_buffer;
8304             fields[i].xfb_stride =
8305                earlier_per_vertex->fields.structure[j].xfb_stride;
8306          }
8307       }
8308 
8309       /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8310        * spec:
8311        *
8312        *     If a built-in interface block is redeclared, it must appear in
8313        *     the shader before any use of any member included in the built-in
8314        *     declaration, or a compilation error will result.
8315        *
8316        * This appears to be a clarification to the behaviour established for
8317        * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8318        * regardless of GLSL version.
8319        */
8320       interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8321       v.run(instructions);
8322       if (v.usage_found()) {
8323          _mesa_glsl_error(&loc, state,
8324                           "redeclaration of a built-in interface block must "
8325                           "appear before any use of any member of the "
8326                           "interface block");
8327       }
8328    }
8329 
8330    const glsl_type *block_type =
8331       glsl_type::get_interface_instance(fields,
8332                                         num_variables,
8333                                         packing,
8334                                         matrix_layout ==
8335                                            GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8336                                         this->block_name);
8337 
8338    unsigned component_size = block_type->contains_double() ? 8 : 4;
8339    int xfb_offset =
8340       layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8341    validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8342                                  component_size);
8343 
8344    if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8345       YYLTYPE loc = this->get_location();
8346       _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8347                        "already taken in the current scope",
8348                        this->block_name, iface_type_name);
8349    }
8350 
8351    /* Since interface blocks cannot contain statements, it should be
8352     * impossible for the block to generate any instructions.
8353     */
8354    assert(declared_variables.is_empty());
8355 
8356    /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8357     *
8358     *     Geometry shader input variables get the per-vertex values written
8359     *     out by vertex shader output variables of the same names. Since a
8360     *     geometry shader operates on a set of vertices, each input varying
8361     *     variable (or input block, see interface blocks below) needs to be
8362     *     declared as an array.
8363     */
8364    if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8365        var_mode == ir_var_shader_in) {
8366       _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8367    } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8368                state->stage == MESA_SHADER_TESS_EVAL) &&
8369               !this->layout.flags.q.patch &&
8370               this->array_specifier == NULL &&
8371               var_mode == ir_var_shader_in) {
8372       _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8373    } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8374               !this->layout.flags.q.patch &&
8375               this->array_specifier == NULL &&
8376               var_mode == ir_var_shader_out) {
8377       _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8378    }
8379 
8380 
8381    /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8382     * says:
8383     *
8384     *     "If an instance name (instance-name) is used, then it puts all the
8385     *     members inside a scope within its own name space, accessed with the
8386     *     field selector ( . ) operator (analogously to structures)."
8387     */
8388    if (this->instance_name) {
8389       if (redeclaring_per_vertex) {
8390          /* When a built-in in an unnamed interface block is redeclared,
8391           * get_variable_being_redeclared() calls
8392           * check_builtin_array_max_size() to make sure that built-in array
8393           * variables aren't redeclared to illegal sizes.  But we're looking
8394           * at a redeclaration of a named built-in interface block.  So we
8395           * have to manually call check_builtin_array_max_size() for all parts
8396           * of the interface that are arrays.
8397           */
8398          for (unsigned i = 0; i < num_variables; i++) {
8399             if (fields[i].type->is_array()) {
8400                const unsigned size = fields[i].type->array_size();
8401                check_builtin_array_max_size(fields[i].name, size, loc, state);
8402             }
8403          }
8404       } else {
8405          validate_identifier(this->instance_name, loc, state);
8406       }
8407 
8408       ir_variable *var;
8409 
8410       if (this->array_specifier != NULL) {
8411          const glsl_type *block_array_type =
8412             process_array_type(&loc, block_type, this->array_specifier, state);
8413 
8414          /* From Section 4.4.1 (Input Layout Qualifiers) of the GLSL 4.50 spec:
8415           *
8416           *    "For some blocks declared as arrays, the location can only be applied
8417           *    at the block level: When a block is declared as an array where
8418           *    additional locations are needed for each member for each block array
8419           *    element, it is a compile-time error to specify locations on the block
8420           *    members. That is, when locations would be under specified by applying
8421           *    them on block members, they are not allowed on block members. For
8422           *    arrayed interfaces (those generally having an extra level of
8423           *    arrayness due to interface expansion), the outer array is stripped
8424           *    before applying this rule"
8425           *
8426           * From 4.4.1 (Input Layout Qualifiers) and
8427           * 4.4.2 (Output Layout Qualifiers) of GLSL ES 3.20
8428           *
8429           *    "If an input is declared as an array of blocks, excluding
8430           *     per-vertex-arrays as required for tessellation, it is an error
8431           *     to declare a member of the block with a location qualifier."
8432           *
8433           *    "If an output is declared as an array of blocks, excluding
8434           *     per-vertex-arrays as required for tessellation, it is an error
8435           *     to declare a member of the block with a location qualifier."
8436           */
8437          if (!redeclaring_per_vertex &&
8438              (state->has_enhanced_layouts() || state->has_shader_io_blocks())) {
8439             bool allow_location;
8440             switch (state->stage)
8441             {
8442             case MESA_SHADER_TESS_CTRL:
8443                allow_location = this->array_specifier->is_single_dimension();
8444                break;
8445             case MESA_SHADER_TESS_EVAL:
8446             case MESA_SHADER_GEOMETRY:
8447                allow_location = (this->array_specifier->is_single_dimension()
8448                                  && var_mode == ir_var_shader_in);
8449                break;
8450             default:
8451                allow_location = false;
8452                break;
8453             }
8454 
8455             if (!allow_location) {
8456                for (unsigned i = 0; i < num_variables; i++) {
8457                   if (fields[i].location != -1) {
8458                      _mesa_glsl_error(&loc, state,
8459                                        "explicit member locations are not allowed in "
8460                                        "blocks declared as arrays %s shader",
8461                                        _mesa_shader_stage_to_string(state->stage));
8462                   }
8463                }
8464             }
8465          }
8466 
8467          /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8468           *
8469           *     For uniform blocks declared an array, each individual array
8470           *     element corresponds to a separate buffer object backing one
8471           *     instance of the block. As the array size indicates the number
8472           *     of buffer objects needed, uniform block array declarations
8473           *     must specify an array size.
8474           *
8475           * And a few paragraphs later:
8476           *
8477           *     Geometry shader input blocks must be declared as arrays and
8478           *     follow the array declaration and linking rules for all
8479           *     geometry shader inputs. All other input and output block
8480           *     arrays must specify an array size.
8481           *
8482           * The same applies to tessellation shaders.
8483           *
8484           * The upshot of this is that the only circumstance where an
8485           * interface array size *doesn't* need to be specified is on a
8486           * geometry shader input, tessellation control shader input,
8487           * tessellation control shader output, and tessellation evaluation
8488           * shader input.
8489           */
8490          if (block_array_type->is_unsized_array()) {
8491             bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8492                                 state->stage == MESA_SHADER_TESS_CTRL ||
8493                                 state->stage == MESA_SHADER_TESS_EVAL;
8494             bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8495 
8496             if (this->layout.flags.q.in) {
8497                if (!allow_inputs)
8498                   _mesa_glsl_error(&loc, state,
8499                                    "unsized input block arrays not allowed in "
8500                                    "%s shader",
8501                                    _mesa_shader_stage_to_string(state->stage));
8502             } else if (this->layout.flags.q.out) {
8503                if (!allow_outputs)
8504                   _mesa_glsl_error(&loc, state,
8505                                    "unsized output block arrays not allowed in "
8506                                    "%s shader",
8507                                    _mesa_shader_stage_to_string(state->stage));
8508             } else {
8509                /* by elimination, this is a uniform block array */
8510                _mesa_glsl_error(&loc, state,
8511                                 "unsized uniform block arrays not allowed in "
8512                                 "%s shader",
8513                                 _mesa_shader_stage_to_string(state->stage));
8514             }
8515          }
8516 
8517          /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8518           *
8519           *     * Arrays of arrays of blocks are not allowed
8520           */
8521          if (state->es_shader && block_array_type->is_array() &&
8522              block_array_type->fields.array->is_array()) {
8523             _mesa_glsl_error(&loc, state,
8524                              "arrays of arrays interface blocks are "
8525                              "not allowed");
8526          }
8527 
8528          var = new(state) ir_variable(block_array_type,
8529                                       this->instance_name,
8530                                       var_mode);
8531       } else {
8532          var = new(state) ir_variable(block_type,
8533                                       this->instance_name,
8534                                       var_mode);
8535       }
8536 
8537       var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8538          ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8539 
8540       if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8541          var->data.read_only = true;
8542 
8543       var->data.patch = this->layout.flags.q.patch;
8544 
8545       if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8546          handle_geometry_shader_input_decl(state, loc, var);
8547       else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8548            state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8549          handle_tess_shader_input_decl(state, loc, var);
8550       else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8551          handle_tess_ctrl_shader_output_decl(state, loc, var);
8552 
8553       for (unsigned i = 0; i < num_variables; i++) {
8554          if (var->data.mode == ir_var_shader_storage)
8555             apply_memory_qualifiers(var, fields[i]);
8556       }
8557 
8558       if (ir_variable *earlier =
8559           state->symbols->get_variable(this->instance_name)) {
8560          if (!redeclaring_per_vertex) {
8561             _mesa_glsl_error(&loc, state, "`%s' redeclared",
8562                              this->instance_name);
8563          }
8564          earlier->data.how_declared = ir_var_declared_normally;
8565          earlier->type = var->type;
8566          earlier->reinit_interface_type(block_type);
8567          delete var;
8568       } else {
8569          if (this->layout.flags.q.explicit_binding) {
8570             apply_explicit_binding(state, &loc, var, var->type,
8571                                    &this->layout);
8572          }
8573 
8574          var->data.stream = qual_stream;
8575          if (layout.flags.q.explicit_location) {
8576             var->data.location = expl_location;
8577             var->data.explicit_location = true;
8578          }
8579 
8580          state->symbols->add_variable(var);
8581          instructions->push_tail(var);
8582       }
8583    } else {
8584       /* In order to have an array size, the block must also be declared with
8585        * an instance name.
8586        */
8587       assert(this->array_specifier == NULL);
8588 
8589       for (unsigned i = 0; i < num_variables; i++) {
8590          ir_variable *var =
8591             new(state) ir_variable(fields[i].type,
8592                                    ralloc_strdup(state, fields[i].name),
8593                                    var_mode);
8594          var->data.interpolation = fields[i].interpolation;
8595          var->data.centroid = fields[i].centroid;
8596          var->data.sample = fields[i].sample;
8597          var->data.patch = fields[i].patch;
8598          var->data.stream = qual_stream;
8599          var->data.location = fields[i].location;
8600 
8601          if (fields[i].location != -1)
8602             var->data.explicit_location = true;
8603 
8604          var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8605          var->data.xfb_buffer = fields[i].xfb_buffer;
8606 
8607          if (fields[i].offset != -1)
8608             var->data.explicit_xfb_offset = true;
8609          var->data.offset = fields[i].offset;
8610 
8611          var->init_interface_type(block_type);
8612 
8613          if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8614             var->data.read_only = true;
8615 
8616          /* Precision qualifiers do not have any meaning in Desktop GLSL */
8617          if (state->es_shader) {
8618             var->data.precision =
8619                select_gles_precision(fields[i].precision, fields[i].type,
8620                                      state, &loc);
8621          }
8622 
8623          if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8624             var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8625                ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8626          } else {
8627             var->data.matrix_layout = fields[i].matrix_layout;
8628          }
8629 
8630          if (var->data.mode == ir_var_shader_storage)
8631             apply_memory_qualifiers(var, fields[i]);
8632 
8633          /* Examine var name here since var may get deleted in the next call */
8634          bool var_is_gl_id = is_gl_identifier(var->name);
8635 
8636          if (redeclaring_per_vertex) {
8637             bool is_redeclaration;
8638             var =
8639                get_variable_being_redeclared(&var, loc, state,
8640                                              true /* allow_all_redeclarations */,
8641                                              &is_redeclaration);
8642             if (!var_is_gl_id || !is_redeclaration) {
8643                _mesa_glsl_error(&loc, state,
8644                                 "redeclaration of gl_PerVertex can only "
8645                                 "include built-in variables");
8646             } else if (var->data.how_declared == ir_var_declared_normally) {
8647                _mesa_glsl_error(&loc, state,
8648                                 "`%s' has already been redeclared",
8649                                 var->name);
8650             } else {
8651                var->data.how_declared = ir_var_declared_in_block;
8652                var->reinit_interface_type(block_type);
8653             }
8654             continue;
8655          }
8656 
8657          if (state->symbols->get_variable(var->name) != NULL)
8658             _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8659 
8660          /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8661           * The UBO declaration itself doesn't get an ir_variable unless it
8662           * has an instance name.  This is ugly.
8663           */
8664          if (this->layout.flags.q.explicit_binding) {
8665             apply_explicit_binding(state, &loc, var,
8666                                    var->get_interface_type(), &this->layout);
8667          }
8668 
8669          if (var->type->is_unsized_array()) {
8670             if (var->is_in_shader_storage_block() &&
8671                 is_unsized_array_last_element(var)) {
8672                var->data.from_ssbo_unsized_array = true;
8673             } else {
8674                /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8675                 *
8676                 * "If an array is declared as the last member of a shader storage
8677                 * block and the size is not specified at compile-time, it is
8678                 * sized at run-time. In all other cases, arrays are sized only
8679                 * at compile-time."
8680                 *
8681                 * In desktop GLSL it is allowed to have unsized-arrays that are
8682                 * not last, as long as we can determine that they are implicitly
8683                 * sized.
8684                 */
8685                if (state->es_shader) {
8686                   _mesa_glsl_error(&loc, state, "unsized array `%s' "
8687                                    "definition: only last member of a shader "
8688                                    "storage block can be defined as unsized "
8689                                    "array", fields[i].name);
8690                }
8691             }
8692          }
8693 
8694          state->symbols->add_variable(var);
8695          instructions->push_tail(var);
8696       }
8697 
8698       if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8699          /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8700           *
8701           *     It is also a compilation error ... to redeclare a built-in
8702           *     block and then use a member from that built-in block that was
8703           *     not included in the redeclaration.
8704           *
8705           * This appears to be a clarification to the behaviour established
8706           * for gl_PerVertex by GLSL 1.50, therefore we implement this
8707           * behaviour regardless of GLSL version.
8708           *
8709           * To prevent the shader from using a member that was not included in
8710           * the redeclaration, we disable any ir_variables that are still
8711           * associated with the old declaration of gl_PerVertex (since we've
8712           * already updated all of the variables contained in the new
8713           * gl_PerVertex to point to it).
8714           *
8715           * As a side effect this will prevent
8716           * validate_intrastage_interface_blocks() from getting confused and
8717           * thinking there are conflicting definitions of gl_PerVertex in the
8718           * shader.
8719           */
8720          foreach_in_list_safe(ir_instruction, node, instructions) {
8721             ir_variable *const var = node->as_variable();
8722             if (var != NULL &&
8723                 var->get_interface_type() == earlier_per_vertex &&
8724                 var->data.mode == var_mode) {
8725                if (var->data.how_declared == ir_var_declared_normally) {
8726                   _mesa_glsl_error(&loc, state,
8727                                    "redeclaration of gl_PerVertex cannot "
8728                                    "follow a redeclaration of `%s'",
8729                                    var->name);
8730                }
8731                state->symbols->disable_variable(var->name);
8732                var->remove();
8733             }
8734          }
8735       }
8736    }
8737 
8738    return NULL;
8739 }
8740 
8741 
8742 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8743 ast_tcs_output_layout::hir(exec_list *instructions,
8744                            struct _mesa_glsl_parse_state *state)
8745 {
8746    YYLTYPE loc = this->get_location();
8747 
8748    unsigned num_vertices;
8749    if (!state->out_qualifier->vertices->
8750           process_qualifier_constant(state, "vertices", &num_vertices,
8751                                      false)) {
8752       /* return here to stop cascading incorrect error messages */
8753      return NULL;
8754    }
8755 
8756    /* If any shader outputs occurred before this declaration and specified an
8757     * array size, make sure the size they specified is consistent with the
8758     * primitive type.
8759     */
8760    if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8761       _mesa_glsl_error(&loc, state,
8762                        "this tessellation control shader output layout "
8763                        "specifies %u vertices, but a previous output "
8764                        "is declared with size %u",
8765                        num_vertices, state->tcs_output_size);
8766       return NULL;
8767    }
8768 
8769    state->tcs_output_vertices_specified = true;
8770 
8771    /* If any shader outputs occurred before this declaration and did not
8772     * specify an array size, their size is determined now.
8773     */
8774    foreach_in_list (ir_instruction, node, instructions) {
8775       ir_variable *var = node->as_variable();
8776       if (var == NULL || var->data.mode != ir_var_shader_out)
8777          continue;
8778 
8779       /* Note: Not all tessellation control shader output are arrays. */
8780       if (!var->type->is_unsized_array() || var->data.patch)
8781          continue;
8782 
8783       if (var->data.max_array_access >= (int)num_vertices) {
8784          _mesa_glsl_error(&loc, state,
8785                           "this tessellation control shader output layout "
8786                           "specifies %u vertices, but an access to element "
8787                           "%u of output `%s' already exists", num_vertices,
8788                           var->data.max_array_access, var->name);
8789       } else {
8790          var->type = glsl_type::get_array_instance(var->type->fields.array,
8791                                                    num_vertices);
8792       }
8793    }
8794 
8795    return NULL;
8796 }
8797 
8798 
8799 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8800 ast_gs_input_layout::hir(exec_list *instructions,
8801                          struct _mesa_glsl_parse_state *state)
8802 {
8803    YYLTYPE loc = this->get_location();
8804 
8805    /* Should have been prevented by the parser. */
8806    assert(!state->gs_input_prim_type_specified
8807           || state->in_qualifier->prim_type == this->prim_type);
8808 
8809    /* If any shader inputs occurred before this declaration and specified an
8810     * array size, make sure the size they specified is consistent with the
8811     * primitive type.
8812     */
8813    unsigned num_vertices = vertices_per_prim(this->prim_type);
8814    if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8815       _mesa_glsl_error(&loc, state,
8816                        "this geometry shader input layout implies %u vertices"
8817                        " per primitive, but a previous input is declared"
8818                        " with size %u", num_vertices, state->gs_input_size);
8819       return NULL;
8820    }
8821 
8822    state->gs_input_prim_type_specified = true;
8823 
8824    /* If any shader inputs occurred before this declaration and did not
8825     * specify an array size, their size is determined now.
8826     */
8827    foreach_in_list(ir_instruction, node, instructions) {
8828       ir_variable *var = node->as_variable();
8829       if (var == NULL || var->data.mode != ir_var_shader_in)
8830          continue;
8831 
8832       /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8833        * array; skip it.
8834        */
8835 
8836       if (var->type->is_unsized_array()) {
8837          if (var->data.max_array_access >= (int)num_vertices) {
8838             _mesa_glsl_error(&loc, state,
8839                              "this geometry shader input layout implies %u"
8840                              " vertices, but an access to element %u of input"
8841                              " `%s' already exists", num_vertices,
8842                              var->data.max_array_access, var->name);
8843          } else {
8844             var->type = glsl_type::get_array_instance(var->type->fields.array,
8845                                                       num_vertices);
8846          }
8847       }
8848    }
8849 
8850    return NULL;
8851 }
8852 
8853 
8854 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8855 ast_cs_input_layout::hir(exec_list *instructions,
8856                          struct _mesa_glsl_parse_state *state)
8857 {
8858    YYLTYPE loc = this->get_location();
8859 
8860    /* From the ARB_compute_shader specification:
8861     *
8862     *     If the local size of the shader in any dimension is greater
8863     *     than the maximum size supported by the implementation for that
8864     *     dimension, a compile-time error results.
8865     *
8866     * It is not clear from the spec how the error should be reported if
8867     * the total size of the work group exceeds
8868     * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8869     * report it at compile time as well.
8870     */
8871    GLuint64 total_invocations = 1;
8872    unsigned qual_local_size[3];
8873    for (int i = 0; i < 3; i++) {
8874 
8875       char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8876                                              'x' + i);
8877       /* Infer a local_size of 1 for unspecified dimensions */
8878       if (this->local_size[i] == NULL) {
8879          qual_local_size[i] = 1;
8880       } else if (!this->local_size[i]->
8881              process_qualifier_constant(state, local_size_str,
8882                                         &qual_local_size[i], false)) {
8883          ralloc_free(local_size_str);
8884          return NULL;
8885       }
8886       ralloc_free(local_size_str);
8887 
8888       if (qual_local_size[i] > state->consts->MaxComputeWorkGroupSize[i]) {
8889          _mesa_glsl_error(&loc, state,
8890                           "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8891                           " (%d)", 'x' + i,
8892                           state->consts->MaxComputeWorkGroupSize[i]);
8893          break;
8894       }
8895       total_invocations *= qual_local_size[i];
8896       if (total_invocations >
8897           state->consts->MaxComputeWorkGroupInvocations) {
8898          _mesa_glsl_error(&loc, state,
8899                           "product of local_sizes exceeds "
8900                           "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8901                           state->consts->MaxComputeWorkGroupInvocations);
8902          break;
8903       }
8904    }
8905 
8906    /* If any compute input layout declaration preceded this one, make sure it
8907     * was consistent with this one.
8908     */
8909    if (state->cs_input_local_size_specified) {
8910       for (int i = 0; i < 3; i++) {
8911          if (state->cs_input_local_size[i] != qual_local_size[i]) {
8912             _mesa_glsl_error(&loc, state,
8913                              "compute shader input layout does not match"
8914                              " previous declaration");
8915             return NULL;
8916          }
8917       }
8918    }
8919 
8920    /* The ARB_compute_variable_group_size spec says:
8921     *
8922     *     If a compute shader including a *local_size_variable* qualifier also
8923     *     declares a fixed local group size using the *local_size_x*,
8924     *     *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8925     *     results
8926     */
8927    if (state->cs_input_local_size_variable_specified) {
8928       _mesa_glsl_error(&loc, state,
8929                        "compute shader can't include both a variable and a "
8930                        "fixed local group size");
8931       return NULL;
8932    }
8933 
8934    state->cs_input_local_size_specified = true;
8935    for (int i = 0; i < 3; i++)
8936       state->cs_input_local_size[i] = qual_local_size[i];
8937 
8938    /* We may now declare the built-in constant gl_WorkGroupSize (see
8939     * builtin_variable_generator::generate_constants() for why we didn't
8940     * declare it earlier).
8941     */
8942    ir_variable *var = new(state->symbols)
8943       ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8944    var->data.how_declared = ir_var_declared_implicitly;
8945    var->data.read_only = true;
8946    instructions->push_tail(var);
8947    state->symbols->add_variable(var);
8948    ir_constant_data data;
8949    memset(&data, 0, sizeof(data));
8950    for (int i = 0; i < 3; i++)
8951       data.u[i] = qual_local_size[i];
8952    var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8953    var->constant_initializer =
8954       new(var) ir_constant(glsl_type::uvec3_type, &data);
8955    var->data.has_initializer = true;
8956    var->data.is_implicit_initializer = false;
8957 
8958    return NULL;
8959 }
8960 
8961 
8962 static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state * state,exec_list * instructions)8963 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8964                                exec_list *instructions)
8965 {
8966    bool gl_FragColor_assigned = false;
8967    bool gl_FragData_assigned = false;
8968    bool gl_FragSecondaryColor_assigned = false;
8969    bool gl_FragSecondaryData_assigned = false;
8970    bool user_defined_fs_output_assigned = false;
8971    ir_variable *user_defined_fs_output = NULL;
8972 
8973    /* It would be nice to have proper location information. */
8974    YYLTYPE loc;
8975    memset(&loc, 0, sizeof(loc));
8976 
8977    foreach_in_list(ir_instruction, node, instructions) {
8978       ir_variable *var = node->as_variable();
8979 
8980       if (!var || !var->data.assigned)
8981          continue;
8982 
8983       if (strcmp(var->name, "gl_FragColor") == 0) {
8984          gl_FragColor_assigned = true;
8985          if (!var->constant_initializer && state->zero_init) {
8986             const ir_constant_data data = { { 0 } };
8987             var->data.has_initializer = true;
8988             var->data.is_implicit_initializer = true;
8989             var->constant_initializer = new(var) ir_constant(var->type, &data);
8990          }
8991       }
8992       else if (strcmp(var->name, "gl_FragData") == 0)
8993          gl_FragData_assigned = true;
8994         else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8995          gl_FragSecondaryColor_assigned = true;
8996         else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8997          gl_FragSecondaryData_assigned = true;
8998       else if (!is_gl_identifier(var->name)) {
8999          if (state->stage == MESA_SHADER_FRAGMENT &&
9000              var->data.mode == ir_var_shader_out) {
9001             user_defined_fs_output_assigned = true;
9002             user_defined_fs_output = var;
9003          }
9004       }
9005    }
9006 
9007    /* From the GLSL 1.30 spec:
9008     *
9009     *     "If a shader statically assigns a value to gl_FragColor, it
9010     *      may not assign a value to any element of gl_FragData. If a
9011     *      shader statically writes a value to any element of
9012     *      gl_FragData, it may not assign a value to
9013     *      gl_FragColor. That is, a shader may assign values to either
9014     *      gl_FragColor or gl_FragData, but not both. Multiple shaders
9015     *      linked together must also consistently write just one of
9016     *      these variables.  Similarly, if user declared output
9017     *      variables are in use (statically assigned to), then the
9018     *      built-in variables gl_FragColor and gl_FragData may not be
9019     *      assigned to. These incorrect usages all generate compile
9020     *      time errors."
9021     */
9022    if (gl_FragColor_assigned && gl_FragData_assigned) {
9023       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9024                        "`gl_FragColor' and `gl_FragData'");
9025    } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
9026       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9027                        "`gl_FragColor' and `%s'",
9028                        user_defined_fs_output->name);
9029    } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
9030       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9031                        "`gl_FragSecondaryColorEXT' and"
9032                        " `gl_FragSecondaryDataEXT'");
9033    } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
9034       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9035                        "`gl_FragColor' and"
9036                        " `gl_FragSecondaryDataEXT'");
9037    } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
9038       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9039                        "`gl_FragData' and"
9040                        " `gl_FragSecondaryColorEXT'");
9041    } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
9042       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9043                        "`gl_FragData' and `%s'",
9044                        user_defined_fs_output->name);
9045    }
9046 
9047    if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
9048        !state->EXT_blend_func_extended_enable) {
9049       _mesa_glsl_error(&loc, state,
9050                        "Dual source blending requires EXT_blend_func_extended");
9051    }
9052 }
9053 
9054 static void
verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state * state)9055 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
9056 {
9057    YYLTYPE loc;
9058    memset(&loc, 0, sizeof(loc));
9059 
9060    /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
9061     *
9062     *   "A program will fail to compile or link if any shader
9063     *    or stage contains two or more functions with the same
9064     *    name if the name is associated with a subroutine type."
9065     */
9066 
9067    for (int i = 0; i < state->num_subroutines; i++) {
9068       unsigned definitions = 0;
9069       ir_function *fn = state->subroutines[i];
9070       /* Calculate number of function definitions with the same name */
9071       foreach_in_list(ir_function_signature, sig, &fn->signatures) {
9072          if (sig->is_defined) {
9073             if (++definitions > 1) {
9074                _mesa_glsl_error(&loc, state,
9075                      "%s shader contains two or more function "
9076                      "definitions with name `%s', which is "
9077                      "associated with a subroutine type.\n",
9078                      _mesa_shader_stage_to_string(state->stage),
9079                      fn->name);
9080                return;
9081             }
9082          }
9083       }
9084    }
9085 }
9086 
9087 static void
remove_per_vertex_blocks(exec_list * instructions,_mesa_glsl_parse_state * state,ir_variable_mode mode)9088 remove_per_vertex_blocks(exec_list *instructions,
9089                          _mesa_glsl_parse_state *state, ir_variable_mode mode)
9090 {
9091    /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
9092     * if it exists in this shader type.
9093     */
9094    const glsl_type *per_vertex = NULL;
9095    switch (mode) {
9096    case ir_var_shader_in:
9097       if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
9098          per_vertex = gl_in->get_interface_type();
9099       break;
9100    case ir_var_shader_out:
9101       if (ir_variable *gl_Position =
9102           state->symbols->get_variable("gl_Position")) {
9103          per_vertex = gl_Position->get_interface_type();
9104       }
9105       break;
9106    default:
9107       assert(!"Unexpected mode");
9108       break;
9109    }
9110 
9111    /* If we didn't find a built-in gl_PerVertex interface block, then we don't
9112     * need to do anything.
9113     */
9114    if (per_vertex == NULL)
9115       return;
9116 
9117    /* If the interface block is used by the shader, then we don't need to do
9118     * anything.
9119     */
9120    interface_block_usage_visitor v(mode, per_vertex);
9121    v.run(instructions);
9122    if (v.usage_found())
9123       return;
9124 
9125    /* Remove any ir_variable declarations that refer to the interface block
9126     * we're removing.
9127     */
9128    foreach_in_list_safe(ir_instruction, node, instructions) {
9129       ir_variable *const var = node->as_variable();
9130       if (var != NULL && var->get_interface_type() == per_vertex &&
9131           var->data.mode == mode) {
9132          state->symbols->disable_variable(var->name);
9133          var->remove();
9134       }
9135    }
9136 }
9137 
9138 ir_rvalue *
hir(exec_list *,struct _mesa_glsl_parse_state * state)9139 ast_warnings_toggle::hir(exec_list *,
9140                          struct _mesa_glsl_parse_state *state)
9141 {
9142    state->warnings_enabled = enable;
9143    return NULL;
9144 }
9145