• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  * Copyright(c) 2007 - 2017 Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  *****************************************************************************/
15 #define _RTW_EFUSE_C_
16 
17 #include <drv_types.h>
18 #include <hal_data.h>
19 
20 #include "../hal/efuse/efuse_mask.h"
21 
22 /*------------------------Define local variable------------------------------*/
23 u8	fakeEfuseBank = {0};
24 u32	fakeEfuseUsedBytes = {0};
25 u8	fakeEfuseContent[EFUSE_MAX_HW_SIZE] = {0};
26 u8	fakeEfuseInitMap[EFUSE_MAX_MAP_LEN] = {0};
27 u8	fakeEfuseModifiedMap[EFUSE_MAX_MAP_LEN] = {0};
28 
29 u32	BTEfuseUsedBytes = {0};
30 u8	BTEfuseContent[EFUSE_MAX_BT_BANK][EFUSE_MAX_HW_SIZE];
31 u8	BTEfuseInitMap[EFUSE_BT_MAX_MAP_LEN] = {0};
32 u8	BTEfuseModifiedMap[EFUSE_BT_MAX_MAP_LEN] = {0};
33 
34 u32	fakeBTEfuseUsedBytes = {0};
35 u8	fakeBTEfuseContent[EFUSE_MAX_BT_BANK][EFUSE_MAX_HW_SIZE];
36 u8	fakeBTEfuseInitMap[EFUSE_BT_MAX_MAP_LEN] = {0};
37 u8	fakeBTEfuseModifiedMap[EFUSE_BT_MAX_MAP_LEN] = {0};
38 
39 u8	maskfileBuffer[64];
40 u8	btmaskfileBuffer[64];
41 
42 /*------------------------Define local variable------------------------------*/
rtw_file_efuse_IsMasked(PADAPTER pAdapter,u16 Offset,u8 * maskbuf)43 BOOLEAN rtw_file_efuse_IsMasked(PADAPTER pAdapter, u16 Offset, u8 *maskbuf)
44 {
45 	int r = Offset / 16;
46 	int c = (Offset % 16) / 2;
47 	int result = 0;
48 
49 	if (pAdapter->registrypriv.boffefusemask)
50 		return FALSE;
51 
52 	if (c < 4) /* Upper double word */
53 		result = (maskbuf[r] & (0x10 << c));
54 	else
55 		result = (maskbuf[r] & (0x01 << (c - 4)));
56 
57 	return (result > 0) ? 0 : 1;
58 }
59 
efuse_IsBT_Masked(PADAPTER pAdapter,u16 Offset)60 BOOLEAN efuse_IsBT_Masked(PADAPTER pAdapter, u16 Offset)
61 {
62 	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
63 
64 	if (pAdapter->registrypriv.boffefusemask)
65 		return FALSE;
66 
67 #ifdef CONFIG_BT_EFUSE_MASK
68 #ifdef CONFIG_RTL8822C
69 #ifdef CONFIG_USB_HCI
70 	if (IS_HARDWARE_TYPE_8822C(pAdapter))
71 		return (IS_BT_MASKED(8822C, _MUSB, Offset)) ? TRUE : FALSE;
72 #endif
73 #ifdef CONFIG_PCI_HCI
74 	if (IS_HARDWARE_TYPE_8822C(pAdapter))
75 		return (IS_BT_MASKED(8822C, _MPCIE, Offset)) ? TRUE : FALSE;
76 #endif
77 #ifdef CONFIG_SDIO_HCI
78 	if (IS_HARDWARE_TYPE_8822C(pAdapter))
79 		return (IS_BT_MASKED(8822C, _MSDIO, Offset)) ? TRUE : FALSE;
80 #endif
81 #endif /*#ifdef CONFIG_RTL8822C*/
82 #ifdef CONFIG_RTL8723F
83 #ifdef CONFIG_USB_HCI
84 		if (IS_HARDWARE_TYPE_8723F(pAdapter))
85 			return (IS_BT_MASKED(8723F, _MUSB, Offset)) ? TRUE : FALSE;
86 #endif
87 #ifdef CONFIG_SDIO_HCI
88 		if (IS_HARDWARE_TYPE_8723F(pAdapter))
89 			return (IS_BT_MASKED(8723F, _MSDIO, Offset)) ? TRUE : FALSE;
90 #endif
91 #endif /*#ifdef CONFIG_RTL8723F*/
92 #endif /* CONFIG_BT_EFUSE_MASK */
93 	return FALSE;
94 }
95 
rtw_bt_efuse_mask_array(PADAPTER pAdapter,u8 * pArray)96 void rtw_bt_efuse_mask_array(PADAPTER pAdapter, u8 *pArray)
97 {
98 	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
99 
100 #ifdef CONFIG_BT_EFUSE_MASK
101 #ifdef CONFIG_RTL8822C
102 #ifdef CONFIG_USB_HCI
103 if (IS_HARDWARE_TYPE_8822CU(pAdapter))
104 		GET_BT_MASK_ARRAY(8822C, _MUSB, pArray);
105 #endif
106 #ifdef CONFIG_PCI_HCI
107 	if (IS_HARDWARE_TYPE_8822CE(pAdapter))
108 		GET_BT_MASK_ARRAY(8822C, _MPCIE, pArray);
109 #endif
110 #ifdef CONFIG_SDIO_HCI
111 	if (IS_HARDWARE_TYPE_8822CS(pAdapter))
112 		GET_BT_MASK_ARRAY(8822C, _MSDIO, pArray);
113 #endif
114 #endif /*#ifdef CONFIG_RTL8822C*/
115 #ifdef CONFIG_RTL8723F
116 #ifdef CONFIG_USB_HCI
117 	if (IS_HARDWARE_TYPE_8723FU(pAdapter))
118 			GET_BT_MASK_ARRAY(8723F, _MUSB, pArray);
119 #endif
120 #ifdef CONFIG_SDIO_HCI
121 		if (IS_HARDWARE_TYPE_8723FS(pAdapter))
122 			GET_BT_MASK_ARRAY(8723F, _MSDIO, pArray);
123 #endif
124 #endif /*#ifdef CONFIG_RTL8723F*/
125 #endif /* CONFIG_BT_EFUSE_MASK */
126 
127 }
128 
rtw_get_bt_efuse_mask_arraylen(PADAPTER pAdapter)129 u16 rtw_get_bt_efuse_mask_arraylen(PADAPTER pAdapter)
130 {
131 	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(pAdapter);
132 
133 #ifdef CONFIG_BT_EFUSE_MASK
134 #ifdef CONFIG_RTL8822C
135 #ifdef CONFIG_USB_HCI
136 	if (IS_HARDWARE_TYPE_8822CU(pAdapter))
137 		return GET_BT_MASK_ARRAY_LEN(8822C, _MUSB);
138 #endif
139 #ifdef CONFIG_PCI_HCI
140 	if (IS_HARDWARE_TYPE_8822CE(pAdapter))
141 		return GET_BT_MASK_ARRAY_LEN(8822C, _MPCIE);
142 #endif
143 #ifdef CONFIG_SDIO_HCI
144 	if (IS_HARDWARE_TYPE_8822CS(pAdapter))
145 		return GET_BT_MASK_ARRAY_LEN(8822C, _MSDIO);
146 #endif
147 #endif /*#ifdef CONFIG_RTL8822C*/
148 #ifdef CONFIG_RTL8723F
149 #ifdef CONFIG_USB_HCI
150 		if (IS_HARDWARE_TYPE_8723FU(pAdapter))
151 			return GET_BT_MASK_ARRAY_LEN(8723F, _MUSB);
152 #endif
153 #ifdef CONFIG_SDIO_HCI
154 		if (IS_HARDWARE_TYPE_8723FS(pAdapter))
155 			return GET_BT_MASK_ARRAY_LEN(8723F, _MSDIO);
156 #endif
157 #endif /*CONFIG_RTL8723F*/
158 #endif /* CONFIG_BT_EFUSE_MASK */
159 
160 	return 0;
161 }
162 
efuse_IsMasked(PADAPTER pAdapter,u16 Offset)163 BOOLEAN efuse_IsMasked(PADAPTER pAdapter, u16 Offset)
164 {
165 
166 	if (pAdapter->registrypriv.boffefusemask)
167 		return FALSE;
168 
169 #ifdef CONFIG_USB_HCI
170 #if defined(CONFIG_RTL8188E)
171 	if (IS_HARDWARE_TYPE_8188E(pAdapter))
172 		return (IS_MASKED(8188E, _MUSB, Offset)) ? TRUE : FALSE;
173 #endif
174 #if defined(CONFIG_RTL8812A)
175 	if (IS_HARDWARE_TYPE_8812(pAdapter))
176 		return (IS_MASKED(8812A, _MUSB, Offset)) ? TRUE : FALSE;
177 #endif
178 #if defined(CONFIG_RTL8821A)
179 #if 0
180 	if (IS_HARDWARE_TYPE_8811AU(pAdapter))
181 		return (IS_MASKED(8811A, _MUSB, Offset)) ? TRUE : FALSE;
182 #endif
183 	if (IS_HARDWARE_TYPE_8821(pAdapter))
184 		return (IS_MASKED(8821A, _MUSB, Offset)) ? TRUE : FALSE;
185 #endif
186 #if defined(CONFIG_RTL8192E)
187 	if (IS_HARDWARE_TYPE_8192E(pAdapter))
188 		return (IS_MASKED(8192E, _MUSB, Offset)) ? TRUE : FALSE;
189 #endif
190 #if defined(CONFIG_RTL8723B)
191 	if (IS_HARDWARE_TYPE_8723B(pAdapter))
192 		return (IS_MASKED(8723B, _MUSB, Offset)) ? TRUE : FALSE;
193 #endif
194 #if defined(CONFIG_RTL8703B)
195 	if (IS_HARDWARE_TYPE_8703B(pAdapter))
196 		return (IS_MASKED(8703B, _MUSB, Offset)) ? TRUE : FALSE;
197 #endif
198 #if defined(CONFIG_RTL8814A)
199 	if (IS_HARDWARE_TYPE_8814A(pAdapter))
200 		return (IS_MASKED(8814A, _MUSB, Offset)) ? TRUE : FALSE;
201 #endif
202 #if defined(CONFIG_RTL8188F)
203 	if (IS_HARDWARE_TYPE_8188F(pAdapter))
204 		return (IS_MASKED(8188F, _MUSB, Offset)) ? TRUE : FALSE;
205 #endif
206 #if defined(CONFIG_RTL8188GTV)
207 	if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
208 		return (IS_MASKED(8188GTV, _MUSB, Offset)) ? TRUE : FALSE;
209 #endif
210 #if defined(CONFIG_RTL8822B)
211 	if (IS_HARDWARE_TYPE_8822B(pAdapter))
212 		return (IS_MASKED(8822B, _MUSB, Offset)) ? TRUE : FALSE;
213 #endif
214 #if defined(CONFIG_RTL8723D)
215 	if (IS_HARDWARE_TYPE_8723D(pAdapter))
216 		return (IS_MASKED(8723D, _MUSB, Offset)) ? TRUE : FALSE;
217 #endif
218 #if defined(CONFIG_RTL8710B)
219 	if (IS_HARDWARE_TYPE_8710B(pAdapter))
220 		return (IS_MASKED(8710B, _MUSB, Offset)) ? TRUE : FALSE;
221 #endif
222 #if defined(CONFIG_RTL8821C)
223 	if (IS_HARDWARE_TYPE_8821CU(pAdapter))
224 		return (IS_MASKED(8821C, _MUSB, Offset)) ? TRUE : FALSE;
225 #endif
226 
227 #if defined(CONFIG_RTL8192F)
228 	if (IS_HARDWARE_TYPE_8192FU(pAdapter))
229 		return (IS_MASKED(8192F, _MUSB, Offset)) ? TRUE : FALSE;
230 #endif
231 #if defined(CONFIG_RTL8822C)
232 	if (IS_HARDWARE_TYPE_8822C(pAdapter))
233 		return (IS_MASKED(8822C, _MUSB, Offset)) ? TRUE : FALSE;
234 #endif
235 #if defined(CONFIG_RTL8814B)
236 	if (IS_HARDWARE_TYPE_8814B(pAdapter))
237 		return (IS_MASKED(8814B, _MUSB, Offset)) ? TRUE : FALSE;
238 #endif
239 #if defined(CONFIG_RTL8723F)
240 	if (IS_HARDWARE_TYPE_8723F(pAdapter))
241 		return (IS_MASKED(8723F, _MUSB, Offset)) ? TRUE : FALSE;
242 #endif
243 #endif /*CONFIG_USB_HCI*/
244 
245 #ifdef CONFIG_PCI_HCI
246 #if defined(CONFIG_RTL8188E)
247 	if (IS_HARDWARE_TYPE_8188E(pAdapter))
248 		return (IS_MASKED(8188E, _MPCIE, Offset)) ? TRUE : FALSE;
249 #endif
250 #if defined(CONFIG_RTL8192E)
251 	if (IS_HARDWARE_TYPE_8192E(pAdapter))
252 		return (IS_MASKED(8192E, _MPCIE, Offset)) ? TRUE : FALSE;
253 #endif
254 #if defined(CONFIG_RTL8812A)
255 	if (IS_HARDWARE_TYPE_8812(pAdapter))
256 		return (IS_MASKED(8812A, _MPCIE, Offset)) ? TRUE : FALSE;
257 #endif
258 #if defined(CONFIG_RTL8821A)
259 	if (IS_HARDWARE_TYPE_8821(pAdapter))
260 		return (IS_MASKED(8821A, _MPCIE, Offset)) ? TRUE : FALSE;
261 #endif
262 #if defined(CONFIG_RTL8723B)
263 	if (IS_HARDWARE_TYPE_8723B(pAdapter))
264 		return (IS_MASKED(8723B, _MPCIE, Offset)) ? TRUE : FALSE;
265 #endif
266 #if defined(CONFIG_RTL8814A)
267 	if (IS_HARDWARE_TYPE_8814A(pAdapter))
268 		return (IS_MASKED(8814A, _MPCIE, Offset)) ? TRUE : FALSE;
269 #endif
270 #if defined(CONFIG_RTL8822B)
271 	if (IS_HARDWARE_TYPE_8822B(pAdapter))
272 		return (IS_MASKED(8822B, _MPCIE, Offset)) ? TRUE : FALSE;
273 #endif
274 #if defined(CONFIG_RTL8821C)
275 	if (IS_HARDWARE_TYPE_8821CE(pAdapter))
276 		return (IS_MASKED(8821C, _MPCIE, Offset)) ? TRUE : FALSE;
277 #endif
278 
279 #if defined(CONFIG_RTL8192F)
280 	if (IS_HARDWARE_TYPE_8192FE(pAdapter))
281 		return (IS_MASKED(8192F, _MPCIE, Offset)) ? TRUE : FALSE;
282 #endif
283 #if defined(CONFIG_RTL8822C)
284 	if (IS_HARDWARE_TYPE_8822C(pAdapter))
285 		return (IS_MASKED(8822C, _MPCIE, Offset)) ? TRUE : FALSE;
286 #endif
287 #if defined(CONFIG_RTL8814B)
288 	if (IS_HARDWARE_TYPE_8814B(pAdapter))
289 		return (IS_MASKED(8814B, _MPCIE, Offset)) ? TRUE : FALSE;
290 #endif
291 #endif /*CONFIG_PCI_HCI*/
292 
293 #ifdef CONFIG_SDIO_HCI
294 #ifdef CONFIG_RTL8188E_SDIO
295 	if (IS_HARDWARE_TYPE_8188E(pAdapter))
296 		return (IS_MASKED(8188E, _MSDIO, Offset)) ? TRUE : FALSE;
297 #endif
298 #ifdef CONFIG_RTL8723B
299 	if (IS_HARDWARE_TYPE_8723BS(pAdapter))
300 		return (IS_MASKED(8723B, _MSDIO, Offset)) ? TRUE : FALSE;
301 #endif
302 #ifdef CONFIG_RTL8188F
303 	if (IS_HARDWARE_TYPE_8188F(pAdapter))
304 		return (IS_MASKED(8188F, _MSDIO, Offset)) ? TRUE : FALSE;
305 #endif
306 #ifdef CONFIG_RTL8188GTV
307 	if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
308 		return (IS_MASKED(8188GTV, _MSDIO, Offset)) ? TRUE : FALSE;
309 #endif
310 #ifdef CONFIG_RTL8192E
311 	if (IS_HARDWARE_TYPE_8192ES(pAdapter))
312 		return (IS_MASKED(8192E, _MSDIO, Offset)) ? TRUE : FALSE;
313 #endif
314 #if defined(CONFIG_RTL8821A)
315 	if (IS_HARDWARE_TYPE_8821S(pAdapter))
316 		return (IS_MASKED(8821A, _MSDIO, Offset)) ? TRUE : FALSE;
317 #endif
318 #if defined(CONFIG_RTL8821C)
319 	if (IS_HARDWARE_TYPE_8821CS(pAdapter))
320 		return (IS_MASKED(8821C, _MSDIO, Offset)) ? TRUE : FALSE;
321 #endif
322 #if defined(CONFIG_RTL8822B)
323 	if (IS_HARDWARE_TYPE_8822B(pAdapter))
324 		return (IS_MASKED(8822B, _MSDIO, Offset)) ? TRUE : FALSE;
325 #endif
326 #if defined(CONFIG_RTL8192F)
327 	if (IS_HARDWARE_TYPE_8192FS(pAdapter))
328 		return (IS_MASKED(8192F, _MSDIO, Offset)) ? TRUE : FALSE;
329 #endif
330 #if defined(CONFIG_RTL8822C)
331 	if (IS_HARDWARE_TYPE_8822C(pAdapter))
332 		return (IS_MASKED(8822C, _MSDIO, Offset)) ? TRUE : FALSE;
333 #endif
334 #if defined(CONFIG_RTL8723F)
335 	if (IS_HARDWARE_TYPE_8723F(pAdapter))
336 		return (IS_MASKED(8723F, _MSDIO, Offset)) ? TRUE : FALSE;
337 #endif
338 #endif /*CONFIG_SDIO_HCI*/
339 
340 	return FALSE;
341 }
342 
rtw_efuse_mask_array(PADAPTER pAdapter,u8 * pArray)343 void rtw_efuse_mask_array(PADAPTER pAdapter, u8 *pArray)
344 {
345 
346 #ifdef CONFIG_USB_HCI
347 #if defined(CONFIG_RTL8188E)
348 	if (IS_HARDWARE_TYPE_8188E(pAdapter))
349 		GET_MASK_ARRAY(8188E, _MUSB, pArray);
350 #endif
351 #if defined(CONFIG_RTL8812A)
352 	if (IS_HARDWARE_TYPE_8812(pAdapter))
353 		GET_MASK_ARRAY(8812A, _MUSB, pArray);
354 #endif
355 #if defined(CONFIG_RTL8821A)
356 	if (IS_HARDWARE_TYPE_8821(pAdapter))
357 		GET_MASK_ARRAY(8821A, _MUSB, pArray);
358 #endif
359 #if defined(CONFIG_RTL8192E)
360 	if (IS_HARDWARE_TYPE_8192E(pAdapter))
361 		GET_MASK_ARRAY(8192E, _MUSB, pArray);
362 #endif
363 #if defined(CONFIG_RTL8723B)
364 	if (IS_HARDWARE_TYPE_8723B(pAdapter))
365 		GET_MASK_ARRAY(8723B, _MUSB, pArray);
366 #endif
367 #if defined(CONFIG_RTL8703B)
368 	if (IS_HARDWARE_TYPE_8703B(pAdapter))
369 		GET_MASK_ARRAY(8703B, _MUSB, pArray);
370 #endif
371 #if defined(CONFIG_RTL8188F)
372 	if (IS_HARDWARE_TYPE_8188F(pAdapter))
373 		GET_MASK_ARRAY(8188F, _MUSB, pArray);
374 #endif
375 #if defined(CONFIG_RTL8188GTV)
376 	if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
377 		GET_MASK_ARRAY(8188GTV, _MUSB, pArray);
378 #endif
379 #if defined(CONFIG_RTL8814A)
380 	if (IS_HARDWARE_TYPE_8814A(pAdapter))
381 		GET_MASK_ARRAY(8814A, _MUSB, pArray);
382 #endif
383 #if defined(CONFIG_RTL8822B)
384 	if (IS_HARDWARE_TYPE_8822B(pAdapter))
385 		GET_MASK_ARRAY(8822B, _MUSB, pArray);
386 #endif
387 #if defined(CONFIG_RTL8821C)
388 	if (IS_HARDWARE_TYPE_8821CU(pAdapter))
389 		GET_MASK_ARRAY(8821C, _MUSB, pArray);
390 #endif
391 #if defined(CONFIG_RTL8192F)
392 	if (IS_HARDWARE_TYPE_8192FU(pAdapter))
393 		GET_MASK_ARRAY(8192F, _MUSB, pArray);
394 #endif
395 #if defined(CONFIG_RTL8822C)
396 	if (IS_HARDWARE_TYPE_8822C(pAdapter))
397 		GET_MASK_ARRAY(8822C, _MUSB, pArray);
398 #endif
399 #if defined(CONFIG_RTL8814B)
400 	if (IS_HARDWARE_TYPE_8814B(pAdapter))
401 		GET_MASK_ARRAY(8814B, _MUSB, pArray);
402 #endif
403 #if defined(CONFIG_RTL8723F)
404 	if (IS_HARDWARE_TYPE_8723F(pAdapter))
405 		GET_MASK_ARRAY(8723F, _MUSB, pArray);
406 #endif
407 #endif /*CONFIG_USB_HCI*/
408 
409 #ifdef CONFIG_PCI_HCI
410 #if defined(CONFIG_RTL8188E)
411 	if (IS_HARDWARE_TYPE_8188E(pAdapter))
412 		GET_MASK_ARRAY(8188E, _MPCIE, pArray);
413 #endif
414 #if defined(CONFIG_RTL8192E)
415 	if (IS_HARDWARE_TYPE_8192E(pAdapter))
416 		GET_MASK_ARRAY(8192E, _MPCIE, pArray);
417 #endif
418 #if defined(CONFIG_RTL8812A)
419 	if (IS_HARDWARE_TYPE_8812(pAdapter))
420 		GET_MASK_ARRAY(8812A, _MPCIE, pArray);
421 #endif
422 #if defined(CONFIG_RTL8821A)
423 	if (IS_HARDWARE_TYPE_8821(pAdapter))
424 		GET_MASK_ARRAY(8821A, _MPCIE, pArray);
425 #endif
426 #if defined(CONFIG_RTL8723B)
427 	if (IS_HARDWARE_TYPE_8723B(pAdapter))
428 		GET_MASK_ARRAY(8723B, _MPCIE, pArray);
429 #endif
430 #if defined(CONFIG_RTL8814A)
431 	if (IS_HARDWARE_TYPE_8814A(pAdapter))
432 		GET_MASK_ARRAY(8814A, _MPCIE, pArray);
433 #endif
434 #if defined(CONFIG_RTL8822B)
435 	if (IS_HARDWARE_TYPE_8822B(pAdapter))
436 		GET_MASK_ARRAY(8822B, _MPCIE, pArray);
437 #endif
438 #if defined(CONFIG_RTL8821C)
439 	if (IS_HARDWARE_TYPE_8821CE(pAdapter))
440 		GET_MASK_ARRAY(8821C, _MPCIE, pArray);
441 #endif
442 #if defined(CONFIG_RTL8192F)
443 	if (IS_HARDWARE_TYPE_8192FE(pAdapter))
444 		GET_MASK_ARRAY(8192F, _MPCIE, pArray);
445 #endif
446 #if defined(CONFIG_RTL8822C)
447 	if (IS_HARDWARE_TYPE_8822C(pAdapter))
448 		GET_MASK_ARRAY(8822C, _MPCIE, pArray);
449 #endif
450 #if defined(CONFIG_RTL8814B)
451 	if (IS_HARDWARE_TYPE_8814B(pAdapter))
452 		GET_MASK_ARRAY(8814B, _MPCIE, pArray);
453 #endif
454 #endif /*CONFIG_PCI_HCI*/
455 
456 #ifdef CONFIG_SDIO_HCI
457 #if defined(CONFIG_RTL8188E)
458 	if (IS_HARDWARE_TYPE_8188E(pAdapter))
459 		GET_MASK_ARRAY(8188E, _MSDIO, pArray);
460 #endif
461 #if defined(CONFIG_RTL8723B)
462 	if (IS_HARDWARE_TYPE_8723BS(pAdapter))
463 		GET_MASK_ARRAY(8723B, _MSDIO, pArray);
464 #endif
465 #if defined(CONFIG_RTL8188F)
466 	if (IS_HARDWARE_TYPE_8188F(pAdapter))
467 		GET_MASK_ARRAY(8188F, _MSDIO, pArray);
468 #endif
469 #if defined(CONFIG_RTL8188GTV)
470 	if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
471 		GET_MASK_ARRAY(8188GTV, _MSDIO, pArray);
472 #endif
473 #if defined(CONFIG_RTL8192E)
474 	if (IS_HARDWARE_TYPE_8192ES(pAdapter))
475 		GET_MASK_ARRAY(8192E, _MSDIO, pArray);
476 #endif
477 #if defined(CONFIG_RTL8821A)
478 	if (IS_HARDWARE_TYPE_8821S(pAdapter))
479 		GET_MASK_ARRAY(8821A, _MSDIO, pArray);
480 #endif
481 #if defined(CONFIG_RTL8821C)
482 	if (IS_HARDWARE_TYPE_8821CS(pAdapter))
483 		GET_MASK_ARRAY(8821C , _MSDIO, pArray);
484 #endif
485 #if defined(CONFIG_RTL8822B)
486 	if (IS_HARDWARE_TYPE_8822B(pAdapter))
487 		GET_MASK_ARRAY(8822B , _MSDIO, pArray);
488 #endif
489 #if defined(CONFIG_RTL8192F)
490 	if (IS_HARDWARE_TYPE_8192FS(pAdapter))
491 		GET_MASK_ARRAY(8192F, _MSDIO, pArray);
492 #endif
493 #if defined(CONFIG_RTL8822C)
494 	if (IS_HARDWARE_TYPE_8822C(pAdapter))
495 		GET_MASK_ARRAY(8822C , _MSDIO, pArray);
496 #endif
497 #if defined(CONFIG_RTL8723F)
498 	if (IS_HARDWARE_TYPE_8723F(pAdapter))
499 		GET_MASK_ARRAY(8723F, _MSDIO, pArray);
500 #endif
501 #endif /*CONFIG_SDIO_HCI*/
502 }
503 
rtw_get_efuse_mask_arraylen(PADAPTER pAdapter)504 u16 rtw_get_efuse_mask_arraylen(PADAPTER pAdapter)
505 {
506 
507 #ifdef CONFIG_USB_HCI
508 #if defined(CONFIG_RTL8188E)
509 	if (IS_HARDWARE_TYPE_8188E(pAdapter))
510 		return GET_MASK_ARRAY_LEN(8188E, _MUSB);
511 #endif
512 #if defined(CONFIG_RTL8812A)
513 	if (IS_HARDWARE_TYPE_8812(pAdapter))
514 		return GET_MASK_ARRAY_LEN(8812A, _MUSB);
515 #endif
516 #if defined(CONFIG_RTL8821A)
517 	if (IS_HARDWARE_TYPE_8821(pAdapter))
518 		return GET_MASK_ARRAY_LEN(8821A, _MUSB);
519 #endif
520 #if defined(CONFIG_RTL8192E)
521 	if (IS_HARDWARE_TYPE_8192E(pAdapter))
522 		return GET_MASK_ARRAY_LEN(8192E, _MUSB);
523 #endif
524 #if defined(CONFIG_RTL8723B)
525 	if (IS_HARDWARE_TYPE_8723B(pAdapter))
526 		return GET_MASK_ARRAY_LEN(8723B, _MUSB);
527 #endif
528 #if defined(CONFIG_RTL8703B)
529 	if (IS_HARDWARE_TYPE_8703B(pAdapter))
530 		return GET_MASK_ARRAY_LEN(8703B, _MUSB);
531 #endif
532 #if defined(CONFIG_RTL8188F)
533 	if (IS_HARDWARE_TYPE_8188F(pAdapter))
534 		return GET_MASK_ARRAY_LEN(8188F, _MUSB);
535 #endif
536 #if defined(CONFIG_RTL8188GTV)
537 	if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
538 		return GET_MASK_ARRAY_LEN(8188GTV, _MUSB);
539 #endif
540 #if defined(CONFIG_RTL8814A)
541 	if (IS_HARDWARE_TYPE_8814A(pAdapter))
542 		return GET_MASK_ARRAY_LEN(8814A, _MUSB);
543 #endif
544 #if defined(CONFIG_RTL8822B)
545 	if (IS_HARDWARE_TYPE_8822B(pAdapter))
546 		return GET_MASK_ARRAY_LEN(8822B, _MUSB);
547 #endif
548 #if defined(CONFIG_RTL8821C)
549 	if (IS_HARDWARE_TYPE_8821CU(pAdapter))
550 		return GET_MASK_ARRAY_LEN(8821C, _MUSB);
551 #endif
552 #if defined(CONFIG_RTL8192F)
553 	if (IS_HARDWARE_TYPE_8192FU(pAdapter))
554 		return GET_MASK_ARRAY_LEN(8192F, _MUSB);
555 #endif
556 #if defined(CONFIG_RTL8822C)
557 	if (IS_HARDWARE_TYPE_8822C(pAdapter))
558 		return GET_MASK_ARRAY_LEN(8822C, _MUSB);
559 #endif
560 #if defined(CONFIG_RTL8814B)
561 	if (IS_HARDWARE_TYPE_8814B(pAdapter)) {
562 		return GET_MASK_ARRAY_LEN(8814B, _MUSB);
563 	}
564 #endif
565 #if defined(CONFIG_RTL8723F)
566 	if (IS_HARDWARE_TYPE_8723F(pAdapter))
567 		return GET_MASK_ARRAY_LEN(8723F, _MUSB);
568 #endif
569 #endif /*CONFIG_USB_HCI*/
570 
571 #ifdef CONFIG_PCI_HCI
572 #if defined(CONFIG_RTL8188E)
573 	if (IS_HARDWARE_TYPE_8188E(pAdapter))
574 		return GET_MASK_ARRAY_LEN(8188E, _MPCIE);
575 #endif
576 #if defined(CONFIG_RTL8192E)
577 	if (IS_HARDWARE_TYPE_8192E(pAdapter))
578 		return GET_MASK_ARRAY_LEN(8192E, _MPCIE);
579 #endif
580 #if defined(CONFIG_RTL8812A)
581 	if (IS_HARDWARE_TYPE_8812(pAdapter))
582 		return GET_MASK_ARRAY_LEN(8812A, _MPCIE);
583 #endif
584 #if defined(CONFIG_RTL8821A)
585 	if (IS_HARDWARE_TYPE_8821(pAdapter))
586 		return GET_MASK_ARRAY_LEN(8821A, _MPCIE);
587 #endif
588 #if defined(CONFIG_RTL8723B)
589 	if (IS_HARDWARE_TYPE_8723B(pAdapter))
590 		return GET_MASK_ARRAY_LEN(8723B, _MPCIE);
591 #endif
592 #if defined(CONFIG_RTL8814A)
593 	if (IS_HARDWARE_TYPE_8814A(pAdapter))
594 		return GET_MASK_ARRAY_LEN(8814A, _MPCIE);
595 #endif
596 #if defined(CONFIG_RTL8822B)
597 	if (IS_HARDWARE_TYPE_8822B(pAdapter))
598 		return GET_MASK_ARRAY_LEN(8822B, _MPCIE);
599 #endif
600 #if defined(CONFIG_RTL8821C)
601 	if (IS_HARDWARE_TYPE_8821CE(pAdapter))
602 		return GET_MASK_ARRAY_LEN(8821C, _MPCIE);
603 #endif
604 #if defined(CONFIG_RTL8192F)
605 	if (IS_HARDWARE_TYPE_8192FE(pAdapter))
606 		return GET_MASK_ARRAY_LEN(8192F, _MPCIE);
607 #endif
608 #if defined(CONFIG_RTL8822C)
609 	if (IS_HARDWARE_TYPE_8822C(pAdapter))
610 		return GET_MASK_ARRAY_LEN(8822C, _MPCIE);
611 #endif
612 #if defined(CONFIG_RTL8814B)
613 	if (IS_HARDWARE_TYPE_8814B(pAdapter))
614 		return GET_MASK_ARRAY_LEN(8814B, _MPCIE);
615 #endif
616 #endif /*CONFIG_PCI_HCI*/
617 
618 #ifdef CONFIG_SDIO_HCI
619 #if defined(CONFIG_RTL8188E)
620 	if (IS_HARDWARE_TYPE_8188E(pAdapter))
621 		return GET_MASK_ARRAY_LEN(8188E, _MSDIO);
622 #endif
623 #if defined(CONFIG_RTL8723B)
624 	if (IS_HARDWARE_TYPE_8723BS(pAdapter))
625 		return GET_MASK_ARRAY_LEN(8723B, _MSDIO);
626 #endif
627 #if defined(CONFIG_RTL8188F)
628 	if (IS_HARDWARE_TYPE_8188F(pAdapter))
629 		return GET_MASK_ARRAY_LEN(8188F, _MSDIO);
630 #endif
631 #if defined(CONFIG_RTL8188GTV)
632 	if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
633 		return GET_MASK_ARRAY_LEN(8188GTV, _MSDIO);
634 #endif
635 #if defined(CONFIG_RTL8192E)
636 	if (IS_HARDWARE_TYPE_8192ES(pAdapter))
637 		return GET_MASK_ARRAY_LEN(8192E, _MSDIO);
638 #endif
639 #if defined(CONFIG_RTL8821A)
640 	if (IS_HARDWARE_TYPE_8821S(pAdapter))
641 		return GET_MASK_ARRAY_LEN(8821A, _MSDIO);
642 #endif
643 #if defined(CONFIG_RTL8821C)
644 	if (IS_HARDWARE_TYPE_8821CS(pAdapter))
645 		return GET_MASK_ARRAY_LEN(8821C, _MSDIO);
646 #endif
647 #if defined(CONFIG_RTL8822B)
648 	if (IS_HARDWARE_TYPE_8822B(pAdapter))
649 		return GET_MASK_ARRAY_LEN(8822B, _MSDIO);
650 #endif
651 #if defined(CONFIG_RTL8192F)
652 	if (IS_HARDWARE_TYPE_8192FS(pAdapter))
653 		return GET_MASK_ARRAY_LEN(8192F, _MSDIO);
654 #endif
655 #if defined(CONFIG_RTL8822C)
656 	if (IS_HARDWARE_TYPE_8822C(pAdapter))
657 		return GET_MASK_ARRAY_LEN(8822C, _MSDIO);
658 #endif
659 #if defined(CONFIG_RTL8723F)
660 	if (IS_HARDWARE_TYPE_8723F(pAdapter))
661 		return GET_MASK_ARRAY_LEN(8723F, _MSDIO);
662 #endif
663 #endif/*CONFIG_SDIO_HCI*/
664 	return 0;
665 }
666 
rtw_mask_map_read(PADAPTER padapter,u16 addr,u16 cnts,u8 * data)667 static void rtw_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
668 {
669 	u16 i = 0;
670 
671 	if (padapter->registrypriv.boffefusemask == 0) {
672 		for (i = 0; i < cnts; i++) {
673 			if (padapter->registrypriv.bFileMaskEfuse == _TRUE) {
674 					if (rtw_file_efuse_IsMasked(padapter, addr + i, maskfileBuffer)) /*use file efuse mask.*/
675 						data[i] = 0xff;
676 					else
677 						RTW_DBG("data[%x] = %x\n", i, data[i]);
678 			} else {
679 					if (efuse_IsMasked(padapter, addr + i))
680 						data[i] = 0xff;
681 					else
682 						RTW_DBG("data[%x] = %x\n", i, data[i]);
683 			}
684 		}
685 	}
686 }
687 
rtw_efuse_mask_map_read(PADAPTER padapter,u16 addr,u16 cnts,u8 * data)688 u8 rtw_efuse_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
689 {
690 	u8	ret = _SUCCESS;
691 	u16	mapLen = 0;
692 
693 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE);
694 
695 	ret = rtw_efuse_map_read(padapter, addr, cnts , data);
696 
697 	rtw_mask_map_read(padapter, addr, cnts , data);
698 
699 	return ret;
700 
701 }
702 
703 /* ***********************************************************
704  *				Efuse related code
705  * *********************************************************** */
hal_EfuseSwitchToBank(PADAPTER padapter,u8 bank,u8 bPseudoTest)706 static u8 hal_EfuseSwitchToBank(
707 	PADAPTER	padapter,
708 	u8			bank,
709 	u8			bPseudoTest)
710 {
711 	u8 bRet = _FALSE;
712 	u32 value32 = 0;
713 #ifdef HAL_EFUSE_MEMORY
714 	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
715 	PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
716 #endif
717 
718 
719 	RTW_INFO("%s: Efuse switch bank to %d\n", __FUNCTION__, bank);
720 	if (bPseudoTest) {
721 #ifdef HAL_EFUSE_MEMORY
722 		pEfuseHal->fakeEfuseBank = bank;
723 #else
724 		fakeEfuseBank = bank;
725 #endif
726 		bRet = _TRUE;
727 	} else {
728 		value32 = rtw_read32(padapter, 0x34);
729 		bRet = _TRUE;
730 		switch (bank) {
731 		case 0:
732 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
733 			break;
734 		case 1:
735 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
736 			break;
737 		case 2:
738 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
739 			break;
740 		case 3:
741 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
742 			break;
743 		default:
744 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
745 			bRet = _FALSE;
746 			break;
747 		}
748 		rtw_write32(padapter, 0x34, value32);
749 	}
750 
751 	return bRet;
752 }
753 
rtw_efuse_analyze(PADAPTER padapter,u8 Type,u8 Fake)754 void rtw_efuse_analyze(PADAPTER	padapter, u8 Type, u8 Fake)
755 {
756 	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(padapter);
757 	PEFUSE_HAL		pEfuseHal = &(pHalData->EfuseHal);
758 	u16	eFuse_Addr = 0;
759 	u8 offset, wden;
760 	u16	 i, j;
761 	u8	efuseHeader = 0, efuseExtHdr = 0, efuseData[EFUSE_MAX_WORD_UNIT*2] = {0}, dataCnt = 0;
762 	u16	efuseHeader2Byte = 0;
763 	u8	*eFuseWord = NULL;// [EFUSE_MAX_SECTION_NUM][EFUSE_MAX_WORD_UNIT];
764 	u8	offset_2_0 = 0;
765 	u8	pgSectionCnt = 0;
766 	u8	wd_cnt = 0;
767 	u8	max_section = 64;
768 	u16	mapLen = 0, maprawlen = 0;
769 	boolean	bExtHeader = _FALSE;
770 	u8	efuseType = EFUSE_WIFI;
771 	boolean	bPseudoTest = _FALSE;
772 	u8	bank = 0, startBank = 0, endBank = 1-1;
773 	boolean	bCheckNextBank = FALSE;
774 	u8	protectBytesBank = 0;
775 	u16	efuse_max = 0;
776 	u8	ParseEfuseExtHdr, ParseEfuseHeader, ParseOffset, ParseWDEN, ParseOffset2_0;
777 
778 	eFuseWord = rtw_zmalloc(EFUSE_MAX_SECTION_NUM * (EFUSE_MAX_WORD_UNIT * 2));
779 
780 	if (eFuseWord == NULL) {
781 		RTW_INFO("%s:rtw_zmalloc eFuseWord = NULL !!\n", __func__);
782 		return;
783 	}
784 
785 	RTW_INFO("\n");
786 	if (Type == 0) {
787 		if (Fake == 0) {
788 			RTW_INFO("\n\tEFUSE_Analyze Wifi Content\n");
789 			efuseType = EFUSE_WIFI;
790 			bPseudoTest = FALSE;
791 			startBank = 0;
792 			endBank = 0;
793 		} else {
794 			RTW_INFO("\n\tEFUSE_Analyze Wifi Pseudo Content\n");
795 			efuseType = EFUSE_WIFI;
796 			bPseudoTest = TRUE;
797 			startBank = 0;
798 			endBank = 0;
799 		}
800 	} else {
801 		if (Fake == 0) {
802 			RTW_INFO("\n\tEFUSE_Analyze BT Content\n");
803 			efuseType = EFUSE_BT;
804 			bPseudoTest = FALSE;
805 			startBank = 1;
806 			endBank = EFUSE_MAX_BANK - 1;
807 		} else {
808 			RTW_INFO("\n\tEFUSE_Analyze BT Pseudo Content\n");
809 			efuseType = EFUSE_BT;
810 			bPseudoTest = TRUE;
811 			startBank = 1;
812 			endBank = EFUSE_MAX_BANK - 1;
813 			if (IS_HARDWARE_TYPE_8821(padapter))
814 				endBank = 3 - 1;/*EFUSE_MAX_BANK_8821A - 1;*/
815 		}
816 	}
817 
818 	RTW_INFO("\n\r 1Byte header, [7:4]=offset, [3:0]=word enable\n");
819 	RTW_INFO("\n\r 2Byte header, header[7:5]=offset[2:0], header[4:0]=0x0F\n");
820 	RTW_INFO("\n\r 2Byte header, extHeader[7:4]=offset[6:3], extHeader[3:0]=word enable\n");
821 
822 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, bPseudoTest);
823 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_MAX_SECTION, (void *)&max_section, bPseudoTest);
824 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_PROTECT_BYTES_BANK, (void *)&protectBytesBank, bPseudoTest);
825 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, (void *)&efuse_max, bPseudoTest);
826 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_REAL_CONTENT_LEN, (void *)&maprawlen, _FALSE);
827 
828 	_rtw_memset(eFuseWord, 0xff, EFUSE_MAX_SECTION_NUM * (EFUSE_MAX_WORD_UNIT * 2));
829 	_rtw_memset(pEfuseHal->fakeEfuseInitMap, 0xff, EFUSE_MAX_MAP_LEN);
830 
831 	if (IS_HARDWARE_TYPE_8821(padapter))
832 		endBank = 3 - 1;/*EFUSE_MAX_BANK_8821A - 1;*/
833 
834 	for (bank = startBank; bank <= endBank; bank++) {
835 		if (!hal_EfuseSwitchToBank(padapter, bank, bPseudoTest)) {
836 			RTW_INFO("EFUSE_SwitchToBank() Fail!!\n");
837 			goto out_free_buffer;
838 		}
839 
840 		eFuse_Addr = bank * EFUSE_MAX_BANK_SIZE;
841 
842 		efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
843 
844 		if (efuseHeader == 0xFF && bank == startBank && Fake != TRUE) {
845 			RTW_INFO("Non-PGed Efuse\n");
846 			goto out_free_buffer;
847 		}
848 		RTW_INFO("EFUSE_REAL_CONTENT_LEN = %d\n", maprawlen);
849 
850 		while ((efuseHeader != 0xFF) && ((efuseType == EFUSE_WIFI && (eFuse_Addr < maprawlen)) || (efuseType == EFUSE_BT && (eFuse_Addr < (endBank + 1) * EFUSE_MAX_BANK_SIZE)))) {
851 
852 			RTW_INFO("Analyzing: Offset: 0x%X\n", eFuse_Addr);
853 
854 			/* Check PG header for section num.*/
855 			if (EXT_HEADER(efuseHeader)) {
856 				bExtHeader = TRUE;
857 				offset_2_0 = GET_HDR_OFFSET_2_0(efuseHeader);
858 				efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
859 
860 				if (efuseExtHdr != 0xff) {
861 					if (ALL_WORDS_DISABLED(efuseExtHdr)) {
862 						/* Read next pg header*/
863 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
864 						continue;
865 					} else {
866 						offset = ((efuseExtHdr & 0xF0) >> 1) | offset_2_0;
867 						wden = (efuseExtHdr & 0x0F);
868 						efuseHeader2Byte = (efuseExtHdr<<8)|efuseHeader;
869 						RTW_INFO("Find efuseHeader2Byte = 0x%04X, offset=%d, wden=0x%x\n",
870 										efuseHeader2Byte, offset, wden);
871 					}
872 				} else {
873 					RTW_INFO("Error, efuse[%d]=0xff, efuseExtHdr=0xff\n", eFuse_Addr-1);
874 					break;
875 				}
876 			} else {
877 				offset = ((efuseHeader >> 4) & 0x0f);
878 				wden = (efuseHeader & 0x0f);
879 			}
880 
881 			_rtw_memset(efuseData, '\0', EFUSE_MAX_WORD_UNIT * 2);
882 			dataCnt = 0;
883 
884 			if (offset < max_section) {
885 				for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
886 					/* Check word enable condition in the section	*/
887 					if (!(wden & (0x01<<i))) {
888 						if (!((efuseType == EFUSE_WIFI && (eFuse_Addr + 2 < maprawlen)) ||
889 								(efuseType == EFUSE_BT && (eFuse_Addr + 2 < (endBank + 1) * EFUSE_MAX_BANK_SIZE)))) {
890 							RTW_INFO("eFuse_Addr exceeds, break\n");
891 							break;
892 						}
893 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData[dataCnt++], bPseudoTest);
894 						eFuseWord[(offset * 8) + (i * 2)] = (efuseData[dataCnt - 1]);
895 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData[dataCnt++], bPseudoTest);
896 						eFuseWord[(offset * 8) + (i * 2 + 1)] = (efuseData[dataCnt - 1]);
897 					}
898 				}
899 			}
900 
901 			if (bExtHeader) {
902 				RTW_INFO("Efuse PG Section (%d) = ", pgSectionCnt);
903 				RTW_INFO("[ %04X ], [", efuseHeader2Byte);
904 
905 			} else {
906 				RTW_INFO("Efuse PG Section (%d) = ", pgSectionCnt);
907 				RTW_INFO("[ %02X ], [", efuseHeader);
908 			}
909 
910 			for (j = 0; j < dataCnt; j++)
911 				RTW_INFO(" %02X ", efuseData[j]);
912 
913 			RTW_INFO("]\n");
914 
915 
916 			if (bExtHeader) {
917 				ParseEfuseExtHdr = (efuseHeader2Byte & 0xff00) >> 8;
918 				ParseEfuseHeader = (efuseHeader2Byte & 0xff);
919 				ParseOffset2_0 = GET_HDR_OFFSET_2_0(ParseEfuseHeader);
920 				ParseOffset = ((ParseEfuseExtHdr & 0xF0) >> 1) | ParseOffset2_0;
921 				ParseWDEN = (ParseEfuseExtHdr & 0x0F);
922 				RTW_INFO("Header=0x%x, ExtHeader=0x%x, ", ParseEfuseHeader, ParseEfuseExtHdr);
923 			} else {
924 				ParseEfuseHeader = efuseHeader;
925 				ParseOffset = ((ParseEfuseHeader >> 4) & 0x0f);
926 				ParseWDEN = (ParseEfuseHeader & 0x0f);
927 				RTW_INFO("Header=0x%x, ", ParseEfuseHeader);
928 			}
929 			RTW_INFO("offset=0x%x(%d), word enable=0x%x\n", ParseOffset, ParseOffset, ParseWDEN);
930 
931 			wd_cnt = 0;
932 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
933 				if (!(wden & (0x01 << i))) {
934 					RTW_INFO("Map[ %02X ] = %02X %02X\n", ((offset * EFUSE_MAX_WORD_UNIT * 2) + (i * 2)), efuseData[wd_cnt * 2 + 0], efuseData[wd_cnt * 2 + 1]);
935 					wd_cnt++;
936 				}
937 			}
938 
939 			pgSectionCnt++;
940 			bExtHeader = FALSE;
941 			efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
942 			if (efuseHeader == 0xFF) {
943 				if ((eFuse_Addr + protectBytesBank) >= efuse_max)
944 					bCheckNextBank = TRUE;
945 				else
946 					bCheckNextBank = FALSE;
947 			}
948 		}
949 		if (!bCheckNextBank) {
950 			RTW_INFO("Not need to check next bank, eFuse_Addr=%d, protectBytesBank=%d, efuse_max=%d\n",
951 				eFuse_Addr, protectBytesBank, efuse_max);
952 			break;
953 		}
954 	}
955 	/* switch bank back to 0 for BT/wifi later use*/
956 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
957 
958 	/* 3. Collect 16 sections and 4 word unit into Efuse map.*/
959 	for (i = 0; i < max_section; i++) {
960 		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
961 			pEfuseHal->fakeEfuseInitMap[(i*8)+(j*2)] = (eFuseWord[(i*8)+(j*2)]);
962 			pEfuseHal->fakeEfuseInitMap[(i*8)+((j*2)+1)] =  (eFuseWord[(i*8)+((j*2)+1)]);
963 		}
964 	}
965 
966 	RTW_INFO("\n\tEFUSE Analyze Map\n");
967 	i = 0;
968 	j = 0;
969 
970 	for (i = 0; i < mapLen; i++) {
971 		if (i % 16 == 0)
972 			RTW_PRINT_SEL(RTW_DBGDUMP, "0x%03x: ", i);
973 			_RTW_PRINT_SEL(RTW_DBGDUMP, "%02X%s"
974 				, pEfuseHal->fakeEfuseInitMap[i]
975 				, ((i + 1) % 16 == 0) ? "\n" : (((i + 1) % 8 == 0) ? "	  " : " ")
976 			);
977 		}
978 	_RTW_PRINT_SEL(RTW_DBGDUMP, "\n");
979 
980 out_free_buffer:
981 	if (eFuseWord)
982 		rtw_mfree((u8 *)eFuseWord, EFUSE_MAX_SECTION_NUM * (EFUSE_MAX_WORD_UNIT * 2));
983 }
984 
efuse_PreUpdateAction(PADAPTER pAdapter,u32 * BackupRegs)985 void efuse_PreUpdateAction(
986 	PADAPTER	pAdapter,
987 	u32			*BackupRegs)
988 {
989 	if (IS_HARDWARE_TYPE_8812AU(pAdapter) || IS_HARDWARE_TYPE_8822BU(pAdapter)) {
990 		/* <20131115, Kordan> Turn off Rx to prevent from being busy when writing the EFUSE. (Asked by Chunchu.)*/
991 		BackupRegs[0] = phy_query_mac_reg(pAdapter, REG_RCR, bMaskDWord);
992 		BackupRegs[1] = phy_query_mac_reg(pAdapter, REG_RXFLTMAP0, bMaskDWord);
993 		BackupRegs[2] = phy_query_mac_reg(pAdapter, REG_RXFLTMAP0+4, bMaskDWord);
994 #ifdef CONFIG_RTL8812A
995 		BackupRegs[3] = phy_query_mac_reg(pAdapter, REG_AFE_MISC, bMaskDWord);
996 #endif
997 		PlatformEFIOWrite4Byte(pAdapter, REG_RCR, 0x1);
998 		PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0, 0);
999 		PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+1, 0);
1000 		PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+2, 0);
1001 		PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+3, 0);
1002 		PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+4, 0);
1003 		PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+5, 0);
1004 #ifdef CONFIG_RTL8812A
1005 		/* <20140410, Kordan> 0x11 = 0x4E, lower down LX_SPS0 voltage. (Asked by Chunchu)*/
1006 		phy_set_mac_reg(pAdapter, REG_AFE_MISC, bMaskByte1, 0x4E);
1007 #endif
1008 		RTW_INFO(" %s , done\n", __func__);
1009 
1010 		}
1011 }
1012 
1013 
efuse_PostUpdateAction(PADAPTER pAdapter,u32 * BackupRegs)1014 void efuse_PostUpdateAction(
1015 	PADAPTER	pAdapter,
1016 	u32			*BackupRegs)
1017 {
1018 	if (IS_HARDWARE_TYPE_8812AU(pAdapter) || IS_HARDWARE_TYPE_8822BU(pAdapter)) {
1019 		/* <20131115, Kordan> Turn on Rx and restore the registers. (Asked by Chunchu.)*/
1020 		phy_set_mac_reg(pAdapter, REG_RCR, bMaskDWord, BackupRegs[0]);
1021 		phy_set_mac_reg(pAdapter, REG_RXFLTMAP0, bMaskDWord, BackupRegs[1]);
1022 		phy_set_mac_reg(pAdapter, REG_RXFLTMAP0+4, bMaskDWord, BackupRegs[2]);
1023 #ifdef CONFIG_RTL8812A
1024 		phy_set_mac_reg(pAdapter, REG_AFE_MISC, bMaskDWord, BackupRegs[3]);
1025 #endif
1026 	RTW_INFO(" %s , done\n", __func__);
1027 	}
1028 }
1029 
1030 
1031 #ifdef RTW_HALMAC
1032 #include "../../hal/hal_halmac.h"
1033 
Efuse_PowerSwitch(PADAPTER adapter,u8 write,u8 pwrstate)1034 void Efuse_PowerSwitch(PADAPTER adapter, u8 write, u8 pwrstate)
1035 {
1036 }
1037 
BTEfuse_PowerSwitch(PADAPTER adapter,u8 write,u8 pwrstate)1038 void BTEfuse_PowerSwitch(PADAPTER adapter, u8 write, u8 pwrstate)
1039 {
1040 }
1041 
efuse_GetCurrentSize(PADAPTER adapter,u16 * size)1042 u8 efuse_GetCurrentSize(PADAPTER adapter, u16 *size)
1043 {
1044 	*size = 0;
1045 
1046 	return _FAIL;
1047 }
1048 
efuse_GetMaxSize(PADAPTER adapter)1049 u16 efuse_GetMaxSize(PADAPTER adapter)
1050 {
1051 	struct dvobj_priv *d;
1052 	u32 size = 0;
1053 	int err;
1054 
1055 	d = adapter_to_dvobj(adapter);
1056 	err = rtw_halmac_get_physical_efuse_size(d, &size);
1057 	if (err)
1058 		return 0;
1059 
1060 	return size;
1061 }
1062 
efuse_GetavailableSize(PADAPTER adapter)1063 u16 efuse_GetavailableSize(PADAPTER adapter)
1064 {
1065 	struct dvobj_priv *d;
1066 	u32 size = 0;
1067 	int err;
1068 
1069 	d = adapter_to_dvobj(adapter);
1070 	err = rtw_halmac_get_available_efuse_size(d, &size);
1071 	if (err)
1072 		return 0;
1073 
1074 	return size;
1075 }
1076 
1077 
efuse_bt_GetCurrentSize(PADAPTER adapter,u16 * usesize)1078 u8 efuse_bt_GetCurrentSize(PADAPTER adapter, u16 *usesize)
1079 {
1080 	u8 *efuse_map;
1081 
1082 	*usesize = 0;
1083 	efuse_map = rtw_malloc(EFUSE_BT_MAP_LEN);
1084 	if (efuse_map == NULL) {
1085 		RTW_DBG("%s: malloc FAIL\n", __FUNCTION__);
1086 		return _FAIL;
1087 	}
1088 
1089 	/* for get bt phy efuse last use byte */
1090 	hal_ReadEFuse_BT_logic_map(adapter, 0x00, EFUSE_BT_MAP_LEN, efuse_map);
1091 	*usesize = fakeBTEfuseUsedBytes;
1092 
1093 	if (efuse_map)
1094 		rtw_mfree(efuse_map, EFUSE_BT_MAP_LEN);
1095 
1096 	return _SUCCESS;
1097 }
1098 
efuse_bt_GetMaxSize(PADAPTER adapter)1099 u16 efuse_bt_GetMaxSize(PADAPTER adapter)
1100 {
1101 	return EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK;
1102 }
1103 
EFUSE_GetEfuseDefinition(PADAPTER adapter,u8 efusetype,u8 type,void * out,BOOLEAN test)1104 void EFUSE_GetEfuseDefinition(PADAPTER adapter, u8 efusetype, u8 type, void *out, BOOLEAN test)
1105 {
1106 	struct dvobj_priv *d;
1107 	u32 v32 = 0;
1108 
1109 
1110 	d = adapter_to_dvobj(adapter);
1111 
1112 	if (adapter->hal_func.EFUSEGetEfuseDefinition) {
1113 		adapter->hal_func.EFUSEGetEfuseDefinition(adapter, efusetype, type, out, test);
1114 		return;
1115 	}
1116 
1117 	if (EFUSE_WIFI == efusetype) {
1118 		switch (type) {
1119 		case TYPE_EFUSE_MAP_LEN:
1120 			rtw_halmac_get_logical_efuse_size(d, &v32);
1121 			*(u16 *)out = (u16)v32;
1122 			return;
1123 
1124 		case TYPE_EFUSE_REAL_CONTENT_LEN:
1125 			rtw_halmac_get_physical_efuse_size(d, &v32);
1126 			*(u16 *)out = (u16)v32;
1127 			return;
1128 		}
1129 	} else if (EFUSE_BT == efusetype) {
1130 		switch (type) {
1131 		case TYPE_EFUSE_MAP_LEN:
1132 			*(u16 *)out = EFUSE_BT_MAP_LEN;
1133 			return;
1134 
1135 		case TYPE_EFUSE_REAL_CONTENT_LEN:
1136 			*(u16 *)out = EFUSE_BT_REAL_CONTENT_LEN;
1137 			return;
1138 		}
1139 	}
1140 }
1141 
1142 /*
1143  * read/write raw efuse data
1144  */
rtw_efuse_access(PADAPTER adapter,u8 write,u16 addr,u16 cnts,u8 * data)1145 u8 rtw_efuse_access(PADAPTER adapter, u8 write, u16 addr, u16 cnts, u8 *data)
1146 {
1147 	struct dvobj_priv *d;
1148 	u8 *efuse = NULL;
1149 	u32 size;
1150 	int err;
1151 
1152 
1153 	d = adapter_to_dvobj(adapter);
1154 	err = rtw_halmac_get_physical_efuse_size(d, &size);
1155 	if (err){
1156 		size = EFUSE_MAX_SIZE;
1157 		RTW_INFO(" physical_efuse_size err size %d\n", size);
1158 	}
1159 
1160 	if ((addr + cnts) > size)
1161 		return _FAIL;
1162 
1163 	if (_TRUE == write) {
1164 		err = rtw_halmac_write_physical_efuse(d, addr, cnts, data);
1165 		if (err)
1166 			return _FAIL;
1167 	} else {
1168 		if (cnts > 16)
1169 			efuse = rtw_zmalloc(size);
1170 
1171 		if (efuse) {
1172 			err = rtw_halmac_read_physical_efuse_map(d, efuse, size);
1173 			if (err) {
1174 				rtw_mfree(efuse, size);
1175 				return _FAIL;
1176 			}
1177 
1178 			_rtw_memcpy(data, efuse + addr, cnts);
1179 			rtw_mfree(efuse, size);
1180 		} else {
1181 			err = rtw_halmac_read_physical_efuse(d, addr, cnts, data);
1182 			if (err)
1183 				return _FAIL;
1184 		}
1185 	}
1186 
1187 	return _SUCCESS;
1188 }
1189 
dump_buf(u8 * buf,u32 len)1190 static inline void dump_buf(u8 *buf, u32 len)
1191 {
1192 	u32 i;
1193 
1194 	RTW_INFO("-----------------Len %d----------------\n", len);
1195 	for (i = 0; i < len; i++)
1196 		printk("%2.2x-", *(buf + i));
1197 	printk("\n");
1198 }
1199 
1200 /*
1201  * read/write raw efuse data
1202  */
rtw_efuse_bt_access(PADAPTER adapter,u8 write,u16 addr,u16 cnts,u8 * data)1203 u8 rtw_efuse_bt_access(PADAPTER adapter, u8 write, u16 addr, u16 cnts, u8 *data)
1204 {
1205 	struct dvobj_priv *d;
1206 	u8 *efuse = NULL;
1207 	u32 size;
1208 	int err = _FAIL;
1209 
1210 
1211 	d = adapter_to_dvobj(adapter);
1212 
1213 	size = EFUSE_BT_REAL_CONTENT_LEN;
1214 
1215 	if ((addr + cnts) > size)
1216 		return _FAIL;
1217 
1218 	if (_TRUE == write) {
1219 		err = rtw_halmac_write_bt_physical_efuse(d, addr, cnts, data);
1220 		if (err == -1) {
1221 			RTW_ERR("%s: rtw_halmac_write_bt_physical_efuse fail!\n", __FUNCTION__);
1222 			return _FAIL;
1223 		}
1224 		RTW_INFO("%s: rtw_halmac_write_bt_physical_efuse OK! data 0x%x\n", __FUNCTION__, *data);
1225 	} else {
1226 		efuse = rtw_zmalloc(size);
1227 
1228 		if (efuse) {
1229 			err = rtw_halmac_read_bt_physical_efuse_map(d, efuse, size);
1230 
1231 			if (err == -1) {
1232 				RTW_ERR("%s: rtw_halmac_read_bt_physical_efuse_map fail!\n", __FUNCTION__);
1233 				rtw_mfree(efuse, size);
1234 				return _FAIL;
1235 			}
1236 			dump_buf(efuse + addr, cnts);
1237 
1238 			_rtw_memcpy(data, efuse + addr, cnts);
1239 
1240 			RTW_INFO("%s: rtw_halmac_read_bt_physical_efuse_map ok! data 0x%x\n", __FUNCTION__, *data);
1241 			rtw_mfree(efuse, size);
1242 		}
1243 	}
1244 
1245 	return _SUCCESS;
1246 }
1247 
rtw_efuse_map_read(PADAPTER adapter,u16 addr,u16 cnts,u8 * data)1248 u8 rtw_efuse_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
1249 {
1250 	struct dvobj_priv *d;
1251 	u8 *efuse = NULL;
1252 	u32 size, i;
1253 	int err;
1254 	u32	backupRegs[4] = {0};
1255 	u8 status = _SUCCESS;
1256 
1257 	efuse_PreUpdateAction(adapter, backupRegs);
1258 
1259 	d = adapter_to_dvobj(adapter);
1260 	err = rtw_halmac_get_logical_efuse_size(d, &size);
1261 	if (err) {
1262 		status = _FAIL;
1263 		RTW_DBG("halmac_get_logical_efuse_size fail\n");
1264 		goto exit;
1265 	}
1266 	/* size error handle */
1267 	if ((addr + cnts) > size) {
1268 		if (addr < size)
1269 			cnts = size - addr;
1270 		else {
1271 			status = _FAIL;
1272 			RTW_DBG(" %s() ,addr + cnts) > size fail\n", __func__);
1273 			goto exit;
1274 		}
1275 	}
1276 
1277 	if (cnts > 16)
1278 		efuse = rtw_zmalloc(size);
1279 
1280 	if (efuse) {
1281 		err = rtw_halmac_read_logical_efuse_map(d, efuse, size, NULL, 0);
1282 		if (err) {
1283 			rtw_mfree(efuse, size);
1284 			status = _FAIL;
1285 			RTW_DBG(" %s() ,halmac_read_logical_efus map fail\n", __func__);
1286 			goto exit;
1287 		}
1288 
1289 		_rtw_memcpy(data, efuse + addr, cnts);
1290 		rtw_mfree(efuse, size);
1291 	} else {
1292 		err = rtw_halmac_read_logical_efuse(d, addr, cnts, data);
1293 		if (err) {
1294 			status = _FAIL;
1295 			RTW_DBG(" %s() ,halmac_read_logical_efus data fail\n", __func__);
1296 			goto exit;
1297 		}
1298 	}
1299 	status = _SUCCESS;
1300 exit:
1301 	efuse_PostUpdateAction(adapter, backupRegs);
1302 
1303 	return status;
1304 }
1305 
1306 
rtw_efuse_map_write(PADAPTER adapter,u16 addr,u16 cnts,u8 * data)1307 u8 rtw_efuse_map_write(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
1308 {
1309 	struct dvobj_priv *d;
1310 	u8 *efuse = NULL;
1311 	u32 size;
1312 	int err;
1313 	u8 mask_buf[64] = "";
1314 	u16 mask_len = sizeof(u8) * rtw_get_efuse_mask_arraylen(adapter);
1315 	u32 backupRegs[4] = {0};
1316 	u8 status = _SUCCESS;;
1317 
1318 	efuse_PreUpdateAction(adapter, backupRegs);
1319 
1320 	d = adapter_to_dvobj(adapter);
1321 	err = rtw_halmac_get_logical_efuse_size(d, &size);
1322 	if (err) {
1323 		status = _FAIL;
1324 		goto exit;
1325 	}
1326 
1327 	if ((addr + cnts) > size) {
1328 		status = _FAIL;
1329 		goto exit;
1330 	}
1331 
1332 	efuse = rtw_zmalloc(size);
1333 	if (!efuse) {
1334 		status = _FAIL;
1335 		goto exit;
1336 	}
1337 
1338 	err = rtw_halmac_read_logical_efuse_map(d, efuse, size, NULL, 0);
1339 	if (err) {
1340 		rtw_mfree(efuse, size);
1341 		status = _FAIL;
1342 		goto exit;
1343 	}
1344 
1345 	_rtw_memcpy(efuse + addr, data, cnts);
1346 
1347 	if (adapter->registrypriv.boffefusemask == 0) {
1348 		RTW_INFO("Use mask Array Len: %d\n", mask_len);
1349 
1350 		if (mask_len != 0) {
1351 			if (adapter->registrypriv.bFileMaskEfuse == _TRUE)
1352 				_rtw_memcpy(mask_buf, maskfileBuffer, mask_len);
1353 			else
1354 				rtw_efuse_mask_array(adapter, mask_buf);
1355 
1356 			err = rtw_halmac_write_logical_efuse_map(d, efuse, size, mask_buf, mask_len);
1357 		} else
1358 			err = rtw_halmac_write_logical_efuse_map(d, efuse, size, NULL, 0);
1359 	} else {
1360 		_rtw_memset(mask_buf, 0xFF, sizeof(mask_buf));
1361 		RTW_INFO("Efuse mask off\n");
1362 		err = rtw_halmac_write_logical_efuse_map(d, efuse, size, mask_buf, size/16);
1363 	}
1364 
1365 	if (err) {
1366 		rtw_mfree(efuse, size);
1367 		status = _FAIL;
1368 		goto exit;
1369 	}
1370 
1371 	rtw_mfree(efuse, size);
1372 	status = _SUCCESS;
1373 exit :
1374 	efuse_PostUpdateAction(adapter, backupRegs);
1375 
1376 	return status;
1377 }
1378 
Efuse_PgPacketRead(PADAPTER adapter,u8 offset,u8 * data,BOOLEAN test)1379 int Efuse_PgPacketRead(PADAPTER adapter, u8 offset, u8 *data, BOOLEAN test)
1380 {
1381 	return _FALSE;
1382 }
1383 
Efuse_PgPacketWrite(PADAPTER adapter,u8 offset,u8 word_en,u8 * data,BOOLEAN test)1384 int Efuse_PgPacketWrite(PADAPTER adapter, u8 offset, u8 word_en, u8 *data, BOOLEAN test)
1385 {
1386 	return _FALSE;
1387 }
1388 
rtw_bt_mask_map_read(PADAPTER padapter,u16 addr,u16 cnts,u8 * data)1389 static void rtw_bt_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
1390 {
1391 	u16 i = 0;
1392 
1393 #ifdef CONFIG_BT_EFUSE_MASK
1394 	if (padapter->registrypriv.boffefusemask == 0) {
1395 			for (i = 0; i < cnts; i++) {
1396 				if (padapter->registrypriv.bBTFileMaskEfuse == _TRUE) {
1397 						if (rtw_file_efuse_IsMasked(padapter, addr + i, btmaskfileBuffer)) /*use BT file efuse mask.*/
1398 							data[i] = 0xff;
1399 						else
1400 							RTW_INFO("data[%x] = %x\n", i, data[i]);
1401 				} else {
1402 						if (efuse_IsBT_Masked(padapter, addr + i)) /*use drv internal efuse mask.*/
1403 							data[i] = 0xff;
1404 						else
1405 							RTW_INFO("data[%x] = %x\n", i, data[i]);
1406 					}
1407 			}
1408 	}
1409 #endif /*CONFIG_BT_EFUSE_MASK*/
1410 }
1411 
rtw_BT_efuse_map_read(PADAPTER adapter,u16 addr,u16 cnts,u8 * data)1412 u8 rtw_BT_efuse_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
1413 {
1414 	hal_ReadEFuse_BT_logic_map(adapter, addr, cnts, data);
1415 
1416 	rtw_bt_mask_map_read(adapter, addr, cnts, data);
1417 
1418 	return _SUCCESS;
1419 }
1420 
1421 
1422 static u16
hal_EfuseGetCurrentSize_BT(PADAPTER padapter,u8 bPseudoTest)1423 hal_EfuseGetCurrentSize_BT(
1424 	PADAPTER	padapter,
1425 	u8			bPseudoTest)
1426 {
1427 #ifdef HAL_EFUSE_MEMORY
1428 	PHAL_DATA_TYPE	pHalData = GET_HAL_DATA(padapter);
1429 	PEFUSE_HAL		pEfuseHal = &pHalData->EfuseHal;
1430 #endif
1431 	u16 btusedbytes;
1432 	u16	efuse_addr;
1433 	u8	bank, startBank;
1434 	u8	hoffset = 0, hworden = 0;
1435 	u8	efuse_data, word_cnts = 0;
1436 	u16	retU2 = 0;
1437 
1438 
1439 	btusedbytes = fakeBTEfuseUsedBytes;
1440 
1441 	efuse_addr = (u16)((btusedbytes % EFUSE_BT_REAL_BANK_CONTENT_LEN));
1442 	startBank = (u8)(1 + (btusedbytes / EFUSE_BT_REAL_BANK_CONTENT_LEN));
1443 
1444 	RTW_INFO("%s: start from bank=%d addr=0x%X\n", __FUNCTION__, startBank, efuse_addr);
1445 	retU2 = EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK;
1446 
1447 	for (bank = startBank; bank < 3; bank++) {
1448 		if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) {
1449 			RTW_ERR("%s: switch bank(%d) Fail!!\n", __FUNCTION__, bank);
1450 			/* bank = EFUSE_MAX_BANK; */
1451 			break;
1452 		}
1453 
1454 		/* only when bank is switched we have to reset the efuse_addr. */
1455 		if (bank != startBank)
1456 			efuse_addr = 0;
1457 
1458 
1459 		while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1460 			if (rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &efuse_data) == _FALSE) {
1461 				RTW_ERR("%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __FUNCTION__, efuse_addr);
1462 				/* bank = EFUSE_MAX_BANK; */
1463 				break;
1464 			}
1465 			RTW_INFO("%s: efuse_OneByteRead ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank);
1466 
1467 			if (efuse_data == 0xFF)
1468 				break;
1469 
1470 			if (EXT_HEADER(efuse_data)) {
1471 				hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1472 				efuse_addr++;
1473 				rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &efuse_data);
1474 				RTW_INFO("%s: efuse_OneByteRead EXT_HEADER ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank);
1475 
1476 				if (ALL_WORDS_DISABLED(efuse_data)) {
1477 					efuse_addr++;
1478 					continue;
1479 				}
1480 
1481 				/*				hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
1482 				hoffset |= ((efuse_data & 0xF0) >> 1);
1483 				hworden = efuse_data & 0x0F;
1484 			} else {
1485 				hoffset = (efuse_data >> 4) & 0x0F;
1486 				hworden =  efuse_data & 0x0F;
1487 			}
1488 
1489 			RTW_INFO(FUNC_ADPT_FMT": Offset=%d Worden=%#X\n",
1490 				 FUNC_ADPT_ARG(padapter), hoffset, hworden);
1491 
1492 			word_cnts = Efuse_CalculateWordCnts(hworden);
1493 			/* read next header */
1494 			efuse_addr += (word_cnts * 2) + 1;
1495 		}
1496 		/* Check if we need to check next bank efuse */
1497 		if (efuse_addr < retU2)
1498 			break;/* don't need to check next bank. */
1499 	}
1500 	retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr;
1501 
1502 	fakeBTEfuseUsedBytes = retU2;
1503 	RTW_INFO("%s: CurrentSize=%d\n", __FUNCTION__, retU2);
1504 	return retU2;
1505 }
1506 
1507 #ifdef CONFIG_RTL8822C
rtw_pre_bt_efuse(PADAPTER padapter)1508 void rtw_pre_bt_efuse(PADAPTER padapter)
1509 {
1510 	char pgdata[4] = {0x72, 0x80, 0x14, 0x90}; /*BT 5M PLL*/
1511 	u8 status = 1;
1512 	u8 bkmask;
1513 	BOOLEAN bt_en;
1514 
1515 	bkmask = padapter->registrypriv.boffefusemask;
1516 	padapter->registrypriv.boffefusemask = 1;
1517 
1518 	bt_en = rtw_read8(padapter, 0x6A) & BIT2 ? _TRUE : _FALSE;
1519 	if (IS_HARDWARE_TYPE_8822C(padapter) && bt_en == _TRUE) {
1520 			status = rtw_BT_efuse_map_write(padapter, 0x1f8, 4, pgdata);
1521 			RTW_INFO("%s done!!!\n", __FUNCTION__);
1522 	}
1523 	if (status == _FAIL)
1524 		RTW_INFO("%s: fail\n", __FUNCTION__);
1525 	padapter->registrypriv.boffefusemask = bkmask;
1526 }
1527 #endif
1528 
rtw_BT_efuse_map_write(PADAPTER adapter,u16 addr,u16 cnts,u8 * data)1529 u8 rtw_BT_efuse_map_write(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
1530 {
1531 #define RT_ASSERT_RET(expr)									\
1532 	if (!(expr)) {										\
1533 		printk("Assertion failed! %s at ......\n", #expr);				\
1534 		printk("	  ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__);	\
1535 		return _FAIL;	\
1536 	}
1537 
1538 	u8	offset, word_en;
1539 	u8 *efuse = NULL;
1540 	u8	*map;
1541 	u8	newdata[PGPKT_DATA_SIZE];
1542 	s32 i = 0, j = 0, idx = 0, chk_total_byte = 0;
1543 	u8	ret = _SUCCESS;
1544 	u16 mapLen = 1024;
1545 	u16 startAddr = 0;
1546 
1547 	if ((addr + cnts) > mapLen)
1548 		return _FAIL;
1549 
1550 	RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
1551 	RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
1552 
1553 	efuse = rtw_zmalloc(mapLen);
1554 	if (!efuse)
1555 		return _FAIL;
1556 
1557 	map = rtw_zmalloc(mapLen);
1558 	if (map == NULL) {
1559 		rtw_mfree(efuse, mapLen);
1560 		return _FAIL;
1561 	}
1562 
1563 	_rtw_memset(map, 0xFF, mapLen);
1564 
1565 	ret = rtw_BT_efuse_map_read(adapter, 0, mapLen, map);
1566 	if (ret == _FAIL)
1567 		goto exit;
1568 
1569 	_rtw_memcpy(efuse , map, mapLen);
1570 	_rtw_memcpy(efuse + addr, data, cnts);
1571 #ifdef CONFIG_BT_EFUSE_MASK
1572 	if (adapter->registrypriv.boffefusemask == 0) {
1573 		for (i = 0; i < cnts; i++) {
1574 			if (adapter->registrypriv.bBTFileMaskEfuse == _TRUE) {
1575 				if (rtw_file_efuse_IsMasked(adapter, addr + i, btmaskfileBuffer)) /*use file efuse mask. */
1576 					efuse[addr + i] = map[addr + i];
1577 			} else {
1578 				if (efuse_IsBT_Masked(adapter, addr + i))
1579 					efuse[addr + i] = map[addr + i];
1580 			}
1581 			RTW_INFO("%s , efuse[%x] = %x, map = %x\n", __func__, addr + i, efuse[ addr + i], map[addr + i]);
1582 		}
1583 	}
1584 #endif /*CONFIG_BT_EFUSE_MASK*/
1585 	/* precheck pg efuse data byte*/
1586 	chk_total_byte = 0;
1587 	idx = 0;
1588 	offset = (addr >> 3);
1589 
1590 	while (idx < cnts) {
1591 		word_en = 0xF;
1592 		j = (addr + idx) & 0x7;
1593 		for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
1594 			if (efuse[addr + idx] != map[addr + idx])
1595 				word_en &= ~BIT(i >> 1);
1596 		}
1597 
1598 		if (word_en != 0xF) {
1599 			chk_total_byte += Efuse_CalculateWordCnts(word_en) * 2;
1600 
1601 			if (offset >= EFUSE_MAX_SECTION_BASE) /* Over EFUSE_MAX_SECTION 16 for 2 ByteHeader */
1602 				chk_total_byte += 2;
1603 			else
1604 				chk_total_byte += 1;
1605 		}
1606 
1607 		offset++;
1608 	}
1609 
1610 	RTW_INFO("Total PG bytes Count = %d\n", chk_total_byte);
1611 	startAddr = hal_EfuseGetCurrentSize_BT(adapter, _FALSE);
1612 	RTW_INFO("%s: startAddr=%#X\n", __func__, startAddr);
1613 
1614 	if (!AVAILABLE_EFUSE_ADDR(startAddr + chk_total_byte)) {
1615 		RTW_INFO("%s: startAddr(0x%X) + PG data len %d >= efuse BT available offset (0x%X)\n",
1616 			 __func__, startAddr, chk_total_byte, EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK);
1617 		ret = _FAIL;
1618 		goto exit;
1619 	}
1620 
1621 	idx = 0;
1622 	offset = (addr >> 3);
1623 	while (idx < cnts) {
1624 		word_en = 0xF;
1625 		j = (addr + idx) & 0x7;
1626 		_rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
1627 		for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
1628 			if (efuse[addr + idx] != map[addr + idx]) {
1629 				word_en &= ~BIT(i >> 1);
1630 				newdata[i] = efuse[addr + idx];
1631 			}
1632 		}
1633 
1634 		if (word_en != 0xF) {
1635 			ret = EfusePgPacketWrite_BT(adapter, offset, word_en, newdata, _FALSE);
1636 			RTW_INFO("offset=%x\n", offset);
1637 			RTW_INFO("word_en=%x\n", word_en);
1638 			RTW_INFO("%s: data=", __FUNCTION__);
1639 			for (i = 0; i < PGPKT_DATA_SIZE; i++)
1640 				RTW_INFO("0x%02X ", newdata[i]);
1641 			RTW_INFO("\n");
1642 			if (ret == _FAIL)
1643 				break;
1644 		}
1645 		offset++;
1646 	}
1647 exit:
1648 	if (efuse)
1649 		rtw_mfree(efuse, mapLen);
1650 	if (map)
1651 		rtw_mfree(map, mapLen);
1652 	return ret;
1653 }
1654 
hal_ReadEFuse_BT_logic_map(PADAPTER padapter,u16 _offset,u16 _size_byte,u8 * pbuf)1655 void hal_ReadEFuse_BT_logic_map(
1656 	PADAPTER	padapter,
1657 	u16			_offset,
1658 	u16			_size_byte,
1659 	u8			*pbuf
1660 )
1661 {
1662 
1663 	PHAL_DATA_TYPE	pHalData = GET_HAL_DATA(padapter);
1664 
1665 	u8	*efuseTbl, *phyefuse;
1666 	u8	bank;
1667 	u16	eFuse_Addr = 0;
1668 	u8	efuseHeader, efuseExtHdr, efuseData;
1669 	u8	offset, wden;
1670 	u16	i, total, used;
1671 	u8	efuse_usage;
1672 
1673 
1674 	/* */
1675 	/* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
1676 	/* */
1677 	if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) {
1678 		RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __FUNCTION__, _offset, _size_byte);
1679 		return;
1680 	}
1681 
1682 	efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
1683 	phyefuse = rtw_malloc(EFUSE_BT_REAL_CONTENT_LEN);
1684 	if (efuseTbl == NULL || phyefuse == NULL) {
1685 		RTW_INFO("%s: efuseTbl or phyefuse malloc fail!\n", __FUNCTION__);
1686 		goto exit;
1687 	}
1688 
1689 	/* 0xff will be efuse default value instead of 0x00. */
1690 	_rtw_memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
1691 	_rtw_memset(phyefuse, 0xFF, EFUSE_BT_REAL_CONTENT_LEN);
1692 
1693 	if (rtw_efuse_bt_access(padapter, _FALSE, 0, EFUSE_BT_REAL_CONTENT_LEN, phyefuse))
1694 		dump_buf(phyefuse, EFUSE_BT_REAL_BANK_CONTENT_LEN);
1695 
1696 	total = BANK_NUM;
1697 	for (bank = 1; bank <= total; bank++) { /* 8723d Max bake 0~2 */
1698 		eFuse_Addr = 0;
1699 
1700 		while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
1701 			/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); */
1702 			efuseHeader = phyefuse[eFuse_Addr++];
1703 
1704 			if (efuseHeader == 0xFF)
1705 				break;
1706 			RTW_INFO("%s: efuse[%#X]=0x%02x (header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseHeader);
1707 
1708 			/* Check PG header for section num. */
1709 			if (EXT_HEADER(efuseHeader)) {	/* extended header */
1710 				offset = GET_HDR_OFFSET_2_0(efuseHeader);
1711 				RTW_INFO("%s: extended header offset_2_0=0x%X\n", __FUNCTION__, offset);
1712 
1713 				/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */
1714 				efuseExtHdr = phyefuse[eFuse_Addr++];
1715 
1716 				RTW_INFO("%s: efuse[%#X]=0x%02x (ext header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseExtHdr);
1717 				if (ALL_WORDS_DISABLED(efuseExtHdr))
1718 					continue;
1719 
1720 				offset |= ((efuseExtHdr & 0xF0) >> 1);
1721 				wden = (efuseExtHdr & 0x0F);
1722 			} else {
1723 				offset = ((efuseHeader >> 4) & 0x0f);
1724 				wden = (efuseHeader & 0x0f);
1725 			}
1726 
1727 			if (offset < EFUSE_BT_MAX_SECTION) {
1728 				u16 addr;
1729 
1730 				/* Get word enable value from PG header */
1731 				RTW_INFO("%s: Offset=%d Worden=%#X\n", __FUNCTION__, offset, wden);
1732 
1733 				addr = offset * PGPKT_DATA_SIZE;
1734 				for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1735 					/* Check word enable condition in the section */
1736 					if (!(wden & (0x01 << i))) {
1737 						efuseData = 0;
1738 						/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
1739 						efuseData = phyefuse[eFuse_Addr++];
1740 
1741 						RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData);
1742 						efuseTbl[addr] = efuseData;
1743 
1744 						efuseData = 0;
1745 						/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
1746 						efuseData = phyefuse[eFuse_Addr++];
1747 
1748 						RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData);
1749 						efuseTbl[addr + 1] = efuseData;
1750 					}
1751 					addr += 2;
1752 				}
1753 			} else {
1754 				RTW_INFO("%s: offset(%d) is illegal!!\n", __FUNCTION__, offset);
1755 				eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2;
1756 			}
1757 		}
1758 
1759 		if ((eFuse_Addr - 1) < total) {
1760 			RTW_INFO("%s: bank(%d) data end at %#x\n", __FUNCTION__, bank, eFuse_Addr - 1);
1761 			break;
1762 		}
1763 	}
1764 
1765 	/* switch bank back to bank 0 for later BT and wifi use. */
1766 	//hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1767 
1768 	/* Copy from Efuse map to output pointer memory!!! */
1769 	for (i = 0; i < _size_byte; i++)
1770 		pbuf[i] = efuseTbl[_offset + i];
1771 	/* Calculate Efuse utilization */
1772 	total = EFUSE_BT_REAL_BANK_CONTENT_LEN;
1773 
1774 	used = eFuse_Addr - 1;
1775 
1776 	if (total)
1777 		efuse_usage = (u8)((used * 100) / total);
1778 	else
1779 		efuse_usage = 100;
1780 
1781 	fakeBTEfuseUsedBytes = used;
1782 	RTW_INFO("%s: BTEfuseUsed last Bytes = %#x\n", __FUNCTION__, fakeBTEfuseUsedBytes);
1783 
1784 exit:
1785 	if (efuseTbl)
1786 		rtw_mfree(efuseTbl, EFUSE_BT_MAP_LEN);
1787 	if (phyefuse)
1788 		rtw_mfree(phyefuse, EFUSE_BT_REAL_BANK_CONTENT_LEN);
1789 }
1790 
1791 
hal_EfusePartialWriteCheck(PADAPTER padapter,u8 efuseType,u16 * pAddr,PPGPKT_STRUCT pTargetPkt,u8 bPseudoTest)1792 static u8 hal_EfusePartialWriteCheck(
1793 	PADAPTER		padapter,
1794 	u8				efuseType,
1795 	u16				*pAddr,
1796 	PPGPKT_STRUCT	pTargetPkt,
1797 	u8				bPseudoTest)
1798 {
1799 	u8	bRet = _FALSE;
1800 	u16	startAddr = 0, efuse_max_available_len = EFUSE_BT_REAL_BANK_CONTENT_LEN, efuse_max = EFUSE_BT_REAL_BANK_CONTENT_LEN;
1801 	u8	efuse_data = 0;
1802 
1803 	startAddr = (u16)fakeBTEfuseUsedBytes;
1804 
1805 	startAddr %= efuse_max;
1806 	RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr);
1807 
1808 	while (1) {
1809 		if (startAddr >= efuse_max_available_len) {
1810 			bRet = _FALSE;
1811 			RTW_INFO("%s: startAddr(%d) >= efuse_max_available_len(%d)\n",
1812 				__FUNCTION__, startAddr, efuse_max_available_len);
1813 			break;
1814 		}
1815 		if (rtw_efuse_bt_access(padapter, _FALSE, startAddr, 1, &efuse_data)&& (efuse_data != 0xFF)) {
1816 			bRet = _FALSE;
1817 			RTW_INFO("%s: Something Wrong! last bytes(%#X=0x%02X) is not 0xFF\n",
1818 				 __FUNCTION__, startAddr, efuse_data);
1819 			break;
1820 		} else {
1821 			/* not used header, 0xff */
1822 			*pAddr = startAddr;
1823 			/*			RTW_INFO("%s: Started from unused header offset=%d\n", __FUNCTION__, startAddr)); */
1824 			bRet = _TRUE;
1825 			break;
1826 		}
1827 	}
1828 
1829 	return bRet;
1830 }
1831 
1832 
hal_EfusePgPacketWrite2ByteHeader(PADAPTER padapter,u8 efuseType,u16 * pAddr,PPGPKT_STRUCT pTargetPkt,u8 bPseudoTest)1833 static u8 hal_EfusePgPacketWrite2ByteHeader(
1834 	PADAPTER		padapter,
1835 	u8				efuseType,
1836 	u16				*pAddr,
1837 	PPGPKT_STRUCT	pTargetPkt,
1838 	u8				bPseudoTest)
1839 {
1840 	u16	efuse_addr, efuse_max_available_len = EFUSE_BT_REAL_BANK_CONTENT_LEN;
1841 	u8	pg_header = 0, tmp_header = 0;
1842 	u8	repeatcnt = 0;
1843 
1844 	/*	RTW_INFO("%s\n", __FUNCTION__); */
1845 
1846 	efuse_addr = *pAddr;
1847 	if (efuse_addr >= efuse_max_available_len) {
1848 		RTW_INFO("%s: addr(%d) over avaliable(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len);
1849 		return _FALSE;
1850 	}
1851 
1852 	pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1853 	/*	RTW_INFO("%s: pg_header=0x%x\n", __FUNCTION__, pg_header); */
1854 
1855 	do {
1856 
1857 		rtw_efuse_bt_access(padapter, _TRUE, efuse_addr, 1, &pg_header);
1858 		rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &tmp_header);
1859 
1860 		if (tmp_header != 0xFF)
1861 			break;
1862 		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1863 			RTW_INFO("%s: Repeat over limit for pg_header!!\n", __FUNCTION__);
1864 			return _FALSE;
1865 		}
1866 	} while (1);
1867 
1868 	if (tmp_header != pg_header) {
1869 		RTW_ERR("%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
1870 		return _FALSE;
1871 	}
1872 
1873 	/* to write ext_header */
1874 	efuse_addr++;
1875 	pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1876 
1877 	do {
1878 		rtw_efuse_bt_access(padapter, _TRUE, efuse_addr, 1, &pg_header);
1879 		rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &tmp_header);
1880 
1881 		if (tmp_header != 0xFF)
1882 			break;
1883 		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1884 			RTW_INFO("%s: Repeat over limit for ext_header!!\n", __FUNCTION__);
1885 			return _FALSE;
1886 		}
1887 	} while (1);
1888 
1889 	if (tmp_header != pg_header) {	/* offset PG fail */
1890 		RTW_ERR("%s: PG EXT Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
1891 		return _FALSE;
1892 	}
1893 
1894 	*pAddr = efuse_addr;
1895 
1896 	return _TRUE;
1897 }
1898 
1899 
hal_EfusePgPacketWrite1ByteHeader(PADAPTER pAdapter,u8 efuseType,u16 * pAddr,PPGPKT_STRUCT pTargetPkt,u8 bPseudoTest)1900 static u8 hal_EfusePgPacketWrite1ByteHeader(
1901 	PADAPTER		pAdapter,
1902 	u8				efuseType,
1903 	u16				*pAddr,
1904 	PPGPKT_STRUCT	pTargetPkt,
1905 	u8				bPseudoTest)
1906 {
1907 	u8	pg_header = 0, tmp_header = 0;
1908 	u16	efuse_addr = *pAddr;
1909 	u8	repeatcnt = 0;
1910 
1911 
1912 	/*	RTW_INFO("%s\n", __FUNCTION__); */
1913 	pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1914 
1915 	do {
1916 		rtw_efuse_bt_access(pAdapter, _TRUE, efuse_addr, 1, &pg_header);
1917 		rtw_efuse_bt_access(pAdapter, _FALSE, efuse_addr, 1, &tmp_header);
1918 
1919 		if (tmp_header != 0xFF)
1920 			break;
1921 		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1922 			RTW_INFO("%s: Repeat over limit for pg_header!!\n", __FUNCTION__);
1923 			return _FALSE;
1924 		}
1925 	} while (1);
1926 
1927 	if (tmp_header != pg_header) {
1928 		RTW_ERR("%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
1929 		return _FALSE;
1930 	}
1931 
1932 	*pAddr = efuse_addr;
1933 
1934 	return _TRUE;
1935 }
1936 
hal_EfusePgPacketWriteHeader(PADAPTER padapter,u8 efuseType,u16 * pAddr,PPGPKT_STRUCT pTargetPkt,u8 bPseudoTest)1937 static u8 hal_EfusePgPacketWriteHeader(
1938 	PADAPTER		padapter,
1939 	u8				efuseType,
1940 	u16				*pAddr,
1941 	PPGPKT_STRUCT	pTargetPkt,
1942 	u8				bPseudoTest)
1943 {
1944 	u8 bRet = _FALSE;
1945 
1946 	if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
1947 		bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1948 	else
1949 		bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1950 
1951 	return bRet;
1952 }
1953 
1954 
1955 static u8
Hal_EfuseWordEnableDataWrite(PADAPTER padapter,u16 efuse_addr,u8 word_en,u8 * data,u8 bPseudoTest)1956 Hal_EfuseWordEnableDataWrite(
1957 	PADAPTER	padapter,
1958 	u16			efuse_addr,
1959 	u8			word_en,
1960 	u8			*data,
1961 	u8			bPseudoTest)
1962 {
1963 	u16	tmpaddr = 0;
1964 	u16	start_addr = efuse_addr;
1965 	u8	badworden = 0x0F;
1966 	u8	tmpdata[PGPKT_DATA_SIZE];
1967 
1968 
1969 	/*	RTW_INFO("%s: efuse_addr=%#x word_en=%#x\n", __FUNCTION__, efuse_addr, word_en); */
1970 	_rtw_memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1971 
1972 	if (!(word_en & BIT(0))) {
1973 		tmpaddr = start_addr;
1974 		rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[0]);
1975 		rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[1]);
1976 		rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[0]);
1977 		rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[1]);
1978 		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1979 			badworden &= (~BIT(0));
1980 	}
1981 	if (!(word_en & BIT(1))) {
1982 		tmpaddr = start_addr;
1983 		rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[2]);
1984 		rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[3]);
1985 		rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[2]);
1986 		rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[3]);
1987 		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1988 			badworden &= (~BIT(1));
1989 	}
1990 	if (!(word_en & BIT(2))) {
1991 		tmpaddr = start_addr;
1992 		rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[4]);
1993 		rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[5]);
1994 		rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[4]);
1995 		rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[5]);
1996 		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1997 			badworden &= (~BIT(2));
1998 	}
1999 	if (!(word_en & BIT(3))) {
2000 		tmpaddr = start_addr;
2001 		rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[6]);
2002 		rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[7]);
2003 		rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[6]);
2004 		rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[7]);
2005 
2006 		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
2007 			badworden &= (~BIT(3));
2008 	}
2009 
2010 	return badworden;
2011 }
2012 
2013 static void
hal_EfuseConstructPGPkt(u8 offset,u8 word_en,u8 * pData,PPGPKT_STRUCT pTargetPkt)2014 hal_EfuseConstructPGPkt(
2015 	u8				offset,
2016 	u8				word_en,
2017 	u8				*pData,
2018 	PPGPKT_STRUCT	pTargetPkt)
2019 {
2020 	_rtw_memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
2021 	pTargetPkt->offset = offset;
2022 	pTargetPkt->word_en = word_en;
2023 	efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
2024 	pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
2025 }
2026 
2027 static u8
hal_EfusePgPacketWriteData(PADAPTER pAdapter,u8 efuseType,u16 * pAddr,PPGPKT_STRUCT pTargetPkt,u8 bPseudoTest)2028 hal_EfusePgPacketWriteData(
2029 	PADAPTER		pAdapter,
2030 	u8				efuseType,
2031 	u16				*pAddr,
2032 	PPGPKT_STRUCT	pTargetPkt,
2033 	u8				bPseudoTest)
2034 {
2035 	u16	efuse_addr;
2036 	u8	badworden;
2037 
2038 	efuse_addr = *pAddr;
2039 	badworden = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
2040 	if (badworden != 0x0F) {
2041 		RTW_INFO("%s: Fail!!\n", __FUNCTION__);
2042 		return _FALSE;
2043 	} else
2044 		RTW_INFO("%s: OK!!\n", __FUNCTION__);
2045 
2046 	return _TRUE;
2047 }
2048 
efuse_OneByteRead(struct _ADAPTER * a,u16 addr,u8 * data,u8 bPseudoTest)2049 u8 efuse_OneByteRead(struct _ADAPTER *a, u16 addr, u8 *data, u8 bPseudoTest)
2050 {
2051 		struct dvobj_priv *d;
2052 		int err;
2053 		u8 ret = _TRUE;
2054 
2055 		d = adapter_to_dvobj(a);
2056 		err = rtw_halmac_read_physical_efuse(d, addr, 1, data);
2057 		if (err) {
2058 			RTW_ERR("%s: addr=0x%x FAIL!!!\n", __FUNCTION__, addr);
2059 			ret = _FALSE;
2060 		}
2061 
2062 		return ret;
2063 
2064 }
2065 
2066 
2067 static u8
hal_BT_EfusePgCheckAvailableAddr(PADAPTER pAdapter,u8 bPseudoTest)2068 hal_BT_EfusePgCheckAvailableAddr(
2069 	PADAPTER	pAdapter,
2070 	u8		bPseudoTest)
2071 {
2072 	u16	max_available = EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK;
2073 	u16	current_size = 0;
2074 
2075 	 RTW_INFO("%s: max_available=%d\n", __FUNCTION__, max_available);
2076 	current_size = hal_EfuseGetCurrentSize_BT(pAdapter, bPseudoTest);
2077 	if (current_size >= max_available) {
2078 		RTW_INFO("%s: Error!! current_size(%d)>max_available(%d)\n", __FUNCTION__, current_size, max_available);
2079 		return _FALSE;
2080 	}
2081 	return _TRUE;
2082 }
2083 
EfusePgPacketWrite_BT(PADAPTER pAdapter,u8 offset,u8 word_en,u8 * pData,u8 bPseudoTest)2084 u8 EfusePgPacketWrite_BT(
2085 	PADAPTER	pAdapter,
2086 	u8			offset,
2087 	u8			word_en,
2088 	u8			*pData,
2089 	u8			bPseudoTest)
2090 {
2091 	PGPKT_STRUCT targetPkt;
2092 	u16 startAddr = 0;
2093 	u8 efuseType = EFUSE_BT;
2094 
2095 	if (!hal_BT_EfusePgCheckAvailableAddr(pAdapter, bPseudoTest))
2096 		return _FALSE;
2097 
2098 	hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
2099 
2100 	if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
2101 		return _FALSE;
2102 
2103 	if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
2104 		return _FALSE;
2105 
2106 	if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
2107 		return _FALSE;
2108 
2109 	return _TRUE;
2110 }
2111 
2112 
2113 #else /* !RTW_HALMAC */
2114 /* ------------------------------------------------------------------------------ */
2115 #define REG_EFUSE_CTRL		0x0030
2116 #define EFUSE_CTRL			REG_EFUSE_CTRL		/* E-Fuse Control. */
2117 /* ------------------------------------------------------------------------------ */
2118 
2119 
2120 BOOLEAN
2121 Efuse_Read1ByteFromFakeContent(
2122 		PADAPTER	pAdapter,
2123 		u16		Offset,
2124 		u8		*Value);
2125 BOOLEAN
Efuse_Read1ByteFromFakeContent(PADAPTER pAdapter,u16 Offset,u8 * Value)2126 Efuse_Read1ByteFromFakeContent(
2127 		PADAPTER	pAdapter,
2128 		u16		Offset,
2129 		u8		*Value)
2130 {
2131 	if (Offset >= EFUSE_MAX_HW_SIZE)
2132 		return _FALSE;
2133 	/* DbgPrint("Read fake content, offset = %d\n", Offset); */
2134 	if (fakeEfuseBank == 0)
2135 		*Value = fakeEfuseContent[Offset];
2136 	else
2137 		*Value = fakeBTEfuseContent[fakeEfuseBank - 1][Offset];
2138 	return _TRUE;
2139 }
2140 
2141 BOOLEAN
2142 Efuse_Write1ByteToFakeContent(
2143 			PADAPTER	pAdapter,
2144 			u16		Offset,
2145 			u8		Value);
2146 BOOLEAN
Efuse_Write1ByteToFakeContent(PADAPTER pAdapter,u16 Offset,u8 Value)2147 Efuse_Write1ByteToFakeContent(
2148 			PADAPTER	pAdapter,
2149 			u16		Offset,
2150 			u8		Value)
2151 {
2152 	if (Offset >= EFUSE_MAX_HW_SIZE)
2153 		return _FALSE;
2154 	if (fakeEfuseBank == 0)
2155 		fakeEfuseContent[Offset] = Value;
2156 	else
2157 		fakeBTEfuseContent[fakeEfuseBank - 1][Offset] = Value;
2158 	return _TRUE;
2159 }
2160 
2161 /*-----------------------------------------------------------------------------
2162  * Function:	Efuse_PowerSwitch
2163  *
2164  * Overview:	When we want to enable write operation, we should change to
2165  *				pwr on state. When we stop write, we should switch to 500k mode
2166  *				and disable LDO 2.5V.
2167  *
2168  * Input:       NONE
2169  *
2170  * Output:      NONE
2171  *
2172  * Return:      NONE
2173  *
2174  * Revised History:
2175  * When			Who		Remark
2176  * 11/17/2008	MHC		Create Version 0.
2177  *
2178  *---------------------------------------------------------------------------*/
2179 void
Efuse_PowerSwitch(PADAPTER pAdapter,u8 bWrite,u8 PwrState)2180 Efuse_PowerSwitch(
2181 		PADAPTER	pAdapter,
2182 		u8		bWrite,
2183 		u8		PwrState)
2184 {
2185 	pAdapter->hal_func.EfusePowerSwitch(pAdapter, bWrite, PwrState);
2186 }
2187 
2188 void
BTEfuse_PowerSwitch(PADAPTER pAdapter,u8 bWrite,u8 PwrState)2189 BTEfuse_PowerSwitch(
2190 		PADAPTER	pAdapter,
2191 		u8		bWrite,
2192 		u8		PwrState)
2193 {
2194 	if (pAdapter->hal_func.BTEfusePowerSwitch)
2195 		pAdapter->hal_func.BTEfusePowerSwitch(pAdapter, bWrite, PwrState);
2196 }
2197 
2198 /*-----------------------------------------------------------------------------
2199  * Function:	efuse_GetCurrentSize
2200  *
2201  * Overview:	Get current efuse size!!!
2202  *
2203  * Input:       NONE
2204  *
2205  * Output:      NONE
2206  *
2207  * Return:      NONE
2208  *
2209  * Revised History:
2210  * When			Who		Remark
2211  * 11/16/2008	MHC		Create Version 0.
2212  *
2213  *---------------------------------------------------------------------------*/
2214 u16
Efuse_GetCurrentSize(PADAPTER pAdapter,u8 efuseType,BOOLEAN bPseudoTest)2215 Efuse_GetCurrentSize(
2216 	PADAPTER		pAdapter,
2217 	u8			efuseType,
2218 	BOOLEAN		bPseudoTest)
2219 {
2220 	u16 ret = 0;
2221 
2222 	ret = pAdapter->hal_func.EfuseGetCurrentSize(pAdapter, efuseType, bPseudoTest);
2223 
2224 	return ret;
2225 }
2226 
2227 /*
2228  *	Description:
2229  *		Execute E-Fuse read byte operation.
2230  *		Refered from SD1 Richard.
2231  *
2232  *	Assumption:
2233  *		1. Boot from E-Fuse and successfully auto-load.
2234  *		2. PASSIVE_LEVEL (USB interface)
2235  *
2236  *	Created by Roger, 2008.10.21.
2237  *   */
2238 void
ReadEFuseByte(PADAPTER Adapter,u16 _offset,u8 * pbuf,BOOLEAN bPseudoTest)2239 ReadEFuseByte(
2240 	PADAPTER	Adapter,
2241 	u16			_offset,
2242 	u8			*pbuf,
2243 	BOOLEAN	bPseudoTest)
2244 {
2245 	u32	value32;
2246 	u8	readbyte;
2247 	u16	retry;
2248 	/* systime start=rtw_get_current_time(); */
2249 
2250 	if (bPseudoTest) {
2251 		Efuse_Read1ByteFromFakeContent(Adapter, _offset, pbuf);
2252 		return;
2253 	}
2254 	if (IS_HARDWARE_TYPE_8723B(Adapter)) {
2255 		/* <20130121, Kordan> For SMIC S55 EFUSE specificatoin. */
2256 		/* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
2257 		phy_set_mac_reg(Adapter, EFUSE_TEST, BIT11, 0);
2258 	}
2259 	/* Write Address */
2260 	rtw_write8(Adapter, EFUSE_CTRL + 1, (_offset & 0xff));
2261 	readbyte = rtw_read8(Adapter, EFUSE_CTRL + 2);
2262 	rtw_write8(Adapter, EFUSE_CTRL + 2, ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
2263 
2264 	/* Write bit 32 0 */
2265 	readbyte = rtw_read8(Adapter, EFUSE_CTRL + 3);
2266 	rtw_write8(Adapter, EFUSE_CTRL + 3, (readbyte & 0x7f));
2267 
2268 	/* Check bit 32 read-ready */
2269 	retry = 0;
2270 	value32 = rtw_read32(Adapter, EFUSE_CTRL);
2271 	/* while(!(((value32 >> 24) & 0xff) & 0x80)  && (retry<10)) */
2272 	while (!(((value32 >> 24) & 0xff) & 0x80)  && (retry < 10000)) {
2273 		value32 = rtw_read32(Adapter, EFUSE_CTRL);
2274 		retry++;
2275 	}
2276 
2277 	/* 20100205 Joseph: Add delay suggested by SD1 Victor. */
2278 	/* This fix the problem that Efuse read error in high temperature condition. */
2279 	/* Designer says that there shall be some delay after ready bit is set, or the */
2280 	/* result will always stay on last data we read. */
2281 	rtw_udelay_os(50);
2282 	value32 = rtw_read32(Adapter, EFUSE_CTRL);
2283 
2284 	*pbuf = (u8)(value32 & 0xff);
2285 	/* RTW_INFO("ReadEFuseByte _offset:%08u, in %d ms\n",_offset ,rtw_get_passing_time_ms(start)); */
2286 
2287 }
2288 
2289 /*
2290  *	Description:
2291  *		1. Execute E-Fuse read byte operation according as map offset and
2292  *		    save to E-Fuse table.
2293  *		2. Refered from SD1 Richard.
2294  *
2295  *	Assumption:
2296  *		1. Boot from E-Fuse and successfully auto-load.
2297  *		2. PASSIVE_LEVEL (USB interface)
2298  *
2299  *	Created by Roger, 2008.10.21.
2300  *
2301  *	2008/12/12 MH	1. Reorganize code flow and reserve bytes. and add description.
2302  *					2. Add efuse utilization collect.
2303  *	2008/12/22 MH	Read Efuse must check if we write section 1 data again!!! Sec1
2304  *					write addr must be after sec5.
2305  *   */
2306 
2307 void
2308 efuse_ReadEFuse(
2309 	PADAPTER	Adapter,
2310 	u8		efuseType,
2311 	u16		_offset,
2312 	u16		_size_byte,
2313 	u8	*pbuf,
2314 	BOOLEAN	bPseudoTest
2315 );
2316 void
efuse_ReadEFuse(PADAPTER Adapter,u8 efuseType,u16 _offset,u16 _size_byte,u8 * pbuf,BOOLEAN bPseudoTest)2317 efuse_ReadEFuse(
2318 	PADAPTER	Adapter,
2319 	u8		efuseType,
2320 	u16		_offset,
2321 	u16		_size_byte,
2322 	u8	*pbuf,
2323 	BOOLEAN	bPseudoTest
2324 )
2325 {
2326 	Adapter->hal_func.ReadEFuse(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
2327 }
2328 
2329 void
EFUSE_GetEfuseDefinition(PADAPTER pAdapter,u8 efuseType,u8 type,void * pOut,BOOLEAN bPseudoTest)2330 EFUSE_GetEfuseDefinition(
2331 			PADAPTER	pAdapter,
2332 			u8		efuseType,
2333 			u8		type,
2334 			void		*pOut,
2335 			BOOLEAN		bPseudoTest
2336 )
2337 {
2338 	pAdapter->hal_func.EFUSEGetEfuseDefinition(pAdapter, efuseType, type, pOut, bPseudoTest);
2339 }
2340 
2341 
2342 /*  11/16/2008 MH Read one byte from real Efuse. */
2343 u8
efuse_OneByteRead(PADAPTER pAdapter,u16 addr,u8 * data,BOOLEAN bPseudoTest)2344 efuse_OneByteRead(
2345 		PADAPTER	pAdapter,
2346 		u16			addr,
2347 		u8			*data,
2348 		BOOLEAN		bPseudoTest)
2349 {
2350 	u32	tmpidx = 0;
2351 	u8	bResult;
2352 	u8	readbyte;
2353 	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(pAdapter);
2354 
2355 	/* RTW_INFO("===> EFUSE_OneByteRead(), addr = %x\n", addr); */
2356 	/* RTW_INFO("===> EFUSE_OneByteRead() start, 0x34 = 0x%X\n", rtw_read32(pAdapter, EFUSE_TEST)); */
2357 
2358 	if (bPseudoTest) {
2359 		bResult = Efuse_Read1ByteFromFakeContent(pAdapter, addr, data);
2360 		return bResult;
2361 	}
2362 
2363 #ifdef CONFIG_RTL8710B
2364 	/* <20171208, Peter>, Dont do the following write16(0x34) */
2365 	if (IS_HARDWARE_TYPE_8710B(pAdapter)) {
2366 		bResult = pAdapter->hal_func.efuse_indirect_read4(pAdapter, addr, data);
2367 		return bResult;
2368 	}
2369 #endif
2370 
2371 	if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
2372 	    (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
2373 	    (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
2374 	   ) {
2375 		/* <20130121, Kordan> For SMIC EFUSE specificatoin. */
2376 		/* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8])	 */
2377 		/* phy_set_mac_reg(pAdapter, 0x34, BIT11, 0); */
2378 		rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) & (~BIT11));
2379 	}
2380 
2381 	/* -----------------e-fuse reg ctrl --------------------------------- */
2382 	/* address			 */
2383 	rtw_write8(pAdapter, EFUSE_CTRL + 1, (u8)(addr & 0xff));
2384 	rtw_write8(pAdapter, EFUSE_CTRL + 2, ((u8)((addr >> 8) & 0x03)) |
2385 		   (rtw_read8(pAdapter, EFUSE_CTRL + 2) & 0xFC));
2386 
2387 	/* rtw_write8(pAdapter, EFUSE_CTRL+3,  0x72); */ /* read cmd	 */
2388 	/* Write bit 32 0 */
2389 	readbyte = rtw_read8(pAdapter, EFUSE_CTRL + 3);
2390 	rtw_write8(pAdapter, EFUSE_CTRL + 3, (readbyte & 0x7f));
2391 
2392 	while (!(0x80 & rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 1000)) {
2393 		rtw_mdelay_os(1);
2394 		tmpidx++;
2395 	}
2396 	if (tmpidx < 100) {
2397 		*data = rtw_read8(pAdapter, EFUSE_CTRL);
2398 		bResult = _TRUE;
2399 	} else {
2400 		*data = 0xff;
2401 		bResult = _FALSE;
2402 		RTW_INFO("%s: [ERROR] addr=0x%x bResult=%d time out 1s !!!\n", __FUNCTION__, addr, bResult);
2403 		RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL));
2404 	}
2405 
2406 	return bResult;
2407 }
2408 
2409 /*  11/16/2008 MH Write one byte to reald Efuse. */
2410 u8
efuse_OneByteWrite(PADAPTER pAdapter,u16 addr,u8 data,BOOLEAN bPseudoTest)2411 efuse_OneByteWrite(
2412 		PADAPTER	pAdapter,
2413 		u16			addr,
2414 		u8			data,
2415 		BOOLEAN		bPseudoTest)
2416 {
2417 	u8	tmpidx = 0;
2418 	u8	bResult = _FALSE;
2419 	u32 efuseValue = 0;
2420 	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(pAdapter);
2421 
2422 	/* RTW_INFO("===> EFUSE_OneByteWrite(), addr = %x data=%x\n", addr, data); */
2423 	/* RTW_INFO("===> EFUSE_OneByteWrite() start, 0x34 = 0x%X\n", rtw_read32(pAdapter, EFUSE_TEST)); */
2424 
2425 	if (bPseudoTest) {
2426 		bResult = Efuse_Write1ByteToFakeContent(pAdapter, addr, data);
2427 		return bResult;
2428 	}
2429 
2430 	Efuse_PowerSwitch(pAdapter, _TRUE, _TRUE);
2431 
2432 	/* -----------------e-fuse reg ctrl ---------------------------------	 */
2433 	/* address			 */
2434 
2435 
2436 	efuseValue = rtw_read32(pAdapter, EFUSE_CTRL);
2437 	efuseValue |= (BIT21 | BIT31);
2438 	efuseValue &= ~(0x3FFFF);
2439 	efuseValue |= ((addr << 8 | data) & 0x3FFFF);
2440 
2441 	/* <20130227, Kordan> 8192E MP chip A-cut had better not set 0x34[11] until B-Cut. */
2442 	if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
2443 	    (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
2444 	    (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
2445 	   ) {
2446 		/* <20130121, Kordan> For SMIC EFUSE specificatoin. */
2447 		/* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
2448 		/* phy_set_mac_reg(pAdapter, 0x34, BIT11, 1); */
2449 		rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) | (BIT11));
2450 		rtw_write32(pAdapter, EFUSE_CTRL, 0x90600000 | ((addr << 8 | data)));
2451 	} else
2452 		rtw_write32(pAdapter, EFUSE_CTRL, efuseValue);
2453 
2454 	rtw_mdelay_os(1);
2455 
2456 	while ((0x80 &  rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 100)) {
2457 		rtw_mdelay_os(1);
2458 		tmpidx++;
2459 	}
2460 
2461 	if (tmpidx < 100)
2462 		bResult = _TRUE;
2463 	else {
2464 		bResult = _FALSE;
2465 		RTW_INFO("%s: [ERROR] addr=0x%x ,efuseValue=0x%x ,bResult=%d time out 1s !!!\n",
2466 			 __FUNCTION__, addr, efuseValue, bResult);
2467 		RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL));
2468 	}
2469 
2470 	/* disable Efuse program enable */
2471 	if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
2472 	    (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
2473 	    (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
2474 	   )
2475 		phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT(11), 0);
2476 
2477 	Efuse_PowerSwitch(pAdapter, _TRUE, _FALSE);
2478 
2479 	return bResult;
2480 }
2481 
2482 int
Efuse_PgPacketRead(PADAPTER pAdapter,u8 offset,u8 * data,BOOLEAN bPseudoTest)2483 Efuse_PgPacketRead(PADAPTER	pAdapter,
2484 			u8			offset,
2485 			u8			*data,
2486 			BOOLEAN		bPseudoTest)
2487 {
2488 	int	ret = 0;
2489 
2490 	ret =  pAdapter->hal_func.Efuse_PgPacketRead(pAdapter, offset, data, bPseudoTest);
2491 
2492 	return ret;
2493 }
2494 
2495 int
Efuse_PgPacketWrite(PADAPTER pAdapter,u8 offset,u8 word_en,u8 * data,BOOLEAN bPseudoTest)2496 Efuse_PgPacketWrite(PADAPTER	pAdapter,
2497 			u8			offset,
2498 			u8			word_en,
2499 			u8			*data,
2500 			BOOLEAN		bPseudoTest)
2501 {
2502 	int ret;
2503 
2504 	ret =  pAdapter->hal_func.Efuse_PgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest);
2505 
2506 	return ret;
2507 }
2508 
2509 
2510 int
Efuse_PgPacketWrite_BT(PADAPTER pAdapter,u8 offset,u8 word_en,u8 * data,BOOLEAN bPseudoTest)2511 Efuse_PgPacketWrite_BT(PADAPTER	pAdapter,
2512 			u8			offset,
2513 			u8			word_en,
2514 			u8			*data,
2515 			BOOLEAN		bPseudoTest)
2516 {
2517 	int ret;
2518 
2519 	ret =  pAdapter->hal_func.Efuse_PgPacketWrite_BT(pAdapter, offset, word_en, data, bPseudoTest);
2520 
2521 	return ret;
2522 }
2523 
2524 
2525 u8
Efuse_WordEnableDataWrite(PADAPTER pAdapter,u16 efuse_addr,u8 word_en,u8 * data,BOOLEAN bPseudoTest)2526 Efuse_WordEnableDataWrite(PADAPTER	pAdapter,
2527 				u16		efuse_addr,
2528 				u8		word_en,
2529 				u8		*data,
2530 				BOOLEAN		bPseudoTest)
2531 {
2532 	u8	ret = 0;
2533 
2534 	ret =  pAdapter->hal_func.Efuse_WordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
2535 
2536 	return ret;
2537 }
2538 
efuse_read8(PADAPTER padapter,u16 address,u8 * value)2539 static u8 efuse_read8(PADAPTER padapter, u16 address, u8 *value)
2540 {
2541 	return efuse_OneByteRead(padapter, address, value, _FALSE);
2542 }
2543 
efuse_write8(PADAPTER padapter,u16 address,u8 * value)2544 static u8 efuse_write8(PADAPTER padapter, u16 address, u8 *value)
2545 {
2546 	return efuse_OneByteWrite(padapter, address, *value, _FALSE);
2547 }
2548 
2549 /*
2550  * read/wirte raw efuse data
2551  */
rtw_efuse_access(PADAPTER padapter,u8 bWrite,u16 start_addr,u16 cnts,u8 * data)2552 u8 rtw_efuse_access(PADAPTER padapter, u8 bWrite, u16 start_addr, u16 cnts, u8 *data)
2553 {
2554 	int i = 0;
2555 	u16	real_content_len = 0, max_available_size = 0;
2556 	u8 res = _FAIL ;
2557 	u8(*rw8)(PADAPTER, u16, u8 *);
2558 	u32	backupRegs[4] = {0};
2559 
2560 
2561 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_REAL_CONTENT_LEN, (void *)&real_content_len, _FALSE);
2562 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (void *)&max_available_size, _FALSE);
2563 
2564 	if (start_addr > real_content_len)
2565 		return _FAIL;
2566 
2567 	if (_TRUE == bWrite) {
2568 		if ((start_addr + cnts) > max_available_size)
2569 			return _FAIL;
2570 		rw8 = &efuse_write8;
2571 	} else
2572 		rw8 = &efuse_read8;
2573 
2574 	efuse_PreUpdateAction(padapter, backupRegs);
2575 
2576 	Efuse_PowerSwitch(padapter, bWrite, _TRUE);
2577 
2578 	/* e-fuse one byte read / write */
2579 	for (i = 0; i < cnts; i++) {
2580 		if (start_addr >= real_content_len) {
2581 			res = _FAIL;
2582 			break;
2583 		}
2584 
2585 		res = rw8(padapter, start_addr++, data++);
2586 		if (_FAIL == res)
2587 			break;
2588 	}
2589 
2590 	Efuse_PowerSwitch(padapter, bWrite, _FALSE);
2591 
2592 	efuse_PostUpdateAction(padapter, backupRegs);
2593 
2594 	return res;
2595 }
2596 /* ------------------------------------------------------------------------------ */
efuse_GetMaxSize(PADAPTER padapter)2597 u16 efuse_GetMaxSize(PADAPTER padapter)
2598 {
2599 	u16	max_size;
2600 
2601 	max_size = 0;
2602 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI , TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (void *)&max_size, _FALSE);
2603 	return max_size;
2604 }
2605 /* ------------------------------------------------------------------------------ */
efuse_GetCurrentSize(PADAPTER padapter,u16 * size)2606 u8 efuse_GetCurrentSize(PADAPTER padapter, u16 *size)
2607 {
2608 	Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
2609 	*size = Efuse_GetCurrentSize(padapter, EFUSE_WIFI, _FALSE);
2610 	Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
2611 
2612 	return _SUCCESS;
2613 }
2614 /* ------------------------------------------------------------------------------ */
efuse_bt_GetMaxSize(PADAPTER padapter)2615 u16 efuse_bt_GetMaxSize(PADAPTER padapter)
2616 {
2617 	u16	max_size;
2618 
2619 	max_size = 0;
2620 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT , TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (void *)&max_size, _FALSE);
2621 	return max_size;
2622 }
2623 
efuse_bt_GetCurrentSize(PADAPTER padapter,u16 * size)2624 u8 efuse_bt_GetCurrentSize(PADAPTER padapter, u16 *size)
2625 {
2626 	Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
2627 	*size = Efuse_GetCurrentSize(padapter, EFUSE_BT, _FALSE);
2628 	Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
2629 
2630 	return _SUCCESS;
2631 }
2632 
rtw_efuse_map_read(PADAPTER padapter,u16 addr,u16 cnts,u8 * data)2633 u8 rtw_efuse_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
2634 {
2635 	u16	mapLen = 0;
2636 
2637 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE);
2638 
2639 	if ((addr + cnts) > mapLen)
2640 		return _FAIL;
2641 
2642 	Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
2643 
2644 	efuse_ReadEFuse(padapter, EFUSE_WIFI, addr, cnts, data, _FALSE);
2645 
2646 	Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
2647 
2648 	return _SUCCESS;
2649 }
2650 
rtw_BT_efuse_map_read(PADAPTER padapter,u16 addr,u16 cnts,u8 * data)2651 u8 rtw_BT_efuse_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
2652 {
2653 	u16	mapLen = 0;
2654 
2655 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE);
2656 
2657 	if ((addr + cnts) > mapLen)
2658 		return _FAIL;
2659 
2660 	Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
2661 
2662 	efuse_ReadEFuse(padapter, EFUSE_BT, addr, cnts, data, _FALSE);
2663 
2664 	Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
2665 
2666 	return _SUCCESS;
2667 }
2668 
2669 /* ------------------------------------------------------------------------------ */
rtw_efuse_map_write(PADAPTER padapter,u16 addr,u16 cnts,u8 * data)2670 u8 rtw_efuse_map_write(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
2671 {
2672 #define RT_ASSERT_RET(expr)												\
2673 	if (!(expr)) {															\
2674 		printk("Assertion failed! %s at ......\n", #expr);							\
2675 		printk("      ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__);	\
2676 		return _FAIL;	\
2677 	}
2678 
2679 	u8 *efuse = NULL;
2680 	u8	offset, word_en;
2681 	u8	*map = NULL;
2682 	u8	newdata[PGPKT_DATA_SIZE];
2683 	s32	i, j, idx, chk_total_byte;
2684 	u8	ret = _SUCCESS;
2685 	u16	mapLen = 0, startAddr = 0, efuse_max_available_len = 0;
2686 	u32	backupRegs[4] = {0};
2687 	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(padapter);
2688 	PEFUSE_HAL	pEfuseHal = &pHalData->EfuseHal;
2689 
2690 
2691 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE);
2692 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, _FALSE);
2693 
2694 	if ((addr + cnts) > mapLen)
2695 		return _FAIL;
2696 
2697 	RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
2698 	RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
2699 
2700 	efuse = rtw_zmalloc(mapLen);
2701 	if (!efuse)
2702 		return _FAIL;
2703 
2704 	map = rtw_zmalloc(mapLen);
2705 	if (map == NULL) {
2706 		rtw_mfree(efuse, mapLen);
2707 		return _FAIL;
2708 	}
2709 
2710 	_rtw_memset(map, 0xFF, mapLen);
2711 
2712 	ret = rtw_efuse_map_read(padapter, 0, mapLen, map);
2713 	if (ret == _FAIL)
2714 		goto exit;
2715 
2716 	_rtw_memcpy(efuse , map, mapLen);
2717 	_rtw_memcpy(efuse + addr, data, cnts);
2718 
2719 	if (padapter->registrypriv.boffefusemask == 0) {
2720 		for (i = 0; i < cnts; i++) {
2721 			if (padapter->registrypriv.bFileMaskEfuse == _TRUE) {
2722 				if (rtw_file_efuse_IsMasked(padapter, addr + i, maskfileBuffer)) /*use file efuse mask. */
2723 					efuse[addr + i] = map[addr + i];
2724 			} else {
2725 				if (efuse_IsMasked(padapter, addr + i))
2726 					efuse[addr + i] = map[addr + i];
2727 			}
2728 			RTW_INFO("%s , data[%d] = %x, map[addr+i]= %x\n", __func__, addr + i, efuse[ addr + i], map[addr + i]);
2729 		}
2730 	}
2731 	/*Efuse_PowerSwitch(padapter, _TRUE, _TRUE);*/
2732 
2733 	chk_total_byte = 0;
2734 	idx = 0;
2735 	offset = (addr >> 3);
2736 
2737 	while (idx < cnts) {
2738 		word_en = 0xF;
2739 		j = (addr + idx) & 0x7;
2740 		for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
2741 			if (efuse[addr + idx] != map[addr + idx])
2742 				word_en &= ~BIT(i >> 1);
2743 		}
2744 
2745 		if (word_en != 0xF) {
2746 			chk_total_byte += Efuse_CalculateWordCnts(word_en) * 2;
2747 
2748 			if (offset >= EFUSE_MAX_SECTION_BASE) /* Over EFUSE_MAX_SECTION 16 for 2 ByteHeader */
2749 				chk_total_byte += 2;
2750 			else
2751 				chk_total_byte += 1;
2752 		}
2753 
2754 		offset++;
2755 	}
2756 
2757 	RTW_INFO("Total PG bytes Count = %d\n", chk_total_byte);
2758 	rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
2759 
2760 	if (startAddr == 0) {
2761 		startAddr = Efuse_GetCurrentSize(padapter, EFUSE_WIFI, _FALSE);
2762 		RTW_INFO("%s: Efuse_GetCurrentSize startAddr=%#X\n", __func__, startAddr);
2763 	}
2764 	RTW_DBG("%s: startAddr=%#X\n", __func__, startAddr);
2765 
2766 	if ((startAddr + chk_total_byte) >= efuse_max_available_len) {
2767 		RTW_INFO("%s: startAddr(0x%X) + PG data len %d >= efuse_max_available_len(0x%X)\n",
2768 			 __func__, startAddr, chk_total_byte, efuse_max_available_len);
2769 		ret = _FAIL;
2770 		goto exit;
2771 	}
2772 
2773 	efuse_PreUpdateAction(padapter, backupRegs);
2774 
2775 	idx = 0;
2776 	offset = (addr >> 3);
2777 	while (idx < cnts) {
2778 		word_en = 0xF;
2779 		j = (addr + idx) & 0x7;
2780 		_rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
2781 		for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
2782 			if (efuse[addr + idx] != map[addr + idx]) {
2783 				word_en &= ~BIT(i >> 1);
2784 				newdata[i] = efuse[addr + idx];
2785 #ifdef CONFIG_RTL8723B
2786 				if (addr + idx == 0x8) {
2787 					if (IS_C_CUT(pHalData->version_id) || IS_B_CUT(pHalData->version_id)) {
2788 						if (pHalData->adjuseVoltageVal == 6) {
2789 							newdata[i] = map[addr + idx];
2790 							RTW_INFO(" %s ,\n adjuseVoltageVal = %d ,newdata[%d] = %x\n", __func__, pHalData->adjuseVoltageVal, i, newdata[i]);
2791 						}
2792 					}
2793 				}
2794 #endif
2795 			}
2796 		}
2797 
2798 		if (word_en != 0xF) {
2799 			ret = Efuse_PgPacketWrite(padapter, offset, word_en, newdata, _FALSE);
2800 			RTW_INFO("offset=%x\n", offset);
2801 			RTW_INFO("word_en=%x\n", word_en);
2802 
2803 			for (i = 0; i < PGPKT_DATA_SIZE; i++)
2804 				RTW_INFO("data=%x \t", newdata[i]);
2805 			if (ret == _FAIL)
2806 				break;
2807 		}
2808 
2809 		offset++;
2810 	}
2811 
2812 	/*Efuse_PowerSwitch(padapter, _TRUE, _FALSE);*/
2813 
2814 	efuse_PostUpdateAction(padapter, backupRegs);
2815 
2816 exit:
2817 
2818 	rtw_mfree(map, mapLen);
2819 	rtw_mfree(efuse, mapLen);
2820 
2821 	return ret;
2822 }
2823 
2824 
rtw_BT_efuse_map_write(PADAPTER padapter,u16 addr,u16 cnts,u8 * data)2825 u8 rtw_BT_efuse_map_write(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
2826 {
2827 #define RT_ASSERT_RET(expr)												\
2828 	if (!(expr)) {															\
2829 		printk("Assertion failed! %s at ......\n", #expr);							\
2830 		printk("      ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__);	\
2831 		return _FAIL;	\
2832 	}
2833 
2834 	u8	offset, word_en;
2835 	u8	*map;
2836 	u8	newdata[PGPKT_DATA_SIZE];
2837 	s32	i = 0, j = 0, idx;
2838 	u8	ret = _SUCCESS;
2839 	u16	mapLen = 0;
2840 
2841 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE);
2842 
2843 	if ((addr + cnts) > mapLen)
2844 		return _FAIL;
2845 
2846 	RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
2847 	RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
2848 
2849 	map = rtw_zmalloc(mapLen);
2850 	if (map == NULL)
2851 		return _FAIL;
2852 
2853 	ret = rtw_BT_efuse_map_read(padapter, 0, mapLen, map);
2854 	if (ret == _FAIL)
2855 		goto exit;
2856 	RTW_INFO("OFFSET\tVALUE(hex)\n");
2857 	for (i = 0; i < 1024; i += 16) { /* set 512 because the iwpriv's extra size have limit 0x7FF */
2858 		RTW_INFO("0x%03x\t", i);
2859 		for (j = 0; j < 8; j++)
2860 			RTW_INFO("%02X ", map[i + j]);
2861 		RTW_INFO("\t");
2862 		for (; j < 16; j++)
2863 			RTW_INFO("%02X ", map[i + j]);
2864 		RTW_INFO("\n");
2865 	}
2866 	RTW_INFO("\n");
2867 	Efuse_PowerSwitch(padapter, _TRUE, _TRUE);
2868 
2869 	idx = 0;
2870 	offset = (addr >> 3);
2871 	while (idx < cnts) {
2872 		word_en = 0xF;
2873 		j = (addr + idx) & 0x7;
2874 		_rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
2875 		for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
2876 			if (data[idx] != map[addr + idx]) {
2877 				word_en &= ~BIT(i >> 1);
2878 				newdata[i] = data[idx];
2879 			}
2880 		}
2881 
2882 		if (word_en != 0xF) {
2883 			RTW_INFO("offset=%x\n", offset);
2884 			RTW_INFO("word_en=%x\n", word_en);
2885 			RTW_INFO("%s: data=", __FUNCTION__);
2886 			for (i = 0; i < PGPKT_DATA_SIZE; i++)
2887 				RTW_INFO("0x%02X ", newdata[i]);
2888 			RTW_INFO("\n");
2889 			ret = Efuse_PgPacketWrite_BT(padapter, offset, word_en, newdata, _FALSE);
2890 			if (ret == _FAIL)
2891 				break;
2892 		}
2893 
2894 		offset++;
2895 	}
2896 
2897 	Efuse_PowerSwitch(padapter, _TRUE, _FALSE);
2898 
2899 exit:
2900 
2901 	rtw_mfree(map, mapLen);
2902 
2903 	return ret;
2904 }
2905 
2906 /*-----------------------------------------------------------------------------
2907  * Function:	Efuse_ReadAllMap
2908  *
2909  * Overview:	Read All Efuse content
2910  *
2911  * Input:       NONE
2912  *
2913  * Output:      NONE
2914  *
2915  * Return:      NONE
2916  *
2917  * Revised History:
2918  * When			Who		Remark
2919  * 11/11/2008	MHC		Create Version 0.
2920  *
2921  *---------------------------------------------------------------------------*/
2922 void
2923 Efuse_ReadAllMap(
2924 			PADAPTER	pAdapter,
2925 			u8		efuseType,
2926 			u8		*Efuse,
2927 			BOOLEAN		bPseudoTest);
2928 void
Efuse_ReadAllMap(PADAPTER pAdapter,u8 efuseType,u8 * Efuse,BOOLEAN bPseudoTest)2929 Efuse_ReadAllMap(
2930 			PADAPTER	pAdapter,
2931 			u8		efuseType,
2932 			u8		*Efuse,
2933 			BOOLEAN		bPseudoTest)
2934 {
2935 	u16	mapLen = 0;
2936 
2937 	Efuse_PowerSwitch(pAdapter, _FALSE, _TRUE);
2938 
2939 	EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, bPseudoTest);
2940 
2941 	efuse_ReadEFuse(pAdapter, efuseType, 0, mapLen, Efuse, bPseudoTest);
2942 
2943 	Efuse_PowerSwitch(pAdapter, _FALSE, _FALSE);
2944 }
2945 
2946 /*-----------------------------------------------------------------------------
2947  * Function:	efuse_ShadowWrite1Byte
2948  *			efuse_ShadowWrite2Byte
2949  *			efuse_ShadowWrite4Byte
2950  *
2951  * Overview:	Write efuse modify map by one/two/four byte.
2952  *
2953  * Input:       NONE
2954  *
2955  * Output:      NONE
2956  *
2957  * Return:      NONE
2958  *
2959  * Revised History:
2960  * When			Who		Remark
2961  * 11/12/2008	MHC		Create Version 0.
2962  *
2963  *---------------------------------------------------------------------------*/
2964 #ifdef PLATFORM
2965 static void
2966 efuse_ShadowWrite1Byte(
2967 		PADAPTER	pAdapter,
2968 		u16		Offset,
2969 		u8		Value);
2970 #endif /* PLATFORM */
2971 static void
efuse_ShadowWrite1Byte(PADAPTER pAdapter,u16 Offset,u8 Value)2972 efuse_ShadowWrite1Byte(
2973 		PADAPTER	pAdapter,
2974 		u16		Offset,
2975 		u8		Value)
2976 {
2977 	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
2978 
2979 	pHalData->efuse_eeprom_data[Offset] = Value;
2980 
2981 }	/* efuse_ShadowWrite1Byte */
2982 
2983 /* ---------------Write Two Bytes */
2984 static void
efuse_ShadowWrite2Byte(PADAPTER pAdapter,u16 Offset,u16 Value)2985 efuse_ShadowWrite2Byte(
2986 		PADAPTER	pAdapter,
2987 		u16		Offset,
2988 		u16		Value)
2989 {
2990 
2991 	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
2992 
2993 
2994 	pHalData->efuse_eeprom_data[Offset] = Value & 0x00FF;
2995 	pHalData->efuse_eeprom_data[Offset + 1] = Value >> 8;
2996 
2997 }	/* efuse_ShadowWrite1Byte */
2998 
2999 /* ---------------Write Four Bytes */
3000 static void
efuse_ShadowWrite4Byte(PADAPTER pAdapter,u16 Offset,u32 Value)3001 efuse_ShadowWrite4Byte(
3002 		PADAPTER	pAdapter,
3003 		u16		Offset,
3004 		u32		Value)
3005 {
3006 	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
3007 
3008 	pHalData->efuse_eeprom_data[Offset] = (u8)(Value & 0x000000FF);
3009 	pHalData->efuse_eeprom_data[Offset + 1] = (u8)((Value >> 8) & 0x0000FF);
3010 	pHalData->efuse_eeprom_data[Offset + 2] = (u8)((Value >> 16) & 0x00FF);
3011 	pHalData->efuse_eeprom_data[Offset + 3] = (u8)((Value >> 24) & 0xFF);
3012 
3013 }	/* efuse_ShadowWrite1Byte */
3014 
3015 
3016 /*-----------------------------------------------------------------------------
3017  * Function:	EFUSE_ShadowWrite
3018  *
3019  * Overview:	Write efuse modify map for later update operation to use!!!!!
3020  *
3021  * Input:       NONE
3022  *
3023  * Output:      NONE
3024  *
3025  * Return:      NONE
3026  *
3027  * Revised History:
3028  * When			Who		Remark
3029  * 11/12/2008	MHC		Create Version 0.
3030  *
3031  *---------------------------------------------------------------------------*/
3032 void
3033 EFUSE_ShadowWrite(
3034 		PADAPTER	pAdapter,
3035 		u8		Type,
3036 		u16		Offset,
3037 		u32		Value);
3038 void
EFUSE_ShadowWrite(PADAPTER pAdapter,u8 Type,u16 Offset,u32 Value)3039 EFUSE_ShadowWrite(
3040 		PADAPTER	pAdapter,
3041 		u8		Type,
3042 		u16		Offset,
3043 		u32		Value)
3044 {
3045 #if (MP_DRIVER == 0)
3046 	return;
3047 #endif
3048 	if (pAdapter->registrypriv.mp_mode == 0)
3049 		return;
3050 
3051 
3052 	if (Type == 1)
3053 		efuse_ShadowWrite1Byte(pAdapter, Offset, (u8)Value);
3054 	else if (Type == 2)
3055 		efuse_ShadowWrite2Byte(pAdapter, Offset, (u16)Value);
3056 	else if (Type == 4)
3057 		efuse_ShadowWrite4Byte(pAdapter, Offset, (u32)Value);
3058 
3059 }	/* EFUSE_ShadowWrite */
3060 
3061 #endif /* !RTW_HALMAC */
3062 /*-----------------------------------------------------------------------------
3063  * Function:	efuse_ShadowRead1Byte
3064  *			efuse_ShadowRead2Byte
3065  *			efuse_ShadowRead4Byte
3066  *
3067  * Overview:	Read from efuse init map by one/two/four bytes !!!!!
3068  *
3069  * Input:       NONE
3070  *
3071  * Output:      NONE
3072  *
3073  * Return:      NONE
3074  *
3075  * Revised History:
3076  * When			Who		Remark
3077  * 11/12/2008	MHC		Create Version 0.
3078  *
3079  *---------------------------------------------------------------------------*/
3080 static void
efuse_ShadowRead1Byte(PADAPTER pAdapter,u16 Offset,u8 * Value)3081 efuse_ShadowRead1Byte(
3082 		PADAPTER	pAdapter,
3083 		u16		Offset,
3084 		u8		*Value)
3085 {
3086 	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
3087 
3088 	*Value = pHalData->efuse_eeprom_data[Offset];
3089 
3090 }	/* EFUSE_ShadowRead1Byte */
3091 
3092 /* ---------------Read Two Bytes */
3093 static void
efuse_ShadowRead2Byte(PADAPTER pAdapter,u16 Offset,u16 * Value)3094 efuse_ShadowRead2Byte(
3095 		PADAPTER	pAdapter,
3096 		u16		Offset,
3097 		u16		*Value)
3098 {
3099 	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
3100 
3101 	*Value = pHalData->efuse_eeprom_data[Offset];
3102 	*Value |= pHalData->efuse_eeprom_data[Offset + 1] << 8;
3103 
3104 }	/* EFUSE_ShadowRead2Byte */
3105 
3106 /* ---------------Read Four Bytes */
3107 static void
efuse_ShadowRead4Byte(PADAPTER pAdapter,u16 Offset,u32 * Value)3108 efuse_ShadowRead4Byte(
3109 		PADAPTER	pAdapter,
3110 		u16		Offset,
3111 		u32		*Value)
3112 {
3113 	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
3114 
3115 	*Value = pHalData->efuse_eeprom_data[Offset];
3116 	*Value |= pHalData->efuse_eeprom_data[Offset + 1] << 8;
3117 	*Value |= pHalData->efuse_eeprom_data[Offset + 2] << 16;
3118 	*Value |= pHalData->efuse_eeprom_data[Offset + 3] << 24;
3119 
3120 }	/* efuse_ShadowRead4Byte */
3121 
3122 /*-----------------------------------------------------------------------------
3123  * Function:	EFUSE_ShadowRead
3124  *
3125  * Overview:	Read from pHalData->efuse_eeprom_data
3126  *---------------------------------------------------------------------------*/
3127 void
EFUSE_ShadowRead(PADAPTER pAdapter,u8 Type,u16 Offset,u32 * Value)3128 EFUSE_ShadowRead(
3129 			PADAPTER	pAdapter,
3130 			u8		Type,
3131 			u16		Offset,
3132 			u32		*Value)
3133 {
3134 	if (Type == 1)
3135 		efuse_ShadowRead1Byte(pAdapter, Offset, (u8 *)Value);
3136 	else if (Type == 2)
3137 		efuse_ShadowRead2Byte(pAdapter, Offset, (u16 *)Value);
3138 	else if (Type == 4)
3139 		efuse_ShadowRead4Byte(pAdapter, Offset, (u32 *)Value);
3140 
3141 }	/* EFUSE_ShadowRead */
3142 
3143 /*  11/16/2008 MH Add description. Get current efuse area enabled word!!. */
3144 u8
Efuse_CalculateWordCnts(u8 word_en)3145 Efuse_CalculateWordCnts(u8	word_en)
3146 {
3147 	u8 word_cnts = 0;
3148 	if (!(word_en & BIT(0)))
3149 		word_cnts++; /* 0 : write enable */
3150 	if (!(word_en & BIT(1)))
3151 		word_cnts++;
3152 	if (!(word_en & BIT(2)))
3153 		word_cnts++;
3154 	if (!(word_en & BIT(3)))
3155 		word_cnts++;
3156 	return word_cnts;
3157 }
3158 
3159 /*-----------------------------------------------------------------------------
3160  * Function:	efuse_WordEnableDataRead
3161  *
3162  * Overview:	Read allowed word in current efuse section data.
3163  *
3164  * Input:       NONE
3165  *
3166  * Output:      NONE
3167  *
3168  * Return:      NONE
3169  *
3170  * Revised History:
3171  * When			Who		Remark
3172  * 11/16/2008	MHC		Create Version 0.
3173  * 11/21/2008	MHC		Fix Write bug when we only enable late word.
3174  *
3175  *---------------------------------------------------------------------------*/
3176 void
efuse_WordEnableDataRead(u8 word_en,u8 * sourdata,u8 * targetdata)3177 efuse_WordEnableDataRead(u8	word_en,
3178 				u8	*sourdata,
3179 				u8	*targetdata)
3180 {
3181 	if (!(word_en & BIT(0))) {
3182 		targetdata[0] = sourdata[0];
3183 		targetdata[1] = sourdata[1];
3184 	}
3185 	if (!(word_en & BIT(1))) {
3186 		targetdata[2] = sourdata[2];
3187 		targetdata[3] = sourdata[3];
3188 	}
3189 	if (!(word_en & BIT(2))) {
3190 		targetdata[4] = sourdata[4];
3191 		targetdata[5] = sourdata[5];
3192 	}
3193 	if (!(word_en & BIT(3))) {
3194 		targetdata[6] = sourdata[6];
3195 		targetdata[7] = sourdata[7];
3196 	}
3197 }
3198 
3199 /*-----------------------------------------------------------------------------
3200  * Function:	EFUSE_ShadowMapUpdate
3201  *
3202  * Overview:	Transfer current EFUSE content to shadow init and modify map.
3203  *
3204  * Input:       NONE
3205  *
3206  * Output:      NONE
3207  *
3208  * Return:      NONE
3209  *
3210  * Revised History:
3211  * When			Who		Remark
3212  * 11/13/2008	MHC		Create Version 0.
3213  *
3214  *---------------------------------------------------------------------------*/
EFUSE_ShadowMapUpdate(PADAPTER pAdapter,u8 efuseType,BOOLEAN bPseudoTest)3215 void EFUSE_ShadowMapUpdate(
3216 	PADAPTER	pAdapter,
3217 	u8		efuseType,
3218 	BOOLEAN	bPseudoTest)
3219 {
3220 	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
3221 	u16	mapLen = 0;
3222 #ifdef RTW_HALMAC
3223 	u8 *efuse_map = NULL;
3224 	int err;
3225 
3226 
3227 	mapLen = EEPROM_MAX_SIZE;
3228 	efuse_map = pHalData->efuse_eeprom_data;
3229 	/* efuse default content is 0xFF */
3230 	_rtw_memset(efuse_map, 0xFF, EEPROM_MAX_SIZE);
3231 
3232 	EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, bPseudoTest);
3233 	if (!mapLen) {
3234 		RTW_WARN("%s: <ERROR> fail to get efuse size!\n", __FUNCTION__);
3235 		mapLen = EEPROM_MAX_SIZE;
3236 	}
3237 	if (mapLen > EEPROM_MAX_SIZE) {
3238 		RTW_WARN("%s: <ERROR> size of efuse data(%d) is large than expected(%d)!\n",
3239 			 __FUNCTION__, mapLen, EEPROM_MAX_SIZE);
3240 		mapLen = EEPROM_MAX_SIZE;
3241 	}
3242 
3243 	if (pHalData->bautoload_fail_flag == _FALSE) {
3244 		err = rtw_halmac_read_logical_efuse_map(adapter_to_dvobj(pAdapter), efuse_map, mapLen, NULL, 0);
3245 		if (err)
3246 			RTW_ERR("%s: <ERROR> fail to get efuse map!\n", __FUNCTION__);
3247 	}
3248 #else /* !RTW_HALMAC */
3249 	EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, bPseudoTest);
3250 
3251 	if (pHalData->bautoload_fail_flag == _TRUE)
3252 		_rtw_memset(pHalData->efuse_eeprom_data, 0xFF, mapLen);
3253 	else {
3254 #ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
3255 		if (_SUCCESS != retriveAdaptorInfoFile(pAdapter->registrypriv.adaptor_info_caching_file_path, pHalData->efuse_eeprom_data)) {
3256 #endif
3257 
3258 			Efuse_ReadAllMap(pAdapter, efuseType, pHalData->efuse_eeprom_data, bPseudoTest);
3259 
3260 #ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
3261 			storeAdaptorInfoFile(pAdapter->registrypriv.adaptor_info_caching_file_path, pHalData->efuse_eeprom_data);
3262 		}
3263 #endif
3264 	}
3265 
3266 	/* PlatformMoveMemory((void *)&pHalData->EfuseMap[EFUSE_MODIFY_MAP][0], */
3267 	/* (void *)&pHalData->EfuseMap[EFUSE_INIT_MAP][0], mapLen); */
3268 #endif /* !RTW_HALMAC */
3269 #ifdef CONFIG_MP_INCLUDED
3270 	if (rtw_mp_mode_check(pAdapter)) {
3271 		PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
3272 
3273 		if (GET_EFUSE_UPDATE_ON(pAdapter))
3274 			_rtw_memcpy(pHalData->efuse_eeprom_data, pEfuseHal->fakeEfuseModifiedMap, mapLen);
3275 	}
3276 #endif
3277 	rtw_mask_map_read(pAdapter, 0x00, mapLen, pHalData->efuse_eeprom_data);
3278 
3279 	rtw_dump_cur_efuse(pAdapter);
3280 } /* EFUSE_ShadowMapUpdate */
3281 
3282 const u8 _mac_hidden_max_bw_to_hal_bw_cap[MAC_HIDDEN_MAX_BW_NUM] = {
3283 	0,
3284 	0,
3285 	(BW_CAP_160M | BW_CAP_80M | BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
3286 	(BW_CAP_5M),
3287 	(BW_CAP_10M | BW_CAP_5M),
3288 	(BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
3289 	(BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
3290 	(BW_CAP_80M | BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
3291 };
3292 
3293 const u8 _mac_hidden_proto_to_hal_proto_cap[MAC_HIDDEN_PROTOCOL_NUM] = {
3294 	0,
3295 	0,
3296 	(PROTO_CAP_11N | PROTO_CAP_11G | PROTO_CAP_11B),
3297 	(PROTO_CAP_11AC | PROTO_CAP_11N | PROTO_CAP_11G | PROTO_CAP_11B),
3298 };
3299 
mac_hidden_wl_func_to_hal_wl_func(u8 func)3300 u8 mac_hidden_wl_func_to_hal_wl_func(u8 func)
3301 {
3302 	u8 wl_func = 0;
3303 
3304 	if (func & BIT0)
3305 		wl_func |= WL_FUNC_MIRACAST;
3306 	if (func & BIT1)
3307 		wl_func |= WL_FUNC_P2P;
3308 	if (func & BIT2)
3309 		wl_func |= WL_FUNC_TDLS;
3310 	if (func & BIT3)
3311 		wl_func |= WL_FUNC_FTM;
3312 
3313 	return wl_func;
3314 }
3315 
3316 #ifdef PLATFORM_LINUX
3317 #ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
3318 /* #include <rtw_eeprom.h> */
3319 
isAdaptorInfoFileValid(void)3320 int isAdaptorInfoFileValid(void)
3321 {
3322 	return _TRUE;
3323 }
3324 
storeAdaptorInfoFile(char * path,u8 * efuse_data)3325 int storeAdaptorInfoFile(char *path, u8 *efuse_data)
3326 {
3327 	int ret = _SUCCESS;
3328 
3329 	if (path && efuse_data) {
3330 		ret = rtw_store_to_file(path, efuse_data, EEPROM_MAX_SIZE_512);
3331 		if (ret == EEPROM_MAX_SIZE)
3332 			ret = _SUCCESS;
3333 		else
3334 			ret = _FAIL;
3335 	} else {
3336 		RTW_INFO("%s NULL pointer\n", __FUNCTION__);
3337 		ret =  _FAIL;
3338 	}
3339 	return ret;
3340 }
3341 
retriveAdaptorInfoFile(char * path,u8 * efuse_data)3342 int retriveAdaptorInfoFile(char *path, u8 *efuse_data)
3343 {
3344 	int ret = _SUCCESS;
3345 	mm_segment_t oldfs;
3346 	struct file *fp;
3347 
3348 	if (path && efuse_data) {
3349 
3350 		ret = rtw_retrieve_from_file(path, efuse_data, EEPROM_MAX_SIZE);
3351 
3352 		if (ret == EEPROM_MAX_SIZE)
3353 			ret = _SUCCESS;
3354 		else
3355 			ret = _FAIL;
3356 
3357 #if 0
3358 		if (isAdaptorInfoFileValid())
3359 			return 0;
3360 		else
3361 			return _FAIL;
3362 #endif
3363 
3364 	} else {
3365 		RTW_INFO("%s NULL pointer\n", __FUNCTION__);
3366 		ret = _FAIL;
3367 	}
3368 	return ret;
3369 }
3370 #endif /* CONFIG_ADAPTOR_INFO_CACHING_FILE */
3371 
rtw_efuse_file_read(PADAPTER padapter,u8 * filepath,u8 * buf,u32 len)3372 u8 rtw_efuse_file_read(PADAPTER padapter, u8 *filepath, u8 *buf, u32 len)
3373 {
3374 	char *ptmpbuf = NULL, *ptr;
3375 	u8 val8;
3376 	u32 count, i, j;
3377 	int err;
3378 	u32 bufsize = 4096;
3379 
3380 	ptmpbuf = rtw_zmalloc(bufsize);
3381 	if (ptmpbuf == NULL)
3382 		return _FALSE;
3383 
3384 	count = rtw_retrieve_from_file(filepath, ptmpbuf, bufsize);
3385 	if (count <= 90) {
3386 		rtw_mfree(ptmpbuf, bufsize);
3387 		RTW_ERR("%s, filepatch %s, size=%d, FAIL!!\n", __FUNCTION__, filepath, count);
3388 		return _FALSE;
3389 	}
3390 	i = 0;
3391 	j = 0;
3392 	ptr = ptmpbuf;
3393 	while ((j < len) && (i < count)) {
3394 		if (ptmpbuf[i] == '\0')
3395 			break;
3396 		ptr = strpbrk(&ptmpbuf[i], " \t\n\r");
3397 		if (ptr) {
3398 			if (ptr == &ptmpbuf[i]) {
3399 				i++;
3400 				continue;
3401 			}
3402 			/* Add string terminating null */
3403 			*ptr = 0;
3404 		} else {
3405 			ptr = &ptmpbuf[count-1];
3406 		}
3407 
3408 		err = sscanf(&ptmpbuf[i], "%hhx", &val8);
3409 		if (err != 1) {
3410 			RTW_WARN("Something wrong to parse efuse file, string=%s\n", &ptmpbuf[i]);
3411 		} else {
3412 			buf[j] = val8;
3413 			RTW_DBG("i=%d, j=%d, 0x%02x\n", i, j, buf[j]);
3414 			j++;
3415 		}
3416 		i = ptr - ptmpbuf + 1;
3417 	}
3418 	rtw_mfree(ptmpbuf, bufsize);
3419 	RTW_INFO("%s, filepatch %s, size=%d, done\n", __FUNCTION__, filepath, count);
3420 	return _TRUE;
3421 }
3422 
3423 #if !defined(CONFIG_RTW_ANDROID_GKI)
rtw_efuse_file_store(PADAPTER padapter,u8 * filepath,u8 * buf,u32 len)3424 u8 rtw_efuse_file_store(PADAPTER padapter, u8 *filepath, u8 *buf, u32 len)
3425 {
3426 	int err = 0, i = 0, j = 0, mapLen = 0 ;
3427 	char *cbuf, *pchr;
3428 
3429 	cbuf = rtw_zmalloc(len * 3);
3430 	pchr = cbuf;
3431 
3432 	if (filepath && buf) {
3433 		if (cbuf == NULL) {
3434 			RTW_INFO("%s, malloc cbuf _FAIL\n", __FUNCTION__);
3435 			err = _FAIL;
3436 		} else {
3437 			for (i = 0; i <= len; i += 16) {
3438 				for (j = 0; j < 16; j++)
3439 					pchr += sprintf(pchr, "%02X ", buf[i + j]);
3440 				pchr += sprintf(pchr, "\n");
3441 			}
3442 
3443 			err = rtw_store_to_file(filepath, cbuf, strlen(cbuf));
3444 			RTW_INFO("%s, rtw_store_to_file len=%d,err =%d, len(cbuf)=%zd\n", __FUNCTION__, len, err, strlen(cbuf));
3445 			if (err == strlen(cbuf)) {
3446 				err = _SUCCESS;
3447 				RTW_INFO("%s, filepatch %s, len=%d, done\n", __FUNCTION__, filepath, len);
3448 			} else {
3449 				err = _FAIL;
3450 				RTW_INFO("%s, filepatch %s, len=%d,err =%d, _FAIL\n", __FUNCTION__, filepath, len, err);
3451 			}
3452 		}
3453 	}
3454 	if (cbuf)
3455 		rtw_mfree(cbuf, len * 3);
3456 
3457 	return err;
3458 }
3459 #endif /* !defined(CONFIG_RTW_ANDROID_GKI) */
3460 
3461 #ifdef CONFIG_EFUSE_CONFIG_FILE
rtw_read_efuse_from_file(const char * path,u8 * buf,int map_size)3462 u32 rtw_read_efuse_from_file(const char *path, u8 *buf, int map_size)
3463 {
3464 	u32 i;
3465 	u8 c;
3466 	u8 temp[3];
3467 	u8 temp_i;
3468 	u8 end = _FALSE;
3469 	u32 ret = _FAIL;
3470 
3471 	u8 *file_data = NULL;
3472 	u32 file_size = 16384, read_size, pos = 0;
3473 	u8 *map = NULL;
3474 
3475 	if (rtw_readable_file_sz_chk(path, file_size) != _TRUE) {
3476 		RTW_PRINT("%s %s is not readable\n", __func__, path);
3477 		goto exit;
3478 	}
3479 
3480 	file_data = rtw_vmalloc(file_size);
3481 	if (!file_data) {
3482 		RTW_ERR("%s rtw_vmalloc(%d) fail\n", __func__, file_size);
3483 		goto exit;
3484 	}
3485 
3486 	read_size = rtw_retrieve_from_file(path, file_data, file_size);
3487 	if (read_size == 0) {
3488 		RTW_ERR("%s read from %s fail\n", __func__, path);
3489 		goto exit;
3490 	}
3491 
3492 	map = rtw_vmalloc(map_size);
3493 	if (!map) {
3494 		RTW_ERR("%s rtw_vmalloc(%d) fail\n", __func__, map_size);
3495 		goto exit;
3496 	}
3497 	_rtw_memset(map, 0xff, map_size);
3498 
3499 	temp[2] = 0; /* end of string '\0' */
3500 
3501 	for (i = 0 ; i < map_size ; i++) {
3502 		temp_i = 0;
3503 
3504 		while (1) {
3505 			if (pos >= read_size) {
3506 				end = _TRUE;
3507 				break;
3508 			}
3509 			c = file_data[pos++];
3510 
3511 			/* bypass spece or eol or null before first hex digit */
3512 			if (temp_i == 0 && (is_eol(c) == _TRUE || is_space(c) == _TRUE || is_null(c) == _TRUE))
3513 				continue;
3514 
3515 			if (IsHexDigit(c) == _FALSE) {
3516 				RTW_ERR("%s invalid 8-bit hex format for offset:0x%03x\n", __func__, i);
3517 				goto exit;
3518 			}
3519 
3520 			temp[temp_i++] = c;
3521 
3522 			if (temp_i == 2) {
3523 				/* parse value */
3524 				if (sscanf(temp, "%hhx", &map[i]) != 1) {
3525 					RTW_ERR("%s sscanf fail for offset:0x%03x\n", __func__, i);
3526 					goto exit;
3527 				}
3528 				break;
3529 			}
3530 		}
3531 
3532 		if (end == _TRUE) {
3533 			if (temp_i != 0) {
3534 				RTW_ERR("%s incomplete 8-bit hex format for offset:0x%03x\n", __func__, i);
3535 				goto exit;
3536 			}
3537 			break;
3538 		}
3539 	}
3540 
3541 	RTW_PRINT("efuse file:%s, 0x%03x byte content read\n", path, i);
3542 
3543 	_rtw_memcpy(buf, map, map_size);
3544 
3545 	ret = _SUCCESS;
3546 
3547 exit:
3548 	if (file_data)
3549 		rtw_vmfree(file_data, file_size);
3550 	if (map)
3551 		rtw_vmfree(map, map_size);
3552 
3553 	return ret;
3554 }
3555 
rtw_read_macaddr_from_file(const char * path,u8 * buf)3556 u32 rtw_read_macaddr_from_file(const char *path, u8 *buf)
3557 {
3558 	u32 i;
3559 	u8 temp[3];
3560 	u32 ret = _FAIL;
3561 
3562 	u8 file_data[17];
3563 	u32 read_size;
3564 	u8 addr[ETH_ALEN];
3565 
3566 	if (rtw_is_file_readable(path) != _TRUE) {
3567 		RTW_PRINT("%s %s is not readable\n", __func__, path);
3568 		goto exit;
3569 	}
3570 
3571 	read_size = rtw_retrieve_from_file(path, file_data, 17);
3572 	if (read_size != 17) {
3573 		RTW_ERR("%s read from %s fail\n", __func__, path);
3574 		goto exit;
3575 	}
3576 
3577 	temp[2] = 0; /* end of string '\0' */
3578 
3579 	for (i = 0 ; i < ETH_ALEN ; i++) {
3580 		if (IsHexDigit(file_data[i * 3]) == _FALSE || IsHexDigit(file_data[i * 3 + 1]) == _FALSE) {
3581 			RTW_ERR("%s invalid 8-bit hex format for address offset:%u\n", __func__, i);
3582 			goto exit;
3583 		}
3584 
3585 		if (i < ETH_ALEN - 1 && file_data[i * 3 + 2] != ':') {
3586 			RTW_ERR("%s invalid separator after address offset:%u\n", __func__, i);
3587 			goto exit;
3588 		}
3589 
3590 		temp[0] = file_data[i * 3];
3591 		temp[1] = file_data[i * 3 + 1];
3592 		if (sscanf(temp, "%hhx", &addr[i]) != 1) {
3593 			RTW_ERR("%s sscanf fail for address offset:0x%03x\n", __func__, i);
3594 			goto exit;
3595 		}
3596 	}
3597 
3598 	_rtw_memcpy(buf, addr, ETH_ALEN);
3599 
3600 	RTW_PRINT("wifi_mac file: %s\n", path);
3601 #ifdef CONFIG_RTW_DEBUG
3602 	RTW_INFO(MAC_FMT"\n", MAC_ARG(buf));
3603 #endif
3604 
3605 	ret = _SUCCESS;
3606 
3607 exit:
3608 	return ret;
3609 }
3610 #endif /* CONFIG_EFUSE_CONFIG_FILE */
3611 
3612 #endif /* PLATFORM_LINUX */
3613