• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an implementation of the approach described in
11 //
12 //            Practical Dependence Testing
13 //            Goff, Kennedy, Tseng
14 //            PLDI 1991
15 //
16 // There's a single entry point that analyzes the dependence between a pair
17 // of memory references in a function, returning either NULL, for no dependence,
18 // or a more-or-less detailed description of the dependence between them.
19 //
20 // This pass exists to support the DependenceGraph pass. There are two separate
21 // passes because there's a useful separation of concerns. A dependence exists
22 // if two conditions are met:
23 //
24 //    1) Two instructions reference the same memory location, and
25 //    2) There is a flow of control leading from one instruction to the other.
26 //
27 // DependenceAnalysis attacks the first condition; DependenceGraph will attack
28 // the second (it's not yet ready).
29 //
30 // Please note that this is work in progress and the interface is subject to
31 // change.
32 //
33 // Plausible changes:
34 //    Return a set of more precise dependences instead of just one dependence
35 //    summarizing all.
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
40 #define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41 
42 #include "llvm/ADT/SmallBitVector.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/Pass.h"
46 
47 namespace llvm {
48 template <typename T> class ArrayRef;
49   class Loop;
50   class LoopInfo;
51   class ScalarEvolution;
52   class SCEV;
53   class SCEVConstant;
54   class raw_ostream;
55 
56   /// Dependence - This class represents a dependence between two memory
57   /// memory references in a function. It contains minimal information and
58   /// is used in the very common situation where the compiler is unable to
59   /// determine anything beyond the existence of a dependence; that is, it
60   /// represents a confused dependence (see also FullDependence). In most
61   /// cases (for output, flow, and anti dependences), the dependence implies
62   /// an ordering, where the source must precede the destination; in contrast,
63   /// input dependences are unordered.
64   ///
65   /// When a dependence graph is built, each Dependence will be a member of
66   /// the set of predecessor edges for its destination instruction and a set
67   /// if successor edges for its source instruction. These sets are represented
68   /// as singly-linked lists, with the "next" fields stored in the dependence
69   /// itelf.
70   class Dependence {
71   protected:
72     Dependence(Dependence &&) = default;
73     Dependence &operator=(Dependence &&) = default;
74 
75   public:
Dependence(Instruction * Source,Instruction * Destination)76     Dependence(Instruction *Source,
77                Instruction *Destination) :
78       Src(Source),
79       Dst(Destination),
80       NextPredecessor(nullptr),
81       NextSuccessor(nullptr) {}
~Dependence()82     virtual ~Dependence() {}
83 
84     /// Dependence::DVEntry - Each level in the distance/direction vector
85     /// has a direction (or perhaps a union of several directions), and
86     /// perhaps a distance.
87     struct DVEntry {
88       enum { NONE = 0,
89              LT = 1,
90              EQ = 2,
91              LE = 3,
92              GT = 4,
93              NE = 5,
94              GE = 6,
95              ALL = 7 };
96       unsigned char Direction : 3; // Init to ALL, then refine.
97       bool Scalar    : 1; // Init to true.
98       bool PeelFirst : 1; // Peeling the first iteration will break dependence.
99       bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
100       bool Splitable : 1; // Splitting the loop will break dependence.
101       const SCEV *Distance; // NULL implies no distance available.
DVEntryDVEntry102       DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
103                   PeelLast(false), Splitable(false), Distance(nullptr) { }
104     };
105 
106     /// getSrc - Returns the source instruction for this dependence.
107     ///
getSrc()108     Instruction *getSrc() const { return Src; }
109 
110     /// getDst - Returns the destination instruction for this dependence.
111     ///
getDst()112     Instruction *getDst() const { return Dst; }
113 
114     /// isInput - Returns true if this is an input dependence.
115     ///
116     bool isInput() const;
117 
118     /// isOutput - Returns true if this is an output dependence.
119     ///
120     bool isOutput() const;
121 
122     /// isFlow - Returns true if this is a flow (aka true) dependence.
123     ///
124     bool isFlow() const;
125 
126     /// isAnti - Returns true if this is an anti dependence.
127     ///
128     bool isAnti() const;
129 
130     /// isOrdered - Returns true if dependence is Output, Flow, or Anti
131     ///
isOrdered()132     bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
133 
134     /// isUnordered - Returns true if dependence is Input
135     ///
isUnordered()136     bool isUnordered() const { return isInput(); }
137 
138     /// isLoopIndependent - Returns true if this is a loop-independent
139     /// dependence.
isLoopIndependent()140     virtual bool isLoopIndependent() const { return true; }
141 
142     /// isConfused - Returns true if this dependence is confused
143     /// (the compiler understands nothing and makes worst-case
144     /// assumptions).
isConfused()145     virtual bool isConfused() const { return true; }
146 
147     /// isConsistent - Returns true if this dependence is consistent
148     /// (occurs every time the source and destination are executed).
isConsistent()149     virtual bool isConsistent() const { return false; }
150 
151     /// getLevels - Returns the number of common loops surrounding the
152     /// source and destination of the dependence.
getLevels()153     virtual unsigned getLevels() const { return 0; }
154 
155     /// getDirection - Returns the direction associated with a particular
156     /// level.
getDirection(unsigned Level)157     virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
158 
159     /// getDistance - Returns the distance (or NULL) associated with a
160     /// particular level.
getDistance(unsigned Level)161     virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
162 
163     /// isPeelFirst - Returns true if peeling the first iteration from
164     /// this loop will break this dependence.
isPeelFirst(unsigned Level)165     virtual bool isPeelFirst(unsigned Level) const { return false; }
166 
167     /// isPeelLast - Returns true if peeling the last iteration from
168     /// this loop will break this dependence.
isPeelLast(unsigned Level)169     virtual bool isPeelLast(unsigned Level) const { return false; }
170 
171     /// isSplitable - Returns true if splitting this loop will break
172     /// the dependence.
isSplitable(unsigned Level)173     virtual bool isSplitable(unsigned Level) const { return false; }
174 
175     /// isScalar - Returns true if a particular level is scalar; that is,
176     /// if no subscript in the source or destination mention the induction
177     /// variable associated with the loop at this level.
178     virtual bool isScalar(unsigned Level) const;
179 
180     /// getNextPredecessor - Returns the value of the NextPredecessor
181     /// field.
getNextPredecessor()182     const Dependence *getNextPredecessor() const { return NextPredecessor; }
183 
184     /// getNextSuccessor - Returns the value of the NextSuccessor
185     /// field.
getNextSuccessor()186     const Dependence *getNextSuccessor() const { return NextSuccessor; }
187 
188     /// setNextPredecessor - Sets the value of the NextPredecessor
189     /// field.
setNextPredecessor(const Dependence * pred)190     void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
191 
192     /// setNextSuccessor - Sets the value of the NextSuccessor
193     /// field.
setNextSuccessor(const Dependence * succ)194     void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
195 
196     /// dump - For debugging purposes, dumps a dependence to OS.
197     ///
198     void dump(raw_ostream &OS) const;
199 
200   private:
201     Instruction *Src, *Dst;
202     const Dependence *NextPredecessor, *NextSuccessor;
203     friend class DependenceInfo;
204   };
205 
206   /// FullDependence - This class represents a dependence between two memory
207   /// references in a function. It contains detailed information about the
208   /// dependence (direction vectors, etc.) and is used when the compiler is
209   /// able to accurately analyze the interaction of the references; that is,
210   /// it is not a confused dependence (see Dependence). In most cases
211   /// (for output, flow, and anti dependences), the dependence implies an
212   /// ordering, where the source must precede the destination; in contrast,
213   /// input dependences are unordered.
214   class FullDependence final : public Dependence {
215   public:
216     FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
217                    unsigned Levels);
218 
219     /// isLoopIndependent - Returns true if this is a loop-independent
220     /// dependence.
isLoopIndependent()221     bool isLoopIndependent() const override { return LoopIndependent; }
222 
223     /// isConfused - Returns true if this dependence is confused
224     /// (the compiler understands nothing and makes worst-case
225     /// assumptions).
isConfused()226     bool isConfused() const override { return false; }
227 
228     /// isConsistent - Returns true if this dependence is consistent
229     /// (occurs every time the source and destination are executed).
isConsistent()230     bool isConsistent() const override { return Consistent; }
231 
232     /// getLevels - Returns the number of common loops surrounding the
233     /// source and destination of the dependence.
getLevels()234     unsigned getLevels() const override { return Levels; }
235 
236     /// getDirection - Returns the direction associated with a particular
237     /// level.
238     unsigned getDirection(unsigned Level) const override;
239 
240     /// getDistance - Returns the distance (or NULL) associated with a
241     /// particular level.
242     const SCEV *getDistance(unsigned Level) const override;
243 
244     /// isPeelFirst - Returns true if peeling the first iteration from
245     /// this loop will break this dependence.
246     bool isPeelFirst(unsigned Level) const override;
247 
248     /// isPeelLast - Returns true if peeling the last iteration from
249     /// this loop will break this dependence.
250     bool isPeelLast(unsigned Level) const override;
251 
252     /// isSplitable - Returns true if splitting the loop will break
253     /// the dependence.
254     bool isSplitable(unsigned Level) const override;
255 
256     /// isScalar - Returns true if a particular level is scalar; that is,
257     /// if no subscript in the source or destination mention the induction
258     /// variable associated with the loop at this level.
259     bool isScalar(unsigned Level) const override;
260 
261   private:
262     unsigned short Levels;
263     bool LoopIndependent;
264     bool Consistent; // Init to true, then refine.
265     std::unique_ptr<DVEntry[]> DV;
266     friend class DependenceInfo;
267   };
268 
269   /// DependenceInfo - This class is the main dependence-analysis driver.
270   ///
271   class DependenceInfo {
272   public:
DependenceInfo(Function * F,AliasAnalysis * AA,ScalarEvolution * SE,LoopInfo * LI)273     DependenceInfo(Function *F, AliasAnalysis *AA, ScalarEvolution *SE,
274                    LoopInfo *LI)
275         : AA(AA), SE(SE), LI(LI), F(F) {}
276 
277     /// Handle transitive invalidation when the cached analysis results go away.
278     bool invalidate(Function &F, const PreservedAnalyses &PA,
279                     FunctionAnalysisManager::Invalidator &Inv);
280 
281     /// depends - Tests for a dependence between the Src and Dst instructions.
282     /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
283     /// FullDependence) with as much information as can be gleaned.
284     /// The flag PossiblyLoopIndependent should be set by the caller
285     /// if it appears that control flow can reach from Src to Dst
286     /// without traversing a loop back edge.
287     std::unique_ptr<Dependence> depends(Instruction *Src,
288                                         Instruction *Dst,
289                                         bool PossiblyLoopIndependent);
290 
291     /// getSplitIteration - Give a dependence that's splittable at some
292     /// particular level, return the iteration that should be used to split
293     /// the loop.
294     ///
295     /// Generally, the dependence analyzer will be used to build
296     /// a dependence graph for a function (basically a map from instructions
297     /// to dependences). Looking for cycles in the graph shows us loops
298     /// that cannot be trivially vectorized/parallelized.
299     ///
300     /// We can try to improve the situation by examining all the dependences
301     /// that make up the cycle, looking for ones we can break.
302     /// Sometimes, peeling the first or last iteration of a loop will break
303     /// dependences, and there are flags for those possibilities.
304     /// Sometimes, splitting a loop at some other iteration will do the trick,
305     /// and we've got a flag for that case. Rather than waste the space to
306     /// record the exact iteration (since we rarely know), we provide
307     /// a method that calculates the iteration. It's a drag that it must work
308     /// from scratch, but wonderful in that it's possible.
309     ///
310     /// Here's an example:
311     ///
312     ///    for (i = 0; i < 10; i++)
313     ///        A[i] = ...
314     ///        ... = A[11 - i]
315     ///
316     /// There's a loop-carried flow dependence from the store to the load,
317     /// found by the weak-crossing SIV test. The dependence will have a flag,
318     /// indicating that the dependence can be broken by splitting the loop.
319     /// Calling getSplitIteration will return 5.
320     /// Splitting the loop breaks the dependence, like so:
321     ///
322     ///    for (i = 0; i <= 5; i++)
323     ///        A[i] = ...
324     ///        ... = A[11 - i]
325     ///    for (i = 6; i < 10; i++)
326     ///        A[i] = ...
327     ///        ... = A[11 - i]
328     ///
329     /// breaks the dependence and allows us to vectorize/parallelize
330     /// both loops.
331     const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
332 
getFunction()333     Function *getFunction() const { return F; }
334 
335   private:
336     AliasAnalysis *AA;
337     ScalarEvolution *SE;
338     LoopInfo *LI;
339     Function *F;
340 
341     /// Subscript - This private struct represents a pair of subscripts from
342     /// a pair of potentially multi-dimensional array references. We use a
343     /// vector of them to guide subscript partitioning.
344     struct Subscript {
345       const SCEV *Src;
346       const SCEV *Dst;
347       enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
348       SmallBitVector Loops;
349       SmallBitVector GroupLoops;
350       SmallBitVector Group;
351     };
352 
353     struct CoefficientInfo {
354       const SCEV *Coeff;
355       const SCEV *PosPart;
356       const SCEV *NegPart;
357       const SCEV *Iterations;
358     };
359 
360     struct BoundInfo {
361       const SCEV *Iterations;
362       const SCEV *Upper[8];
363       const SCEV *Lower[8];
364       unsigned char Direction;
365       unsigned char DirSet;
366     };
367 
368     /// Constraint - This private class represents a constraint, as defined
369     /// in the paper
370     ///
371     ///           Practical Dependence Testing
372     ///           Goff, Kennedy, Tseng
373     ///           PLDI 1991
374     ///
375     /// There are 5 kinds of constraint, in a hierarchy.
376     ///   1) Any - indicates no constraint, any dependence is possible.
377     ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
378     ///             representing the dependence equation.
379     ///   3) Distance - The value d of the dependence distance;
380     ///   4) Point - A point <x, y> representing the dependence from
381     ///              iteration x to iteration y.
382     ///   5) Empty - No dependence is possible.
383     class Constraint {
384     private:
385       enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
386       ScalarEvolution *SE;
387       const SCEV *A;
388       const SCEV *B;
389       const SCEV *C;
390       const Loop *AssociatedLoop;
391 
392     public:
393       /// isEmpty - Return true if the constraint is of kind Empty.
isEmpty()394       bool isEmpty() const { return Kind == Empty; }
395 
396       /// isPoint - Return true if the constraint is of kind Point.
isPoint()397       bool isPoint() const { return Kind == Point; }
398 
399       /// isDistance - Return true if the constraint is of kind Distance.
isDistance()400       bool isDistance() const { return Kind == Distance; }
401 
402       /// isLine - Return true if the constraint is of kind Line.
403       /// Since Distance's can also be represented as Lines, we also return
404       /// true if the constraint is of kind Distance.
isLine()405       bool isLine() const { return Kind == Line || Kind == Distance; }
406 
407       /// isAny - Return true if the constraint is of kind Any;
isAny()408       bool isAny() const { return Kind == Any; }
409 
410       /// getX - If constraint is a point <X, Y>, returns X.
411       /// Otherwise assert.
412       const SCEV *getX() const;
413 
414       /// getY - If constraint is a point <X, Y>, returns Y.
415       /// Otherwise assert.
416       const SCEV *getY() const;
417 
418       /// getA - If constraint is a line AX + BY = C, returns A.
419       /// Otherwise assert.
420       const SCEV *getA() const;
421 
422       /// getB - If constraint is a line AX + BY = C, returns B.
423       /// Otherwise assert.
424       const SCEV *getB() const;
425 
426       /// getC - If constraint is a line AX + BY = C, returns C.
427       /// Otherwise assert.
428       const SCEV *getC() const;
429 
430       /// getD - If constraint is a distance, returns D.
431       /// Otherwise assert.
432       const SCEV *getD() const;
433 
434       /// getAssociatedLoop - Returns the loop associated with this constraint.
435       const Loop *getAssociatedLoop() const;
436 
437       /// setPoint - Change a constraint to Point.
438       void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
439 
440       /// setLine - Change a constraint to Line.
441       void setLine(const SCEV *A, const SCEV *B,
442                    const SCEV *C, const Loop *CurrentLoop);
443 
444       /// setDistance - Change a constraint to Distance.
445       void setDistance(const SCEV *D, const Loop *CurrentLoop);
446 
447       /// setEmpty - Change a constraint to Empty.
448       void setEmpty();
449 
450       /// setAny - Change a constraint to Any.
451       void setAny(ScalarEvolution *SE);
452 
453       /// dump - For debugging purposes. Dumps the constraint
454       /// out to OS.
455       void dump(raw_ostream &OS) const;
456     };
457 
458     /// establishNestingLevels - Examines the loop nesting of the Src and Dst
459     /// instructions and establishes their shared loops. Sets the variables
460     /// CommonLevels, SrcLevels, and MaxLevels.
461     /// The source and destination instructions needn't be contained in the same
462     /// loop. The routine establishNestingLevels finds the level of most deeply
463     /// nested loop that contains them both, CommonLevels. An instruction that's
464     /// not contained in a loop is at level = 0. MaxLevels is equal to the level
465     /// of the source plus the level of the destination, minus CommonLevels.
466     /// This lets us allocate vectors MaxLevels in length, with room for every
467     /// distinct loop referenced in both the source and destination subscripts.
468     /// The variable SrcLevels is the nesting depth of the source instruction.
469     /// It's used to help calculate distinct loops referenced by the destination.
470     /// Here's the map from loops to levels:
471     ///            0 - unused
472     ///            1 - outermost common loop
473     ///          ... - other common loops
474     /// CommonLevels - innermost common loop
475     ///          ... - loops containing Src but not Dst
476     ///    SrcLevels - innermost loop containing Src but not Dst
477     ///          ... - loops containing Dst but not Src
478     ///    MaxLevels - innermost loop containing Dst but not Src
479     /// Consider the follow code fragment:
480     ///    for (a = ...) {
481     ///      for (b = ...) {
482     ///        for (c = ...) {
483     ///          for (d = ...) {
484     ///            A[] = ...;
485     ///          }
486     ///        }
487     ///        for (e = ...) {
488     ///          for (f = ...) {
489     ///            for (g = ...) {
490     ///              ... = A[];
491     ///            }
492     ///          }
493     ///        }
494     ///      }
495     ///    }
496     /// If we're looking at the possibility of a dependence between the store
497     /// to A (the Src) and the load from A (the Dst), we'll note that they
498     /// have 2 loops in common, so CommonLevels will equal 2 and the direction
499     /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
500     /// A map from loop names to level indices would look like
501     ///     a - 1
502     ///     b - 2 = CommonLevels
503     ///     c - 3
504     ///     d - 4 = SrcLevels
505     ///     e - 5
506     ///     f - 6
507     ///     g - 7 = MaxLevels
508     void establishNestingLevels(const Instruction *Src,
509                                 const Instruction *Dst);
510 
511     unsigned CommonLevels, SrcLevels, MaxLevels;
512 
513     /// mapSrcLoop - Given one of the loops containing the source, return
514     /// its level index in our numbering scheme.
515     unsigned mapSrcLoop(const Loop *SrcLoop) const;
516 
517     /// mapDstLoop - Given one of the loops containing the destination,
518     /// return its level index in our numbering scheme.
519     unsigned mapDstLoop(const Loop *DstLoop) const;
520 
521     /// isLoopInvariant - Returns true if Expression is loop invariant
522     /// in LoopNest.
523     bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
524 
525     /// Makes sure all subscript pairs share the same integer type by
526     /// sign-extending as necessary.
527     /// Sign-extending a subscript is safe because getelementptr assumes the
528     /// array subscripts are signed.
529     void unifySubscriptType(ArrayRef<Subscript *> Pairs);
530 
531     /// removeMatchingExtensions - Examines a subscript pair.
532     /// If the source and destination are identically sign (or zero)
533     /// extended, it strips off the extension in an effort to
534     /// simplify the actual analysis.
535     void removeMatchingExtensions(Subscript *Pair);
536 
537     /// collectCommonLoops - Finds the set of loops from the LoopNest that
538     /// have a level <= CommonLevels and are referred to by the SCEV Expression.
539     void collectCommonLoops(const SCEV *Expression,
540                             const Loop *LoopNest,
541                             SmallBitVector &Loops) const;
542 
543     /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
544     /// linear. Collect the set of loops mentioned by Src.
545     bool checkSrcSubscript(const SCEV *Src,
546                            const Loop *LoopNest,
547                            SmallBitVector &Loops);
548 
549     /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
550     /// linear. Collect the set of loops mentioned by Dst.
551     bool checkDstSubscript(const SCEV *Dst,
552                            const Loop *LoopNest,
553                            SmallBitVector &Loops);
554 
555     /// isKnownPredicate - Compare X and Y using the predicate Pred.
556     /// Basically a wrapper for SCEV::isKnownPredicate,
557     /// but tries harder, especially in the presence of sign and zero
558     /// extensions and symbolics.
559     bool isKnownPredicate(ICmpInst::Predicate Pred,
560                           const SCEV *X,
561                           const SCEV *Y) const;
562 
563     /// isKnownLessThan - Compare to see if S is less than Size
564     /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra
565     /// checking if S is an AddRec and we can prove lessthan using the loop
566     /// bounds.
567     bool isKnownLessThan(const SCEV *S, const SCEV *Size) const;
568 
569     /// isKnownNonNegative - Compare to see if S is known not to be negative
570     /// Uses the fact that S comes from Ptr, which may be an inbound GEP,
571     /// Proving there is no wrapping going on.
572     bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const;
573 
574     /// collectUpperBound - All subscripts are the same type (on my machine,
575     /// an i64). The loop bound may be a smaller type. collectUpperBound
576     /// find the bound, if available, and zero extends it to the Type T.
577     /// (I zero extend since the bound should always be >= 0.)
578     /// If no upper bound is available, return NULL.
579     const SCEV *collectUpperBound(const Loop *l, Type *T) const;
580 
581     /// collectConstantUpperBound - Calls collectUpperBound(), then
582     /// attempts to cast it to SCEVConstant. If the cast fails,
583     /// returns NULL.
584     const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
585 
586     /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
587     /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
588     /// Collects the associated loops in a set.
589     Subscript::ClassificationKind classifyPair(const SCEV *Src,
590                                            const Loop *SrcLoopNest,
591                                            const SCEV *Dst,
592                                            const Loop *DstLoopNest,
593                                            SmallBitVector &Loops);
594 
595     /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
596     /// Returns true if any possible dependence is disproved.
597     /// If there might be a dependence, returns false.
598     /// If the dependence isn't proven to exist,
599     /// marks the Result as inconsistent.
600     bool testZIV(const SCEV *Src,
601                  const SCEV *Dst,
602                  FullDependence &Result) const;
603 
604     /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
605     /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
606     /// i and j are induction variables, c1 and c2 are loop invariant,
607     /// and a1 and a2 are constant.
608     /// Returns true if any possible dependence is disproved.
609     /// If there might be a dependence, returns false.
610     /// Sets appropriate direction vector entry and, when possible,
611     /// the distance vector entry.
612     /// If the dependence isn't proven to exist,
613     /// marks the Result as inconsistent.
614     bool testSIV(const SCEV *Src,
615                  const SCEV *Dst,
616                  unsigned &Level,
617                  FullDependence &Result,
618                  Constraint &NewConstraint,
619                  const SCEV *&SplitIter) const;
620 
621     /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
622     /// Things of the form [c1 + a1*i] and [c2 + a2*j]
623     /// where i and j are induction variables, c1 and c2 are loop invariant,
624     /// and a1 and a2 are constant.
625     /// With minor algebra, this test can also be used for things like
626     /// [c1 + a1*i + a2*j][c2].
627     /// Returns true if any possible dependence is disproved.
628     /// If there might be a dependence, returns false.
629     /// Marks the Result as inconsistent.
630     bool testRDIV(const SCEV *Src,
631                   const SCEV *Dst,
632                   FullDependence &Result) const;
633 
634     /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
635     /// Returns true if dependence disproved.
636     /// Can sometimes refine direction vectors.
637     bool testMIV(const SCEV *Src,
638                  const SCEV *Dst,
639                  const SmallBitVector &Loops,
640                  FullDependence &Result) const;
641 
642     /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
643     /// for dependence.
644     /// Things of the form [c1 + a*i] and [c2 + a*i],
645     /// where i is an induction variable, c1 and c2 are loop invariant,
646     /// and a is a constant
647     /// Returns true if any possible dependence is disproved.
648     /// If there might be a dependence, returns false.
649     /// Sets appropriate direction and distance.
650     bool strongSIVtest(const SCEV *Coeff,
651                        const SCEV *SrcConst,
652                        const SCEV *DstConst,
653                        const Loop *CurrentLoop,
654                        unsigned Level,
655                        FullDependence &Result,
656                        Constraint &NewConstraint) const;
657 
658     /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
659     /// (Src and Dst) for dependence.
660     /// Things of the form [c1 + a*i] and [c2 - a*i],
661     /// where i is an induction variable, c1 and c2 are loop invariant,
662     /// and a is a constant.
663     /// Returns true if any possible dependence is disproved.
664     /// If there might be a dependence, returns false.
665     /// Sets appropriate direction entry.
666     /// Set consistent to false.
667     /// Marks the dependence as splitable.
668     bool weakCrossingSIVtest(const SCEV *SrcCoeff,
669                              const SCEV *SrcConst,
670                              const SCEV *DstConst,
671                              const Loop *CurrentLoop,
672                              unsigned Level,
673                              FullDependence &Result,
674                              Constraint &NewConstraint,
675                              const SCEV *&SplitIter) const;
676 
677     /// ExactSIVtest - Tests the SIV subscript pair
678     /// (Src and Dst) for dependence.
679     /// Things of the form [c1 + a1*i] and [c2 + a2*i],
680     /// where i is an induction variable, c1 and c2 are loop invariant,
681     /// and a1 and a2 are constant.
682     /// Returns true if any possible dependence is disproved.
683     /// If there might be a dependence, returns false.
684     /// Sets appropriate direction entry.
685     /// Set consistent to false.
686     bool exactSIVtest(const SCEV *SrcCoeff,
687                       const SCEV *DstCoeff,
688                       const SCEV *SrcConst,
689                       const SCEV *DstConst,
690                       const Loop *CurrentLoop,
691                       unsigned Level,
692                       FullDependence &Result,
693                       Constraint &NewConstraint) const;
694 
695     /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
696     /// (Src and Dst) for dependence.
697     /// Things of the form [c1] and [c2 + a*i],
698     /// where i is an induction variable, c1 and c2 are loop invariant,
699     /// and a is a constant. See also weakZeroDstSIVtest.
700     /// Returns true if any possible dependence is disproved.
701     /// If there might be a dependence, returns false.
702     /// Sets appropriate direction entry.
703     /// Set consistent to false.
704     /// If loop peeling will break the dependence, mark appropriately.
705     bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
706                             const SCEV *SrcConst,
707                             const SCEV *DstConst,
708                             const Loop *CurrentLoop,
709                             unsigned Level,
710                             FullDependence &Result,
711                             Constraint &NewConstraint) const;
712 
713     /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
714     /// (Src and Dst) for dependence.
715     /// Things of the form [c1 + a*i] and [c2],
716     /// where i is an induction variable, c1 and c2 are loop invariant,
717     /// and a is a constant. See also weakZeroSrcSIVtest.
718     /// Returns true if any possible dependence is disproved.
719     /// If there might be a dependence, returns false.
720     /// Sets appropriate direction entry.
721     /// Set consistent to false.
722     /// If loop peeling will break the dependence, mark appropriately.
723     bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
724                             const SCEV *SrcConst,
725                             const SCEV *DstConst,
726                             const Loop *CurrentLoop,
727                             unsigned Level,
728                             FullDependence &Result,
729                             Constraint &NewConstraint) const;
730 
731     /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
732     /// Things of the form [c1 + a*i] and [c2 + b*j],
733     /// where i and j are induction variable, c1 and c2 are loop invariant,
734     /// and a and b are constants.
735     /// Returns true if any possible dependence is disproved.
736     /// Marks the result as inconsistent.
737     /// Works in some cases that symbolicRDIVtest doesn't,
738     /// and vice versa.
739     bool exactRDIVtest(const SCEV *SrcCoeff,
740                        const SCEV *DstCoeff,
741                        const SCEV *SrcConst,
742                        const SCEV *DstConst,
743                        const Loop *SrcLoop,
744                        const Loop *DstLoop,
745                        FullDependence &Result) const;
746 
747     /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
748     /// Things of the form [c1 + a*i] and [c2 + b*j],
749     /// where i and j are induction variable, c1 and c2 are loop invariant,
750     /// and a and b are constants.
751     /// Returns true if any possible dependence is disproved.
752     /// Marks the result as inconsistent.
753     /// Works in some cases that exactRDIVtest doesn't,
754     /// and vice versa. Can also be used as a backup for
755     /// ordinary SIV tests.
756     bool symbolicRDIVtest(const SCEV *SrcCoeff,
757                           const SCEV *DstCoeff,
758                           const SCEV *SrcConst,
759                           const SCEV *DstConst,
760                           const Loop *SrcLoop,
761                           const Loop *DstLoop) const;
762 
763     /// gcdMIVtest - Tests an MIV subscript pair for dependence.
764     /// Returns true if any possible dependence is disproved.
765     /// Marks the result as inconsistent.
766     /// Can sometimes disprove the equal direction for 1 or more loops.
767     //  Can handle some symbolics that even the SIV tests don't get,
768     /// so we use it as a backup for everything.
769     bool gcdMIVtest(const SCEV *Src,
770                     const SCEV *Dst,
771                     FullDependence &Result) const;
772 
773     /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
774     /// Returns true if any possible dependence is disproved.
775     /// Marks the result as inconsistent.
776     /// Computes directions.
777     bool banerjeeMIVtest(const SCEV *Src,
778                          const SCEV *Dst,
779                          const SmallBitVector &Loops,
780                          FullDependence &Result) const;
781 
782     /// collectCoefficientInfo - Walks through the subscript,
783     /// collecting each coefficient, the associated loop bounds,
784     /// and recording its positive and negative parts for later use.
785     CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
786                                       bool SrcFlag,
787                                       const SCEV *&Constant) const;
788 
789     /// getPositivePart - X^+ = max(X, 0).
790     ///
791     const SCEV *getPositivePart(const SCEV *X) const;
792 
793     /// getNegativePart - X^- = min(X, 0).
794     ///
795     const SCEV *getNegativePart(const SCEV *X) const;
796 
797     /// getLowerBound - Looks through all the bounds info and
798     /// computes the lower bound given the current direction settings
799     /// at each level.
800     const SCEV *getLowerBound(BoundInfo *Bound) const;
801 
802     /// getUpperBound - Looks through all the bounds info and
803     /// computes the upper bound given the current direction settings
804     /// at each level.
805     const SCEV *getUpperBound(BoundInfo *Bound) const;
806 
807     /// exploreDirections - Hierarchically expands the direction vector
808     /// search space, combining the directions of discovered dependences
809     /// in the DirSet field of Bound. Returns the number of distinct
810     /// dependences discovered. If the dependence is disproved,
811     /// it will return 0.
812     unsigned exploreDirections(unsigned Level,
813                                CoefficientInfo *A,
814                                CoefficientInfo *B,
815                                BoundInfo *Bound,
816                                const SmallBitVector &Loops,
817                                unsigned &DepthExpanded,
818                                const SCEV *Delta) const;
819 
820     /// testBounds - Returns true iff the current bounds are plausible.
821     bool testBounds(unsigned char DirKind,
822                     unsigned Level,
823                     BoundInfo *Bound,
824                     const SCEV *Delta) const;
825 
826     /// findBoundsALL - Computes the upper and lower bounds for level K
827     /// using the * direction. Records them in Bound.
828     void findBoundsALL(CoefficientInfo *A,
829                        CoefficientInfo *B,
830                        BoundInfo *Bound,
831                        unsigned K) const;
832 
833     /// findBoundsLT - Computes the upper and lower bounds for level K
834     /// using the < direction. Records them in Bound.
835     void findBoundsLT(CoefficientInfo *A,
836                       CoefficientInfo *B,
837                       BoundInfo *Bound,
838                       unsigned K) const;
839 
840     /// findBoundsGT - Computes the upper and lower bounds for level K
841     /// using the > direction. Records them in Bound.
842     void findBoundsGT(CoefficientInfo *A,
843                       CoefficientInfo *B,
844                       BoundInfo *Bound,
845                       unsigned K) const;
846 
847     /// findBoundsEQ - Computes the upper and lower bounds for level K
848     /// using the = direction. Records them in Bound.
849     void findBoundsEQ(CoefficientInfo *A,
850                       CoefficientInfo *B,
851                       BoundInfo *Bound,
852                       unsigned K) const;
853 
854     /// intersectConstraints - Updates X with the intersection
855     /// of the Constraints X and Y. Returns true if X has changed.
856     bool intersectConstraints(Constraint *X,
857                               const Constraint *Y);
858 
859     /// propagate - Review the constraints, looking for opportunities
860     /// to simplify a subscript pair (Src and Dst).
861     /// Return true if some simplification occurs.
862     /// If the simplification isn't exact (that is, if it is conservative
863     /// in terms of dependence), set consistent to false.
864     bool propagate(const SCEV *&Src,
865                    const SCEV *&Dst,
866                    SmallBitVector &Loops,
867                    SmallVectorImpl<Constraint> &Constraints,
868                    bool &Consistent);
869 
870     /// propagateDistance - Attempt to propagate a distance
871     /// constraint into a subscript pair (Src and Dst).
872     /// Return true if some simplification occurs.
873     /// If the simplification isn't exact (that is, if it is conservative
874     /// in terms of dependence), set consistent to false.
875     bool propagateDistance(const SCEV *&Src,
876                            const SCEV *&Dst,
877                            Constraint &CurConstraint,
878                            bool &Consistent);
879 
880     /// propagatePoint - Attempt to propagate a point
881     /// constraint into a subscript pair (Src and Dst).
882     /// Return true if some simplification occurs.
883     bool propagatePoint(const SCEV *&Src,
884                         const SCEV *&Dst,
885                         Constraint &CurConstraint);
886 
887     /// propagateLine - Attempt to propagate a line
888     /// constraint into a subscript pair (Src and Dst).
889     /// Return true if some simplification occurs.
890     /// If the simplification isn't exact (that is, if it is conservative
891     /// in terms of dependence), set consistent to false.
892     bool propagateLine(const SCEV *&Src,
893                        const SCEV *&Dst,
894                        Constraint &CurConstraint,
895                        bool &Consistent);
896 
897     /// findCoefficient - Given a linear SCEV,
898     /// return the coefficient corresponding to specified loop.
899     /// If there isn't one, return the SCEV constant 0.
900     /// For example, given a*i + b*j + c*k, returning the coefficient
901     /// corresponding to the j loop would yield b.
902     const SCEV *findCoefficient(const SCEV *Expr,
903                                 const Loop *TargetLoop) const;
904 
905     /// zeroCoefficient - Given a linear SCEV,
906     /// return the SCEV given by zeroing out the coefficient
907     /// corresponding to the specified loop.
908     /// For example, given a*i + b*j + c*k, zeroing the coefficient
909     /// corresponding to the j loop would yield a*i + c*k.
910     const SCEV *zeroCoefficient(const SCEV *Expr,
911                                 const Loop *TargetLoop) const;
912 
913     /// addToCoefficient - Given a linear SCEV Expr,
914     /// return the SCEV given by adding some Value to the
915     /// coefficient corresponding to the specified TargetLoop.
916     /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
917     /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
918     const SCEV *addToCoefficient(const SCEV *Expr,
919                                  const Loop *TargetLoop,
920                                  const SCEV *Value)  const;
921 
922     /// updateDirection - Update direction vector entry
923     /// based on the current constraint.
924     void updateDirection(Dependence::DVEntry &Level,
925                          const Constraint &CurConstraint) const;
926 
927     bool tryDelinearize(Instruction *Src, Instruction *Dst,
928                         SmallVectorImpl<Subscript> &Pair);
929 
930   private:
931     /// checkSubscript - Helper function for checkSrcSubscript and
932     /// checkDstSubscript to avoid duplicate code
933     bool checkSubscript(const SCEV *Expr, const Loop *LoopNest,
934                         SmallBitVector &Loops, bool IsSrc);
935   }; // class DependenceInfo
936 
937   /// AnalysisPass to compute dependence information in a function
938   class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
939   public:
940     typedef DependenceInfo Result;
941     Result run(Function &F, FunctionAnalysisManager &FAM);
942 
943   private:
944     static AnalysisKey Key;
945     friend struct AnalysisInfoMixin<DependenceAnalysis>;
946   }; // class DependenceAnalysis
947 
948   /// Printer pass to dump DA results.
949   struct DependenceAnalysisPrinterPass
950       : public PassInfoMixin<DependenceAnalysisPrinterPass> {
951     DependenceAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
952 
953     PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
954 
955   private:
956     raw_ostream &OS;
957   }; // class DependenceAnalysisPrinterPass
958 
959   /// Legacy pass manager pass to access dependence information
960   class DependenceAnalysisWrapperPass : public FunctionPass {
961   public:
962     static char ID; // Class identification, replacement for typeinfo
963     DependenceAnalysisWrapperPass();
964 
965     bool runOnFunction(Function &F) override;
966     void releaseMemory() override;
967     void getAnalysisUsage(AnalysisUsage &) const override;
968     void print(raw_ostream &, const Module * = nullptr) const override;
969     DependenceInfo &getDI() const;
970 
971   private:
972     std::unique_ptr<DependenceInfo> info;
973   }; // class DependenceAnalysisWrapperPass
974 
975   /// createDependenceAnalysisPass - This creates an instance of the
976   /// DependenceAnalysis wrapper pass.
977   FunctionPass *createDependenceAnalysisWrapperPass();
978 
979 } // namespace llvm
980 
981 #endif
982