• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Generic dominator tree construction - This file provides routines to
11 /// construct immediate dominator information for a flow-graph based on the
12 /// Semi-NCA algorithm described in this dissertation:
13 ///
14 ///   Linear-Time Algorithms for Dominators and Related Problems
15 ///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
16 ///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
17 ///
18 /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
19 /// faster than Simple Lengauer-Tarjan in practice.
20 ///
21 /// O(n^2) worst cases happen when the computation of nearest common ancestors
22 /// requires O(n) average time, which is very unlikely in real world. If this
23 /// ever turns out to be an issue, consider implementing a hybrid algorithm.
24 ///
25 /// The file uses the Depth Based Search algorithm to perform incremental
26 /// updates (insertion and deletions). The implemented algorithm is based on
27 /// this publication:
28 ///
29 ///   An Experimental Study of Dynamic Dominators
30 ///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
31 ///   https://arxiv.org/pdf/1604.02711.pdf
32 ///
33 //===----------------------------------------------------------------------===//
34 
35 #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
36 #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
37 
38 #include <queue>
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseSet.h"
41 #include "llvm/ADT/DepthFirstIterator.h"
42 #include "llvm/ADT/PointerIntPair.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/GenericDomTree.h"
46 
47 #define DEBUG_TYPE "dom-tree-builder"
48 
49 namespace llvm {
50 namespace DomTreeBuilder {
51 
52 template <typename DomTreeT>
53 struct SemiNCAInfo {
54   using NodePtr = typename DomTreeT::NodePtr;
55   using NodeT = typename DomTreeT::NodeType;
56   using TreeNodePtr = DomTreeNodeBase<NodeT> *;
57   using RootsT = decltype(DomTreeT::Roots);
58   static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
59 
60   // Information record used by Semi-NCA during tree construction.
61   struct InfoRec {
62     unsigned DFSNum = 0;
63     unsigned Parent = 0;
64     unsigned Semi = 0;
65     NodePtr Label = nullptr;
66     NodePtr IDom = nullptr;
67     SmallVector<NodePtr, 2> ReverseChildren;
68   };
69 
70   // Number to node mapping is 1-based. Initialize the mapping to start with
71   // a dummy element.
72   std::vector<NodePtr> NumToNode = {nullptr};
73   DenseMap<NodePtr, InfoRec> NodeToInfo;
74 
75   using UpdateT = typename DomTreeT::UpdateType;
76   using UpdateKind = typename DomTreeT::UpdateKind;
77   struct BatchUpdateInfo {
78     SmallVector<UpdateT, 4> Updates;
79     using NodePtrAndKind = PointerIntPair<NodePtr, 1, UpdateKind>;
80 
81     // In order to be able to walk a CFG that is out of sync with the CFG
82     // DominatorTree last knew about, use the list of updates to reconstruct
83     // previous CFG versions of the current CFG. For each node, we store a set
84     // of its virtually added/deleted future successors and predecessors.
85     // Note that these children are from the future relative to what the
86     // DominatorTree knows about -- using them to gets us some snapshot of the
87     // CFG from the past (relative to the state of the CFG).
88     DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FutureSuccessors;
89     DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FuturePredecessors;
90     // Remembers if the whole tree was recalculated at some point during the
91     // current batch update.
92     bool IsRecalculated = false;
93   };
94 
95   BatchUpdateInfo *BatchUpdates;
96   using BatchUpdatePtr = BatchUpdateInfo *;
97 
98   // If BUI is a nullptr, then there's no batch update in progress.
SemiNCAInfoSemiNCAInfo99   SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
100 
clearSemiNCAInfo101   void clear() {
102     NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
103     NodeToInfo.clear();
104     // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
105     // in progress, we need this information to continue it.
106   }
107 
108   template <bool Inverse>
109   struct ChildrenGetter {
110     using ResultTy = SmallVector<NodePtr, 8>;
111 
GetSemiNCAInfo::ChildrenGetter112     static ResultTy Get(NodePtr N, std::integral_constant<bool, false>) {
113       auto RChildren = reverse(children<NodePtr>(N));
114       return ResultTy(RChildren.begin(), RChildren.end());
115     }
116 
GetSemiNCAInfo::ChildrenGetter117     static ResultTy Get(NodePtr N, std::integral_constant<bool, true>) {
118       auto IChildren = inverse_children<NodePtr>(N);
119       return ResultTy(IChildren.begin(), IChildren.end());
120     }
121 
122     using Tag = std::integral_constant<bool, Inverse>;
123 
124     // The function below is the core part of the batch updater. It allows the
125     // Depth Based Search algorithm to perform incremental updates in lockstep
126     // with updates to the CFG. We emulated lockstep CFG updates by getting its
127     // next snapshots by reverse-applying future updates.
GetSemiNCAInfo::ChildrenGetter128     static ResultTy Get(NodePtr N, BatchUpdatePtr BUI) {
129       ResultTy Res = Get(N, Tag());
130       // If there's no batch update in progress, simply return node's children.
131       if (!BUI) return Res;
132 
133       // CFG children are actually its *most current* children, and we have to
134       // reverse-apply the future updates to get the node's children at the
135       // point in time the update was performed.
136       auto &FutureChildren = (Inverse != IsPostDom) ? BUI->FuturePredecessors
137                                                     : BUI->FutureSuccessors;
138       auto FCIt = FutureChildren.find(N);
139       if (FCIt == FutureChildren.end()) return Res;
140 
141       for (auto ChildAndKind : FCIt->second) {
142         const NodePtr Child = ChildAndKind.getPointer();
143         const UpdateKind UK = ChildAndKind.getInt();
144 
145         // Reverse-apply the future update.
146         if (UK == UpdateKind::Insert) {
147           // If there's an insertion in the future, it means that the edge must
148           // exist in the current CFG, but was not present in it before.
149           assert(llvm::find(Res, Child) != Res.end()
150                  && "Expected child not found in the CFG");
151           Res.erase(std::remove(Res.begin(), Res.end(), Child), Res.end());
152           LLVM_DEBUG(dbgs() << "\tHiding edge " << BlockNamePrinter(N) << " -> "
153                             << BlockNamePrinter(Child) << "\n");
154         } else {
155           // If there's an deletion in the future, it means that the edge cannot
156           // exist in the current CFG, but existed in it before.
157           assert(llvm::find(Res, Child) == Res.end() &&
158                  "Unexpected child found in the CFG");
159           LLVM_DEBUG(dbgs() << "\tShowing virtual edge " << BlockNamePrinter(N)
160                             << " -> " << BlockNamePrinter(Child) << "\n");
161           Res.push_back(Child);
162         }
163       }
164 
165       return Res;
166     }
167   };
168 
getIDomSemiNCAInfo169   NodePtr getIDom(NodePtr BB) const {
170     auto InfoIt = NodeToInfo.find(BB);
171     if (InfoIt == NodeToInfo.end()) return nullptr;
172 
173     return InfoIt->second.IDom;
174   }
175 
getNodeForBlockSemiNCAInfo176   TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
177     if (TreeNodePtr Node = DT.getNode(BB)) return Node;
178 
179     // Haven't calculated this node yet?  Get or calculate the node for the
180     // immediate dominator.
181     NodePtr IDom = getIDom(BB);
182 
183     assert(IDom || DT.DomTreeNodes[nullptr]);
184     TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
185 
186     // Add a new tree node for this NodeT, and link it as a child of
187     // IDomNode
188     return (DT.DomTreeNodes[BB] = IDomNode->addChild(
189         std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
190         .get();
191   }
192 
AlwaysDescendSemiNCAInfo193   static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
194 
195   struct BlockNamePrinter {
196     NodePtr N;
197 
BlockNamePrinterSemiNCAInfo::BlockNamePrinter198     BlockNamePrinter(NodePtr Block) : N(Block) {}
BlockNamePrinterSemiNCAInfo::BlockNamePrinter199     BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
200 
201     friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
202       if (!BP.N)
203         O << "nullptr";
204       else
205         BP.N->printAsOperand(O, false);
206 
207       return O;
208     }
209   };
210 
211   // Custom DFS implementation which can skip nodes based on a provided
212   // predicate. It also collects ReverseChildren so that we don't have to spend
213   // time getting predecessors in SemiNCA.
214   //
215   // If IsReverse is set to true, the DFS walk will be performed backwards
216   // relative to IsPostDom -- using reverse edges for dominators and forward
217   // edges for postdominators.
218   template <bool IsReverse = false, typename DescendCondition>
runDFSSemiNCAInfo219   unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
220                   unsigned AttachToNum) {
221     assert(V);
222     SmallVector<NodePtr, 64> WorkList = {V};
223     if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
224 
225     while (!WorkList.empty()) {
226       const NodePtr BB = WorkList.pop_back_val();
227       auto &BBInfo = NodeToInfo[BB];
228 
229       // Visited nodes always have positive DFS numbers.
230       if (BBInfo.DFSNum != 0) continue;
231       BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
232       BBInfo.Label = BB;
233       NumToNode.push_back(BB);
234 
235       constexpr bool Direction = IsReverse != IsPostDom;  // XOR.
236       for (const NodePtr Succ :
237            ChildrenGetter<Direction>::Get(BB, BatchUpdates)) {
238         const auto SIT = NodeToInfo.find(Succ);
239         // Don't visit nodes more than once but remember to collect
240         // ReverseChildren.
241         if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
242           if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
243           continue;
244         }
245 
246         if (!Condition(BB, Succ)) continue;
247 
248         // It's fine to add Succ to the map, because we know that it will be
249         // visited later.
250         auto &SuccInfo = NodeToInfo[Succ];
251         WorkList.push_back(Succ);
252         SuccInfo.Parent = LastNum;
253         SuccInfo.ReverseChildren.push_back(BB);
254       }
255     }
256 
257     return LastNum;
258   }
259 
260   // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
261   // of sdom(U), where U > W and there is a virtual forest path from U to V. The
262   // virtual forest consists of linked edges of processed vertices.
263   //
264   // We can follow Parent pointers (virtual forest edges) to determine the
265   // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
266   // compression technique to speed up to O(m*log(n)). Theoretically the virtual
267   // forest can be organized as balanced trees to achieve almost linear
268   // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
269   // and Child) and is unlikely to be faster than the simple implementation.
270   //
271   // For each vertex V, its Label points to the vertex with the minimal sdom(U)
272   // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
evalSemiNCAInfo273   NodePtr eval(NodePtr V, unsigned LastLinked,
274                SmallVectorImpl<InfoRec *> &Stack) {
275     InfoRec *VInfo = &NodeToInfo[V];
276     if (VInfo->Parent < LastLinked)
277       return VInfo->Label;
278 
279     // Store ancestors except the last (root of a virtual tree) into a stack.
280     assert(Stack.empty());
281     do {
282       Stack.push_back(VInfo);
283       VInfo = &NodeToInfo[NumToNode[VInfo->Parent]];
284     } while (VInfo->Parent >= LastLinked);
285 
286     // Path compression. Point each vertex's Parent to the root and update its
287     // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
288     const InfoRec *PInfo = VInfo;
289     const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label];
290     do {
291       VInfo = Stack.pop_back_val();
292       VInfo->Parent = PInfo->Parent;
293       const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label];
294       if (PLabelInfo->Semi < VLabelInfo->Semi)
295         VInfo->Label = PInfo->Label;
296       else
297         PLabelInfo = VLabelInfo;
298       PInfo = VInfo;
299     } while (!Stack.empty());
300     return VInfo->Label;
301   }
302 
303   // This function requires DFS to be run before calling it.
304   void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
305     const unsigned NextDFSNum(NumToNode.size());
306     // Initialize IDoms to spanning tree parents.
307     for (unsigned i = 1; i < NextDFSNum; ++i) {
308       const NodePtr V = NumToNode[i];
309       auto &VInfo = NodeToInfo[V];
310       VInfo.IDom = NumToNode[VInfo.Parent];
311     }
312 
313     // Step #1: Calculate the semidominators of all vertices.
314     SmallVector<InfoRec *, 32> EvalStack;
315     for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
316       NodePtr W = NumToNode[i];
317       auto &WInfo = NodeToInfo[W];
318 
319       // Initialize the semi dominator to point to the parent node.
320       WInfo.Semi = WInfo.Parent;
321       for (const auto &N : WInfo.ReverseChildren) {
322         if (NodeToInfo.count(N) == 0)  // Skip unreachable predecessors.
323           continue;
324 
325         const TreeNodePtr TN = DT.getNode(N);
326         // Skip predecessors whose level is above the subtree we are processing.
327         if (TN && TN->getLevel() < MinLevel)
328           continue;
329 
330         unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi;
331         if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
332       }
333     }
334 
335     // Step #2: Explicitly define the immediate dominator of each vertex.
336     //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
337     // Note that the parents were stored in IDoms and later got invalidated
338     // during path compression in Eval.
339     for (unsigned i = 2; i < NextDFSNum; ++i) {
340       const NodePtr W = NumToNode[i];
341       auto &WInfo = NodeToInfo[W];
342       const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
343       NodePtr WIDomCandidate = WInfo.IDom;
344       while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
345         WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
346 
347       WInfo.IDom = WIDomCandidate;
348     }
349   }
350 
351   // PostDominatorTree always has a virtual root that represents a virtual CFG
352   // node that serves as a single exit from the function. All the other exits
353   // (CFG nodes with terminators and nodes in infinite loops are logically
354   // connected to this virtual CFG exit node).
355   // This functions maps a nullptr CFG node to the virtual root tree node.
addVirtualRootSemiNCAInfo356   void addVirtualRoot() {
357     assert(IsPostDom && "Only postdominators have a virtual root");
358     assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
359 
360     auto &BBInfo = NodeToInfo[nullptr];
361     BBInfo.DFSNum = BBInfo.Semi = 1;
362     BBInfo.Label = nullptr;
363 
364     NumToNode.push_back(nullptr);  // NumToNode[1] = nullptr;
365   }
366 
367   // For postdominators, nodes with no forward successors are trivial roots that
368   // are always selected as tree roots. Roots with forward successors correspond
369   // to CFG nodes within infinite loops.
HasForwardSuccessorsSemiNCAInfo370   static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
371     assert(N && "N must be a valid node");
372     return !ChildrenGetter<false>::Get(N, BUI).empty();
373   }
374 
GetEntryNodeSemiNCAInfo375   static NodePtr GetEntryNode(const DomTreeT &DT) {
376     assert(DT.Parent && "Parent not set");
377     return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
378   }
379 
380   // Finds all roots without relaying on the set of roots already stored in the
381   // tree.
382   // We define roots to be some non-redundant set of the CFG nodes
FindRootsSemiNCAInfo383   static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
384     assert(DT.Parent && "Parent pointer is not set");
385     RootsT Roots;
386 
387     // For dominators, function entry CFG node is always a tree root node.
388     if (!IsPostDom) {
389       Roots.push_back(GetEntryNode(DT));
390       return Roots;
391     }
392 
393     SemiNCAInfo SNCA(BUI);
394 
395     // PostDominatorTree always has a virtual root.
396     SNCA.addVirtualRoot();
397     unsigned Num = 1;
398 
399     LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
400 
401     // Step #1: Find all the trivial roots that are going to will definitely
402     // remain tree roots.
403     unsigned Total = 0;
404     // It may happen that there are some new nodes in the CFG that are result of
405     // the ongoing batch update, but we cannot really pretend that they don't
406     // exist -- we won't see any outgoing or incoming edges to them, so it's
407     // fine to discover them here, as they would end up appearing in the CFG at
408     // some point anyway.
409     for (const NodePtr N : nodes(DT.Parent)) {
410       ++Total;
411       // If it has no *successors*, it is definitely a root.
412       if (!HasForwardSuccessors(N, BUI)) {
413         Roots.push_back(N);
414         // Run DFS not to walk this part of CFG later.
415         Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
416         LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
417                           << "\n");
418         LLVM_DEBUG(dbgs() << "Last visited node: "
419                           << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
420       }
421     }
422 
423     LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
424 
425     // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
426     // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
427     // nodes in infinite loops).
428     bool HasNonTrivialRoots = false;
429     // Accounting for the virtual exit, see if we had any reverse-unreachable
430     // nodes.
431     if (Total + 1 != Num) {
432       HasNonTrivialRoots = true;
433       // Make another DFS pass over all other nodes to find the
434       // reverse-unreachable blocks, and find the furthest paths we'll be able
435       // to make.
436       // Note that this looks N^2, but it's really 2N worst case, if every node
437       // is unreachable. This is because we are still going to only visit each
438       // unreachable node once, we may just visit it in two directions,
439       // depending on how lucky we get.
440       SmallPtrSet<NodePtr, 4> ConnectToExitBlock;
441       for (const NodePtr I : nodes(DT.Parent)) {
442         if (SNCA.NodeToInfo.count(I) == 0) {
443           LLVM_DEBUG(dbgs()
444                      << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
445           // Find the furthest away we can get by following successors, then
446           // follow them in reverse.  This gives us some reasonable answer about
447           // the post-dom tree inside any infinite loop. In particular, it
448           // guarantees we get to the farthest away point along *some*
449           // path. This also matches the GCC's behavior.
450           // If we really wanted a totally complete picture of dominance inside
451           // this infinite loop, we could do it with SCC-like algorithms to find
452           // the lowest and highest points in the infinite loop.  In theory, it
453           // would be nice to give the canonical backedge for the loop, but it's
454           // expensive and does not always lead to a minimal set of roots.
455           LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
456 
457           const unsigned NewNum = SNCA.runDFS<true>(I, Num, AlwaysDescend, Num);
458           const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
459           LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
460                             << "(non-trivial root): "
461                             << BlockNamePrinter(FurthestAway) << "\n");
462           ConnectToExitBlock.insert(FurthestAway);
463           Roots.push_back(FurthestAway);
464           LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
465                             << NewNum << "\n\t\t\tRemoving DFS info\n");
466           for (unsigned i = NewNum; i > Num; --i) {
467             const NodePtr N = SNCA.NumToNode[i];
468             LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
469                               << BlockNamePrinter(N) << "\n");
470             SNCA.NodeToInfo.erase(N);
471             SNCA.NumToNode.pop_back();
472           }
473           const unsigned PrevNum = Num;
474           LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
475           Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
476           for (unsigned i = PrevNum + 1; i <= Num; ++i)
477             LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
478                               << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
479         }
480       }
481     }
482 
483     LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
484     LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
485     LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
486                << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
487 
488     assert((Total + 1 == Num) && "Everything should have been visited");
489 
490     // Step #3: If we found some non-trivial roots, make them non-redundant.
491     if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
492 
493     LLVM_DEBUG(dbgs() << "Found roots: ");
494     LLVM_DEBUG(for (auto *Root
495                     : Roots) dbgs()
496                << BlockNamePrinter(Root) << " ");
497     LLVM_DEBUG(dbgs() << "\n");
498 
499     return Roots;
500   }
501 
502   // This function only makes sense for postdominators.
503   // We define roots to be some set of CFG nodes where (reverse) DFS walks have
504   // to start in order to visit all the CFG nodes (including the
505   // reverse-unreachable ones).
506   // When the search for non-trivial roots is done it may happen that some of
507   // the non-trivial roots are reverse-reachable from other non-trivial roots,
508   // which makes them redundant. This function removes them from the set of
509   // input roots.
RemoveRedundantRootsSemiNCAInfo510   static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
511                                    RootsT &Roots) {
512     assert(IsPostDom && "This function is for postdominators only");
513     LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
514 
515     SemiNCAInfo SNCA(BUI);
516 
517     for (unsigned i = 0; i < Roots.size(); ++i) {
518       auto &Root = Roots[i];
519       // Trivial roots are always non-redundant.
520       if (!HasForwardSuccessors(Root, BUI)) continue;
521       LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
522                         << " remains a root\n");
523       SNCA.clear();
524       // Do a forward walk looking for the other roots.
525       const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
526       // Skip the start node and begin from the second one (note that DFS uses
527       // 1-based indexing).
528       for (unsigned x = 2; x <= Num; ++x) {
529         const NodePtr N = SNCA.NumToNode[x];
530         // If we wound another root in a (forward) DFS walk, remove the current
531         // root from the set of roots, as it is reverse-reachable from the other
532         // one.
533         if (llvm::find(Roots, N) != Roots.end()) {
534           LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
535                             << BlockNamePrinter(N) << "\n\tRemoving root "
536                             << BlockNamePrinter(Root) << "\n");
537           std::swap(Root, Roots.back());
538           Roots.pop_back();
539 
540           // Root at the back takes the current root's place.
541           // Start the next loop iteration with the same index.
542           --i;
543           break;
544         }
545       }
546     }
547   }
548 
549   template <typename DescendCondition>
doFullDFSWalkSemiNCAInfo550   void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
551     if (!IsPostDom) {
552       assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
553       runDFS(DT.Roots[0], 0, DC, 0);
554       return;
555     }
556 
557     addVirtualRoot();
558     unsigned Num = 1;
559     for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
560   }
561 
CalculateFromScratchSemiNCAInfo562   static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
563     auto *Parent = DT.Parent;
564     DT.reset();
565     DT.Parent = Parent;
566     SemiNCAInfo SNCA(nullptr);  // Since we are rebuilding the whole tree,
567                                 // there's no point doing it incrementally.
568 
569     // Step #0: Number blocks in depth-first order and initialize variables used
570     // in later stages of the algorithm.
571     DT.Roots = FindRoots(DT, nullptr);
572     SNCA.doFullDFSWalk(DT, AlwaysDescend);
573 
574     SNCA.runSemiNCA(DT);
575     if (BUI) {
576       BUI->IsRecalculated = true;
577       LLVM_DEBUG(
578           dbgs() << "DomTree recalculated, skipping future batch updates\n");
579     }
580 
581     if (DT.Roots.empty()) return;
582 
583     // Add a node for the root. If the tree is a PostDominatorTree it will be
584     // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
585     // all real exits (including multiple exit blocks, infinite loops).
586     NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
587 
588     DT.RootNode = (DT.DomTreeNodes[Root] =
589                        std::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
590         .get();
591     SNCA.attachNewSubtree(DT, DT.RootNode);
592   }
593 
attachNewSubtreeSemiNCAInfo594   void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
595     // Attach the first unreachable block to AttachTo.
596     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
597     // Loop over all of the discovered blocks in the function...
598     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
599       NodePtr W = NumToNode[i];
600       LLVM_DEBUG(dbgs() << "\tdiscovered a new reachable node "
601                         << BlockNamePrinter(W) << "\n");
602 
603       // Don't replace this with 'count', the insertion side effect is important
604       if (DT.DomTreeNodes[W]) continue;  // Haven't calculated this node yet?
605 
606       NodePtr ImmDom = getIDom(W);
607 
608       // Get or calculate the node for the immediate dominator.
609       TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
610 
611       // Add a new tree node for this BasicBlock, and link it as a child of
612       // IDomNode.
613       DT.DomTreeNodes[W] = IDomNode->addChild(
614           std::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
615     }
616   }
617 
reattachExistingSubtreeSemiNCAInfo618   void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
619     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
620     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
621       const NodePtr N = NumToNode[i];
622       const TreeNodePtr TN = DT.getNode(N);
623       assert(TN);
624       const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
625       TN->setIDom(NewIDom);
626     }
627   }
628 
629   // Helper struct used during edge insertions.
630   struct InsertionInfo {
631     struct Compare {
operatorSemiNCAInfo::InsertionInfo::Compare632       bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
633         return LHS->getLevel() < RHS->getLevel();
634       }
635     };
636 
637     // Bucket queue of tree nodes ordered by descending level. For simplicity,
638     // we use a priority_queue here.
639     std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
640                         Compare>
641         Bucket;
642     SmallDenseSet<TreeNodePtr, 8> Visited;
643     SmallVector<TreeNodePtr, 8> Affected;
644 #ifndef NDEBUG
645     SmallVector<TreeNodePtr, 8> VisitedUnaffected;
646 #endif
647   };
648 
InsertEdgeSemiNCAInfo649   static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
650                          const NodePtr From, const NodePtr To) {
651     assert((From || IsPostDom) &&
652            "From has to be a valid CFG node or a virtual root");
653     assert(To && "Cannot be a nullptr");
654     LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
655                       << BlockNamePrinter(To) << "\n");
656     TreeNodePtr FromTN = DT.getNode(From);
657 
658     if (!FromTN) {
659       // Ignore edges from unreachable nodes for (forward) dominators.
660       if (!IsPostDom) return;
661 
662       // The unreachable node becomes a new root -- a tree node for it.
663       TreeNodePtr VirtualRoot = DT.getNode(nullptr);
664       FromTN =
665           (DT.DomTreeNodes[From] = VirtualRoot->addChild(
666                std::make_unique<DomTreeNodeBase<NodeT>>(From, VirtualRoot)))
667               .get();
668       DT.Roots.push_back(From);
669     }
670 
671     DT.DFSInfoValid = false;
672 
673     const TreeNodePtr ToTN = DT.getNode(To);
674     if (!ToTN)
675       InsertUnreachable(DT, BUI, FromTN, To);
676     else
677       InsertReachable(DT, BUI, FromTN, ToTN);
678   }
679 
680   // Determines if some existing root becomes reverse-reachable after the
681   // insertion. Rebuilds the whole tree if that situation happens.
UpdateRootsBeforeInsertionSemiNCAInfo682   static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
683                                          const TreeNodePtr From,
684                                          const TreeNodePtr To) {
685     assert(IsPostDom && "This function is only for postdominators");
686     // Destination node is not attached to the virtual root, so it cannot be a
687     // root.
688     if (!DT.isVirtualRoot(To->getIDom())) return false;
689 
690     auto RIt = llvm::find(DT.Roots, To->getBlock());
691     if (RIt == DT.Roots.end())
692       return false;  // To is not a root, nothing to update.
693 
694     LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
695                       << " is no longer a root\n\t\tRebuilding the tree!!!\n");
696 
697     CalculateFromScratch(DT, BUI);
698     return true;
699   }
700 
isPermutationSemiNCAInfo701   static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
702                             const SmallVectorImpl<NodePtr> &B) {
703     if (A.size() != B.size())
704       return false;
705     SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
706     for (NodePtr N : B)
707       if (Set.count(N) == 0)
708         return false;
709     return true;
710   }
711 
712   // Updates the set of roots after insertion or deletion. This ensures that
713   // roots are the same when after a series of updates and when the tree would
714   // be built from scratch.
UpdateRootsAfterUpdateSemiNCAInfo715   static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
716     assert(IsPostDom && "This function is only for postdominators");
717 
718     // The tree has only trivial roots -- nothing to update.
719     if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) {
720           return HasForwardSuccessors(N, BUI);
721         }))
722       return;
723 
724     // Recalculate the set of roots.
725     RootsT Roots = FindRoots(DT, BUI);
726     if (!isPermutation(DT.Roots, Roots)) {
727       // The roots chosen in the CFG have changed. This is because the
728       // incremental algorithm does not really know or use the set of roots and
729       // can make a different (implicit) decision about which node within an
730       // infinite loop becomes a root.
731 
732       LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
733                         << "The entire tree needs to be rebuilt\n");
734       // It may be possible to update the tree without recalculating it, but
735       // we do not know yet how to do it, and it happens rarely in practise.
736       CalculateFromScratch(DT, BUI);
737     }
738   }
739 
740   // Handles insertion to a node already in the dominator tree.
InsertReachableSemiNCAInfo741   static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
742                               const TreeNodePtr From, const TreeNodePtr To) {
743     LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
744                       << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
745     if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
746     // DT.findNCD expects both pointers to be valid. When From is a virtual
747     // root, then its CFG block pointer is a nullptr, so we have to 'compute'
748     // the NCD manually.
749     const NodePtr NCDBlock =
750         (From->getBlock() && To->getBlock())
751             ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
752             : nullptr;
753     assert(NCDBlock || DT.isPostDominator());
754     const TreeNodePtr NCD = DT.getNode(NCDBlock);
755     assert(NCD);
756 
757     LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
758     const unsigned NCDLevel = NCD->getLevel();
759 
760     // Based on Lemma 2.5 from the second paper, after insertion of (From,To), v
761     // is affected iff depth(NCD)+1 < depth(v) && a path P from To to v exists
762     // where every w on P s.t. depth(v) <= depth(w)
763     //
764     // This reduces to a widest path problem (maximizing the depth of the
765     // minimum vertex in the path) which can be solved by a modified version of
766     // Dijkstra with a bucket queue (named depth-based search in the paper).
767 
768     // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
769     // affected if this does not hold.
770     if (NCDLevel + 1 >= To->getLevel())
771       return;
772 
773     InsertionInfo II;
774     SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
775     II.Bucket.push(To);
776     II.Visited.insert(To);
777 
778     while (!II.Bucket.empty()) {
779       TreeNodePtr TN = II.Bucket.top();
780       II.Bucket.pop();
781       II.Affected.push_back(TN);
782 
783       const unsigned CurrentLevel = TN->getLevel();
784       LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
785                  "as affected, CurrentLevel " << CurrentLevel << "\n");
786 
787       assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
788 
789       while (true) {
790         // Unlike regular Dijkstra, we have an inner loop to expand more
791         // vertices. The first iteration is for the (affected) vertex popped
792         // from II.Bucket and the rest are for vertices in
793         // UnaffectedOnCurrentLevel, which may eventually expand to affected
794         // vertices.
795         //
796         // Invariant: there is an optimal path from `To` to TN with the minimum
797         // depth being CurrentLevel.
798         for (const NodePtr Succ :
799              ChildrenGetter<IsPostDom>::Get(TN->getBlock(), BUI)) {
800           const TreeNodePtr SuccTN = DT.getNode(Succ);
801           assert(SuccTN &&
802                  "Unreachable successor found at reachable insertion");
803           const unsigned SuccLevel = SuccTN->getLevel();
804 
805           LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
806                             << ", level = " << SuccLevel << "\n");
807 
808           // There is an optimal path from `To` to Succ with the minimum depth
809           // being min(CurrentLevel, SuccLevel).
810           //
811           // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
812           // and no affected vertex may be reached by a path passing through it.
813           // Stop here. Also, Succ may be visited by other predecessors but the
814           // first visit has the optimal path. Stop if Succ has been visited.
815           if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
816             continue;
817 
818           if (SuccLevel > CurrentLevel) {
819             // Succ is unaffected but it may (transitively) expand to affected
820             // vertices. Store it in UnaffectedOnCurrentLevel.
821             LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
822                               << BlockNamePrinter(Succ) << "\n");
823             UnaffectedOnCurrentLevel.push_back(SuccTN);
824 #ifndef NDEBUG
825             II.VisitedUnaffected.push_back(SuccTN);
826 #endif
827           } else {
828             // The condition is satisfied (Succ is affected). Add Succ to the
829             // bucket queue.
830             LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
831                               << " to a Bucket\n");
832             II.Bucket.push(SuccTN);
833           }
834         }
835 
836         if (UnaffectedOnCurrentLevel.empty())
837           break;
838         TN = UnaffectedOnCurrentLevel.pop_back_val();
839         LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
840       }
841     }
842 
843     // Finish by updating immediate dominators and levels.
844     UpdateInsertion(DT, BUI, NCD, II);
845   }
846 
847   // Updates immediate dominators and levels after insertion.
UpdateInsertionSemiNCAInfo848   static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
849                               const TreeNodePtr NCD, InsertionInfo &II) {
850     LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
851 
852     for (const TreeNodePtr TN : II.Affected) {
853       LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
854                         << ") = " << BlockNamePrinter(NCD) << "\n");
855       TN->setIDom(NCD);
856     }
857 
858 #ifndef NDEBUG
859     for (const TreeNodePtr TN : II.VisitedUnaffected)
860       assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
861              "TN should have been updated by an affected ancestor");
862 #endif
863 
864     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
865   }
866 
867   // Handles insertion to previously unreachable nodes.
InsertUnreachableSemiNCAInfo868   static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
869                                 const TreeNodePtr From, const NodePtr To) {
870     LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
871                       << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
872 
873     // Collect discovered edges to already reachable nodes.
874     SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
875     // Discover and connect nodes that became reachable with the insertion.
876     ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
877 
878     LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
879                       << " -> (prev unreachable) " << BlockNamePrinter(To)
880                       << "\n");
881 
882     // Used the discovered edges and inset discovered connecting (incoming)
883     // edges.
884     for (const auto &Edge : DiscoveredEdgesToReachable) {
885       LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
886                         << BlockNamePrinter(Edge.first) << " -> "
887                         << BlockNamePrinter(Edge.second) << "\n");
888       InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
889     }
890   }
891 
892   // Connects nodes that become reachable with an insertion.
ComputeUnreachableDominatorsSemiNCAInfo893   static void ComputeUnreachableDominators(
894       DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
895       const TreeNodePtr Incoming,
896       SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
897           &DiscoveredConnectingEdges) {
898     assert(!DT.getNode(Root) && "Root must not be reachable");
899 
900     // Visit only previously unreachable nodes.
901     auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
902                                                                   NodePtr To) {
903       const TreeNodePtr ToTN = DT.getNode(To);
904       if (!ToTN) return true;
905 
906       DiscoveredConnectingEdges.push_back({From, ToTN});
907       return false;
908     };
909 
910     SemiNCAInfo SNCA(BUI);
911     SNCA.runDFS(Root, 0, UnreachableDescender, 0);
912     SNCA.runSemiNCA(DT);
913     SNCA.attachNewSubtree(DT, Incoming);
914 
915     LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
916   }
917 
DeleteEdgeSemiNCAInfo918   static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
919                          const NodePtr From, const NodePtr To) {
920     assert(From && To && "Cannot disconnect nullptrs");
921     LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
922                       << BlockNamePrinter(To) << "\n");
923 
924 #ifndef NDEBUG
925     // Ensure that the edge was in fact deleted from the CFG before informing
926     // the DomTree about it.
927     // The check is O(N), so run it only in debug configuration.
928     auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
929       auto Successors = ChildrenGetter<IsPostDom>::Get(Of, BUI);
930       return llvm::find(Successors, SuccCandidate) != Successors.end();
931     };
932     (void)IsSuccessor;
933     assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
934 #endif
935 
936     const TreeNodePtr FromTN = DT.getNode(From);
937     // Deletion in an unreachable subtree -- nothing to do.
938     if (!FromTN) return;
939 
940     const TreeNodePtr ToTN = DT.getNode(To);
941     if (!ToTN) {
942       LLVM_DEBUG(
943           dbgs() << "\tTo (" << BlockNamePrinter(To)
944                  << ") already unreachable -- there is no edge to delete\n");
945       return;
946     }
947 
948     const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
949     const TreeNodePtr NCD = DT.getNode(NCDBlock);
950 
951     // If To dominates From -- nothing to do.
952     if (ToTN != NCD) {
953       DT.DFSInfoValid = false;
954 
955       const TreeNodePtr ToIDom = ToTN->getIDom();
956       LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
957                         << BlockNamePrinter(ToIDom) << "\n");
958 
959       // To remains reachable after deletion.
960       // (Based on the caption under Figure 4. from the second paper.)
961       if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
962         DeleteReachable(DT, BUI, FromTN, ToTN);
963       else
964         DeleteUnreachable(DT, BUI, ToTN);
965     }
966 
967     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
968   }
969 
970   // Handles deletions that leave destination nodes reachable.
DeleteReachableSemiNCAInfo971   static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
972                               const TreeNodePtr FromTN,
973                               const TreeNodePtr ToTN) {
974     LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
975                       << " -> " << BlockNamePrinter(ToTN) << "\n");
976     LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
977 
978     // Find the top of the subtree that needs to be rebuilt.
979     // (Based on the lemma 2.6 from the second paper.)
980     const NodePtr ToIDom =
981         DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
982     assert(ToIDom || DT.isPostDominator());
983     const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
984     assert(ToIDomTN);
985     const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
986     // Top of the subtree to rebuild is the root node. Rebuild the tree from
987     // scratch.
988     if (!PrevIDomSubTree) {
989       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
990       CalculateFromScratch(DT, BUI);
991       return;
992     }
993 
994     // Only visit nodes in the subtree starting at To.
995     const unsigned Level = ToIDomTN->getLevel();
996     auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
997       return DT.getNode(To)->getLevel() > Level;
998     };
999 
1000     LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
1001                       << "\n");
1002 
1003     SemiNCAInfo SNCA(BUI);
1004     SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
1005     LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
1006     SNCA.runSemiNCA(DT, Level);
1007     SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
1008   }
1009 
1010   // Checks if a node has proper support, as defined on the page 3 and later
1011   // explained on the page 7 of the second paper.
HasProperSupportSemiNCAInfo1012   static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
1013                                const TreeNodePtr TN) {
1014     LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
1015                       << "\n");
1016     for (const NodePtr Pred :
1017          ChildrenGetter<!IsPostDom>::Get(TN->getBlock(), BUI)) {
1018       LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
1019       if (!DT.getNode(Pred)) continue;
1020 
1021       const NodePtr Support =
1022           DT.findNearestCommonDominator(TN->getBlock(), Pred);
1023       LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
1024       if (Support != TN->getBlock()) {
1025         LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
1026                           << " is reachable from support "
1027                           << BlockNamePrinter(Support) << "\n");
1028         return true;
1029       }
1030     }
1031 
1032     return false;
1033   }
1034 
1035   // Handle deletions that make destination node unreachable.
1036   // (Based on the lemma 2.7 from the second paper.)
DeleteUnreachableSemiNCAInfo1037   static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
1038                                 const TreeNodePtr ToTN) {
1039     LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
1040                       << BlockNamePrinter(ToTN) << "\n");
1041     assert(ToTN);
1042     assert(ToTN->getBlock());
1043 
1044     if (IsPostDom) {
1045       // Deletion makes a region reverse-unreachable and creates a new root.
1046       // Simulate that by inserting an edge from the virtual root to ToTN and
1047       // adding it as a new root.
1048       LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
1049       LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
1050                         << "\n");
1051       DT.Roots.push_back(ToTN->getBlock());
1052       InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
1053       return;
1054     }
1055 
1056     SmallVector<NodePtr, 16> AffectedQueue;
1057     const unsigned Level = ToTN->getLevel();
1058 
1059     // Traverse destination node's descendants with greater level in the tree
1060     // and collect visited nodes.
1061     auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
1062       const TreeNodePtr TN = DT.getNode(To);
1063       assert(TN);
1064       if (TN->getLevel() > Level) return true;
1065       if (llvm::find(AffectedQueue, To) == AffectedQueue.end())
1066         AffectedQueue.push_back(To);
1067 
1068       return false;
1069     };
1070 
1071     SemiNCAInfo SNCA(BUI);
1072     unsigned LastDFSNum =
1073         SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
1074 
1075     TreeNodePtr MinNode = ToTN;
1076 
1077     // Identify the top of the subtree to rebuild by finding the NCD of all
1078     // the affected nodes.
1079     for (const NodePtr N : AffectedQueue) {
1080       const TreeNodePtr TN = DT.getNode(N);
1081       const NodePtr NCDBlock =
1082           DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
1083       assert(NCDBlock || DT.isPostDominator());
1084       const TreeNodePtr NCD = DT.getNode(NCDBlock);
1085       assert(NCD);
1086 
1087       LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
1088                         << " with NCD = " << BlockNamePrinter(NCD)
1089                         << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
1090       if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
1091     }
1092 
1093     // Root reached, rebuild the whole tree from scratch.
1094     if (!MinNode->getIDom()) {
1095       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
1096       CalculateFromScratch(DT, BUI);
1097       return;
1098     }
1099 
1100     // Erase the unreachable subtree in reverse preorder to process all children
1101     // before deleting their parent.
1102     for (unsigned i = LastDFSNum; i > 0; --i) {
1103       const NodePtr N = SNCA.NumToNode[i];
1104       const TreeNodePtr TN = DT.getNode(N);
1105       LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
1106 
1107       EraseNode(DT, TN);
1108     }
1109 
1110     // The affected subtree start at the To node -- there's no extra work to do.
1111     if (MinNode == ToTN) return;
1112 
1113     LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
1114                       << BlockNamePrinter(MinNode) << "\n");
1115     const unsigned MinLevel = MinNode->getLevel();
1116     const TreeNodePtr PrevIDom = MinNode->getIDom();
1117     assert(PrevIDom);
1118     SNCA.clear();
1119 
1120     // Identify nodes that remain in the affected subtree.
1121     auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
1122       const TreeNodePtr ToTN = DT.getNode(To);
1123       return ToTN && ToTN->getLevel() > MinLevel;
1124     };
1125     SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
1126 
1127     LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
1128                       << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
1129 
1130     // Rebuild the remaining part of affected subtree.
1131     SNCA.runSemiNCA(DT, MinLevel);
1132     SNCA.reattachExistingSubtree(DT, PrevIDom);
1133   }
1134 
1135   // Removes leaf tree nodes from the dominator tree.
EraseNodeSemiNCAInfo1136   static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
1137     assert(TN);
1138     assert(TN->getNumChildren() == 0 && "Not a tree leaf");
1139 
1140     const TreeNodePtr IDom = TN->getIDom();
1141     assert(IDom);
1142 
1143     auto ChIt = llvm::find(IDom->Children, TN);
1144     assert(ChIt != IDom->Children.end());
1145     std::swap(*ChIt, IDom->Children.back());
1146     IDom->Children.pop_back();
1147 
1148     DT.DomTreeNodes.erase(TN->getBlock());
1149   }
1150 
1151   //~~
1152   //===--------------------- DomTree Batch Updater --------------------------===
1153   //~~
1154 
ApplyUpdatesSemiNCAInfo1155   static void ApplyUpdates(DomTreeT &DT, ArrayRef<UpdateT> Updates) {
1156     const size_t NumUpdates = Updates.size();
1157     if (NumUpdates == 0)
1158       return;
1159 
1160     // Take the fast path for a single update and avoid running the batch update
1161     // machinery.
1162     if (NumUpdates == 1) {
1163       const auto &Update = Updates.front();
1164       if (Update.getKind() == UpdateKind::Insert)
1165         DT.insertEdge(Update.getFrom(), Update.getTo());
1166       else
1167         DT.deleteEdge(Update.getFrom(), Update.getTo());
1168 
1169       return;
1170     }
1171 
1172     BatchUpdateInfo BUI;
1173     LLVM_DEBUG(dbgs() << "Legalizing " << BUI.Updates.size() << " updates\n");
1174     cfg::LegalizeUpdates<NodePtr>(Updates, BUI.Updates, IsPostDom);
1175 
1176     const size_t NumLegalized = BUI.Updates.size();
1177     BUI.FutureSuccessors.reserve(NumLegalized);
1178     BUI.FuturePredecessors.reserve(NumLegalized);
1179 
1180     // Use the legalized future updates to initialize future successors and
1181     // predecessors. Note that these sets will only decrease size over time, as
1182     // the next CFG snapshots slowly approach the actual (current) CFG.
1183     for (UpdateT &U : BUI.Updates) {
1184       BUI.FutureSuccessors[U.getFrom()].push_back({U.getTo(), U.getKind()});
1185       BUI.FuturePredecessors[U.getTo()].push_back({U.getFrom(), U.getKind()});
1186     }
1187 
1188 #if 0
1189     // FIXME: The LLVM_DEBUG macro only plays well with a modular
1190     // build of LLVM when the header is marked as textual, but doing
1191     // so causes redefinition errors.
1192     LLVM_DEBUG(dbgs() << "About to apply " << NumLegalized << " updates\n");
1193     LLVM_DEBUG(if (NumLegalized < 32) for (const auto &U
1194                                            : reverse(BUI.Updates)) {
1195       dbgs() << "\t";
1196       U.dump();
1197       dbgs() << "\n";
1198     });
1199     LLVM_DEBUG(dbgs() << "\n");
1200 #endif
1201 
1202     // Recalculate the DominatorTree when the number of updates
1203     // exceeds a threshold, which usually makes direct updating slower than
1204     // recalculation. We select this threshold proportional to the
1205     // size of the DominatorTree. The constant is selected
1206     // by choosing the one with an acceptable performance on some real-world
1207     // inputs.
1208 
1209     // Make unittests of the incremental algorithm work
1210     if (DT.DomTreeNodes.size() <= 100) {
1211       if (NumLegalized > DT.DomTreeNodes.size())
1212         CalculateFromScratch(DT, &BUI);
1213     } else if (NumLegalized > DT.DomTreeNodes.size() / 40)
1214       CalculateFromScratch(DT, &BUI);
1215 
1216     // If the DominatorTree was recalculated at some point, stop the batch
1217     // updates. Full recalculations ignore batch updates and look at the actual
1218     // CFG.
1219     for (size_t i = 0; i < NumLegalized && !BUI.IsRecalculated; ++i)
1220       ApplyNextUpdate(DT, BUI);
1221   }
1222 
ApplyNextUpdateSemiNCAInfo1223   static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
1224     assert(!BUI.Updates.empty() && "No updates to apply!");
1225     UpdateT CurrentUpdate = BUI.Updates.pop_back_val();
1226 #if 0
1227     // FIXME: The LLVM_DEBUG macro only plays well with a modular
1228     // build of LLVM when the header is marked as textual, but doing
1229     // so causes redefinition errors.
1230     LLVM_DEBUG(dbgs() << "Applying update: ");
1231     LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
1232 #endif
1233 
1234     // Move to the next snapshot of the CFG by removing the reverse-applied
1235     // current update. Since updates are performed in the same order they are
1236     // legalized it's sufficient to pop the last item here.
1237     auto &FS = BUI.FutureSuccessors[CurrentUpdate.getFrom()];
1238     assert(FS.back().getPointer() == CurrentUpdate.getTo() &&
1239            FS.back().getInt() == CurrentUpdate.getKind());
1240     FS.pop_back();
1241     if (FS.empty()) BUI.FutureSuccessors.erase(CurrentUpdate.getFrom());
1242 
1243     auto &FP = BUI.FuturePredecessors[CurrentUpdate.getTo()];
1244     assert(FP.back().getPointer() == CurrentUpdate.getFrom() &&
1245            FP.back().getInt() == CurrentUpdate.getKind());
1246     FP.pop_back();
1247     if (FP.empty()) BUI.FuturePredecessors.erase(CurrentUpdate.getTo());
1248 
1249     if (CurrentUpdate.getKind() == UpdateKind::Insert)
1250       InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1251     else
1252       DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1253   }
1254 
1255   //~~
1256   //===--------------- DomTree correctness verification ---------------------===
1257   //~~
1258 
1259   // Check if the tree has correct roots. A DominatorTree always has a single
1260   // root which is the function's entry node. A PostDominatorTree can have
1261   // multiple roots - one for each node with no successors and for infinite
1262   // loops.
1263   // Running time: O(N).
verifyRootsSemiNCAInfo1264   bool verifyRoots(const DomTreeT &DT) {
1265     if (!DT.Parent && !DT.Roots.empty()) {
1266       errs() << "Tree has no parent but has roots!\n";
1267       errs().flush();
1268       return false;
1269     }
1270 
1271     if (!IsPostDom) {
1272       if (DT.Roots.empty()) {
1273         errs() << "Tree doesn't have a root!\n";
1274         errs().flush();
1275         return false;
1276       }
1277 
1278       if (DT.getRoot() != GetEntryNode(DT)) {
1279         errs() << "Tree's root is not its parent's entry node!\n";
1280         errs().flush();
1281         return false;
1282       }
1283     }
1284 
1285     RootsT ComputedRoots = FindRoots(DT, nullptr);
1286     if (!isPermutation(DT.Roots, ComputedRoots)) {
1287       errs() << "Tree has different roots than freshly computed ones!\n";
1288       errs() << "\tPDT roots: ";
1289       for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
1290       errs() << "\n\tComputed roots: ";
1291       for (const NodePtr N : ComputedRoots)
1292         errs() << BlockNamePrinter(N) << ", ";
1293       errs() << "\n";
1294       errs().flush();
1295       return false;
1296     }
1297 
1298     return true;
1299   }
1300 
1301   // Checks if the tree contains all reachable nodes in the input graph.
1302   // Running time: O(N).
verifyReachabilitySemiNCAInfo1303   bool verifyReachability(const DomTreeT &DT) {
1304     clear();
1305     doFullDFSWalk(DT, AlwaysDescend);
1306 
1307     for (auto &NodeToTN : DT.DomTreeNodes) {
1308       const TreeNodePtr TN = NodeToTN.second.get();
1309       const NodePtr BB = TN->getBlock();
1310 
1311       // Virtual root has a corresponding virtual CFG node.
1312       if (DT.isVirtualRoot(TN)) continue;
1313 
1314       if (NodeToInfo.count(BB) == 0) {
1315         errs() << "DomTree node " << BlockNamePrinter(BB)
1316                << " not found by DFS walk!\n";
1317         errs().flush();
1318 
1319         return false;
1320       }
1321     }
1322 
1323     for (const NodePtr N : NumToNode) {
1324       if (N && !DT.getNode(N)) {
1325         errs() << "CFG node " << BlockNamePrinter(N)
1326                << " not found in the DomTree!\n";
1327         errs().flush();
1328 
1329         return false;
1330       }
1331     }
1332 
1333     return true;
1334   }
1335 
1336   // Check if for every parent with a level L in the tree all of its children
1337   // have level L + 1.
1338   // Running time: O(N).
VerifyLevelsSemiNCAInfo1339   static bool VerifyLevels(const DomTreeT &DT) {
1340     for (auto &NodeToTN : DT.DomTreeNodes) {
1341       const TreeNodePtr TN = NodeToTN.second.get();
1342       const NodePtr BB = TN->getBlock();
1343       if (!BB) continue;
1344 
1345       const TreeNodePtr IDom = TN->getIDom();
1346       if (!IDom && TN->getLevel() != 0) {
1347         errs() << "Node without an IDom " << BlockNamePrinter(BB)
1348                << " has a nonzero level " << TN->getLevel() << "!\n";
1349         errs().flush();
1350 
1351         return false;
1352       }
1353 
1354       if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
1355         errs() << "Node " << BlockNamePrinter(BB) << " has level "
1356                << TN->getLevel() << " while its IDom "
1357                << BlockNamePrinter(IDom->getBlock()) << " has level "
1358                << IDom->getLevel() << "!\n";
1359         errs().flush();
1360 
1361         return false;
1362       }
1363     }
1364 
1365     return true;
1366   }
1367 
1368   // Check if the computed DFS numbers are correct. Note that DFS info may not
1369   // be valid, and when that is the case, we don't verify the numbers.
1370   // Running time: O(N log(N)).
VerifyDFSNumbersSemiNCAInfo1371   static bool VerifyDFSNumbers(const DomTreeT &DT) {
1372     if (!DT.DFSInfoValid || !DT.Parent)
1373       return true;
1374 
1375     const NodePtr RootBB = IsPostDom ? nullptr : DT.getRoots()[0];
1376     const TreeNodePtr Root = DT.getNode(RootBB);
1377 
1378     auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
1379       errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
1380              << TN->getDFSNumOut() << '}';
1381     };
1382 
1383     // Verify the root's DFS In number. Although DFS numbering would also work
1384     // if we started from some other value, we assume 0-based numbering.
1385     if (Root->getDFSNumIn() != 0) {
1386       errs() << "DFSIn number for the tree root is not:\n\t";
1387       PrintNodeAndDFSNums(Root);
1388       errs() << '\n';
1389       errs().flush();
1390       return false;
1391     }
1392 
1393     // For each tree node verify if children's DFS numbers cover their parent's
1394     // DFS numbers with no gaps.
1395     for (const auto &NodeToTN : DT.DomTreeNodes) {
1396       const TreeNodePtr Node = NodeToTN.second.get();
1397 
1398       // Handle tree leaves.
1399       if (Node->getChildren().empty()) {
1400         if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
1401           errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
1402           PrintNodeAndDFSNums(Node);
1403           errs() << '\n';
1404           errs().flush();
1405           return false;
1406         }
1407 
1408         continue;
1409       }
1410 
1411       // Make a copy and sort it such that it is possible to check if there are
1412       // no gaps between DFS numbers of adjacent children.
1413       SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
1414       llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
1415         return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
1416       });
1417 
1418       auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
1419           const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
1420         assert(FirstCh);
1421 
1422         errs() << "Incorrect DFS numbers for:\n\tParent ";
1423         PrintNodeAndDFSNums(Node);
1424 
1425         errs() << "\n\tChild ";
1426         PrintNodeAndDFSNums(FirstCh);
1427 
1428         if (SecondCh) {
1429           errs() << "\n\tSecond child ";
1430           PrintNodeAndDFSNums(SecondCh);
1431         }
1432 
1433         errs() << "\nAll children: ";
1434         for (const TreeNodePtr Ch : Children) {
1435           PrintNodeAndDFSNums(Ch);
1436           errs() << ", ";
1437         }
1438 
1439         errs() << '\n';
1440         errs().flush();
1441       };
1442 
1443       if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
1444         PrintChildrenError(Children.front(), nullptr);
1445         return false;
1446       }
1447 
1448       if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
1449         PrintChildrenError(Children.back(), nullptr);
1450         return false;
1451       }
1452 
1453       for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
1454         if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
1455           PrintChildrenError(Children[i], Children[i + 1]);
1456           return false;
1457         }
1458       }
1459     }
1460 
1461     return true;
1462   }
1463 
1464   // The below routines verify the correctness of the dominator tree relative to
1465   // the CFG it's coming from.  A tree is a dominator tree iff it has two
1466   // properties, called the parent property and the sibling property.  Tarjan
1467   // and Lengauer prove (but don't explicitly name) the properties as part of
1468   // the proofs in their 1972 paper, but the proofs are mostly part of proving
1469   // things about semidominators and idoms, and some of them are simply asserted
1470   // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
1471   // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
1472   // directed bipolar orders, and independent spanning trees" by Loukas
1473   // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
1474   // and Vertex-Disjoint Paths " by the same authors.
1475 
1476   // A very simple and direct explanation of these properties can be found in
1477   // "An Experimental Study of Dynamic Dominators", found at
1478   // https://arxiv.org/abs/1604.02711
1479 
1480   // The easiest way to think of the parent property is that it's a requirement
1481   // of being a dominator.  Let's just take immediate dominators.  For PARENT to
1482   // be an immediate dominator of CHILD, all paths in the CFG must go through
1483   // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
1484   // out of the CFG, there should be no paths to CHILD that are reachable.  If
1485   // there are, then you now have a path from PARENT to CHILD that goes around
1486   // PARENT and still reaches CHILD, which by definition, means PARENT can't be
1487   // a dominator of CHILD (let alone an immediate one).
1488 
1489   // The sibling property is similar.  It says that for each pair of sibling
1490   // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
1491   // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
1492   // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
1493   // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
1494   // RIGHT, not a sibling.
1495 
1496   // It is possible to verify the parent and sibling properties in
1497   // linear time, but the algorithms are complex. Instead, we do it in a
1498   // straightforward N^2 and N^3 way below, using direct path reachability.
1499 
1500   // Checks if the tree has the parent property: if for all edges from V to W in
1501   // the input graph, such that V is reachable, the parent of W in the tree is
1502   // an ancestor of V in the tree.
1503   // Running time: O(N^2).
1504   //
1505   // This means that if a node gets disconnected from the graph, then all of
1506   // the nodes it dominated previously will now become unreachable.
verifyParentPropertySemiNCAInfo1507   bool verifyParentProperty(const DomTreeT &DT) {
1508     for (auto &NodeToTN : DT.DomTreeNodes) {
1509       const TreeNodePtr TN = NodeToTN.second.get();
1510       const NodePtr BB = TN->getBlock();
1511       if (!BB || TN->getChildren().empty()) continue;
1512 
1513       LLVM_DEBUG(dbgs() << "Verifying parent property of node "
1514                         << BlockNamePrinter(TN) << "\n");
1515       clear();
1516       doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
1517         return From != BB && To != BB;
1518       });
1519 
1520       for (TreeNodePtr Child : TN->getChildren())
1521         if (NodeToInfo.count(Child->getBlock()) != 0) {
1522           errs() << "Child " << BlockNamePrinter(Child)
1523                  << " reachable after its parent " << BlockNamePrinter(BB)
1524                  << " is removed!\n";
1525           errs().flush();
1526 
1527           return false;
1528         }
1529     }
1530 
1531     return true;
1532   }
1533 
1534   // Check if the tree has sibling property: if a node V does not dominate a
1535   // node W for all siblings V and W in the tree.
1536   // Running time: O(N^3).
1537   //
1538   // This means that if a node gets disconnected from the graph, then all of its
1539   // siblings will now still be reachable.
verifySiblingPropertySemiNCAInfo1540   bool verifySiblingProperty(const DomTreeT &DT) {
1541     for (auto &NodeToTN : DT.DomTreeNodes) {
1542       const TreeNodePtr TN = NodeToTN.second.get();
1543       const NodePtr BB = TN->getBlock();
1544       if (!BB || TN->getChildren().empty()) continue;
1545 
1546       const auto &Siblings = TN->getChildren();
1547       for (const TreeNodePtr N : Siblings) {
1548         clear();
1549         NodePtr BBN = N->getBlock();
1550         doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
1551           return From != BBN && To != BBN;
1552         });
1553 
1554         for (const TreeNodePtr S : Siblings) {
1555           if (S == N) continue;
1556 
1557           if (NodeToInfo.count(S->getBlock()) == 0) {
1558             errs() << "Node " << BlockNamePrinter(S)
1559                    << " not reachable when its sibling " << BlockNamePrinter(N)
1560                    << " is removed!\n";
1561             errs().flush();
1562 
1563             return false;
1564           }
1565         }
1566       }
1567     }
1568 
1569     return true;
1570   }
1571 
1572   // Check if the given tree is the same as a freshly computed one for the same
1573   // Parent.
1574   // Running time: O(N^2), but faster in practise (same as tree construction).
1575   //
1576   // Note that this does not check if that the tree construction algorithm is
1577   // correct and should be only used for fast (but possibly unsound)
1578   // verification.
IsSameAsFreshTreeSemiNCAInfo1579   static bool IsSameAsFreshTree(const DomTreeT &DT) {
1580     DomTreeT FreshTree;
1581     FreshTree.recalculate(*DT.Parent);
1582     const bool Different = DT.compare(FreshTree);
1583 
1584     if (Different) {
1585       errs() << (DT.isPostDominator() ? "Post" : "")
1586              << "DominatorTree is different than a freshly computed one!\n"
1587              << "\tCurrent:\n";
1588       DT.print(errs());
1589       errs() << "\n\tFreshly computed tree:\n";
1590       FreshTree.print(errs());
1591       errs().flush();
1592     }
1593 
1594     return !Different;
1595   }
1596 };
1597 
1598 template <class DomTreeT>
Calculate(DomTreeT & DT)1599 void Calculate(DomTreeT &DT) {
1600   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
1601 }
1602 
1603 template <typename DomTreeT>
CalculateWithUpdates(DomTreeT & DT,ArrayRef<typename DomTreeT::UpdateType> Updates)1604 void CalculateWithUpdates(DomTreeT &DT,
1605                           ArrayRef<typename DomTreeT::UpdateType> Updates) {
1606   // TODO: Move BUI creation in common method, reuse in ApplyUpdates.
1607   typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI;
1608   LLVM_DEBUG(dbgs() << "Legalizing " << BUI.Updates.size() << " updates\n");
1609   cfg::LegalizeUpdates<typename DomTreeT::NodePtr>(Updates, BUI.Updates,
1610                                                    DomTreeT::IsPostDominator);
1611   const size_t NumLegalized = BUI.Updates.size();
1612   BUI.FutureSuccessors.reserve(NumLegalized);
1613   BUI.FuturePredecessors.reserve(NumLegalized);
1614   for (auto &U : BUI.Updates) {
1615     BUI.FutureSuccessors[U.getFrom()].push_back({U.getTo(), U.getKind()});
1616     BUI.FuturePredecessors[U.getTo()].push_back({U.getFrom(), U.getKind()});
1617   }
1618 
1619   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
1620 }
1621 
1622 template <class DomTreeT>
InsertEdge(DomTreeT & DT,typename DomTreeT::NodePtr From,typename DomTreeT::NodePtr To)1623 void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1624                 typename DomTreeT::NodePtr To) {
1625   if (DT.isPostDominator()) std::swap(From, To);
1626   SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
1627 }
1628 
1629 template <class DomTreeT>
DeleteEdge(DomTreeT & DT,typename DomTreeT::NodePtr From,typename DomTreeT::NodePtr To)1630 void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1631                 typename DomTreeT::NodePtr To) {
1632   if (DT.isPostDominator()) std::swap(From, To);
1633   SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
1634 }
1635 
1636 template <class DomTreeT>
ApplyUpdates(DomTreeT & DT,ArrayRef<typename DomTreeT::UpdateType> Updates)1637 void ApplyUpdates(DomTreeT &DT,
1638                   ArrayRef<typename DomTreeT::UpdateType> Updates) {
1639   SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, Updates);
1640 }
1641 
1642 template <class DomTreeT>
Verify(const DomTreeT & DT,typename DomTreeT::VerificationLevel VL)1643 bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
1644   SemiNCAInfo<DomTreeT> SNCA(nullptr);
1645 
1646   // Simplist check is to compare against a new tree. This will also
1647   // usefully print the old and new trees, if they are different.
1648   if (!SNCA.IsSameAsFreshTree(DT))
1649     return false;
1650 
1651   // Common checks to verify the properties of the tree. O(N log N) at worst
1652   if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
1653       !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
1654     return false;
1655 
1656   // Extra checks depending on VerificationLevel. Up to O(N^3)
1657   if (VL == DomTreeT::VerificationLevel::Basic ||
1658       VL == DomTreeT::VerificationLevel::Full)
1659     if (!SNCA.verifyParentProperty(DT))
1660       return false;
1661   if (VL == DomTreeT::VerificationLevel::Full)
1662     if (!SNCA.verifySiblingProperty(DT))
1663       return false;
1664 
1665   return true;
1666 }
1667 
1668 }  // namespace DomTreeBuilder
1669 }  // namespace llvm
1670 
1671 #undef DEBUG_TYPE
1672 
1673 #endif
1674