• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2007 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /*
29  * Binning code for triangles
30  */
31 
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "util/u_sse.h"
36 #include "lp_perf.h"
37 #include "lp_setup_context.h"
38 #include "lp_rast.h"
39 #include "lp_state_fs.h"
40 #include "lp_state_setup.h"
41 #include "lp_context.h"
42 
43 #include <inttypes.h>
44 
45 
46 #if defined(PIPE_ARCH_SSE)
47 #include <emmintrin.h>
48 #elif defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
49 #include <altivec.h>
50 #include "util/u_pwr8.h"
51 #endif
52 
53 #if !defined(PIPE_ARCH_SSE)
54 
55 static inline int
subpixel_snap(float a)56 subpixel_snap(float a)
57 {
58    return util_iround(FIXED_ONE * a);
59 }
60 
61 #endif
62 
63 /* Position and area in fixed point coordinates */
64 struct fixed_position {
65    int32_t x[4];
66    int32_t y[4];
67    int32_t dx01;
68    int32_t dy01;
69    int32_t dx20;
70    int32_t dy20;
71 };
72 
73 
74 /**
75  * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
76  * immediately after it.
77  * The memory is allocated from the per-scene pool, not per-tile.
78  * \param tri_size  returns number of bytes allocated
79  * \param num_inputs  number of fragment shader inputs
80  * \return pointer to triangle space
81  */
82 struct lp_rast_triangle *
lp_setup_alloc_triangle(struct lp_scene * scene,unsigned nr_inputs,unsigned nr_planes,unsigned * tri_size)83 lp_setup_alloc_triangle(struct lp_scene *scene,
84                         unsigned nr_inputs,
85                         unsigned nr_planes,
86                         unsigned *tri_size)
87 {
88    // add 1 for XYZW position
89    unsigned input_array_sz = (nr_inputs + 1) * sizeof(float[4]);
90    unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
91 
92    STATIC_ASSERT(sizeof(struct lp_rast_plane) % 8 == 0);
93 
94    *tri_size = (sizeof(struct lp_rast_triangle) +
95                 3 * input_array_sz +   // 3 = da + dadx + dady
96                 plane_sz);
97 
98    struct lp_rast_triangle *tri = lp_scene_alloc_aligned(scene, *tri_size, 16);
99    if (!tri)
100       return NULL;
101 
102    tri->inputs.stride = input_array_sz;
103 
104    {
105       ASSERTED char *a = (char *)tri;
106       ASSERTED char *b = (char *)&GET_PLANES(tri)[nr_planes];
107 
108       assert(b - a == *tri_size);
109    }
110 
111    return tri;
112 }
113 
114 void
lp_setup_print_vertex(struct lp_setup_context * setup,const char * name,const float (* v)[4])115 lp_setup_print_vertex(struct lp_setup_context *setup,
116                       const char *name,
117                       const float (*v)[4])
118 {
119    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
120 
121    debug_printf("   wpos (%s[0]) xyzw %f %f %f %f\n",
122                 name,
123                 v[0][0], v[0][1], v[0][2], v[0][3]);
124 
125    for (int i = 0; i < key->num_inputs; i++) {
126       const float *in = v[key->inputs[i].src_index];
127 
128       debug_printf("  in[%d] (%s[%d]) %s%s%s%s ",
129                    i,
130                    name, key->inputs[i].src_index,
131                    (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
132                    (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
133                    (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
134                    (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
135 
136       for (int j = 0; j < 4; j++)
137          if (key->inputs[i].usage_mask & (1<<j))
138             debug_printf("%.5f ", in[j]);
139 
140       debug_printf("\n");
141    }
142 }
143 
144 
145 /**
146  * Print triangle vertex attribs (for debug).
147  */
148 void
lp_setup_print_triangle(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])149 lp_setup_print_triangle(struct lp_setup_context *setup,
150                         const float (*v0)[4],
151                         const float (*v1)[4],
152                         const float (*v2)[4])
153 {
154    debug_printf("triangle\n");
155 
156    {
157       const float ex = v0[0][0] - v2[0][0];
158       const float ey = v0[0][1] - v2[0][1];
159       const float fx = v1[0][0] - v2[0][0];
160       const float fy = v1[0][1] - v2[0][1];
161 
162       /* det = cross(e,f).z */
163       const float det = ex * fy - ey * fx;
164       if (det < 0.0f)
165          debug_printf("   - ccw\n");
166       else if (det > 0.0f)
167          debug_printf("   - cw\n");
168       else
169          debug_printf("   - zero area\n");
170    }
171 
172    lp_setup_print_vertex(setup, "v0", v0);
173    lp_setup_print_vertex(setup, "v1", v1);
174    lp_setup_print_vertex(setup, "v2", v2);
175 }
176 
177 
178 #define MAX_PLANES 8
179 static unsigned
180 lp_rast_tri_tab[MAX_PLANES+1] = {
181    0,               /* should be impossible */
182    LP_RAST_OP_TRIANGLE_1,
183    LP_RAST_OP_TRIANGLE_2,
184    LP_RAST_OP_TRIANGLE_3,
185    LP_RAST_OP_TRIANGLE_4,
186    LP_RAST_OP_TRIANGLE_5,
187    LP_RAST_OP_TRIANGLE_6,
188    LP_RAST_OP_TRIANGLE_7,
189    LP_RAST_OP_TRIANGLE_8
190 };
191 
192 static unsigned
193 lp_rast_32_tri_tab[MAX_PLANES+1] = {
194    0,               /* should be impossible */
195    LP_RAST_OP_TRIANGLE_32_1,
196    LP_RAST_OP_TRIANGLE_32_2,
197    LP_RAST_OP_TRIANGLE_32_3,
198    LP_RAST_OP_TRIANGLE_32_4,
199    LP_RAST_OP_TRIANGLE_32_5,
200    LP_RAST_OP_TRIANGLE_32_6,
201    LP_RAST_OP_TRIANGLE_32_7,
202    LP_RAST_OP_TRIANGLE_32_8
203 };
204 
205 
206 static unsigned
207 lp_rast_ms_tri_tab[MAX_PLANES+1] = {
208    0,               /* should be impossible */
209    LP_RAST_OP_MS_TRIANGLE_1,
210    LP_RAST_OP_MS_TRIANGLE_2,
211    LP_RAST_OP_MS_TRIANGLE_3,
212    LP_RAST_OP_MS_TRIANGLE_4,
213    LP_RAST_OP_MS_TRIANGLE_5,
214    LP_RAST_OP_MS_TRIANGLE_6,
215    LP_RAST_OP_MS_TRIANGLE_7,
216    LP_RAST_OP_MS_TRIANGLE_8
217 };
218 
219 
220 /*
221  * Detect big primitives drawn with an alpha == 1.0.
222  *
223  * This is used when simulating anti-aliasing primitives in shaders, e.g.,
224  * when drawing the windows client area in Aero's flip-3d effect.
225  */
226 static boolean
check_opaque(const struct lp_setup_context * setup,const float (* v1)[4],const float (* v2)[4],const float (* v3)[4])227 check_opaque(const struct lp_setup_context *setup,
228              const float (*v1)[4],
229              const float (*v2)[4],
230              const float (*v3)[4])
231 {
232    const struct lp_fragment_shader_variant *variant =
233       setup->fs.current.variant;
234 
235    if (variant->opaque)
236       return TRUE;
237 
238    if (!variant->potentially_opaque)
239       return FALSE;
240 
241    const struct lp_tgsi_channel_info *alpha_info = &variant->shader->info.cbuf[0][3];
242    if (alpha_info->file == TGSI_FILE_CONSTANT) {
243       const float *constants = setup->fs.current.jit_context.constants[0];
244       float alpha = constants[alpha_info->u.index*4 +
245                               alpha_info->swizzle];
246       return alpha == 1.0f;
247    }
248 
249    if (alpha_info->file == TGSI_FILE_INPUT) {
250       return (v1[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f &&
251               v2[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f &&
252               v3[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f);
253    }
254 
255    return FALSE;
256 }
257 
258 
259 /**
260  * Do basic setup for triangle rasterization and determine which
261  * framebuffer tiles are touched.  Put the triangle in the scene's
262  * bins for the tiles which we overlap.
263  */
264 static boolean
do_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],boolean frontfacing)265 do_triangle_ccw(struct lp_setup_context *setup,
266                 struct fixed_position *position,
267                 const float (*v0)[4],
268                 const float (*v1)[4],
269                 const float (*v2)[4],
270                 boolean frontfacing)
271 {
272    struct lp_scene *scene = setup->scene;
273 
274    if (0)
275       lp_setup_print_triangle(setup, v0, v1, v2);
276 
277    const float (*pv)[4];
278    if (setup->flatshade_first) {
279       pv = v0;
280    } else {
281       pv = v2;
282    }
283 
284    unsigned viewport_index = 0;
285    if (setup->viewport_index_slot > 0) {
286       unsigned *udata = (unsigned*)pv[setup->viewport_index_slot];
287       viewport_index = lp_clamp_viewport_idx(*udata);
288    }
289 
290    unsigned layer = 0;
291    if (setup->layer_slot > 0) {
292       layer = *(unsigned*)pv[setup->layer_slot];
293       layer = MIN2(layer, scene->fb_max_layer);
294    }
295 
296    /* Bounding rectangle (in pixels) */
297    struct u_rect bbox;
298    {
299       /* Yes this is necessary to accurately calculate bounding boxes
300        * with the two fill-conventions we support.  GL (normally) ends
301        * up needing a bottom-left fill convention, which requires
302        * slightly different rounding.
303        */
304       int adj = (setup->bottom_edge_rule != 0) ? 1 : 0;
305 
306       /* Inclusive x0, exclusive x1 */
307       bbox.x0 =  MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER;
308       bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER;
309 
310       /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
311       bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER;
312       bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER;
313    }
314 
315    if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
316       if (0) debug_printf("no intersection\n");
317       LP_COUNT(nr_culled_tris);
318       return TRUE;
319    }
320 
321    int max_szorig = ((bbox.x1 - (bbox.x0 & ~3)) |
322                      (bbox.y1 - (bbox.y0 & ~3)));
323    boolean use_32bits = max_szorig <= MAX_FIXED_LENGTH32;
324 #if defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
325    boolean pwr8_limit_check = (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 &&
326       (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32;
327 #endif
328 
329    /* Can safely discard negative regions, but need to keep hold of
330     * information about when the triangle extends past screen
331     * boundaries.  See trimmed_box in lp_setup_bin_triangle().
332     */
333    bbox.x0 = MAX2(bbox.x0, 0);
334    bbox.y0 = MAX2(bbox.y0, 0);
335 
336    int nr_planes = 3;
337 
338    /*
339     * Determine how many scissor planes we need, that is drop scissor
340     * edges if the bounding box of the tri is fully inside that edge.
341     */
342    const struct u_rect *scissor = &setup->draw_regions[viewport_index];
343    boolean s_planes[4];
344    scissor_planes_needed(s_planes, &bbox, scissor);
345    nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3];
346 
347    unsigned tri_bytes;
348    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
349    struct lp_rast_triangle *tri =
350       lp_setup_alloc_triangle(scene, key->num_inputs, nr_planes, &tri_bytes);
351    if (!tri)
352       return FALSE;
353 
354 #ifdef DEBUG
355    tri->v[0][0] = v0[0][0];
356    tri->v[1][0] = v1[0][0];
357    tri->v[2][0] = v2[0][0];
358    tri->v[0][1] = v0[0][1];
359    tri->v[1][1] = v1[0][1];
360    tri->v[2][1] = v2[0][1];
361 #endif
362 
363    LP_COUNT(nr_tris);
364 
365    /*
366     * Rotate the tri such that v0 is closest to the fb origin.
367     * This can give more accurate a0 value (which is at fb origin)
368     * when calculating the interpolants.
369     * It can't work when there's flat shading for instance in one
370     * of the attributes, hence restrict this to just a single attribute
371     * which is what causes some test failures.
372     * (This does not address the problem that interpolation may be
373     * inaccurate if gradients are relatively steep in small tris far
374     * away from the origin. It does however fix the (silly) wgf11rasterizer
375     * Interpolator test.)
376     * XXX This causes problems with mipgen -EmuTexture for not yet really
377     * understood reasons (if the vertices would be submitted in a different
378     * order, we'd also generate the same "wrong" results here without
379     * rotation). In any case, that we generate different values if a prim
380     * has the vertices rotated but is otherwise the same (which is due to
381     * numerical issues) is not a nice property. An additional problem by
382     * swapping the vertices here (which is possibly worse) is that
383     * the same primitive coming in twice might generate different values
384     * (in particular for z) due to the swapping potentially not happening
385     * both times, if the attributes to be interpolated are different. For now,
386     * just restrict this to not get used with dx9 (by checking pixel offset),
387     * could also restrict it further to only trigger with wgf11Interpolator
388     * Rasterizer test (the only place which needs it, with always the same
389     * vertices even).
390     */
391    if ((LP_DEBUG & DEBUG_ACCURATE_A0) &&
392        setup->pixel_offset == 0.5f &&
393        key->num_inputs == 1 &&
394        (key->inputs[0].interp == LP_INTERP_LINEAR ||
395         key->inputs[0].interp == LP_INTERP_PERSPECTIVE)) {
396       float dist0 = v0[0][0] * v0[0][0] + v0[0][1] * v0[0][1];
397       float dist1 = v1[0][0] * v1[0][0] + v1[0][1] * v1[0][1];
398       float dist2 = v2[0][0] * v2[0][0] + v2[0][1] * v2[0][1];
399       if (dist0 > dist1 && dist1 < dist2) {
400          const float (*vt)[4];
401          int x, y;
402          vt = v0;
403          v0 = v1;
404          v1 = v2;
405          v2 = vt;
406          x = position->x[0];
407          y = position->y[0];
408          position->x[0] = position->x[1];
409          position->y[0] = position->y[1];
410          position->x[1] = position->x[2];
411          position->y[1] = position->y[2];
412          position->x[2] = x;
413          position->y[2] = y;
414 
415          position->dx20 = position->dx01;
416          position->dy20 = position->dy01;
417          position->dx01 = position->x[0] - position->x[1];
418          position->dy01 = position->y[0] - position->y[1];
419       } else if (dist0 > dist2) {
420          const float (*vt)[4];
421          int x, y;
422          vt = v0;
423          v0 = v2;
424          v2 = v1;
425          v1 = vt;
426          x = position->x[0];
427          y = position->y[0];
428          position->x[0] = position->x[2];
429          position->y[0] = position->y[2];
430          position->x[2] = position->x[1];
431          position->y[2] = position->y[1];
432          position->x[1] = x;
433          position->y[1] = y;
434 
435          position->dx01 = position->dx20;
436          position->dy01 = position->dy20;
437          position->dx20 = position->x[2] - position->x[0];
438          position->dy20 = position->y[2] - position->y[0];
439       }
440    }
441 
442    /* Setup parameter interpolants:
443     */
444    setup->setup.variant->jit_function(v0, v1, v2,
445                                       frontfacing,
446                                       GET_A0(&tri->inputs),
447                                       GET_DADX(&tri->inputs),
448                                       GET_DADY(&tri->inputs),
449                                       &setup->setup.variant->key);
450 
451    tri->inputs.frontfacing = frontfacing;
452    tri->inputs.disable = FALSE;
453    tri->inputs.is_blit = FALSE;
454    tri->inputs.layer = layer;
455    tri->inputs.viewport_index = viewport_index;
456    tri->inputs.view_index = setup->view_index;
457 
458    if (0)
459       lp_dump_setup_coef(&setup->setup.variant->key,
460                          GET_A0(&tri->inputs),
461                          GET_DADX(&tri->inputs),
462                          GET_DADY(&tri->inputs));
463 
464    struct lp_rast_plane *plane = GET_PLANES(tri);
465 
466 #if defined(PIPE_ARCH_SSE)
467    if (1) {
468       __m128i vertx, verty;
469       __m128i shufx, shufy;
470       __m128i dcdx, dcdy;
471       __m128i cdx02, cdx13, cdy02, cdy13, c02, c13;
472       __m128i c01, c23, unused;
473       __m128i dcdx_neg_mask;
474       __m128i dcdy_neg_mask;
475       __m128i dcdx_zero_mask;
476       __m128i top_left_flag, c_dec;
477       __m128i eo, p0, p1, p2;
478       __m128i zero = _mm_setzero_si128();
479 
480       vertx = _mm_load_si128((__m128i *)position->x); /* vertex x coords */
481       verty = _mm_load_si128((__m128i *)position->y); /* vertex y coords */
482 
483       shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
484       shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
485 
486       dcdx = _mm_sub_epi32(verty, shufy);
487       dcdy = _mm_sub_epi32(vertx, shufx);
488 
489       dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
490       dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
491       dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
492 
493       top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0);
494 
495       c_dec = _mm_or_si128(dcdx_neg_mask,
496                            _mm_and_si128(dcdx_zero_mask,
497                                          _mm_xor_si128(dcdy_neg_mask,
498                                                        top_left_flag)));
499 
500       /*
501        * 64 bit arithmetic.
502        * Note we need _signed_ mul (_mm_mul_epi32) which we emulate.
503        */
504       cdx02 = mm_mullohi_epi32(dcdx, vertx, &cdx13);
505       cdy02 = mm_mullohi_epi32(dcdy, verty, &cdy13);
506       c02 = _mm_sub_epi64(cdx02, cdy02);
507       c13 = _mm_sub_epi64(cdx13, cdy13);
508       c02 = _mm_sub_epi64(c02, _mm_shuffle_epi32(c_dec,
509                                                  _MM_SHUFFLE(2,2,0,0)));
510       c13 = _mm_sub_epi64(c13, _mm_shuffle_epi32(c_dec,
511                                                  _MM_SHUFFLE(3,3,1,1)));
512 
513       /*
514        * Useful for very small fbs/tris (or fewer subpixel bits) only:
515        * c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
516        *                   mm_mullo_epi32(dcdy, verty));
517        *
518        * c = _mm_sub_epi32(c, c_dec);
519        */
520 
521       /* Scale up to match c:
522        */
523       dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
524       dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
525 
526       /*
527        * Calculate trivial reject values:
528        * Note eo cannot overflow even if dcdx/dcdy would already have
529        * 31 bits (which they shouldn't have). This is because eo
530        * is never negative (albeit if we rely on that need to be careful...)
531        */
532       eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
533                          _mm_and_si128(dcdx_neg_mask, dcdx));
534 
535       /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
536 
537       /*
538        * Pointless transpose which gets undone immediately in
539        * rasterization.
540        * It is actually difficult to do away with it - would essentially
541        * need GET_PLANES_DX, GET_PLANES_DY etc., but the calculations
542        * for this then would need to depend on the number of planes.
543        * The transpose is quite special here due to c being 64bit...
544        * The store has to be unaligned (unless we'd make the plane size
545        * a multiple of 128), and of course storing eo separately...
546        */
547       c01 = _mm_unpacklo_epi64(c02, c13);
548       c23 = _mm_unpackhi_epi64(c02, c13);
549       transpose2_64_2_32(&c01, &c23, &dcdx, &dcdy,
550                          &p0, &p1, &p2, &unused);
551       _mm_storeu_si128((__m128i *)&plane[0], p0);
552       plane[0].eo = (uint32_t)_mm_cvtsi128_si32(eo);
553       _mm_storeu_si128((__m128i *)&plane[1], p1);
554       eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(3,2,0,1));
555       plane[1].eo = (uint32_t)_mm_cvtsi128_si32(eo);
556       _mm_storeu_si128((__m128i *)&plane[2], p2);
557       eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(0,0,0,2));
558       plane[2].eo = (uint32_t)_mm_cvtsi128_si32(eo);
559    } else
560 #elif defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
561    /*
562     * XXX this code is effectively disabled for all practical purposes,
563     * as the allowed fb size is tiny if FIXED_ORDER is 8.
564     */
565    if (setup->fb.width <= MAX_FIXED_LENGTH32 &&
566        setup->fb.height <= MAX_FIXED_LENGTH32 &&
567        pwr8_limit_check) {
568       unsigned int bottom_edge;
569       __m128i vertx, verty;
570       __m128i shufx, shufy;
571       __m128i dcdx, dcdy, c;
572       __m128i unused;
573       __m128i dcdx_neg_mask;
574       __m128i dcdy_neg_mask;
575       __m128i dcdx_zero_mask;
576       __m128i top_left_flag;
577       __m128i c_inc_mask, c_inc;
578       __m128i eo, p0, p1, p2;
579       __m128i_union vshuf_mask;
580       __m128i zero = vec_splats((unsigned char) 0);
581       alignas(16) int32_t temp_vec[4];
582 
583 #if UTIL_ARCH_LITTLE_ENDIAN
584       vshuf_mask.i[0] = 0x07060504;
585       vshuf_mask.i[1] = 0x0B0A0908;
586       vshuf_mask.i[2] = 0x03020100;
587       vshuf_mask.i[3] = 0x0F0E0D0C;
588 #else
589       vshuf_mask.i[0] = 0x00010203;
590       vshuf_mask.i[1] = 0x0C0D0E0F;
591       vshuf_mask.i[2] = 0x04050607;
592       vshuf_mask.i[3] = 0x08090A0B;
593 #endif
594 
595       /* vertex x coords */
596       vertx = vec_load_si128((const uint32_t *) position->x);
597       /* vertex y coords */
598       verty = vec_load_si128((const uint32_t *) position->y);
599 
600       shufx = vec_perm (vertx, vertx, vshuf_mask.m128i);
601       shufy = vec_perm (verty, verty, vshuf_mask.m128i);
602 
603       dcdx = vec_sub_epi32(verty, shufy);
604       dcdy = vec_sub_epi32(vertx, shufx);
605 
606       dcdx_neg_mask = vec_srai_epi32(dcdx, 31);
607       dcdx_zero_mask = vec_cmpeq_epi32(dcdx, zero);
608       dcdy_neg_mask = vec_srai_epi32(dcdy, 31);
609 
610       bottom_edge = (setup->bottom_edge_rule == 0) ? ~0 : 0;
611       top_left_flag = (__m128i) vec_splats(bottom_edge);
612 
613       c_inc_mask = vec_or(dcdx_neg_mask,
614                                 vec_and(dcdx_zero_mask,
615                                               vec_xor(dcdy_neg_mask,
616                                                             top_left_flag)));
617 
618       c_inc = vec_srli_epi32(c_inc_mask, 31);
619 
620       c = vec_sub_epi32(vec_mullo_epi32(dcdx, vertx),
621                         vec_mullo_epi32(dcdy, verty));
622 
623       c = vec_add_epi32(c, c_inc);
624 
625       /* Scale up to match c:
626        */
627       dcdx = vec_slli_epi32(dcdx, FIXED_ORDER);
628       dcdy = vec_slli_epi32(dcdy, FIXED_ORDER);
629 
630       /* Calculate trivial reject values:
631        */
632       eo = vec_sub_epi32(vec_andnot_si128(dcdy_neg_mask, dcdy),
633                          vec_and(dcdx_neg_mask, dcdx));
634 
635       /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
636 
637       /* Pointless transpose which gets undone immediately in
638        * rasterization:
639        */
640       transpose4_epi32(&c, &dcdx, &dcdy, &eo,
641                        &p0, &p1, &p2, &unused);
642 
643 #define STORE_PLANE(plane, vec) do {                  \
644          vec_store_si128((uint32_t *)&temp_vec, vec); \
645          plane.c    = (int64_t)temp_vec[0];           \
646          plane.dcdx = temp_vec[1];                    \
647          plane.dcdy = temp_vec[2];                    \
648          plane.eo   = temp_vec[3];                    \
649       } while(0)
650 
651       STORE_PLANE(plane[0], p0);
652       STORE_PLANE(plane[1], p1);
653       STORE_PLANE(plane[2], p2);
654 #undef STORE_PLANE
655    } else
656 #endif
657    {
658       plane[0].dcdy = position->dx01;
659       plane[1].dcdy = position->x[1] - position->x[2];
660       plane[2].dcdy = position->dx20;
661       plane[0].dcdx = position->dy01;
662       plane[1].dcdx = position->y[1] - position->y[2];
663       plane[2].dcdx = position->dy20;
664 
665       for (int i = 0; i < 3; i++) {
666          /* half-edge constants, will be iterated over the whole render
667           * target.
668           */
669          plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) -
670                       IMUL64(plane[i].dcdy, position->y[i]);
671 
672          /* correct for top-left vs. bottom-left fill convention.
673           */
674          if (plane[i].dcdx < 0) {
675             /* both fill conventions want this - adjust for left edges */
676             plane[i].c++;
677          }
678          else if (plane[i].dcdx == 0) {
679             if (setup->bottom_edge_rule == 0) {
680                /* correct for top-left fill convention:
681                 */
682                if (plane[i].dcdy > 0)
683                   plane[i].c++;
684             } else {
685                /* correct for bottom-left fill convention:
686                 */
687                if (plane[i].dcdy < 0)
688                   plane[i].c++;
689             }
690          }
691 
692          /* Scale up to match c:
693           */
694          assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx);
695          assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy);
696          plane[i].dcdx <<= FIXED_ORDER;
697          plane[i].dcdy <<= FIXED_ORDER;
698 
699          /* find trivial reject offsets for each edge for a single-pixel
700           * sized block.  These will be scaled up at each recursive level to
701           * match the active blocksize.  Scaling in this way works best if
702           * the blocks are square.
703           */
704          plane[i].eo = 0;
705          if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
706          if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
707       }
708    }
709 
710    if (0) {
711       debug_printf("p0: %"PRIx64"/%08x/%08x/%08x\n",
712                    plane[0].c,
713                    plane[0].dcdx,
714                    plane[0].dcdy,
715                    plane[0].eo);
716 
717       debug_printf("p1: %"PRIx64"/%08x/%08x/%08x\n",
718                    plane[1].c,
719                    plane[1].dcdx,
720                    plane[1].dcdy,
721                    plane[1].eo);
722 
723       debug_printf("p2: %"PRIx64"/%08x/%08x/%08x\n",
724                    plane[2].c,
725                    plane[2].dcdx,
726                    plane[2].dcdy,
727                    plane[2].eo);
728    }
729 
730    if (nr_planes > 3) {
731       lp_setup_add_scissor_planes(scissor, &plane[3], s_planes, setup->multisample);
732    }
733 
734    return lp_setup_bin_triangle(setup, tri, use_32bits,
735                                 check_opaque(setup, v0, v1, v2),
736                                 &bbox, nr_planes, viewport_index);
737 }
738 
739 /*
740  * Round to nearest less or equal power of two of the input.
741  *
742  * Undefined if no bit set exists, so code should check against 0 first.
743  */
744 static inline uint32_t
floor_pot(uint32_t n)745 floor_pot(uint32_t n)
746 {
747 #if defined(PIPE_CC_GCC) && (defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64))
748    if (n == 0)
749       return 0;
750 
751    __asm__("bsr %1,%0"
752           : "=r" (n)
753           : "rm" (n)
754           : "cc");
755    return 1 << n;
756 #else
757    n |= (n >>  1);
758    n |= (n >>  2);
759    n |= (n >>  4);
760    n |= (n >>  8);
761    n |= (n >> 16);
762    return n - (n >> 1);
763 #endif
764 }
765 
766 
767 boolean
lp_setup_bin_triangle(struct lp_setup_context * setup,struct lp_rast_triangle * tri,boolean use_32bits,boolean opaque,const struct u_rect * bbox,int nr_planes,unsigned viewport_index)768 lp_setup_bin_triangle(struct lp_setup_context *setup,
769                       struct lp_rast_triangle *tri,
770                       boolean use_32bits,
771                       boolean opaque,
772                       const struct u_rect *bbox,
773                       int nr_planes,
774                       unsigned viewport_index)
775 {
776    struct lp_scene *scene = setup->scene;
777    unsigned cmd;
778 
779    /* What is the largest power-of-two boundary this triangle crosses:
780     */
781    const int dx = floor_pot((bbox->x0 ^ bbox->x1) |
782                             (bbox->y0 ^ bbox->y1));
783 
784    /* The largest dimension of the rasterized area of the triangle
785     * (aligned to a 4x4 grid), rounded down to the nearest power of two:
786     */
787    const int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) |
788                        (bbox->y1 - (bbox->y0 & ~3)));
789    const int sz = floor_pot(max_sz);
790 
791    /*
792     * NOTE: It is important to use the original bounding box
793     * which might contain negative values here, because if the
794     * plane math may overflow or not with the 32bit rasterization
795     * functions depends on the original extent of the triangle.
796     */
797 
798    /* Now apply scissor, etc to the bounding box.  Could do this
799     * earlier, but it confuses the logic for tri-16 and would force
800     * the rasterizer to also respect scissor, etc, just for the rare
801     * cases where a small triangle extends beyond the scissor.
802     */
803    struct u_rect trimmed_box = *bbox;
804    u_rect_find_intersection(&setup->draw_regions[viewport_index],
805                             &trimmed_box);
806 
807    /* Determine which tile(s) intersect the triangle's bounding box
808     */
809    if (dx < TILE_SIZE) {
810       const int ix0 = bbox->x0 / TILE_SIZE;
811       const int iy0 = bbox->y0 / TILE_SIZE;
812       unsigned px = bbox->x0 & 63 & ~3;
813       unsigned py = bbox->y0 & 63 & ~3;
814 
815       assert(iy0 == bbox->y1 / TILE_SIZE &&
816              ix0 == bbox->x1 / TILE_SIZE);
817 
818       if (nr_planes == 3) {
819          if (sz < 4) {
820             /* Triangle is contained in a single 4x4 stamp:
821              */
822             assert(px + 4 <= TILE_SIZE);
823             assert(py + 4 <= TILE_SIZE);
824             if (setup->multisample)
825                cmd = LP_RAST_OP_MS_TRIANGLE_3_4;
826             else
827                cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_3_4 : LP_RAST_OP_TRIANGLE_3_4;
828             return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
829                                                setup->fs.stored, cmd,
830                                                lp_rast_arg_triangle_contained(tri, px, py));
831          }
832 
833          if (sz < 16) {
834             /* Triangle is contained in a single 16x16 block:
835              */
836 
837             /*
838              * The 16x16 block is only 4x4 aligned, and can exceed the tile
839              * dimensions if the triangle is 16 pixels in one dimension but 4
840              * in the other. So budge the 16x16 back inside the tile.
841              */
842             px = MIN2(px, TILE_SIZE - 16);
843             py = MIN2(py, TILE_SIZE - 16);
844 
845             assert(px + 16 <= TILE_SIZE);
846             assert(py + 16 <= TILE_SIZE);
847 
848             if (setup->multisample)
849                cmd = LP_RAST_OP_MS_TRIANGLE_3_16;
850             else
851                cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_3_16 : LP_RAST_OP_TRIANGLE_3_16;
852             return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
853                                                setup->fs.stored, cmd,
854                                                lp_rast_arg_triangle_contained(tri, px, py));
855          }
856       } else if (nr_planes == 4 && sz < 16) {
857          px = MIN2(px, TILE_SIZE - 16);
858          py = MIN2(py, TILE_SIZE - 16);
859 
860          assert(px + 16 <= TILE_SIZE);
861          assert(py + 16 <= TILE_SIZE);
862 
863          if (setup->multisample)
864             cmd = LP_RAST_OP_MS_TRIANGLE_4_16;
865          else
866             cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_4_16 : LP_RAST_OP_TRIANGLE_4_16;
867          return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
868                                             setup->fs.stored, cmd,
869                                             lp_rast_arg_triangle_contained(tri, px, py));
870       }
871 
872       /* Triangle is contained in a single tile:
873        */
874       if (setup->multisample)
875          cmd = lp_rast_ms_tri_tab[nr_planes];
876       else
877          cmd = use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes];
878       return lp_scene_bin_cmd_with_state(scene, ix0, iy0, setup->fs.stored, cmd,
879                                   lp_rast_arg_triangle(tri, (1<<nr_planes)-1));
880    } else {
881       struct lp_rast_plane *plane = GET_PLANES(tri);
882       int64_t c[MAX_PLANES];
883       int64_t ei[MAX_PLANES];
884 
885       int64_t eo[MAX_PLANES];
886       int64_t xstep[MAX_PLANES];
887       int64_t ystep[MAX_PLANES];
888       int x, y;
889 
890       const int ix0 = trimmed_box.x0 / TILE_SIZE;
891       const int iy0 = trimmed_box.y0 / TILE_SIZE;
892       const int ix1 = trimmed_box.x1 / TILE_SIZE;
893       const int iy1 = trimmed_box.y1 / TILE_SIZE;
894 
895       for (int i = 0; i < nr_planes; i++) {
896          c[i] = (plane[i].c +
897                  IMUL64(plane[i].dcdy, iy0) * TILE_SIZE -
898                  IMUL64(plane[i].dcdx, ix0) * TILE_SIZE);
899 
900          ei[i] = (plane[i].dcdy -
901                   plane[i].dcdx -
902                   (int64_t)plane[i].eo) << TILE_ORDER;
903 
904          eo[i] = (int64_t)plane[i].eo << TILE_ORDER;
905          xstep[i] = -(((int64_t)plane[i].dcdx) << TILE_ORDER);
906          ystep[i] = ((int64_t)plane[i].dcdy) << TILE_ORDER;
907       }
908 
909       tri->inputs.is_blit = lp_setup_is_blit(setup, &tri->inputs);
910 
911       /* Test tile-sized blocks against the triangle.
912        * Discard blocks fully outside the tri.  If the block is fully
913        * contained inside the tri, bin an lp_rast_shade_tile command.
914        * Else, bin a lp_rast_triangle command.
915        */
916       for (y = iy0; y <= iy1; y++) {
917          boolean in = FALSE;  /* are we inside the triangle? */
918          int64_t cx[MAX_PLANES];
919 
920          for (int i = 0; i < nr_planes; i++)
921             cx[i] = c[i];
922 
923          for (x = ix0; x <= ix1; x++) {
924             int out = 0;
925             int partial = 0;
926 
927             for (int i = 0; i < nr_planes; i++) {
928                int64_t planeout = cx[i] + eo[i];
929                int64_t planepartial = cx[i] + ei[i] - 1;
930                out |= (int) (planeout >> 63);
931                partial |= ((int) (planepartial >> 63)) & (1<<i);
932             }
933 
934             if (out) {
935                /* do nothing */
936                if (in)
937                   break;  /* exiting triangle, all done with this row */
938                LP_COUNT(nr_empty_64);
939             } else if (partial) {
940                /* Not trivially accepted by at least one plane -
941                 * rasterize/shade partial tile
942                 */
943                int count = util_bitcount(partial);
944                in = TRUE;
945 
946                if (setup->multisample)
947                   cmd = lp_rast_ms_tri_tab[count];
948                else
949                   cmd = use_32bits ? lp_rast_32_tri_tab[count] : lp_rast_tri_tab[count];
950                if (!lp_scene_bin_cmd_with_state(scene, x, y,
951                                                 setup->fs.stored, cmd,
952                                                 lp_rast_arg_triangle(tri, partial)))
953                   goto fail;
954 
955                LP_COUNT(nr_partially_covered_64);
956             } else {
957                /* triangle covers the whole tile- shade whole tile */
958                LP_COUNT(nr_fully_covered_64);
959                in = TRUE;
960                if (!lp_setup_whole_tile(setup, &tri->inputs, x, y, opaque))
961                   goto fail;
962             }
963 
964             /* Iterate cx values across the region: */
965             for (int i = 0; i < nr_planes; i++)
966                cx[i] += xstep[i];
967          }
968 
969          /* Iterate c values down the region: */
970          for (int i = 0; i < nr_planes; i++)
971             c[i] += ystep[i];
972       }
973    }
974 
975    return TRUE;
976 
977 fail:
978    /* Need to disable any partially binned triangle.  This is easier
979     * than trying to locate all the triangle, shade-tile, etc,
980     * commands which may have been binned.
981     */
982    tri->inputs.disable = TRUE;
983    return FALSE;
984 }
985 
986 
987 /**
988  * Try to draw the triangle, restart the scene on failure.
989  */
990 static inline void
retry_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],boolean front)991 retry_triangle_ccw(struct lp_setup_context *setup,
992                    struct fixed_position *position,
993                    const float (*v0)[4],
994                    const float (*v1)[4],
995                    const float (*v2)[4],
996                    boolean front)
997 {
998    if (!do_triangle_ccw(setup, position, v0, v1, v2, front)) {
999       if (!lp_setup_flush_and_restart(setup))
1000          return;
1001 
1002       if (!do_triangle_ccw(setup, position, v0, v1, v2, front))
1003          return;
1004    }
1005 }
1006 
1007 
1008 /**
1009  * Calculate fixed position data for a triangle
1010  * It is unfortunate we need to do that here (as we need area
1011  * calculated in fixed point), as there's quite some code duplication
1012  * to what is done in the jit setup prog.
1013  */
1014 static inline int8_t
calc_fixed_position(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1015 calc_fixed_position(struct lp_setup_context *setup,
1016                     struct fixed_position* position,
1017                     const float (*v0)[4],
1018                     const float (*v1)[4],
1019                     const float (*v2)[4])
1020 {
1021    float pixel_offset = setup->multisample ? 0.0 : setup->pixel_offset;
1022    /*
1023     * The rounding may not be quite the same with PIPE_ARCH_SSE
1024     * (util_iround right now only does nearest/even on x87,
1025     * otherwise nearest/away-from-zero).
1026     * Both should be acceptable, I think.
1027     */
1028 #if defined(PIPE_ARCH_SSE)
1029    __m128 v0r, v1r;
1030    __m128 vxy0xy2, vxy1xy0;
1031    __m128i vxy0xy2i, vxy1xy0i;
1032    __m128i dxdy0120, x0x2y0y2, x1x0y1y0, x0120, y0120;
1033    __m128 pix_offset = _mm_set1_ps(pixel_offset);
1034    __m128 fixed_one = _mm_set1_ps((float)FIXED_ONE);
1035    v0r = _mm_castpd_ps(_mm_load_sd((double *)v0[0]));
1036    vxy0xy2 = _mm_loadh_pi(v0r, (__m64 *)v2[0]);
1037    v1r = _mm_castpd_ps(_mm_load_sd((double *)v1[0]));
1038    vxy1xy0 = _mm_movelh_ps(v1r, vxy0xy2);
1039    vxy0xy2 = _mm_sub_ps(vxy0xy2, pix_offset);
1040    vxy1xy0 = _mm_sub_ps(vxy1xy0, pix_offset);
1041    vxy0xy2 = _mm_mul_ps(vxy0xy2, fixed_one);
1042    vxy1xy0 = _mm_mul_ps(vxy1xy0, fixed_one);
1043    vxy0xy2i = _mm_cvtps_epi32(vxy0xy2);
1044    vxy1xy0i = _mm_cvtps_epi32(vxy1xy0);
1045    dxdy0120 = _mm_sub_epi32(vxy0xy2i, vxy1xy0i);
1046    _mm_store_si128((__m128i *)&position->dx01, dxdy0120);
1047    /*
1048     * For the mul, would need some more shuffles, plus emulation
1049     * for the signed mul (without sse41), so don't bother.
1050     */
1051    x0x2y0y2 = _mm_shuffle_epi32(vxy0xy2i, _MM_SHUFFLE(3,1,2,0));
1052    x1x0y1y0 = _mm_shuffle_epi32(vxy1xy0i, _MM_SHUFFLE(3,1,2,0));
1053    x0120 = _mm_unpacklo_epi32(x0x2y0y2, x1x0y1y0);
1054    y0120 = _mm_unpackhi_epi32(x0x2y0y2, x1x0y1y0);
1055    _mm_store_si128((__m128i *)&position->x[0], x0120);
1056    _mm_store_si128((__m128i *)&position->y[0], y0120);
1057 
1058 #else
1059    position->x[0] = subpixel_snap(v0[0][0] - pixel_offset);
1060    position->x[1] = subpixel_snap(v1[0][0] - pixel_offset);
1061    position->x[2] = subpixel_snap(v2[0][0] - pixel_offset);
1062    position->x[3] = 0; // should be unused
1063 
1064    position->y[0] = subpixel_snap(v0[0][1] - pixel_offset);
1065    position->y[1] = subpixel_snap(v1[0][1] - pixel_offset);
1066    position->y[2] = subpixel_snap(v2[0][1] - pixel_offset);
1067    position->y[3] = 0; // should be unused
1068 
1069    position->dx01 = position->x[0] - position->x[1];
1070    position->dy01 = position->y[0] - position->y[1];
1071 
1072    position->dx20 = position->x[2] - position->x[0];
1073    position->dy20 = position->y[2] - position->y[0];
1074 #endif
1075 
1076    uint64_t area = IMUL64(position->dx01, position->dy20) -
1077       IMUL64(position->dx20, position->dy01);
1078    return area == 0 ? 0 : (area & (1ULL << 63)) ? -1 : 1;
1079 }
1080 
1081 
1082 /**
1083  * Rotate a triangle, flipping its clockwise direction,
1084  * Swaps values for xy[0] and xy[1]
1085  */
1086 static inline void
rotate_fixed_position_01(struct fixed_position * position)1087 rotate_fixed_position_01(struct fixed_position* position)
1088 {
1089    int x = position->x[1];
1090    int y = position->y[1];
1091 
1092    position->x[1] = position->x[0];
1093    position->y[1] = position->y[0];
1094    position->x[0] = x;
1095    position->y[0] = y;
1096 
1097    position->dx01 = -position->dx01;
1098    position->dy01 = -position->dy01;
1099    position->dx20 = position->x[2] - position->x[0];
1100    position->dy20 = position->y[2] - position->y[0];
1101 }
1102 
1103 
1104 /**
1105  * Rotate a triangle, flipping its clockwise direction,
1106  * Swaps values for xy[1] and xy[2]
1107  */
1108 static inline void
rotate_fixed_position_12(struct fixed_position * position)1109 rotate_fixed_position_12(struct fixed_position* position)
1110 {
1111    int x = position->x[2];
1112    int y = position->y[2];
1113 
1114    position->x[2] = position->x[1];
1115    position->y[2] = position->y[1];
1116    position->x[1] = x;
1117    position->y[1] = y;
1118 
1119    x = position->dx01;
1120    y = position->dy01;
1121    position->dx01 = -position->dx20;
1122    position->dy01 = -position->dy20;
1123    position->dx20 = -x;
1124    position->dy20 = -y;
1125 }
1126 
1127 
1128 /**
1129  * Draw triangle if it's CW, cull otherwise.
1130  */
1131 static void
triangle_cw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1132 triangle_cw(struct lp_setup_context *setup,
1133             const float (*v0)[4],
1134             const float (*v1)[4],
1135             const float (*v2)[4])
1136 {
1137    alignas(16) struct fixed_position position;
1138    struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
1139 
1140    if (lp_context->active_statistics_queries) {
1141       lp_context->pipeline_statistics.c_primitives++;
1142    }
1143 
1144    int8_t area_sign = calc_fixed_position(setup, &position, v0, v1, v2);
1145 
1146    if (area_sign < 0) {
1147       if (setup->flatshade_first) {
1148          rotate_fixed_position_12(&position);
1149          retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
1150       } else {
1151          rotate_fixed_position_01(&position);
1152          retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
1153       }
1154    }
1155 }
1156 
1157 
1158 static void
triangle_ccw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1159 triangle_ccw(struct lp_setup_context *setup,
1160              const float (*v0)[4],
1161              const float (*v1)[4],
1162              const float (*v2)[4])
1163 {
1164    alignas(16) struct fixed_position position;
1165    struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
1166 
1167    if (lp_context->active_statistics_queries) {
1168       lp_context->pipeline_statistics.c_primitives++;
1169    }
1170 
1171    int8_t area_sign = calc_fixed_position(setup, &position, v0, v1, v2);
1172 
1173    if (area_sign > 0)
1174       retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
1175 }
1176 
1177 
1178 /**
1179  * Draw triangle whether it's CW or CCW.
1180  */
1181 static void
triangle_both(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1182 triangle_both(struct lp_setup_context *setup,
1183               const float (*v0)[4],
1184               const float (*v1)[4],
1185               const float (*v2)[4])
1186 {
1187    alignas(16) struct fixed_position position;
1188    struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
1189 
1190    if (lp_context->active_statistics_queries) {
1191       lp_context->pipeline_statistics.c_primitives++;
1192    }
1193 
1194    int8_t area_sign = calc_fixed_position(setup, &position, v0, v1, v2);
1195 
1196    if (0) {
1197       assert(!util_is_inf_or_nan(v0[0][0]));
1198       assert(!util_is_inf_or_nan(v0[0][1]));
1199       assert(!util_is_inf_or_nan(v1[0][0]));
1200       assert(!util_is_inf_or_nan(v1[0][1]));
1201       assert(!util_is_inf_or_nan(v2[0][0]));
1202       assert(!util_is_inf_or_nan(v2[0][1]));
1203    }
1204 
1205    if (area_sign > 0) {
1206       retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
1207    } else if (area_sign < 0) {
1208       if (setup->flatshade_first) {
1209          rotate_fixed_position_12(&position);
1210          retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
1211       } else {
1212          rotate_fixed_position_01(&position);
1213          retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
1214       }
1215    }
1216 }
1217 
1218 
1219 static void
triangle_noop(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1220 triangle_noop(struct lp_setup_context *setup,
1221               const float (*v0)[4],
1222               const float (*v1)[4],
1223               const float (*v2)[4])
1224 {
1225 }
1226 
1227 
1228 void
lp_setup_choose_triangle(struct lp_setup_context * setup)1229 lp_setup_choose_triangle(struct lp_setup_context *setup)
1230 {
1231    if (setup->rasterizer_discard) {
1232       setup->triangle = triangle_noop;
1233       return;
1234    }
1235    switch (setup->cullmode) {
1236    case PIPE_FACE_NONE:
1237       setup->triangle = triangle_both;
1238       break;
1239    case PIPE_FACE_BACK:
1240       setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
1241       break;
1242    case PIPE_FACE_FRONT:
1243       setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
1244       break;
1245    default:
1246       setup->triangle = triangle_noop;
1247       break;
1248    }
1249 }
1250