1 /**
2 * f2fs_format.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * Dual licensed under the GPL or LGPL version 2 licenses.
8 */
9 #ifndef _LARGEFILE64_SOURCE
10 #define _LARGEFILE64_SOURCE
11 #endif
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <fcntl.h>
16 #include <string.h>
17 #include <unistd.h>
18 #ifdef HAVE_SYS_STAT_H
19 #include <sys/stat.h>
20 #endif
21 #ifdef HAVE_SYS_MOUNT_H
22 #include <sys/mount.h>
23 #endif
24 #include <time.h>
25
26 #include "config.h"
27 #ifdef HAVE_UUID_UUID_H
28 #include <uuid/uuid.h>
29 #endif
30 #ifndef HAVE_LIBUUID
31 #define uuid_parse(a, b) -1
32 #define uuid_generate(a)
33 #endif
34
35 #include "f2fs_fs.h"
36 #include "quota.h"
37 #include "f2fs_format_utils.h"
38
39 extern struct f2fs_configuration c;
40 struct f2fs_super_block raw_sb;
41 struct f2fs_super_block *sb = &raw_sb;
42 struct f2fs_checkpoint *cp;
43
44 /* Return first segment number of each area */
45 #define prev_zone(cur) (c.cur_seg[cur] - c.segs_per_zone)
46 #define next_zone(cur) (c.cur_seg[cur] + c.segs_per_zone)
47 #define last_zone(cur) ((cur - 1) * c.segs_per_zone)
48 #define last_section(cur) (cur + (c.secs_per_zone - 1) * c.segs_per_sec)
49
50 /* Return time fixed by the user or current time by default */
51 #define mkfs_time ((c.fixed_time == -1) ? time(NULL) : c.fixed_time)
52
53 const char *media_ext_lists[] = {
54 /* common prefix */
55 "mp", // Covers mp3, mp4, mpeg, mpg
56 "wm", // Covers wma, wmb, wmv
57 "og", // Covers oga, ogg, ogm, ogv
58 "jp", // Covers jpg, jpeg, jp2
59
60 /* video */
61 "avi",
62 "m4v",
63 "m4p",
64 "mkv",
65 "mov",
66 "webm",
67
68 /* audio */
69 "wav",
70 "m4a",
71 "3gp",
72 "opus",
73 "flac",
74
75 /* image */
76 "gif",
77 "png",
78 "svg",
79 "webp",
80
81 /* archives */
82 "jar",
83 "deb",
84 "iso",
85 "gz",
86 "xz",
87 "zst",
88
89 /* others */
90 "pdf",
91 "pyc", // Python bytecode
92 "ttc",
93 "ttf",
94 "exe",
95
96 /* android */
97 "apk",
98 "cnt", // Image alias
99 "exo", // YouTube
100 "odex", // Android RunTime
101 "vdex", // Android RunTime
102 "so",
103
104 NULL
105 };
106
107 const char *hot_ext_lists[] = {
108 "db",
109
110 #ifndef WITH_ANDROID
111 /* Virtual machines */
112 "vmdk", // VMware or VirtualBox
113 "vdi", // VirtualBox
114 "qcow2", // QEMU
115 #endif
116 NULL
117 };
118
119 const char **default_ext_list[] = {
120 media_ext_lists,
121 hot_ext_lists
122 };
123
is_extension_exist(const char * name)124 static bool is_extension_exist(const char *name)
125 {
126 int i;
127
128 for (i = 0; i < F2FS_MAX_EXTENSION; i++) {
129 char *ext = (char *)sb->extension_list[i];
130 if (!strcmp(ext, name))
131 return 1;
132 }
133
134 return 0;
135 }
136
cure_extension_list(void)137 static void cure_extension_list(void)
138 {
139 const char **extlist;
140 char *ext_str;
141 char *ue;
142 int name_len;
143 int i, pos = 0;
144
145 set_sb(extension_count, 0);
146 memset(sb->extension_list, 0, sizeof(sb->extension_list));
147
148 for (i = 0; i < 2; i++) {
149 ext_str = c.extension_list[i];
150 extlist = default_ext_list[i];
151
152 while (*extlist) {
153 name_len = strlen(*extlist);
154 memcpy(sb->extension_list[pos++], *extlist, name_len);
155 extlist++;
156 }
157 if (i == 0)
158 set_sb(extension_count, pos);
159 else
160 sb->hot_ext_count = pos - get_sb(extension_count);;
161
162 if (!ext_str)
163 continue;
164
165 /* add user ext list */
166 ue = strtok(ext_str, ", ");
167 while (ue != NULL) {
168 name_len = strlen(ue);
169 if (name_len >= F2FS_EXTENSION_LEN) {
170 MSG(0, "\tWarn: Extension name (%s) is too long\n", ue);
171 goto next;
172 }
173 if (!is_extension_exist(ue))
174 memcpy(sb->extension_list[pos++], ue, name_len);
175 next:
176 ue = strtok(NULL, ", ");
177 if (pos >= F2FS_MAX_EXTENSION)
178 break;
179 }
180
181 if (i == 0)
182 set_sb(extension_count, pos);
183 else
184 sb->hot_ext_count = pos - get_sb(extension_count);
185
186 free(c.extension_list[i]);
187 }
188 }
189
verify_cur_segs(void)190 static void verify_cur_segs(void)
191 {
192 int i, j;
193 int reorder = 0;
194
195 for (i = 0; i < NR_CURSEG_TYPE; i++) {
196 for (j = i + 1; j < NR_CURSEG_TYPE; j++) {
197 if (c.cur_seg[i] == c.cur_seg[j]) {
198 reorder = 1;
199 break;
200 }
201 }
202 }
203
204 if (!reorder)
205 return;
206
207 c.cur_seg[0] = 0;
208 for (i = 1; i < NR_CURSEG_TYPE; i++)
209 c.cur_seg[i] = next_zone(i - 1);
210 }
211
f2fs_prepare_super_block(void)212 static int f2fs_prepare_super_block(void)
213 {
214 uint32_t blk_size_bytes;
215 uint32_t log_sectorsize, log_sectors_per_block;
216 uint32_t log_blocksize, log_blks_per_seg;
217 uint32_t segment_size_bytes, zone_size_bytes;
218 uint32_t sit_segments, nat_segments;
219 uint32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa;
220 uint32_t total_valid_blks_available;
221 uint64_t zone_align_start_offset, diff;
222 uint64_t total_meta_zones, total_meta_segments;
223 uint32_t sit_bitmap_size, max_sit_bitmap_size;
224 uint32_t max_nat_bitmap_size, max_nat_segments;
225 uint32_t total_zones, avail_zones;
226 enum quota_type qtype;
227 int i;
228
229 set_sb(magic, F2FS_SUPER_MAGIC);
230 set_sb(major_ver, F2FS_MAJOR_VERSION);
231 set_sb(minor_ver, F2FS_MINOR_VERSION);
232
233 log_sectorsize = log_base_2(c.sector_size);
234 log_sectors_per_block = log_base_2(c.sectors_per_blk);
235 log_blocksize = log_sectorsize + log_sectors_per_block;
236 log_blks_per_seg = log_base_2(c.blks_per_seg);
237
238 set_sb(log_sectorsize, log_sectorsize);
239 set_sb(log_sectors_per_block, log_sectors_per_block);
240
241 set_sb(log_blocksize, log_blocksize);
242 set_sb(log_blocks_per_seg, log_blks_per_seg);
243
244 set_sb(segs_per_sec, c.segs_per_sec);
245 set_sb(secs_per_zone, c.secs_per_zone);
246
247 blk_size_bytes = 1 << log_blocksize;
248 segment_size_bytes = blk_size_bytes * c.blks_per_seg;
249 zone_size_bytes =
250 blk_size_bytes * c.secs_per_zone *
251 c.segs_per_sec * c.blks_per_seg;
252
253 set_sb(checksum_offset, 0);
254
255 set_sb(block_count, c.total_sectors >> log_sectors_per_block);
256
257 zone_align_start_offset =
258 ((uint64_t) c.start_sector * DEFAULT_SECTOR_SIZE +
259 2 * F2FS_BLKSIZE + zone_size_bytes - 1) /
260 zone_size_bytes * zone_size_bytes -
261 (uint64_t) c.start_sector * DEFAULT_SECTOR_SIZE;
262
263 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
264 zone_align_start_offset = 8192;
265
266 if (c.start_sector % DEFAULT_SECTORS_PER_BLOCK) {
267 MSG(1, "\t%s: Align start sector number to the page unit\n",
268 c.zoned_mode ? "FAIL" : "WARN");
269 MSG(1, "\ti.e., start sector: %d, ofs:%d (sects/page: %d)\n",
270 c.start_sector,
271 c.start_sector % DEFAULT_SECTORS_PER_BLOCK,
272 DEFAULT_SECTORS_PER_BLOCK);
273 if (c.zoned_mode)
274 return -1;
275 }
276
277 if (c.zoned_mode && c.ndevs > 1)
278 zone_align_start_offset +=
279 (c.devices[0].total_sectors * c.sector_size) % zone_size_bytes;
280
281 set_sb(segment0_blkaddr, zone_align_start_offset / blk_size_bytes);
282 sb->cp_blkaddr = sb->segment0_blkaddr;
283
284 MSG(0, "Info: zone aligned segment0 blkaddr: %u\n",
285 get_sb(segment0_blkaddr));
286
287 if (c.zoned_mode &&
288 ((c.ndevs == 1 &&
289 (get_sb(segment0_blkaddr) + c.start_sector /
290 DEFAULT_SECTORS_PER_BLOCK) % c.zone_blocks) ||
291 (c.ndevs > 1 &&
292 c.devices[1].start_blkaddr % c.zone_blocks))) {
293 MSG(1, "\tError: Unaligned segment0 block address %u\n",
294 get_sb(segment0_blkaddr));
295 return -1;
296 }
297
298 for (i = 0; i < c.ndevs; i++) {
299 if (i == 0) {
300 c.devices[i].total_segments =
301 (c.devices[i].total_sectors *
302 c.sector_size - zone_align_start_offset) /
303 segment_size_bytes;
304 c.devices[i].start_blkaddr = 0;
305 c.devices[i].end_blkaddr = c.devices[i].total_segments *
306 c.blks_per_seg - 1 +
307 sb->segment0_blkaddr;
308 } else {
309 c.devices[i].total_segments =
310 c.devices[i].total_sectors /
311 (c.sectors_per_blk * c.blks_per_seg);
312 c.devices[i].start_blkaddr =
313 c.devices[i - 1].end_blkaddr + 1;
314 c.devices[i].end_blkaddr = c.devices[i].start_blkaddr +
315 c.devices[i].total_segments *
316 c.blks_per_seg - 1;
317 }
318 if (c.ndevs > 1) {
319 memcpy(sb->devs[i].path, c.devices[i].path, MAX_PATH_LEN);
320 sb->devs[i].total_segments =
321 cpu_to_le32(c.devices[i].total_segments);
322 }
323
324 c.total_segments += c.devices[i].total_segments;
325 }
326 set_sb(segment_count, (c.total_segments / c.segs_per_zone *
327 c.segs_per_zone));
328 set_sb(segment_count_ckpt, F2FS_NUMBER_OF_CHECKPOINT_PACK);
329
330 set_sb(sit_blkaddr, get_sb(segment0_blkaddr) +
331 get_sb(segment_count_ckpt) * c.blks_per_seg);
332
333 blocks_for_sit = SIZE_ALIGN(get_sb(segment_count), SIT_ENTRY_PER_BLOCK);
334
335 sit_segments = SEG_ALIGN(blocks_for_sit);
336
337 set_sb(segment_count_sit, sit_segments * 2);
338
339 set_sb(nat_blkaddr, get_sb(sit_blkaddr) + get_sb(segment_count_sit) *
340 c.blks_per_seg);
341
342 total_valid_blks_available = (get_sb(segment_count) -
343 (get_sb(segment_count_ckpt) +
344 get_sb(segment_count_sit))) * c.blks_per_seg;
345
346 blocks_for_nat = SIZE_ALIGN(total_valid_blks_available,
347 NAT_ENTRY_PER_BLOCK);
348
349 if (c.large_nat_bitmap) {
350 nat_segments = SEG_ALIGN(blocks_for_nat) *
351 DEFAULT_NAT_ENTRY_RATIO / 100;
352 set_sb(segment_count_nat, nat_segments ? nat_segments : 1);
353 max_nat_bitmap_size = (get_sb(segment_count_nat) <<
354 log_blks_per_seg) / 8;
355 set_sb(segment_count_nat, get_sb(segment_count_nat) * 2);
356 } else {
357 set_sb(segment_count_nat, SEG_ALIGN(blocks_for_nat));
358 max_nat_bitmap_size = 0;
359 }
360
361 /*
362 * The number of node segments should not be exceeded a "Threshold".
363 * This number resizes NAT bitmap area in a CP page.
364 * So the threshold is determined not to overflow one CP page
365 */
366 sit_bitmap_size = ((get_sb(segment_count_sit) / 2) <<
367 log_blks_per_seg) / 8;
368
369 if (sit_bitmap_size > MAX_SIT_BITMAP_SIZE)
370 max_sit_bitmap_size = MAX_SIT_BITMAP_SIZE;
371 else
372 max_sit_bitmap_size = sit_bitmap_size;
373
374 if (c.large_nat_bitmap) {
375 /* use cp_payload if free space of f2fs_checkpoint is not enough */
376 if (max_sit_bitmap_size + max_nat_bitmap_size >
377 MAX_BITMAP_SIZE_IN_CKPT) {
378 uint32_t diff = max_sit_bitmap_size +
379 max_nat_bitmap_size -
380 MAX_BITMAP_SIZE_IN_CKPT;
381 set_sb(cp_payload, F2FS_BLK_ALIGN(diff));
382 } else {
383 set_sb(cp_payload, 0);
384 }
385 } else {
386 /*
387 * It should be reserved minimum 1 segment for nat.
388 * When sit is too large, we should expand cp area.
389 * It requires more pages for cp.
390 */
391 if (max_sit_bitmap_size > MAX_SIT_BITMAP_SIZE_IN_CKPT) {
392 max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT;
393 set_sb(cp_payload, F2FS_BLK_ALIGN(max_sit_bitmap_size));
394 } else {
395 max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT -
396 max_sit_bitmap_size;
397 set_sb(cp_payload, 0);
398 }
399 max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg;
400
401 if (get_sb(segment_count_nat) > max_nat_segments)
402 set_sb(segment_count_nat, max_nat_segments);
403
404 set_sb(segment_count_nat, get_sb(segment_count_nat) * 2);
405 }
406
407 set_sb(ssa_blkaddr, get_sb(nat_blkaddr) + get_sb(segment_count_nat) *
408 c.blks_per_seg);
409
410 total_valid_blks_available = (get_sb(segment_count) -
411 (get_sb(segment_count_ckpt) +
412 get_sb(segment_count_sit) +
413 get_sb(segment_count_nat))) *
414 c.blks_per_seg;
415
416 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
417 blocks_for_ssa = 0;
418 else
419 blocks_for_ssa = total_valid_blks_available /
420 c.blks_per_seg + 1;
421
422 set_sb(segment_count_ssa, SEG_ALIGN(blocks_for_ssa));
423
424 total_meta_segments = get_sb(segment_count_ckpt) +
425 get_sb(segment_count_sit) +
426 get_sb(segment_count_nat) +
427 get_sb(segment_count_ssa);
428 diff = total_meta_segments % (c.segs_per_zone);
429 if (diff)
430 set_sb(segment_count_ssa, get_sb(segment_count_ssa) +
431 (c.segs_per_zone - diff));
432
433 total_meta_zones = ZONE_ALIGN(total_meta_segments *
434 c.blks_per_seg);
435
436 set_sb(main_blkaddr, get_sb(segment0_blkaddr) + total_meta_zones *
437 c.segs_per_zone * c.blks_per_seg);
438
439 if (c.zoned_mode) {
440 /*
441 * Make sure there is enough randomly writeable
442 * space at the beginning of the disk.
443 */
444 unsigned long main_blkzone = get_sb(main_blkaddr) / c.zone_blocks;
445
446 if (c.devices[0].zoned_model == F2FS_ZONED_HM &&
447 c.devices[0].nr_rnd_zones < main_blkzone) {
448 MSG(0, "\tError: Device does not have enough random "
449 "write zones for F2FS volume (%lu needed)\n",
450 main_blkzone);
451 return -1;
452 }
453 /*
454 * Check if conventional device has enough space
455 * to accommodate all metadata, zoned device should
456 * not overlap to metadata area.
457 */
458 for (i = 1; i < c.ndevs; i++) {
459 if (c.devices[i].zoned_model == F2FS_ZONED_HM &&
460 c.devices[i].start_blkaddr < get_sb(main_blkaddr)) {
461 MSG(0, "\tError: Conventional device %s is too small,"
462 " (%"PRIu64" MiB needed).\n", c.devices[0].path,
463 (get_sb(main_blkaddr) -
464 c.devices[i].start_blkaddr) >> 8);
465 return -1;
466 }
467 }
468 }
469
470 total_zones = get_sb(segment_count) / (c.segs_per_zone) -
471 total_meta_zones;
472
473 set_sb(section_count, total_zones * c.secs_per_zone);
474
475 set_sb(segment_count_main, get_sb(section_count) * c.segs_per_sec);
476
477 /*
478 * Let's determine the best reserved and overprovisioned space.
479 * For Zoned device, if zone capacity less than zone size, the segments
480 * starting after the zone capacity are unusable in each zone. So get
481 * overprovision ratio and reserved seg count based on avg usable
482 * segs_per_sec.
483 */
484 if (c.overprovision == 0)
485 c.overprovision = get_best_overprovision(sb);
486
487 c.reserved_segments =
488 (2 * (100 / c.overprovision + 1) + NR_CURSEG_TYPE) *
489 round_up(f2fs_get_usable_segments(sb), get_sb(section_count));
490
491 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
492 c.overprovision = 0;
493 c.reserved_segments = 0;
494 }
495 if ((!(c.feature & cpu_to_le32(F2FS_FEATURE_RO)) &&
496 c.overprovision == 0) ||
497 c.total_segments < F2FS_MIN_SEGMENTS ||
498 (c.devices[0].total_sectors *
499 c.sector_size < zone_align_start_offset) ||
500 (get_sb(segment_count_main) - NR_CURSEG_TYPE) <
501 c.reserved_segments) {
502 MSG(0, "\tError: Device size is not sufficient for F2FS volume\n");
503 return -1;
504 }
505
506 if (c.vol_uuid) {
507 if (uuid_parse(c.vol_uuid, sb->uuid)) {
508 MSG(0, "\tError: supplied string is not a valid UUID\n");
509 return -1;
510 }
511 } else {
512 uuid_generate(sb->uuid);
513 }
514
515 /* precompute checksum seed for metadata */
516 if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
517 c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid));
518
519 utf8_to_utf16(sb->volume_name, (const char *)c.vol_label,
520 MAX_VOLUME_NAME, strlen(c.vol_label));
521 set_sb(node_ino, 1);
522 set_sb(meta_ino, 2);
523 set_sb(root_ino, 3);
524 c.next_free_nid = 4;
525
526 for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
527 if (!((1 << qtype) & c.quota_bits))
528 continue;
529 sb->qf_ino[qtype] = cpu_to_le32(c.next_free_nid++);
530 MSG(0, "Info: add quota type = %u => %u\n",
531 qtype, c.next_free_nid - 1);
532 }
533
534 if (c.feature & cpu_to_le32(F2FS_FEATURE_LOST_FOUND))
535 c.lpf_ino = c.next_free_nid++;
536
537 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
538 avail_zones = 2;
539 else
540 avail_zones = 6;
541
542 if (total_zones <= avail_zones) {
543 MSG(1, "\tError: %d zones: Need more zones "
544 "by shrinking zone size\n", total_zones);
545 return -1;
546 }
547
548 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
549 c.cur_seg[CURSEG_HOT_NODE] = 0;
550 c.cur_seg[CURSEG_WARM_NODE] = 0;
551 c.cur_seg[CURSEG_COLD_NODE] = 0;
552 c.cur_seg[CURSEG_HOT_DATA] = 1;
553 c.cur_seg[CURSEG_COLD_DATA] = 0;
554 c.cur_seg[CURSEG_WARM_DATA] = 0;
555 } else if (c.heap) {
556 c.cur_seg[CURSEG_HOT_NODE] =
557 last_section(last_zone(total_zones));
558 c.cur_seg[CURSEG_WARM_NODE] = prev_zone(CURSEG_HOT_NODE);
559 c.cur_seg[CURSEG_COLD_NODE] = prev_zone(CURSEG_WARM_NODE);
560 c.cur_seg[CURSEG_HOT_DATA] = prev_zone(CURSEG_COLD_NODE);
561 c.cur_seg[CURSEG_COLD_DATA] = 0;
562 c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_COLD_DATA);
563 } else if (c.zoned_mode) {
564 c.cur_seg[CURSEG_HOT_NODE] = 0;
565 c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE);
566 c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE);
567 c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE);
568 c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_HOT_DATA);
569 c.cur_seg[CURSEG_COLD_DATA] = next_zone(CURSEG_WARM_DATA);
570 } else {
571 c.cur_seg[CURSEG_HOT_NODE] = 0;
572 c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE);
573 c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE);
574 c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE);
575 c.cur_seg[CURSEG_COLD_DATA] =
576 max(last_zone((total_zones >> 2)),
577 next_zone(CURSEG_HOT_DATA));
578 c.cur_seg[CURSEG_WARM_DATA] =
579 max(last_zone((total_zones >> 1)),
580 next_zone(CURSEG_COLD_DATA));
581 }
582
583 /* if there is redundancy, reassign it */
584 if (!(c.feature & cpu_to_le32(F2FS_FEATURE_RO)))
585 verify_cur_segs();
586
587 cure_extension_list();
588
589 /* get kernel version */
590 if (c.kd >= 0) {
591 dev_read_version(c.version, 0, VERSION_LEN);
592 get_kernel_version(c.version);
593 } else {
594 get_kernel_uname_version(c.version);
595 }
596 MSG(0, "Info: format version with\n \"%s\"\n", c.version);
597
598 memcpy(sb->version, c.version, VERSION_LEN);
599 memcpy(sb->init_version, c.version, VERSION_LEN);
600
601 if (c.feature & cpu_to_le32(F2FS_FEATURE_CASEFOLD)) {
602 set_sb(s_encoding, c.s_encoding);
603 set_sb(s_encoding_flags, c.s_encoding_flags);
604 }
605
606 sb->feature = c.feature;
607
608 if (get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) {
609 set_sb(checksum_offset, SB_CHKSUM_OFFSET);
610 set_sb(crc, f2fs_cal_crc32(F2FS_SUPER_MAGIC, sb,
611 SB_CHKSUM_OFFSET));
612 MSG(1, "Info: SB CRC is set: offset (%d), crc (0x%x)\n",
613 get_sb(checksum_offset), get_sb(crc));
614 }
615
616 return 0;
617 }
618
f2fs_init_sit_area(void)619 static int f2fs_init_sit_area(void)
620 {
621 uint32_t blk_size, seg_size;
622 uint32_t index = 0;
623 uint64_t sit_seg_addr = 0;
624 uint8_t *zero_buf = NULL;
625
626 blk_size = 1 << get_sb(log_blocksize);
627 seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size;
628
629 zero_buf = calloc(sizeof(uint8_t), seg_size);
630 if(zero_buf == NULL) {
631 MSG(1, "\tError: Calloc Failed for sit_zero_buf!!!\n");
632 return -1;
633 }
634
635 sit_seg_addr = get_sb(sit_blkaddr);
636 sit_seg_addr *= blk_size;
637
638 DBG(1, "\tFilling sit area at offset 0x%08"PRIx64"\n", sit_seg_addr);
639 for (index = 0; index < (get_sb(segment_count_sit) / 2); index++) {
640 if (dev_fill(zero_buf, sit_seg_addr, seg_size)) {
641 MSG(1, "\tError: While zeroing out the sit area "
642 "on disk!!!\n");
643 free(zero_buf);
644 return -1;
645 }
646 sit_seg_addr += seg_size;
647 }
648
649 free(zero_buf);
650 return 0 ;
651 }
652
f2fs_init_nat_area(void)653 static int f2fs_init_nat_area(void)
654 {
655 uint32_t blk_size, seg_size;
656 uint32_t index = 0;
657 uint64_t nat_seg_addr = 0;
658 uint8_t *nat_buf = NULL;
659
660 blk_size = 1 << get_sb(log_blocksize);
661 seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size;
662
663 nat_buf = calloc(sizeof(uint8_t), seg_size);
664 if (nat_buf == NULL) {
665 MSG(1, "\tError: Calloc Failed for nat_zero_blk!!!\n");
666 return -1;
667 }
668
669 nat_seg_addr = get_sb(nat_blkaddr);
670 nat_seg_addr *= blk_size;
671
672 DBG(1, "\tFilling nat area at offset 0x%08"PRIx64"\n", nat_seg_addr);
673 for (index = 0; index < get_sb(segment_count_nat) / 2; index++) {
674 if (dev_fill(nat_buf, nat_seg_addr, seg_size)) {
675 MSG(1, "\tError: While zeroing out the nat area "
676 "on disk!!!\n");
677 free(nat_buf);
678 return -1;
679 }
680 nat_seg_addr = nat_seg_addr + (2 * seg_size);
681 }
682
683 free(nat_buf);
684 return 0 ;
685 }
686
f2fs_write_check_point_pack(void)687 static int f2fs_write_check_point_pack(void)
688 {
689 struct f2fs_summary_block *sum = NULL;
690 struct f2fs_journal *journal;
691 uint32_t blk_size_bytes;
692 uint32_t nat_bits_bytes, nat_bits_blocks;
693 unsigned char *nat_bits = NULL, *empty_nat_bits;
694 uint64_t cp_seg_blk = 0;
695 uint32_t crc = 0, flags;
696 unsigned int i;
697 char *cp_payload = NULL;
698 char *sum_compact, *sum_compact_p;
699 struct f2fs_summary *sum_entry;
700 enum quota_type qtype;
701 int off;
702 int ret = -1;
703
704 cp = calloc(F2FS_BLKSIZE, 1);
705 if (cp == NULL) {
706 MSG(1, "\tError: Calloc failed for f2fs_checkpoint!!!\n");
707 return ret;
708 }
709
710 sum = calloc(F2FS_BLKSIZE, 1);
711 if (sum == NULL) {
712 MSG(1, "\tError: Calloc failed for summary_node!!!\n");
713 goto free_cp;
714 }
715
716 sum_compact = calloc(F2FS_BLKSIZE, 1);
717 if (sum_compact == NULL) {
718 MSG(1, "\tError: Calloc failed for summary buffer!!!\n");
719 goto free_sum;
720 }
721 sum_compact_p = sum_compact;
722
723 nat_bits_bytes = get_sb(segment_count_nat) << 5;
724 nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
725 F2FS_BLKSIZE - 1);
726 nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
727 if (nat_bits == NULL) {
728 MSG(1, "\tError: Calloc failed for nat bits buffer!!!\n");
729 goto free_sum_compact;
730 }
731
732 cp_payload = calloc(F2FS_BLKSIZE, 1);
733 if (cp_payload == NULL) {
734 MSG(1, "\tError: Calloc failed for cp_payload!!!\n");
735 goto free_nat_bits;
736 }
737
738 /* 1. cp page 1 of checkpoint pack 1 */
739 srand((c.fake_seed) ? 0 : time(NULL));
740 cp->checkpoint_ver = cpu_to_le64(rand() | 0x1);
741 set_cp(cur_node_segno[0], c.cur_seg[CURSEG_HOT_NODE]);
742 set_cp(cur_node_segno[1], c.cur_seg[CURSEG_WARM_NODE]);
743 set_cp(cur_node_segno[2], c.cur_seg[CURSEG_COLD_NODE]);
744 set_cp(cur_data_segno[0], c.cur_seg[CURSEG_HOT_DATA]);
745 set_cp(cur_data_segno[1], c.cur_seg[CURSEG_WARM_DATA]);
746 set_cp(cur_data_segno[2], c.cur_seg[CURSEG_COLD_DATA]);
747 for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) {
748 set_cp(cur_node_segno[i], 0xffffffff);
749 set_cp(cur_data_segno[i], 0xffffffff);
750 }
751
752 set_cp(cur_node_blkoff[0], 1 + c.quota_inum + c.lpf_inum);
753 set_cp(cur_data_blkoff[0], 1 + c.quota_dnum + c.lpf_dnum);
754 set_cp(valid_block_count, 2 + c.quota_inum + c.quota_dnum +
755 c.lpf_inum + c.lpf_dnum);
756 set_cp(rsvd_segment_count, c.reserved_segments);
757
758 /*
759 * For zoned devices, if zone capacity less than zone size, get
760 * overprovision segment count based on usable segments in the device.
761 */
762 set_cp(overprov_segment_count, (f2fs_get_usable_segments(sb) -
763 get_cp(rsvd_segment_count)) *
764 c.overprovision / 100);
765 set_cp(overprov_segment_count, get_cp(overprov_segment_count) +
766 get_cp(rsvd_segment_count));
767
768 if (f2fs_get_usable_segments(sb) <= get_cp(overprov_segment_count)) {
769 MSG(0, "\tError: Not enough segments to create F2FS Volume\n");
770 goto free_cp_payload;
771 }
772 MSG(0, "Info: Overprovision ratio = %.3lf%%\n", c.overprovision);
773 MSG(0, "Info: Overprovision segments = %u (GC reserved = %u)\n",
774 get_cp(overprov_segment_count),
775 c.reserved_segments);
776
777 /* main segments - reserved segments - (node + data segments) */
778 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
779 set_cp(free_segment_count, f2fs_get_usable_segments(sb) - 2);
780 set_cp(user_block_count, ((get_cp(free_segment_count) + 2 -
781 get_cp(overprov_segment_count)) * c.blks_per_seg));
782 } else {
783 set_cp(free_segment_count, f2fs_get_usable_segments(sb) - 6);
784 set_cp(user_block_count, ((get_cp(free_segment_count) + 6 -
785 get_cp(overprov_segment_count)) * c.blks_per_seg));
786 }
787 /* cp page (2), data summaries (1), node summaries (3) */
788 set_cp(cp_pack_total_block_count, 6 + get_sb(cp_payload));
789 flags = CP_UMOUNT_FLAG | CP_COMPACT_SUM_FLAG;
790 if (get_cp(cp_pack_total_block_count) <=
791 (1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks)
792 flags |= CP_NAT_BITS_FLAG;
793
794 if (c.trimmed)
795 flags |= CP_TRIMMED_FLAG;
796
797 if (c.large_nat_bitmap)
798 flags |= CP_LARGE_NAT_BITMAP_FLAG;
799
800 set_cp(ckpt_flags, flags);
801 set_cp(cp_pack_start_sum, 1 + get_sb(cp_payload));
802 set_cp(valid_node_count, 1 + c.quota_inum + c.lpf_inum);
803 set_cp(valid_inode_count, 1 + c.quota_inum + c.lpf_inum);
804 set_cp(next_free_nid, c.next_free_nid);
805 set_cp(sit_ver_bitmap_bytesize, ((get_sb(segment_count_sit) / 2) <<
806 get_sb(log_blocks_per_seg)) / 8);
807
808 set_cp(nat_ver_bitmap_bytesize, ((get_sb(segment_count_nat) / 2) <<
809 get_sb(log_blocks_per_seg)) / 8);
810
811 if (c.large_nat_bitmap)
812 set_cp(checksum_offset, CP_MIN_CHKSUM_OFFSET);
813 else
814 set_cp(checksum_offset, CP_CHKSUM_OFFSET);
815
816 crc = f2fs_checkpoint_chksum(cp);
817 *((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
818 cpu_to_le32(crc);
819
820 blk_size_bytes = 1 << get_sb(log_blocksize);
821
822 if (blk_size_bytes != F2FS_BLKSIZE) {
823 MSG(1, "\tError: Wrong block size %d / %d!!!\n",
824 blk_size_bytes, F2FS_BLKSIZE);
825 goto free_cp_payload;
826 }
827
828 cp_seg_blk = get_sb(segment0_blkaddr);
829
830 DBG(1, "\tWriting main segments, cp at offset 0x%08"PRIx64"\n",
831 cp_seg_blk);
832 if (dev_write_block(cp, cp_seg_blk)) {
833 MSG(1, "\tError: While writing the cp to disk!!!\n");
834 goto free_cp_payload;
835 }
836
837 for (i = 0; i < get_sb(cp_payload); i++) {
838 cp_seg_blk++;
839 if (dev_fill_block(cp_payload, cp_seg_blk)) {
840 MSG(1, "\tError: While zeroing out the sit bitmap area "
841 "on disk!!!\n");
842 goto free_cp_payload;
843 }
844 }
845
846 /* Prepare and write Segment summary for HOT/WARM/COLD DATA
847 *
848 * The structure of compact summary
849 * +-------------------+
850 * | nat_journal |
851 * +-------------------+
852 * | sit_journal |
853 * +-------------------+
854 * | hot data summary |
855 * +-------------------+
856 * | warm data summary |
857 * +-------------------+
858 * | cold data summary |
859 * +-------------------+
860 */
861 memset(sum, 0, sizeof(struct f2fs_summary_block));
862 SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
863
864 journal = &sum->journal;
865 journal->n_nats = cpu_to_le16(1 + c.quota_inum + c.lpf_inum);
866 journal->nat_j.entries[0].nid = sb->root_ino;
867 journal->nat_j.entries[0].ne.version = 0;
868 journal->nat_j.entries[0].ne.ino = sb->root_ino;
869 journal->nat_j.entries[0].ne.block_addr = cpu_to_le32(
870 get_sb(main_blkaddr) +
871 get_cp(cur_node_segno[0]) * c.blks_per_seg);
872
873 for (qtype = 0, i = 1; qtype < F2FS_MAX_QUOTAS; qtype++) {
874 if (!((1 << qtype) & c.quota_bits))
875 continue;
876 journal->nat_j.entries[i].nid = sb->qf_ino[qtype];
877 journal->nat_j.entries[i].ne.version = 0;
878 journal->nat_j.entries[i].ne.ino = sb->qf_ino[qtype];
879 journal->nat_j.entries[i].ne.block_addr = cpu_to_le32(
880 get_sb(main_blkaddr) +
881 get_cp(cur_node_segno[0]) *
882 c.blks_per_seg + i);
883 i++;
884 }
885
886 if (c.lpf_inum) {
887 journal->nat_j.entries[i].nid = cpu_to_le32(c.lpf_ino);
888 journal->nat_j.entries[i].ne.version = 0;
889 journal->nat_j.entries[i].ne.ino = cpu_to_le32(c.lpf_ino);
890 journal->nat_j.entries[i].ne.block_addr = cpu_to_le32(
891 get_sb(main_blkaddr) +
892 get_cp(cur_node_segno[0]) *
893 c.blks_per_seg + i);
894 }
895
896 memcpy(sum_compact_p, &journal->n_nats, SUM_JOURNAL_SIZE);
897 sum_compact_p += SUM_JOURNAL_SIZE;
898
899 memset(sum, 0, sizeof(struct f2fs_summary_block));
900
901 /* inode sit for root */
902 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
903 journal->n_sits = cpu_to_le16(2);
904 else
905 journal->n_sits = cpu_to_le16(6);
906
907 journal->sit_j.entries[0].segno = cp->cur_node_segno[0];
908 journal->sit_j.entries[0].se.vblocks =
909 cpu_to_le16((CURSEG_HOT_NODE << 10) |
910 (1 + c.quota_inum + c.lpf_inum));
911 f2fs_set_bit(0, (char *)journal->sit_j.entries[0].se.valid_map);
912 for (i = 1; i <= c.quota_inum; i++)
913 f2fs_set_bit(i, (char *)journal->sit_j.entries[0].se.valid_map);
914 if (c.lpf_inum)
915 f2fs_set_bit(i, (char *)journal->sit_j.entries[0].se.valid_map);
916
917 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
918 /* data sit for root */
919 journal->sit_j.entries[1].segno = cp->cur_data_segno[0];
920 journal->sit_j.entries[1].se.vblocks =
921 cpu_to_le16((CURSEG_HOT_DATA << 10) |
922 (1 + c.quota_dnum + c.lpf_dnum));
923 f2fs_set_bit(0, (char *)journal->sit_j.entries[1].se.valid_map);
924 for (i = 1; i <= c.quota_dnum; i++)
925 f2fs_set_bit(i, (char *)journal->sit_j.entries[1].se.valid_map);
926 if (c.lpf_dnum)
927 f2fs_set_bit(i, (char *)journal->sit_j.entries[1].se.valid_map);
928 } else {
929 journal->sit_j.entries[1].segno = cp->cur_node_segno[1];
930 journal->sit_j.entries[1].se.vblocks =
931 cpu_to_le16((CURSEG_WARM_NODE << 10));
932 journal->sit_j.entries[2].segno = cp->cur_node_segno[2];
933 journal->sit_j.entries[2].se.vblocks =
934 cpu_to_le16((CURSEG_COLD_NODE << 10));
935
936 /* data sit for root */
937 journal->sit_j.entries[3].segno = cp->cur_data_segno[0];
938 journal->sit_j.entries[3].se.vblocks =
939 cpu_to_le16((CURSEG_HOT_DATA << 10) |
940 (1 + c.quota_dnum + c.lpf_dnum));
941 f2fs_set_bit(0, (char *)journal->sit_j.entries[3].se.valid_map);
942 for (i = 1; i <= c.quota_dnum; i++)
943 f2fs_set_bit(i, (char *)journal->sit_j.entries[3].se.valid_map);
944 if (c.lpf_dnum)
945 f2fs_set_bit(i, (char *)journal->sit_j.entries[3].se.valid_map);
946
947 journal->sit_j.entries[4].segno = cp->cur_data_segno[1];
948 journal->sit_j.entries[4].se.vblocks =
949 cpu_to_le16((CURSEG_WARM_DATA << 10));
950 journal->sit_j.entries[5].segno = cp->cur_data_segno[2];
951 journal->sit_j.entries[5].se.vblocks =
952 cpu_to_le16((CURSEG_COLD_DATA << 10));
953 }
954
955 memcpy(sum_compact_p, &journal->n_sits, SUM_JOURNAL_SIZE);
956 sum_compact_p += SUM_JOURNAL_SIZE;
957
958 /* hot data summary */
959 sum_entry = (struct f2fs_summary *)sum_compact_p;
960 sum_entry->nid = sb->root_ino;
961 sum_entry->ofs_in_node = 0;
962
963 off = 1;
964 for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
965 int j;
966
967 if (!((1 << qtype) & c.quota_bits))
968 continue;
969
970 for (j = 0; j < QUOTA_DATA(qtype); j++) {
971 (sum_entry + off + j)->nid = sb->qf_ino[qtype];
972 (sum_entry + off + j)->ofs_in_node = cpu_to_le16(j);
973 }
974 off += QUOTA_DATA(qtype);
975 }
976
977 if (c.lpf_dnum) {
978 (sum_entry + off)->nid = cpu_to_le32(c.lpf_ino);
979 (sum_entry + off)->ofs_in_node = 0;
980 }
981
982 /* warm data summary, nothing to do */
983 /* cold data summary, nothing to do */
984
985 cp_seg_blk++;
986 DBG(1, "\tWriting Segment summary for HOT/WARM/COLD_DATA, at offset 0x%08"PRIx64"\n",
987 cp_seg_blk);
988 if (dev_write_block(sum_compact, cp_seg_blk)) {
989 MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
990 goto free_cp_payload;
991 }
992
993 /* Prepare and write Segment summary for HOT_NODE */
994 memset(sum, 0, sizeof(struct f2fs_summary_block));
995 SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
996
997 sum->entries[0].nid = sb->root_ino;
998 sum->entries[0].ofs_in_node = 0;
999 for (qtype = i = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
1000 if (!((1 << qtype) & c.quota_bits))
1001 continue;
1002 sum->entries[1 + i].nid = sb->qf_ino[qtype];
1003 sum->entries[1 + i].ofs_in_node = 0;
1004 i++;
1005 }
1006 if (c.lpf_inum) {
1007 i++;
1008 sum->entries[i].nid = cpu_to_le32(c.lpf_ino);
1009 sum->entries[i].ofs_in_node = 0;
1010 }
1011
1012 cp_seg_blk++;
1013 DBG(1, "\tWriting Segment summary for HOT_NODE, at offset 0x%08"PRIx64"\n",
1014 cp_seg_blk);
1015 if (dev_write_block(sum, cp_seg_blk)) {
1016 MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
1017 goto free_cp_payload;
1018 }
1019
1020 /* Fill segment summary for WARM_NODE to zero. */
1021 memset(sum, 0, sizeof(struct f2fs_summary_block));
1022 SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
1023
1024 cp_seg_blk++;
1025 DBG(1, "\tWriting Segment summary for WARM_NODE, at offset 0x%08"PRIx64"\n",
1026 cp_seg_blk);
1027 if (dev_write_block(sum, cp_seg_blk)) {
1028 MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
1029 goto free_cp_payload;
1030 }
1031
1032 /* Fill segment summary for COLD_NODE to zero. */
1033 memset(sum, 0, sizeof(struct f2fs_summary_block));
1034 SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
1035 cp_seg_blk++;
1036 DBG(1, "\tWriting Segment summary for COLD_NODE, at offset 0x%08"PRIx64"\n",
1037 cp_seg_blk);
1038 if (dev_write_block(sum, cp_seg_blk)) {
1039 MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
1040 goto free_cp_payload;
1041 }
1042
1043 /* cp page2 */
1044 cp_seg_blk++;
1045 DBG(1, "\tWriting cp page2, at offset 0x%08"PRIx64"\n", cp_seg_blk);
1046 if (dev_write_block(cp, cp_seg_blk)) {
1047 MSG(1, "\tError: While writing the cp to disk!!!\n");
1048 goto free_cp_payload;
1049 }
1050
1051 /* write NAT bits, if possible */
1052 if (flags & CP_NAT_BITS_FLAG) {
1053 uint32_t i;
1054
1055 *(__le64 *)nat_bits = get_cp_crc(cp);
1056 empty_nat_bits = nat_bits + 8 + nat_bits_bytes;
1057 memset(empty_nat_bits, 0xff, nat_bits_bytes);
1058 test_and_clear_bit_le(0, empty_nat_bits);
1059
1060 /* write the last blocks in cp pack */
1061 cp_seg_blk = get_sb(segment0_blkaddr) + (1 <<
1062 get_sb(log_blocks_per_seg)) - nat_bits_blocks;
1063
1064 DBG(1, "\tWriting NAT bits pages, at offset 0x%08"PRIx64"\n",
1065 cp_seg_blk);
1066
1067 for (i = 0; i < nat_bits_blocks; i++) {
1068 if (dev_write_block(nat_bits + i *
1069 F2FS_BLKSIZE, cp_seg_blk + i)) {
1070 MSG(1, "\tError: write NAT bits to disk!!!\n");
1071 goto free_cp_payload;
1072 }
1073 }
1074 }
1075
1076 /* cp page 1 of check point pack 2
1077 * Initialize other checkpoint pack with version zero
1078 */
1079 cp->checkpoint_ver = 0;
1080
1081 crc = f2fs_checkpoint_chksum(cp);
1082 *((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
1083 cpu_to_le32(crc);
1084 cp_seg_blk = get_sb(segment0_blkaddr) + c.blks_per_seg;
1085 DBG(1, "\tWriting cp page 1 of checkpoint pack 2, at offset 0x%08"PRIx64"\n",
1086 cp_seg_blk);
1087 if (dev_write_block(cp, cp_seg_blk)) {
1088 MSG(1, "\tError: While writing the cp to disk!!!\n");
1089 goto free_cp_payload;
1090 }
1091
1092 for (i = 0; i < get_sb(cp_payload); i++) {
1093 cp_seg_blk++;
1094 if (dev_fill_block(cp_payload, cp_seg_blk)) {
1095 MSG(1, "\tError: While zeroing out the sit bitmap area "
1096 "on disk!!!\n");
1097 goto free_cp_payload;
1098 }
1099 }
1100
1101 /* cp page 2 of check point pack 2 */
1102 cp_seg_blk += (le32_to_cpu(cp->cp_pack_total_block_count) -
1103 get_sb(cp_payload) - 1);
1104 DBG(1, "\tWriting cp page 2 of checkpoint pack 2, at offset 0x%08"PRIx64"\n",
1105 cp_seg_blk);
1106 if (dev_write_block(cp, cp_seg_blk)) {
1107 MSG(1, "\tError: While writing the cp to disk!!!\n");
1108 goto free_cp_payload;
1109 }
1110
1111 ret = 0;
1112
1113 free_cp_payload:
1114 free(cp_payload);
1115 free_nat_bits:
1116 free(nat_bits);
1117 free_sum_compact:
1118 free(sum_compact);
1119 free_sum:
1120 free(sum);
1121 free_cp:
1122 free(cp);
1123 return ret;
1124 }
1125
f2fs_write_super_block(void)1126 static int f2fs_write_super_block(void)
1127 {
1128 int index;
1129 uint8_t *zero_buff;
1130
1131 zero_buff = calloc(F2FS_BLKSIZE, 1);
1132 if (zero_buff == NULL) {
1133 MSG(1, "\tError: Calloc Failed for super_blk_zero_buf!!!\n");
1134 return -1;
1135 }
1136
1137 memcpy(zero_buff + F2FS_SUPER_OFFSET, sb, sizeof(*sb));
1138 DBG(1, "\tWriting super block, at offset 0x%08x\n", 0);
1139 for (index = 0; index < 2; index++) {
1140 if (dev_write_block(zero_buff, index)) {
1141 MSG(1, "\tError: While while writing super_blk "
1142 "on disk!!! index : %d\n", index);
1143 free(zero_buff);
1144 return -1;
1145 }
1146 }
1147
1148 free(zero_buff);
1149 return 0;
1150 }
1151
1152 #ifndef WITH_ANDROID
f2fs_discard_obsolete_dnode(void)1153 static int f2fs_discard_obsolete_dnode(void)
1154 {
1155 struct f2fs_node *raw_node;
1156 uint64_t next_blkaddr = 0, offset;
1157 u64 end_blkaddr = (get_sb(segment_count_main) <<
1158 get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr);
1159 uint64_t start_inode_pos = get_sb(main_blkaddr);
1160 uint64_t last_inode_pos;
1161
1162 if (c.zoned_mode || c.feature & cpu_to_le32(F2FS_FEATURE_RO))
1163 return 0;
1164
1165 raw_node = calloc(sizeof(struct f2fs_node), 1);
1166 if (raw_node == NULL) {
1167 MSG(1, "\tError: Calloc Failed for discard_raw_node!!!\n");
1168 return -1;
1169 }
1170
1171 /* avoid power-off-recovery based on roll-forward policy */
1172 offset = get_sb(main_blkaddr);
1173 offset += c.cur_seg[CURSEG_WARM_NODE] * c.blks_per_seg;
1174
1175 last_inode_pos = start_inode_pos +
1176 c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg + c.quota_inum + c.lpf_inum;
1177
1178 do {
1179 if (offset < get_sb(main_blkaddr) || offset >= end_blkaddr)
1180 break;
1181
1182 if (dev_read_block(raw_node, offset)) {
1183 MSG(1, "\tError: While traversing direct node!!!\n");
1184 free(raw_node);
1185 return -1;
1186 }
1187
1188 next_blkaddr = le32_to_cpu(raw_node->footer.next_blkaddr);
1189 memset(raw_node, 0, F2FS_BLKSIZE);
1190
1191 DBG(1, "\tDiscard dnode, at offset 0x%08"PRIx64"\n", offset);
1192 if (dev_write_block(raw_node, offset)) {
1193 MSG(1, "\tError: While discarding direct node!!!\n");
1194 free(raw_node);
1195 return -1;
1196 }
1197 offset = next_blkaddr;
1198 /* should avoid recursive chain due to stale data */
1199 if (offset >= start_inode_pos || offset <= last_inode_pos)
1200 break;
1201 } while (1);
1202
1203 free(raw_node);
1204 return 0;
1205 }
1206 #endif
1207
f2fs_write_root_inode(void)1208 static int f2fs_write_root_inode(void)
1209 {
1210 struct f2fs_node *raw_node = NULL;
1211 uint64_t blk_size_bytes, data_blk_nor;
1212 uint64_t main_area_node_seg_blk_offset = 0;
1213
1214 raw_node = calloc(F2FS_BLKSIZE, 1);
1215 if (raw_node == NULL) {
1216 MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
1217 return -1;
1218 }
1219
1220 raw_node->footer.nid = sb->root_ino;
1221 raw_node->footer.ino = sb->root_ino;
1222 raw_node->footer.cp_ver = cpu_to_le64(1);
1223 raw_node->footer.next_blkaddr = cpu_to_le32(
1224 get_sb(main_blkaddr) +
1225 c.cur_seg[CURSEG_HOT_NODE] *
1226 c.blks_per_seg + 1);
1227
1228 raw_node->i.i_mode = cpu_to_le16(0x41ed);
1229 if (c.lpf_ino)
1230 raw_node->i.i_links = cpu_to_le32(3);
1231 else
1232 raw_node->i.i_links = cpu_to_le32(2);
1233 raw_node->i.i_uid = cpu_to_le32(c.root_uid);
1234 raw_node->i.i_gid = cpu_to_le32(c.root_gid);
1235
1236 blk_size_bytes = 1 << get_sb(log_blocksize);
1237 raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes); /* dentry */
1238 raw_node->i.i_blocks = cpu_to_le64(2);
1239
1240 raw_node->i.i_atime = cpu_to_le32(mkfs_time);
1241 raw_node->i.i_atime_nsec = 0;
1242 raw_node->i.i_ctime = cpu_to_le32(mkfs_time);
1243 raw_node->i.i_ctime_nsec = 0;
1244 raw_node->i.i_mtime = cpu_to_le32(mkfs_time);
1245 raw_node->i.i_mtime_nsec = 0;
1246 raw_node->i.i_generation = 0;
1247 raw_node->i.i_xattr_nid = 0;
1248 raw_node->i.i_flags = 0;
1249 raw_node->i.i_current_depth = cpu_to_le32(1);
1250 raw_node->i.i_dir_level = DEF_DIR_LEVEL;
1251
1252 if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
1253 raw_node->i.i_inline = F2FS_EXTRA_ATTR;
1254 raw_node->i.i_extra_isize = cpu_to_le16(calc_extra_isize());
1255 }
1256
1257 if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
1258 raw_node->i.i_projid = cpu_to_le32(F2FS_DEF_PROJID);
1259
1260 if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
1261 raw_node->i.i_crtime = cpu_to_le32(mkfs_time);
1262 raw_node->i.i_crtime_nsec = 0;
1263 }
1264
1265 if (c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION)) {
1266 raw_node->i.i_compress_algrithm = 0;
1267 raw_node->i.i_log_cluster_size = 0;
1268 raw_node->i.i_padding = 0;
1269 }
1270
1271 data_blk_nor = get_sb(main_blkaddr) +
1272 c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg;
1273 raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blk_nor);
1274
1275 raw_node->i.i_ext.fofs = 0;
1276 raw_node->i.i_ext.blk_addr = 0;
1277 raw_node->i.i_ext.len = 0;
1278
1279 main_area_node_seg_blk_offset = get_sb(main_blkaddr);
1280 main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] *
1281 c.blks_per_seg;
1282
1283 DBG(1, "\tWriting root inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n",
1284 get_sb(main_blkaddr),
1285 c.cur_seg[CURSEG_HOT_NODE],
1286 c.blks_per_seg, main_area_node_seg_blk_offset);
1287 if (write_inode(raw_node, main_area_node_seg_blk_offset) < 0) {
1288 MSG(1, "\tError: While writing the raw_node to disk!!!\n");
1289 free(raw_node);
1290 return -1;
1291 }
1292
1293 free(raw_node);
1294 return 0;
1295 }
1296
f2fs_write_default_quota(int qtype,unsigned int blkaddr,__le32 raw_id)1297 static int f2fs_write_default_quota(int qtype, unsigned int blkaddr,
1298 __le32 raw_id)
1299 {
1300 char *filebuf = calloc(F2FS_BLKSIZE, 2);
1301 int file_magics[] = INITQMAGICS;
1302 struct v2_disk_dqheader ddqheader;
1303 struct v2_disk_dqinfo ddqinfo;
1304 struct v2r1_disk_dqblk dqblk;
1305
1306 if (filebuf == NULL) {
1307 MSG(1, "\tError: Calloc Failed for filebuf!!!\n");
1308 return -1;
1309 }
1310
1311 /* Write basic quota header */
1312 ddqheader.dqh_magic = cpu_to_le32(file_magics[qtype]);
1313 /* only support QF_VFSV1 */
1314 ddqheader.dqh_version = cpu_to_le32(1);
1315
1316 memcpy(filebuf, &ddqheader, sizeof(ddqheader));
1317
1318 /* Fill Initial quota file content */
1319 ddqinfo.dqi_bgrace = cpu_to_le32(MAX_DQ_TIME);
1320 ddqinfo.dqi_igrace = cpu_to_le32(MAX_IQ_TIME);
1321 ddqinfo.dqi_flags = cpu_to_le32(0);
1322 ddqinfo.dqi_blocks = cpu_to_le32(QT_TREEOFF + 5);
1323 ddqinfo.dqi_free_blk = cpu_to_le32(0);
1324 ddqinfo.dqi_free_entry = cpu_to_le32(5);
1325
1326 memcpy(filebuf + V2_DQINFOOFF, &ddqinfo, sizeof(ddqinfo));
1327
1328 filebuf[1024] = 2;
1329 filebuf[2048] = 3;
1330 filebuf[3072] = 4;
1331 filebuf[4096] = 5;
1332
1333 filebuf[5120 + 8] = 1;
1334
1335 dqblk.dqb_id = raw_id;
1336 dqblk.dqb_pad = cpu_to_le32(0);
1337 dqblk.dqb_ihardlimit = cpu_to_le64(0);
1338 dqblk.dqb_isoftlimit = cpu_to_le64(0);
1339 if (c.lpf_ino)
1340 dqblk.dqb_curinodes = cpu_to_le64(2);
1341 else
1342 dqblk.dqb_curinodes = cpu_to_le64(1);
1343 dqblk.dqb_bhardlimit = cpu_to_le64(0);
1344 dqblk.dqb_bsoftlimit = cpu_to_le64(0);
1345 if (c.lpf_ino)
1346 dqblk.dqb_curspace = cpu_to_le64(8192);
1347 else
1348 dqblk.dqb_curspace = cpu_to_le64(4096);
1349 dqblk.dqb_btime = cpu_to_le64(0);
1350 dqblk.dqb_itime = cpu_to_le64(0);
1351
1352 memcpy(filebuf + 5136, &dqblk, sizeof(struct v2r1_disk_dqblk));
1353
1354 /* Write two blocks */
1355 if (dev_write_block(filebuf, blkaddr) ||
1356 dev_write_block(filebuf + F2FS_BLKSIZE, blkaddr + 1)) {
1357 MSG(1, "\tError: While writing the quota_blk to disk!!!\n");
1358 free(filebuf);
1359 return -1;
1360 }
1361 DBG(1, "\tWriting quota data, at offset %08x, %08x\n",
1362 blkaddr, blkaddr + 1);
1363 free(filebuf);
1364 c.quota_dnum += QUOTA_DATA(qtype);
1365 return 0;
1366 }
1367
f2fs_write_qf_inode(int qtype,int offset)1368 static int f2fs_write_qf_inode(int qtype, int offset)
1369 {
1370 struct f2fs_node *raw_node = NULL;
1371 uint64_t data_blk_nor;
1372 uint64_t main_area_node_seg_blk_offset = 0;
1373 __le32 raw_id;
1374 int i;
1375
1376 raw_node = calloc(F2FS_BLKSIZE, 1);
1377 if (raw_node == NULL) {
1378 MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
1379 return -1;
1380 }
1381 f2fs_init_qf_inode(sb, raw_node, qtype, mkfs_time);
1382
1383 raw_node->footer.next_blkaddr = cpu_to_le32(
1384 get_sb(main_blkaddr) +
1385 c.cur_seg[CURSEG_HOT_NODE] *
1386 c.blks_per_seg + 1 + qtype + 1);
1387 raw_node->i.i_blocks = cpu_to_le64(1 + QUOTA_DATA(qtype));
1388
1389 data_blk_nor = get_sb(main_blkaddr) +
1390 c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg + 1
1391 + offset * QUOTA_DATA(i);
1392
1393 if (qtype == 0)
1394 raw_id = raw_node->i.i_uid;
1395 else if (qtype == 1)
1396 raw_id = raw_node->i.i_gid;
1397 else if (qtype == 2)
1398 raw_id = raw_node->i.i_projid;
1399 else
1400 ASSERT(0);
1401
1402 /* write two blocks */
1403 if (f2fs_write_default_quota(qtype, data_blk_nor, raw_id)) {
1404 free(raw_node);
1405 return -1;
1406 }
1407
1408 for (i = 0; i < QUOTA_DATA(qtype); i++)
1409 raw_node->i.i_addr[get_extra_isize(raw_node) + i] =
1410 cpu_to_le32(data_blk_nor + i);
1411
1412 main_area_node_seg_blk_offset = get_sb(main_blkaddr);
1413 main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] *
1414 c.blks_per_seg + offset + 1;
1415
1416 DBG(1, "\tWriting quota inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n",
1417 get_sb(main_blkaddr),
1418 c.cur_seg[CURSEG_HOT_NODE],
1419 c.blks_per_seg, main_area_node_seg_blk_offset);
1420 if (write_inode(raw_node, main_area_node_seg_blk_offset) < 0) {
1421 MSG(1, "\tError: While writing the raw_node to disk!!!\n");
1422 free(raw_node);
1423 return -1;
1424 }
1425
1426 free(raw_node);
1427 c.quota_inum++;
1428 return 0;
1429 }
1430
f2fs_update_nat_root(void)1431 static int f2fs_update_nat_root(void)
1432 {
1433 struct f2fs_nat_block *nat_blk = NULL;
1434 uint64_t nat_seg_blk_offset = 0;
1435 enum quota_type qtype;
1436 int i;
1437
1438 nat_blk = calloc(F2FS_BLKSIZE, 1);
1439 if(nat_blk == NULL) {
1440 MSG(1, "\tError: Calloc Failed for nat_blk!!!\n");
1441 return -1;
1442 }
1443
1444 /* update quota */
1445 for (qtype = i = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
1446 if (!((1 << qtype) & c.quota_bits))
1447 continue;
1448 nat_blk->entries[sb->qf_ino[qtype]].block_addr =
1449 cpu_to_le32(get_sb(main_blkaddr) +
1450 c.cur_seg[CURSEG_HOT_NODE] *
1451 c.blks_per_seg + i + 1);
1452 nat_blk->entries[sb->qf_ino[qtype]].ino = sb->qf_ino[qtype];
1453 i++;
1454 }
1455
1456 /* update root */
1457 nat_blk->entries[get_sb(root_ino)].block_addr = cpu_to_le32(
1458 get_sb(main_blkaddr) +
1459 c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg);
1460 nat_blk->entries[get_sb(root_ino)].ino = sb->root_ino;
1461
1462 /* update node nat */
1463 nat_blk->entries[get_sb(node_ino)].block_addr = cpu_to_le32(1);
1464 nat_blk->entries[get_sb(node_ino)].ino = sb->node_ino;
1465
1466 /* update meta nat */
1467 nat_blk->entries[get_sb(meta_ino)].block_addr = cpu_to_le32(1);
1468 nat_blk->entries[get_sb(meta_ino)].ino = sb->meta_ino;
1469
1470 nat_seg_blk_offset = get_sb(nat_blkaddr);
1471
1472 DBG(1, "\tWriting nat root, at offset 0x%08"PRIx64"\n",
1473 nat_seg_blk_offset);
1474 if (dev_write_block(nat_blk, nat_seg_blk_offset)) {
1475 MSG(1, "\tError: While writing the nat_blk set0 to disk!\n");
1476 free(nat_blk);
1477 return -1;
1478 }
1479
1480 free(nat_blk);
1481 return 0;
1482 }
1483
f2fs_add_default_dentry_lpf(void)1484 static block_t f2fs_add_default_dentry_lpf(void)
1485 {
1486 struct f2fs_dentry_block *dent_blk;
1487 uint64_t data_blk_offset;
1488
1489 dent_blk = calloc(F2FS_BLKSIZE, 1);
1490 if (dent_blk == NULL) {
1491 MSG(1, "\tError: Calloc Failed for dent_blk!!!\n");
1492 return 0;
1493 }
1494
1495 dent_blk->dentry[0].hash_code = 0;
1496 dent_blk->dentry[0].ino = cpu_to_le32(c.lpf_ino);
1497 dent_blk->dentry[0].name_len = cpu_to_le16(1);
1498 dent_blk->dentry[0].file_type = F2FS_FT_DIR;
1499 memcpy(dent_blk->filename[0], ".", 1);
1500
1501 dent_blk->dentry[1].hash_code = 0;
1502 dent_blk->dentry[1].ino = sb->root_ino;
1503 dent_blk->dentry[1].name_len = cpu_to_le16(2);
1504 dent_blk->dentry[1].file_type = F2FS_FT_DIR;
1505 memcpy(dent_blk->filename[1], "..", 2);
1506
1507 test_and_set_bit_le(0, dent_blk->dentry_bitmap);
1508 test_and_set_bit_le(1, dent_blk->dentry_bitmap);
1509
1510 data_blk_offset = get_sb(main_blkaddr);
1511 data_blk_offset += c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg +
1512 1 + c.quota_dnum;
1513
1514 DBG(1, "\tWriting default dentry lost+found, at offset 0x%08"PRIx64"\n",
1515 data_blk_offset);
1516 if (dev_write_block(dent_blk, data_blk_offset)) {
1517 MSG(1, "\tError While writing the dentry_blk to disk!!!\n");
1518 free(dent_blk);
1519 return 0;
1520 }
1521
1522 free(dent_blk);
1523 c.lpf_dnum++;
1524 return data_blk_offset;
1525 }
1526
f2fs_write_lpf_inode(void)1527 static int f2fs_write_lpf_inode(void)
1528 {
1529 struct f2fs_node *raw_node;
1530 uint64_t blk_size_bytes, main_area_node_seg_blk_offset;
1531 block_t data_blk_nor;
1532 int err = 0;
1533
1534 ASSERT(c.lpf_ino);
1535
1536 raw_node = calloc(F2FS_BLKSIZE, 1);
1537 if (raw_node == NULL) {
1538 MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
1539 return -1;
1540 }
1541
1542 raw_node->footer.nid = cpu_to_le32(c.lpf_ino);
1543 raw_node->footer.ino = raw_node->footer.nid;
1544 raw_node->footer.cp_ver = cpu_to_le64(1);
1545 raw_node->footer.next_blkaddr = cpu_to_le32(
1546 get_sb(main_blkaddr) +
1547 c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg +
1548 1 + c.quota_inum + 1);
1549
1550 raw_node->i.i_mode = cpu_to_le16(0x41c0); /* 0700 */
1551 raw_node->i.i_links = cpu_to_le32(2);
1552 raw_node->i.i_uid = cpu_to_le32(c.root_uid);
1553 raw_node->i.i_gid = cpu_to_le32(c.root_gid);
1554
1555 blk_size_bytes = 1 << get_sb(log_blocksize);
1556 raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes);
1557 raw_node->i.i_blocks = cpu_to_le64(2);
1558
1559 raw_node->i.i_atime = cpu_to_le32(mkfs_time);
1560 raw_node->i.i_atime_nsec = 0;
1561 raw_node->i.i_ctime = cpu_to_le32(mkfs_time);
1562 raw_node->i.i_ctime_nsec = 0;
1563 raw_node->i.i_mtime = cpu_to_le32(mkfs_time);
1564 raw_node->i.i_mtime_nsec = 0;
1565 raw_node->i.i_generation = 0;
1566 raw_node->i.i_xattr_nid = 0;
1567 raw_node->i.i_flags = 0;
1568 raw_node->i.i_pino = le32_to_cpu(sb->root_ino);
1569 raw_node->i.i_namelen = le32_to_cpu(strlen(LPF));
1570 memcpy(raw_node->i.i_name, LPF, strlen(LPF));
1571 raw_node->i.i_current_depth = cpu_to_le32(1);
1572 raw_node->i.i_dir_level = DEF_DIR_LEVEL;
1573
1574 if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
1575 raw_node->i.i_inline = F2FS_EXTRA_ATTR;
1576 raw_node->i.i_extra_isize = cpu_to_le16(calc_extra_isize());
1577 }
1578
1579 if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
1580 raw_node->i.i_projid = cpu_to_le32(F2FS_DEF_PROJID);
1581
1582 if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
1583 raw_node->i.i_crtime = cpu_to_le32(mkfs_time);
1584 raw_node->i.i_crtime_nsec = 0;
1585 }
1586
1587 if (c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION)) {
1588 raw_node->i.i_compress_algrithm = 0;
1589 raw_node->i.i_log_cluster_size = 0;
1590 raw_node->i.i_padding = 0;
1591 }
1592
1593 data_blk_nor = f2fs_add_default_dentry_lpf();
1594 if (data_blk_nor == 0) {
1595 MSG(1, "\tError: Failed to add default dentries for lost+found!!!\n");
1596 err = -1;
1597 goto exit;
1598 }
1599 raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blk_nor);
1600
1601 main_area_node_seg_blk_offset = get_sb(main_blkaddr);
1602 main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] *
1603 c.blks_per_seg + c.quota_inum + 1;
1604
1605 DBG(1, "\tWriting lost+found inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n",
1606 get_sb(main_blkaddr),
1607 c.cur_seg[CURSEG_HOT_NODE],
1608 c.blks_per_seg, main_area_node_seg_blk_offset);
1609 if (write_inode(raw_node, main_area_node_seg_blk_offset) < 0) {
1610 MSG(1, "\tError: While writing the raw_node to disk!!!\n");
1611 err = -1;
1612 goto exit;
1613 }
1614
1615 c.lpf_inum++;
1616 exit:
1617 free(raw_node);
1618 return err;
1619 }
1620
f2fs_add_default_dentry_root(void)1621 static int f2fs_add_default_dentry_root(void)
1622 {
1623 struct f2fs_dentry_block *dent_blk = NULL;
1624 uint64_t data_blk_offset = 0;
1625
1626 dent_blk = calloc(F2FS_BLKSIZE, 1);
1627 if(dent_blk == NULL) {
1628 MSG(1, "\tError: Calloc Failed for dent_blk!!!\n");
1629 return -1;
1630 }
1631
1632 dent_blk->dentry[0].hash_code = 0;
1633 dent_blk->dentry[0].ino = sb->root_ino;
1634 dent_blk->dentry[0].name_len = cpu_to_le16(1);
1635 dent_blk->dentry[0].file_type = F2FS_FT_DIR;
1636 memcpy(dent_blk->filename[0], ".", 1);
1637
1638 dent_blk->dentry[1].hash_code = 0;
1639 dent_blk->dentry[1].ino = sb->root_ino;
1640 dent_blk->dentry[1].name_len = cpu_to_le16(2);
1641 dent_blk->dentry[1].file_type = F2FS_FT_DIR;
1642 memcpy(dent_blk->filename[1], "..", 2);
1643
1644 /* bitmap for . and .. */
1645 test_and_set_bit_le(0, dent_blk->dentry_bitmap);
1646 test_and_set_bit_le(1, dent_blk->dentry_bitmap);
1647
1648 if (c.lpf_ino) {
1649 int len = strlen(LPF);
1650 f2fs_hash_t hash = f2fs_dentry_hash(0, 0, (unsigned char *)LPF, len);
1651
1652 dent_blk->dentry[2].hash_code = cpu_to_le32(hash);
1653 dent_blk->dentry[2].ino = cpu_to_le32(c.lpf_ino);
1654 dent_blk->dentry[2].name_len = cpu_to_le16(len);
1655 dent_blk->dentry[2].file_type = F2FS_FT_DIR;
1656 memcpy(dent_blk->filename[2], LPF, F2FS_SLOT_LEN);
1657
1658 memcpy(dent_blk->filename[3], &LPF[F2FS_SLOT_LEN],
1659 len - F2FS_SLOT_LEN);
1660
1661 test_and_set_bit_le(2, dent_blk->dentry_bitmap);
1662 test_and_set_bit_le(3, dent_blk->dentry_bitmap);
1663 }
1664
1665 data_blk_offset = get_sb(main_blkaddr);
1666 data_blk_offset += c.cur_seg[CURSEG_HOT_DATA] *
1667 c.blks_per_seg;
1668
1669 DBG(1, "\tWriting default dentry root, at offset 0x%08"PRIx64"\n",
1670 data_blk_offset);
1671 if (dev_write_block(dent_blk, data_blk_offset)) {
1672 MSG(1, "\tError: While writing the dentry_blk to disk!!!\n");
1673 free(dent_blk);
1674 return -1;
1675 }
1676
1677 free(dent_blk);
1678 return 0;
1679 }
1680
f2fs_create_root_dir(void)1681 static int f2fs_create_root_dir(void)
1682 {
1683 enum quota_type qtype;
1684 int err = 0, i = 0;
1685
1686 err = f2fs_write_root_inode();
1687 if (err < 0) {
1688 MSG(1, "\tError: Failed to write root inode!!!\n");
1689 goto exit;
1690 }
1691
1692 for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
1693 if (!((1 << qtype) & c.quota_bits))
1694 continue;
1695 err = f2fs_write_qf_inode(qtype, i++);
1696 if (err < 0) {
1697 MSG(1, "\tError: Failed to write quota inode!!!\n");
1698 goto exit;
1699 }
1700 }
1701
1702 if (c.feature & cpu_to_le32(F2FS_FEATURE_LOST_FOUND)) {
1703 err = f2fs_write_lpf_inode();
1704 if (err < 0) {
1705 MSG(1, "\tError: Failed to write lost+found inode!!!\n");
1706 goto exit;
1707 }
1708 }
1709
1710 #ifndef WITH_ANDROID
1711 err = f2fs_discard_obsolete_dnode();
1712 if (err < 0) {
1713 MSG(1, "\tError: Failed to discard obsolete dnode!!!\n");
1714 goto exit;
1715 }
1716 #endif
1717
1718 err = f2fs_update_nat_root();
1719 if (err < 0) {
1720 MSG(1, "\tError: Failed to update NAT for root!!!\n");
1721 goto exit;
1722 }
1723
1724 err = f2fs_add_default_dentry_root();
1725 if (err < 0) {
1726 MSG(1, "\tError: Failed to add default dentries for root!!!\n");
1727 goto exit;
1728 }
1729 exit:
1730 if (err)
1731 MSG(1, "\tError: Could not create the root directory!!!\n");
1732
1733 return err;
1734 }
1735
f2fs_format_device(void)1736 int f2fs_format_device(void)
1737 {
1738 int err = 0;
1739
1740 err= f2fs_prepare_super_block();
1741 if (err < 0) {
1742 MSG(0, "\tError: Failed to prepare a super block!!!\n");
1743 goto exit;
1744 }
1745
1746 if (c.trim) {
1747 err = f2fs_trim_devices();
1748 if (err < 0) {
1749 MSG(0, "\tError: Failed to trim whole device!!!\n");
1750 goto exit;
1751 }
1752 }
1753
1754 err = f2fs_init_sit_area();
1755 if (err < 0) {
1756 MSG(0, "\tError: Failed to initialise the SIT AREA!!!\n");
1757 goto exit;
1758 }
1759
1760 err = f2fs_init_nat_area();
1761 if (err < 0) {
1762 MSG(0, "\tError: Failed to initialise the NAT AREA!!!\n");
1763 goto exit;
1764 }
1765
1766 err = f2fs_create_root_dir();
1767 if (err < 0) {
1768 MSG(0, "\tError: Failed to create the root directory!!!\n");
1769 goto exit;
1770 }
1771
1772 err = f2fs_write_check_point_pack();
1773 if (err < 0) {
1774 MSG(0, "\tError: Failed to write the check point pack!!!\n");
1775 goto exit;
1776 }
1777
1778 err = f2fs_write_super_block();
1779 if (err < 0) {
1780 MSG(0, "\tError: Failed to write the super block!!!\n");
1781 goto exit;
1782 }
1783 exit:
1784 if (err)
1785 MSG(0, "\tError: Could not format the device!!!\n");
1786
1787 return err;
1788 }
1789