• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014-2015 Broadcom
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "nir.h"
25 #include "nir_builder.h"
26 
27 struct alu_width_data {
28    nir_vectorize_cb cb;
29    const void *data;
30 };
31 
32 /** @file nir_lower_alu_width.c
33  *
34  * Replaces nir_alu_instr operations with more than one channel used in the
35  * arguments with individual per-channel operations.
36  *
37  * Optionally, a callback function which returns the max vectorization width
38  * per instruction can be provided.
39  *
40  * The max vectorization width must be a power of 2.
41  */
42 
43 static bool
inst_is_vector_alu(const nir_instr * instr,const void * _state)44 inst_is_vector_alu(const nir_instr *instr, const void *_state)
45 {
46    if (instr->type != nir_instr_type_alu)
47       return false;
48 
49    nir_alu_instr *alu = nir_instr_as_alu(instr);
50 
51    /* There is no ALU instruction which has a scalar destination, scalar
52     * src[0], and some other vector source.
53     */
54    assert(alu->dest.dest.is_ssa);
55    assert(alu->src[0].src.is_ssa);
56    return alu->dest.dest.ssa.num_components > 1 ||
57           nir_op_infos[alu->op].input_sizes[0] > 1;
58 }
59 
60 /* Checks whether all operands of an ALU instruction are swizzled
61  * within the targeted vectorization width.
62  *
63  * The assumption here is that a vecN instruction can only swizzle
64  * within the first N channels of the values it consumes, irrespective
65  * of the capabilities of the instruction which produced those values.
66  * If we assume values are packed consistently (i.e., they always start
67  * at the beginning of a hardware register), we can actually access any
68  * aligned group of N channels so long as we stay within the group.
69  * This means for a vectorization width of 4 that only swizzles from
70  * either [xyzw] or [abcd] etc are allowed.  For a width of 2 these are
71  * swizzles from either [xy] or [zw] etc.
72  */
73 static bool
alu_is_swizzled_in_bounds(const nir_alu_instr * alu,unsigned width)74 alu_is_swizzled_in_bounds(const nir_alu_instr *alu, unsigned width)
75 {
76    for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
77       if (nir_op_infos[alu->op].input_sizes[i] == 1)
78          continue;
79 
80       unsigned mask = ~(width - 1);
81       for (unsigned j = 1; j < alu->dest.dest.ssa.num_components; j++) {
82          if ((alu->src[i].swizzle[0] & mask) != (alu->src[i].swizzle[j] & mask))
83             return false;
84       }
85    }
86 
87    return true;
88 }
89 
90 static void
nir_alu_ssa_dest_init(nir_alu_instr * alu,unsigned num_components,unsigned bit_size)91 nir_alu_ssa_dest_init(nir_alu_instr *alu, unsigned num_components,
92                       unsigned bit_size)
93 {
94    nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components,
95                      bit_size, NULL);
96    alu->dest.write_mask = (1 << num_components) - 1;
97 }
98 
99 static nir_ssa_def *
lower_reduction(nir_alu_instr * alu,nir_op chan_op,nir_op merge_op,nir_builder * builder)100 lower_reduction(nir_alu_instr *alu, nir_op chan_op, nir_op merge_op,
101                 nir_builder *builder)
102 {
103    unsigned num_components = nir_op_infos[alu->op].input_sizes[0];
104 
105    nir_ssa_def *last = NULL;
106    for (int i = num_components - 1; i >= 0; i--) {
107       nir_alu_instr *chan = nir_alu_instr_create(builder->shader, chan_op);
108       nir_alu_ssa_dest_init(chan, 1, alu->dest.dest.ssa.bit_size);
109       nir_alu_src_copy(&chan->src[0], &alu->src[0]);
110       chan->src[0].swizzle[0] = chan->src[0].swizzle[i];
111       if (nir_op_infos[chan_op].num_inputs > 1) {
112          assert(nir_op_infos[chan_op].num_inputs == 2);
113          nir_alu_src_copy(&chan->src[1], &alu->src[1]);
114          chan->src[1].swizzle[0] = chan->src[1].swizzle[i];
115       }
116       chan->exact = alu->exact;
117 
118       nir_builder_instr_insert(builder, &chan->instr);
119 
120       if (i == num_components - 1) {
121          last = &chan->dest.dest.ssa;
122       } else {
123          last = nir_build_alu(builder, merge_op,
124                               last, &chan->dest.dest.ssa, NULL, NULL);
125       }
126    }
127 
128    return last;
129 }
130 
131 static inline bool
will_lower_ffma(nir_shader * shader,unsigned bit_size)132 will_lower_ffma(nir_shader *shader, unsigned bit_size)
133 {
134    switch (bit_size) {
135    case 16:
136       return shader->options->lower_ffma16;
137    case 32:
138       return shader->options->lower_ffma32;
139    case 64:
140       return shader->options->lower_ffma64;
141    }
142    unreachable("bad bit size");
143 }
144 
145 static nir_ssa_def *
lower_fdot(nir_alu_instr * alu,nir_builder * builder)146 lower_fdot(nir_alu_instr *alu, nir_builder *builder)
147 {
148    /* If we don't want to lower ffma, create several ffma instead of fmul+fadd
149     * and fusing later because fusing is not possible for exact fdot instructions.
150     */
151    if (will_lower_ffma(builder->shader, alu->dest.dest.ssa.bit_size))
152       return lower_reduction(alu, nir_op_fmul, nir_op_fadd, builder);
153 
154    unsigned num_components = nir_op_infos[alu->op].input_sizes[0];
155 
156    nir_ssa_def *prev = NULL;
157    for (int i = num_components - 1; i >= 0; i--) {
158       nir_alu_instr *instr = nir_alu_instr_create(
159          builder->shader, prev ? nir_op_ffma : nir_op_fmul);
160       nir_alu_ssa_dest_init(instr, 1, alu->dest.dest.ssa.bit_size);
161       for (unsigned j = 0; j < 2; j++) {
162          nir_alu_src_copy(&instr->src[j], &alu->src[j]);
163          instr->src[j].swizzle[0] = alu->src[j].swizzle[i];
164       }
165       if (i != num_components - 1)
166          instr->src[2].src = nir_src_for_ssa(prev);
167       instr->exact = builder->exact;
168 
169       nir_builder_instr_insert(builder, &instr->instr);
170 
171       prev = &instr->dest.dest.ssa;
172    }
173 
174    return prev;
175 }
176 
177 static nir_ssa_def *
lower_alu_instr_width(nir_builder * b,nir_instr * instr,void * _data)178 lower_alu_instr_width(nir_builder *b, nir_instr *instr, void *_data)
179 {
180    struct alu_width_data *data = _data;
181    nir_alu_instr *alu = nir_instr_as_alu(instr);
182    unsigned num_src = nir_op_infos[alu->op].num_inputs;
183    unsigned i, chan;
184 
185    assert(alu->dest.dest.is_ssa);
186    assert(alu->dest.write_mask != 0);
187 
188    b->exact = alu->exact;
189 
190    unsigned num_components = alu->dest.dest.ssa.num_components;
191    unsigned target_width = 1;
192 
193    if (data->cb) {
194       target_width = data->cb(instr, data->data);
195       assert(util_is_power_of_two_or_zero(target_width));
196       if (target_width == 0)
197          return NULL;
198    }
199 
200 #define LOWER_REDUCTION(name, chan, merge) \
201    case name##2: \
202    case name##3: \
203    case name##4: \
204    case name##8: \
205    case name##16: \
206       return lower_reduction(alu, chan, merge, b); \
207 
208    switch (alu->op) {
209    case nir_op_vec16:
210    case nir_op_vec8:
211    case nir_op_vec5:
212    case nir_op_vec4:
213    case nir_op_vec3:
214    case nir_op_vec2:
215    case nir_op_cube_face_coord_amd:
216    case nir_op_cube_face_index_amd:
217       /* We don't need to scalarize these ops, they're the ones generated to
218        * group up outputs into a value that can be SSAed.
219        */
220       return NULL;
221 
222    case nir_op_pack_half_2x16: {
223       if (!b->shader->options->lower_pack_half_2x16)
224          return NULL;
225 
226       nir_ssa_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
227       return nir_pack_half_2x16_split(b, nir_channel(b, src_vec2, 0),
228                                          nir_channel(b, src_vec2, 1));
229    }
230 
231    case nir_op_unpack_unorm_4x8:
232    case nir_op_unpack_snorm_4x8:
233    case nir_op_unpack_unorm_2x16:
234    case nir_op_unpack_snorm_2x16:
235       /* There is no scalar version of these ops, unless we were to break it
236        * down to bitshifts and math (which is definitely not intended).
237        */
238       return NULL;
239 
240    case nir_op_unpack_half_2x16_flush_to_zero:
241    case nir_op_unpack_half_2x16: {
242       if (!b->shader->options->lower_unpack_half_2x16)
243          return NULL;
244 
245       nir_ssa_def *packed = nir_ssa_for_alu_src(b, alu, 0);
246       if (alu->op == nir_op_unpack_half_2x16_flush_to_zero) {
247           return nir_vec2(b,
248                           nir_unpack_half_2x16_split_x_flush_to_zero(b,
249                                                                      packed),
250                           nir_unpack_half_2x16_split_y_flush_to_zero(b,
251                                                                      packed));
252       } else {
253           return nir_vec2(b,
254                           nir_unpack_half_2x16_split_x(b, packed),
255                           nir_unpack_half_2x16_split_y(b, packed));
256       }
257    }
258 
259    case nir_op_pack_uvec2_to_uint: {
260       assert(b->shader->options->lower_pack_snorm_2x16 ||
261              b->shader->options->lower_pack_unorm_2x16);
262 
263       nir_ssa_def *word = nir_extract_u16(b, nir_ssa_for_alu_src(b, alu, 0),
264                                              nir_imm_int(b, 0));
265       return nir_ior(b, nir_ishl(b, nir_channel(b, word, 1),
266                                     nir_imm_int(b, 16)),
267                         nir_channel(b, word, 0));
268    }
269 
270    case nir_op_pack_uvec4_to_uint: {
271       assert(b->shader->options->lower_pack_snorm_4x8 ||
272              b->shader->options->lower_pack_unorm_4x8);
273 
274       nir_ssa_def *byte = nir_extract_u8(b, nir_ssa_for_alu_src(b, alu, 0),
275                                             nir_imm_int(b, 0));
276       return nir_ior(b, nir_ior(b, nir_ishl(b, nir_channel(b, byte, 3),
277                                                nir_imm_int(b, 24)),
278                                    nir_ishl(b, nir_channel(b, byte, 2),
279                                                nir_imm_int(b, 16))),
280                         nir_ior(b, nir_ishl(b, nir_channel(b, byte, 1),
281                                                nir_imm_int(b, 8)),
282                                    nir_channel(b, byte, 0)));
283    }
284 
285    case nir_op_fdph: {
286       nir_ssa_def *src0_vec = nir_ssa_for_alu_src(b, alu, 0);
287       nir_ssa_def *src1_vec = nir_ssa_for_alu_src(b, alu, 1);
288 
289       nir_ssa_def *sum[4];
290       for (unsigned i = 0; i < 3; i++) {
291          sum[i] = nir_fmul(b, nir_channel(b, src0_vec, i),
292                               nir_channel(b, src1_vec, i));
293       }
294       sum[3] = nir_channel(b, src1_vec, 3);
295 
296       return nir_fadd(b, nir_fadd(b, sum[0], sum[1]),
297                          nir_fadd(b, sum[2], sum[3]));
298    }
299 
300    case nir_op_pack_64_2x32: {
301       if (!b->shader->options->lower_pack_64_2x32)
302          return NULL;
303 
304       nir_ssa_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
305       return nir_pack_64_2x32_split(b, nir_channel(b, src_vec2, 0),
306                                     nir_channel(b, src_vec2, 1));
307    }
308    case nir_op_pack_64_4x16: {
309       if (!b->shader->options->lower_pack_64_4x16)
310          return NULL;
311 
312       nir_ssa_def *src_vec4 = nir_ssa_for_alu_src(b, alu, 0);
313       nir_ssa_def *xy = nir_pack_32_2x16_split(b, nir_channel(b, src_vec4, 0),
314                                                   nir_channel(b, src_vec4, 1));
315       nir_ssa_def *zw = nir_pack_32_2x16_split(b, nir_channel(b, src_vec4, 2),
316                                                   nir_channel(b, src_vec4, 3));
317 
318       return nir_pack_64_2x32_split(b, xy, zw);
319    }
320    case nir_op_pack_32_2x16: {
321       if (!b->shader->options->lower_pack_32_2x16)
322          return NULL;
323 
324       nir_ssa_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
325       return nir_pack_32_2x16_split(b, nir_channel(b, src_vec2, 0),
326                                     nir_channel(b, src_vec2, 1));
327    }
328    case nir_op_unpack_64_2x32:
329    case nir_op_unpack_64_4x16:
330    case nir_op_unpack_32_2x16:
331    case nir_op_unpack_double_2x32_dxil:
332       return NULL;
333 
334    case nir_op_fdot2:
335    case nir_op_fdot3:
336    case nir_op_fdot4:
337    case nir_op_fdot8:
338    case nir_op_fdot16:
339       return lower_fdot(alu, b);
340 
341       LOWER_REDUCTION(nir_op_ball_fequal, nir_op_feq, nir_op_iand);
342       LOWER_REDUCTION(nir_op_ball_iequal, nir_op_ieq, nir_op_iand);
343       LOWER_REDUCTION(nir_op_bany_fnequal, nir_op_fneu, nir_op_ior);
344       LOWER_REDUCTION(nir_op_bany_inequal, nir_op_ine, nir_op_ior);
345       LOWER_REDUCTION(nir_op_b8all_fequal, nir_op_feq8, nir_op_iand);
346       LOWER_REDUCTION(nir_op_b8all_iequal, nir_op_ieq8, nir_op_iand);
347       LOWER_REDUCTION(nir_op_b8any_fnequal, nir_op_fneu8, nir_op_ior);
348       LOWER_REDUCTION(nir_op_b8any_inequal, nir_op_ine8, nir_op_ior);
349       LOWER_REDUCTION(nir_op_b16all_fequal, nir_op_feq16, nir_op_iand);
350       LOWER_REDUCTION(nir_op_b16all_iequal, nir_op_ieq16, nir_op_iand);
351       LOWER_REDUCTION(nir_op_b16any_fnequal, nir_op_fneu16, nir_op_ior);
352       LOWER_REDUCTION(nir_op_b16any_inequal, nir_op_ine16, nir_op_ior);
353       LOWER_REDUCTION(nir_op_b32all_fequal, nir_op_feq32, nir_op_iand);
354       LOWER_REDUCTION(nir_op_b32all_iequal, nir_op_ieq32, nir_op_iand);
355       LOWER_REDUCTION(nir_op_b32any_fnequal, nir_op_fneu32, nir_op_ior);
356       LOWER_REDUCTION(nir_op_b32any_inequal, nir_op_ine32, nir_op_ior);
357       LOWER_REDUCTION(nir_op_fall_equal, nir_op_seq, nir_op_fmin);
358       LOWER_REDUCTION(nir_op_fany_nequal, nir_op_sne, nir_op_fmax);
359 
360    default:
361       break;
362    }
363 
364    if (num_components == 1)
365       return NULL;
366 
367    if (num_components <= target_width) {
368       /* If the ALU instr is swizzled outside the target width,
369        * reduce the target width.
370        */
371       if (alu_is_swizzled_in_bounds(alu, target_width))
372          return NULL;
373       else
374          target_width = DIV_ROUND_UP(num_components, 2);
375    }
376 
377    nir_alu_instr *vec = nir_alu_instr_create(b->shader, nir_op_vec(num_components));
378 
379    for (chan = 0; chan < num_components; chan += target_width) {
380       unsigned components = MIN2(target_width, num_components - chan);
381       nir_alu_instr *lower = nir_alu_instr_create(b->shader, alu->op);
382 
383       for (i = 0; i < num_src; i++) {
384          nir_alu_src_copy(&lower->src[i], &alu->src[i]);
385 
386          /* We only handle same-size-as-dest (input_sizes[] == 0) or scalar
387           * args (input_sizes[] == 1).
388           */
389          assert(nir_op_infos[alu->op].input_sizes[i] < 2);
390          for (int j = 0; j < components; j++) {
391             unsigned src_chan = nir_op_infos[alu->op].input_sizes[i] == 1 ? 0 : chan + j;
392             lower->src[i].swizzle[j] = alu->src[i].swizzle[src_chan];
393          }
394       }
395 
396       nir_alu_ssa_dest_init(lower, components, alu->dest.dest.ssa.bit_size);
397       lower->dest.saturate = alu->dest.saturate;
398       lower->exact = alu->exact;
399 
400       for (i = 0; i < components; i++) {
401          vec->src[chan + i].src = nir_src_for_ssa(&lower->dest.dest.ssa);
402          vec->src[chan + i].swizzle[0] = i;
403       }
404 
405       nir_builder_instr_insert(b, &lower->instr);
406    }
407 
408    return nir_builder_alu_instr_finish_and_insert(b, vec);
409 }
410 
411 bool
nir_lower_alu_width(nir_shader * shader,nir_vectorize_cb cb,const void * _data)412 nir_lower_alu_width(nir_shader *shader, nir_vectorize_cb cb, const void *_data)
413 {
414    struct alu_width_data data = {
415       .cb = cb,
416       .data = _data,
417    };
418 
419    return nir_shader_lower_instructions(shader,
420                                         inst_is_vector_alu,
421                                         lower_alu_instr_width,
422                                         &data);
423 }
424 
425 struct alu_to_scalar_data {
426    nir_instr_filter_cb cb;
427    const void *data;
428 };
429 
430 static uint8_t
scalar_cb(const nir_instr * instr,const void * data)431 scalar_cb(const nir_instr *instr, const void *data)
432 {
433    /* return vectorization-width = 1 for filtered instructions */
434    const struct alu_to_scalar_data *filter = data;
435    return filter->cb(instr, filter->data) ? 1 : 0;
436 }
437 
438 bool
nir_lower_alu_to_scalar(nir_shader * shader,nir_instr_filter_cb cb,const void * _data)439 nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *_data)
440 {
441    struct alu_to_scalar_data data = {
442       .cb = cb,
443       .data = _data,
444    };
445 
446    return nir_lower_alu_width(shader, cb ? scalar_cb : NULL, &data);
447 }
448 
449