• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef I18N_PHONENUMBERS_BASE_MEMORY_SCOPED_PTR_H_
6 #define I18N_PHONENUMBERS_BASE_MEMORY_SCOPED_PTR_H_
7 
8 #if defined(I18N_PHONENUMBERS_USE_BOOST)
9 
10 #include <boost/scoped_ptr.hpp>
11 using boost::scoped_ptr;
12 
13 #else  // !I18N_PHONENUMBERS_USE_BOOST
14 
15 // This is an implementation designed to match the anticipated future TR2
16 // implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated).
17 
18 #include <assert.h>
19 #include <stddef.h>
20 #include <stdlib.h>
21 
22 #include <algorithm>  // For std::swap().
23 
24 #include "phonenumbers/base/basictypes.h"
25 #include "phonenumbers/base/template_util.h"
26 
27 namespace i18n {
28 namespace phonenumbers {
29 
30 // Function object which deletes its parameter, which must be a pointer.
31 // If C is an array type, invokes 'delete[]' on the parameter; otherwise,
32 // invokes 'delete'. The default deleter for scoped_ptr<T>.
33 template <class T>
34 struct DefaultDeleter {
DefaultDeleterDefaultDeleter35   DefaultDeleter() {}
DefaultDeleterDefaultDeleter36   template <typename U> DefaultDeleter(const DefaultDeleter<U>& /*other*/) {
37     // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
38     // if U* is implicitly convertible to T* and U is not an array type.
39     //
40     // Correct implementation should use SFINAE to disable this
41     // constructor. However, since there are no other 1-argument constructors,
42     // using a COMPILE_ASSERT() based on is_convertible<> and requiring
43     // complete types is simpler and will cause compile failures for equivalent
44     // misuses.
45     //
46     // Note, the is_convertible<U*, T*> check also ensures that U is not an
47     // array. T is guaranteed to be a non-array, so any U* where U is an array
48     // cannot convert to T*.
49     enum { T_must_be_complete = sizeof(T) };
50     enum { U_must_be_complete = sizeof(U) };
51     COMPILE_ASSERT((is_convertible<U*, T*>::value),
52                    U_ptr_must_implicitly_convert_to_T_ptr);
53   }
operatorDefaultDeleter54   inline void operator()(T* ptr) const {
55     enum { type_must_be_complete = sizeof(T) };
56     delete ptr;
57   }
58 };
59 
60 // Specialization of DefaultDeleter for array types.
61 template <class T>
62 struct DefaultDeleter<T[]> {
63   inline void operator()(T* ptr) const {
64     enum { type_must_be_complete = sizeof(T) };
65     delete[] ptr;
66   }
67 
68  private:
69   // Disable this operator for any U != T because it is undefined to execute
70   // an array delete when the static type of the array mismatches the dynamic
71   // type.
72   //
73   // References:
74   //   C++98 [expr.delete]p3
75   //   http://cplusplus.github.com/LWG/lwg-defects.html#938
76   template <typename U> void operator()(U* array) const;
77 };
78 
79 template <class T, int n>
80 struct DefaultDeleter<T[n]> {
81   // Never allow someone to declare something like scoped_ptr<int[10]>.
82   COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
83 };
84 
85 // Function object which invokes 'free' on its parameter, which must be
86 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
87 //
88 // scoped_ptr<int, base::FreeDeleter> foo_ptr(
89 //     static_cast<int*>(malloc(sizeof(int))));
90 struct FreeDeleter {
91   inline void operator()(void* ptr) const {
92     free(ptr);
93   }
94 };
95 
96 // Minimal implementation of the core logic of scoped_ptr, suitable for
97 // reuse in both scoped_ptr and its specializations.
98 template <class T, class D>
99 class scoped_ptr_impl {
100  public:
101   explicit scoped_ptr_impl(T* p) : data_(p) { }
102 
103   // Initializer for deleters that have data parameters.
104   scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
105 
106   // Templated constructor that destructively takes the value from another
107   // scoped_ptr_impl.
108   template <typename U, typename V>
109   scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
110       : data_(other->release(), other->get_deleter()) {
111     // We do not support move-only deleters.  We could modify our move
112     // emulation to have base::subtle::move() and base::subtle::forward()
113     // functions that are imperfect emulations of their C++11 equivalents,
114     // but until there's a requirement, just assume deleters are copyable.
115   }
116 
117   template <typename U, typename V>
118   void TakeState(scoped_ptr_impl<U, V>* other) {
119     // See comment in templated constructor above regarding lack of support
120     // for move-only deleters.
121     reset(other->release());
122     get_deleter() = other->get_deleter();
123   }
124 
125   ~scoped_ptr_impl() {
126     if (data_.ptr != NULL) {
127       // Not using get_deleter() saves one function call in non-optimized
128       // builds.
129       static_cast<D&>(data_)(data_.ptr);
130     }
131   }
132 
133   void reset(T* p) {
134     // This is a self-reset, which is no longer allowed: http://crbug.com/162971
135     if (p != NULL && p == data_.ptr)
136       abort();
137 
138     // Note that running data_.ptr = p can lead to undefined behavior if
139     // get_deleter()(get()) deletes this. In order to pevent this, reset()
140     // should update the stored pointer before deleting its old value.
141     //
142     // However, changing reset() to use that behavior may cause current code to
143     // break in unexpected ways. If the destruction of the owned object
144     // dereferences the scoped_ptr when it is destroyed by a call to reset(),
145     // then it will incorrectly dispatch calls to |p| rather than the original
146     // value of |data_.ptr|.
147     //
148     // During the transition period, set the stored pointer to NULL while
149     // deleting the object. Eventually, this safety check will be removed to
150     // prevent the scenario initially described from occuring and
151     // http://crbug.com/176091 can be closed.
152     T* old = data_.ptr;
153     data_.ptr = NULL;
154     if (old != NULL)
155       static_cast<D&>(data_)(old);
156     data_.ptr = p;
157   }
158 
159   T* get() const { return data_.ptr; }
160 
161   D& get_deleter() { return data_; }
162   const D& get_deleter() const { return data_; }
163 
164   void swap(scoped_ptr_impl& p2) {
165     // Standard swap idiom: 'using std::swap' ensures that std::swap is
166     // present in the overload set, but we call swap unqualified so that
167     // any more-specific overloads can be used, if available.
168     using std::swap;
169     swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
170     swap(data_.ptr, p2.data_.ptr);
171   }
172 
173   T* release() {
174     T* old_ptr = data_.ptr;
175     data_.ptr = NULL;
176     return old_ptr;
177   }
178 
179  private:
180   // Needed to allow type-converting constructor.
181   template <typename U, typename V> friend class scoped_ptr_impl;
182 
183   // Use the empty base class optimization to allow us to have a D
184   // member, while avoiding any space overhead for it when D is an
185   // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
186   // discussion of this technique.
187   struct Data : public D {
188     explicit Data(T* ptr_in) : ptr(ptr_in) {}
189     Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
190     T* ptr;
191   };
192 
193   Data data_;
194 
195   DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
196 };
197 
198 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
199 // automatically deletes the pointer it holds (if any).
200 // That is, scoped_ptr<T> owns the T object that it points to.
201 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
202 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
203 // dereference it, you get the thread safety guarantees of T.
204 //
205 // The size of scoped_ptr is small. On most compilers, when using the
206 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
207 // increase the size proportional to whatever state they need to have. See
208 // comments inside scoped_ptr_impl<> for details.
209 //
210 // Current implementation targets having a strict subset of  C++11's
211 // unique_ptr<> features. Known deficiencies include not supporting move-only
212 // deleteres, function pointers as deleters, and deleters with reference
213 // types.
214 template <class T, class D = DefaultDeleter<T> >
215 class scoped_ptr {
216  public:
217   // The element and deleter types.
218   typedef T element_type;
219   typedef D deleter_type;
220 
221   // Constructor.  Defaults to initializing with NULL.
222   scoped_ptr() : impl_(NULL) { }
223 
224   // Constructor.  Takes ownership of p.
225   explicit scoped_ptr(element_type* p) : impl_(p) { }
226 
227   // Constructor.  Allows initialization of a stateful deleter.
228   scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
229 
230   // Constructor.  Allows construction from a scoped_ptr rvalue for a
231   // convertible type and deleter.
232   //
233   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
234   // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
235   // has different post-conditions if D is a reference type. Since this
236   // implementation does not support deleters with reference type,
237   // we do not need a separate move constructor allowing us to avoid one
238   // use of SFINAE. You only need to care about this if you modify the
239   // implementation of scoped_ptr.
240   template <typename U, typename V>
241   scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
242     COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array);
243   }
244 
245   // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
246   // type and deleter.
247   //
248   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
249   // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
250   // form has different requirements on for move-only Deleters. Since this
251   // implementation does not support move-only Deleters, we do not need a
252   // separate move assignment operator allowing us to avoid one use of SFINAE.
253   // You only need to care about this if you modify the implementation of
254   // scoped_ptr.
255   template <typename U, typename V>
256   scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
257     COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array);
258     impl_.TakeState(&rhs.impl_);
259     return *this;
260   }
261 
262   // Reset.  Deletes the currently owned object, if any.
263   // Then takes ownership of a new object, if given.
264   void reset(element_type* p = NULL) { impl_.reset(p); }
265 
266   // Accessors to get the owned object.
267   // operator* and operator-> will assert() if there is no current object.
268   element_type& operator*() const {
269     assert(impl_.get() != NULL);
270     return *impl_.get();
271   }
272   element_type* operator->() const  {
273     assert(impl_.get() != NULL);
274     return impl_.get();
275   }
276   element_type* get() const { return impl_.get(); }
277 
278   // Access to the deleter.
279   deleter_type& get_deleter() { return impl_.get_deleter(); }
280   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
281 
282   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
283   // implicitly convertible to a real bool (which is dangerous).
284  private:
285   typedef scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable;
286 
287  public:
288   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
289 
290   // Comparison operators.
291   // These return whether two scoped_ptr refer to the same object, not just to
292   // two different but equal objects.
293   bool operator==(const element_type* p) const { return impl_.get() == p; }
294   bool operator!=(const element_type* p) const { return impl_.get() != p; }
295 
296   // Swap two scoped pointers.
297   void swap(scoped_ptr& p2) {
298     impl_.swap(p2.impl_);
299   }
300 
301   // Release a pointer.
302   // The return value is the current pointer held by this object.
303   // If this object holds a NULL pointer, the return value is NULL.
304   // After this operation, this object will hold a NULL pointer,
305   // and will not own the object any more.
306   element_type* release() {
307     return impl_.release();
308   }
309 
310  private:
311   // Needed to reach into |impl_| in the constructor.
312   template <typename U, typename V> friend class scoped_ptr;
313   scoped_ptr_impl<element_type, deleter_type> impl_;
314 
315   // Forbid comparison of scoped_ptr types.  If U != T, it totally
316   // doesn't make sense, and if U == T, it still doesn't make sense
317   // because you should never have the same object owned by two different
318   // scoped_ptrs.
319   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
320   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
321 };
322 
323 template <class T, class D>
324 class scoped_ptr<T[], D> {
325  public:
326   // The element and deleter types.
327   typedef T element_type;
328   typedef D deleter_type;
329 
330   // Constructor.  Defaults to initializing with NULL.
331   scoped_ptr() : impl_(NULL) { }
332 
333   // Constructor. Stores the given array. Note that the argument's type
334   // must exactly match T*. In particular:
335   // - it cannot be a pointer to a type derived from T, because it is
336   //   inherently unsafe in the general case to access an array through a
337   //   pointer whose dynamic type does not match its static type (eg., if
338   //   T and the derived types had different sizes access would be
339   //   incorrectly calculated). Deletion is also always undefined
340   //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
341   // - it cannot be NULL, because NULL is an integral expression, not a
342   //   pointer to T. Use the no-argument version instead of explicitly
343   //   passing NULL.
344   // - it cannot be const-qualified differently from T per unique_ptr spec
345   //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
346   //   to work around this may use implicit_cast<const T*>().
347   //   However, because of the first bullet in this comment, users MUST
348   //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
349   explicit scoped_ptr(element_type* array) : impl_(array) { }
350 
351   // Reset.  Deletes the currently owned array, if any.
352   // Then takes ownership of a new object, if given.
353   void reset(element_type* array = NULL) { impl_.reset(array); }
354 
355   // Accessors to get the owned array.
356   element_type& operator[](size_t i) const {
357     assert(impl_.get() != NULL);
358     return impl_.get()[i];
359   }
360   element_type* get() const { return impl_.get(); }
361 
362   // Access to the deleter.
363   deleter_type& get_deleter() { return impl_.get_deleter(); }
364   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
365 
366   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
367   // implicitly convertible to a real bool (which is dangerous).
368  private:
369   typedef scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable;
370 
371  public:
372   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
373 
374   // Comparison operators.
375   // These return whether two scoped_ptr refer to the same object, not just to
376   // two different but equal objects.
377   bool operator==(element_type* array) const { return impl_.get() == array; }
378   bool operator!=(element_type* array) const { return impl_.get() != array; }
379 
380   // Swap two scoped pointers.
381   void swap(scoped_ptr& p2) {
382     impl_.swap(p2.impl_);
383   }
384 
385   // Release a pointer.
386   // The return value is the current pointer held by this object.
387   // If this object holds a NULL pointer, the return value is NULL.
388   // After this operation, this object will hold a NULL pointer,
389   // and will not own the object any more.
390   element_type* release() {
391     return impl_.release();
392   }
393 
394  private:
395   // Force element_type to be a complete type.
396   enum { type_must_be_complete = sizeof(element_type) };
397 
398   // Actually hold the data.
399   scoped_ptr_impl<element_type, deleter_type> impl_;
400 
401   // Disable initialization from any type other than element_type*, by
402   // providing a constructor that matches such an initialization, but is
403   // private and has no definition. This is disabled because it is not safe to
404   // call delete[] on an array whose static type does not match its dynamic
405   // type.
406   template <typename U> explicit scoped_ptr(U* array);
407   explicit scoped_ptr(int disallow_construction_from_null);
408 
409   // Disable reset() from any type other than element_type*, for the same
410   // reasons as the constructor above.
411   template <typename U> void reset(U* array);
412   void reset(int disallow_reset_from_null);
413 
414   // Forbid comparison of scoped_ptr types.  If U != T, it totally
415   // doesn't make sense, and if U == T, it still doesn't make sense
416   // because you should never have the same object owned by two different
417   // scoped_ptrs.
418   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
419   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
420 };
421 
422 // Free functions
423 template <class T, class D>
424 void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
425   p1.swap(p2);
426 }
427 
428 template <class T, class D>
429 bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
430   return p1 == p2.get();
431 }
432 
433 template <class T, class D>
434 bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
435   return p1 != p2.get();
436 }
437 
438 // A function to convert T* into scoped_ptr<T>
439 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
440 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
441 template <typename T>
442 scoped_ptr<T> make_scoped_ptr(T* ptr) {
443   return scoped_ptr<T>(ptr);
444 }
445 
446 }  // namespace phonenumbers
447 }  // namespace i18n
448 
449 #endif  // !I18N_PHONENUMBERS_USE_BOOST
450 #endif  // I18N_PHONENUMBERS_BASE_MEMORY_SCOPED_PTR_H_
451