• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
tcp_mstamp_refresh(struct tcp_sock * tp)53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
tcp_acceptable_seq(const struct sock * sk)95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
tcp_advertise_mss(struct sock * sk)121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
tcp_cwnd_restart(struct sock * sk,s32 delta)142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tp->snd_cwnd;
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tp->snd_cwnd = max(cwnd, restart_cwnd);
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, enter pingpong mode.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_enter_pingpong_mode(sk);
177 }
178 
179 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts,u32 rcv_nxt)180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
181 				      u32 rcv_nxt)
182 {
183 	struct tcp_sock *tp = tcp_sk(sk);
184 
185 	if (unlikely(tp->compressed_ack)) {
186 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
187 			      tp->compressed_ack);
188 		tp->compressed_ack = 0;
189 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
190 			__sock_put(sk);
191 	}
192 
193 	if (unlikely(rcv_nxt != tp->rcv_nxt))
194 		return;  /* Special ACK sent by DCTCP to reflect ECN */
195 	tcp_dec_quickack_mode(sk, pkts);
196 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
234 
235 	if (init_rcv_wnd)
236 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
237 
238 	*rcv_wscale = 0;
239 	if (wscale_ok) {
240 		/* Set window scaling on max possible window */
241 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 		space = min_t(u32, space, *window_clamp);
244 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 				      0, TCP_MAX_WSCALE);
246 	}
247 	/* Set the clamp no higher than max representable value */
248 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
249 }
250 EXPORT_SYMBOL(tcp_select_initial_window);
251 
252 /* Chose a new window to advertise, update state in tcp_sock for the
253  * socket, and return result with RFC1323 scaling applied.  The return
254  * value can be stuffed directly into th->window for an outgoing
255  * frame.
256  */
tcp_select_window(struct sock * sk)257 static u16 tcp_select_window(struct sock *sk)
258 {
259 	struct tcp_sock *tp = tcp_sk(sk);
260 	u32 old_win = tp->rcv_wnd;
261 	u32 cur_win = tcp_receive_window(tp);
262 	u32 new_win = __tcp_select_window(sk);
263 
264 	/* Never shrink the offered window */
265 	if (new_win < cur_win) {
266 		/* Danger Will Robinson!
267 		 * Don't update rcv_wup/rcv_wnd here or else
268 		 * we will not be able to advertise a zero
269 		 * window in time.  --DaveM
270 		 *
271 		 * Relax Will Robinson.
272 		 */
273 		if (new_win == 0)
274 			NET_INC_STATS(sock_net(sk),
275 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
276 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
277 	}
278 	tp->rcv_wnd = new_win;
279 	tp->rcv_wup = tp->rcv_nxt;
280 
281 	/* Make sure we do not exceed the maximum possible
282 	 * scaled window.
283 	 */
284 	if (!tp->rx_opt.rcv_wscale &&
285 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
286 		new_win = min(new_win, MAX_TCP_WINDOW);
287 	else
288 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
289 
290 	/* RFC1323 scaling applied */
291 	new_win >>= tp->rx_opt.rcv_wscale;
292 
293 	/* If we advertise zero window, disable fast path. */
294 	if (new_win == 0) {
295 		tp->pred_flags = 0;
296 		if (old_win)
297 			NET_INC_STATS(sock_net(sk),
298 				      LINUX_MIB_TCPTOZEROWINDOWADV);
299 	} else if (old_win == 0) {
300 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
301 	}
302 
303 	return new_win;
304 }
305 
306 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)307 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
308 {
309 	const struct tcp_sock *tp = tcp_sk(sk);
310 
311 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
312 	if (!(tp->ecn_flags & TCP_ECN_OK))
313 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
314 	else if (tcp_ca_needs_ecn(sk) ||
315 		 tcp_bpf_ca_needs_ecn(sk))
316 		INET_ECN_xmit(sk);
317 }
318 
319 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)320 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
321 {
322 	struct tcp_sock *tp = tcp_sk(sk);
323 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
324 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
325 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
326 
327 	if (!use_ecn) {
328 		const struct dst_entry *dst = __sk_dst_get(sk);
329 
330 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
331 			use_ecn = true;
332 	}
333 
334 	tp->ecn_flags = 0;
335 
336 	if (use_ecn) {
337 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
338 		tp->ecn_flags = TCP_ECN_OK;
339 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
340 			INET_ECN_xmit(sk);
341 	}
342 }
343 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)344 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
345 {
346 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
347 		/* tp->ecn_flags are cleared at a later point in time when
348 		 * SYN ACK is ultimatively being received.
349 		 */
350 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
351 }
352 
353 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
355 {
356 	if (inet_rsk(req)->ecn_ok)
357 		th->ece = 1;
358 }
359 
360 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
361  * be sent.
362  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)363 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
364 			 struct tcphdr *th, int tcp_header_len)
365 {
366 	struct tcp_sock *tp = tcp_sk(sk);
367 
368 	if (tp->ecn_flags & TCP_ECN_OK) {
369 		/* Not-retransmitted data segment: set ECT and inject CWR. */
370 		if (skb->len != tcp_header_len &&
371 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
372 			INET_ECN_xmit(sk);
373 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
374 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
375 				th->cwr = 1;
376 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
377 			}
378 		} else if (!tcp_ca_needs_ecn(sk)) {
379 			/* ACK or retransmitted segment: clear ECT|CE */
380 			INET_ECN_dontxmit(sk);
381 		}
382 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
383 			th->ece = 1;
384 	}
385 }
386 
387 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
388  * auto increment end seqno.
389  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)390 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
391 {
392 	skb->ip_summed = CHECKSUM_PARTIAL;
393 
394 	TCP_SKB_CB(skb)->tcp_flags = flags;
395 	TCP_SKB_CB(skb)->sacked = 0;
396 
397 	tcp_skb_pcount_set(skb, 1);
398 
399 	TCP_SKB_CB(skb)->seq = seq;
400 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
401 		seq++;
402 	TCP_SKB_CB(skb)->end_seq = seq;
403 }
404 
tcp_urg_mode(const struct tcp_sock * tp)405 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
406 {
407 	return tp->snd_una != tp->snd_up;
408 }
409 
410 #define OPTION_SACK_ADVERTISE	(1 << 0)
411 #define OPTION_TS		(1 << 1)
412 #define OPTION_MD5		(1 << 2)
413 #define OPTION_WSCALE		(1 << 3)
414 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
415 #define OPTION_SMC		(1 << 9)
416 #define OPTION_MPTCP		(1 << 10)
417 
smc_options_write(__be32 * ptr,u16 * options)418 static void smc_options_write(__be32 *ptr, u16 *options)
419 {
420 #if IS_ENABLED(CONFIG_SMC)
421 	if (static_branch_unlikely(&tcp_have_smc)) {
422 		if (unlikely(OPTION_SMC & *options)) {
423 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
424 				       (TCPOPT_NOP  << 16) |
425 				       (TCPOPT_EXP <<  8) |
426 				       (TCPOLEN_EXP_SMC_BASE));
427 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
428 		}
429 	}
430 #endif
431 }
432 
433 struct tcp_out_options {
434 	u16 options;		/* bit field of OPTION_* */
435 	u16 mss;		/* 0 to disable */
436 	u8 ws;			/* window scale, 0 to disable */
437 	u8 num_sack_blocks;	/* number of SACK blocks to include */
438 	u8 hash_size;		/* bytes in hash_location */
439 	u8 bpf_opt_len;		/* length of BPF hdr option */
440 	__u8 *hash_location;	/* temporary pointer, overloaded */
441 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
442 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
443 	struct mptcp_out_options mptcp;
444 };
445 
mptcp_options_write(__be32 * ptr,struct tcp_out_options * opts)446 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
447 {
448 #if IS_ENABLED(CONFIG_MPTCP)
449 	if (unlikely(OPTION_MPTCP & opts->options))
450 		mptcp_write_options(ptr, &opts->mptcp);
451 #endif
452 }
453 
454 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)455 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
456 					enum tcp_synack_type synack_type)
457 {
458 	if (unlikely(!skb))
459 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
460 
461 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
462 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
463 
464 	return 0;
465 }
466 
467 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)468 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
469 				  struct request_sock *req,
470 				  struct sk_buff *syn_skb,
471 				  enum tcp_synack_type synack_type,
472 				  struct tcp_out_options *opts,
473 				  unsigned int *remaining)
474 {
475 	struct bpf_sock_ops_kern sock_ops;
476 	int err;
477 
478 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
479 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
480 	    !*remaining)
481 		return;
482 
483 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
484 
485 	/* init sock_ops */
486 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
487 
488 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
489 
490 	if (req) {
491 		/* The listen "sk" cannot be passed here because
492 		 * it is not locked.  It would not make too much
493 		 * sense to do bpf_setsockopt(listen_sk) based
494 		 * on individual connection request also.
495 		 *
496 		 * Thus, "req" is passed here and the cgroup-bpf-progs
497 		 * of the listen "sk" will be run.
498 		 *
499 		 * "req" is also used here for fastopen even the "sk" here is
500 		 * a fullsock "child" sk.  It is to keep the behavior
501 		 * consistent between fastopen and non-fastopen on
502 		 * the bpf programming side.
503 		 */
504 		sock_ops.sk = (struct sock *)req;
505 		sock_ops.syn_skb = syn_skb;
506 	} else {
507 		sock_owned_by_me(sk);
508 
509 		sock_ops.is_fullsock = 1;
510 		sock_ops.sk = sk;
511 	}
512 
513 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
514 	sock_ops.remaining_opt_len = *remaining;
515 	/* tcp_current_mss() does not pass a skb */
516 	if (skb)
517 		bpf_skops_init_skb(&sock_ops, skb, 0);
518 
519 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
520 
521 	if (err || sock_ops.remaining_opt_len == *remaining)
522 		return;
523 
524 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
525 	/* round up to 4 bytes */
526 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
527 
528 	*remaining -= opts->bpf_opt_len;
529 }
530 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)531 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
532 				    struct request_sock *req,
533 				    struct sk_buff *syn_skb,
534 				    enum tcp_synack_type synack_type,
535 				    struct tcp_out_options *opts)
536 {
537 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
538 	struct bpf_sock_ops_kern sock_ops;
539 	int err;
540 
541 	if (likely(!max_opt_len))
542 		return;
543 
544 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
545 
546 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
547 
548 	if (req) {
549 		sock_ops.sk = (struct sock *)req;
550 		sock_ops.syn_skb = syn_skb;
551 	} else {
552 		sock_owned_by_me(sk);
553 
554 		sock_ops.is_fullsock = 1;
555 		sock_ops.sk = sk;
556 	}
557 
558 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
559 	sock_ops.remaining_opt_len = max_opt_len;
560 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
561 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
562 
563 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
564 
565 	if (err)
566 		nr_written = 0;
567 	else
568 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
569 
570 	if (nr_written < max_opt_len)
571 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
572 		       max_opt_len - nr_written);
573 }
574 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)575 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
576 				  struct request_sock *req,
577 				  struct sk_buff *syn_skb,
578 				  enum tcp_synack_type synack_type,
579 				  struct tcp_out_options *opts,
580 				  unsigned int *remaining)
581 {
582 }
583 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)584 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
585 				    struct request_sock *req,
586 				    struct sk_buff *syn_skb,
587 				    enum tcp_synack_type synack_type,
588 				    struct tcp_out_options *opts)
589 {
590 }
591 #endif
592 
593 /* Write previously computed TCP options to the packet.
594  *
595  * Beware: Something in the Internet is very sensitive to the ordering of
596  * TCP options, we learned this through the hard way, so be careful here.
597  * Luckily we can at least blame others for their non-compliance but from
598  * inter-operability perspective it seems that we're somewhat stuck with
599  * the ordering which we have been using if we want to keep working with
600  * those broken things (not that it currently hurts anybody as there isn't
601  * particular reason why the ordering would need to be changed).
602  *
603  * At least SACK_PERM as the first option is known to lead to a disaster
604  * (but it may well be that other scenarios fail similarly).
605  */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)606 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
607 			      struct tcp_out_options *opts)
608 {
609 	u16 options = opts->options;	/* mungable copy */
610 
611 	if (unlikely(OPTION_MD5 & options)) {
612 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
613 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
614 		/* overload cookie hash location */
615 		opts->hash_location = (__u8 *)ptr;
616 		ptr += 4;
617 	}
618 
619 	if (unlikely(opts->mss)) {
620 		*ptr++ = htonl((TCPOPT_MSS << 24) |
621 			       (TCPOLEN_MSS << 16) |
622 			       opts->mss);
623 	}
624 
625 	if (likely(OPTION_TS & options)) {
626 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
627 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
628 				       (TCPOLEN_SACK_PERM << 16) |
629 				       (TCPOPT_TIMESTAMP << 8) |
630 				       TCPOLEN_TIMESTAMP);
631 			options &= ~OPTION_SACK_ADVERTISE;
632 		} else {
633 			*ptr++ = htonl((TCPOPT_NOP << 24) |
634 				       (TCPOPT_NOP << 16) |
635 				       (TCPOPT_TIMESTAMP << 8) |
636 				       TCPOLEN_TIMESTAMP);
637 		}
638 		*ptr++ = htonl(opts->tsval);
639 		*ptr++ = htonl(opts->tsecr);
640 	}
641 
642 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
643 		*ptr++ = htonl((TCPOPT_NOP << 24) |
644 			       (TCPOPT_NOP << 16) |
645 			       (TCPOPT_SACK_PERM << 8) |
646 			       TCPOLEN_SACK_PERM);
647 	}
648 
649 	if (unlikely(OPTION_WSCALE & options)) {
650 		*ptr++ = htonl((TCPOPT_NOP << 24) |
651 			       (TCPOPT_WINDOW << 16) |
652 			       (TCPOLEN_WINDOW << 8) |
653 			       opts->ws);
654 	}
655 
656 	if (unlikely(opts->num_sack_blocks)) {
657 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
658 			tp->duplicate_sack : tp->selective_acks;
659 		int this_sack;
660 
661 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
662 			       (TCPOPT_NOP  << 16) |
663 			       (TCPOPT_SACK <<  8) |
664 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
665 						     TCPOLEN_SACK_PERBLOCK)));
666 
667 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
668 		     ++this_sack) {
669 			*ptr++ = htonl(sp[this_sack].start_seq);
670 			*ptr++ = htonl(sp[this_sack].end_seq);
671 		}
672 
673 		tp->rx_opt.dsack = 0;
674 	}
675 
676 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
677 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
678 		u8 *p = (u8 *)ptr;
679 		u32 len; /* Fast Open option length */
680 
681 		if (foc->exp) {
682 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
683 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
684 				     TCPOPT_FASTOPEN_MAGIC);
685 			p += TCPOLEN_EXP_FASTOPEN_BASE;
686 		} else {
687 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
688 			*p++ = TCPOPT_FASTOPEN;
689 			*p++ = len;
690 		}
691 
692 		memcpy(p, foc->val, foc->len);
693 		if ((len & 3) == 2) {
694 			p[foc->len] = TCPOPT_NOP;
695 			p[foc->len + 1] = TCPOPT_NOP;
696 		}
697 		ptr += (len + 3) >> 2;
698 	}
699 
700 	smc_options_write(ptr, &options);
701 
702 	mptcp_options_write(ptr, opts);
703 }
704 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)705 static void smc_set_option(const struct tcp_sock *tp,
706 			   struct tcp_out_options *opts,
707 			   unsigned int *remaining)
708 {
709 #if IS_ENABLED(CONFIG_SMC)
710 	if (static_branch_unlikely(&tcp_have_smc)) {
711 		if (tp->syn_smc) {
712 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
713 				opts->options |= OPTION_SMC;
714 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
715 			}
716 		}
717 	}
718 #endif
719 }
720 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)721 static void smc_set_option_cond(const struct tcp_sock *tp,
722 				const struct inet_request_sock *ireq,
723 				struct tcp_out_options *opts,
724 				unsigned int *remaining)
725 {
726 #if IS_ENABLED(CONFIG_SMC)
727 	if (static_branch_unlikely(&tcp_have_smc)) {
728 		if (tp->syn_smc && ireq->smc_ok) {
729 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
730 				opts->options |= OPTION_SMC;
731 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
732 			}
733 		}
734 	}
735 #endif
736 }
737 
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)738 static void mptcp_set_option_cond(const struct request_sock *req,
739 				  struct tcp_out_options *opts,
740 				  unsigned int *remaining)
741 {
742 	if (rsk_is_mptcp(req)) {
743 		unsigned int size;
744 
745 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
746 			if (*remaining >= size) {
747 				opts->options |= OPTION_MPTCP;
748 				*remaining -= size;
749 			}
750 		}
751 	}
752 }
753 
754 /* Compute TCP options for SYN packets. This is not the final
755  * network wire format yet.
756  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)757 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
758 				struct tcp_out_options *opts,
759 				struct tcp_md5sig_key **md5)
760 {
761 	struct tcp_sock *tp = tcp_sk(sk);
762 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
763 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
764 
765 	*md5 = NULL;
766 #ifdef CONFIG_TCP_MD5SIG
767 	if (static_branch_unlikely(&tcp_md5_needed) &&
768 	    rcu_access_pointer(tp->md5sig_info)) {
769 		*md5 = tp->af_specific->md5_lookup(sk, sk);
770 		if (*md5) {
771 			opts->options |= OPTION_MD5;
772 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
773 		}
774 	}
775 #endif
776 
777 	/* We always get an MSS option.  The option bytes which will be seen in
778 	 * normal data packets should timestamps be used, must be in the MSS
779 	 * advertised.  But we subtract them from tp->mss_cache so that
780 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
781 	 * fact here if necessary.  If we don't do this correctly, as a
782 	 * receiver we won't recognize data packets as being full sized when we
783 	 * should, and thus we won't abide by the delayed ACK rules correctly.
784 	 * SACKs don't matter, we never delay an ACK when we have any of those
785 	 * going out.  */
786 	opts->mss = tcp_advertise_mss(sk);
787 	remaining -= TCPOLEN_MSS_ALIGNED;
788 
789 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
790 		opts->options |= OPTION_TS;
791 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
792 		opts->tsecr = tp->rx_opt.ts_recent;
793 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
794 	}
795 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
796 		opts->ws = tp->rx_opt.rcv_wscale;
797 		opts->options |= OPTION_WSCALE;
798 		remaining -= TCPOLEN_WSCALE_ALIGNED;
799 	}
800 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
801 		opts->options |= OPTION_SACK_ADVERTISE;
802 		if (unlikely(!(OPTION_TS & opts->options)))
803 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
804 	}
805 
806 	if (fastopen && fastopen->cookie.len >= 0) {
807 		u32 need = fastopen->cookie.len;
808 
809 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
810 					       TCPOLEN_FASTOPEN_BASE;
811 		need = (need + 3) & ~3U;  /* Align to 32 bits */
812 		if (remaining >= need) {
813 			opts->options |= OPTION_FAST_OPEN_COOKIE;
814 			opts->fastopen_cookie = &fastopen->cookie;
815 			remaining -= need;
816 			tp->syn_fastopen = 1;
817 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
818 		}
819 	}
820 
821 	smc_set_option(tp, opts, &remaining);
822 
823 	if (sk_is_mptcp(sk)) {
824 		unsigned int size;
825 
826 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
827 			opts->options |= OPTION_MPTCP;
828 			remaining -= size;
829 		}
830 	}
831 
832 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
833 
834 	return MAX_TCP_OPTION_SPACE - remaining;
835 }
836 
837 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)838 static unsigned int tcp_synack_options(const struct sock *sk,
839 				       struct request_sock *req,
840 				       unsigned int mss, struct sk_buff *skb,
841 				       struct tcp_out_options *opts,
842 				       const struct tcp_md5sig_key *md5,
843 				       struct tcp_fastopen_cookie *foc,
844 				       enum tcp_synack_type synack_type,
845 				       struct sk_buff *syn_skb)
846 {
847 	struct inet_request_sock *ireq = inet_rsk(req);
848 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
849 
850 #ifdef CONFIG_TCP_MD5SIG
851 	if (md5) {
852 		opts->options |= OPTION_MD5;
853 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
854 
855 		/* We can't fit any SACK blocks in a packet with MD5 + TS
856 		 * options. There was discussion about disabling SACK
857 		 * rather than TS in order to fit in better with old,
858 		 * buggy kernels, but that was deemed to be unnecessary.
859 		 */
860 		if (synack_type != TCP_SYNACK_COOKIE)
861 			ireq->tstamp_ok &= !ireq->sack_ok;
862 	}
863 #endif
864 
865 	/* We always send an MSS option. */
866 	opts->mss = mss;
867 	remaining -= TCPOLEN_MSS_ALIGNED;
868 
869 	if (likely(ireq->wscale_ok)) {
870 		opts->ws = ireq->rcv_wscale;
871 		opts->options |= OPTION_WSCALE;
872 		remaining -= TCPOLEN_WSCALE_ALIGNED;
873 	}
874 	if (likely(ireq->tstamp_ok)) {
875 		opts->options |= OPTION_TS;
876 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
877 		opts->tsecr = req->ts_recent;
878 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
879 	}
880 	if (likely(ireq->sack_ok)) {
881 		opts->options |= OPTION_SACK_ADVERTISE;
882 		if (unlikely(!ireq->tstamp_ok))
883 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
884 	}
885 	if (foc != NULL && foc->len >= 0) {
886 		u32 need = foc->len;
887 
888 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
889 				   TCPOLEN_FASTOPEN_BASE;
890 		need = (need + 3) & ~3U;  /* Align to 32 bits */
891 		if (remaining >= need) {
892 			opts->options |= OPTION_FAST_OPEN_COOKIE;
893 			opts->fastopen_cookie = foc;
894 			remaining -= need;
895 		}
896 	}
897 
898 	mptcp_set_option_cond(req, opts, &remaining);
899 
900 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
901 
902 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
903 			      synack_type, opts, &remaining);
904 
905 	return MAX_TCP_OPTION_SPACE - remaining;
906 }
907 
908 /* Compute TCP options for ESTABLISHED sockets. This is not the
909  * final wire format yet.
910  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)911 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
912 					struct tcp_out_options *opts,
913 					struct tcp_md5sig_key **md5)
914 {
915 	struct tcp_sock *tp = tcp_sk(sk);
916 	unsigned int size = 0;
917 	unsigned int eff_sacks;
918 
919 	opts->options = 0;
920 
921 	*md5 = NULL;
922 #ifdef CONFIG_TCP_MD5SIG
923 	if (static_branch_unlikely(&tcp_md5_needed) &&
924 	    rcu_access_pointer(tp->md5sig_info)) {
925 		*md5 = tp->af_specific->md5_lookup(sk, sk);
926 		if (*md5) {
927 			opts->options |= OPTION_MD5;
928 			size += TCPOLEN_MD5SIG_ALIGNED;
929 		}
930 	}
931 #endif
932 
933 	if (likely(tp->rx_opt.tstamp_ok)) {
934 		opts->options |= OPTION_TS;
935 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
936 		opts->tsecr = tp->rx_opt.ts_recent;
937 		size += TCPOLEN_TSTAMP_ALIGNED;
938 	}
939 
940 	/* MPTCP options have precedence over SACK for the limited TCP
941 	 * option space because a MPTCP connection would be forced to
942 	 * fall back to regular TCP if a required multipath option is
943 	 * missing. SACK still gets a chance to use whatever space is
944 	 * left.
945 	 */
946 	if (sk_is_mptcp(sk)) {
947 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
948 		unsigned int opt_size = 0;
949 
950 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
951 					      &opts->mptcp)) {
952 			opts->options |= OPTION_MPTCP;
953 			size += opt_size;
954 		}
955 	}
956 
957 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
958 	if (unlikely(eff_sacks)) {
959 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
960 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
961 					 TCPOLEN_SACK_PERBLOCK))
962 			return size;
963 
964 		opts->num_sack_blocks =
965 			min_t(unsigned int, eff_sacks,
966 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
967 			      TCPOLEN_SACK_PERBLOCK);
968 
969 		size += TCPOLEN_SACK_BASE_ALIGNED +
970 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
971 	}
972 
973 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
974 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
975 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
976 
977 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
978 
979 		size = MAX_TCP_OPTION_SPACE - remaining;
980 	}
981 
982 	return size;
983 }
984 
985 
986 /* TCP SMALL QUEUES (TSQ)
987  *
988  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
989  * to reduce RTT and bufferbloat.
990  * We do this using a special skb destructor (tcp_wfree).
991  *
992  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
993  * needs to be reallocated in a driver.
994  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
995  *
996  * Since transmit from skb destructor is forbidden, we use a tasklet
997  * to process all sockets that eventually need to send more skbs.
998  * We use one tasklet per cpu, with its own queue of sockets.
999  */
1000 struct tsq_tasklet {
1001 	struct tasklet_struct	tasklet;
1002 	struct list_head	head; /* queue of tcp sockets */
1003 };
1004 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1005 
tcp_tsq_write(struct sock * sk)1006 static void tcp_tsq_write(struct sock *sk)
1007 {
1008 	if ((1 << sk->sk_state) &
1009 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1010 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1011 		struct tcp_sock *tp = tcp_sk(sk);
1012 
1013 		if (tp->lost_out > tp->retrans_out &&
1014 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1015 			tcp_mstamp_refresh(tp);
1016 			tcp_xmit_retransmit_queue(sk);
1017 		}
1018 
1019 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1020 			       0, GFP_ATOMIC);
1021 	}
1022 }
1023 
tcp_tsq_handler(struct sock * sk)1024 static void tcp_tsq_handler(struct sock *sk)
1025 {
1026 	bh_lock_sock(sk);
1027 	if (!sock_owned_by_user(sk))
1028 		tcp_tsq_write(sk);
1029 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1030 		sock_hold(sk);
1031 	bh_unlock_sock(sk);
1032 }
1033 /*
1034  * One tasklet per cpu tries to send more skbs.
1035  * We run in tasklet context but need to disable irqs when
1036  * transferring tsq->head because tcp_wfree() might
1037  * interrupt us (non NAPI drivers)
1038  */
tcp_tasklet_func(unsigned long data)1039 static void tcp_tasklet_func(unsigned long data)
1040 {
1041 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
1042 	LIST_HEAD(list);
1043 	unsigned long flags;
1044 	struct list_head *q, *n;
1045 	struct tcp_sock *tp;
1046 	struct sock *sk;
1047 
1048 	local_irq_save(flags);
1049 	list_splice_init(&tsq->head, &list);
1050 	local_irq_restore(flags);
1051 
1052 	list_for_each_safe(q, n, &list) {
1053 		tp = list_entry(q, struct tcp_sock, tsq_node);
1054 		list_del(&tp->tsq_node);
1055 
1056 		sk = (struct sock *)tp;
1057 		smp_mb__before_atomic();
1058 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1059 
1060 		tcp_tsq_handler(sk);
1061 		sk_free(sk);
1062 	}
1063 }
1064 
1065 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1066 			  TCPF_WRITE_TIMER_DEFERRED |	\
1067 			  TCPF_DELACK_TIMER_DEFERRED |	\
1068 			  TCPF_MTU_REDUCED_DEFERRED)
1069 /**
1070  * tcp_release_cb - tcp release_sock() callback
1071  * @sk: socket
1072  *
1073  * called from release_sock() to perform protocol dependent
1074  * actions before socket release.
1075  */
tcp_release_cb(struct sock * sk)1076 void tcp_release_cb(struct sock *sk)
1077 {
1078 	unsigned long flags, nflags;
1079 
1080 	/* perform an atomic operation only if at least one flag is set */
1081 	do {
1082 		flags = sk->sk_tsq_flags;
1083 		if (!(flags & TCP_DEFERRED_ALL))
1084 			return;
1085 		nflags = flags & ~TCP_DEFERRED_ALL;
1086 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1087 
1088 	if (flags & TCPF_TSQ_DEFERRED) {
1089 		tcp_tsq_write(sk);
1090 		__sock_put(sk);
1091 	}
1092 	/* Here begins the tricky part :
1093 	 * We are called from release_sock() with :
1094 	 * 1) BH disabled
1095 	 * 2) sk_lock.slock spinlock held
1096 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1097 	 *
1098 	 * But following code is meant to be called from BH handlers,
1099 	 * so we should keep BH disabled, but early release socket ownership
1100 	 */
1101 	sock_release_ownership(sk);
1102 
1103 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1104 		tcp_write_timer_handler(sk);
1105 		__sock_put(sk);
1106 	}
1107 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1108 		tcp_delack_timer_handler(sk);
1109 		__sock_put(sk);
1110 	}
1111 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1112 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1113 		__sock_put(sk);
1114 	}
1115 }
1116 EXPORT_SYMBOL(tcp_release_cb);
1117 
tcp_tasklet_init(void)1118 void __init tcp_tasklet_init(void)
1119 {
1120 	int i;
1121 
1122 	for_each_possible_cpu(i) {
1123 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1124 
1125 		INIT_LIST_HEAD(&tsq->head);
1126 		tasklet_init(&tsq->tasklet,
1127 			     tcp_tasklet_func,
1128 			     (unsigned long)tsq);
1129 	}
1130 }
1131 
1132 /*
1133  * Write buffer destructor automatically called from kfree_skb.
1134  * We can't xmit new skbs from this context, as we might already
1135  * hold qdisc lock.
1136  */
tcp_wfree(struct sk_buff * skb)1137 void tcp_wfree(struct sk_buff *skb)
1138 {
1139 	struct sock *sk = skb->sk;
1140 	struct tcp_sock *tp = tcp_sk(sk);
1141 	unsigned long flags, nval, oval;
1142 
1143 	/* Keep one reference on sk_wmem_alloc.
1144 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1145 	 */
1146 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1147 
1148 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1149 	 * Wait until our queues (qdisc + devices) are drained.
1150 	 * This gives :
1151 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1152 	 * - chance for incoming ACK (processed by another cpu maybe)
1153 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1154 	 */
1155 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1156 		goto out;
1157 
1158 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1159 		struct tsq_tasklet *tsq;
1160 		bool empty;
1161 
1162 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1163 			goto out;
1164 
1165 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1166 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1167 		if (nval != oval)
1168 			continue;
1169 
1170 		/* queue this socket to tasklet queue */
1171 		local_irq_save(flags);
1172 		tsq = this_cpu_ptr(&tsq_tasklet);
1173 		empty = list_empty(&tsq->head);
1174 		list_add(&tp->tsq_node, &tsq->head);
1175 		if (empty)
1176 			tasklet_schedule(&tsq->tasklet);
1177 		local_irq_restore(flags);
1178 		return;
1179 	}
1180 out:
1181 	sk_free(sk);
1182 }
1183 
1184 /* Note: Called under soft irq.
1185  * We can call TCP stack right away, unless socket is owned by user.
1186  */
tcp_pace_kick(struct hrtimer * timer)1187 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1188 {
1189 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1190 	struct sock *sk = (struct sock *)tp;
1191 
1192 	tcp_tsq_handler(sk);
1193 	sock_put(sk);
1194 
1195 	return HRTIMER_NORESTART;
1196 }
1197 
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1198 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1199 				      u64 prior_wstamp)
1200 {
1201 	struct tcp_sock *tp = tcp_sk(sk);
1202 
1203 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1204 		unsigned long rate = sk->sk_pacing_rate;
1205 
1206 		/* Original sch_fq does not pace first 10 MSS
1207 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1208 		 * this is a minor annoyance.
1209 		 */
1210 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1211 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1212 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1213 
1214 			/* take into account OS jitter */
1215 			len_ns -= min_t(u64, len_ns / 2, credit);
1216 			tp->tcp_wstamp_ns += len_ns;
1217 		}
1218 	}
1219 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1220 }
1221 
1222 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1223 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1224 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1225 
1226 /* This routine actually transmits TCP packets queued in by
1227  * tcp_do_sendmsg().  This is used by both the initial
1228  * transmission and possible later retransmissions.
1229  * All SKB's seen here are completely headerless.  It is our
1230  * job to build the TCP header, and pass the packet down to
1231  * IP so it can do the same plus pass the packet off to the
1232  * device.
1233  *
1234  * We are working here with either a clone of the original
1235  * SKB, or a fresh unique copy made by the retransmit engine.
1236  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1237 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1238 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1239 {
1240 	const struct inet_connection_sock *icsk = inet_csk(sk);
1241 	struct inet_sock *inet;
1242 	struct tcp_sock *tp;
1243 	struct tcp_skb_cb *tcb;
1244 	struct tcp_out_options opts;
1245 	unsigned int tcp_options_size, tcp_header_size;
1246 	struct sk_buff *oskb = NULL;
1247 	struct tcp_md5sig_key *md5;
1248 	struct tcphdr *th;
1249 	u64 prior_wstamp;
1250 	int err;
1251 
1252 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1253 	tp = tcp_sk(sk);
1254 	prior_wstamp = tp->tcp_wstamp_ns;
1255 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1256 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1257 	if (clone_it) {
1258 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1259 			- tp->snd_una;
1260 		oskb = skb;
1261 
1262 		tcp_skb_tsorted_save(oskb) {
1263 			if (unlikely(skb_cloned(oskb)))
1264 				skb = pskb_copy(oskb, gfp_mask);
1265 			else
1266 				skb = skb_clone(oskb, gfp_mask);
1267 		} tcp_skb_tsorted_restore(oskb);
1268 
1269 		if (unlikely(!skb))
1270 			return -ENOBUFS;
1271 		/* retransmit skbs might have a non zero value in skb->dev
1272 		 * because skb->dev is aliased with skb->rbnode.rb_left
1273 		 */
1274 		skb->dev = NULL;
1275 	}
1276 
1277 	inet = inet_sk(sk);
1278 	tcb = TCP_SKB_CB(skb);
1279 	memset(&opts, 0, sizeof(opts));
1280 
1281 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1282 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1283 	} else {
1284 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1285 							   &md5);
1286 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1287 		 * at receiver : This slightly improve GRO performance.
1288 		 * Note that we do not force the PSH flag for non GSO packets,
1289 		 * because they might be sent under high congestion events,
1290 		 * and in this case it is better to delay the delivery of 1-MSS
1291 		 * packets and thus the corresponding ACK packet that would
1292 		 * release the following packet.
1293 		 */
1294 		if (tcp_skb_pcount(skb) > 1)
1295 			tcb->tcp_flags |= TCPHDR_PSH;
1296 	}
1297 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1298 
1299 	/* if no packet is in qdisc/device queue, then allow XPS to select
1300 	 * another queue. We can be called from tcp_tsq_handler()
1301 	 * which holds one reference to sk.
1302 	 *
1303 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1304 	 * One way to get this would be to set skb->truesize = 2 on them.
1305 	 */
1306 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1307 
1308 	/* If we had to use memory reserve to allocate this skb,
1309 	 * this might cause drops if packet is looped back :
1310 	 * Other socket might not have SOCK_MEMALLOC.
1311 	 * Packets not looped back do not care about pfmemalloc.
1312 	 */
1313 	skb->pfmemalloc = 0;
1314 
1315 	skb_push(skb, tcp_header_size);
1316 	skb_reset_transport_header(skb);
1317 
1318 	skb_orphan(skb);
1319 	skb->sk = sk;
1320 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1321 	skb_set_hash_from_sk(skb, sk);
1322 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1323 
1324 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1325 
1326 	/* Build TCP header and checksum it. */
1327 	th = (struct tcphdr *)skb->data;
1328 	th->source		= inet->inet_sport;
1329 	th->dest		= inet->inet_dport;
1330 	th->seq			= htonl(tcb->seq);
1331 	th->ack_seq		= htonl(rcv_nxt);
1332 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1333 					tcb->tcp_flags);
1334 
1335 	th->check		= 0;
1336 	th->urg_ptr		= 0;
1337 
1338 	/* The urg_mode check is necessary during a below snd_una win probe */
1339 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1340 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1341 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1342 			th->urg = 1;
1343 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1344 			th->urg_ptr = htons(0xFFFF);
1345 			th->urg = 1;
1346 		}
1347 	}
1348 
1349 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1350 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1351 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1352 		th->window      = htons(tcp_select_window(sk));
1353 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1354 	} else {
1355 		/* RFC1323: The window in SYN & SYN/ACK segments
1356 		 * is never scaled.
1357 		 */
1358 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1359 	}
1360 #ifdef CONFIG_TCP_MD5SIG
1361 	/* Calculate the MD5 hash, as we have all we need now */
1362 	if (md5) {
1363 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1364 		tp->af_specific->calc_md5_hash(opts.hash_location,
1365 					       md5, sk, skb);
1366 	}
1367 #endif
1368 
1369 	/* BPF prog is the last one writing header option */
1370 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1371 
1372 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1373 			   tcp_v6_send_check, tcp_v4_send_check,
1374 			   sk, skb);
1375 
1376 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1377 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1378 
1379 	if (skb->len != tcp_header_size) {
1380 		tcp_event_data_sent(tp, sk);
1381 		tp->data_segs_out += tcp_skb_pcount(skb);
1382 		tp->bytes_sent += skb->len - tcp_header_size;
1383 	}
1384 
1385 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1386 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1387 			      tcp_skb_pcount(skb));
1388 
1389 	tp->segs_out += tcp_skb_pcount(skb);
1390 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1391 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1392 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1393 
1394 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1395 
1396 	/* Cleanup our debris for IP stacks */
1397 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1398 			       sizeof(struct inet6_skb_parm)));
1399 
1400 	tcp_add_tx_delay(skb, tp);
1401 
1402 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1403 				 inet6_csk_xmit, ip_queue_xmit,
1404 				 sk, skb, &inet->cork.fl);
1405 
1406 	if (unlikely(err > 0)) {
1407 		tcp_enter_cwr(sk);
1408 		err = net_xmit_eval(err);
1409 	}
1410 	if (!err && oskb) {
1411 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1412 		tcp_rate_skb_sent(sk, oskb);
1413 	}
1414 	return err;
1415 }
1416 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1417 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1418 			    gfp_t gfp_mask)
1419 {
1420 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1421 				  tcp_sk(sk)->rcv_nxt);
1422 }
1423 
1424 /* This routine just queues the buffer for sending.
1425  *
1426  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1427  * otherwise socket can stall.
1428  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1429 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1430 {
1431 	struct tcp_sock *tp = tcp_sk(sk);
1432 
1433 	/* Advance write_seq and place onto the write_queue. */
1434 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1435 	__skb_header_release(skb);
1436 	tcp_add_write_queue_tail(sk, skb);
1437 	sk_wmem_queued_add(sk, skb->truesize);
1438 	sk_mem_charge(sk, skb->truesize);
1439 }
1440 
1441 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1442 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1443 {
1444 	if (skb->len <= mss_now) {
1445 		/* Avoid the costly divide in the normal
1446 		 * non-TSO case.
1447 		 */
1448 		tcp_skb_pcount_set(skb, 1);
1449 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1450 	} else {
1451 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1452 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1453 	}
1454 }
1455 
1456 /* Pcount in the middle of the write queue got changed, we need to do various
1457  * tweaks to fix counters
1458  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1459 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1460 {
1461 	struct tcp_sock *tp = tcp_sk(sk);
1462 
1463 	tp->packets_out -= decr;
1464 
1465 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1466 		tp->sacked_out -= decr;
1467 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1468 		tp->retrans_out -= decr;
1469 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1470 		tp->lost_out -= decr;
1471 
1472 	/* Reno case is special. Sigh... */
1473 	if (tcp_is_reno(tp) && decr > 0)
1474 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1475 
1476 	if (tp->lost_skb_hint &&
1477 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1478 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1479 		tp->lost_cnt_hint -= decr;
1480 
1481 	tcp_verify_left_out(tp);
1482 }
1483 
tcp_has_tx_tstamp(const struct sk_buff * skb)1484 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1485 {
1486 	return TCP_SKB_CB(skb)->txstamp_ack ||
1487 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1488 }
1489 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1490 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1491 {
1492 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1493 
1494 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1495 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1496 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1497 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1498 
1499 		shinfo->tx_flags &= ~tsflags;
1500 		shinfo2->tx_flags |= tsflags;
1501 		swap(shinfo->tskey, shinfo2->tskey);
1502 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1503 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1504 	}
1505 }
1506 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1507 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1508 {
1509 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1510 	TCP_SKB_CB(skb)->eor = 0;
1511 }
1512 
1513 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1514 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1515 					 struct sk_buff *buff,
1516 					 struct sock *sk,
1517 					 enum tcp_queue tcp_queue)
1518 {
1519 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1520 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1521 	else
1522 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1523 }
1524 
1525 /* Function to create two new TCP segments.  Shrinks the given segment
1526  * to the specified size and appends a new segment with the rest of the
1527  * packet to the list.  This won't be called frequently, I hope.
1528  * Remember, these are still headerless SKBs at this point.
1529  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1530 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1531 		 struct sk_buff *skb, u32 len,
1532 		 unsigned int mss_now, gfp_t gfp)
1533 {
1534 	struct tcp_sock *tp = tcp_sk(sk);
1535 	struct sk_buff *buff;
1536 	int nsize, old_factor;
1537 	long limit;
1538 	int nlen;
1539 	u8 flags;
1540 
1541 	if (WARN_ON(len > skb->len))
1542 		return -EINVAL;
1543 
1544 	nsize = skb_headlen(skb) - len;
1545 	if (nsize < 0)
1546 		nsize = 0;
1547 
1548 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1549 	 * We need some allowance to not penalize applications setting small
1550 	 * SO_SNDBUF values.
1551 	 * Also allow first and last skb in retransmit queue to be split.
1552 	 */
1553 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1554 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1555 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1556 		     skb != tcp_rtx_queue_head(sk) &&
1557 		     skb != tcp_rtx_queue_tail(sk))) {
1558 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1559 		return -ENOMEM;
1560 	}
1561 
1562 	if (skb_unclone(skb, gfp))
1563 		return -ENOMEM;
1564 
1565 	/* Get a new skb... force flag on. */
1566 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1567 	if (!buff)
1568 		return -ENOMEM; /* We'll just try again later. */
1569 	skb_copy_decrypted(buff, skb);
1570 
1571 	sk_wmem_queued_add(sk, buff->truesize);
1572 	sk_mem_charge(sk, buff->truesize);
1573 	nlen = skb->len - len - nsize;
1574 	buff->truesize += nlen;
1575 	skb->truesize -= nlen;
1576 
1577 	/* Correct the sequence numbers. */
1578 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1579 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1580 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1581 
1582 	/* PSH and FIN should only be set in the second packet. */
1583 	flags = TCP_SKB_CB(skb)->tcp_flags;
1584 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1585 	TCP_SKB_CB(buff)->tcp_flags = flags;
1586 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1587 	tcp_skb_fragment_eor(skb, buff);
1588 
1589 	skb_split(skb, buff, len);
1590 
1591 	buff->ip_summed = CHECKSUM_PARTIAL;
1592 
1593 	buff->tstamp = skb->tstamp;
1594 	tcp_fragment_tstamp(skb, buff);
1595 
1596 	old_factor = tcp_skb_pcount(skb);
1597 
1598 	/* Fix up tso_factor for both original and new SKB.  */
1599 	tcp_set_skb_tso_segs(skb, mss_now);
1600 	tcp_set_skb_tso_segs(buff, mss_now);
1601 
1602 	/* Update delivered info for the new segment */
1603 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1604 
1605 	/* If this packet has been sent out already, we must
1606 	 * adjust the various packet counters.
1607 	 */
1608 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1609 		int diff = old_factor - tcp_skb_pcount(skb) -
1610 			tcp_skb_pcount(buff);
1611 
1612 		if (diff)
1613 			tcp_adjust_pcount(sk, skb, diff);
1614 	}
1615 
1616 	/* Link BUFF into the send queue. */
1617 	__skb_header_release(buff);
1618 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1619 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1620 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1621 
1622 	return 0;
1623 }
1624 
1625 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1626  * data is not copied, but immediately discarded.
1627  */
__pskb_trim_head(struct sk_buff * skb,int len)1628 static int __pskb_trim_head(struct sk_buff *skb, int len)
1629 {
1630 	struct skb_shared_info *shinfo;
1631 	int i, k, eat;
1632 
1633 	eat = min_t(int, len, skb_headlen(skb));
1634 	if (eat) {
1635 		__skb_pull(skb, eat);
1636 		len -= eat;
1637 		if (!len)
1638 			return 0;
1639 	}
1640 	eat = len;
1641 	k = 0;
1642 	shinfo = skb_shinfo(skb);
1643 	for (i = 0; i < shinfo->nr_frags; i++) {
1644 		int size = skb_frag_size(&shinfo->frags[i]);
1645 
1646 		if (size <= eat) {
1647 			skb_frag_unref(skb, i);
1648 			eat -= size;
1649 		} else {
1650 			shinfo->frags[k] = shinfo->frags[i];
1651 			if (eat) {
1652 				skb_frag_off_add(&shinfo->frags[k], eat);
1653 				skb_frag_size_sub(&shinfo->frags[k], eat);
1654 				eat = 0;
1655 			}
1656 			k++;
1657 		}
1658 	}
1659 	shinfo->nr_frags = k;
1660 
1661 	skb->data_len -= len;
1662 	skb->len = skb->data_len;
1663 	return len;
1664 }
1665 
1666 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1667 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1668 {
1669 	u32 delta_truesize;
1670 
1671 	if (skb_unclone(skb, GFP_ATOMIC))
1672 		return -ENOMEM;
1673 
1674 	delta_truesize = __pskb_trim_head(skb, len);
1675 
1676 	TCP_SKB_CB(skb)->seq += len;
1677 	skb->ip_summed = CHECKSUM_PARTIAL;
1678 
1679 	if (delta_truesize) {
1680 		skb->truesize	   -= delta_truesize;
1681 		sk_wmem_queued_add(sk, -delta_truesize);
1682 		sk_mem_uncharge(sk, delta_truesize);
1683 	}
1684 
1685 	/* Any change of skb->len requires recalculation of tso factor. */
1686 	if (tcp_skb_pcount(skb) > 1)
1687 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1688 
1689 	return 0;
1690 }
1691 
1692 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1693 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1694 {
1695 	const struct tcp_sock *tp = tcp_sk(sk);
1696 	const struct inet_connection_sock *icsk = inet_csk(sk);
1697 	int mss_now;
1698 
1699 	/* Calculate base mss without TCP options:
1700 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1701 	 */
1702 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1703 
1704 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1705 	if (icsk->icsk_af_ops->net_frag_header_len) {
1706 		const struct dst_entry *dst = __sk_dst_get(sk);
1707 
1708 		if (dst && dst_allfrag(dst))
1709 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1710 	}
1711 
1712 	/* Clamp it (mss_clamp does not include tcp options) */
1713 	if (mss_now > tp->rx_opt.mss_clamp)
1714 		mss_now = tp->rx_opt.mss_clamp;
1715 
1716 	/* Now subtract optional transport overhead */
1717 	mss_now -= icsk->icsk_ext_hdr_len;
1718 
1719 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1720 	mss_now = max(mss_now,
1721 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1722 	return mss_now;
1723 }
1724 
1725 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1726 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1727 {
1728 	/* Subtract TCP options size, not including SACKs */
1729 	return __tcp_mtu_to_mss(sk, pmtu) -
1730 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1731 }
1732 EXPORT_SYMBOL(tcp_mtu_to_mss);
1733 
1734 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1735 int tcp_mss_to_mtu(struct sock *sk, int mss)
1736 {
1737 	const struct tcp_sock *tp = tcp_sk(sk);
1738 	const struct inet_connection_sock *icsk = inet_csk(sk);
1739 	int mtu;
1740 
1741 	mtu = mss +
1742 	      tp->tcp_header_len +
1743 	      icsk->icsk_ext_hdr_len +
1744 	      icsk->icsk_af_ops->net_header_len;
1745 
1746 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1747 	if (icsk->icsk_af_ops->net_frag_header_len) {
1748 		const struct dst_entry *dst = __sk_dst_get(sk);
1749 
1750 		if (dst && dst_allfrag(dst))
1751 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1752 	}
1753 	return mtu;
1754 }
1755 EXPORT_SYMBOL(tcp_mss_to_mtu);
1756 
1757 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1758 void tcp_mtup_init(struct sock *sk)
1759 {
1760 	struct tcp_sock *tp = tcp_sk(sk);
1761 	struct inet_connection_sock *icsk = inet_csk(sk);
1762 	struct net *net = sock_net(sk);
1763 
1764 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1765 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1766 			       icsk->icsk_af_ops->net_header_len;
1767 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1768 	icsk->icsk_mtup.probe_size = 0;
1769 	if (icsk->icsk_mtup.enabled)
1770 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1771 }
1772 EXPORT_SYMBOL(tcp_mtup_init);
1773 
1774 /* This function synchronize snd mss to current pmtu/exthdr set.
1775 
1776    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1777    for TCP options, but includes only bare TCP header.
1778 
1779    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1780    It is minimum of user_mss and mss received with SYN.
1781    It also does not include TCP options.
1782 
1783    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1784 
1785    tp->mss_cache is current effective sending mss, including
1786    all tcp options except for SACKs. It is evaluated,
1787    taking into account current pmtu, but never exceeds
1788    tp->rx_opt.mss_clamp.
1789 
1790    NOTE1. rfc1122 clearly states that advertised MSS
1791    DOES NOT include either tcp or ip options.
1792 
1793    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1794    are READ ONLY outside this function.		--ANK (980731)
1795  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1796 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1797 {
1798 	struct tcp_sock *tp = tcp_sk(sk);
1799 	struct inet_connection_sock *icsk = inet_csk(sk);
1800 	int mss_now;
1801 
1802 	if (icsk->icsk_mtup.search_high > pmtu)
1803 		icsk->icsk_mtup.search_high = pmtu;
1804 
1805 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1806 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1807 
1808 	/* And store cached results */
1809 	icsk->icsk_pmtu_cookie = pmtu;
1810 	if (icsk->icsk_mtup.enabled)
1811 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1812 	tp->mss_cache = mss_now;
1813 
1814 	return mss_now;
1815 }
1816 EXPORT_SYMBOL(tcp_sync_mss);
1817 
1818 /* Compute the current effective MSS, taking SACKs and IP options,
1819  * and even PMTU discovery events into account.
1820  */
tcp_current_mss(struct sock * sk)1821 unsigned int tcp_current_mss(struct sock *sk)
1822 {
1823 	const struct tcp_sock *tp = tcp_sk(sk);
1824 	const struct dst_entry *dst = __sk_dst_get(sk);
1825 	u32 mss_now;
1826 	unsigned int header_len;
1827 	struct tcp_out_options opts;
1828 	struct tcp_md5sig_key *md5;
1829 
1830 	mss_now = tp->mss_cache;
1831 
1832 	if (dst) {
1833 		u32 mtu = dst_mtu(dst);
1834 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1835 			mss_now = tcp_sync_mss(sk, mtu);
1836 	}
1837 
1838 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1839 		     sizeof(struct tcphdr);
1840 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1841 	 * some common options. If this is an odd packet (because we have SACK
1842 	 * blocks etc) then our calculated header_len will be different, and
1843 	 * we have to adjust mss_now correspondingly */
1844 	if (header_len != tp->tcp_header_len) {
1845 		int delta = (int) header_len - tp->tcp_header_len;
1846 		mss_now -= delta;
1847 	}
1848 
1849 	return mss_now;
1850 }
1851 
1852 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1853  * As additional protections, we do not touch cwnd in retransmission phases,
1854  * and if application hit its sndbuf limit recently.
1855  */
tcp_cwnd_application_limited(struct sock * sk)1856 static void tcp_cwnd_application_limited(struct sock *sk)
1857 {
1858 	struct tcp_sock *tp = tcp_sk(sk);
1859 
1860 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1861 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1862 		/* Limited by application or receiver window. */
1863 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1864 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1865 		if (win_used < tp->snd_cwnd) {
1866 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1867 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1868 		}
1869 		tp->snd_cwnd_used = 0;
1870 	}
1871 	tp->snd_cwnd_stamp = tcp_jiffies32;
1872 }
1873 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1874 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1875 {
1876 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1877 	struct tcp_sock *tp = tcp_sk(sk);
1878 
1879 	/* Track the strongest available signal of the degree to which the cwnd
1880 	 * is fully utilized. If cwnd-limited then remember that fact for the
1881 	 * current window. If not cwnd-limited then track the maximum number of
1882 	 * outstanding packets in the current window. (If cwnd-limited then we
1883 	 * chose to not update tp->max_packets_out to avoid an extra else
1884 	 * clause with no functional impact.)
1885 	 */
1886 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1887 	    is_cwnd_limited ||
1888 	    (!tp->is_cwnd_limited &&
1889 	     tp->packets_out > tp->max_packets_out)) {
1890 		tp->is_cwnd_limited = is_cwnd_limited;
1891 		tp->max_packets_out = tp->packets_out;
1892 		tp->cwnd_usage_seq = tp->snd_nxt;
1893 	}
1894 
1895 	if (tcp_is_cwnd_limited(sk)) {
1896 		/* Network is feed fully. */
1897 		tp->snd_cwnd_used = 0;
1898 		tp->snd_cwnd_stamp = tcp_jiffies32;
1899 	} else {
1900 		/* Network starves. */
1901 		if (tp->packets_out > tp->snd_cwnd_used)
1902 			tp->snd_cwnd_used = tp->packets_out;
1903 
1904 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1905 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1906 		    !ca_ops->cong_control)
1907 			tcp_cwnd_application_limited(sk);
1908 
1909 		/* The following conditions together indicate the starvation
1910 		 * is caused by insufficient sender buffer:
1911 		 * 1) just sent some data (see tcp_write_xmit)
1912 		 * 2) not cwnd limited (this else condition)
1913 		 * 3) no more data to send (tcp_write_queue_empty())
1914 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1915 		 */
1916 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1917 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1918 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1919 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1920 	}
1921 }
1922 
1923 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1924 static bool tcp_minshall_check(const struct tcp_sock *tp)
1925 {
1926 	return after(tp->snd_sml, tp->snd_una) &&
1927 		!after(tp->snd_sml, tp->snd_nxt);
1928 }
1929 
1930 /* Update snd_sml if this skb is under mss
1931  * Note that a TSO packet might end with a sub-mss segment
1932  * The test is really :
1933  * if ((skb->len % mss) != 0)
1934  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1935  * But we can avoid doing the divide again given we already have
1936  *  skb_pcount = skb->len / mss_now
1937  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1938 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1939 				const struct sk_buff *skb)
1940 {
1941 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1942 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1943 }
1944 
1945 /* Return false, if packet can be sent now without violation Nagle's rules:
1946  * 1. It is full sized. (provided by caller in %partial bool)
1947  * 2. Or it contains FIN. (already checked by caller)
1948  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1949  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1950  *    With Minshall's modification: all sent small packets are ACKed.
1951  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1952 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1953 			    int nonagle)
1954 {
1955 	return partial &&
1956 		((nonagle & TCP_NAGLE_CORK) ||
1957 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1958 }
1959 
1960 /* Return how many segs we'd like on a TSO packet,
1961  * to send one TSO packet per ms
1962  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1963 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1964 			    int min_tso_segs)
1965 {
1966 	u32 bytes, segs;
1967 
1968 	bytes = min_t(unsigned long,
1969 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1970 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1971 
1972 	/* Goal is to send at least one packet per ms,
1973 	 * not one big TSO packet every 100 ms.
1974 	 * This preserves ACK clocking and is consistent
1975 	 * with tcp_tso_should_defer() heuristic.
1976 	 */
1977 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1978 
1979 	return segs;
1980 }
1981 
1982 /* Return the number of segments we want in the skb we are transmitting.
1983  * See if congestion control module wants to decide; otherwise, autosize.
1984  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1985 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1986 {
1987 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1988 	u32 min_tso, tso_segs;
1989 
1990 	min_tso = ca_ops->min_tso_segs ?
1991 			ca_ops->min_tso_segs(sk) :
1992 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1993 
1994 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1995 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1996 }
1997 
1998 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1999 static unsigned int tcp_mss_split_point(const struct sock *sk,
2000 					const struct sk_buff *skb,
2001 					unsigned int mss_now,
2002 					unsigned int max_segs,
2003 					int nonagle)
2004 {
2005 	const struct tcp_sock *tp = tcp_sk(sk);
2006 	u32 partial, needed, window, max_len;
2007 
2008 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2009 	max_len = mss_now * max_segs;
2010 
2011 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2012 		return max_len;
2013 
2014 	needed = min(skb->len, window);
2015 
2016 	if (max_len <= needed)
2017 		return max_len;
2018 
2019 	partial = needed % mss_now;
2020 	/* If last segment is not a full MSS, check if Nagle rules allow us
2021 	 * to include this last segment in this skb.
2022 	 * Otherwise, we'll split the skb at last MSS boundary
2023 	 */
2024 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2025 		return needed - partial;
2026 
2027 	return needed;
2028 }
2029 
2030 /* Can at least one segment of SKB be sent right now, according to the
2031  * congestion window rules?  If so, return how many segments are allowed.
2032  */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2033 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2034 					 const struct sk_buff *skb)
2035 {
2036 	u32 in_flight, cwnd, halfcwnd;
2037 
2038 	/* Don't be strict about the congestion window for the final FIN.  */
2039 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2040 	    tcp_skb_pcount(skb) == 1)
2041 		return 1;
2042 
2043 	in_flight = tcp_packets_in_flight(tp);
2044 	cwnd = tp->snd_cwnd;
2045 	if (in_flight >= cwnd)
2046 		return 0;
2047 
2048 	/* For better scheduling, ensure we have at least
2049 	 * 2 GSO packets in flight.
2050 	 */
2051 	halfcwnd = max(cwnd >> 1, 1U);
2052 	return min(halfcwnd, cwnd - in_flight);
2053 }
2054 
2055 /* Initialize TSO state of a skb.
2056  * This must be invoked the first time we consider transmitting
2057  * SKB onto the wire.
2058  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2059 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2060 {
2061 	int tso_segs = tcp_skb_pcount(skb);
2062 
2063 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2064 		tcp_set_skb_tso_segs(skb, mss_now);
2065 		tso_segs = tcp_skb_pcount(skb);
2066 	}
2067 	return tso_segs;
2068 }
2069 
2070 
2071 /* Return true if the Nagle test allows this packet to be
2072  * sent now.
2073  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2074 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2075 				  unsigned int cur_mss, int nonagle)
2076 {
2077 	/* Nagle rule does not apply to frames, which sit in the middle of the
2078 	 * write_queue (they have no chances to get new data).
2079 	 *
2080 	 * This is implemented in the callers, where they modify the 'nonagle'
2081 	 * argument based upon the location of SKB in the send queue.
2082 	 */
2083 	if (nonagle & TCP_NAGLE_PUSH)
2084 		return true;
2085 
2086 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2087 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2088 		return true;
2089 
2090 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2091 		return true;
2092 
2093 	return false;
2094 }
2095 
2096 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2097 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2098 			     const struct sk_buff *skb,
2099 			     unsigned int cur_mss)
2100 {
2101 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2102 
2103 	if (skb->len > cur_mss)
2104 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2105 
2106 	return !after(end_seq, tcp_wnd_end(tp));
2107 }
2108 
2109 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2110  * which is put after SKB on the list.  It is very much like
2111  * tcp_fragment() except that it may make several kinds of assumptions
2112  * in order to speed up the splitting operation.  In particular, we
2113  * know that all the data is in scatter-gather pages, and that the
2114  * packet has never been sent out before (and thus is not cloned).
2115  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2116 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2117 			unsigned int mss_now, gfp_t gfp)
2118 {
2119 	int nlen = skb->len - len;
2120 	struct sk_buff *buff;
2121 	u8 flags;
2122 
2123 	/* All of a TSO frame must be composed of paged data.  */
2124 	if (skb->len != skb->data_len)
2125 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2126 				    skb, len, mss_now, gfp);
2127 
2128 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
2129 	if (unlikely(!buff))
2130 		return -ENOMEM;
2131 	skb_copy_decrypted(buff, skb);
2132 
2133 	sk_wmem_queued_add(sk, buff->truesize);
2134 	sk_mem_charge(sk, buff->truesize);
2135 	buff->truesize += nlen;
2136 	skb->truesize -= nlen;
2137 
2138 	/* Correct the sequence numbers. */
2139 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2140 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2141 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2142 
2143 	/* PSH and FIN should only be set in the second packet. */
2144 	flags = TCP_SKB_CB(skb)->tcp_flags;
2145 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2146 	TCP_SKB_CB(buff)->tcp_flags = flags;
2147 
2148 	/* This packet was never sent out yet, so no SACK bits. */
2149 	TCP_SKB_CB(buff)->sacked = 0;
2150 
2151 	tcp_skb_fragment_eor(skb, buff);
2152 
2153 	buff->ip_summed = CHECKSUM_PARTIAL;
2154 	skb_split(skb, buff, len);
2155 	tcp_fragment_tstamp(skb, buff);
2156 
2157 	/* Fix up tso_factor for both original and new SKB.  */
2158 	tcp_set_skb_tso_segs(skb, mss_now);
2159 	tcp_set_skb_tso_segs(buff, mss_now);
2160 
2161 	/* Link BUFF into the send queue. */
2162 	__skb_header_release(buff);
2163 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2164 
2165 	return 0;
2166 }
2167 
2168 /* Try to defer sending, if possible, in order to minimize the amount
2169  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2170  *
2171  * This algorithm is from John Heffner.
2172  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2173 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2174 				 bool *is_cwnd_limited,
2175 				 bool *is_rwnd_limited,
2176 				 u32 max_segs)
2177 {
2178 	const struct inet_connection_sock *icsk = inet_csk(sk);
2179 	u32 send_win, cong_win, limit, in_flight;
2180 	struct tcp_sock *tp = tcp_sk(sk);
2181 	struct sk_buff *head;
2182 	int win_divisor;
2183 	s64 delta;
2184 
2185 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2186 		goto send_now;
2187 
2188 	/* Avoid bursty behavior by allowing defer
2189 	 * only if the last write was recent (1 ms).
2190 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2191 	 * packets waiting in a qdisc or device for EDT delivery.
2192 	 */
2193 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2194 	if (delta > 0)
2195 		goto send_now;
2196 
2197 	in_flight = tcp_packets_in_flight(tp);
2198 
2199 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2200 	BUG_ON(tp->snd_cwnd <= in_flight);
2201 
2202 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2203 
2204 	/* From in_flight test above, we know that cwnd > in_flight.  */
2205 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2206 
2207 	limit = min(send_win, cong_win);
2208 
2209 	/* If a full-sized TSO skb can be sent, do it. */
2210 	if (limit >= max_segs * tp->mss_cache)
2211 		goto send_now;
2212 
2213 	/* Middle in queue won't get any more data, full sendable already? */
2214 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2215 		goto send_now;
2216 
2217 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2218 	if (win_divisor) {
2219 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2220 
2221 		/* If at least some fraction of a window is available,
2222 		 * just use it.
2223 		 */
2224 		chunk /= win_divisor;
2225 		if (limit >= chunk)
2226 			goto send_now;
2227 	} else {
2228 		/* Different approach, try not to defer past a single
2229 		 * ACK.  Receiver should ACK every other full sized
2230 		 * frame, so if we have space for more than 3 frames
2231 		 * then send now.
2232 		 */
2233 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2234 			goto send_now;
2235 	}
2236 
2237 	/* TODO : use tsorted_sent_queue ? */
2238 	head = tcp_rtx_queue_head(sk);
2239 	if (!head)
2240 		goto send_now;
2241 	delta = tp->tcp_clock_cache - head->tstamp;
2242 	/* If next ACK is likely to come too late (half srtt), do not defer */
2243 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2244 		goto send_now;
2245 
2246 	/* Ok, it looks like it is advisable to defer.
2247 	 * Three cases are tracked :
2248 	 * 1) We are cwnd-limited
2249 	 * 2) We are rwnd-limited
2250 	 * 3) We are application limited.
2251 	 */
2252 	if (cong_win < send_win) {
2253 		if (cong_win <= skb->len) {
2254 			*is_cwnd_limited = true;
2255 			return true;
2256 		}
2257 	} else {
2258 		if (send_win <= skb->len) {
2259 			*is_rwnd_limited = true;
2260 			return true;
2261 		}
2262 	}
2263 
2264 	/* If this packet won't get more data, do not wait. */
2265 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2266 	    TCP_SKB_CB(skb)->eor)
2267 		goto send_now;
2268 
2269 	return true;
2270 
2271 send_now:
2272 	return false;
2273 }
2274 
tcp_mtu_check_reprobe(struct sock * sk)2275 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2276 {
2277 	struct inet_connection_sock *icsk = inet_csk(sk);
2278 	struct tcp_sock *tp = tcp_sk(sk);
2279 	struct net *net = sock_net(sk);
2280 	u32 interval;
2281 	s32 delta;
2282 
2283 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2284 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2285 	if (unlikely(delta >= interval * HZ)) {
2286 		int mss = tcp_current_mss(sk);
2287 
2288 		/* Update current search range */
2289 		icsk->icsk_mtup.probe_size = 0;
2290 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2291 			sizeof(struct tcphdr) +
2292 			icsk->icsk_af_ops->net_header_len;
2293 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2294 
2295 		/* Update probe time stamp */
2296 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2297 	}
2298 }
2299 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2300 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2301 {
2302 	struct sk_buff *skb, *next;
2303 
2304 	skb = tcp_send_head(sk);
2305 	tcp_for_write_queue_from_safe(skb, next, sk) {
2306 		if (len <= skb->len)
2307 			break;
2308 
2309 		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2310 			return false;
2311 
2312 		len -= skb->len;
2313 	}
2314 
2315 	return true;
2316 }
2317 
2318 /* Create a new MTU probe if we are ready.
2319  * MTU probe is regularly attempting to increase the path MTU by
2320  * deliberately sending larger packets.  This discovers routing
2321  * changes resulting in larger path MTUs.
2322  *
2323  * Returns 0 if we should wait to probe (no cwnd available),
2324  *         1 if a probe was sent,
2325  *         -1 otherwise
2326  */
tcp_mtu_probe(struct sock * sk)2327 static int tcp_mtu_probe(struct sock *sk)
2328 {
2329 	struct inet_connection_sock *icsk = inet_csk(sk);
2330 	struct tcp_sock *tp = tcp_sk(sk);
2331 	struct sk_buff *skb, *nskb, *next;
2332 	struct net *net = sock_net(sk);
2333 	int probe_size;
2334 	int size_needed;
2335 	int copy, len;
2336 	int mss_now;
2337 	int interval;
2338 
2339 	/* Not currently probing/verifying,
2340 	 * not in recovery,
2341 	 * have enough cwnd, and
2342 	 * not SACKing (the variable headers throw things off)
2343 	 */
2344 	if (likely(!icsk->icsk_mtup.enabled ||
2345 		   icsk->icsk_mtup.probe_size ||
2346 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2347 		   tp->snd_cwnd < 11 ||
2348 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2349 		return -1;
2350 
2351 	/* Use binary search for probe_size between tcp_mss_base,
2352 	 * and current mss_clamp. if (search_high - search_low)
2353 	 * smaller than a threshold, backoff from probing.
2354 	 */
2355 	mss_now = tcp_current_mss(sk);
2356 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2357 				    icsk->icsk_mtup.search_low) >> 1);
2358 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2359 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2360 	/* When misfortune happens, we are reprobing actively,
2361 	 * and then reprobe timer has expired. We stick with current
2362 	 * probing process by not resetting search range to its orignal.
2363 	 */
2364 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2365 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2366 		/* Check whether enough time has elaplased for
2367 		 * another round of probing.
2368 		 */
2369 		tcp_mtu_check_reprobe(sk);
2370 		return -1;
2371 	}
2372 
2373 	/* Have enough data in the send queue to probe? */
2374 	if (tp->write_seq - tp->snd_nxt < size_needed)
2375 		return -1;
2376 
2377 	if (tp->snd_wnd < size_needed)
2378 		return -1;
2379 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2380 		return 0;
2381 
2382 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2383 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2384 		if (!tcp_packets_in_flight(tp))
2385 			return -1;
2386 		else
2387 			return 0;
2388 	}
2389 
2390 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2391 		return -1;
2392 
2393 	/* We're allowed to probe.  Build it now. */
2394 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2395 	if (!nskb)
2396 		return -1;
2397 	sk_wmem_queued_add(sk, nskb->truesize);
2398 	sk_mem_charge(sk, nskb->truesize);
2399 
2400 	skb = tcp_send_head(sk);
2401 	skb_copy_decrypted(nskb, skb);
2402 
2403 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2404 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2405 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2406 	TCP_SKB_CB(nskb)->sacked = 0;
2407 	nskb->csum = 0;
2408 	nskb->ip_summed = CHECKSUM_PARTIAL;
2409 
2410 	tcp_insert_write_queue_before(nskb, skb, sk);
2411 	tcp_highest_sack_replace(sk, skb, nskb);
2412 
2413 	len = 0;
2414 	tcp_for_write_queue_from_safe(skb, next, sk) {
2415 		copy = min_t(int, skb->len, probe_size - len);
2416 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2417 
2418 		if (skb->len <= copy) {
2419 			/* We've eaten all the data from this skb.
2420 			 * Throw it away. */
2421 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2422 			/* If this is the last SKB we copy and eor is set
2423 			 * we need to propagate it to the new skb.
2424 			 */
2425 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2426 			tcp_skb_collapse_tstamp(nskb, skb);
2427 			tcp_unlink_write_queue(skb, sk);
2428 			sk_wmem_free_skb(sk, skb);
2429 		} else {
2430 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2431 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2432 			if (!skb_shinfo(skb)->nr_frags) {
2433 				skb_pull(skb, copy);
2434 			} else {
2435 				__pskb_trim_head(skb, copy);
2436 				tcp_set_skb_tso_segs(skb, mss_now);
2437 			}
2438 			TCP_SKB_CB(skb)->seq += copy;
2439 		}
2440 
2441 		len += copy;
2442 
2443 		if (len >= probe_size)
2444 			break;
2445 	}
2446 	tcp_init_tso_segs(nskb, nskb->len);
2447 
2448 	/* We're ready to send.  If this fails, the probe will
2449 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2450 	 */
2451 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2452 		/* Decrement cwnd here because we are sending
2453 		 * effectively two packets. */
2454 		tp->snd_cwnd--;
2455 		tcp_event_new_data_sent(sk, nskb);
2456 
2457 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2458 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2459 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2460 
2461 		return 1;
2462 	}
2463 
2464 	return -1;
2465 }
2466 
tcp_pacing_check(struct sock * sk)2467 static bool tcp_pacing_check(struct sock *sk)
2468 {
2469 	struct tcp_sock *tp = tcp_sk(sk);
2470 
2471 	if (!tcp_needs_internal_pacing(sk))
2472 		return false;
2473 
2474 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2475 		return false;
2476 
2477 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2478 		hrtimer_start(&tp->pacing_timer,
2479 			      ns_to_ktime(tp->tcp_wstamp_ns),
2480 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2481 		sock_hold(sk);
2482 	}
2483 	return true;
2484 }
2485 
2486 /* TCP Small Queues :
2487  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2488  * (These limits are doubled for retransmits)
2489  * This allows for :
2490  *  - better RTT estimation and ACK scheduling
2491  *  - faster recovery
2492  *  - high rates
2493  * Alas, some drivers / subsystems require a fair amount
2494  * of queued bytes to ensure line rate.
2495  * One example is wifi aggregation (802.11 AMPDU)
2496  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2497 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2498 				  unsigned int factor)
2499 {
2500 	unsigned long limit;
2501 
2502 	limit = max_t(unsigned long,
2503 		      2 * skb->truesize,
2504 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2505 	if (sk->sk_pacing_status == SK_PACING_NONE)
2506 		limit = min_t(unsigned long, limit,
2507 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2508 	limit <<= factor;
2509 
2510 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2511 	    tcp_sk(sk)->tcp_tx_delay) {
2512 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2513 
2514 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2515 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2516 		 * USEC_PER_SEC is approximated by 2^20.
2517 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2518 		 */
2519 		extra_bytes >>= (20 - 1);
2520 		limit += extra_bytes;
2521 	}
2522 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2523 		/* Always send skb if rtx queue is empty.
2524 		 * No need to wait for TX completion to call us back,
2525 		 * after softirq/tasklet schedule.
2526 		 * This helps when TX completions are delayed too much.
2527 		 */
2528 		if (tcp_rtx_queue_empty(sk))
2529 			return false;
2530 
2531 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2532 		/* It is possible TX completion already happened
2533 		 * before we set TSQ_THROTTLED, so we must
2534 		 * test again the condition.
2535 		 */
2536 		smp_mb__after_atomic();
2537 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2538 			return true;
2539 	}
2540 	return false;
2541 }
2542 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2543 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2544 {
2545 	const u32 now = tcp_jiffies32;
2546 	enum tcp_chrono old = tp->chrono_type;
2547 
2548 	if (old > TCP_CHRONO_UNSPEC)
2549 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2550 	tp->chrono_start = now;
2551 	tp->chrono_type = new;
2552 }
2553 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2554 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2555 {
2556 	struct tcp_sock *tp = tcp_sk(sk);
2557 
2558 	/* If there are multiple conditions worthy of tracking in a
2559 	 * chronograph then the highest priority enum takes precedence
2560 	 * over the other conditions. So that if something "more interesting"
2561 	 * starts happening, stop the previous chrono and start a new one.
2562 	 */
2563 	if (type > tp->chrono_type)
2564 		tcp_chrono_set(tp, type);
2565 }
2566 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2567 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2568 {
2569 	struct tcp_sock *tp = tcp_sk(sk);
2570 
2571 
2572 	/* There are multiple conditions worthy of tracking in a
2573 	 * chronograph, so that the highest priority enum takes
2574 	 * precedence over the other conditions (see tcp_chrono_start).
2575 	 * If a condition stops, we only stop chrono tracking if
2576 	 * it's the "most interesting" or current chrono we are
2577 	 * tracking and starts busy chrono if we have pending data.
2578 	 */
2579 	if (tcp_rtx_and_write_queues_empty(sk))
2580 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2581 	else if (type == tp->chrono_type)
2582 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2583 }
2584 
2585 /* This routine writes packets to the network.  It advances the
2586  * send_head.  This happens as incoming acks open up the remote
2587  * window for us.
2588  *
2589  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2590  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2591  * account rare use of URG, this is not a big flaw.
2592  *
2593  * Send at most one packet when push_one > 0. Temporarily ignore
2594  * cwnd limit to force at most one packet out when push_one == 2.
2595 
2596  * Returns true, if no segments are in flight and we have queued segments,
2597  * but cannot send anything now because of SWS or another problem.
2598  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2599 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2600 			   int push_one, gfp_t gfp)
2601 {
2602 	struct tcp_sock *tp = tcp_sk(sk);
2603 	struct sk_buff *skb;
2604 	unsigned int tso_segs, sent_pkts;
2605 	int cwnd_quota;
2606 	int result;
2607 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2608 	u32 max_segs;
2609 
2610 	sent_pkts = 0;
2611 
2612 	tcp_mstamp_refresh(tp);
2613 	if (!push_one) {
2614 		/* Do MTU probing. */
2615 		result = tcp_mtu_probe(sk);
2616 		if (!result) {
2617 			return false;
2618 		} else if (result > 0) {
2619 			sent_pkts = 1;
2620 		}
2621 	}
2622 
2623 	max_segs = tcp_tso_segs(sk, mss_now);
2624 	while ((skb = tcp_send_head(sk))) {
2625 		unsigned int limit;
2626 
2627 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2628 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2629 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2630 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2631 			tcp_init_tso_segs(skb, mss_now);
2632 			goto repair; /* Skip network transmission */
2633 		}
2634 
2635 		if (tcp_pacing_check(sk))
2636 			break;
2637 
2638 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2639 		BUG_ON(!tso_segs);
2640 
2641 		cwnd_quota = tcp_cwnd_test(tp, skb);
2642 		if (!cwnd_quota) {
2643 			if (push_one == 2)
2644 				/* Force out a loss probe pkt. */
2645 				cwnd_quota = 1;
2646 			else
2647 				break;
2648 		}
2649 
2650 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2651 			is_rwnd_limited = true;
2652 			break;
2653 		}
2654 
2655 		if (tso_segs == 1) {
2656 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2657 						     (tcp_skb_is_last(sk, skb) ?
2658 						      nonagle : TCP_NAGLE_PUSH))))
2659 				break;
2660 		} else {
2661 			if (!push_one &&
2662 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2663 						 &is_rwnd_limited, max_segs))
2664 				break;
2665 		}
2666 
2667 		limit = mss_now;
2668 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2669 			limit = tcp_mss_split_point(sk, skb, mss_now,
2670 						    min_t(unsigned int,
2671 							  cwnd_quota,
2672 							  max_segs),
2673 						    nonagle);
2674 
2675 		if (skb->len > limit &&
2676 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2677 			break;
2678 
2679 		if (tcp_small_queue_check(sk, skb, 0))
2680 			break;
2681 
2682 		/* Argh, we hit an empty skb(), presumably a thread
2683 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2684 		 * We do not want to send a pure-ack packet and have
2685 		 * a strange looking rtx queue with empty packet(s).
2686 		 */
2687 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2688 			break;
2689 
2690 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2691 			break;
2692 
2693 repair:
2694 		/* Advance the send_head.  This one is sent out.
2695 		 * This call will increment packets_out.
2696 		 */
2697 		tcp_event_new_data_sent(sk, skb);
2698 
2699 		tcp_minshall_update(tp, mss_now, skb);
2700 		sent_pkts += tcp_skb_pcount(skb);
2701 
2702 		if (push_one)
2703 			break;
2704 	}
2705 
2706 	if (is_rwnd_limited)
2707 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2708 	else
2709 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2710 
2711 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2712 	if (likely(sent_pkts || is_cwnd_limited))
2713 		tcp_cwnd_validate(sk, is_cwnd_limited);
2714 
2715 	if (likely(sent_pkts)) {
2716 		if (tcp_in_cwnd_reduction(sk))
2717 			tp->prr_out += sent_pkts;
2718 
2719 		/* Send one loss probe per tail loss episode. */
2720 		if (push_one != 2)
2721 			tcp_schedule_loss_probe(sk, false);
2722 		return false;
2723 	}
2724 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2725 }
2726 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2727 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2728 {
2729 	struct inet_connection_sock *icsk = inet_csk(sk);
2730 	struct tcp_sock *tp = tcp_sk(sk);
2731 	u32 timeout, rto_delta_us;
2732 	int early_retrans;
2733 
2734 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2735 	 * finishes.
2736 	 */
2737 	if (rcu_access_pointer(tp->fastopen_rsk))
2738 		return false;
2739 
2740 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2741 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2742 	 * not in loss recovery, that are either limited by cwnd or application.
2743 	 */
2744 	if ((early_retrans != 3 && early_retrans != 4) ||
2745 	    !tp->packets_out || !tcp_is_sack(tp) ||
2746 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2747 	     icsk->icsk_ca_state != TCP_CA_CWR))
2748 		return false;
2749 
2750 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2751 	 * for delayed ack when there's one outstanding packet. If no RTT
2752 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2753 	 */
2754 	if (tp->srtt_us) {
2755 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2756 		if (tp->packets_out == 1)
2757 			timeout += TCP_RTO_MIN;
2758 		else
2759 			timeout += TCP_TIMEOUT_MIN;
2760 	} else {
2761 		timeout = TCP_TIMEOUT_INIT;
2762 	}
2763 
2764 	/* If the RTO formula yields an earlier time, then use that time. */
2765 	rto_delta_us = advancing_rto ?
2766 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2767 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2768 	if (rto_delta_us > 0)
2769 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2770 
2771 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2772 	return true;
2773 }
2774 
2775 /* Thanks to skb fast clones, we can detect if a prior transmit of
2776  * a packet is still in a qdisc or driver queue.
2777  * In this case, there is very little point doing a retransmit !
2778  */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2779 static bool skb_still_in_host_queue(const struct sock *sk,
2780 				    const struct sk_buff *skb)
2781 {
2782 	if (unlikely(skb_fclone_busy(sk, skb))) {
2783 		NET_INC_STATS(sock_net(sk),
2784 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2785 		return true;
2786 	}
2787 	return false;
2788 }
2789 
2790 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2791  * retransmit the last segment.
2792  */
tcp_send_loss_probe(struct sock * sk)2793 void tcp_send_loss_probe(struct sock *sk)
2794 {
2795 	struct tcp_sock *tp = tcp_sk(sk);
2796 	struct sk_buff *skb;
2797 	int pcount;
2798 	int mss = tcp_current_mss(sk);
2799 
2800 	/* At most one outstanding TLP */
2801 	if (tp->tlp_high_seq)
2802 		goto rearm_timer;
2803 
2804 	tp->tlp_retrans = 0;
2805 	skb = tcp_send_head(sk);
2806 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2807 		pcount = tp->packets_out;
2808 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2809 		if (tp->packets_out > pcount)
2810 			goto probe_sent;
2811 		goto rearm_timer;
2812 	}
2813 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2814 	if (unlikely(!skb)) {
2815 		WARN_ONCE(tp->packets_out,
2816 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2817 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2818 		inet_csk(sk)->icsk_pending = 0;
2819 		return;
2820 	}
2821 
2822 	if (skb_still_in_host_queue(sk, skb))
2823 		goto rearm_timer;
2824 
2825 	pcount = tcp_skb_pcount(skb);
2826 	if (WARN_ON(!pcount))
2827 		goto rearm_timer;
2828 
2829 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2830 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2831 					  (pcount - 1) * mss, mss,
2832 					  GFP_ATOMIC)))
2833 			goto rearm_timer;
2834 		skb = skb_rb_next(skb);
2835 	}
2836 
2837 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2838 		goto rearm_timer;
2839 
2840 	if (__tcp_retransmit_skb(sk, skb, 1))
2841 		goto rearm_timer;
2842 
2843 	tp->tlp_retrans = 1;
2844 
2845 probe_sent:
2846 	/* Record snd_nxt for loss detection. */
2847 	tp->tlp_high_seq = tp->snd_nxt;
2848 
2849 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2850 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2851 	inet_csk(sk)->icsk_pending = 0;
2852 rearm_timer:
2853 	tcp_rearm_rto(sk);
2854 }
2855 
2856 /* Push out any pending frames which were held back due to
2857  * TCP_CORK or attempt at coalescing tiny packets.
2858  * The socket must be locked by the caller.
2859  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2860 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2861 			       int nonagle)
2862 {
2863 	/* If we are closed, the bytes will have to remain here.
2864 	 * In time closedown will finish, we empty the write queue and
2865 	 * all will be happy.
2866 	 */
2867 	if (unlikely(sk->sk_state == TCP_CLOSE))
2868 		return;
2869 
2870 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2871 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2872 		tcp_check_probe_timer(sk);
2873 }
2874 
2875 /* Send _single_ skb sitting at the send head. This function requires
2876  * true push pending frames to setup probe timer etc.
2877  */
tcp_push_one(struct sock * sk,unsigned int mss_now)2878 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2879 {
2880 	struct sk_buff *skb = tcp_send_head(sk);
2881 
2882 	BUG_ON(!skb || skb->len < mss_now);
2883 
2884 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2885 }
2886 
2887 /* This function returns the amount that we can raise the
2888  * usable window based on the following constraints
2889  *
2890  * 1. The window can never be shrunk once it is offered (RFC 793)
2891  * 2. We limit memory per socket
2892  *
2893  * RFC 1122:
2894  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2895  *  RECV.NEXT + RCV.WIN fixed until:
2896  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2897  *
2898  * i.e. don't raise the right edge of the window until you can raise
2899  * it at least MSS bytes.
2900  *
2901  * Unfortunately, the recommended algorithm breaks header prediction,
2902  * since header prediction assumes th->window stays fixed.
2903  *
2904  * Strictly speaking, keeping th->window fixed violates the receiver
2905  * side SWS prevention criteria. The problem is that under this rule
2906  * a stream of single byte packets will cause the right side of the
2907  * window to always advance by a single byte.
2908  *
2909  * Of course, if the sender implements sender side SWS prevention
2910  * then this will not be a problem.
2911  *
2912  * BSD seems to make the following compromise:
2913  *
2914  *	If the free space is less than the 1/4 of the maximum
2915  *	space available and the free space is less than 1/2 mss,
2916  *	then set the window to 0.
2917  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2918  *	Otherwise, just prevent the window from shrinking
2919  *	and from being larger than the largest representable value.
2920  *
2921  * This prevents incremental opening of the window in the regime
2922  * where TCP is limited by the speed of the reader side taking
2923  * data out of the TCP receive queue. It does nothing about
2924  * those cases where the window is constrained on the sender side
2925  * because the pipeline is full.
2926  *
2927  * BSD also seems to "accidentally" limit itself to windows that are a
2928  * multiple of MSS, at least until the free space gets quite small.
2929  * This would appear to be a side effect of the mbuf implementation.
2930  * Combining these two algorithms results in the observed behavior
2931  * of having a fixed window size at almost all times.
2932  *
2933  * Below we obtain similar behavior by forcing the offered window to
2934  * a multiple of the mss when it is feasible to do so.
2935  *
2936  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2937  * Regular options like TIMESTAMP are taken into account.
2938  */
__tcp_select_window(struct sock * sk)2939 u32 __tcp_select_window(struct sock *sk)
2940 {
2941 	struct inet_connection_sock *icsk = inet_csk(sk);
2942 	struct tcp_sock *tp = tcp_sk(sk);
2943 	/* MSS for the peer's data.  Previous versions used mss_clamp
2944 	 * here.  I don't know if the value based on our guesses
2945 	 * of peer's MSS is better for the performance.  It's more correct
2946 	 * but may be worse for the performance because of rcv_mss
2947 	 * fluctuations.  --SAW  1998/11/1
2948 	 */
2949 	int mss = icsk->icsk_ack.rcv_mss;
2950 	int free_space = tcp_space(sk);
2951 	int allowed_space = tcp_full_space(sk);
2952 	int full_space, window;
2953 
2954 	if (sk_is_mptcp(sk))
2955 		mptcp_space(sk, &free_space, &allowed_space);
2956 
2957 	full_space = min_t(int, tp->window_clamp, allowed_space);
2958 
2959 	if (unlikely(mss > full_space)) {
2960 		mss = full_space;
2961 		if (mss <= 0)
2962 			return 0;
2963 	}
2964 	if (free_space < (full_space >> 1)) {
2965 		icsk->icsk_ack.quick = 0;
2966 
2967 		if (tcp_under_memory_pressure(sk))
2968 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2969 					       4U * tp->advmss);
2970 
2971 		/* free_space might become our new window, make sure we don't
2972 		 * increase it due to wscale.
2973 		 */
2974 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2975 
2976 		/* if free space is less than mss estimate, or is below 1/16th
2977 		 * of the maximum allowed, try to move to zero-window, else
2978 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2979 		 * new incoming data is dropped due to memory limits.
2980 		 * With large window, mss test triggers way too late in order
2981 		 * to announce zero window in time before rmem limit kicks in.
2982 		 */
2983 		if (free_space < (allowed_space >> 4) || free_space < mss)
2984 			return 0;
2985 	}
2986 
2987 	if (free_space > tp->rcv_ssthresh)
2988 		free_space = tp->rcv_ssthresh;
2989 
2990 	/* Don't do rounding if we are using window scaling, since the
2991 	 * scaled window will not line up with the MSS boundary anyway.
2992 	 */
2993 	if (tp->rx_opt.rcv_wscale) {
2994 		window = free_space;
2995 
2996 		/* Advertise enough space so that it won't get scaled away.
2997 		 * Import case: prevent zero window announcement if
2998 		 * 1<<rcv_wscale > mss.
2999 		 */
3000 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3001 	} else {
3002 		window = tp->rcv_wnd;
3003 		/* Get the largest window that is a nice multiple of mss.
3004 		 * Window clamp already applied above.
3005 		 * If our current window offering is within 1 mss of the
3006 		 * free space we just keep it. This prevents the divide
3007 		 * and multiply from happening most of the time.
3008 		 * We also don't do any window rounding when the free space
3009 		 * is too small.
3010 		 */
3011 		if (window <= free_space - mss || window > free_space)
3012 			window = rounddown(free_space, mss);
3013 		else if (mss == full_space &&
3014 			 free_space > window + (full_space >> 1))
3015 			window = free_space;
3016 	}
3017 
3018 	return window;
3019 }
3020 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3021 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3022 			     const struct sk_buff *next_skb)
3023 {
3024 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3025 		const struct skb_shared_info *next_shinfo =
3026 			skb_shinfo(next_skb);
3027 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3028 
3029 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3030 		shinfo->tskey = next_shinfo->tskey;
3031 		TCP_SKB_CB(skb)->txstamp_ack |=
3032 			TCP_SKB_CB(next_skb)->txstamp_ack;
3033 	}
3034 }
3035 
3036 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3037 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3038 {
3039 	struct tcp_sock *tp = tcp_sk(sk);
3040 	struct sk_buff *next_skb = skb_rb_next(skb);
3041 	int next_skb_size;
3042 
3043 	next_skb_size = next_skb->len;
3044 
3045 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3046 
3047 	if (next_skb_size) {
3048 		if (next_skb_size <= skb_availroom(skb))
3049 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
3050 				      next_skb_size);
3051 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3052 			return false;
3053 	}
3054 	tcp_highest_sack_replace(sk, next_skb, skb);
3055 
3056 	/* Update sequence range on original skb. */
3057 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3058 
3059 	/* Merge over control information. This moves PSH/FIN etc. over */
3060 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3061 
3062 	/* All done, get rid of second SKB and account for it so
3063 	 * packet counting does not break.
3064 	 */
3065 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3066 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3067 
3068 	/* changed transmit queue under us so clear hints */
3069 	tcp_clear_retrans_hints_partial(tp);
3070 	if (next_skb == tp->retransmit_skb_hint)
3071 		tp->retransmit_skb_hint = skb;
3072 
3073 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3074 
3075 	tcp_skb_collapse_tstamp(skb, next_skb);
3076 
3077 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3078 	return true;
3079 }
3080 
3081 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3082 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3083 {
3084 	if (tcp_skb_pcount(skb) > 1)
3085 		return false;
3086 	if (skb_cloned(skb))
3087 		return false;
3088 	/* Some heuristics for collapsing over SACK'd could be invented */
3089 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3090 		return false;
3091 
3092 	return true;
3093 }
3094 
3095 /* Collapse packets in the retransmit queue to make to create
3096  * less packets on the wire. This is only done on retransmission.
3097  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3098 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3099 				     int space)
3100 {
3101 	struct tcp_sock *tp = tcp_sk(sk);
3102 	struct sk_buff *skb = to, *tmp;
3103 	bool first = true;
3104 
3105 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3106 		return;
3107 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3108 		return;
3109 
3110 	skb_rbtree_walk_from_safe(skb, tmp) {
3111 		if (!tcp_can_collapse(sk, skb))
3112 			break;
3113 
3114 		if (!tcp_skb_can_collapse(to, skb))
3115 			break;
3116 
3117 		space -= skb->len;
3118 
3119 		if (first) {
3120 			first = false;
3121 			continue;
3122 		}
3123 
3124 		if (space < 0)
3125 			break;
3126 
3127 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3128 			break;
3129 
3130 		if (!tcp_collapse_retrans(sk, to))
3131 			break;
3132 	}
3133 }
3134 
3135 /* This retransmits one SKB.  Policy decisions and retransmit queue
3136  * state updates are done by the caller.  Returns non-zero if an
3137  * error occurred which prevented the send.
3138  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3139 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3140 {
3141 	struct inet_connection_sock *icsk = inet_csk(sk);
3142 	struct tcp_sock *tp = tcp_sk(sk);
3143 	unsigned int cur_mss;
3144 	int diff, len, err;
3145 	int avail_wnd;
3146 
3147 	/* Inconclusive MTU probe */
3148 	if (icsk->icsk_mtup.probe_size)
3149 		icsk->icsk_mtup.probe_size = 0;
3150 
3151 	/* Do not sent more than we queued. 1/4 is reserved for possible
3152 	 * copying overhead: fragmentation, tunneling, mangling etc.
3153 	 */
3154 	if (refcount_read(&sk->sk_wmem_alloc) >
3155 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
3156 		  sk->sk_sndbuf))
3157 		return -EAGAIN;
3158 
3159 	if (skb_still_in_host_queue(sk, skb))
3160 		return -EBUSY;
3161 
3162 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3163 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3164 			WARN_ON_ONCE(1);
3165 			return -EINVAL;
3166 		}
3167 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3168 			return -ENOMEM;
3169 	}
3170 
3171 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3172 		return -EHOSTUNREACH; /* Routing failure or similar. */
3173 
3174 	cur_mss = tcp_current_mss(sk);
3175 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3176 
3177 	/* If receiver has shrunk his window, and skb is out of
3178 	 * new window, do not retransmit it. The exception is the
3179 	 * case, when window is shrunk to zero. In this case
3180 	 * our retransmit of one segment serves as a zero window probe.
3181 	 */
3182 	if (avail_wnd <= 0) {
3183 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3184 			return -EAGAIN;
3185 		avail_wnd = cur_mss;
3186 	}
3187 
3188 	len = cur_mss * segs;
3189 	if (len > avail_wnd) {
3190 		len = rounddown(avail_wnd, cur_mss);
3191 		if (!len)
3192 			len = avail_wnd;
3193 	}
3194 	if (skb->len > len) {
3195 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3196 				 cur_mss, GFP_ATOMIC))
3197 			return -ENOMEM; /* We'll try again later. */
3198 	} else {
3199 		if (skb_unclone(skb, GFP_ATOMIC))
3200 			return -ENOMEM;
3201 
3202 		diff = tcp_skb_pcount(skb);
3203 		tcp_set_skb_tso_segs(skb, cur_mss);
3204 		diff -= tcp_skb_pcount(skb);
3205 		if (diff)
3206 			tcp_adjust_pcount(sk, skb, diff);
3207 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3208 		if (skb->len < avail_wnd)
3209 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3210 	}
3211 
3212 	/* RFC3168, section 6.1.1.1. ECN fallback */
3213 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3214 		tcp_ecn_clear_syn(sk, skb);
3215 
3216 	/* Update global and local TCP statistics. */
3217 	segs = tcp_skb_pcount(skb);
3218 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3219 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3220 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3221 	tp->total_retrans += segs;
3222 	tp->bytes_retrans += skb->len;
3223 
3224 	/* make sure skb->data is aligned on arches that require it
3225 	 * and check if ack-trimming & collapsing extended the headroom
3226 	 * beyond what csum_start can cover.
3227 	 */
3228 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3229 		     skb_headroom(skb) >= 0xFFFF)) {
3230 		struct sk_buff *nskb;
3231 
3232 		tcp_skb_tsorted_save(skb) {
3233 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3234 			if (nskb) {
3235 				nskb->dev = NULL;
3236 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3237 			} else {
3238 				err = -ENOBUFS;
3239 			}
3240 		} tcp_skb_tsorted_restore(skb);
3241 
3242 		if (!err) {
3243 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3244 			tcp_rate_skb_sent(sk, skb);
3245 		}
3246 	} else {
3247 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3248 	}
3249 
3250 	/* To avoid taking spuriously low RTT samples based on a timestamp
3251 	 * for a transmit that never happened, always mark EVER_RETRANS
3252 	 */
3253 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3254 
3255 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3256 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3257 				  TCP_SKB_CB(skb)->seq, segs, err);
3258 
3259 	if (likely(!err)) {
3260 		trace_tcp_retransmit_skb(sk, skb);
3261 	} else if (err != -EBUSY) {
3262 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3263 	}
3264 	return err;
3265 }
3266 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3267 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3268 {
3269 	struct tcp_sock *tp = tcp_sk(sk);
3270 	int err = __tcp_retransmit_skb(sk, skb, segs);
3271 
3272 	if (err == 0) {
3273 #if FASTRETRANS_DEBUG > 0
3274 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3275 			net_dbg_ratelimited("retrans_out leaked\n");
3276 		}
3277 #endif
3278 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3279 		tp->retrans_out += tcp_skb_pcount(skb);
3280 	}
3281 
3282 	/* Save stamp of the first (attempted) retransmit. */
3283 	if (!tp->retrans_stamp)
3284 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3285 
3286 	if (tp->undo_retrans < 0)
3287 		tp->undo_retrans = 0;
3288 	tp->undo_retrans += tcp_skb_pcount(skb);
3289 	return err;
3290 }
3291 
3292 /* This gets called after a retransmit timeout, and the initially
3293  * retransmitted data is acknowledged.  It tries to continue
3294  * resending the rest of the retransmit queue, until either
3295  * we've sent it all or the congestion window limit is reached.
3296  */
tcp_xmit_retransmit_queue(struct sock * sk)3297 void tcp_xmit_retransmit_queue(struct sock *sk)
3298 {
3299 	const struct inet_connection_sock *icsk = inet_csk(sk);
3300 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3301 	struct tcp_sock *tp = tcp_sk(sk);
3302 	bool rearm_timer = false;
3303 	u32 max_segs;
3304 	int mib_idx;
3305 
3306 	if (!tp->packets_out)
3307 		return;
3308 
3309 	rtx_head = tcp_rtx_queue_head(sk);
3310 	skb = tp->retransmit_skb_hint ?: rtx_head;
3311 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3312 	skb_rbtree_walk_from(skb) {
3313 		__u8 sacked;
3314 		int segs;
3315 
3316 		if (tcp_pacing_check(sk))
3317 			break;
3318 
3319 		/* we could do better than to assign each time */
3320 		if (!hole)
3321 			tp->retransmit_skb_hint = skb;
3322 
3323 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3324 		if (segs <= 0)
3325 			break;
3326 		sacked = TCP_SKB_CB(skb)->sacked;
3327 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3328 		 * we need to make sure not sending too bigs TSO packets
3329 		 */
3330 		segs = min_t(int, segs, max_segs);
3331 
3332 		if (tp->retrans_out >= tp->lost_out) {
3333 			break;
3334 		} else if (!(sacked & TCPCB_LOST)) {
3335 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3336 				hole = skb;
3337 			continue;
3338 
3339 		} else {
3340 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3341 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3342 			else
3343 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3344 		}
3345 
3346 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3347 			continue;
3348 
3349 		if (tcp_small_queue_check(sk, skb, 1))
3350 			break;
3351 
3352 		if (tcp_retransmit_skb(sk, skb, segs))
3353 			break;
3354 
3355 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3356 
3357 		if (tcp_in_cwnd_reduction(sk))
3358 			tp->prr_out += tcp_skb_pcount(skb);
3359 
3360 		if (skb == rtx_head &&
3361 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3362 			rearm_timer = true;
3363 
3364 	}
3365 	if (rearm_timer)
3366 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3367 				     inet_csk(sk)->icsk_rto,
3368 				     TCP_RTO_MAX);
3369 }
3370 
3371 /* We allow to exceed memory limits for FIN packets to expedite
3372  * connection tear down and (memory) recovery.
3373  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3374  * or even be forced to close flow without any FIN.
3375  * In general, we want to allow one skb per socket to avoid hangs
3376  * with edge trigger epoll()
3377  */
sk_forced_mem_schedule(struct sock * sk,int size)3378 void sk_forced_mem_schedule(struct sock *sk, int size)
3379 {
3380 	int delta, amt;
3381 
3382 	delta = size - sk->sk_forward_alloc;
3383 	if (delta <= 0)
3384 		return;
3385 	amt = sk_mem_pages(delta);
3386 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3387 	sk_memory_allocated_add(sk, amt);
3388 
3389 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3390 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3391 }
3392 
3393 /* Send a FIN. The caller locks the socket for us.
3394  * We should try to send a FIN packet really hard, but eventually give up.
3395  */
tcp_send_fin(struct sock * sk)3396 void tcp_send_fin(struct sock *sk)
3397 {
3398 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3399 	struct tcp_sock *tp = tcp_sk(sk);
3400 
3401 	/* Optimization, tack on the FIN if we have one skb in write queue and
3402 	 * this skb was not yet sent, or we are under memory pressure.
3403 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3404 	 * as TCP stack thinks it has already been transmitted.
3405 	 */
3406 	tskb = tail;
3407 	if (!tskb && tcp_under_memory_pressure(sk))
3408 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3409 
3410 	if (tskb) {
3411 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3412 		TCP_SKB_CB(tskb)->end_seq++;
3413 		tp->write_seq++;
3414 		if (!tail) {
3415 			/* This means tskb was already sent.
3416 			 * Pretend we included the FIN on previous transmit.
3417 			 * We need to set tp->snd_nxt to the value it would have
3418 			 * if FIN had been sent. This is because retransmit path
3419 			 * does not change tp->snd_nxt.
3420 			 */
3421 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3422 			return;
3423 		}
3424 	} else {
3425 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3426 		if (unlikely(!skb))
3427 			return;
3428 
3429 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3430 		skb_reserve(skb, MAX_TCP_HEADER);
3431 		sk_forced_mem_schedule(sk, skb->truesize);
3432 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3433 		tcp_init_nondata_skb(skb, tp->write_seq,
3434 				     TCPHDR_ACK | TCPHDR_FIN);
3435 		tcp_queue_skb(sk, skb);
3436 	}
3437 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3438 }
3439 
3440 /* We get here when a process closes a file descriptor (either due to
3441  * an explicit close() or as a byproduct of exit()'ing) and there
3442  * was unread data in the receive queue.  This behavior is recommended
3443  * by RFC 2525, section 2.17.  -DaveM
3444  */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3445 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3446 {
3447 	struct sk_buff *skb;
3448 
3449 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3450 
3451 	/* NOTE: No TCP options attached and we never retransmit this. */
3452 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3453 	if (!skb) {
3454 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3455 		return;
3456 	}
3457 
3458 	/* Reserve space for headers and prepare control bits. */
3459 	skb_reserve(skb, MAX_TCP_HEADER);
3460 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3461 			     TCPHDR_ACK | TCPHDR_RST);
3462 	tcp_mstamp_refresh(tcp_sk(sk));
3463 	/* Send it off. */
3464 	if (tcp_transmit_skb(sk, skb, 0, priority))
3465 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3466 
3467 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3468 	 * skb here is different to the troublesome skb, so use NULL
3469 	 */
3470 	trace_tcp_send_reset(sk, NULL);
3471 }
3472 
3473 /* Send a crossed SYN-ACK during socket establishment.
3474  * WARNING: This routine must only be called when we have already sent
3475  * a SYN packet that crossed the incoming SYN that caused this routine
3476  * to get called. If this assumption fails then the initial rcv_wnd
3477  * and rcv_wscale values will not be correct.
3478  */
tcp_send_synack(struct sock * sk)3479 int tcp_send_synack(struct sock *sk)
3480 {
3481 	struct sk_buff *skb;
3482 
3483 	skb = tcp_rtx_queue_head(sk);
3484 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3485 		pr_err("%s: wrong queue state\n", __func__);
3486 		return -EFAULT;
3487 	}
3488 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3489 		if (skb_cloned(skb)) {
3490 			struct sk_buff *nskb;
3491 
3492 			tcp_skb_tsorted_save(skb) {
3493 				nskb = skb_copy(skb, GFP_ATOMIC);
3494 			} tcp_skb_tsorted_restore(skb);
3495 			if (!nskb)
3496 				return -ENOMEM;
3497 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3498 			tcp_highest_sack_replace(sk, skb, nskb);
3499 			tcp_rtx_queue_unlink_and_free(skb, sk);
3500 			__skb_header_release(nskb);
3501 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3502 			sk_wmem_queued_add(sk, nskb->truesize);
3503 			sk_mem_charge(sk, nskb->truesize);
3504 			skb = nskb;
3505 		}
3506 
3507 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3508 		tcp_ecn_send_synack(sk, skb);
3509 	}
3510 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3511 }
3512 
3513 /**
3514  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3515  * @sk: listener socket
3516  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3517  *       should not use it again.
3518  * @req: request_sock pointer
3519  * @foc: cookie for tcp fast open
3520  * @synack_type: Type of synack to prepare
3521  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3522  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3523 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3524 				struct request_sock *req,
3525 				struct tcp_fastopen_cookie *foc,
3526 				enum tcp_synack_type synack_type,
3527 				struct sk_buff *syn_skb)
3528 {
3529 	struct inet_request_sock *ireq = inet_rsk(req);
3530 	const struct tcp_sock *tp = tcp_sk(sk);
3531 	struct tcp_md5sig_key *md5 = NULL;
3532 	struct tcp_out_options opts;
3533 	struct sk_buff *skb;
3534 	int tcp_header_size;
3535 	struct tcphdr *th;
3536 	int mss;
3537 	u64 now;
3538 
3539 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3540 	if (unlikely(!skb)) {
3541 		dst_release(dst);
3542 		return NULL;
3543 	}
3544 	/* Reserve space for headers. */
3545 	skb_reserve(skb, MAX_TCP_HEADER);
3546 
3547 	switch (synack_type) {
3548 	case TCP_SYNACK_NORMAL:
3549 		skb_set_owner_w(skb, req_to_sk(req));
3550 		break;
3551 	case TCP_SYNACK_COOKIE:
3552 		/* Under synflood, we do not attach skb to a socket,
3553 		 * to avoid false sharing.
3554 		 */
3555 		break;
3556 	case TCP_SYNACK_FASTOPEN:
3557 		/* sk is a const pointer, because we want to express multiple
3558 		 * cpu might call us concurrently.
3559 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3560 		 */
3561 		skb_set_owner_w(skb, (struct sock *)sk);
3562 		break;
3563 	}
3564 	skb_dst_set(skb, dst);
3565 
3566 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3567 
3568 	memset(&opts, 0, sizeof(opts));
3569 	now = tcp_clock_ns();
3570 #ifdef CONFIG_SYN_COOKIES
3571 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3572 		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3573 	else
3574 #endif
3575 	{
3576 		skb->skb_mstamp_ns = now;
3577 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3578 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3579 	}
3580 
3581 #ifdef CONFIG_TCP_MD5SIG
3582 	rcu_read_lock();
3583 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3584 #endif
3585 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3586 	/* bpf program will be interested in the tcp_flags */
3587 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3588 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3589 					     foc, synack_type,
3590 					     syn_skb) + sizeof(*th);
3591 
3592 	skb_push(skb, tcp_header_size);
3593 	skb_reset_transport_header(skb);
3594 
3595 	th = (struct tcphdr *)skb->data;
3596 	memset(th, 0, sizeof(struct tcphdr));
3597 	th->syn = 1;
3598 	th->ack = 1;
3599 	tcp_ecn_make_synack(req, th);
3600 	th->source = htons(ireq->ir_num);
3601 	th->dest = ireq->ir_rmt_port;
3602 	skb->mark = ireq->ir_mark;
3603 	skb->ip_summed = CHECKSUM_PARTIAL;
3604 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3605 	/* XXX data is queued and acked as is. No buffer/window check */
3606 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3607 
3608 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3609 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3610 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3611 	th->doff = (tcp_header_size >> 2);
3612 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3613 
3614 #ifdef CONFIG_TCP_MD5SIG
3615 	/* Okay, we have all we need - do the md5 hash if needed */
3616 	if (md5)
3617 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3618 					       md5, req_to_sk(req), skb);
3619 	rcu_read_unlock();
3620 #endif
3621 
3622 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3623 				synack_type, &opts);
3624 
3625 	skb->skb_mstamp_ns = now;
3626 	tcp_add_tx_delay(skb, tp);
3627 
3628 	return skb;
3629 }
3630 EXPORT_SYMBOL(tcp_make_synack);
3631 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3632 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3633 {
3634 	struct inet_connection_sock *icsk = inet_csk(sk);
3635 	const struct tcp_congestion_ops *ca;
3636 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3637 
3638 	if (ca_key == TCP_CA_UNSPEC)
3639 		return;
3640 
3641 	rcu_read_lock();
3642 	ca = tcp_ca_find_key(ca_key);
3643 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3644 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3645 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3646 		icsk->icsk_ca_ops = ca;
3647 	}
3648 	rcu_read_unlock();
3649 }
3650 
3651 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3652 static void tcp_connect_init(struct sock *sk)
3653 {
3654 	const struct dst_entry *dst = __sk_dst_get(sk);
3655 	struct tcp_sock *tp = tcp_sk(sk);
3656 	__u8 rcv_wscale;
3657 	u32 rcv_wnd;
3658 
3659 	/* We'll fix this up when we get a response from the other end.
3660 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3661 	 */
3662 	tp->tcp_header_len = sizeof(struct tcphdr);
3663 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3664 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3665 
3666 #ifdef CONFIG_TCP_MD5SIG
3667 	if (tp->af_specific->md5_lookup(sk, sk))
3668 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3669 #endif
3670 
3671 	/* If user gave his TCP_MAXSEG, record it to clamp */
3672 	if (tp->rx_opt.user_mss)
3673 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3674 	tp->max_window = 0;
3675 	tcp_mtup_init(sk);
3676 	tcp_sync_mss(sk, dst_mtu(dst));
3677 
3678 	tcp_ca_dst_init(sk, dst);
3679 
3680 	if (!tp->window_clamp)
3681 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3682 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3683 
3684 	tcp_initialize_rcv_mss(sk);
3685 
3686 	/* limit the window selection if the user enforce a smaller rx buffer */
3687 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3688 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3689 		tp->window_clamp = tcp_full_space(sk);
3690 
3691 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3692 	if (rcv_wnd == 0)
3693 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3694 
3695 	tcp_select_initial_window(sk, tcp_full_space(sk),
3696 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3697 				  &tp->rcv_wnd,
3698 				  &tp->window_clamp,
3699 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3700 				  &rcv_wscale,
3701 				  rcv_wnd);
3702 
3703 	tp->rx_opt.rcv_wscale = rcv_wscale;
3704 	tp->rcv_ssthresh = tp->rcv_wnd;
3705 
3706 	sk->sk_err = 0;
3707 	sock_reset_flag(sk, SOCK_DONE);
3708 	tp->snd_wnd = 0;
3709 	tcp_init_wl(tp, 0);
3710 	tcp_write_queue_purge(sk);
3711 	tp->snd_una = tp->write_seq;
3712 	tp->snd_sml = tp->write_seq;
3713 	tp->snd_up = tp->write_seq;
3714 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3715 
3716 	if (likely(!tp->repair))
3717 		tp->rcv_nxt = 0;
3718 	else
3719 		tp->rcv_tstamp = tcp_jiffies32;
3720 	tp->rcv_wup = tp->rcv_nxt;
3721 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3722 
3723 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3724 	inet_csk(sk)->icsk_retransmits = 0;
3725 	tcp_clear_retrans(tp);
3726 }
3727 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3728 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3729 {
3730 	struct tcp_sock *tp = tcp_sk(sk);
3731 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3732 
3733 	tcb->end_seq += skb->len;
3734 	__skb_header_release(skb);
3735 	sk_wmem_queued_add(sk, skb->truesize);
3736 	sk_mem_charge(sk, skb->truesize);
3737 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3738 	tp->packets_out += tcp_skb_pcount(skb);
3739 }
3740 
3741 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3742  * queue a data-only packet after the regular SYN, such that regular SYNs
3743  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3744  * only the SYN sequence, the data are retransmitted in the first ACK.
3745  * If cookie is not cached or other error occurs, falls back to send a
3746  * regular SYN with Fast Open cookie request option.
3747  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3748 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3749 {
3750 	struct inet_connection_sock *icsk = inet_csk(sk);
3751 	struct tcp_sock *tp = tcp_sk(sk);
3752 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3753 	int space, err = 0;
3754 	struct sk_buff *syn_data;
3755 
3756 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3757 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3758 		goto fallback;
3759 
3760 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3761 	 * user-MSS. Reserve maximum option space for middleboxes that add
3762 	 * private TCP options. The cost is reduced data space in SYN :(
3763 	 */
3764 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3765 	/* Sync mss_cache after updating the mss_clamp */
3766 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3767 
3768 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3769 		MAX_TCP_OPTION_SPACE;
3770 
3771 	space = min_t(size_t, space, fo->size);
3772 
3773 	/* limit to order-0 allocations */
3774 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3775 
3776 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3777 	if (!syn_data)
3778 		goto fallback;
3779 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3780 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3781 	if (space) {
3782 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3783 					    &fo->data->msg_iter);
3784 		if (unlikely(!copied)) {
3785 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3786 			kfree_skb(syn_data);
3787 			goto fallback;
3788 		}
3789 		if (copied != space) {
3790 			skb_trim(syn_data, copied);
3791 			space = copied;
3792 		}
3793 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3794 	}
3795 	/* No more data pending in inet_wait_for_connect() */
3796 	if (space == fo->size)
3797 		fo->data = NULL;
3798 	fo->copied = space;
3799 
3800 	tcp_connect_queue_skb(sk, syn_data);
3801 	if (syn_data->len)
3802 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3803 
3804 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3805 
3806 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3807 
3808 	/* Now full SYN+DATA was cloned and sent (or not),
3809 	 * remove the SYN from the original skb (syn_data)
3810 	 * we keep in write queue in case of a retransmit, as we
3811 	 * also have the SYN packet (with no data) in the same queue.
3812 	 */
3813 	TCP_SKB_CB(syn_data)->seq++;
3814 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3815 	if (!err) {
3816 		tp->syn_data = (fo->copied > 0);
3817 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3818 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3819 		goto done;
3820 	}
3821 
3822 	/* data was not sent, put it in write_queue */
3823 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3824 	tp->packets_out -= tcp_skb_pcount(syn_data);
3825 
3826 fallback:
3827 	/* Send a regular SYN with Fast Open cookie request option */
3828 	if (fo->cookie.len > 0)
3829 		fo->cookie.len = 0;
3830 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3831 	if (err)
3832 		tp->syn_fastopen = 0;
3833 done:
3834 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3835 	return err;
3836 }
3837 
3838 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3839 int tcp_connect(struct sock *sk)
3840 {
3841 	struct tcp_sock *tp = tcp_sk(sk);
3842 	struct sk_buff *buff;
3843 	int err;
3844 
3845 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3846 
3847 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3848 		return -EHOSTUNREACH; /* Routing failure or similar. */
3849 
3850 	tcp_connect_init(sk);
3851 
3852 	if (unlikely(tp->repair)) {
3853 		tcp_finish_connect(sk, NULL);
3854 		return 0;
3855 	}
3856 
3857 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3858 	if (unlikely(!buff))
3859 		return -ENOBUFS;
3860 
3861 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3862 	tcp_mstamp_refresh(tp);
3863 	tp->retrans_stamp = tcp_time_stamp(tp);
3864 	tcp_connect_queue_skb(sk, buff);
3865 	tcp_ecn_send_syn(sk, buff);
3866 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3867 
3868 	/* Send off SYN; include data in Fast Open. */
3869 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3870 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3871 	if (err == -ECONNREFUSED)
3872 		return err;
3873 
3874 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3875 	 * in order to make this packet get counted in tcpOutSegs.
3876 	 */
3877 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3878 	tp->pushed_seq = tp->write_seq;
3879 	buff = tcp_send_head(sk);
3880 	if (unlikely(buff)) {
3881 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3882 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3883 	}
3884 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3885 
3886 	/* Timer for repeating the SYN until an answer. */
3887 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3888 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3889 	return 0;
3890 }
3891 EXPORT_SYMBOL(tcp_connect);
3892 
3893 /* Send out a delayed ack, the caller does the policy checking
3894  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3895  * for details.
3896  */
tcp_send_delayed_ack(struct sock * sk)3897 void tcp_send_delayed_ack(struct sock *sk)
3898 {
3899 	struct inet_connection_sock *icsk = inet_csk(sk);
3900 	int ato = icsk->icsk_ack.ato;
3901 	unsigned long timeout;
3902 
3903 	if (ato > TCP_DELACK_MIN) {
3904 		const struct tcp_sock *tp = tcp_sk(sk);
3905 		int max_ato = HZ / 2;
3906 
3907 		if (inet_csk_in_pingpong_mode(sk) ||
3908 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3909 			max_ato = TCP_DELACK_MAX;
3910 
3911 		/* Slow path, intersegment interval is "high". */
3912 
3913 		/* If some rtt estimate is known, use it to bound delayed ack.
3914 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3915 		 * directly.
3916 		 */
3917 		if (tp->srtt_us) {
3918 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3919 					TCP_DELACK_MIN);
3920 
3921 			if (rtt < max_ato)
3922 				max_ato = rtt;
3923 		}
3924 
3925 		ato = min(ato, max_ato);
3926 	}
3927 
3928 	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3929 
3930 	/* Stay within the limit we were given */
3931 	timeout = jiffies + ato;
3932 
3933 	/* Use new timeout only if there wasn't a older one earlier. */
3934 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3935 		/* If delack timer is about to expire, send ACK now. */
3936 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3937 			tcp_send_ack(sk);
3938 			return;
3939 		}
3940 
3941 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3942 			timeout = icsk->icsk_ack.timeout;
3943 	}
3944 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3945 	icsk->icsk_ack.timeout = timeout;
3946 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3947 }
3948 
3949 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3950 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3951 {
3952 	struct sk_buff *buff;
3953 
3954 	/* If we have been reset, we may not send again. */
3955 	if (sk->sk_state == TCP_CLOSE)
3956 		return;
3957 
3958 	/* We are not putting this on the write queue, so
3959 	 * tcp_transmit_skb() will set the ownership to this
3960 	 * sock.
3961 	 */
3962 	buff = alloc_skb(MAX_TCP_HEADER,
3963 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3964 	if (unlikely(!buff)) {
3965 		struct inet_connection_sock *icsk = inet_csk(sk);
3966 		unsigned long delay;
3967 
3968 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3969 		if (delay < TCP_RTO_MAX)
3970 			icsk->icsk_ack.retry++;
3971 		inet_csk_schedule_ack(sk);
3972 		icsk->icsk_ack.ato = TCP_ATO_MIN;
3973 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3974 		return;
3975 	}
3976 
3977 	/* Reserve space for headers and prepare control bits. */
3978 	skb_reserve(buff, MAX_TCP_HEADER);
3979 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3980 
3981 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3982 	 * too much.
3983 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3984 	 */
3985 	skb_set_tcp_pure_ack(buff);
3986 
3987 	/* Send it off, this clears delayed acks for us. */
3988 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3989 }
3990 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3991 
tcp_send_ack(struct sock * sk)3992 void tcp_send_ack(struct sock *sk)
3993 {
3994 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3995 }
3996 
3997 /* This routine sends a packet with an out of date sequence
3998  * number. It assumes the other end will try to ack it.
3999  *
4000  * Question: what should we make while urgent mode?
4001  * 4.4BSD forces sending single byte of data. We cannot send
4002  * out of window data, because we have SND.NXT==SND.MAX...
4003  *
4004  * Current solution: to send TWO zero-length segments in urgent mode:
4005  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4006  * out-of-date with SND.UNA-1 to probe window.
4007  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4008 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4009 {
4010 	struct tcp_sock *tp = tcp_sk(sk);
4011 	struct sk_buff *skb;
4012 
4013 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4014 	skb = alloc_skb(MAX_TCP_HEADER,
4015 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4016 	if (!skb)
4017 		return -1;
4018 
4019 	/* Reserve space for headers and set control bits. */
4020 	skb_reserve(skb, MAX_TCP_HEADER);
4021 	/* Use a previous sequence.  This should cause the other
4022 	 * end to send an ack.  Don't queue or clone SKB, just
4023 	 * send it.
4024 	 */
4025 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4026 	NET_INC_STATS(sock_net(sk), mib);
4027 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4028 }
4029 
4030 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4031 void tcp_send_window_probe(struct sock *sk)
4032 {
4033 	if (sk->sk_state == TCP_ESTABLISHED) {
4034 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4035 		tcp_mstamp_refresh(tcp_sk(sk));
4036 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4037 	}
4038 }
4039 
4040 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4041 int tcp_write_wakeup(struct sock *sk, int mib)
4042 {
4043 	struct tcp_sock *tp = tcp_sk(sk);
4044 	struct sk_buff *skb;
4045 
4046 	if (sk->sk_state == TCP_CLOSE)
4047 		return -1;
4048 
4049 	skb = tcp_send_head(sk);
4050 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4051 		int err;
4052 		unsigned int mss = tcp_current_mss(sk);
4053 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4054 
4055 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4056 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4057 
4058 		/* We are probing the opening of a window
4059 		 * but the window size is != 0
4060 		 * must have been a result SWS avoidance ( sender )
4061 		 */
4062 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4063 		    skb->len > mss) {
4064 			seg_size = min(seg_size, mss);
4065 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4066 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4067 					 skb, seg_size, mss, GFP_ATOMIC))
4068 				return -1;
4069 		} else if (!tcp_skb_pcount(skb))
4070 			tcp_set_skb_tso_segs(skb, mss);
4071 
4072 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4073 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4074 		if (!err)
4075 			tcp_event_new_data_sent(sk, skb);
4076 		return err;
4077 	} else {
4078 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4079 			tcp_xmit_probe_skb(sk, 1, mib);
4080 		return tcp_xmit_probe_skb(sk, 0, mib);
4081 	}
4082 }
4083 
4084 /* A window probe timeout has occurred.  If window is not closed send
4085  * a partial packet else a zero probe.
4086  */
tcp_send_probe0(struct sock * sk)4087 void tcp_send_probe0(struct sock *sk)
4088 {
4089 	struct inet_connection_sock *icsk = inet_csk(sk);
4090 	struct tcp_sock *tp = tcp_sk(sk);
4091 	struct net *net = sock_net(sk);
4092 	unsigned long timeout;
4093 	int err;
4094 
4095 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4096 
4097 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4098 		/* Cancel probe timer, if it is not required. */
4099 		icsk->icsk_probes_out = 0;
4100 		icsk->icsk_backoff = 0;
4101 		icsk->icsk_probes_tstamp = 0;
4102 		return;
4103 	}
4104 
4105 	icsk->icsk_probes_out++;
4106 	if (err <= 0) {
4107 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4108 			icsk->icsk_backoff++;
4109 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4110 	} else {
4111 		/* If packet was not sent due to local congestion,
4112 		 * Let senders fight for local resources conservatively.
4113 		 */
4114 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4115 	}
4116 
4117 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4118 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4119 }
4120 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4121 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4122 {
4123 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4124 	struct flowi fl;
4125 	int res;
4126 
4127 	tcp_rsk(req)->txhash = net_tx_rndhash();
4128 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4129 				  NULL);
4130 	if (!res) {
4131 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4132 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4133 		if (unlikely(tcp_passive_fastopen(sk)))
4134 			tcp_sk(sk)->total_retrans++;
4135 		trace_tcp_retransmit_synack(sk, req);
4136 	}
4137 	return res;
4138 }
4139 EXPORT_SYMBOL(tcp_rtx_synack);
4140