1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47
48 #include <trace/events/tcp.h>
49
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
52 */
tcp_mstamp_refresh(struct tcp_sock * tp)53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 u64 val = tcp_clock_ns();
56
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
63
64 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
70
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
78
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 tcp_rearm_rto(sk);
82
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 tcp_skb_pcount(skb));
85 tcp_check_space(sk);
86 }
87
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89 * window scaling factor due to loss of precision.
90 * If window has been shrunk, what should we make? It is not clear at all.
91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93 * invalid. OK, let's make this for now:
94 */
tcp_acceptable_seq(const struct sock * sk)95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 const struct tcp_sock *tp = tcp_sk(sk);
98
99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 (tp->rx_opt.wscale_ok &&
101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
tcp_advertise_mss(struct sock * sk)121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
141 */
tcp_cwnd_restart(struct sock * sk,s32 delta)142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tp->snd_cwnd;
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tp->snd_cwnd = max(cwnd, restart_cwnd);
156 tp->snd_cwnd_stamp = tcp_jiffies32;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_jiffies32;
166
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
169
170 tp->lsndtime = now;
171
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
174 */
175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 inet_csk_enter_pingpong_mode(sk);
177 }
178
179 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts,u32 rcv_nxt)180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
181 u32 rcv_nxt)
182 {
183 struct tcp_sock *tp = tcp_sk(sk);
184
185 if (unlikely(tp->compressed_ack)) {
186 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
187 tp->compressed_ack);
188 tp->compressed_ack = 0;
189 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
190 __sock_put(sk);
191 }
192
193 if (unlikely(rcv_nxt != tp->rcv_nxt))
194 return; /* Special ACK sent by DCTCP to reflect ECN */
195 tcp_dec_quickack_mode(sk, pkts);
196 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 }
198
199 /* Determine a window scaling and initial window to offer.
200 * Based on the assumption that the given amount of space
201 * will be offered. Store the results in the tp structure.
202 * NOTE: for smooth operation initial space offering should
203 * be a multiple of mss if possible. We assume here that mss >= 1.
204 * This MUST be enforced by all callers.
205 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
207 __u32 *rcv_wnd, __u32 *window_clamp,
208 int wscale_ok, __u8 *rcv_wscale,
209 __u32 init_rcv_wnd)
210 {
211 unsigned int space = (__space < 0 ? 0 : __space);
212
213 /* If no clamp set the clamp to the max possible scaled window */
214 if (*window_clamp == 0)
215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 space = min(*window_clamp, space);
217
218 /* Quantize space offering to a multiple of mss if possible. */
219 if (space > mss)
220 space = rounddown(space, mss);
221
222 /* NOTE: offering an initial window larger than 32767
223 * will break some buggy TCP stacks. If the admin tells us
224 * it is likely we could be speaking with such a buggy stack
225 * we will truncate our initial window offering to 32K-1
226 * unless the remote has sent us a window scaling option,
227 * which we interpret as a sign the remote TCP is not
228 * misinterpreting the window field as a signed quantity.
229 */
230 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 else
233 (*rcv_wnd) = min_t(u32, space, U16_MAX);
234
235 if (init_rcv_wnd)
236 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
237
238 *rcv_wscale = 0;
239 if (wscale_ok) {
240 /* Set window scaling on max possible window */
241 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 space = min_t(u32, space, *window_clamp);
244 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 0, TCP_MAX_WSCALE);
246 }
247 /* Set the clamp no higher than max representable value */
248 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
249 }
250 EXPORT_SYMBOL(tcp_select_initial_window);
251
252 /* Chose a new window to advertise, update state in tcp_sock for the
253 * socket, and return result with RFC1323 scaling applied. The return
254 * value can be stuffed directly into th->window for an outgoing
255 * frame.
256 */
tcp_select_window(struct sock * sk)257 static u16 tcp_select_window(struct sock *sk)
258 {
259 struct tcp_sock *tp = tcp_sk(sk);
260 u32 old_win = tp->rcv_wnd;
261 u32 cur_win = tcp_receive_window(tp);
262 u32 new_win = __tcp_select_window(sk);
263
264 /* Never shrink the offered window */
265 if (new_win < cur_win) {
266 /* Danger Will Robinson!
267 * Don't update rcv_wup/rcv_wnd here or else
268 * we will not be able to advertise a zero
269 * window in time. --DaveM
270 *
271 * Relax Will Robinson.
272 */
273 if (new_win == 0)
274 NET_INC_STATS(sock_net(sk),
275 LINUX_MIB_TCPWANTZEROWINDOWADV);
276 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
277 }
278 tp->rcv_wnd = new_win;
279 tp->rcv_wup = tp->rcv_nxt;
280
281 /* Make sure we do not exceed the maximum possible
282 * scaled window.
283 */
284 if (!tp->rx_opt.rcv_wscale &&
285 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
286 new_win = min(new_win, MAX_TCP_WINDOW);
287 else
288 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
289
290 /* RFC1323 scaling applied */
291 new_win >>= tp->rx_opt.rcv_wscale;
292
293 /* If we advertise zero window, disable fast path. */
294 if (new_win == 0) {
295 tp->pred_flags = 0;
296 if (old_win)
297 NET_INC_STATS(sock_net(sk),
298 LINUX_MIB_TCPTOZEROWINDOWADV);
299 } else if (old_win == 0) {
300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
301 }
302
303 return new_win;
304 }
305
306 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)307 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
308 {
309 const struct tcp_sock *tp = tcp_sk(sk);
310
311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
312 if (!(tp->ecn_flags & TCP_ECN_OK))
313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
314 else if (tcp_ca_needs_ecn(sk) ||
315 tcp_bpf_ca_needs_ecn(sk))
316 INET_ECN_xmit(sk);
317 }
318
319 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)320 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
321 {
322 struct tcp_sock *tp = tcp_sk(sk);
323 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
324 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
325 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
326
327 if (!use_ecn) {
328 const struct dst_entry *dst = __sk_dst_get(sk);
329
330 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
331 use_ecn = true;
332 }
333
334 tp->ecn_flags = 0;
335
336 if (use_ecn) {
337 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
338 tp->ecn_flags = TCP_ECN_OK;
339 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
340 INET_ECN_xmit(sk);
341 }
342 }
343
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)344 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
345 {
346 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
347 /* tp->ecn_flags are cleared at a later point in time when
348 * SYN ACK is ultimatively being received.
349 */
350 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
351 }
352
353 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
355 {
356 if (inet_rsk(req)->ecn_ok)
357 th->ece = 1;
358 }
359
360 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
361 * be sent.
362 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)363 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
364 struct tcphdr *th, int tcp_header_len)
365 {
366 struct tcp_sock *tp = tcp_sk(sk);
367
368 if (tp->ecn_flags & TCP_ECN_OK) {
369 /* Not-retransmitted data segment: set ECT and inject CWR. */
370 if (skb->len != tcp_header_len &&
371 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
372 INET_ECN_xmit(sk);
373 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
374 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
375 th->cwr = 1;
376 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
377 }
378 } else if (!tcp_ca_needs_ecn(sk)) {
379 /* ACK or retransmitted segment: clear ECT|CE */
380 INET_ECN_dontxmit(sk);
381 }
382 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
383 th->ece = 1;
384 }
385 }
386
387 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
388 * auto increment end seqno.
389 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)390 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
391 {
392 skb->ip_summed = CHECKSUM_PARTIAL;
393
394 TCP_SKB_CB(skb)->tcp_flags = flags;
395 TCP_SKB_CB(skb)->sacked = 0;
396
397 tcp_skb_pcount_set(skb, 1);
398
399 TCP_SKB_CB(skb)->seq = seq;
400 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
401 seq++;
402 TCP_SKB_CB(skb)->end_seq = seq;
403 }
404
tcp_urg_mode(const struct tcp_sock * tp)405 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
406 {
407 return tp->snd_una != tp->snd_up;
408 }
409
410 #define OPTION_SACK_ADVERTISE (1 << 0)
411 #define OPTION_TS (1 << 1)
412 #define OPTION_MD5 (1 << 2)
413 #define OPTION_WSCALE (1 << 3)
414 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
415 #define OPTION_SMC (1 << 9)
416 #define OPTION_MPTCP (1 << 10)
417
smc_options_write(__be32 * ptr,u16 * options)418 static void smc_options_write(__be32 *ptr, u16 *options)
419 {
420 #if IS_ENABLED(CONFIG_SMC)
421 if (static_branch_unlikely(&tcp_have_smc)) {
422 if (unlikely(OPTION_SMC & *options)) {
423 *ptr++ = htonl((TCPOPT_NOP << 24) |
424 (TCPOPT_NOP << 16) |
425 (TCPOPT_EXP << 8) |
426 (TCPOLEN_EXP_SMC_BASE));
427 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
428 }
429 }
430 #endif
431 }
432
433 struct tcp_out_options {
434 u16 options; /* bit field of OPTION_* */
435 u16 mss; /* 0 to disable */
436 u8 ws; /* window scale, 0 to disable */
437 u8 num_sack_blocks; /* number of SACK blocks to include */
438 u8 hash_size; /* bytes in hash_location */
439 u8 bpf_opt_len; /* length of BPF hdr option */
440 __u8 *hash_location; /* temporary pointer, overloaded */
441 __u32 tsval, tsecr; /* need to include OPTION_TS */
442 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
443 struct mptcp_out_options mptcp;
444 };
445
mptcp_options_write(__be32 * ptr,struct tcp_out_options * opts)446 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
447 {
448 #if IS_ENABLED(CONFIG_MPTCP)
449 if (unlikely(OPTION_MPTCP & opts->options))
450 mptcp_write_options(ptr, &opts->mptcp);
451 #endif
452 }
453
454 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)455 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
456 enum tcp_synack_type synack_type)
457 {
458 if (unlikely(!skb))
459 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
460
461 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
462 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
463
464 return 0;
465 }
466
467 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)468 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
469 struct request_sock *req,
470 struct sk_buff *syn_skb,
471 enum tcp_synack_type synack_type,
472 struct tcp_out_options *opts,
473 unsigned int *remaining)
474 {
475 struct bpf_sock_ops_kern sock_ops;
476 int err;
477
478 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
479 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
480 !*remaining)
481 return;
482
483 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
484
485 /* init sock_ops */
486 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
487
488 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
489
490 if (req) {
491 /* The listen "sk" cannot be passed here because
492 * it is not locked. It would not make too much
493 * sense to do bpf_setsockopt(listen_sk) based
494 * on individual connection request also.
495 *
496 * Thus, "req" is passed here and the cgroup-bpf-progs
497 * of the listen "sk" will be run.
498 *
499 * "req" is also used here for fastopen even the "sk" here is
500 * a fullsock "child" sk. It is to keep the behavior
501 * consistent between fastopen and non-fastopen on
502 * the bpf programming side.
503 */
504 sock_ops.sk = (struct sock *)req;
505 sock_ops.syn_skb = syn_skb;
506 } else {
507 sock_owned_by_me(sk);
508
509 sock_ops.is_fullsock = 1;
510 sock_ops.sk = sk;
511 }
512
513 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
514 sock_ops.remaining_opt_len = *remaining;
515 /* tcp_current_mss() does not pass a skb */
516 if (skb)
517 bpf_skops_init_skb(&sock_ops, skb, 0);
518
519 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
520
521 if (err || sock_ops.remaining_opt_len == *remaining)
522 return;
523
524 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
525 /* round up to 4 bytes */
526 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
527
528 *remaining -= opts->bpf_opt_len;
529 }
530
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)531 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
532 struct request_sock *req,
533 struct sk_buff *syn_skb,
534 enum tcp_synack_type synack_type,
535 struct tcp_out_options *opts)
536 {
537 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
538 struct bpf_sock_ops_kern sock_ops;
539 int err;
540
541 if (likely(!max_opt_len))
542 return;
543
544 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
545
546 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
547
548 if (req) {
549 sock_ops.sk = (struct sock *)req;
550 sock_ops.syn_skb = syn_skb;
551 } else {
552 sock_owned_by_me(sk);
553
554 sock_ops.is_fullsock = 1;
555 sock_ops.sk = sk;
556 }
557
558 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
559 sock_ops.remaining_opt_len = max_opt_len;
560 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
561 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
562
563 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
564
565 if (err)
566 nr_written = 0;
567 else
568 nr_written = max_opt_len - sock_ops.remaining_opt_len;
569
570 if (nr_written < max_opt_len)
571 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
572 max_opt_len - nr_written);
573 }
574 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)575 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
576 struct request_sock *req,
577 struct sk_buff *syn_skb,
578 enum tcp_synack_type synack_type,
579 struct tcp_out_options *opts,
580 unsigned int *remaining)
581 {
582 }
583
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)584 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
585 struct request_sock *req,
586 struct sk_buff *syn_skb,
587 enum tcp_synack_type synack_type,
588 struct tcp_out_options *opts)
589 {
590 }
591 #endif
592
593 /* Write previously computed TCP options to the packet.
594 *
595 * Beware: Something in the Internet is very sensitive to the ordering of
596 * TCP options, we learned this through the hard way, so be careful here.
597 * Luckily we can at least blame others for their non-compliance but from
598 * inter-operability perspective it seems that we're somewhat stuck with
599 * the ordering which we have been using if we want to keep working with
600 * those broken things (not that it currently hurts anybody as there isn't
601 * particular reason why the ordering would need to be changed).
602 *
603 * At least SACK_PERM as the first option is known to lead to a disaster
604 * (but it may well be that other scenarios fail similarly).
605 */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)606 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
607 struct tcp_out_options *opts)
608 {
609 u16 options = opts->options; /* mungable copy */
610
611 if (unlikely(OPTION_MD5 & options)) {
612 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
613 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
614 /* overload cookie hash location */
615 opts->hash_location = (__u8 *)ptr;
616 ptr += 4;
617 }
618
619 if (unlikely(opts->mss)) {
620 *ptr++ = htonl((TCPOPT_MSS << 24) |
621 (TCPOLEN_MSS << 16) |
622 opts->mss);
623 }
624
625 if (likely(OPTION_TS & options)) {
626 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
627 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
628 (TCPOLEN_SACK_PERM << 16) |
629 (TCPOPT_TIMESTAMP << 8) |
630 TCPOLEN_TIMESTAMP);
631 options &= ~OPTION_SACK_ADVERTISE;
632 } else {
633 *ptr++ = htonl((TCPOPT_NOP << 24) |
634 (TCPOPT_NOP << 16) |
635 (TCPOPT_TIMESTAMP << 8) |
636 TCPOLEN_TIMESTAMP);
637 }
638 *ptr++ = htonl(opts->tsval);
639 *ptr++ = htonl(opts->tsecr);
640 }
641
642 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
643 *ptr++ = htonl((TCPOPT_NOP << 24) |
644 (TCPOPT_NOP << 16) |
645 (TCPOPT_SACK_PERM << 8) |
646 TCPOLEN_SACK_PERM);
647 }
648
649 if (unlikely(OPTION_WSCALE & options)) {
650 *ptr++ = htonl((TCPOPT_NOP << 24) |
651 (TCPOPT_WINDOW << 16) |
652 (TCPOLEN_WINDOW << 8) |
653 opts->ws);
654 }
655
656 if (unlikely(opts->num_sack_blocks)) {
657 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
658 tp->duplicate_sack : tp->selective_acks;
659 int this_sack;
660
661 *ptr++ = htonl((TCPOPT_NOP << 24) |
662 (TCPOPT_NOP << 16) |
663 (TCPOPT_SACK << 8) |
664 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
665 TCPOLEN_SACK_PERBLOCK)));
666
667 for (this_sack = 0; this_sack < opts->num_sack_blocks;
668 ++this_sack) {
669 *ptr++ = htonl(sp[this_sack].start_seq);
670 *ptr++ = htonl(sp[this_sack].end_seq);
671 }
672
673 tp->rx_opt.dsack = 0;
674 }
675
676 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
677 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
678 u8 *p = (u8 *)ptr;
679 u32 len; /* Fast Open option length */
680
681 if (foc->exp) {
682 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
683 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
684 TCPOPT_FASTOPEN_MAGIC);
685 p += TCPOLEN_EXP_FASTOPEN_BASE;
686 } else {
687 len = TCPOLEN_FASTOPEN_BASE + foc->len;
688 *p++ = TCPOPT_FASTOPEN;
689 *p++ = len;
690 }
691
692 memcpy(p, foc->val, foc->len);
693 if ((len & 3) == 2) {
694 p[foc->len] = TCPOPT_NOP;
695 p[foc->len + 1] = TCPOPT_NOP;
696 }
697 ptr += (len + 3) >> 2;
698 }
699
700 smc_options_write(ptr, &options);
701
702 mptcp_options_write(ptr, opts);
703 }
704
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)705 static void smc_set_option(const struct tcp_sock *tp,
706 struct tcp_out_options *opts,
707 unsigned int *remaining)
708 {
709 #if IS_ENABLED(CONFIG_SMC)
710 if (static_branch_unlikely(&tcp_have_smc)) {
711 if (tp->syn_smc) {
712 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
713 opts->options |= OPTION_SMC;
714 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
715 }
716 }
717 }
718 #endif
719 }
720
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)721 static void smc_set_option_cond(const struct tcp_sock *tp,
722 const struct inet_request_sock *ireq,
723 struct tcp_out_options *opts,
724 unsigned int *remaining)
725 {
726 #if IS_ENABLED(CONFIG_SMC)
727 if (static_branch_unlikely(&tcp_have_smc)) {
728 if (tp->syn_smc && ireq->smc_ok) {
729 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
730 opts->options |= OPTION_SMC;
731 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
732 }
733 }
734 }
735 #endif
736 }
737
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)738 static void mptcp_set_option_cond(const struct request_sock *req,
739 struct tcp_out_options *opts,
740 unsigned int *remaining)
741 {
742 if (rsk_is_mptcp(req)) {
743 unsigned int size;
744
745 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
746 if (*remaining >= size) {
747 opts->options |= OPTION_MPTCP;
748 *remaining -= size;
749 }
750 }
751 }
752 }
753
754 /* Compute TCP options for SYN packets. This is not the final
755 * network wire format yet.
756 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)757 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
758 struct tcp_out_options *opts,
759 struct tcp_md5sig_key **md5)
760 {
761 struct tcp_sock *tp = tcp_sk(sk);
762 unsigned int remaining = MAX_TCP_OPTION_SPACE;
763 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
764
765 *md5 = NULL;
766 #ifdef CONFIG_TCP_MD5SIG
767 if (static_branch_unlikely(&tcp_md5_needed) &&
768 rcu_access_pointer(tp->md5sig_info)) {
769 *md5 = tp->af_specific->md5_lookup(sk, sk);
770 if (*md5) {
771 opts->options |= OPTION_MD5;
772 remaining -= TCPOLEN_MD5SIG_ALIGNED;
773 }
774 }
775 #endif
776
777 /* We always get an MSS option. The option bytes which will be seen in
778 * normal data packets should timestamps be used, must be in the MSS
779 * advertised. But we subtract them from tp->mss_cache so that
780 * calculations in tcp_sendmsg are simpler etc. So account for this
781 * fact here if necessary. If we don't do this correctly, as a
782 * receiver we won't recognize data packets as being full sized when we
783 * should, and thus we won't abide by the delayed ACK rules correctly.
784 * SACKs don't matter, we never delay an ACK when we have any of those
785 * going out. */
786 opts->mss = tcp_advertise_mss(sk);
787 remaining -= TCPOLEN_MSS_ALIGNED;
788
789 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
790 opts->options |= OPTION_TS;
791 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
792 opts->tsecr = tp->rx_opt.ts_recent;
793 remaining -= TCPOLEN_TSTAMP_ALIGNED;
794 }
795 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
796 opts->ws = tp->rx_opt.rcv_wscale;
797 opts->options |= OPTION_WSCALE;
798 remaining -= TCPOLEN_WSCALE_ALIGNED;
799 }
800 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
801 opts->options |= OPTION_SACK_ADVERTISE;
802 if (unlikely(!(OPTION_TS & opts->options)))
803 remaining -= TCPOLEN_SACKPERM_ALIGNED;
804 }
805
806 if (fastopen && fastopen->cookie.len >= 0) {
807 u32 need = fastopen->cookie.len;
808
809 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
810 TCPOLEN_FASTOPEN_BASE;
811 need = (need + 3) & ~3U; /* Align to 32 bits */
812 if (remaining >= need) {
813 opts->options |= OPTION_FAST_OPEN_COOKIE;
814 opts->fastopen_cookie = &fastopen->cookie;
815 remaining -= need;
816 tp->syn_fastopen = 1;
817 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
818 }
819 }
820
821 smc_set_option(tp, opts, &remaining);
822
823 if (sk_is_mptcp(sk)) {
824 unsigned int size;
825
826 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
827 opts->options |= OPTION_MPTCP;
828 remaining -= size;
829 }
830 }
831
832 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
833
834 return MAX_TCP_OPTION_SPACE - remaining;
835 }
836
837 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)838 static unsigned int tcp_synack_options(const struct sock *sk,
839 struct request_sock *req,
840 unsigned int mss, struct sk_buff *skb,
841 struct tcp_out_options *opts,
842 const struct tcp_md5sig_key *md5,
843 struct tcp_fastopen_cookie *foc,
844 enum tcp_synack_type synack_type,
845 struct sk_buff *syn_skb)
846 {
847 struct inet_request_sock *ireq = inet_rsk(req);
848 unsigned int remaining = MAX_TCP_OPTION_SPACE;
849
850 #ifdef CONFIG_TCP_MD5SIG
851 if (md5) {
852 opts->options |= OPTION_MD5;
853 remaining -= TCPOLEN_MD5SIG_ALIGNED;
854
855 /* We can't fit any SACK blocks in a packet with MD5 + TS
856 * options. There was discussion about disabling SACK
857 * rather than TS in order to fit in better with old,
858 * buggy kernels, but that was deemed to be unnecessary.
859 */
860 if (synack_type != TCP_SYNACK_COOKIE)
861 ireq->tstamp_ok &= !ireq->sack_ok;
862 }
863 #endif
864
865 /* We always send an MSS option. */
866 opts->mss = mss;
867 remaining -= TCPOLEN_MSS_ALIGNED;
868
869 if (likely(ireq->wscale_ok)) {
870 opts->ws = ireq->rcv_wscale;
871 opts->options |= OPTION_WSCALE;
872 remaining -= TCPOLEN_WSCALE_ALIGNED;
873 }
874 if (likely(ireq->tstamp_ok)) {
875 opts->options |= OPTION_TS;
876 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
877 opts->tsecr = req->ts_recent;
878 remaining -= TCPOLEN_TSTAMP_ALIGNED;
879 }
880 if (likely(ireq->sack_ok)) {
881 opts->options |= OPTION_SACK_ADVERTISE;
882 if (unlikely(!ireq->tstamp_ok))
883 remaining -= TCPOLEN_SACKPERM_ALIGNED;
884 }
885 if (foc != NULL && foc->len >= 0) {
886 u32 need = foc->len;
887
888 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
889 TCPOLEN_FASTOPEN_BASE;
890 need = (need + 3) & ~3U; /* Align to 32 bits */
891 if (remaining >= need) {
892 opts->options |= OPTION_FAST_OPEN_COOKIE;
893 opts->fastopen_cookie = foc;
894 remaining -= need;
895 }
896 }
897
898 mptcp_set_option_cond(req, opts, &remaining);
899
900 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
901
902 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
903 synack_type, opts, &remaining);
904
905 return MAX_TCP_OPTION_SPACE - remaining;
906 }
907
908 /* Compute TCP options for ESTABLISHED sockets. This is not the
909 * final wire format yet.
910 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)911 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
912 struct tcp_out_options *opts,
913 struct tcp_md5sig_key **md5)
914 {
915 struct tcp_sock *tp = tcp_sk(sk);
916 unsigned int size = 0;
917 unsigned int eff_sacks;
918
919 opts->options = 0;
920
921 *md5 = NULL;
922 #ifdef CONFIG_TCP_MD5SIG
923 if (static_branch_unlikely(&tcp_md5_needed) &&
924 rcu_access_pointer(tp->md5sig_info)) {
925 *md5 = tp->af_specific->md5_lookup(sk, sk);
926 if (*md5) {
927 opts->options |= OPTION_MD5;
928 size += TCPOLEN_MD5SIG_ALIGNED;
929 }
930 }
931 #endif
932
933 if (likely(tp->rx_opt.tstamp_ok)) {
934 opts->options |= OPTION_TS;
935 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
936 opts->tsecr = tp->rx_opt.ts_recent;
937 size += TCPOLEN_TSTAMP_ALIGNED;
938 }
939
940 /* MPTCP options have precedence over SACK for the limited TCP
941 * option space because a MPTCP connection would be forced to
942 * fall back to regular TCP if a required multipath option is
943 * missing. SACK still gets a chance to use whatever space is
944 * left.
945 */
946 if (sk_is_mptcp(sk)) {
947 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
948 unsigned int opt_size = 0;
949
950 if (mptcp_established_options(sk, skb, &opt_size, remaining,
951 &opts->mptcp)) {
952 opts->options |= OPTION_MPTCP;
953 size += opt_size;
954 }
955 }
956
957 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
958 if (unlikely(eff_sacks)) {
959 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
960 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
961 TCPOLEN_SACK_PERBLOCK))
962 return size;
963
964 opts->num_sack_blocks =
965 min_t(unsigned int, eff_sacks,
966 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
967 TCPOLEN_SACK_PERBLOCK);
968
969 size += TCPOLEN_SACK_BASE_ALIGNED +
970 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
971 }
972
973 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
974 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
975 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
976
977 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
978
979 size = MAX_TCP_OPTION_SPACE - remaining;
980 }
981
982 return size;
983 }
984
985
986 /* TCP SMALL QUEUES (TSQ)
987 *
988 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
989 * to reduce RTT and bufferbloat.
990 * We do this using a special skb destructor (tcp_wfree).
991 *
992 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
993 * needs to be reallocated in a driver.
994 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
995 *
996 * Since transmit from skb destructor is forbidden, we use a tasklet
997 * to process all sockets that eventually need to send more skbs.
998 * We use one tasklet per cpu, with its own queue of sockets.
999 */
1000 struct tsq_tasklet {
1001 struct tasklet_struct tasklet;
1002 struct list_head head; /* queue of tcp sockets */
1003 };
1004 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1005
tcp_tsq_write(struct sock * sk)1006 static void tcp_tsq_write(struct sock *sk)
1007 {
1008 if ((1 << sk->sk_state) &
1009 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1010 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1011 struct tcp_sock *tp = tcp_sk(sk);
1012
1013 if (tp->lost_out > tp->retrans_out &&
1014 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1015 tcp_mstamp_refresh(tp);
1016 tcp_xmit_retransmit_queue(sk);
1017 }
1018
1019 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1020 0, GFP_ATOMIC);
1021 }
1022 }
1023
tcp_tsq_handler(struct sock * sk)1024 static void tcp_tsq_handler(struct sock *sk)
1025 {
1026 bh_lock_sock(sk);
1027 if (!sock_owned_by_user(sk))
1028 tcp_tsq_write(sk);
1029 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1030 sock_hold(sk);
1031 bh_unlock_sock(sk);
1032 }
1033 /*
1034 * One tasklet per cpu tries to send more skbs.
1035 * We run in tasklet context but need to disable irqs when
1036 * transferring tsq->head because tcp_wfree() might
1037 * interrupt us (non NAPI drivers)
1038 */
tcp_tasklet_func(unsigned long data)1039 static void tcp_tasklet_func(unsigned long data)
1040 {
1041 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
1042 LIST_HEAD(list);
1043 unsigned long flags;
1044 struct list_head *q, *n;
1045 struct tcp_sock *tp;
1046 struct sock *sk;
1047
1048 local_irq_save(flags);
1049 list_splice_init(&tsq->head, &list);
1050 local_irq_restore(flags);
1051
1052 list_for_each_safe(q, n, &list) {
1053 tp = list_entry(q, struct tcp_sock, tsq_node);
1054 list_del(&tp->tsq_node);
1055
1056 sk = (struct sock *)tp;
1057 smp_mb__before_atomic();
1058 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1059
1060 tcp_tsq_handler(sk);
1061 sk_free(sk);
1062 }
1063 }
1064
1065 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1066 TCPF_WRITE_TIMER_DEFERRED | \
1067 TCPF_DELACK_TIMER_DEFERRED | \
1068 TCPF_MTU_REDUCED_DEFERRED)
1069 /**
1070 * tcp_release_cb - tcp release_sock() callback
1071 * @sk: socket
1072 *
1073 * called from release_sock() to perform protocol dependent
1074 * actions before socket release.
1075 */
tcp_release_cb(struct sock * sk)1076 void tcp_release_cb(struct sock *sk)
1077 {
1078 unsigned long flags, nflags;
1079
1080 /* perform an atomic operation only if at least one flag is set */
1081 do {
1082 flags = sk->sk_tsq_flags;
1083 if (!(flags & TCP_DEFERRED_ALL))
1084 return;
1085 nflags = flags & ~TCP_DEFERRED_ALL;
1086 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1087
1088 if (flags & TCPF_TSQ_DEFERRED) {
1089 tcp_tsq_write(sk);
1090 __sock_put(sk);
1091 }
1092 /* Here begins the tricky part :
1093 * We are called from release_sock() with :
1094 * 1) BH disabled
1095 * 2) sk_lock.slock spinlock held
1096 * 3) socket owned by us (sk->sk_lock.owned == 1)
1097 *
1098 * But following code is meant to be called from BH handlers,
1099 * so we should keep BH disabled, but early release socket ownership
1100 */
1101 sock_release_ownership(sk);
1102
1103 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1104 tcp_write_timer_handler(sk);
1105 __sock_put(sk);
1106 }
1107 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1108 tcp_delack_timer_handler(sk);
1109 __sock_put(sk);
1110 }
1111 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1112 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1113 __sock_put(sk);
1114 }
1115 }
1116 EXPORT_SYMBOL(tcp_release_cb);
1117
tcp_tasklet_init(void)1118 void __init tcp_tasklet_init(void)
1119 {
1120 int i;
1121
1122 for_each_possible_cpu(i) {
1123 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1124
1125 INIT_LIST_HEAD(&tsq->head);
1126 tasklet_init(&tsq->tasklet,
1127 tcp_tasklet_func,
1128 (unsigned long)tsq);
1129 }
1130 }
1131
1132 /*
1133 * Write buffer destructor automatically called from kfree_skb.
1134 * We can't xmit new skbs from this context, as we might already
1135 * hold qdisc lock.
1136 */
tcp_wfree(struct sk_buff * skb)1137 void tcp_wfree(struct sk_buff *skb)
1138 {
1139 struct sock *sk = skb->sk;
1140 struct tcp_sock *tp = tcp_sk(sk);
1141 unsigned long flags, nval, oval;
1142
1143 /* Keep one reference on sk_wmem_alloc.
1144 * Will be released by sk_free() from here or tcp_tasklet_func()
1145 */
1146 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1147
1148 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1149 * Wait until our queues (qdisc + devices) are drained.
1150 * This gives :
1151 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1152 * - chance for incoming ACK (processed by another cpu maybe)
1153 * to migrate this flow (skb->ooo_okay will be eventually set)
1154 */
1155 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1156 goto out;
1157
1158 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1159 struct tsq_tasklet *tsq;
1160 bool empty;
1161
1162 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1163 goto out;
1164
1165 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1166 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1167 if (nval != oval)
1168 continue;
1169
1170 /* queue this socket to tasklet queue */
1171 local_irq_save(flags);
1172 tsq = this_cpu_ptr(&tsq_tasklet);
1173 empty = list_empty(&tsq->head);
1174 list_add(&tp->tsq_node, &tsq->head);
1175 if (empty)
1176 tasklet_schedule(&tsq->tasklet);
1177 local_irq_restore(flags);
1178 return;
1179 }
1180 out:
1181 sk_free(sk);
1182 }
1183
1184 /* Note: Called under soft irq.
1185 * We can call TCP stack right away, unless socket is owned by user.
1186 */
tcp_pace_kick(struct hrtimer * timer)1187 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1188 {
1189 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1190 struct sock *sk = (struct sock *)tp;
1191
1192 tcp_tsq_handler(sk);
1193 sock_put(sk);
1194
1195 return HRTIMER_NORESTART;
1196 }
1197
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1198 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1199 u64 prior_wstamp)
1200 {
1201 struct tcp_sock *tp = tcp_sk(sk);
1202
1203 if (sk->sk_pacing_status != SK_PACING_NONE) {
1204 unsigned long rate = sk->sk_pacing_rate;
1205
1206 /* Original sch_fq does not pace first 10 MSS
1207 * Note that tp->data_segs_out overflows after 2^32 packets,
1208 * this is a minor annoyance.
1209 */
1210 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1211 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1212 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1213
1214 /* take into account OS jitter */
1215 len_ns -= min_t(u64, len_ns / 2, credit);
1216 tp->tcp_wstamp_ns += len_ns;
1217 }
1218 }
1219 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1220 }
1221
1222 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1223 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1224 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1225
1226 /* This routine actually transmits TCP packets queued in by
1227 * tcp_do_sendmsg(). This is used by both the initial
1228 * transmission and possible later retransmissions.
1229 * All SKB's seen here are completely headerless. It is our
1230 * job to build the TCP header, and pass the packet down to
1231 * IP so it can do the same plus pass the packet off to the
1232 * device.
1233 *
1234 * We are working here with either a clone of the original
1235 * SKB, or a fresh unique copy made by the retransmit engine.
1236 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1237 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1238 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1239 {
1240 const struct inet_connection_sock *icsk = inet_csk(sk);
1241 struct inet_sock *inet;
1242 struct tcp_sock *tp;
1243 struct tcp_skb_cb *tcb;
1244 struct tcp_out_options opts;
1245 unsigned int tcp_options_size, tcp_header_size;
1246 struct sk_buff *oskb = NULL;
1247 struct tcp_md5sig_key *md5;
1248 struct tcphdr *th;
1249 u64 prior_wstamp;
1250 int err;
1251
1252 BUG_ON(!skb || !tcp_skb_pcount(skb));
1253 tp = tcp_sk(sk);
1254 prior_wstamp = tp->tcp_wstamp_ns;
1255 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1256 skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1257 if (clone_it) {
1258 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1259 - tp->snd_una;
1260 oskb = skb;
1261
1262 tcp_skb_tsorted_save(oskb) {
1263 if (unlikely(skb_cloned(oskb)))
1264 skb = pskb_copy(oskb, gfp_mask);
1265 else
1266 skb = skb_clone(oskb, gfp_mask);
1267 } tcp_skb_tsorted_restore(oskb);
1268
1269 if (unlikely(!skb))
1270 return -ENOBUFS;
1271 /* retransmit skbs might have a non zero value in skb->dev
1272 * because skb->dev is aliased with skb->rbnode.rb_left
1273 */
1274 skb->dev = NULL;
1275 }
1276
1277 inet = inet_sk(sk);
1278 tcb = TCP_SKB_CB(skb);
1279 memset(&opts, 0, sizeof(opts));
1280
1281 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1282 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1283 } else {
1284 tcp_options_size = tcp_established_options(sk, skb, &opts,
1285 &md5);
1286 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1287 * at receiver : This slightly improve GRO performance.
1288 * Note that we do not force the PSH flag for non GSO packets,
1289 * because they might be sent under high congestion events,
1290 * and in this case it is better to delay the delivery of 1-MSS
1291 * packets and thus the corresponding ACK packet that would
1292 * release the following packet.
1293 */
1294 if (tcp_skb_pcount(skb) > 1)
1295 tcb->tcp_flags |= TCPHDR_PSH;
1296 }
1297 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1298
1299 /* if no packet is in qdisc/device queue, then allow XPS to select
1300 * another queue. We can be called from tcp_tsq_handler()
1301 * which holds one reference to sk.
1302 *
1303 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1304 * One way to get this would be to set skb->truesize = 2 on them.
1305 */
1306 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1307
1308 /* If we had to use memory reserve to allocate this skb,
1309 * this might cause drops if packet is looped back :
1310 * Other socket might not have SOCK_MEMALLOC.
1311 * Packets not looped back do not care about pfmemalloc.
1312 */
1313 skb->pfmemalloc = 0;
1314
1315 skb_push(skb, tcp_header_size);
1316 skb_reset_transport_header(skb);
1317
1318 skb_orphan(skb);
1319 skb->sk = sk;
1320 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1321 skb_set_hash_from_sk(skb, sk);
1322 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1323
1324 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1325
1326 /* Build TCP header and checksum it. */
1327 th = (struct tcphdr *)skb->data;
1328 th->source = inet->inet_sport;
1329 th->dest = inet->inet_dport;
1330 th->seq = htonl(tcb->seq);
1331 th->ack_seq = htonl(rcv_nxt);
1332 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1333 tcb->tcp_flags);
1334
1335 th->check = 0;
1336 th->urg_ptr = 0;
1337
1338 /* The urg_mode check is necessary during a below snd_una win probe */
1339 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1340 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1341 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1342 th->urg = 1;
1343 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1344 th->urg_ptr = htons(0xFFFF);
1345 th->urg = 1;
1346 }
1347 }
1348
1349 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1350 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1351 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1352 th->window = htons(tcp_select_window(sk));
1353 tcp_ecn_send(sk, skb, th, tcp_header_size);
1354 } else {
1355 /* RFC1323: The window in SYN & SYN/ACK segments
1356 * is never scaled.
1357 */
1358 th->window = htons(min(tp->rcv_wnd, 65535U));
1359 }
1360 #ifdef CONFIG_TCP_MD5SIG
1361 /* Calculate the MD5 hash, as we have all we need now */
1362 if (md5) {
1363 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1364 tp->af_specific->calc_md5_hash(opts.hash_location,
1365 md5, sk, skb);
1366 }
1367 #endif
1368
1369 /* BPF prog is the last one writing header option */
1370 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1371
1372 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1373 tcp_v6_send_check, tcp_v4_send_check,
1374 sk, skb);
1375
1376 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1377 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1378
1379 if (skb->len != tcp_header_size) {
1380 tcp_event_data_sent(tp, sk);
1381 tp->data_segs_out += tcp_skb_pcount(skb);
1382 tp->bytes_sent += skb->len - tcp_header_size;
1383 }
1384
1385 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1386 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1387 tcp_skb_pcount(skb));
1388
1389 tp->segs_out += tcp_skb_pcount(skb);
1390 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1391 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1392 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1393
1394 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1395
1396 /* Cleanup our debris for IP stacks */
1397 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1398 sizeof(struct inet6_skb_parm)));
1399
1400 tcp_add_tx_delay(skb, tp);
1401
1402 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1403 inet6_csk_xmit, ip_queue_xmit,
1404 sk, skb, &inet->cork.fl);
1405
1406 if (unlikely(err > 0)) {
1407 tcp_enter_cwr(sk);
1408 err = net_xmit_eval(err);
1409 }
1410 if (!err && oskb) {
1411 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1412 tcp_rate_skb_sent(sk, oskb);
1413 }
1414 return err;
1415 }
1416
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1417 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1418 gfp_t gfp_mask)
1419 {
1420 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1421 tcp_sk(sk)->rcv_nxt);
1422 }
1423
1424 /* This routine just queues the buffer for sending.
1425 *
1426 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1427 * otherwise socket can stall.
1428 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1429 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1430 {
1431 struct tcp_sock *tp = tcp_sk(sk);
1432
1433 /* Advance write_seq and place onto the write_queue. */
1434 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1435 __skb_header_release(skb);
1436 tcp_add_write_queue_tail(sk, skb);
1437 sk_wmem_queued_add(sk, skb->truesize);
1438 sk_mem_charge(sk, skb->truesize);
1439 }
1440
1441 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1442 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1443 {
1444 if (skb->len <= mss_now) {
1445 /* Avoid the costly divide in the normal
1446 * non-TSO case.
1447 */
1448 tcp_skb_pcount_set(skb, 1);
1449 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1450 } else {
1451 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1452 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1453 }
1454 }
1455
1456 /* Pcount in the middle of the write queue got changed, we need to do various
1457 * tweaks to fix counters
1458 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1459 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1460 {
1461 struct tcp_sock *tp = tcp_sk(sk);
1462
1463 tp->packets_out -= decr;
1464
1465 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1466 tp->sacked_out -= decr;
1467 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1468 tp->retrans_out -= decr;
1469 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1470 tp->lost_out -= decr;
1471
1472 /* Reno case is special. Sigh... */
1473 if (tcp_is_reno(tp) && decr > 0)
1474 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1475
1476 if (tp->lost_skb_hint &&
1477 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1478 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1479 tp->lost_cnt_hint -= decr;
1480
1481 tcp_verify_left_out(tp);
1482 }
1483
tcp_has_tx_tstamp(const struct sk_buff * skb)1484 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1485 {
1486 return TCP_SKB_CB(skb)->txstamp_ack ||
1487 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1488 }
1489
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1490 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1491 {
1492 struct skb_shared_info *shinfo = skb_shinfo(skb);
1493
1494 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1495 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1496 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1497 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1498
1499 shinfo->tx_flags &= ~tsflags;
1500 shinfo2->tx_flags |= tsflags;
1501 swap(shinfo->tskey, shinfo2->tskey);
1502 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1503 TCP_SKB_CB(skb)->txstamp_ack = 0;
1504 }
1505 }
1506
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1507 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1508 {
1509 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1510 TCP_SKB_CB(skb)->eor = 0;
1511 }
1512
1513 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1514 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1515 struct sk_buff *buff,
1516 struct sock *sk,
1517 enum tcp_queue tcp_queue)
1518 {
1519 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1520 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1521 else
1522 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1523 }
1524
1525 /* Function to create two new TCP segments. Shrinks the given segment
1526 * to the specified size and appends a new segment with the rest of the
1527 * packet to the list. This won't be called frequently, I hope.
1528 * Remember, these are still headerless SKBs at this point.
1529 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1530 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1531 struct sk_buff *skb, u32 len,
1532 unsigned int mss_now, gfp_t gfp)
1533 {
1534 struct tcp_sock *tp = tcp_sk(sk);
1535 struct sk_buff *buff;
1536 int nsize, old_factor;
1537 long limit;
1538 int nlen;
1539 u8 flags;
1540
1541 if (WARN_ON(len > skb->len))
1542 return -EINVAL;
1543
1544 nsize = skb_headlen(skb) - len;
1545 if (nsize < 0)
1546 nsize = 0;
1547
1548 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1549 * We need some allowance to not penalize applications setting small
1550 * SO_SNDBUF values.
1551 * Also allow first and last skb in retransmit queue to be split.
1552 */
1553 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1554 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1555 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1556 skb != tcp_rtx_queue_head(sk) &&
1557 skb != tcp_rtx_queue_tail(sk))) {
1558 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1559 return -ENOMEM;
1560 }
1561
1562 if (skb_unclone(skb, gfp))
1563 return -ENOMEM;
1564
1565 /* Get a new skb... force flag on. */
1566 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1567 if (!buff)
1568 return -ENOMEM; /* We'll just try again later. */
1569 skb_copy_decrypted(buff, skb);
1570
1571 sk_wmem_queued_add(sk, buff->truesize);
1572 sk_mem_charge(sk, buff->truesize);
1573 nlen = skb->len - len - nsize;
1574 buff->truesize += nlen;
1575 skb->truesize -= nlen;
1576
1577 /* Correct the sequence numbers. */
1578 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1579 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1580 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1581
1582 /* PSH and FIN should only be set in the second packet. */
1583 flags = TCP_SKB_CB(skb)->tcp_flags;
1584 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1585 TCP_SKB_CB(buff)->tcp_flags = flags;
1586 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1587 tcp_skb_fragment_eor(skb, buff);
1588
1589 skb_split(skb, buff, len);
1590
1591 buff->ip_summed = CHECKSUM_PARTIAL;
1592
1593 buff->tstamp = skb->tstamp;
1594 tcp_fragment_tstamp(skb, buff);
1595
1596 old_factor = tcp_skb_pcount(skb);
1597
1598 /* Fix up tso_factor for both original and new SKB. */
1599 tcp_set_skb_tso_segs(skb, mss_now);
1600 tcp_set_skb_tso_segs(buff, mss_now);
1601
1602 /* Update delivered info for the new segment */
1603 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1604
1605 /* If this packet has been sent out already, we must
1606 * adjust the various packet counters.
1607 */
1608 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1609 int diff = old_factor - tcp_skb_pcount(skb) -
1610 tcp_skb_pcount(buff);
1611
1612 if (diff)
1613 tcp_adjust_pcount(sk, skb, diff);
1614 }
1615
1616 /* Link BUFF into the send queue. */
1617 __skb_header_release(buff);
1618 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1619 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1620 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1621
1622 return 0;
1623 }
1624
1625 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1626 * data is not copied, but immediately discarded.
1627 */
__pskb_trim_head(struct sk_buff * skb,int len)1628 static int __pskb_trim_head(struct sk_buff *skb, int len)
1629 {
1630 struct skb_shared_info *shinfo;
1631 int i, k, eat;
1632
1633 eat = min_t(int, len, skb_headlen(skb));
1634 if (eat) {
1635 __skb_pull(skb, eat);
1636 len -= eat;
1637 if (!len)
1638 return 0;
1639 }
1640 eat = len;
1641 k = 0;
1642 shinfo = skb_shinfo(skb);
1643 for (i = 0; i < shinfo->nr_frags; i++) {
1644 int size = skb_frag_size(&shinfo->frags[i]);
1645
1646 if (size <= eat) {
1647 skb_frag_unref(skb, i);
1648 eat -= size;
1649 } else {
1650 shinfo->frags[k] = shinfo->frags[i];
1651 if (eat) {
1652 skb_frag_off_add(&shinfo->frags[k], eat);
1653 skb_frag_size_sub(&shinfo->frags[k], eat);
1654 eat = 0;
1655 }
1656 k++;
1657 }
1658 }
1659 shinfo->nr_frags = k;
1660
1661 skb->data_len -= len;
1662 skb->len = skb->data_len;
1663 return len;
1664 }
1665
1666 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1667 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1668 {
1669 u32 delta_truesize;
1670
1671 if (skb_unclone(skb, GFP_ATOMIC))
1672 return -ENOMEM;
1673
1674 delta_truesize = __pskb_trim_head(skb, len);
1675
1676 TCP_SKB_CB(skb)->seq += len;
1677 skb->ip_summed = CHECKSUM_PARTIAL;
1678
1679 if (delta_truesize) {
1680 skb->truesize -= delta_truesize;
1681 sk_wmem_queued_add(sk, -delta_truesize);
1682 sk_mem_uncharge(sk, delta_truesize);
1683 }
1684
1685 /* Any change of skb->len requires recalculation of tso factor. */
1686 if (tcp_skb_pcount(skb) > 1)
1687 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1688
1689 return 0;
1690 }
1691
1692 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1693 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1694 {
1695 const struct tcp_sock *tp = tcp_sk(sk);
1696 const struct inet_connection_sock *icsk = inet_csk(sk);
1697 int mss_now;
1698
1699 /* Calculate base mss without TCP options:
1700 It is MMS_S - sizeof(tcphdr) of rfc1122
1701 */
1702 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1703
1704 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1705 if (icsk->icsk_af_ops->net_frag_header_len) {
1706 const struct dst_entry *dst = __sk_dst_get(sk);
1707
1708 if (dst && dst_allfrag(dst))
1709 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1710 }
1711
1712 /* Clamp it (mss_clamp does not include tcp options) */
1713 if (mss_now > tp->rx_opt.mss_clamp)
1714 mss_now = tp->rx_opt.mss_clamp;
1715
1716 /* Now subtract optional transport overhead */
1717 mss_now -= icsk->icsk_ext_hdr_len;
1718
1719 /* Then reserve room for full set of TCP options and 8 bytes of data */
1720 mss_now = max(mss_now,
1721 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1722 return mss_now;
1723 }
1724
1725 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1726 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1727 {
1728 /* Subtract TCP options size, not including SACKs */
1729 return __tcp_mtu_to_mss(sk, pmtu) -
1730 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1731 }
1732 EXPORT_SYMBOL(tcp_mtu_to_mss);
1733
1734 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1735 int tcp_mss_to_mtu(struct sock *sk, int mss)
1736 {
1737 const struct tcp_sock *tp = tcp_sk(sk);
1738 const struct inet_connection_sock *icsk = inet_csk(sk);
1739 int mtu;
1740
1741 mtu = mss +
1742 tp->tcp_header_len +
1743 icsk->icsk_ext_hdr_len +
1744 icsk->icsk_af_ops->net_header_len;
1745
1746 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1747 if (icsk->icsk_af_ops->net_frag_header_len) {
1748 const struct dst_entry *dst = __sk_dst_get(sk);
1749
1750 if (dst && dst_allfrag(dst))
1751 mtu += icsk->icsk_af_ops->net_frag_header_len;
1752 }
1753 return mtu;
1754 }
1755 EXPORT_SYMBOL(tcp_mss_to_mtu);
1756
1757 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1758 void tcp_mtup_init(struct sock *sk)
1759 {
1760 struct tcp_sock *tp = tcp_sk(sk);
1761 struct inet_connection_sock *icsk = inet_csk(sk);
1762 struct net *net = sock_net(sk);
1763
1764 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1765 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1766 icsk->icsk_af_ops->net_header_len;
1767 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1768 icsk->icsk_mtup.probe_size = 0;
1769 if (icsk->icsk_mtup.enabled)
1770 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1771 }
1772 EXPORT_SYMBOL(tcp_mtup_init);
1773
1774 /* This function synchronize snd mss to current pmtu/exthdr set.
1775
1776 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1777 for TCP options, but includes only bare TCP header.
1778
1779 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1780 It is minimum of user_mss and mss received with SYN.
1781 It also does not include TCP options.
1782
1783 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1784
1785 tp->mss_cache is current effective sending mss, including
1786 all tcp options except for SACKs. It is evaluated,
1787 taking into account current pmtu, but never exceeds
1788 tp->rx_opt.mss_clamp.
1789
1790 NOTE1. rfc1122 clearly states that advertised MSS
1791 DOES NOT include either tcp or ip options.
1792
1793 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1794 are READ ONLY outside this function. --ANK (980731)
1795 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1796 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1797 {
1798 struct tcp_sock *tp = tcp_sk(sk);
1799 struct inet_connection_sock *icsk = inet_csk(sk);
1800 int mss_now;
1801
1802 if (icsk->icsk_mtup.search_high > pmtu)
1803 icsk->icsk_mtup.search_high = pmtu;
1804
1805 mss_now = tcp_mtu_to_mss(sk, pmtu);
1806 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1807
1808 /* And store cached results */
1809 icsk->icsk_pmtu_cookie = pmtu;
1810 if (icsk->icsk_mtup.enabled)
1811 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1812 tp->mss_cache = mss_now;
1813
1814 return mss_now;
1815 }
1816 EXPORT_SYMBOL(tcp_sync_mss);
1817
1818 /* Compute the current effective MSS, taking SACKs and IP options,
1819 * and even PMTU discovery events into account.
1820 */
tcp_current_mss(struct sock * sk)1821 unsigned int tcp_current_mss(struct sock *sk)
1822 {
1823 const struct tcp_sock *tp = tcp_sk(sk);
1824 const struct dst_entry *dst = __sk_dst_get(sk);
1825 u32 mss_now;
1826 unsigned int header_len;
1827 struct tcp_out_options opts;
1828 struct tcp_md5sig_key *md5;
1829
1830 mss_now = tp->mss_cache;
1831
1832 if (dst) {
1833 u32 mtu = dst_mtu(dst);
1834 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1835 mss_now = tcp_sync_mss(sk, mtu);
1836 }
1837
1838 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1839 sizeof(struct tcphdr);
1840 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1841 * some common options. If this is an odd packet (because we have SACK
1842 * blocks etc) then our calculated header_len will be different, and
1843 * we have to adjust mss_now correspondingly */
1844 if (header_len != tp->tcp_header_len) {
1845 int delta = (int) header_len - tp->tcp_header_len;
1846 mss_now -= delta;
1847 }
1848
1849 return mss_now;
1850 }
1851
1852 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1853 * As additional protections, we do not touch cwnd in retransmission phases,
1854 * and if application hit its sndbuf limit recently.
1855 */
tcp_cwnd_application_limited(struct sock * sk)1856 static void tcp_cwnd_application_limited(struct sock *sk)
1857 {
1858 struct tcp_sock *tp = tcp_sk(sk);
1859
1860 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1861 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1862 /* Limited by application or receiver window. */
1863 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1864 u32 win_used = max(tp->snd_cwnd_used, init_win);
1865 if (win_used < tp->snd_cwnd) {
1866 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1867 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1868 }
1869 tp->snd_cwnd_used = 0;
1870 }
1871 tp->snd_cwnd_stamp = tcp_jiffies32;
1872 }
1873
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1874 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1875 {
1876 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1877 struct tcp_sock *tp = tcp_sk(sk);
1878
1879 /* Track the strongest available signal of the degree to which the cwnd
1880 * is fully utilized. If cwnd-limited then remember that fact for the
1881 * current window. If not cwnd-limited then track the maximum number of
1882 * outstanding packets in the current window. (If cwnd-limited then we
1883 * chose to not update tp->max_packets_out to avoid an extra else
1884 * clause with no functional impact.)
1885 */
1886 if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1887 is_cwnd_limited ||
1888 (!tp->is_cwnd_limited &&
1889 tp->packets_out > tp->max_packets_out)) {
1890 tp->is_cwnd_limited = is_cwnd_limited;
1891 tp->max_packets_out = tp->packets_out;
1892 tp->cwnd_usage_seq = tp->snd_nxt;
1893 }
1894
1895 if (tcp_is_cwnd_limited(sk)) {
1896 /* Network is feed fully. */
1897 tp->snd_cwnd_used = 0;
1898 tp->snd_cwnd_stamp = tcp_jiffies32;
1899 } else {
1900 /* Network starves. */
1901 if (tp->packets_out > tp->snd_cwnd_used)
1902 tp->snd_cwnd_used = tp->packets_out;
1903
1904 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1905 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1906 !ca_ops->cong_control)
1907 tcp_cwnd_application_limited(sk);
1908
1909 /* The following conditions together indicate the starvation
1910 * is caused by insufficient sender buffer:
1911 * 1) just sent some data (see tcp_write_xmit)
1912 * 2) not cwnd limited (this else condition)
1913 * 3) no more data to send (tcp_write_queue_empty())
1914 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1915 */
1916 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1917 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1918 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1919 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1920 }
1921 }
1922
1923 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1924 static bool tcp_minshall_check(const struct tcp_sock *tp)
1925 {
1926 return after(tp->snd_sml, tp->snd_una) &&
1927 !after(tp->snd_sml, tp->snd_nxt);
1928 }
1929
1930 /* Update snd_sml if this skb is under mss
1931 * Note that a TSO packet might end with a sub-mss segment
1932 * The test is really :
1933 * if ((skb->len % mss) != 0)
1934 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1935 * But we can avoid doing the divide again given we already have
1936 * skb_pcount = skb->len / mss_now
1937 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1938 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1939 const struct sk_buff *skb)
1940 {
1941 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1942 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1943 }
1944
1945 /* Return false, if packet can be sent now without violation Nagle's rules:
1946 * 1. It is full sized. (provided by caller in %partial bool)
1947 * 2. Or it contains FIN. (already checked by caller)
1948 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1949 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1950 * With Minshall's modification: all sent small packets are ACKed.
1951 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1952 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1953 int nonagle)
1954 {
1955 return partial &&
1956 ((nonagle & TCP_NAGLE_CORK) ||
1957 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1958 }
1959
1960 /* Return how many segs we'd like on a TSO packet,
1961 * to send one TSO packet per ms
1962 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1963 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1964 int min_tso_segs)
1965 {
1966 u32 bytes, segs;
1967
1968 bytes = min_t(unsigned long,
1969 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1970 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1971
1972 /* Goal is to send at least one packet per ms,
1973 * not one big TSO packet every 100 ms.
1974 * This preserves ACK clocking and is consistent
1975 * with tcp_tso_should_defer() heuristic.
1976 */
1977 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1978
1979 return segs;
1980 }
1981
1982 /* Return the number of segments we want in the skb we are transmitting.
1983 * See if congestion control module wants to decide; otherwise, autosize.
1984 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1985 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1986 {
1987 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1988 u32 min_tso, tso_segs;
1989
1990 min_tso = ca_ops->min_tso_segs ?
1991 ca_ops->min_tso_segs(sk) :
1992 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1993
1994 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1995 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1996 }
1997
1998 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1999 static unsigned int tcp_mss_split_point(const struct sock *sk,
2000 const struct sk_buff *skb,
2001 unsigned int mss_now,
2002 unsigned int max_segs,
2003 int nonagle)
2004 {
2005 const struct tcp_sock *tp = tcp_sk(sk);
2006 u32 partial, needed, window, max_len;
2007
2008 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2009 max_len = mss_now * max_segs;
2010
2011 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2012 return max_len;
2013
2014 needed = min(skb->len, window);
2015
2016 if (max_len <= needed)
2017 return max_len;
2018
2019 partial = needed % mss_now;
2020 /* If last segment is not a full MSS, check if Nagle rules allow us
2021 * to include this last segment in this skb.
2022 * Otherwise, we'll split the skb at last MSS boundary
2023 */
2024 if (tcp_nagle_check(partial != 0, tp, nonagle))
2025 return needed - partial;
2026
2027 return needed;
2028 }
2029
2030 /* Can at least one segment of SKB be sent right now, according to the
2031 * congestion window rules? If so, return how many segments are allowed.
2032 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2033 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2034 const struct sk_buff *skb)
2035 {
2036 u32 in_flight, cwnd, halfcwnd;
2037
2038 /* Don't be strict about the congestion window for the final FIN. */
2039 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2040 tcp_skb_pcount(skb) == 1)
2041 return 1;
2042
2043 in_flight = tcp_packets_in_flight(tp);
2044 cwnd = tp->snd_cwnd;
2045 if (in_flight >= cwnd)
2046 return 0;
2047
2048 /* For better scheduling, ensure we have at least
2049 * 2 GSO packets in flight.
2050 */
2051 halfcwnd = max(cwnd >> 1, 1U);
2052 return min(halfcwnd, cwnd - in_flight);
2053 }
2054
2055 /* Initialize TSO state of a skb.
2056 * This must be invoked the first time we consider transmitting
2057 * SKB onto the wire.
2058 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2059 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2060 {
2061 int tso_segs = tcp_skb_pcount(skb);
2062
2063 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2064 tcp_set_skb_tso_segs(skb, mss_now);
2065 tso_segs = tcp_skb_pcount(skb);
2066 }
2067 return tso_segs;
2068 }
2069
2070
2071 /* Return true if the Nagle test allows this packet to be
2072 * sent now.
2073 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2074 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2075 unsigned int cur_mss, int nonagle)
2076 {
2077 /* Nagle rule does not apply to frames, which sit in the middle of the
2078 * write_queue (they have no chances to get new data).
2079 *
2080 * This is implemented in the callers, where they modify the 'nonagle'
2081 * argument based upon the location of SKB in the send queue.
2082 */
2083 if (nonagle & TCP_NAGLE_PUSH)
2084 return true;
2085
2086 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2087 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2088 return true;
2089
2090 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2091 return true;
2092
2093 return false;
2094 }
2095
2096 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2097 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2098 const struct sk_buff *skb,
2099 unsigned int cur_mss)
2100 {
2101 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2102
2103 if (skb->len > cur_mss)
2104 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2105
2106 return !after(end_seq, tcp_wnd_end(tp));
2107 }
2108
2109 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2110 * which is put after SKB on the list. It is very much like
2111 * tcp_fragment() except that it may make several kinds of assumptions
2112 * in order to speed up the splitting operation. In particular, we
2113 * know that all the data is in scatter-gather pages, and that the
2114 * packet has never been sent out before (and thus is not cloned).
2115 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2116 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2117 unsigned int mss_now, gfp_t gfp)
2118 {
2119 int nlen = skb->len - len;
2120 struct sk_buff *buff;
2121 u8 flags;
2122
2123 /* All of a TSO frame must be composed of paged data. */
2124 if (skb->len != skb->data_len)
2125 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2126 skb, len, mss_now, gfp);
2127
2128 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
2129 if (unlikely(!buff))
2130 return -ENOMEM;
2131 skb_copy_decrypted(buff, skb);
2132
2133 sk_wmem_queued_add(sk, buff->truesize);
2134 sk_mem_charge(sk, buff->truesize);
2135 buff->truesize += nlen;
2136 skb->truesize -= nlen;
2137
2138 /* Correct the sequence numbers. */
2139 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2140 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2141 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2142
2143 /* PSH and FIN should only be set in the second packet. */
2144 flags = TCP_SKB_CB(skb)->tcp_flags;
2145 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2146 TCP_SKB_CB(buff)->tcp_flags = flags;
2147
2148 /* This packet was never sent out yet, so no SACK bits. */
2149 TCP_SKB_CB(buff)->sacked = 0;
2150
2151 tcp_skb_fragment_eor(skb, buff);
2152
2153 buff->ip_summed = CHECKSUM_PARTIAL;
2154 skb_split(skb, buff, len);
2155 tcp_fragment_tstamp(skb, buff);
2156
2157 /* Fix up tso_factor for both original and new SKB. */
2158 tcp_set_skb_tso_segs(skb, mss_now);
2159 tcp_set_skb_tso_segs(buff, mss_now);
2160
2161 /* Link BUFF into the send queue. */
2162 __skb_header_release(buff);
2163 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2164
2165 return 0;
2166 }
2167
2168 /* Try to defer sending, if possible, in order to minimize the amount
2169 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2170 *
2171 * This algorithm is from John Heffner.
2172 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2173 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2174 bool *is_cwnd_limited,
2175 bool *is_rwnd_limited,
2176 u32 max_segs)
2177 {
2178 const struct inet_connection_sock *icsk = inet_csk(sk);
2179 u32 send_win, cong_win, limit, in_flight;
2180 struct tcp_sock *tp = tcp_sk(sk);
2181 struct sk_buff *head;
2182 int win_divisor;
2183 s64 delta;
2184
2185 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2186 goto send_now;
2187
2188 /* Avoid bursty behavior by allowing defer
2189 * only if the last write was recent (1 ms).
2190 * Note that tp->tcp_wstamp_ns can be in the future if we have
2191 * packets waiting in a qdisc or device for EDT delivery.
2192 */
2193 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2194 if (delta > 0)
2195 goto send_now;
2196
2197 in_flight = tcp_packets_in_flight(tp);
2198
2199 BUG_ON(tcp_skb_pcount(skb) <= 1);
2200 BUG_ON(tp->snd_cwnd <= in_flight);
2201
2202 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2203
2204 /* From in_flight test above, we know that cwnd > in_flight. */
2205 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2206
2207 limit = min(send_win, cong_win);
2208
2209 /* If a full-sized TSO skb can be sent, do it. */
2210 if (limit >= max_segs * tp->mss_cache)
2211 goto send_now;
2212
2213 /* Middle in queue won't get any more data, full sendable already? */
2214 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2215 goto send_now;
2216
2217 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2218 if (win_divisor) {
2219 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2220
2221 /* If at least some fraction of a window is available,
2222 * just use it.
2223 */
2224 chunk /= win_divisor;
2225 if (limit >= chunk)
2226 goto send_now;
2227 } else {
2228 /* Different approach, try not to defer past a single
2229 * ACK. Receiver should ACK every other full sized
2230 * frame, so if we have space for more than 3 frames
2231 * then send now.
2232 */
2233 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2234 goto send_now;
2235 }
2236
2237 /* TODO : use tsorted_sent_queue ? */
2238 head = tcp_rtx_queue_head(sk);
2239 if (!head)
2240 goto send_now;
2241 delta = tp->tcp_clock_cache - head->tstamp;
2242 /* If next ACK is likely to come too late (half srtt), do not defer */
2243 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2244 goto send_now;
2245
2246 /* Ok, it looks like it is advisable to defer.
2247 * Three cases are tracked :
2248 * 1) We are cwnd-limited
2249 * 2) We are rwnd-limited
2250 * 3) We are application limited.
2251 */
2252 if (cong_win < send_win) {
2253 if (cong_win <= skb->len) {
2254 *is_cwnd_limited = true;
2255 return true;
2256 }
2257 } else {
2258 if (send_win <= skb->len) {
2259 *is_rwnd_limited = true;
2260 return true;
2261 }
2262 }
2263
2264 /* If this packet won't get more data, do not wait. */
2265 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2266 TCP_SKB_CB(skb)->eor)
2267 goto send_now;
2268
2269 return true;
2270
2271 send_now:
2272 return false;
2273 }
2274
tcp_mtu_check_reprobe(struct sock * sk)2275 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2276 {
2277 struct inet_connection_sock *icsk = inet_csk(sk);
2278 struct tcp_sock *tp = tcp_sk(sk);
2279 struct net *net = sock_net(sk);
2280 u32 interval;
2281 s32 delta;
2282
2283 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2284 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2285 if (unlikely(delta >= interval * HZ)) {
2286 int mss = tcp_current_mss(sk);
2287
2288 /* Update current search range */
2289 icsk->icsk_mtup.probe_size = 0;
2290 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2291 sizeof(struct tcphdr) +
2292 icsk->icsk_af_ops->net_header_len;
2293 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2294
2295 /* Update probe time stamp */
2296 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2297 }
2298 }
2299
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2300 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2301 {
2302 struct sk_buff *skb, *next;
2303
2304 skb = tcp_send_head(sk);
2305 tcp_for_write_queue_from_safe(skb, next, sk) {
2306 if (len <= skb->len)
2307 break;
2308
2309 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2310 return false;
2311
2312 len -= skb->len;
2313 }
2314
2315 return true;
2316 }
2317
2318 /* Create a new MTU probe if we are ready.
2319 * MTU probe is regularly attempting to increase the path MTU by
2320 * deliberately sending larger packets. This discovers routing
2321 * changes resulting in larger path MTUs.
2322 *
2323 * Returns 0 if we should wait to probe (no cwnd available),
2324 * 1 if a probe was sent,
2325 * -1 otherwise
2326 */
tcp_mtu_probe(struct sock * sk)2327 static int tcp_mtu_probe(struct sock *sk)
2328 {
2329 struct inet_connection_sock *icsk = inet_csk(sk);
2330 struct tcp_sock *tp = tcp_sk(sk);
2331 struct sk_buff *skb, *nskb, *next;
2332 struct net *net = sock_net(sk);
2333 int probe_size;
2334 int size_needed;
2335 int copy, len;
2336 int mss_now;
2337 int interval;
2338
2339 /* Not currently probing/verifying,
2340 * not in recovery,
2341 * have enough cwnd, and
2342 * not SACKing (the variable headers throw things off)
2343 */
2344 if (likely(!icsk->icsk_mtup.enabled ||
2345 icsk->icsk_mtup.probe_size ||
2346 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2347 tp->snd_cwnd < 11 ||
2348 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2349 return -1;
2350
2351 /* Use binary search for probe_size between tcp_mss_base,
2352 * and current mss_clamp. if (search_high - search_low)
2353 * smaller than a threshold, backoff from probing.
2354 */
2355 mss_now = tcp_current_mss(sk);
2356 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2357 icsk->icsk_mtup.search_low) >> 1);
2358 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2359 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2360 /* When misfortune happens, we are reprobing actively,
2361 * and then reprobe timer has expired. We stick with current
2362 * probing process by not resetting search range to its orignal.
2363 */
2364 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2365 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2366 /* Check whether enough time has elaplased for
2367 * another round of probing.
2368 */
2369 tcp_mtu_check_reprobe(sk);
2370 return -1;
2371 }
2372
2373 /* Have enough data in the send queue to probe? */
2374 if (tp->write_seq - tp->snd_nxt < size_needed)
2375 return -1;
2376
2377 if (tp->snd_wnd < size_needed)
2378 return -1;
2379 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2380 return 0;
2381
2382 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2383 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2384 if (!tcp_packets_in_flight(tp))
2385 return -1;
2386 else
2387 return 0;
2388 }
2389
2390 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2391 return -1;
2392
2393 /* We're allowed to probe. Build it now. */
2394 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2395 if (!nskb)
2396 return -1;
2397 sk_wmem_queued_add(sk, nskb->truesize);
2398 sk_mem_charge(sk, nskb->truesize);
2399
2400 skb = tcp_send_head(sk);
2401 skb_copy_decrypted(nskb, skb);
2402
2403 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2404 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2405 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2406 TCP_SKB_CB(nskb)->sacked = 0;
2407 nskb->csum = 0;
2408 nskb->ip_summed = CHECKSUM_PARTIAL;
2409
2410 tcp_insert_write_queue_before(nskb, skb, sk);
2411 tcp_highest_sack_replace(sk, skb, nskb);
2412
2413 len = 0;
2414 tcp_for_write_queue_from_safe(skb, next, sk) {
2415 copy = min_t(int, skb->len, probe_size - len);
2416 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2417
2418 if (skb->len <= copy) {
2419 /* We've eaten all the data from this skb.
2420 * Throw it away. */
2421 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2422 /* If this is the last SKB we copy and eor is set
2423 * we need to propagate it to the new skb.
2424 */
2425 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2426 tcp_skb_collapse_tstamp(nskb, skb);
2427 tcp_unlink_write_queue(skb, sk);
2428 sk_wmem_free_skb(sk, skb);
2429 } else {
2430 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2431 ~(TCPHDR_FIN|TCPHDR_PSH);
2432 if (!skb_shinfo(skb)->nr_frags) {
2433 skb_pull(skb, copy);
2434 } else {
2435 __pskb_trim_head(skb, copy);
2436 tcp_set_skb_tso_segs(skb, mss_now);
2437 }
2438 TCP_SKB_CB(skb)->seq += copy;
2439 }
2440
2441 len += copy;
2442
2443 if (len >= probe_size)
2444 break;
2445 }
2446 tcp_init_tso_segs(nskb, nskb->len);
2447
2448 /* We're ready to send. If this fails, the probe will
2449 * be resegmented into mss-sized pieces by tcp_write_xmit().
2450 */
2451 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2452 /* Decrement cwnd here because we are sending
2453 * effectively two packets. */
2454 tp->snd_cwnd--;
2455 tcp_event_new_data_sent(sk, nskb);
2456
2457 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2458 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2459 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2460
2461 return 1;
2462 }
2463
2464 return -1;
2465 }
2466
tcp_pacing_check(struct sock * sk)2467 static bool tcp_pacing_check(struct sock *sk)
2468 {
2469 struct tcp_sock *tp = tcp_sk(sk);
2470
2471 if (!tcp_needs_internal_pacing(sk))
2472 return false;
2473
2474 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2475 return false;
2476
2477 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2478 hrtimer_start(&tp->pacing_timer,
2479 ns_to_ktime(tp->tcp_wstamp_ns),
2480 HRTIMER_MODE_ABS_PINNED_SOFT);
2481 sock_hold(sk);
2482 }
2483 return true;
2484 }
2485
2486 /* TCP Small Queues :
2487 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2488 * (These limits are doubled for retransmits)
2489 * This allows for :
2490 * - better RTT estimation and ACK scheduling
2491 * - faster recovery
2492 * - high rates
2493 * Alas, some drivers / subsystems require a fair amount
2494 * of queued bytes to ensure line rate.
2495 * One example is wifi aggregation (802.11 AMPDU)
2496 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2497 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2498 unsigned int factor)
2499 {
2500 unsigned long limit;
2501
2502 limit = max_t(unsigned long,
2503 2 * skb->truesize,
2504 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2505 if (sk->sk_pacing_status == SK_PACING_NONE)
2506 limit = min_t(unsigned long, limit,
2507 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2508 limit <<= factor;
2509
2510 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2511 tcp_sk(sk)->tcp_tx_delay) {
2512 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2513
2514 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2515 * approximate our needs assuming an ~100% skb->truesize overhead.
2516 * USEC_PER_SEC is approximated by 2^20.
2517 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2518 */
2519 extra_bytes >>= (20 - 1);
2520 limit += extra_bytes;
2521 }
2522 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2523 /* Always send skb if rtx queue is empty.
2524 * No need to wait for TX completion to call us back,
2525 * after softirq/tasklet schedule.
2526 * This helps when TX completions are delayed too much.
2527 */
2528 if (tcp_rtx_queue_empty(sk))
2529 return false;
2530
2531 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2532 /* It is possible TX completion already happened
2533 * before we set TSQ_THROTTLED, so we must
2534 * test again the condition.
2535 */
2536 smp_mb__after_atomic();
2537 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2538 return true;
2539 }
2540 return false;
2541 }
2542
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2543 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2544 {
2545 const u32 now = tcp_jiffies32;
2546 enum tcp_chrono old = tp->chrono_type;
2547
2548 if (old > TCP_CHRONO_UNSPEC)
2549 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2550 tp->chrono_start = now;
2551 tp->chrono_type = new;
2552 }
2553
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2554 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2555 {
2556 struct tcp_sock *tp = tcp_sk(sk);
2557
2558 /* If there are multiple conditions worthy of tracking in a
2559 * chronograph then the highest priority enum takes precedence
2560 * over the other conditions. So that if something "more interesting"
2561 * starts happening, stop the previous chrono and start a new one.
2562 */
2563 if (type > tp->chrono_type)
2564 tcp_chrono_set(tp, type);
2565 }
2566
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2567 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2568 {
2569 struct tcp_sock *tp = tcp_sk(sk);
2570
2571
2572 /* There are multiple conditions worthy of tracking in a
2573 * chronograph, so that the highest priority enum takes
2574 * precedence over the other conditions (see tcp_chrono_start).
2575 * If a condition stops, we only stop chrono tracking if
2576 * it's the "most interesting" or current chrono we are
2577 * tracking and starts busy chrono if we have pending data.
2578 */
2579 if (tcp_rtx_and_write_queues_empty(sk))
2580 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2581 else if (type == tp->chrono_type)
2582 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2583 }
2584
2585 /* This routine writes packets to the network. It advances the
2586 * send_head. This happens as incoming acks open up the remote
2587 * window for us.
2588 *
2589 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2590 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2591 * account rare use of URG, this is not a big flaw.
2592 *
2593 * Send at most one packet when push_one > 0. Temporarily ignore
2594 * cwnd limit to force at most one packet out when push_one == 2.
2595
2596 * Returns true, if no segments are in flight and we have queued segments,
2597 * but cannot send anything now because of SWS or another problem.
2598 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2599 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2600 int push_one, gfp_t gfp)
2601 {
2602 struct tcp_sock *tp = tcp_sk(sk);
2603 struct sk_buff *skb;
2604 unsigned int tso_segs, sent_pkts;
2605 int cwnd_quota;
2606 int result;
2607 bool is_cwnd_limited = false, is_rwnd_limited = false;
2608 u32 max_segs;
2609
2610 sent_pkts = 0;
2611
2612 tcp_mstamp_refresh(tp);
2613 if (!push_one) {
2614 /* Do MTU probing. */
2615 result = tcp_mtu_probe(sk);
2616 if (!result) {
2617 return false;
2618 } else if (result > 0) {
2619 sent_pkts = 1;
2620 }
2621 }
2622
2623 max_segs = tcp_tso_segs(sk, mss_now);
2624 while ((skb = tcp_send_head(sk))) {
2625 unsigned int limit;
2626
2627 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2628 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2629 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2630 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2631 tcp_init_tso_segs(skb, mss_now);
2632 goto repair; /* Skip network transmission */
2633 }
2634
2635 if (tcp_pacing_check(sk))
2636 break;
2637
2638 tso_segs = tcp_init_tso_segs(skb, mss_now);
2639 BUG_ON(!tso_segs);
2640
2641 cwnd_quota = tcp_cwnd_test(tp, skb);
2642 if (!cwnd_quota) {
2643 if (push_one == 2)
2644 /* Force out a loss probe pkt. */
2645 cwnd_quota = 1;
2646 else
2647 break;
2648 }
2649
2650 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2651 is_rwnd_limited = true;
2652 break;
2653 }
2654
2655 if (tso_segs == 1) {
2656 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2657 (tcp_skb_is_last(sk, skb) ?
2658 nonagle : TCP_NAGLE_PUSH))))
2659 break;
2660 } else {
2661 if (!push_one &&
2662 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2663 &is_rwnd_limited, max_segs))
2664 break;
2665 }
2666
2667 limit = mss_now;
2668 if (tso_segs > 1 && !tcp_urg_mode(tp))
2669 limit = tcp_mss_split_point(sk, skb, mss_now,
2670 min_t(unsigned int,
2671 cwnd_quota,
2672 max_segs),
2673 nonagle);
2674
2675 if (skb->len > limit &&
2676 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2677 break;
2678
2679 if (tcp_small_queue_check(sk, skb, 0))
2680 break;
2681
2682 /* Argh, we hit an empty skb(), presumably a thread
2683 * is sleeping in sendmsg()/sk_stream_wait_memory().
2684 * We do not want to send a pure-ack packet and have
2685 * a strange looking rtx queue with empty packet(s).
2686 */
2687 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2688 break;
2689
2690 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2691 break;
2692
2693 repair:
2694 /* Advance the send_head. This one is sent out.
2695 * This call will increment packets_out.
2696 */
2697 tcp_event_new_data_sent(sk, skb);
2698
2699 tcp_minshall_update(tp, mss_now, skb);
2700 sent_pkts += tcp_skb_pcount(skb);
2701
2702 if (push_one)
2703 break;
2704 }
2705
2706 if (is_rwnd_limited)
2707 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2708 else
2709 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2710
2711 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2712 if (likely(sent_pkts || is_cwnd_limited))
2713 tcp_cwnd_validate(sk, is_cwnd_limited);
2714
2715 if (likely(sent_pkts)) {
2716 if (tcp_in_cwnd_reduction(sk))
2717 tp->prr_out += sent_pkts;
2718
2719 /* Send one loss probe per tail loss episode. */
2720 if (push_one != 2)
2721 tcp_schedule_loss_probe(sk, false);
2722 return false;
2723 }
2724 return !tp->packets_out && !tcp_write_queue_empty(sk);
2725 }
2726
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2727 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2728 {
2729 struct inet_connection_sock *icsk = inet_csk(sk);
2730 struct tcp_sock *tp = tcp_sk(sk);
2731 u32 timeout, rto_delta_us;
2732 int early_retrans;
2733
2734 /* Don't do any loss probe on a Fast Open connection before 3WHS
2735 * finishes.
2736 */
2737 if (rcu_access_pointer(tp->fastopen_rsk))
2738 return false;
2739
2740 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2741 /* Schedule a loss probe in 2*RTT for SACK capable connections
2742 * not in loss recovery, that are either limited by cwnd or application.
2743 */
2744 if ((early_retrans != 3 && early_retrans != 4) ||
2745 !tp->packets_out || !tcp_is_sack(tp) ||
2746 (icsk->icsk_ca_state != TCP_CA_Open &&
2747 icsk->icsk_ca_state != TCP_CA_CWR))
2748 return false;
2749
2750 /* Probe timeout is 2*rtt. Add minimum RTO to account
2751 * for delayed ack when there's one outstanding packet. If no RTT
2752 * sample is available then probe after TCP_TIMEOUT_INIT.
2753 */
2754 if (tp->srtt_us) {
2755 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2756 if (tp->packets_out == 1)
2757 timeout += TCP_RTO_MIN;
2758 else
2759 timeout += TCP_TIMEOUT_MIN;
2760 } else {
2761 timeout = TCP_TIMEOUT_INIT;
2762 }
2763
2764 /* If the RTO formula yields an earlier time, then use that time. */
2765 rto_delta_us = advancing_rto ?
2766 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2767 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2768 if (rto_delta_us > 0)
2769 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2770
2771 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2772 return true;
2773 }
2774
2775 /* Thanks to skb fast clones, we can detect if a prior transmit of
2776 * a packet is still in a qdisc or driver queue.
2777 * In this case, there is very little point doing a retransmit !
2778 */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2779 static bool skb_still_in_host_queue(const struct sock *sk,
2780 const struct sk_buff *skb)
2781 {
2782 if (unlikely(skb_fclone_busy(sk, skb))) {
2783 NET_INC_STATS(sock_net(sk),
2784 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2785 return true;
2786 }
2787 return false;
2788 }
2789
2790 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2791 * retransmit the last segment.
2792 */
tcp_send_loss_probe(struct sock * sk)2793 void tcp_send_loss_probe(struct sock *sk)
2794 {
2795 struct tcp_sock *tp = tcp_sk(sk);
2796 struct sk_buff *skb;
2797 int pcount;
2798 int mss = tcp_current_mss(sk);
2799
2800 /* At most one outstanding TLP */
2801 if (tp->tlp_high_seq)
2802 goto rearm_timer;
2803
2804 tp->tlp_retrans = 0;
2805 skb = tcp_send_head(sk);
2806 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2807 pcount = tp->packets_out;
2808 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2809 if (tp->packets_out > pcount)
2810 goto probe_sent;
2811 goto rearm_timer;
2812 }
2813 skb = skb_rb_last(&sk->tcp_rtx_queue);
2814 if (unlikely(!skb)) {
2815 WARN_ONCE(tp->packets_out,
2816 "invalid inflight: %u state %u cwnd %u mss %d\n",
2817 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2818 inet_csk(sk)->icsk_pending = 0;
2819 return;
2820 }
2821
2822 if (skb_still_in_host_queue(sk, skb))
2823 goto rearm_timer;
2824
2825 pcount = tcp_skb_pcount(skb);
2826 if (WARN_ON(!pcount))
2827 goto rearm_timer;
2828
2829 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2830 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2831 (pcount - 1) * mss, mss,
2832 GFP_ATOMIC)))
2833 goto rearm_timer;
2834 skb = skb_rb_next(skb);
2835 }
2836
2837 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2838 goto rearm_timer;
2839
2840 if (__tcp_retransmit_skb(sk, skb, 1))
2841 goto rearm_timer;
2842
2843 tp->tlp_retrans = 1;
2844
2845 probe_sent:
2846 /* Record snd_nxt for loss detection. */
2847 tp->tlp_high_seq = tp->snd_nxt;
2848
2849 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2850 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2851 inet_csk(sk)->icsk_pending = 0;
2852 rearm_timer:
2853 tcp_rearm_rto(sk);
2854 }
2855
2856 /* Push out any pending frames which were held back due to
2857 * TCP_CORK or attempt at coalescing tiny packets.
2858 * The socket must be locked by the caller.
2859 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2860 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2861 int nonagle)
2862 {
2863 /* If we are closed, the bytes will have to remain here.
2864 * In time closedown will finish, we empty the write queue and
2865 * all will be happy.
2866 */
2867 if (unlikely(sk->sk_state == TCP_CLOSE))
2868 return;
2869
2870 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2871 sk_gfp_mask(sk, GFP_ATOMIC)))
2872 tcp_check_probe_timer(sk);
2873 }
2874
2875 /* Send _single_ skb sitting at the send head. This function requires
2876 * true push pending frames to setup probe timer etc.
2877 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2878 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2879 {
2880 struct sk_buff *skb = tcp_send_head(sk);
2881
2882 BUG_ON(!skb || skb->len < mss_now);
2883
2884 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2885 }
2886
2887 /* This function returns the amount that we can raise the
2888 * usable window based on the following constraints
2889 *
2890 * 1. The window can never be shrunk once it is offered (RFC 793)
2891 * 2. We limit memory per socket
2892 *
2893 * RFC 1122:
2894 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2895 * RECV.NEXT + RCV.WIN fixed until:
2896 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2897 *
2898 * i.e. don't raise the right edge of the window until you can raise
2899 * it at least MSS bytes.
2900 *
2901 * Unfortunately, the recommended algorithm breaks header prediction,
2902 * since header prediction assumes th->window stays fixed.
2903 *
2904 * Strictly speaking, keeping th->window fixed violates the receiver
2905 * side SWS prevention criteria. The problem is that under this rule
2906 * a stream of single byte packets will cause the right side of the
2907 * window to always advance by a single byte.
2908 *
2909 * Of course, if the sender implements sender side SWS prevention
2910 * then this will not be a problem.
2911 *
2912 * BSD seems to make the following compromise:
2913 *
2914 * If the free space is less than the 1/4 of the maximum
2915 * space available and the free space is less than 1/2 mss,
2916 * then set the window to 0.
2917 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2918 * Otherwise, just prevent the window from shrinking
2919 * and from being larger than the largest representable value.
2920 *
2921 * This prevents incremental opening of the window in the regime
2922 * where TCP is limited by the speed of the reader side taking
2923 * data out of the TCP receive queue. It does nothing about
2924 * those cases where the window is constrained on the sender side
2925 * because the pipeline is full.
2926 *
2927 * BSD also seems to "accidentally" limit itself to windows that are a
2928 * multiple of MSS, at least until the free space gets quite small.
2929 * This would appear to be a side effect of the mbuf implementation.
2930 * Combining these two algorithms results in the observed behavior
2931 * of having a fixed window size at almost all times.
2932 *
2933 * Below we obtain similar behavior by forcing the offered window to
2934 * a multiple of the mss when it is feasible to do so.
2935 *
2936 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2937 * Regular options like TIMESTAMP are taken into account.
2938 */
__tcp_select_window(struct sock * sk)2939 u32 __tcp_select_window(struct sock *sk)
2940 {
2941 struct inet_connection_sock *icsk = inet_csk(sk);
2942 struct tcp_sock *tp = tcp_sk(sk);
2943 /* MSS for the peer's data. Previous versions used mss_clamp
2944 * here. I don't know if the value based on our guesses
2945 * of peer's MSS is better for the performance. It's more correct
2946 * but may be worse for the performance because of rcv_mss
2947 * fluctuations. --SAW 1998/11/1
2948 */
2949 int mss = icsk->icsk_ack.rcv_mss;
2950 int free_space = tcp_space(sk);
2951 int allowed_space = tcp_full_space(sk);
2952 int full_space, window;
2953
2954 if (sk_is_mptcp(sk))
2955 mptcp_space(sk, &free_space, &allowed_space);
2956
2957 full_space = min_t(int, tp->window_clamp, allowed_space);
2958
2959 if (unlikely(mss > full_space)) {
2960 mss = full_space;
2961 if (mss <= 0)
2962 return 0;
2963 }
2964 if (free_space < (full_space >> 1)) {
2965 icsk->icsk_ack.quick = 0;
2966
2967 if (tcp_under_memory_pressure(sk))
2968 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2969 4U * tp->advmss);
2970
2971 /* free_space might become our new window, make sure we don't
2972 * increase it due to wscale.
2973 */
2974 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2975
2976 /* if free space is less than mss estimate, or is below 1/16th
2977 * of the maximum allowed, try to move to zero-window, else
2978 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2979 * new incoming data is dropped due to memory limits.
2980 * With large window, mss test triggers way too late in order
2981 * to announce zero window in time before rmem limit kicks in.
2982 */
2983 if (free_space < (allowed_space >> 4) || free_space < mss)
2984 return 0;
2985 }
2986
2987 if (free_space > tp->rcv_ssthresh)
2988 free_space = tp->rcv_ssthresh;
2989
2990 /* Don't do rounding if we are using window scaling, since the
2991 * scaled window will not line up with the MSS boundary anyway.
2992 */
2993 if (tp->rx_opt.rcv_wscale) {
2994 window = free_space;
2995
2996 /* Advertise enough space so that it won't get scaled away.
2997 * Import case: prevent zero window announcement if
2998 * 1<<rcv_wscale > mss.
2999 */
3000 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3001 } else {
3002 window = tp->rcv_wnd;
3003 /* Get the largest window that is a nice multiple of mss.
3004 * Window clamp already applied above.
3005 * If our current window offering is within 1 mss of the
3006 * free space we just keep it. This prevents the divide
3007 * and multiply from happening most of the time.
3008 * We also don't do any window rounding when the free space
3009 * is too small.
3010 */
3011 if (window <= free_space - mss || window > free_space)
3012 window = rounddown(free_space, mss);
3013 else if (mss == full_space &&
3014 free_space > window + (full_space >> 1))
3015 window = free_space;
3016 }
3017
3018 return window;
3019 }
3020
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3021 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3022 const struct sk_buff *next_skb)
3023 {
3024 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3025 const struct skb_shared_info *next_shinfo =
3026 skb_shinfo(next_skb);
3027 struct skb_shared_info *shinfo = skb_shinfo(skb);
3028
3029 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3030 shinfo->tskey = next_shinfo->tskey;
3031 TCP_SKB_CB(skb)->txstamp_ack |=
3032 TCP_SKB_CB(next_skb)->txstamp_ack;
3033 }
3034 }
3035
3036 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3037 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3038 {
3039 struct tcp_sock *tp = tcp_sk(sk);
3040 struct sk_buff *next_skb = skb_rb_next(skb);
3041 int next_skb_size;
3042
3043 next_skb_size = next_skb->len;
3044
3045 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3046
3047 if (next_skb_size) {
3048 if (next_skb_size <= skb_availroom(skb))
3049 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
3050 next_skb_size);
3051 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3052 return false;
3053 }
3054 tcp_highest_sack_replace(sk, next_skb, skb);
3055
3056 /* Update sequence range on original skb. */
3057 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3058
3059 /* Merge over control information. This moves PSH/FIN etc. over */
3060 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3061
3062 /* All done, get rid of second SKB and account for it so
3063 * packet counting does not break.
3064 */
3065 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3066 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3067
3068 /* changed transmit queue under us so clear hints */
3069 tcp_clear_retrans_hints_partial(tp);
3070 if (next_skb == tp->retransmit_skb_hint)
3071 tp->retransmit_skb_hint = skb;
3072
3073 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3074
3075 tcp_skb_collapse_tstamp(skb, next_skb);
3076
3077 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3078 return true;
3079 }
3080
3081 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3082 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3083 {
3084 if (tcp_skb_pcount(skb) > 1)
3085 return false;
3086 if (skb_cloned(skb))
3087 return false;
3088 /* Some heuristics for collapsing over SACK'd could be invented */
3089 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3090 return false;
3091
3092 return true;
3093 }
3094
3095 /* Collapse packets in the retransmit queue to make to create
3096 * less packets on the wire. This is only done on retransmission.
3097 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3098 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3099 int space)
3100 {
3101 struct tcp_sock *tp = tcp_sk(sk);
3102 struct sk_buff *skb = to, *tmp;
3103 bool first = true;
3104
3105 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3106 return;
3107 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3108 return;
3109
3110 skb_rbtree_walk_from_safe(skb, tmp) {
3111 if (!tcp_can_collapse(sk, skb))
3112 break;
3113
3114 if (!tcp_skb_can_collapse(to, skb))
3115 break;
3116
3117 space -= skb->len;
3118
3119 if (first) {
3120 first = false;
3121 continue;
3122 }
3123
3124 if (space < 0)
3125 break;
3126
3127 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3128 break;
3129
3130 if (!tcp_collapse_retrans(sk, to))
3131 break;
3132 }
3133 }
3134
3135 /* This retransmits one SKB. Policy decisions and retransmit queue
3136 * state updates are done by the caller. Returns non-zero if an
3137 * error occurred which prevented the send.
3138 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3139 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3140 {
3141 struct inet_connection_sock *icsk = inet_csk(sk);
3142 struct tcp_sock *tp = tcp_sk(sk);
3143 unsigned int cur_mss;
3144 int diff, len, err;
3145 int avail_wnd;
3146
3147 /* Inconclusive MTU probe */
3148 if (icsk->icsk_mtup.probe_size)
3149 icsk->icsk_mtup.probe_size = 0;
3150
3151 /* Do not sent more than we queued. 1/4 is reserved for possible
3152 * copying overhead: fragmentation, tunneling, mangling etc.
3153 */
3154 if (refcount_read(&sk->sk_wmem_alloc) >
3155 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
3156 sk->sk_sndbuf))
3157 return -EAGAIN;
3158
3159 if (skb_still_in_host_queue(sk, skb))
3160 return -EBUSY;
3161
3162 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3163 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3164 WARN_ON_ONCE(1);
3165 return -EINVAL;
3166 }
3167 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3168 return -ENOMEM;
3169 }
3170
3171 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3172 return -EHOSTUNREACH; /* Routing failure or similar. */
3173
3174 cur_mss = tcp_current_mss(sk);
3175 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3176
3177 /* If receiver has shrunk his window, and skb is out of
3178 * new window, do not retransmit it. The exception is the
3179 * case, when window is shrunk to zero. In this case
3180 * our retransmit of one segment serves as a zero window probe.
3181 */
3182 if (avail_wnd <= 0) {
3183 if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3184 return -EAGAIN;
3185 avail_wnd = cur_mss;
3186 }
3187
3188 len = cur_mss * segs;
3189 if (len > avail_wnd) {
3190 len = rounddown(avail_wnd, cur_mss);
3191 if (!len)
3192 len = avail_wnd;
3193 }
3194 if (skb->len > len) {
3195 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3196 cur_mss, GFP_ATOMIC))
3197 return -ENOMEM; /* We'll try again later. */
3198 } else {
3199 if (skb_unclone(skb, GFP_ATOMIC))
3200 return -ENOMEM;
3201
3202 diff = tcp_skb_pcount(skb);
3203 tcp_set_skb_tso_segs(skb, cur_mss);
3204 diff -= tcp_skb_pcount(skb);
3205 if (diff)
3206 tcp_adjust_pcount(sk, skb, diff);
3207 avail_wnd = min_t(int, avail_wnd, cur_mss);
3208 if (skb->len < avail_wnd)
3209 tcp_retrans_try_collapse(sk, skb, avail_wnd);
3210 }
3211
3212 /* RFC3168, section 6.1.1.1. ECN fallback */
3213 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3214 tcp_ecn_clear_syn(sk, skb);
3215
3216 /* Update global and local TCP statistics. */
3217 segs = tcp_skb_pcount(skb);
3218 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3219 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3220 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3221 tp->total_retrans += segs;
3222 tp->bytes_retrans += skb->len;
3223
3224 /* make sure skb->data is aligned on arches that require it
3225 * and check if ack-trimming & collapsing extended the headroom
3226 * beyond what csum_start can cover.
3227 */
3228 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3229 skb_headroom(skb) >= 0xFFFF)) {
3230 struct sk_buff *nskb;
3231
3232 tcp_skb_tsorted_save(skb) {
3233 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3234 if (nskb) {
3235 nskb->dev = NULL;
3236 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3237 } else {
3238 err = -ENOBUFS;
3239 }
3240 } tcp_skb_tsorted_restore(skb);
3241
3242 if (!err) {
3243 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3244 tcp_rate_skb_sent(sk, skb);
3245 }
3246 } else {
3247 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3248 }
3249
3250 /* To avoid taking spuriously low RTT samples based on a timestamp
3251 * for a transmit that never happened, always mark EVER_RETRANS
3252 */
3253 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3254
3255 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3256 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3257 TCP_SKB_CB(skb)->seq, segs, err);
3258
3259 if (likely(!err)) {
3260 trace_tcp_retransmit_skb(sk, skb);
3261 } else if (err != -EBUSY) {
3262 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3263 }
3264 return err;
3265 }
3266
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3267 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3268 {
3269 struct tcp_sock *tp = tcp_sk(sk);
3270 int err = __tcp_retransmit_skb(sk, skb, segs);
3271
3272 if (err == 0) {
3273 #if FASTRETRANS_DEBUG > 0
3274 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3275 net_dbg_ratelimited("retrans_out leaked\n");
3276 }
3277 #endif
3278 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3279 tp->retrans_out += tcp_skb_pcount(skb);
3280 }
3281
3282 /* Save stamp of the first (attempted) retransmit. */
3283 if (!tp->retrans_stamp)
3284 tp->retrans_stamp = tcp_skb_timestamp(skb);
3285
3286 if (tp->undo_retrans < 0)
3287 tp->undo_retrans = 0;
3288 tp->undo_retrans += tcp_skb_pcount(skb);
3289 return err;
3290 }
3291
3292 /* This gets called after a retransmit timeout, and the initially
3293 * retransmitted data is acknowledged. It tries to continue
3294 * resending the rest of the retransmit queue, until either
3295 * we've sent it all or the congestion window limit is reached.
3296 */
tcp_xmit_retransmit_queue(struct sock * sk)3297 void tcp_xmit_retransmit_queue(struct sock *sk)
3298 {
3299 const struct inet_connection_sock *icsk = inet_csk(sk);
3300 struct sk_buff *skb, *rtx_head, *hole = NULL;
3301 struct tcp_sock *tp = tcp_sk(sk);
3302 bool rearm_timer = false;
3303 u32 max_segs;
3304 int mib_idx;
3305
3306 if (!tp->packets_out)
3307 return;
3308
3309 rtx_head = tcp_rtx_queue_head(sk);
3310 skb = tp->retransmit_skb_hint ?: rtx_head;
3311 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3312 skb_rbtree_walk_from(skb) {
3313 __u8 sacked;
3314 int segs;
3315
3316 if (tcp_pacing_check(sk))
3317 break;
3318
3319 /* we could do better than to assign each time */
3320 if (!hole)
3321 tp->retransmit_skb_hint = skb;
3322
3323 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3324 if (segs <= 0)
3325 break;
3326 sacked = TCP_SKB_CB(skb)->sacked;
3327 /* In case tcp_shift_skb_data() have aggregated large skbs,
3328 * we need to make sure not sending too bigs TSO packets
3329 */
3330 segs = min_t(int, segs, max_segs);
3331
3332 if (tp->retrans_out >= tp->lost_out) {
3333 break;
3334 } else if (!(sacked & TCPCB_LOST)) {
3335 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3336 hole = skb;
3337 continue;
3338
3339 } else {
3340 if (icsk->icsk_ca_state != TCP_CA_Loss)
3341 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3342 else
3343 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3344 }
3345
3346 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3347 continue;
3348
3349 if (tcp_small_queue_check(sk, skb, 1))
3350 break;
3351
3352 if (tcp_retransmit_skb(sk, skb, segs))
3353 break;
3354
3355 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3356
3357 if (tcp_in_cwnd_reduction(sk))
3358 tp->prr_out += tcp_skb_pcount(skb);
3359
3360 if (skb == rtx_head &&
3361 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3362 rearm_timer = true;
3363
3364 }
3365 if (rearm_timer)
3366 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3367 inet_csk(sk)->icsk_rto,
3368 TCP_RTO_MAX);
3369 }
3370
3371 /* We allow to exceed memory limits for FIN packets to expedite
3372 * connection tear down and (memory) recovery.
3373 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3374 * or even be forced to close flow without any FIN.
3375 * In general, we want to allow one skb per socket to avoid hangs
3376 * with edge trigger epoll()
3377 */
sk_forced_mem_schedule(struct sock * sk,int size)3378 void sk_forced_mem_schedule(struct sock *sk, int size)
3379 {
3380 int delta, amt;
3381
3382 delta = size - sk->sk_forward_alloc;
3383 if (delta <= 0)
3384 return;
3385 amt = sk_mem_pages(delta);
3386 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3387 sk_memory_allocated_add(sk, amt);
3388
3389 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3390 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3391 }
3392
3393 /* Send a FIN. The caller locks the socket for us.
3394 * We should try to send a FIN packet really hard, but eventually give up.
3395 */
tcp_send_fin(struct sock * sk)3396 void tcp_send_fin(struct sock *sk)
3397 {
3398 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3399 struct tcp_sock *tp = tcp_sk(sk);
3400
3401 /* Optimization, tack on the FIN if we have one skb in write queue and
3402 * this skb was not yet sent, or we are under memory pressure.
3403 * Note: in the latter case, FIN packet will be sent after a timeout,
3404 * as TCP stack thinks it has already been transmitted.
3405 */
3406 tskb = tail;
3407 if (!tskb && tcp_under_memory_pressure(sk))
3408 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3409
3410 if (tskb) {
3411 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3412 TCP_SKB_CB(tskb)->end_seq++;
3413 tp->write_seq++;
3414 if (!tail) {
3415 /* This means tskb was already sent.
3416 * Pretend we included the FIN on previous transmit.
3417 * We need to set tp->snd_nxt to the value it would have
3418 * if FIN had been sent. This is because retransmit path
3419 * does not change tp->snd_nxt.
3420 */
3421 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3422 return;
3423 }
3424 } else {
3425 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3426 if (unlikely(!skb))
3427 return;
3428
3429 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3430 skb_reserve(skb, MAX_TCP_HEADER);
3431 sk_forced_mem_schedule(sk, skb->truesize);
3432 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3433 tcp_init_nondata_skb(skb, tp->write_seq,
3434 TCPHDR_ACK | TCPHDR_FIN);
3435 tcp_queue_skb(sk, skb);
3436 }
3437 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3438 }
3439
3440 /* We get here when a process closes a file descriptor (either due to
3441 * an explicit close() or as a byproduct of exit()'ing) and there
3442 * was unread data in the receive queue. This behavior is recommended
3443 * by RFC 2525, section 2.17. -DaveM
3444 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3445 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3446 {
3447 struct sk_buff *skb;
3448
3449 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3450
3451 /* NOTE: No TCP options attached and we never retransmit this. */
3452 skb = alloc_skb(MAX_TCP_HEADER, priority);
3453 if (!skb) {
3454 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3455 return;
3456 }
3457
3458 /* Reserve space for headers and prepare control bits. */
3459 skb_reserve(skb, MAX_TCP_HEADER);
3460 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3461 TCPHDR_ACK | TCPHDR_RST);
3462 tcp_mstamp_refresh(tcp_sk(sk));
3463 /* Send it off. */
3464 if (tcp_transmit_skb(sk, skb, 0, priority))
3465 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3466
3467 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3468 * skb here is different to the troublesome skb, so use NULL
3469 */
3470 trace_tcp_send_reset(sk, NULL);
3471 }
3472
3473 /* Send a crossed SYN-ACK during socket establishment.
3474 * WARNING: This routine must only be called when we have already sent
3475 * a SYN packet that crossed the incoming SYN that caused this routine
3476 * to get called. If this assumption fails then the initial rcv_wnd
3477 * and rcv_wscale values will not be correct.
3478 */
tcp_send_synack(struct sock * sk)3479 int tcp_send_synack(struct sock *sk)
3480 {
3481 struct sk_buff *skb;
3482
3483 skb = tcp_rtx_queue_head(sk);
3484 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3485 pr_err("%s: wrong queue state\n", __func__);
3486 return -EFAULT;
3487 }
3488 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3489 if (skb_cloned(skb)) {
3490 struct sk_buff *nskb;
3491
3492 tcp_skb_tsorted_save(skb) {
3493 nskb = skb_copy(skb, GFP_ATOMIC);
3494 } tcp_skb_tsorted_restore(skb);
3495 if (!nskb)
3496 return -ENOMEM;
3497 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3498 tcp_highest_sack_replace(sk, skb, nskb);
3499 tcp_rtx_queue_unlink_and_free(skb, sk);
3500 __skb_header_release(nskb);
3501 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3502 sk_wmem_queued_add(sk, nskb->truesize);
3503 sk_mem_charge(sk, nskb->truesize);
3504 skb = nskb;
3505 }
3506
3507 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3508 tcp_ecn_send_synack(sk, skb);
3509 }
3510 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3511 }
3512
3513 /**
3514 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3515 * @sk: listener socket
3516 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3517 * should not use it again.
3518 * @req: request_sock pointer
3519 * @foc: cookie for tcp fast open
3520 * @synack_type: Type of synack to prepare
3521 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3522 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3523 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3524 struct request_sock *req,
3525 struct tcp_fastopen_cookie *foc,
3526 enum tcp_synack_type synack_type,
3527 struct sk_buff *syn_skb)
3528 {
3529 struct inet_request_sock *ireq = inet_rsk(req);
3530 const struct tcp_sock *tp = tcp_sk(sk);
3531 struct tcp_md5sig_key *md5 = NULL;
3532 struct tcp_out_options opts;
3533 struct sk_buff *skb;
3534 int tcp_header_size;
3535 struct tcphdr *th;
3536 int mss;
3537 u64 now;
3538
3539 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3540 if (unlikely(!skb)) {
3541 dst_release(dst);
3542 return NULL;
3543 }
3544 /* Reserve space for headers. */
3545 skb_reserve(skb, MAX_TCP_HEADER);
3546
3547 switch (synack_type) {
3548 case TCP_SYNACK_NORMAL:
3549 skb_set_owner_w(skb, req_to_sk(req));
3550 break;
3551 case TCP_SYNACK_COOKIE:
3552 /* Under synflood, we do not attach skb to a socket,
3553 * to avoid false sharing.
3554 */
3555 break;
3556 case TCP_SYNACK_FASTOPEN:
3557 /* sk is a const pointer, because we want to express multiple
3558 * cpu might call us concurrently.
3559 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3560 */
3561 skb_set_owner_w(skb, (struct sock *)sk);
3562 break;
3563 }
3564 skb_dst_set(skb, dst);
3565
3566 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3567
3568 memset(&opts, 0, sizeof(opts));
3569 now = tcp_clock_ns();
3570 #ifdef CONFIG_SYN_COOKIES
3571 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3572 skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3573 else
3574 #endif
3575 {
3576 skb->skb_mstamp_ns = now;
3577 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3578 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3579 }
3580
3581 #ifdef CONFIG_TCP_MD5SIG
3582 rcu_read_lock();
3583 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3584 #endif
3585 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3586 /* bpf program will be interested in the tcp_flags */
3587 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3588 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3589 foc, synack_type,
3590 syn_skb) + sizeof(*th);
3591
3592 skb_push(skb, tcp_header_size);
3593 skb_reset_transport_header(skb);
3594
3595 th = (struct tcphdr *)skb->data;
3596 memset(th, 0, sizeof(struct tcphdr));
3597 th->syn = 1;
3598 th->ack = 1;
3599 tcp_ecn_make_synack(req, th);
3600 th->source = htons(ireq->ir_num);
3601 th->dest = ireq->ir_rmt_port;
3602 skb->mark = ireq->ir_mark;
3603 skb->ip_summed = CHECKSUM_PARTIAL;
3604 th->seq = htonl(tcp_rsk(req)->snt_isn);
3605 /* XXX data is queued and acked as is. No buffer/window check */
3606 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3607
3608 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3609 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3610 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3611 th->doff = (tcp_header_size >> 2);
3612 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3613
3614 #ifdef CONFIG_TCP_MD5SIG
3615 /* Okay, we have all we need - do the md5 hash if needed */
3616 if (md5)
3617 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3618 md5, req_to_sk(req), skb);
3619 rcu_read_unlock();
3620 #endif
3621
3622 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3623 synack_type, &opts);
3624
3625 skb->skb_mstamp_ns = now;
3626 tcp_add_tx_delay(skb, tp);
3627
3628 return skb;
3629 }
3630 EXPORT_SYMBOL(tcp_make_synack);
3631
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3632 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3633 {
3634 struct inet_connection_sock *icsk = inet_csk(sk);
3635 const struct tcp_congestion_ops *ca;
3636 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3637
3638 if (ca_key == TCP_CA_UNSPEC)
3639 return;
3640
3641 rcu_read_lock();
3642 ca = tcp_ca_find_key(ca_key);
3643 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3644 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3645 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3646 icsk->icsk_ca_ops = ca;
3647 }
3648 rcu_read_unlock();
3649 }
3650
3651 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3652 static void tcp_connect_init(struct sock *sk)
3653 {
3654 const struct dst_entry *dst = __sk_dst_get(sk);
3655 struct tcp_sock *tp = tcp_sk(sk);
3656 __u8 rcv_wscale;
3657 u32 rcv_wnd;
3658
3659 /* We'll fix this up when we get a response from the other end.
3660 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3661 */
3662 tp->tcp_header_len = sizeof(struct tcphdr);
3663 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3664 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3665
3666 #ifdef CONFIG_TCP_MD5SIG
3667 if (tp->af_specific->md5_lookup(sk, sk))
3668 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3669 #endif
3670
3671 /* If user gave his TCP_MAXSEG, record it to clamp */
3672 if (tp->rx_opt.user_mss)
3673 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3674 tp->max_window = 0;
3675 tcp_mtup_init(sk);
3676 tcp_sync_mss(sk, dst_mtu(dst));
3677
3678 tcp_ca_dst_init(sk, dst);
3679
3680 if (!tp->window_clamp)
3681 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3682 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3683
3684 tcp_initialize_rcv_mss(sk);
3685
3686 /* limit the window selection if the user enforce a smaller rx buffer */
3687 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3688 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3689 tp->window_clamp = tcp_full_space(sk);
3690
3691 rcv_wnd = tcp_rwnd_init_bpf(sk);
3692 if (rcv_wnd == 0)
3693 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3694
3695 tcp_select_initial_window(sk, tcp_full_space(sk),
3696 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3697 &tp->rcv_wnd,
3698 &tp->window_clamp,
3699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3700 &rcv_wscale,
3701 rcv_wnd);
3702
3703 tp->rx_opt.rcv_wscale = rcv_wscale;
3704 tp->rcv_ssthresh = tp->rcv_wnd;
3705
3706 sk->sk_err = 0;
3707 sock_reset_flag(sk, SOCK_DONE);
3708 tp->snd_wnd = 0;
3709 tcp_init_wl(tp, 0);
3710 tcp_write_queue_purge(sk);
3711 tp->snd_una = tp->write_seq;
3712 tp->snd_sml = tp->write_seq;
3713 tp->snd_up = tp->write_seq;
3714 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3715
3716 if (likely(!tp->repair))
3717 tp->rcv_nxt = 0;
3718 else
3719 tp->rcv_tstamp = tcp_jiffies32;
3720 tp->rcv_wup = tp->rcv_nxt;
3721 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3722
3723 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3724 inet_csk(sk)->icsk_retransmits = 0;
3725 tcp_clear_retrans(tp);
3726 }
3727
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3728 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3729 {
3730 struct tcp_sock *tp = tcp_sk(sk);
3731 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3732
3733 tcb->end_seq += skb->len;
3734 __skb_header_release(skb);
3735 sk_wmem_queued_add(sk, skb->truesize);
3736 sk_mem_charge(sk, skb->truesize);
3737 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3738 tp->packets_out += tcp_skb_pcount(skb);
3739 }
3740
3741 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3742 * queue a data-only packet after the regular SYN, such that regular SYNs
3743 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3744 * only the SYN sequence, the data are retransmitted in the first ACK.
3745 * If cookie is not cached or other error occurs, falls back to send a
3746 * regular SYN with Fast Open cookie request option.
3747 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3748 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3749 {
3750 struct inet_connection_sock *icsk = inet_csk(sk);
3751 struct tcp_sock *tp = tcp_sk(sk);
3752 struct tcp_fastopen_request *fo = tp->fastopen_req;
3753 int space, err = 0;
3754 struct sk_buff *syn_data;
3755
3756 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3757 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3758 goto fallback;
3759
3760 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3761 * user-MSS. Reserve maximum option space for middleboxes that add
3762 * private TCP options. The cost is reduced data space in SYN :(
3763 */
3764 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3765 /* Sync mss_cache after updating the mss_clamp */
3766 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3767
3768 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3769 MAX_TCP_OPTION_SPACE;
3770
3771 space = min_t(size_t, space, fo->size);
3772
3773 /* limit to order-0 allocations */
3774 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3775
3776 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3777 if (!syn_data)
3778 goto fallback;
3779 syn_data->ip_summed = CHECKSUM_PARTIAL;
3780 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3781 if (space) {
3782 int copied = copy_from_iter(skb_put(syn_data, space), space,
3783 &fo->data->msg_iter);
3784 if (unlikely(!copied)) {
3785 tcp_skb_tsorted_anchor_cleanup(syn_data);
3786 kfree_skb(syn_data);
3787 goto fallback;
3788 }
3789 if (copied != space) {
3790 skb_trim(syn_data, copied);
3791 space = copied;
3792 }
3793 skb_zcopy_set(syn_data, fo->uarg, NULL);
3794 }
3795 /* No more data pending in inet_wait_for_connect() */
3796 if (space == fo->size)
3797 fo->data = NULL;
3798 fo->copied = space;
3799
3800 tcp_connect_queue_skb(sk, syn_data);
3801 if (syn_data->len)
3802 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3803
3804 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3805
3806 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3807
3808 /* Now full SYN+DATA was cloned and sent (or not),
3809 * remove the SYN from the original skb (syn_data)
3810 * we keep in write queue in case of a retransmit, as we
3811 * also have the SYN packet (with no data) in the same queue.
3812 */
3813 TCP_SKB_CB(syn_data)->seq++;
3814 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3815 if (!err) {
3816 tp->syn_data = (fo->copied > 0);
3817 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3818 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3819 goto done;
3820 }
3821
3822 /* data was not sent, put it in write_queue */
3823 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3824 tp->packets_out -= tcp_skb_pcount(syn_data);
3825
3826 fallback:
3827 /* Send a regular SYN with Fast Open cookie request option */
3828 if (fo->cookie.len > 0)
3829 fo->cookie.len = 0;
3830 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3831 if (err)
3832 tp->syn_fastopen = 0;
3833 done:
3834 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3835 return err;
3836 }
3837
3838 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3839 int tcp_connect(struct sock *sk)
3840 {
3841 struct tcp_sock *tp = tcp_sk(sk);
3842 struct sk_buff *buff;
3843 int err;
3844
3845 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3846
3847 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3848 return -EHOSTUNREACH; /* Routing failure or similar. */
3849
3850 tcp_connect_init(sk);
3851
3852 if (unlikely(tp->repair)) {
3853 tcp_finish_connect(sk, NULL);
3854 return 0;
3855 }
3856
3857 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3858 if (unlikely(!buff))
3859 return -ENOBUFS;
3860
3861 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3862 tcp_mstamp_refresh(tp);
3863 tp->retrans_stamp = tcp_time_stamp(tp);
3864 tcp_connect_queue_skb(sk, buff);
3865 tcp_ecn_send_syn(sk, buff);
3866 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3867
3868 /* Send off SYN; include data in Fast Open. */
3869 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3870 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3871 if (err == -ECONNREFUSED)
3872 return err;
3873
3874 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3875 * in order to make this packet get counted in tcpOutSegs.
3876 */
3877 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3878 tp->pushed_seq = tp->write_seq;
3879 buff = tcp_send_head(sk);
3880 if (unlikely(buff)) {
3881 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3882 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3883 }
3884 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3885
3886 /* Timer for repeating the SYN until an answer. */
3887 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3888 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3889 return 0;
3890 }
3891 EXPORT_SYMBOL(tcp_connect);
3892
3893 /* Send out a delayed ack, the caller does the policy checking
3894 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3895 * for details.
3896 */
tcp_send_delayed_ack(struct sock * sk)3897 void tcp_send_delayed_ack(struct sock *sk)
3898 {
3899 struct inet_connection_sock *icsk = inet_csk(sk);
3900 int ato = icsk->icsk_ack.ato;
3901 unsigned long timeout;
3902
3903 if (ato > TCP_DELACK_MIN) {
3904 const struct tcp_sock *tp = tcp_sk(sk);
3905 int max_ato = HZ / 2;
3906
3907 if (inet_csk_in_pingpong_mode(sk) ||
3908 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3909 max_ato = TCP_DELACK_MAX;
3910
3911 /* Slow path, intersegment interval is "high". */
3912
3913 /* If some rtt estimate is known, use it to bound delayed ack.
3914 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3915 * directly.
3916 */
3917 if (tp->srtt_us) {
3918 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3919 TCP_DELACK_MIN);
3920
3921 if (rtt < max_ato)
3922 max_ato = rtt;
3923 }
3924
3925 ato = min(ato, max_ato);
3926 }
3927
3928 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3929
3930 /* Stay within the limit we were given */
3931 timeout = jiffies + ato;
3932
3933 /* Use new timeout only if there wasn't a older one earlier. */
3934 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3935 /* If delack timer is about to expire, send ACK now. */
3936 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3937 tcp_send_ack(sk);
3938 return;
3939 }
3940
3941 if (!time_before(timeout, icsk->icsk_ack.timeout))
3942 timeout = icsk->icsk_ack.timeout;
3943 }
3944 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3945 icsk->icsk_ack.timeout = timeout;
3946 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3947 }
3948
3949 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3950 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3951 {
3952 struct sk_buff *buff;
3953
3954 /* If we have been reset, we may not send again. */
3955 if (sk->sk_state == TCP_CLOSE)
3956 return;
3957
3958 /* We are not putting this on the write queue, so
3959 * tcp_transmit_skb() will set the ownership to this
3960 * sock.
3961 */
3962 buff = alloc_skb(MAX_TCP_HEADER,
3963 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3964 if (unlikely(!buff)) {
3965 struct inet_connection_sock *icsk = inet_csk(sk);
3966 unsigned long delay;
3967
3968 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3969 if (delay < TCP_RTO_MAX)
3970 icsk->icsk_ack.retry++;
3971 inet_csk_schedule_ack(sk);
3972 icsk->icsk_ack.ato = TCP_ATO_MIN;
3973 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3974 return;
3975 }
3976
3977 /* Reserve space for headers and prepare control bits. */
3978 skb_reserve(buff, MAX_TCP_HEADER);
3979 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3980
3981 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3982 * too much.
3983 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3984 */
3985 skb_set_tcp_pure_ack(buff);
3986
3987 /* Send it off, this clears delayed acks for us. */
3988 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3989 }
3990 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3991
tcp_send_ack(struct sock * sk)3992 void tcp_send_ack(struct sock *sk)
3993 {
3994 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3995 }
3996
3997 /* This routine sends a packet with an out of date sequence
3998 * number. It assumes the other end will try to ack it.
3999 *
4000 * Question: what should we make while urgent mode?
4001 * 4.4BSD forces sending single byte of data. We cannot send
4002 * out of window data, because we have SND.NXT==SND.MAX...
4003 *
4004 * Current solution: to send TWO zero-length segments in urgent mode:
4005 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4006 * out-of-date with SND.UNA-1 to probe window.
4007 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4008 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4009 {
4010 struct tcp_sock *tp = tcp_sk(sk);
4011 struct sk_buff *skb;
4012
4013 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4014 skb = alloc_skb(MAX_TCP_HEADER,
4015 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4016 if (!skb)
4017 return -1;
4018
4019 /* Reserve space for headers and set control bits. */
4020 skb_reserve(skb, MAX_TCP_HEADER);
4021 /* Use a previous sequence. This should cause the other
4022 * end to send an ack. Don't queue or clone SKB, just
4023 * send it.
4024 */
4025 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4026 NET_INC_STATS(sock_net(sk), mib);
4027 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4028 }
4029
4030 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4031 void tcp_send_window_probe(struct sock *sk)
4032 {
4033 if (sk->sk_state == TCP_ESTABLISHED) {
4034 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4035 tcp_mstamp_refresh(tcp_sk(sk));
4036 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4037 }
4038 }
4039
4040 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4041 int tcp_write_wakeup(struct sock *sk, int mib)
4042 {
4043 struct tcp_sock *tp = tcp_sk(sk);
4044 struct sk_buff *skb;
4045
4046 if (sk->sk_state == TCP_CLOSE)
4047 return -1;
4048
4049 skb = tcp_send_head(sk);
4050 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4051 int err;
4052 unsigned int mss = tcp_current_mss(sk);
4053 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4054
4055 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4056 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4057
4058 /* We are probing the opening of a window
4059 * but the window size is != 0
4060 * must have been a result SWS avoidance ( sender )
4061 */
4062 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4063 skb->len > mss) {
4064 seg_size = min(seg_size, mss);
4065 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4066 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4067 skb, seg_size, mss, GFP_ATOMIC))
4068 return -1;
4069 } else if (!tcp_skb_pcount(skb))
4070 tcp_set_skb_tso_segs(skb, mss);
4071
4072 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4073 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4074 if (!err)
4075 tcp_event_new_data_sent(sk, skb);
4076 return err;
4077 } else {
4078 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4079 tcp_xmit_probe_skb(sk, 1, mib);
4080 return tcp_xmit_probe_skb(sk, 0, mib);
4081 }
4082 }
4083
4084 /* A window probe timeout has occurred. If window is not closed send
4085 * a partial packet else a zero probe.
4086 */
tcp_send_probe0(struct sock * sk)4087 void tcp_send_probe0(struct sock *sk)
4088 {
4089 struct inet_connection_sock *icsk = inet_csk(sk);
4090 struct tcp_sock *tp = tcp_sk(sk);
4091 struct net *net = sock_net(sk);
4092 unsigned long timeout;
4093 int err;
4094
4095 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4096
4097 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4098 /* Cancel probe timer, if it is not required. */
4099 icsk->icsk_probes_out = 0;
4100 icsk->icsk_backoff = 0;
4101 icsk->icsk_probes_tstamp = 0;
4102 return;
4103 }
4104
4105 icsk->icsk_probes_out++;
4106 if (err <= 0) {
4107 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4108 icsk->icsk_backoff++;
4109 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4110 } else {
4111 /* If packet was not sent due to local congestion,
4112 * Let senders fight for local resources conservatively.
4113 */
4114 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4115 }
4116
4117 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4118 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4119 }
4120
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4121 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4122 {
4123 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4124 struct flowi fl;
4125 int res;
4126
4127 tcp_rsk(req)->txhash = net_tx_rndhash();
4128 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4129 NULL);
4130 if (!res) {
4131 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4132 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4133 if (unlikely(tcp_passive_fastopen(sk)))
4134 tcp_sk(sk)->total_retrans++;
4135 trace_tcp_retransmit_synack(sk, req);
4136 }
4137 return res;
4138 }
4139 EXPORT_SYMBOL(tcp_rtx_synack);
4140