• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2012 Clément Bœsch
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * EBU R.128 implementation
24  * @see http://tech.ebu.ch/loudness
25  * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
26  * @todo implement start/stop/reset through filter command injection
27  * @todo support other frequencies to avoid resampling
28  */
29 
30 #include <math.h>
31 
32 #include "libavutil/avassert.h"
33 #include "libavutil/avstring.h"
34 #include "libavutil/channel_layout.h"
35 #include "libavutil/dict.h"
36 #include "libavutil/ffmath.h"
37 #include "libavutil/xga_font_data.h"
38 #include "libavutil/opt.h"
39 #include "libavutil/timestamp.h"
40 #include "libswresample/swresample.h"
41 #include "audio.h"
42 #include "avfilter.h"
43 #include "formats.h"
44 #include "internal.h"
45 
46 #define MAX_CHANNELS 63
47 
48 /* pre-filter coefficients */
49 #define PRE_B0  1.53512485958697
50 #define PRE_B1 -2.69169618940638
51 #define PRE_B2  1.19839281085285
52 #define PRE_A1 -1.69065929318241
53 #define PRE_A2  0.73248077421585
54 
55 /* RLB-filter coefficients */
56 #define RLB_B0  1.0
57 #define RLB_B1 -2.0
58 #define RLB_B2  1.0
59 #define RLB_A1 -1.99004745483398
60 #define RLB_A2  0.99007225036621
61 
62 #define ABS_THRES    -70            ///< silence gate: we discard anything below this absolute (LUFS) threshold
63 #define ABS_UP_THRES  10            ///< upper loud limit to consider (ABS_THRES being the minimum)
64 #define HIST_GRAIN   100            ///< defines histogram precision
65 #define HIST_SIZE  ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
66 
67 /**
68  * A histogram is an array of HIST_SIZE hist_entry storing all the energies
69  * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
70  * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
71  * This fixed-size system avoids the need of a list of energies growing
72  * infinitely over the time and is thus more scalable.
73  */
74 struct hist_entry {
75     int count;                      ///< how many times the corresponding value occurred
76     double energy;                  ///< E = 10^((L + 0.691) / 10)
77     double loudness;                ///< L = -0.691 + 10 * log10(E)
78 };
79 
80 struct integrator {
81     double *cache[MAX_CHANNELS];    ///< window of filtered samples (N ms)
82     int cache_pos;                  ///< focus on the last added bin in the cache array
83     double sum[MAX_CHANNELS];       ///< sum of the last N ms filtered samples (cache content)
84     int filled;                     ///< 1 if the cache is completely filled, 0 otherwise
85     double rel_threshold;           ///< relative threshold
86     double sum_kept_powers;         ///< sum of the powers (weighted sums) above absolute threshold
87     int nb_kept_powers;             ///< number of sum above absolute threshold
88     struct hist_entry *histogram;   ///< histogram of the powers, used to compute LRA and I
89 };
90 
91 struct rect { int x, y, w, h; };
92 
93 typedef struct EBUR128Context {
94     const AVClass *class;           ///< AVClass context for log and options purpose
95 
96     /* peak metering */
97     int peak_mode;                  ///< enabled peak modes
98     double *true_peaks;             ///< true peaks per channel
99     double *sample_peaks;           ///< sample peaks per channel
100     double *true_peaks_per_frame;   ///< true peaks in a frame per channel
101 #if CONFIG_SWRESAMPLE
102     SwrContext *swr_ctx;            ///< over-sampling context for true peak metering
103     double *swr_buf;                ///< resampled audio data for true peak metering
104     int swr_linesize;
105 #endif
106 
107     /* video  */
108     int do_video;                   ///< 1 if video output enabled, 0 otherwise
109     int w, h;                       ///< size of the video output
110     struct rect text;               ///< rectangle for the LU legend on the left
111     struct rect graph;              ///< rectangle for the main graph in the center
112     struct rect gauge;              ///< rectangle for the gauge on the right
113     AVFrame *outpicref;             ///< output picture reference, updated regularly
114     int meter;                      ///< select a EBU mode between +9 and +18
115     int scale_range;                ///< the range of LU values according to the meter
116     int y_zero_lu;                  ///< the y value (pixel position) for 0 LU
117     int y_opt_max;                  ///< the y value (pixel position) for 1 LU
118     int y_opt_min;                  ///< the y value (pixel position) for -1 LU
119     int *y_line_ref;                ///< y reference values for drawing the LU lines in the graph and the gauge
120 
121     /* audio */
122     int nb_channels;                ///< number of channels in the input
123     double *ch_weighting;           ///< channel weighting mapping
124     int sample_count;               ///< sample count used for refresh frequency, reset at refresh
125 
126     /* Filter caches.
127      * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
128     double x[MAX_CHANNELS * 3];     ///< 3 input samples cache for each channel
129     double y[MAX_CHANNELS * 3];     ///< 3 pre-filter samples cache for each channel
130     double z[MAX_CHANNELS * 3];     ///< 3 RLB-filter samples cache for each channel
131 
132 #define I400_BINS  (48000 * 4 / 10)
133 #define I3000_BINS (48000 * 3)
134     struct integrator i400;         ///< 400ms integrator, used for Momentary loudness  (M), and Integrated loudness (I)
135     struct integrator i3000;        ///<    3s integrator, used for Short term loudness (S), and Loudness Range      (LRA)
136 
137     /* I and LRA specific */
138     double integrated_loudness;     ///< integrated loudness in LUFS (I)
139     double loudness_range;          ///< loudness range in LU (LRA)
140     double lra_low, lra_high;       ///< low and high LRA values
141 
142     /* misc */
143     int loglevel;                   ///< log level for frame logging
144     int metadata;                   ///< whether or not to inject loudness results in frames
145     int dual_mono;                  ///< whether or not to treat single channel input files as dual-mono
146     double pan_law;                 ///< pan law value used to calculate dual-mono measurements
147     int target;                     ///< target level in LUFS used to set relative zero LU in visualization
148     int gauge_type;                 ///< whether gauge shows momentary or short
149     int scale;                      ///< display scale type of statistics
150 } EBUR128Context;
151 
152 enum {
153     PEAK_MODE_NONE          = 0,
154     PEAK_MODE_SAMPLES_PEAKS = 1<<1,
155     PEAK_MODE_TRUE_PEAKS    = 1<<2,
156 };
157 
158 enum {
159     GAUGE_TYPE_MOMENTARY = 0,
160     GAUGE_TYPE_SHORTTERM = 1,
161 };
162 
163 enum {
164     SCALE_TYPE_ABSOLUTE = 0,
165     SCALE_TYPE_RELATIVE = 1,
166 };
167 
168 #define OFFSET(x) offsetof(EBUR128Context, x)
169 #define A AV_OPT_FLAG_AUDIO_PARAM
170 #define V AV_OPT_FLAG_VIDEO_PARAM
171 #define F AV_OPT_FLAG_FILTERING_PARAM
172 static const AVOption ebur128_options[] = {
173     { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, V|F },
174     { "size",  "set video size",   OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
175     { "meter", "set scale meter (+9 to +18)",  OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
176     { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1},   INT_MIN, INT_MAX, A|V|F, "level" },
177         { "info",    "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO},    INT_MIN, INT_MAX, A|V|F, "level" },
178         { "verbose", "verbose logging level",     0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
179     { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|V|F },
180     { "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, "mode" },
181         { "none",   "disable any peak mode",   0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE},          INT_MIN, INT_MAX, A|F, "mode" },
182         { "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
183         { "true",   "enable true-peak mode",   0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS},    INT_MIN, INT_MAX, A|F, "mode" },
184     { "dualmono", "treat mono input files as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|F },
185     { "panlaw", "set a specific pan law for dual-mono files", OFFSET(pan_law), AV_OPT_TYPE_DOUBLE, {.dbl = -3.01029995663978}, -10.0, 0.0, A|F },
186     { "target", "set a specific target level in LUFS (-23 to 0)", OFFSET(target), AV_OPT_TYPE_INT, {.i64 = -23}, -23, 0, V|F },
187     { "gauge", "set gauge display type", OFFSET(gauge_type), AV_OPT_TYPE_INT, {.i64 = 0 }, GAUGE_TYPE_MOMENTARY, GAUGE_TYPE_SHORTTERM, V|F, "gaugetype" },
188         { "momentary",   "display momentary value",   0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, "gaugetype" },
189         { "m",           "display momentary value",   0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, "gaugetype" },
190         { "shortterm",   "display short-term value",  0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, "gaugetype" },
191         { "s",           "display short-term value",  0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, "gaugetype" },
192     { "scale", "sets display method for the stats", OFFSET(scale), AV_OPT_TYPE_INT, {.i64 = 0}, SCALE_TYPE_ABSOLUTE, SCALE_TYPE_RELATIVE, V|F, "scaletype" },
193         { "absolute",   "display absolute values (LUFS)",          0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, "scaletype" },
194         { "LUFS",       "display absolute values (LUFS)",          0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, "scaletype" },
195         { "relative",   "display values relative to target (LU)",  0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, "scaletype" },
196         { "LU",         "display values relative to target (LU)",  0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, "scaletype" },
197     { NULL },
198 };
199 
200 AVFILTER_DEFINE_CLASS(ebur128);
201 
202 static const uint8_t graph_colors[] = {
203     0xdd, 0x66, 0x66,   // value above 1LU non reached below -1LU (impossible)
204     0x66, 0x66, 0xdd,   // value below 1LU non reached below -1LU
205     0x96, 0x33, 0x33,   // value above 1LU reached below -1LU (impossible)
206     0x33, 0x33, 0x96,   // value below 1LU reached below -1LU
207     0xdd, 0x96, 0x96,   // value above 1LU line non reached below -1LU (impossible)
208     0x96, 0x96, 0xdd,   // value below 1LU line non reached below -1LU
209     0xdd, 0x33, 0x33,   // value above 1LU line reached below -1LU (impossible)
210     0x33, 0x33, 0xdd,   // value below 1LU line reached below -1LU
211     0xdd, 0x66, 0x66,   // value above 1LU non reached above -1LU
212     0x66, 0xdd, 0x66,   // value below 1LU non reached above -1LU
213     0x96, 0x33, 0x33,   // value above 1LU reached above -1LU
214     0x33, 0x96, 0x33,   // value below 1LU reached above -1LU
215     0xdd, 0x96, 0x96,   // value above 1LU line non reached above -1LU
216     0x96, 0xdd, 0x96,   // value below 1LU line non reached above -1LU
217     0xdd, 0x33, 0x33,   // value above 1LU line reached above -1LU
218     0x33, 0xdd, 0x33,   // value below 1LU line reached above -1LU
219 };
220 
get_graph_color(const EBUR128Context * ebur128,int v,int y)221 static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
222 {
223     const int above_opt_max = y > ebur128->y_opt_max;
224     const int below_opt_min = y < ebur128->y_opt_min;
225     const int reached = y >= v;
226     const int line    = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
227     const int colorid = 8*below_opt_min+ 4*line + 2*reached + above_opt_max;
228     return graph_colors + 3*colorid;
229 }
230 
lu_to_y(const EBUR128Context * ebur128,double v)231 static inline int lu_to_y(const EBUR128Context *ebur128, double v)
232 {
233     v += 2 * ebur128->meter;                            // make it in range [0;...]
234     v  = av_clipf(v, 0, ebur128->scale_range);          // make sure it's in the graph scale
235     v  = ebur128->scale_range - v;                      // invert value (y=0 is on top)
236     return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
237 }
238 
239 #define FONT8   0
240 #define FONT16  1
241 
242 static const uint8_t font_colors[] = {
243     0xdd, 0xdd, 0x00,
244     0x00, 0x96, 0x96,
245 };
246 
drawtext(AVFrame * pic,int x,int y,int ftid,const uint8_t * color,const char * fmt,...)247 static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
248 {
249     int i;
250     char buf[128] = {0};
251     const uint8_t *font;
252     int font_height;
253     va_list vl;
254 
255     if      (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
256     else if (ftid == FONT8)  font = avpriv_cga_font,   font_height =  8;
257     else return;
258 
259     va_start(vl, fmt);
260     vsnprintf(buf, sizeof(buf), fmt, vl);
261     va_end(vl);
262 
263     for (i = 0; buf[i]; i++) {
264         int char_y, mask;
265         uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
266 
267         for (char_y = 0; char_y < font_height; char_y++) {
268             for (mask = 0x80; mask; mask >>= 1) {
269                 if (font[buf[i] * font_height + char_y] & mask)
270                     memcpy(p, color, 3);
271                 else
272                     memcpy(p, "\x00\x00\x00", 3);
273                 p += 3;
274             }
275             p += pic->linesize[0] - 8*3;
276         }
277     }
278 }
279 
drawline(AVFrame * pic,int x,int y,int len,int step)280 static void drawline(AVFrame *pic, int x, int y, int len, int step)
281 {
282     int i;
283     uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
284 
285     for (i = 0; i < len; i++) {
286         memcpy(p, "\x00\xff\x00", 3);
287         p += step;
288     }
289 }
290 
config_video_output(AVFilterLink * outlink)291 static int config_video_output(AVFilterLink *outlink)
292 {
293     int i, x, y;
294     uint8_t *p;
295     AVFilterContext *ctx = outlink->src;
296     EBUR128Context *ebur128 = ctx->priv;
297     AVFrame *outpicref;
298 
299     /* check if there is enough space to represent everything decently */
300     if (ebur128->w < 640 || ebur128->h < 480) {
301         av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
302                "minimum size is 640x480\n", ebur128->w, ebur128->h);
303         return AVERROR(EINVAL);
304     }
305     outlink->w = ebur128->w;
306     outlink->h = ebur128->h;
307     outlink->sample_aspect_ratio = (AVRational){1,1};
308 
309 #define PAD 8
310 
311     /* configure text area position and size */
312     ebur128->text.x  = PAD;
313     ebur128->text.y  = 40;
314     ebur128->text.w  = 3 * 8;   // 3 characters
315     ebur128->text.h  = ebur128->h - PAD - ebur128->text.y;
316 
317     /* configure gauge position and size */
318     ebur128->gauge.w = 20;
319     ebur128->gauge.h = ebur128->text.h;
320     ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
321     ebur128->gauge.y = ebur128->text.y;
322 
323     /* configure graph position and size */
324     ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
325     ebur128->graph.y = ebur128->gauge.y;
326     ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
327     ebur128->graph.h = ebur128->gauge.h;
328 
329     /* graph and gauge share the LU-to-pixel code */
330     av_assert0(ebur128->graph.h == ebur128->gauge.h);
331 
332     /* prepare the initial picref buffer */
333     av_frame_free(&ebur128->outpicref);
334     ebur128->outpicref = outpicref =
335         ff_get_video_buffer(outlink, outlink->w, outlink->h);
336     if (!outpicref)
337         return AVERROR(ENOMEM);
338     outpicref->sample_aspect_ratio = (AVRational){1,1};
339 
340     /* init y references values (to draw LU lines) */
341     ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
342     if (!ebur128->y_line_ref)
343         return AVERROR(ENOMEM);
344 
345     /* black background */
346     memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
347 
348     /* draw LU legends */
349     drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
350     for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
351         y = lu_to_y(ebur128, i);
352         x = PAD + (i < 10 && i > -10) * 8;
353         ebur128->y_line_ref[y] = i;
354         y -= 4; // -4 to center vertically
355         drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
356                  "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
357     }
358 
359     /* draw graph */
360     ebur128->y_zero_lu = lu_to_y(ebur128, 0);
361     ebur128->y_opt_max = lu_to_y(ebur128, 1);
362     ebur128->y_opt_min = lu_to_y(ebur128, -1);
363     p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
364                            + ebur128->graph.x * 3;
365     for (y = 0; y < ebur128->graph.h; y++) {
366         const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
367 
368         for (x = 0; x < ebur128->graph.w; x++)
369             memcpy(p + x*3, c, 3);
370         p += outpicref->linesize[0];
371     }
372 
373     /* draw fancy rectangles around the graph and the gauge */
374 #define DRAW_RECT(r) do { \
375     drawline(outpicref, r.x,       r.y - 1,   r.w, 3); \
376     drawline(outpicref, r.x,       r.y + r.h, r.w, 3); \
377     drawline(outpicref, r.x - 1,   r.y,       r.h, outpicref->linesize[0]); \
378     drawline(outpicref, r.x + r.w, r.y,       r.h, outpicref->linesize[0]); \
379 } while (0)
380     DRAW_RECT(ebur128->graph);
381     DRAW_RECT(ebur128->gauge);
382 
383     return 0;
384 }
385 
config_audio_input(AVFilterLink * inlink)386 static int config_audio_input(AVFilterLink *inlink)
387 {
388     AVFilterContext *ctx = inlink->dst;
389     EBUR128Context *ebur128 = ctx->priv;
390 
391     /* Force 100ms framing in case of metadata injection: the frames must have
392      * a granularity of the window overlap to be accurately exploited.
393      * As for the true peaks mode, it just simplifies the resampling buffer
394      * allocation and the lookup in it (since sample buffers differ in size, it
395      * can be more complex to integrate in the one-sample loop of
396      * filter_frame()). */
397     if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS))
398         inlink->min_samples =
399         inlink->max_samples =
400         inlink->partial_buf_size = inlink->sample_rate / 10;
401     return 0;
402 }
403 
config_audio_output(AVFilterLink * outlink)404 static int config_audio_output(AVFilterLink *outlink)
405 {
406     int i;
407     AVFilterContext *ctx = outlink->src;
408     EBUR128Context *ebur128 = ctx->priv;
409     const int nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout);
410 
411 #define BACK_MASK (AV_CH_BACK_LEFT    |AV_CH_BACK_CENTER    |AV_CH_BACK_RIGHT| \
412                    AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
413                    AV_CH_SIDE_LEFT                          |AV_CH_SIDE_RIGHT| \
414                    AV_CH_SURROUND_DIRECT_LEFT               |AV_CH_SURROUND_DIRECT_RIGHT)
415 
416     ebur128->nb_channels  = nb_channels;
417     ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
418     if (!ebur128->ch_weighting)
419         return AVERROR(ENOMEM);
420 
421     for (i = 0; i < nb_channels; i++) {
422         /* channel weighting */
423         const uint64_t chl = av_channel_layout_extract_channel(outlink->channel_layout, i);
424         if (chl & (AV_CH_LOW_FREQUENCY|AV_CH_LOW_FREQUENCY_2)) {
425             ebur128->ch_weighting[i] = 0;
426         } else if (chl & BACK_MASK) {
427             ebur128->ch_weighting[i] = 1.41;
428         } else {
429             ebur128->ch_weighting[i] = 1.0;
430         }
431 
432         if (!ebur128->ch_weighting[i])
433             continue;
434 
435         /* bins buffer for the two integration window (400ms and 3s) */
436         ebur128->i400.cache[i]  = av_calloc(I400_BINS,  sizeof(*ebur128->i400.cache[0]));
437         ebur128->i3000.cache[i] = av_calloc(I3000_BINS, sizeof(*ebur128->i3000.cache[0]));
438         if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
439             return AVERROR(ENOMEM);
440     }
441 
442 #if CONFIG_SWRESAMPLE
443     if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
444         int ret;
445 
446         ebur128->swr_buf    = av_malloc_array(nb_channels, 19200 * sizeof(double));
447         ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks));
448         ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame));
449         ebur128->swr_ctx    = swr_alloc();
450         if (!ebur128->swr_buf || !ebur128->true_peaks ||
451             !ebur128->true_peaks_per_frame || !ebur128->swr_ctx)
452             return AVERROR(ENOMEM);
453 
454         av_opt_set_int(ebur128->swr_ctx, "in_channel_layout",    outlink->channel_layout, 0);
455         av_opt_set_int(ebur128->swr_ctx, "in_sample_rate",       outlink->sample_rate, 0);
456         av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0);
457 
458         av_opt_set_int(ebur128->swr_ctx, "out_channel_layout",    outlink->channel_layout, 0);
459         av_opt_set_int(ebur128->swr_ctx, "out_sample_rate",       192000, 0);
460         av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0);
461 
462         ret = swr_init(ebur128->swr_ctx);
463         if (ret < 0)
464             return ret;
465     }
466 #endif
467 
468     if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) {
469         ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks));
470         if (!ebur128->sample_peaks)
471             return AVERROR(ENOMEM);
472     }
473 
474     return 0;
475 }
476 
477 #define ENERGY(loudness) (ff_exp10(((loudness) + 0.691) / 10.))
478 #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
479 #define DBFS(energy) (20 * log10(energy))
480 
get_histogram(void)481 static struct hist_entry *get_histogram(void)
482 {
483     int i;
484     struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
485 
486     if (!h)
487         return NULL;
488     for (i = 0; i < HIST_SIZE; i++) {
489         h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
490         h[i].energy   = ENERGY(h[i].loudness);
491     }
492     return h;
493 }
494 
init(AVFilterContext * ctx)495 static av_cold int init(AVFilterContext *ctx)
496 {
497     EBUR128Context *ebur128 = ctx->priv;
498     AVFilterPad pad;
499     int ret;
500 
501     if (ebur128->loglevel != AV_LOG_INFO &&
502         ebur128->loglevel != AV_LOG_VERBOSE) {
503         if (ebur128->do_video || ebur128->metadata)
504             ebur128->loglevel = AV_LOG_VERBOSE;
505         else
506             ebur128->loglevel = AV_LOG_INFO;
507     }
508 
509     if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) {
510         av_log(ctx, AV_LOG_ERROR,
511                "True-peak mode requires libswresample to be performed\n");
512         return AVERROR(EINVAL);
513     }
514 
515     // if meter is  +9 scale, scale range is from -18 LU to  +9 LU (or 3*9)
516     // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
517     ebur128->scale_range = 3 * ebur128->meter;
518 
519     ebur128->i400.histogram  = get_histogram();
520     ebur128->i3000.histogram = get_histogram();
521     if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
522         return AVERROR(ENOMEM);
523 
524     ebur128->integrated_loudness = ABS_THRES;
525     ebur128->loudness_range = 0;
526 
527     /* insert output pads */
528     if (ebur128->do_video) {
529         pad = (AVFilterPad){
530             .name         = "out0",
531             .type         = AVMEDIA_TYPE_VIDEO,
532             .config_props = config_video_output,
533         };
534         ret = ff_insert_outpad(ctx, 0, &pad);
535         if (ret < 0)
536             return ret;
537     }
538     pad = (AVFilterPad){
539         .name         = ebur128->do_video ? "out1" : "out0",
540         .type         = AVMEDIA_TYPE_AUDIO,
541         .config_props = config_audio_output,
542     };
543     ret = ff_insert_outpad(ctx, ebur128->do_video, &pad);
544     if (ret < 0)
545         return ret;
546 
547     /* summary */
548     av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
549 
550     return 0;
551 }
552 
553 #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
554 
555 /* loudness and power should be set such as loudness = -0.691 +
556  * 10*log10(power), we just avoid doing that calculus two times */
gate_update(struct integrator * integ,double power,double loudness,int gate_thres)557 static int gate_update(struct integrator *integ, double power,
558                        double loudness, int gate_thres)
559 {
560     int ipower;
561     double relative_threshold;
562     int gate_hist_pos;
563 
564     /* update powers histograms by incrementing current power count */
565     ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
566     integ->histogram[ipower].count++;
567 
568     /* compute relative threshold and get its position in the histogram */
569     integ->sum_kept_powers += power;
570     integ->nb_kept_powers++;
571     relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
572     if (!relative_threshold)
573         relative_threshold = 1e-12;
574     integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
575     gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
576 
577     return gate_hist_pos;
578 }
579 
filter_frame(AVFilterLink * inlink,AVFrame * insamples)580 static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
581 {
582     int i, ch, idx_insample;
583     AVFilterContext *ctx = inlink->dst;
584     EBUR128Context *ebur128 = ctx->priv;
585     const int nb_channels = ebur128->nb_channels;
586     const int nb_samples  = insamples->nb_samples;
587     const double *samples = (double *)insamples->data[0];
588     AVFrame *pic = ebur128->outpicref;
589 
590 #if CONFIG_SWRESAMPLE
591     if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
592         const double *swr_samples = ebur128->swr_buf;
593         int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200,
594                               (const uint8_t **)insamples->data, nb_samples);
595         if (ret < 0)
596             return ret;
597         for (ch = 0; ch < nb_channels; ch++)
598             ebur128->true_peaks_per_frame[ch] = 0.0;
599         for (idx_insample = 0; idx_insample < ret; idx_insample++) {
600             for (ch = 0; ch < nb_channels; ch++) {
601                 ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], fabs(*swr_samples));
602                 ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch],
603                                                           fabs(*swr_samples));
604                 swr_samples++;
605             }
606         }
607     }
608 #endif
609 
610     for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
611         const int bin_id_400  = ebur128->i400.cache_pos;
612         const int bin_id_3000 = ebur128->i3000.cache_pos;
613 
614 #define MOVE_TO_NEXT_CACHED_ENTRY(time) do {                \
615     ebur128->i##time.cache_pos++;                           \
616     if (ebur128->i##time.cache_pos == I##time##_BINS) {     \
617         ebur128->i##time.filled    = 1;                     \
618         ebur128->i##time.cache_pos = 0;                     \
619     }                                                       \
620 } while (0)
621 
622         MOVE_TO_NEXT_CACHED_ENTRY(400);
623         MOVE_TO_NEXT_CACHED_ENTRY(3000);
624 
625         for (ch = 0; ch < nb_channels; ch++) {
626             double bin;
627 
628             if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS)
629                 ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], fabs(*samples));
630 
631             ebur128->x[ch * 3] = *samples++; // set X[i]
632 
633             if (!ebur128->ch_weighting[ch])
634                 continue;
635 
636             /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
637 #define FILTER(Y, X, name) do {                                                 \
638             double *dst = ebur128->Y + ch*3;                                    \
639             double *src = ebur128->X + ch*3;                                    \
640             dst[2] = dst[1];                                                    \
641             dst[1] = dst[0];                                                    \
642             dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2     \
643                                       - dst[1]*name##_A1 - dst[2]*name##_A2;    \
644 } while (0)
645 
646             // TODO: merge both filters in one?
647             FILTER(y, x, PRE);  // apply pre-filter
648             ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
649             ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3    ];
650             FILTER(z, y, RLB);  // apply RLB-filter
651 
652             bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
653 
654             /* add the new value, and limit the sum to the cache size (400ms or 3s)
655              * by removing the oldest one */
656             ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
657             ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
658 
659             /* override old cache entry with the new value */
660             ebur128->i400.cache [ch][bin_id_400 ] = bin;
661             ebur128->i3000.cache[ch][bin_id_3000] = bin;
662         }
663 
664         /* For integrated loudness, gating blocks are 400ms long with 75%
665          * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
666          * (4800 samples at 48kHz). */
667         if (++ebur128->sample_count == 4800) {
668             double loudness_400, loudness_3000;
669             double power_400 = 1e-12, power_3000 = 1e-12;
670             AVFilterLink *outlink = ctx->outputs[0];
671             const int64_t pts = insamples->pts +
672                 av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
673                              outlink->time_base);
674 
675             ebur128->sample_count = 0;
676 
677 #define COMPUTE_LOUDNESS(m, time) do {                                              \
678     if (ebur128->i##time.filled) {                                                  \
679         /* weighting sum of the last <time> ms */                                   \
680         for (ch = 0; ch < nb_channels; ch++)                                        \
681             power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch];   \
682         power_##time /= I##time##_BINS;                                             \
683     }                                                                               \
684     loudness_##time = LOUDNESS(power_##time);                                       \
685 } while (0)
686 
687             COMPUTE_LOUDNESS(M,  400);
688             COMPUTE_LOUDNESS(S, 3000);
689 
690             /* Integrated loudness */
691 #define I_GATE_THRES -10  // initially defined to -8 LU in the first EBU standard
692 
693             if (loudness_400 >= ABS_THRES) {
694                 double integrated_sum = 0;
695                 int nb_integrated = 0;
696                 int gate_hist_pos = gate_update(&ebur128->i400, power_400,
697                                                 loudness_400, I_GATE_THRES);
698 
699                 /* compute integrated loudness by summing the histogram values
700                  * above the relative threshold */
701                 for (i = gate_hist_pos; i < HIST_SIZE; i++) {
702                     const int nb_v = ebur128->i400.histogram[i].count;
703                     nb_integrated  += nb_v;
704                     integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
705                 }
706                 if (nb_integrated) {
707                     ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
708                     /* dual-mono correction */
709                     if (nb_channels == 1 && ebur128->dual_mono) {
710                         ebur128->integrated_loudness -= ebur128->pan_law;
711                     }
712                 }
713             }
714 
715             /* LRA */
716 #define LRA_GATE_THRES -20
717 #define LRA_LOWER_PRC   10
718 #define LRA_HIGHER_PRC  95
719 
720             /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
721              * specs is ">" */
722             if (loudness_3000 >= ABS_THRES) {
723                 int nb_powers = 0;
724                 int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
725                                                 loudness_3000, LRA_GATE_THRES);
726 
727                 for (i = gate_hist_pos; i < HIST_SIZE; i++)
728                     nb_powers += ebur128->i3000.histogram[i].count;
729                 if (nb_powers) {
730                     int n, nb_pow;
731 
732                     /* get lower loudness to consider */
733                     n = 0;
734                     nb_pow = LRA_LOWER_PRC  * nb_powers / 100. + 0.5;
735                     for (i = gate_hist_pos; i < HIST_SIZE; i++) {
736                         n += ebur128->i3000.histogram[i].count;
737                         if (n >= nb_pow) {
738                             ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
739                             break;
740                         }
741                     }
742 
743                     /* get higher loudness to consider */
744                     n = nb_powers;
745                     nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
746                     for (i = HIST_SIZE - 1; i >= 0; i--) {
747                         n -= ebur128->i3000.histogram[i].count;
748                         if (n < nb_pow) {
749                             ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
750                             break;
751                         }
752                     }
753 
754                     // XXX: show low & high on the graph?
755                     ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
756                 }
757             }
758 
759             /* dual-mono correction */
760             if (nb_channels == 1 && ebur128->dual_mono) {
761                 loudness_400 -= ebur128->pan_law;
762                 loudness_3000 -= ebur128->pan_law;
763             }
764 
765 #define LOG_FMT "TARGET:%d LUFS    M:%6.1f S:%6.1f     I:%6.1f %s       LRA:%6.1f LU"
766 
767             /* push one video frame */
768             if (ebur128->do_video) {
769                 AVFrame *clone;
770                 int x, y, ret;
771                 uint8_t *p;
772                 double gauge_value;
773                 int y_loudness_lu_graph, y_loudness_lu_gauge;
774 
775                 if (ebur128->gauge_type == GAUGE_TYPE_MOMENTARY) {
776                     gauge_value = loudness_400 - ebur128->target;
777                 } else {
778                     gauge_value = loudness_3000 - ebur128->target;
779                 }
780 
781                 y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 - ebur128->target);
782                 y_loudness_lu_gauge = lu_to_y(ebur128, gauge_value);
783 
784                 /* draw the graph using the short-term loudness */
785                 p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
786                 for (y = 0; y < ebur128->graph.h; y++) {
787                     const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
788 
789                     memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
790                     memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
791                     p += pic->linesize[0];
792                 }
793 
794                 /* draw the gauge using either momentary or short-term loudness */
795                 p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
796                 for (y = 0; y < ebur128->gauge.h; y++) {
797                     const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
798 
799                     for (x = 0; x < ebur128->gauge.w; x++)
800                         memcpy(p + x*3, c, 3);
801                     p += pic->linesize[0];
802                 }
803 
804                 /* draw textual info */
805                 if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
806                     drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
807                              LOG_FMT "     ", // padding to erase trailing characters
808                              ebur128->target, loudness_400, loudness_3000,
809                              ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
810                 } else {
811                     drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
812                              LOG_FMT "     ", // padding to erase trailing characters
813                              ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
814                              ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
815                 }
816 
817                 /* set pts and push frame */
818                 pic->pts = pts;
819                 clone = av_frame_clone(pic);
820                 if (!clone)
821                     return AVERROR(ENOMEM);
822                 ret = ff_filter_frame(outlink, clone);
823                 if (ret < 0)
824                     return ret;
825             }
826 
827             if (ebur128->metadata) { /* happens only once per filter_frame call */
828                 char metabuf[128];
829 #define META_PREFIX "lavfi.r128."
830 
831 #define SET_META(name, var) do {                                            \
832     snprintf(metabuf, sizeof(metabuf), "%.3f", var);                        \
833     av_dict_set(&insamples->metadata, name, metabuf, 0);                    \
834 } while (0)
835 
836 #define SET_META_PEAK(name, ptype) do {                                     \
837     if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {               \
838         char key[64];                                                       \
839         for (ch = 0; ch < nb_channels; ch++) {                              \
840             snprintf(key, sizeof(key),                                      \
841                      META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch);     \
842             SET_META(key, ebur128->name##_peaks[ch]);                       \
843         }                                                                   \
844     }                                                                       \
845 } while (0)
846 
847                 SET_META(META_PREFIX "M",        loudness_400);
848                 SET_META(META_PREFIX "S",        loudness_3000);
849                 SET_META(META_PREFIX "I",        ebur128->integrated_loudness);
850                 SET_META(META_PREFIX "LRA",      ebur128->loudness_range);
851                 SET_META(META_PREFIX "LRA.low",  ebur128->lra_low);
852                 SET_META(META_PREFIX "LRA.high", ebur128->lra_high);
853 
854                 SET_META_PEAK(sample, SAMPLES);
855                 SET_META_PEAK(true,   TRUE);
856             }
857 
858             if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
859                 av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
860                        av_ts2timestr(pts, &outlink->time_base),
861                        ebur128->target, loudness_400, loudness_3000,
862                        ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
863             } else {
864                 av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
865                        av_ts2timestr(pts, &outlink->time_base),
866                        ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
867                        ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
868             }
869 
870 #define PRINT_PEAKS(str, sp, ptype) do {                            \
871     if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {       \
872         av_log(ctx, ebur128->loglevel, "  " str ":");               \
873         for (ch = 0; ch < nb_channels; ch++)                        \
874             av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
875         av_log(ctx, ebur128->loglevel, " dBFS");                    \
876     }                                                               \
877 } while (0)
878 
879             PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES);
880             PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE);
881             PRINT_PEAKS("TPK", ebur128->true_peaks,   TRUE);
882             av_log(ctx, ebur128->loglevel, "\n");
883         }
884     }
885 
886     return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
887 }
888 
query_formats(AVFilterContext * ctx)889 static int query_formats(AVFilterContext *ctx)
890 {
891     EBUR128Context *ebur128 = ctx->priv;
892     AVFilterFormats *formats;
893     AVFilterChannelLayouts *layouts;
894     AVFilterLink *inlink = ctx->inputs[0];
895     AVFilterLink *outlink = ctx->outputs[0];
896     int ret;
897 
898     static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
899     static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz
900     static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
901 
902     /* set optional output video format */
903     if (ebur128->do_video) {
904         formats = ff_make_format_list(pix_fmts);
905         if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
906             return ret;
907         outlink = ctx->outputs[1];
908     }
909 
910     /* set input and output audio formats
911      * Note: ff_set_common_* functions are not used because they affect all the
912      * links, and thus break the video format negotiation */
913     formats = ff_make_format_list(sample_fmts);
914     if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0 ||
915         (ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
916         return ret;
917 
918     layouts = ff_all_channel_layouts();
919     if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0 ||
920         (ret = ff_channel_layouts_ref(layouts, &outlink->incfg.channel_layouts)) < 0)
921         return ret;
922 
923     formats = ff_make_format_list(input_srate);
924     if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0 ||
925         (ret = ff_formats_ref(formats, &outlink->incfg.samplerates)) < 0)
926         return ret;
927 
928     return 0;
929 }
930 
uninit(AVFilterContext * ctx)931 static av_cold void uninit(AVFilterContext *ctx)
932 {
933     int i;
934     EBUR128Context *ebur128 = ctx->priv;
935 
936     /* dual-mono correction */
937     if (ebur128->nb_channels == 1 && ebur128->dual_mono) {
938         ebur128->i400.rel_threshold -= ebur128->pan_law;
939         ebur128->i3000.rel_threshold -= ebur128->pan_law;
940         ebur128->lra_low -= ebur128->pan_law;
941         ebur128->lra_high -= ebur128->pan_law;
942     }
943 
944     av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
945            "  Integrated loudness:\n"
946            "    I:         %5.1f LUFS\n"
947            "    Threshold: %5.1f LUFS\n\n"
948            "  Loudness range:\n"
949            "    LRA:       %5.1f LU\n"
950            "    Threshold: %5.1f LUFS\n"
951            "    LRA low:   %5.1f LUFS\n"
952            "    LRA high:  %5.1f LUFS",
953            ebur128->integrated_loudness, ebur128->i400.rel_threshold,
954            ebur128->loudness_range,      ebur128->i3000.rel_threshold,
955            ebur128->lra_low, ebur128->lra_high);
956 
957 #define PRINT_PEAK_SUMMARY(str, sp, ptype) do {                  \
958     int ch;                                                      \
959     double maxpeak;                                              \
960     maxpeak = 0.0;                                               \
961     if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {    \
962         for (ch = 0; ch < ebur128->nb_channels; ch++)            \
963             maxpeak = FFMAX(maxpeak, sp[ch]);                    \
964         av_log(ctx, AV_LOG_INFO, "\n\n  " str " peak:\n"         \
965                "    Peak:      %5.1f dBFS",                      \
966                DBFS(maxpeak));                                   \
967     }                                                            \
968 } while (0)
969 
970     PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peaks, SAMPLES);
971     PRINT_PEAK_SUMMARY("True",   ebur128->true_peaks,   TRUE);
972     av_log(ctx, AV_LOG_INFO, "\n");
973 
974     av_freep(&ebur128->y_line_ref);
975     av_freep(&ebur128->ch_weighting);
976     av_freep(&ebur128->true_peaks);
977     av_freep(&ebur128->sample_peaks);
978     av_freep(&ebur128->true_peaks_per_frame);
979     av_freep(&ebur128->i400.histogram);
980     av_freep(&ebur128->i3000.histogram);
981     for (i = 0; i < ebur128->nb_channels; i++) {
982         av_freep(&ebur128->i400.cache[i]);
983         av_freep(&ebur128->i3000.cache[i]);
984     }
985     av_frame_free(&ebur128->outpicref);
986 #if CONFIG_SWRESAMPLE
987     av_freep(&ebur128->swr_buf);
988     swr_free(&ebur128->swr_ctx);
989 #endif
990 }
991 
992 static const AVFilterPad ebur128_inputs[] = {
993     {
994         .name         = "default",
995         .type         = AVMEDIA_TYPE_AUDIO,
996         .filter_frame = filter_frame,
997         .config_props = config_audio_input,
998     },
999     { NULL }
1000 };
1001 
1002 AVFilter ff_af_ebur128 = {
1003     .name          = "ebur128",
1004     .description   = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
1005     .priv_size     = sizeof(EBUR128Context),
1006     .init          = init,
1007     .uninit        = uninit,
1008     .query_formats = query_formats,
1009     .inputs        = ebur128_inputs,
1010     .outputs       = NULL,
1011     .priv_class    = &ebur128_class,
1012     .flags         = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
1013 };
1014