1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include <fcntl.h>
29 #include <stdbool.h>
30 #include <string.h>
31
32 #ifdef __FreeBSD__
33 #include <sys/types.h>
34 #endif
35 #ifdef MAJOR_IN_MKDEV
36 #include <sys/mkdev.h>
37 #endif
38 #ifdef MAJOR_IN_SYSMACROS
39 #include <sys/sysmacros.h>
40 #endif
41
42 #ifdef __linux__
43 #include <sys/inotify.h>
44 #endif
45
46 #include "util/debug.h"
47 #include "util/disk_cache.h"
48 #include "radv_cs.h"
49 #include "radv_debug.h"
50 #include "radv_private.h"
51 #include "radv_shader.h"
52 #include "vk_util.h"
53 #ifdef _WIN32
54 typedef void *drmDevicePtr;
55 #include <io.h>
56 #else
57 #include <amdgpu.h>
58 #include <xf86drm.h>
59 #include "drm-uapi/amdgpu_drm.h"
60 #include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
61 #endif
62 #include "util/build_id.h"
63 #include "util/debug.h"
64 #include "util/driconf.h"
65 #include "util/mesa-sha1.h"
66 #include "util/os_time.h"
67 #include "util/timespec.h"
68 #include "util/u_atomic.h"
69 #include "winsys/null/radv_null_winsys_public.h"
70 #include "git_sha1.h"
71 #include "sid.h"
72 #include "vk_format.h"
73 #include "vk_sync.h"
74 #include "vk_sync_dummy.h"
75 #include "vulkan/vk_icd.h"
76
77 #ifdef LLVM_AVAILABLE
78 #include "ac_llvm_util.h"
79 #endif
80
81 /* The number of IBs per submit isn't infinite, it depends on the IP type
82 * (ie. some initial setup needed for a submit) and the number of IBs (4 DW).
83 * This limit is arbitrary but should be safe for now. Ideally, we should get
84 * this limit from the KMD.
85 */
86 #define RADV_MAX_IBS_PER_SUBMIT 192
87
88 /* The "RAW" clocks on Linux are called "FAST" on FreeBSD */
89 #if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST)
90 #define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST
91 #endif
92
93 static VkResult radv_queue_submit(struct vk_queue *vqueue, struct vk_queue_submit *submission);
94
95 uint64_t
radv_get_current_time(void)96 radv_get_current_time(void)
97 {
98 return os_time_get_nano();
99 }
100
101 static void
parse_hex(char * out,const char * in,unsigned length)102 parse_hex(char *out, const char *in, unsigned length)
103 {
104 for (unsigned i = 0; i < length; ++i)
105 out[i] = 0;
106
107 for (unsigned i = 0; i < 2 * length; ++i) {
108 unsigned v =
109 in[i] <= '9' ? in[i] - '0' : (in[i] >= 'a' ? (in[i] - 'a' + 10) : (in[i] - 'A' + 10));
110 out[i / 2] |= v << (4 * (1 - i % 2));
111 }
112 }
113
114 static int
radv_device_get_cache_uuid(struct radv_physical_device * pdevice,void * uuid)115 radv_device_get_cache_uuid(struct radv_physical_device *pdevice, void *uuid)
116 {
117 enum radeon_family family = pdevice->rad_info.family;
118 struct mesa_sha1 ctx;
119 unsigned char sha1[20];
120 unsigned ptr_size = sizeof(void *);
121
122 memset(uuid, 0, VK_UUID_SIZE);
123 _mesa_sha1_init(&ctx);
124
125 #ifdef RADV_BUILD_ID_OVERRIDE
126 {
127 char data[strlen(RADV_BUILD_ID_OVERRIDE) / 2];
128 parse_hex(data, RADV_BUILD_ID_OVERRIDE, ARRAY_SIZE(data));
129 _mesa_sha1_update(&ctx, data, ARRAY_SIZE(data));
130 }
131 #else
132 if (!disk_cache_get_function_identifier(radv_device_get_cache_uuid, &ctx))
133 return -1;
134 #endif
135
136 #ifdef LLVM_AVAILABLE
137 if (pdevice->use_llvm &&
138 !disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx))
139 return -1;
140 #endif
141
142 _mesa_sha1_update(&ctx, &family, sizeof(family));
143 _mesa_sha1_update(&ctx, &ptr_size, sizeof(ptr_size));
144 _mesa_sha1_final(&ctx, sha1);
145
146 memcpy(uuid, sha1, VK_UUID_SIZE);
147 return 0;
148 }
149
150 static void
radv_get_driver_uuid(void * uuid)151 radv_get_driver_uuid(void *uuid)
152 {
153 ac_compute_driver_uuid(uuid, VK_UUID_SIZE);
154 }
155
156 static void
radv_get_device_uuid(struct radeon_info * info,void * uuid)157 radv_get_device_uuid(struct radeon_info *info, void *uuid)
158 {
159 ac_compute_device_uuid(info, uuid, VK_UUID_SIZE);
160 }
161
162 static uint64_t
radv_get_adjusted_vram_size(struct radv_physical_device * device)163 radv_get_adjusted_vram_size(struct radv_physical_device *device)
164 {
165 int ov = driQueryOptioni(&device->instance->dri_options, "override_vram_size");
166 if (ov >= 0)
167 return MIN2((uint64_t)device->rad_info.vram_size_kb * 1024, (uint64_t)ov << 20);
168 return (uint64_t)device->rad_info.vram_size_kb * 1024;
169 }
170
171 static uint64_t
radv_get_visible_vram_size(struct radv_physical_device * device)172 radv_get_visible_vram_size(struct radv_physical_device *device)
173 {
174 return MIN2(radv_get_adjusted_vram_size(device), (uint64_t)device->rad_info.vram_vis_size_kb * 1024);
175 }
176
177 static uint64_t
radv_get_vram_size(struct radv_physical_device * device)178 radv_get_vram_size(struct radv_physical_device *device)
179 {
180 uint64_t total_size = radv_get_adjusted_vram_size(device);
181 return total_size - MIN2(total_size, (uint64_t)device->rad_info.vram_vis_size_kb * 1024);
182 }
183
184 enum radv_heap {
185 RADV_HEAP_VRAM = 1 << 0,
186 RADV_HEAP_GTT = 1 << 1,
187 RADV_HEAP_VRAM_VIS = 1 << 2,
188 RADV_HEAP_MAX = 1 << 3,
189 };
190
191 static void
radv_physical_device_init_mem_types(struct radv_physical_device * device)192 radv_physical_device_init_mem_types(struct radv_physical_device *device)
193 {
194 uint64_t visible_vram_size = radv_get_visible_vram_size(device);
195 uint64_t vram_size = radv_get_vram_size(device);
196 uint64_t gtt_size = (uint64_t)device->rad_info.gart_size_kb * 1024;
197 int vram_index = -1, visible_vram_index = -1, gart_index = -1;
198
199 device->memory_properties.memoryHeapCount = 0;
200 device->heaps = 0;
201
202 if (!device->rad_info.has_dedicated_vram) {
203 /* On APUs, the carveout is usually too small for games that request a minimum VRAM size
204 * greater than it. To workaround this, we compute the total available memory size (GTT +
205 * visible VRAM size) and report 2/3 as VRAM and 1/3 as GTT.
206 */
207 const uint64_t total_size = gtt_size + visible_vram_size;
208 visible_vram_size = align64((total_size * 2) / 3, device->rad_info.gart_page_size);
209 gtt_size = total_size - visible_vram_size;
210 vram_size = 0;
211 }
212
213 /* Only get a VRAM heap if it is significant, not if it is a 16 MiB
214 * remainder above visible VRAM. */
215 if (vram_size > 0 && vram_size * 9 >= visible_vram_size) {
216 vram_index = device->memory_properties.memoryHeapCount++;
217 device->heaps |= RADV_HEAP_VRAM;
218 device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap){
219 .size = vram_size,
220 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
221 };
222 }
223
224 if (gtt_size > 0) {
225 gart_index = device->memory_properties.memoryHeapCount++;
226 device->heaps |= RADV_HEAP_GTT;
227 device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap){
228 .size = gtt_size,
229 .flags = 0,
230 };
231 }
232
233 if (visible_vram_size) {
234 visible_vram_index = device->memory_properties.memoryHeapCount++;
235 device->heaps |= RADV_HEAP_VRAM_VIS;
236 device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap){
237 .size = visible_vram_size,
238 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
239 };
240 }
241
242 unsigned type_count = 0;
243
244 if (vram_index >= 0 || visible_vram_index >= 0) {
245 device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
246 device->memory_flags[type_count] = RADEON_FLAG_NO_CPU_ACCESS;
247 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
248 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
249 .heapIndex = vram_index >= 0 ? vram_index : visible_vram_index,
250 };
251
252 device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
253 device->memory_flags[type_count] = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_32BIT;
254 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
255 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
256 .heapIndex = vram_index >= 0 ? vram_index : visible_vram_index,
257 };
258 }
259
260 if (gart_index >= 0) {
261 device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
262 device->memory_flags[type_count] = RADEON_FLAG_GTT_WC | RADEON_FLAG_CPU_ACCESS;
263 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
264 .propertyFlags =
265 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
266 .heapIndex = gart_index,
267 };
268 }
269 if (visible_vram_index >= 0) {
270 device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
271 device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
272 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
273 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
274 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
275 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
276 .heapIndex = visible_vram_index,
277 };
278 }
279
280 if (gart_index >= 0) {
281 device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
282 device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
283 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
284 .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
285 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
286 .heapIndex = gart_index,
287 };
288 }
289 device->memory_properties.memoryTypeCount = type_count;
290
291 if (device->rad_info.has_l2_uncached) {
292 for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
293 VkMemoryType mem_type = device->memory_properties.memoryTypes[i];
294
295 if (((mem_type.propertyFlags &
296 (VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) ||
297 mem_type.propertyFlags == VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) &&
298 !(device->memory_flags[i] & RADEON_FLAG_32BIT)) {
299
300 VkMemoryPropertyFlags property_flags = mem_type.propertyFlags |
301 VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
302 VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD;
303
304 device->memory_domains[type_count] = device->memory_domains[i];
305 device->memory_flags[type_count] = device->memory_flags[i] | RADEON_FLAG_VA_UNCACHED;
306 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
307 .propertyFlags = property_flags,
308 .heapIndex = mem_type.heapIndex,
309 };
310 }
311 }
312 device->memory_properties.memoryTypeCount = type_count;
313 }
314
315 for (unsigned i = 0; i < type_count; ++i) {
316 if (device->memory_flags[i] & RADEON_FLAG_32BIT)
317 device->memory_types_32bit |= BITFIELD_BIT(i);
318 }
319 }
320
321 static const char *
radv_get_compiler_string(struct radv_physical_device * pdevice)322 radv_get_compiler_string(struct radv_physical_device *pdevice)
323 {
324 if (!pdevice->use_llvm) {
325 /* Some games like SotTR apply shader workarounds if the LLVM
326 * version is too old or if the LLVM version string is
327 * missing. This gives 2-5% performance with SotTR and ACO.
328 */
329 if (driQueryOptionb(&pdevice->instance->dri_options, "radv_report_llvm9_version_string")) {
330 return " (LLVM 9.0.1)";
331 }
332
333 return "";
334 }
335
336 #ifdef LLVM_AVAILABLE
337 return " (LLVM " MESA_LLVM_VERSION_STRING ")";
338 #else
339 unreachable("LLVM is not available");
340 #endif
341 }
342
343 int
radv_get_int_debug_option(const char * name,int default_value)344 radv_get_int_debug_option(const char *name, int default_value)
345 {
346 const char *str;
347 int result;
348
349 str = getenv(name);
350 if (!str) {
351 result = default_value;
352 } else {
353 char *endptr;
354
355 result = strtol(str, &endptr, 0);
356 if (str == endptr) {
357 /* No digits founs. */
358 result = default_value;
359 }
360 }
361
362 return result;
363 }
364
365 static bool
radv_thread_trace_enabled()366 radv_thread_trace_enabled()
367 {
368 return radv_get_int_debug_option("RADV_THREAD_TRACE", -1) >= 0 ||
369 getenv("RADV_THREAD_TRACE_TRIGGER");
370 }
371
372 static bool
radv_spm_trace_enabled()373 radv_spm_trace_enabled()
374 {
375 return radv_thread_trace_enabled() &&
376 debug_get_bool_option("RADV_THREAD_TRACE_CACHE_COUNTERS", false);
377 }
378
379 static bool
radv_perf_query_supported(const struct radv_physical_device * pdev)380 radv_perf_query_supported(const struct radv_physical_device *pdev)
381 {
382 /* SQTT / SPM interfere with the register states for perf counters, and
383 * the code has only been tested on GFX10.3 */
384 return pdev->rad_info.gfx_level == GFX10_3 && !radv_thread_trace_enabled();
385 }
386
387 static bool
radv_taskmesh_enabled(const struct radv_physical_device * pdevice)388 radv_taskmesh_enabled(const struct radv_physical_device *pdevice)
389 {
390 return pdevice->use_ngg && !pdevice->use_llvm && pdevice->rad_info.gfx_level >= GFX10_3 &&
391 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE) &&
392 pdevice->rad_info.has_scheduled_fence_dependency;
393 }
394
395 #if defined(VK_USE_PLATFORM_WAYLAND_KHR) || defined(VK_USE_PLATFORM_XCB_KHR) || \
396 defined(VK_USE_PLATFORM_XLIB_KHR) || defined(VK_USE_PLATFORM_DISPLAY_KHR)
397 #define RADV_USE_WSI_PLATFORM
398 #endif
399
400 #ifdef ANDROID
401 #define RADV_API_VERSION VK_MAKE_VERSION(1, 1, VK_HEADER_VERSION)
402 #else
403 #define RADV_API_VERSION VK_MAKE_VERSION(1, 3, VK_HEADER_VERSION)
404 #endif
405
406 VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumerateInstanceVersion(uint32_t * pApiVersion)407 radv_EnumerateInstanceVersion(uint32_t *pApiVersion)
408 {
409 *pApiVersion = RADV_API_VERSION;
410 return VK_SUCCESS;
411 }
412
413 static const struct vk_instance_extension_table radv_instance_extensions_supported = {
414 .KHR_device_group_creation = true,
415 .KHR_external_fence_capabilities = true,
416 .KHR_external_memory_capabilities = true,
417 .KHR_external_semaphore_capabilities = true,
418 .KHR_get_physical_device_properties2 = true,
419 .EXT_debug_report = true,
420 .EXT_debug_utils = true,
421
422 #ifdef RADV_USE_WSI_PLATFORM
423 .KHR_get_surface_capabilities2 = true,
424 .KHR_surface = true,
425 .KHR_surface_protected_capabilities = true,
426 #endif
427 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
428 .KHR_wayland_surface = true,
429 #endif
430 #ifdef VK_USE_PLATFORM_XCB_KHR
431 .KHR_xcb_surface = true,
432 #endif
433 #ifdef VK_USE_PLATFORM_XLIB_KHR
434 .KHR_xlib_surface = true,
435 #endif
436 #ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
437 .EXT_acquire_xlib_display = true,
438 #endif
439 #ifdef VK_USE_PLATFORM_DISPLAY_KHR
440 .KHR_display = true,
441 .KHR_get_display_properties2 = true,
442 .EXT_direct_mode_display = true,
443 .EXT_display_surface_counter = true,
444 .EXT_acquire_drm_display = true,
445 #endif
446 };
447
448 static void
radv_physical_device_get_supported_extensions(const struct radv_physical_device * device,struct vk_device_extension_table * ext)449 radv_physical_device_get_supported_extensions(const struct radv_physical_device *device,
450 struct vk_device_extension_table *ext)
451 {
452 *ext = (struct vk_device_extension_table){
453 .KHR_8bit_storage = true,
454 .KHR_16bit_storage = true,
455 .KHR_acceleration_structure = radv_enable_rt(device, false),
456 .KHR_bind_memory2 = true,
457 .KHR_buffer_device_address = true,
458 .KHR_copy_commands2 = true,
459 .KHR_create_renderpass2 = true,
460 .KHR_dedicated_allocation = true,
461 .KHR_deferred_host_operations = true,
462 .KHR_depth_stencil_resolve = true,
463 .KHR_descriptor_update_template = true,
464 .KHR_device_group = true,
465 .KHR_draw_indirect_count = true,
466 .KHR_driver_properties = true,
467 .KHR_dynamic_rendering = true,
468 .KHR_external_fence = true,
469 .KHR_external_fence_fd = true,
470 .KHR_external_memory = true,
471 .KHR_external_memory_fd = true,
472 .KHR_external_semaphore = true,
473 .KHR_external_semaphore_fd = true,
474 .KHR_format_feature_flags2 = true,
475 .KHR_fragment_shading_rate = device->rad_info.gfx_level >= GFX10_3,
476 .KHR_get_memory_requirements2 = true,
477 .KHR_image_format_list = true,
478 .KHR_imageless_framebuffer = true,
479 #ifdef RADV_USE_WSI_PLATFORM
480 .KHR_incremental_present = true,
481 #endif
482 .KHR_maintenance1 = true,
483 .KHR_maintenance2 = true,
484 .KHR_maintenance3 = true,
485 .KHR_maintenance4 = true,
486 .KHR_multiview = true,
487 .KHR_performance_query = radv_perf_query_supported(device),
488 .KHR_pipeline_executable_properties = true,
489 .KHR_pipeline_library = !device->use_llvm,
490 .KHR_push_descriptor = true,
491 .KHR_ray_query = radv_enable_rt(device, false),
492 .KHR_ray_tracing_maintenance1 = radv_enable_rt(device, false),
493 .KHR_ray_tracing_pipeline = radv_enable_rt(device, true),
494 .KHR_relaxed_block_layout = true,
495 .KHR_sampler_mirror_clamp_to_edge = true,
496 .KHR_sampler_ycbcr_conversion = true,
497 .KHR_separate_depth_stencil_layouts = true,
498 .KHR_shader_atomic_int64 = true,
499 .KHR_shader_clock = true,
500 .KHR_shader_draw_parameters = true,
501 .KHR_shader_float16_int8 = true,
502 .KHR_shader_float_controls = true,
503 .KHR_shader_integer_dot_product = true,
504 .KHR_shader_non_semantic_info = true,
505 .KHR_shader_subgroup_extended_types = true,
506 .KHR_shader_subgroup_uniform_control_flow = true,
507 .KHR_shader_terminate_invocation = true,
508 .KHR_spirv_1_4 = true,
509 .KHR_storage_buffer_storage_class = true,
510 #ifdef RADV_USE_WSI_PLATFORM
511 .KHR_swapchain = true,
512 .KHR_swapchain_mutable_format = true,
513 #endif
514 .KHR_synchronization2 = true,
515 .KHR_timeline_semaphore = true,
516 .KHR_uniform_buffer_standard_layout = true,
517 .KHR_variable_pointers = true,
518 .KHR_vulkan_memory_model = true,
519 .KHR_workgroup_memory_explicit_layout = true,
520 .KHR_zero_initialize_workgroup_memory = true,
521 .EXT_4444_formats = true,
522 .EXT_attachment_feedback_loop_layout = true,
523 .EXT_border_color_swizzle = device->rad_info.gfx_level >= GFX10,
524 .EXT_buffer_device_address = true,
525 .EXT_calibrated_timestamps = RADV_SUPPORT_CALIBRATED_TIMESTAMPS,
526 .EXT_color_write_enable = true,
527 .EXT_conditional_rendering = true,
528 .EXT_conservative_rasterization = device->rad_info.gfx_level >= GFX9,
529 .EXT_custom_border_color = true,
530 .EXT_debug_marker = radv_thread_trace_enabled(),
531 .EXT_depth_clip_control = true,
532 .EXT_depth_clip_enable = true,
533 .EXT_depth_range_unrestricted = true,
534 .EXT_descriptor_indexing = true,
535 .EXT_discard_rectangles = true,
536 #ifdef VK_USE_PLATFORM_DISPLAY_KHR
537 .EXT_display_control = true,
538 #endif
539 .EXT_extended_dynamic_state = true,
540 .EXT_extended_dynamic_state2 = true,
541 .EXT_external_memory_dma_buf = true,
542 .EXT_external_memory_host = device->rad_info.has_userptr,
543 .EXT_global_priority = true,
544 .EXT_global_priority_query = true,
545 .EXT_host_query_reset = true,
546 .EXT_image_2d_view_of_3d = true,
547 .EXT_image_drm_format_modifier = device->rad_info.gfx_level >= GFX9,
548 .EXT_image_robustness = true,
549 .EXT_image_view_min_lod = true,
550 .EXT_index_type_uint8 = device->rad_info.gfx_level >= GFX8,
551 .EXT_inline_uniform_block = true,
552 .EXT_line_rasterization = true,
553 .EXT_memory_budget = true,
554 .EXT_memory_priority = true,
555 .EXT_multi_draw = true,
556 .EXT_non_seamless_cube_map = true,
557 .EXT_pci_bus_info = true,
558 #ifndef _WIN32
559 .EXT_physical_device_drm = true,
560 #endif
561 .EXT_pipeline_creation_cache_control = true,
562 .EXT_pipeline_creation_feedback = true,
563 .EXT_post_depth_coverage = device->rad_info.gfx_level >= GFX10,
564 .EXT_primitive_topology_list_restart = true,
565 .EXT_primitives_generated_query = true,
566 .EXT_private_data = true,
567 .EXT_provoking_vertex = true,
568 .EXT_queue_family_foreign = true,
569 .EXT_robustness2 = true,
570 .EXT_sample_locations = device->rad_info.gfx_level < GFX10,
571 .EXT_sampler_filter_minmax = true,
572 .EXT_scalar_block_layout = device->rad_info.gfx_level >= GFX7,
573 .EXT_separate_stencil_usage = true,
574 .EXT_shader_atomic_float = true,
575 #ifdef LLVM_AVAILABLE
576 .EXT_shader_atomic_float2 = !device->use_llvm || LLVM_VERSION_MAJOR >= 14,
577 #else
578 .EXT_shader_atomic_float2 = true,
579 #endif
580 .EXT_shader_demote_to_helper_invocation = true,
581 .EXT_shader_image_atomic_int64 = true,
582 .EXT_shader_module_identifier = true,
583 .EXT_shader_stencil_export = true,
584 .EXT_shader_subgroup_ballot = true,
585 .EXT_shader_subgroup_vote = true,
586 .EXT_shader_viewport_index_layer = true,
587 .EXT_subgroup_size_control = true,
588 .EXT_texel_buffer_alignment = true,
589 .EXT_transform_feedback = device->rad_info.gfx_level < GFX11,
590 .EXT_vertex_attribute_divisor = true,
591 .EXT_vertex_input_dynamic_state = !device->use_llvm,
592 .EXT_ycbcr_image_arrays = true,
593 .AMD_buffer_marker = true,
594 .AMD_device_coherent_memory = true,
595 .AMD_draw_indirect_count = true,
596 .AMD_gcn_shader = true,
597 .AMD_gpu_shader_half_float = device->rad_info.has_packed_math_16bit,
598 .AMD_gpu_shader_int16 = device->rad_info.has_packed_math_16bit,
599 .AMD_memory_overallocation_behavior = true,
600 .AMD_mixed_attachment_samples = true,
601 .AMD_rasterization_order = device->rad_info.has_out_of_order_rast,
602 .AMD_shader_ballot = true,
603 .AMD_shader_core_properties = true,
604 .AMD_shader_core_properties2 = true,
605 .AMD_shader_explicit_vertex_parameter = true,
606 .AMD_shader_fragment_mask = device->rad_info.gfx_level < GFX11,
607 .AMD_shader_image_load_store_lod = true,
608 .AMD_shader_trinary_minmax = true,
609 .AMD_texture_gather_bias_lod = true,
610 #ifdef ANDROID
611 .ANDROID_external_memory_android_hardware_buffer = RADV_SUPPORT_ANDROID_HARDWARE_BUFFER,
612 .ANDROID_native_buffer = true,
613 #endif
614 .GOOGLE_decorate_string = true,
615 .GOOGLE_hlsl_functionality1 = true,
616 .GOOGLE_user_type = true,
617 .INTEL_shader_integer_functions2 = true,
618 .NV_compute_shader_derivatives = true,
619 .NV_device_generated_commands = device->rad_info.gfx_level >= GFX7 &&
620 !(device->instance->debug_flags & RADV_DEBUG_NO_IBS) &&
621 driQueryOptionb(&device->instance->dri_options, "radv_dgc"),
622 .NV_mesh_shader =
623 radv_taskmesh_enabled(device) && device->instance->perftest_flags & RADV_PERFTEST_NV_MS,
624 /* Undocumented extension purely for vkd3d-proton. This check is to prevent anyone else from
625 * using it.
626 */
627 .VALVE_descriptor_set_host_mapping =
628 device->vk.instance->app_info.engine_name &&
629 strcmp(device->vk.instance->app_info.engine_name, "vkd3d") == 0,
630 .VALVE_mutable_descriptor_type = true,
631 };
632 }
633
634 static bool
radv_is_conformant(const struct radv_physical_device * pdevice)635 radv_is_conformant(const struct radv_physical_device *pdevice)
636 {
637 return pdevice->rad_info.gfx_level >= GFX8;
638 }
639
640 static void
radv_physical_device_init_queue_table(struct radv_physical_device * pdevice)641 radv_physical_device_init_queue_table(struct radv_physical_device *pdevice)
642 {
643 int idx = 0;
644 pdevice->vk_queue_to_radv[idx] = RADV_QUEUE_GENERAL;
645 idx++;
646
647 for (unsigned i = 1; i < RADV_MAX_QUEUE_FAMILIES; i++)
648 pdevice->vk_queue_to_radv[i] = RADV_MAX_QUEUE_FAMILIES + 1;
649
650 if (pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues > 0 &&
651 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
652 pdevice->vk_queue_to_radv[idx] = RADV_QUEUE_COMPUTE;
653 idx++;
654 }
655 pdevice->num_queues = idx;
656 }
657
658 static VkResult
radv_physical_device_try_create(struct radv_instance * instance,drmDevicePtr drm_device,struct radv_physical_device ** device_out)659 radv_physical_device_try_create(struct radv_instance *instance, drmDevicePtr drm_device,
660 struct radv_physical_device **device_out)
661 {
662 VkResult result;
663 int fd = -1;
664 int master_fd = -1;
665
666 #ifdef _WIN32
667 assert(drm_device == NULL);
668 #else
669 if (drm_device) {
670 const char *path = drm_device->nodes[DRM_NODE_RENDER];
671 drmVersionPtr version;
672
673 fd = open(path, O_RDWR | O_CLOEXEC);
674 if (fd < 0) {
675 return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
676 "Could not open device %s: %m", path);
677 }
678
679 version = drmGetVersion(fd);
680 if (!version) {
681 close(fd);
682
683 return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
684 "Could not get the kernel driver version for device %s: %m", path);
685 }
686
687 if (strcmp(version->name, "amdgpu")) {
688 drmFreeVersion(version);
689 close(fd);
690
691 return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
692 "Device '%s' is not using the AMDGPU kernel driver: %m", path);
693 }
694 drmFreeVersion(version);
695
696 if (instance->debug_flags & RADV_DEBUG_STARTUP)
697 fprintf(stderr, "radv: info: Found compatible device '%s'.\n", path);
698 }
699 #endif
700
701 struct radv_physical_device *device = vk_zalloc2(&instance->vk.alloc, NULL, sizeof(*device), 8,
702 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
703 if (!device) {
704 result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
705 goto fail_fd;
706 }
707
708 struct vk_physical_device_dispatch_table dispatch_table;
709 vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table,
710 &radv_physical_device_entrypoints, true);
711 vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table,
712 &wsi_physical_device_entrypoints, false);
713
714 result = vk_physical_device_init(&device->vk, &instance->vk, NULL, &dispatch_table);
715 if (result != VK_SUCCESS) {
716 goto fail_alloc;
717 }
718
719 device->instance = instance;
720
721 #ifdef _WIN32
722 device->ws = radv_null_winsys_create();
723 #else
724 if (drm_device) {
725 bool reserve_vmid = radv_thread_trace_enabled();
726
727 device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags, instance->perftest_flags,
728 reserve_vmid);
729 } else {
730 device->ws = radv_null_winsys_create();
731 }
732 #endif
733
734 if (!device->ws) {
735 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "failed to initialize winsys");
736 goto fail_base;
737 }
738
739 device->vk.supported_sync_types = device->ws->get_sync_types(device->ws);
740
741 #ifndef _WIN32
742 if (drm_device && instance->vk.enabled_extensions.KHR_display) {
743 master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC);
744 if (master_fd >= 0) {
745 uint32_t accel_working = 0;
746 struct drm_amdgpu_info request = {.return_pointer = (uintptr_t)&accel_working,
747 .return_size = sizeof(accel_working),
748 .query = AMDGPU_INFO_ACCEL_WORKING};
749
750 if (drmCommandWrite(master_fd, DRM_AMDGPU_INFO, &request, sizeof(struct drm_amdgpu_info)) <
751 0 ||
752 !accel_working) {
753 close(master_fd);
754 master_fd = -1;
755 }
756 }
757 }
758 #endif
759
760 device->master_fd = master_fd;
761 device->local_fd = fd;
762 device->ws->query_info(device->ws, &device->rad_info);
763
764 if (device->rad_info.gfx_level >= GFX11) {
765 result = vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
766 "This version of RADV does not support RDNA3 yet.");
767 goto fail_wsi;
768 }
769
770 device->use_llvm = instance->debug_flags & RADV_DEBUG_LLVM;
771 #ifndef LLVM_AVAILABLE
772 if (device->use_llvm) {
773 fprintf(stderr, "ERROR: LLVM compiler backend selected for radv, but LLVM support was not "
774 "enabled at build time.\n");
775 abort();
776 }
777 #endif
778
779 #ifdef ANDROID
780 device->emulate_etc2 = !radv_device_supports_etc(device);
781 #else
782 device->emulate_etc2 = !radv_device_supports_etc(device) &&
783 driQueryOptionb(&device->instance->dri_options, "radv_require_etc2");
784 #endif
785
786 snprintf(device->name, sizeof(device->name), "AMD RADV %s%s", device->rad_info.name,
787 radv_get_compiler_string(device));
788
789 const char *marketing_name = device->ws->get_chip_name(device->ws);
790 snprintf(device->marketing_name, sizeof(device->name), "%s (RADV %s%s)",
791 marketing_name ? marketing_name : "AMD Unknown", device->rad_info.name,
792 radv_get_compiler_string(device));
793
794 #ifdef ENABLE_SHADER_CACHE
795 if (radv_device_get_cache_uuid(device, device->cache_uuid)) {
796 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "cannot generate UUID");
797 goto fail_wsi;
798 }
799
800 /* The gpu id is already embedded in the uuid so we just pass "radv"
801 * when creating the cache.
802 */
803 char buf[VK_UUID_SIZE * 2 + 1];
804 disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2);
805 device->disk_cache = disk_cache_create(device->name, buf, 0);
806 #endif
807
808 if (!radv_is_conformant(device))
809 vk_warn_non_conformant_implementation("radv");
810
811 radv_get_driver_uuid(&device->driver_uuid);
812 radv_get_device_uuid(&device->rad_info, &device->device_uuid);
813
814 device->out_of_order_rast_allowed =
815 device->rad_info.has_out_of_order_rast &&
816 !(device->instance->debug_flags & RADV_DEBUG_NO_OUT_OF_ORDER);
817
818 device->dcc_msaa_allowed = (device->instance->perftest_flags & RADV_PERFTEST_DCC_MSAA);
819
820 device->use_ngg = (device->rad_info.gfx_level >= GFX10 &&
821 device->rad_info.family != CHIP_NAVI14 &&
822 !(device->instance->debug_flags & RADV_DEBUG_NO_NGG)) ||
823 device->rad_info.gfx_level >= GFX11;
824
825 device->use_ngg_culling = device->use_ngg && device->rad_info.max_render_backends > 1 &&
826 (device->rad_info.gfx_level >= GFX10_3 ||
827 (device->instance->perftest_flags & RADV_PERFTEST_NGGC)) &&
828 !(device->instance->debug_flags & RADV_DEBUG_NO_NGGC);
829
830 device->use_ngg_streamout = false;
831
832 /* Determine the number of threads per wave for all stages. */
833 device->cs_wave_size = 64;
834 device->ps_wave_size = 64;
835 device->ge_wave_size = 64;
836 device->rt_wave_size = 64;
837
838 if (device->rad_info.gfx_level >= GFX10) {
839 if (device->instance->perftest_flags & RADV_PERFTEST_CS_WAVE_32)
840 device->cs_wave_size = 32;
841
842 /* For pixel shaders, wave64 is recommanded. */
843 if (device->instance->perftest_flags & RADV_PERFTEST_PS_WAVE_32)
844 device->ps_wave_size = 32;
845
846 if (device->instance->perftest_flags & RADV_PERFTEST_GE_WAVE_32)
847 device->ge_wave_size = 32;
848
849 if (!(device->instance->perftest_flags & RADV_PERFTEST_RT_WAVE_64))
850 device->rt_wave_size = 32;
851 }
852
853 radv_physical_device_init_mem_types(device);
854
855 radv_physical_device_get_supported_extensions(device, &device->vk.supported_extensions);
856
857 radv_get_nir_options(device);
858
859 #ifndef _WIN32
860 if (drm_device) {
861 struct stat primary_stat = {0}, render_stat = {0};
862
863 device->available_nodes = drm_device->available_nodes;
864 device->bus_info = *drm_device->businfo.pci;
865
866 if ((drm_device->available_nodes & (1 << DRM_NODE_PRIMARY)) &&
867 stat(drm_device->nodes[DRM_NODE_PRIMARY], &primary_stat) != 0) {
868 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
869 "failed to stat DRM primary node %s",
870 drm_device->nodes[DRM_NODE_PRIMARY]);
871 goto fail_perfcounters;
872 }
873 device->primary_devid = primary_stat.st_rdev;
874
875 if ((drm_device->available_nodes & (1 << DRM_NODE_RENDER)) &&
876 stat(drm_device->nodes[DRM_NODE_RENDER], &render_stat) != 0) {
877 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
878 "failed to stat DRM render node %s",
879 drm_device->nodes[DRM_NODE_RENDER]);
880 goto fail_perfcounters;
881 }
882 device->render_devid = render_stat.st_rdev;
883 }
884 #endif
885
886 if ((device->instance->debug_flags & RADV_DEBUG_INFO))
887 ac_print_gpu_info(&device->rad_info, stdout);
888
889 radv_physical_device_init_queue_table(device);
890
891 /* We don't check the error code, but later check if it is initialized. */
892 ac_init_perfcounters(&device->rad_info, false, false, &device->ac_perfcounters);
893
894 /* The WSI is structured as a layer on top of the driver, so this has
895 * to be the last part of initialization (at least until we get other
896 * semi-layers).
897 */
898 result = radv_init_wsi(device);
899 if (result != VK_SUCCESS) {
900 vk_error(instance, result);
901 goto fail_perfcounters;
902 }
903
904 device->gs_table_depth =
905 ac_get_gs_table_depth(device->rad_info.gfx_level, device->rad_info.family);
906
907 ac_get_hs_info(&device->rad_info, &device->hs);
908 ac_get_task_info(&device->rad_info, &device->task_info);
909
910 *device_out = device;
911
912 return VK_SUCCESS;
913
914 fail_perfcounters:
915 ac_destroy_perfcounters(&device->ac_perfcounters);
916 disk_cache_destroy(device->disk_cache);
917 fail_wsi:
918 device->ws->destroy(device->ws);
919 fail_base:
920 vk_physical_device_finish(&device->vk);
921 fail_alloc:
922 vk_free(&instance->vk.alloc, device);
923 fail_fd:
924 if (fd != -1)
925 close(fd);
926 if (master_fd != -1)
927 close(master_fd);
928 return result;
929 }
930
931 static void
radv_physical_device_destroy(struct radv_physical_device * device)932 radv_physical_device_destroy(struct radv_physical_device *device)
933 {
934 radv_finish_wsi(device);
935 ac_destroy_perfcounters(&device->ac_perfcounters);
936 device->ws->destroy(device->ws);
937 disk_cache_destroy(device->disk_cache);
938 if (device->local_fd != -1)
939 close(device->local_fd);
940 if (device->master_fd != -1)
941 close(device->master_fd);
942 vk_physical_device_finish(&device->vk);
943 vk_free(&device->instance->vk.alloc, device);
944 }
945
946 static const struct debug_control radv_debug_options[] = {
947 {"nofastclears", RADV_DEBUG_NO_FAST_CLEARS},
948 {"nodcc", RADV_DEBUG_NO_DCC},
949 {"shaders", RADV_DEBUG_DUMP_SHADERS},
950 {"nocache", RADV_DEBUG_NO_CACHE},
951 {"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS},
952 {"nohiz", RADV_DEBUG_NO_HIZ},
953 {"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE},
954 {"allbos", RADV_DEBUG_ALL_BOS},
955 {"noibs", RADV_DEBUG_NO_IBS},
956 {"spirv", RADV_DEBUG_DUMP_SPIRV},
957 {"vmfaults", RADV_DEBUG_VM_FAULTS},
958 {"zerovram", RADV_DEBUG_ZERO_VRAM},
959 {"syncshaders", RADV_DEBUG_SYNC_SHADERS},
960 {"preoptir", RADV_DEBUG_PREOPTIR},
961 {"nodynamicbounds", RADV_DEBUG_NO_DYNAMIC_BOUNDS},
962 {"nooutoforder", RADV_DEBUG_NO_OUT_OF_ORDER},
963 {"info", RADV_DEBUG_INFO},
964 {"startup", RADV_DEBUG_STARTUP},
965 {"checkir", RADV_DEBUG_CHECKIR},
966 {"nobinning", RADV_DEBUG_NOBINNING},
967 {"nongg", RADV_DEBUG_NO_NGG},
968 {"metashaders", RADV_DEBUG_DUMP_META_SHADERS},
969 {"nomemorycache", RADV_DEBUG_NO_MEMORY_CACHE},
970 {"discardtodemote", RADV_DEBUG_DISCARD_TO_DEMOTE},
971 {"llvm", RADV_DEBUG_LLVM},
972 {"forcecompress", RADV_DEBUG_FORCE_COMPRESS},
973 {"hang", RADV_DEBUG_HANG},
974 {"img", RADV_DEBUG_IMG},
975 {"noumr", RADV_DEBUG_NO_UMR},
976 {"invariantgeom", RADV_DEBUG_INVARIANT_GEOM},
977 {"splitfma", RADV_DEBUG_SPLIT_FMA},
978 {"nodisplaydcc", RADV_DEBUG_NO_DISPLAY_DCC},
979 {"notccompatcmask", RADV_DEBUG_NO_TC_COMPAT_CMASK},
980 {"novrsflatshading", RADV_DEBUG_NO_VRS_FLAT_SHADING},
981 {"noatocdithering", RADV_DEBUG_NO_ATOC_DITHERING},
982 {"nonggc", RADV_DEBUG_NO_NGGC},
983 {"prologs", RADV_DEBUG_DUMP_PROLOGS},
984 {"nodma", RADV_DEBUG_NO_DMA_BLIT},
985 {"epilogs", RADV_DEBUG_DUMP_EPILOGS},
986 {NULL, 0}};
987
988 const char *
radv_get_debug_option_name(int id)989 radv_get_debug_option_name(int id)
990 {
991 assert(id < ARRAY_SIZE(radv_debug_options) - 1);
992 return radv_debug_options[id].string;
993 }
994
995 static const struct debug_control radv_perftest_options[] = {{"localbos", RADV_PERFTEST_LOCAL_BOS},
996 {"dccmsaa", RADV_PERFTEST_DCC_MSAA},
997 {"bolist", RADV_PERFTEST_BO_LIST},
998 {"cswave32", RADV_PERFTEST_CS_WAVE_32},
999 {"pswave32", RADV_PERFTEST_PS_WAVE_32},
1000 {"gewave32", RADV_PERFTEST_GE_WAVE_32},
1001 {"nosam", RADV_PERFTEST_NO_SAM},
1002 {"sam", RADV_PERFTEST_SAM},
1003 {"rt", RADV_PERFTEST_RT},
1004 {"nggc", RADV_PERFTEST_NGGC},
1005 {"emulate_rt", RADV_PERFTEST_EMULATE_RT},
1006 {"nv_ms", RADV_PERFTEST_NV_MS},
1007 {"rtwave64", RADV_PERFTEST_RT_WAVE_64},
1008 {NULL, 0}};
1009
1010 const char *
radv_get_perftest_option_name(int id)1011 radv_get_perftest_option_name(int id)
1012 {
1013 assert(id < ARRAY_SIZE(radv_perftest_options) - 1);
1014 return radv_perftest_options[id].string;
1015 }
1016
1017 // clang-format off
1018 static const driOptionDescription radv_dri_options[] = {
1019 DRI_CONF_SECTION_PERFORMANCE
1020 DRI_CONF_ADAPTIVE_SYNC(true)
1021 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
1022 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false)
1023 DRI_CONF_VK_X11_ENSURE_MIN_IMAGE_COUNT(false)
1024 DRI_CONF_VK_XWAYLAND_WAIT_READY(true)
1025 DRI_CONF_RADV_REPORT_LLVM9_VERSION_STRING(false)
1026 DRI_CONF_RADV_ENABLE_MRT_OUTPUT_NAN_FIXUP(false)
1027 DRI_CONF_RADV_DISABLE_SHRINK_IMAGE_STORE(false)
1028 DRI_CONF_RADV_NO_DYNAMIC_BOUNDS(false)
1029 DRI_CONF_RADV_ABSOLUTE_DEPTH_BIAS(false)
1030 DRI_CONF_RADV_OVERRIDE_UNIFORM_OFFSET_ALIGNMENT(0)
1031 DRI_CONF_SECTION_END
1032
1033 DRI_CONF_SECTION_DEBUG
1034 DRI_CONF_OVERRIDE_VRAM_SIZE()
1035 DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false)
1036 DRI_CONF_RADV_ZERO_VRAM(false)
1037 DRI_CONF_RADV_LOWER_DISCARD_TO_DEMOTE(false)
1038 DRI_CONF_RADV_INVARIANT_GEOM(false)
1039 DRI_CONF_RADV_SPLIT_FMA(false)
1040 DRI_CONF_RADV_DISABLE_TC_COMPAT_HTILE_GENERAL(false)
1041 DRI_CONF_RADV_DISABLE_DCC(false)
1042 DRI_CONF_RADV_REQUIRE_ETC2(false)
1043 DRI_CONF_RADV_DISABLE_ANISO_SINGLE_LEVEL(false)
1044 DRI_CONF_RADV_DISABLE_SINKING_LOAD_INPUT_FS(false)
1045 DRI_CONF_RADV_DGC(false)
1046 DRI_CONF_RADV_FLUSH_BEFORE_QUERY_COPY(false)
1047 DRI_CONF_SECTION_END
1048 };
1049 // clang-format on
1050
1051 static void
radv_init_dri_options(struct radv_instance * instance)1052 radv_init_dri_options(struct radv_instance *instance)
1053 {
1054 driParseOptionInfo(&instance->available_dri_options, radv_dri_options,
1055 ARRAY_SIZE(radv_dri_options));
1056 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options, 0, "radv", NULL, NULL,
1057 instance->vk.app_info.app_name, instance->vk.app_info.app_version,
1058 instance->vk.app_info.engine_name, instance->vk.app_info.engine_version);
1059
1060 instance->enable_mrt_output_nan_fixup =
1061 driQueryOptionb(&instance->dri_options, "radv_enable_mrt_output_nan_fixup");
1062
1063 instance->disable_shrink_image_store =
1064 driQueryOptionb(&instance->dri_options, "radv_disable_shrink_image_store");
1065
1066 instance->absolute_depth_bias =
1067 driQueryOptionb(&instance->dri_options, "radv_absolute_depth_bias");
1068
1069 instance->disable_tc_compat_htile_in_general =
1070 driQueryOptionb(&instance->dri_options, "radv_disable_tc_compat_htile_general");
1071
1072 if (driQueryOptionb(&instance->dri_options, "radv_no_dynamic_bounds"))
1073 instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS;
1074
1075 if (driQueryOptionb(&instance->dri_options, "radv_lower_discard_to_demote"))
1076 instance->debug_flags |= RADV_DEBUG_DISCARD_TO_DEMOTE;
1077
1078 if (driQueryOptionb(&instance->dri_options, "radv_invariant_geom"))
1079 instance->debug_flags |= RADV_DEBUG_INVARIANT_GEOM;
1080
1081 if (driQueryOptionb(&instance->dri_options, "radv_split_fma"))
1082 instance->debug_flags |= RADV_DEBUG_SPLIT_FMA;
1083
1084 if (driQueryOptionb(&instance->dri_options, "radv_disable_dcc"))
1085 instance->debug_flags |= RADV_DEBUG_NO_DCC;
1086
1087 instance->zero_vram =
1088 driQueryOptionb(&instance->dri_options, "radv_zero_vram");
1089
1090 instance->disable_aniso_single_level =
1091 driQueryOptionb(&instance->dri_options, "radv_disable_aniso_single_level");
1092
1093 instance->disable_sinking_load_input_fs =
1094 driQueryOptionb(&instance->dri_options, "radv_disable_sinking_load_input_fs");
1095
1096 instance->flush_before_query_copy =
1097 driQueryOptionb(&instance->dri_options, "radv_flush_before_query_copy");
1098 }
1099
1100 VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateInstance(const VkInstanceCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkInstance * pInstance)1101 radv_CreateInstance(const VkInstanceCreateInfo *pCreateInfo,
1102 const VkAllocationCallbacks *pAllocator, VkInstance *pInstance)
1103 {
1104 struct radv_instance *instance;
1105 VkResult result;
1106
1107 if (!pAllocator)
1108 pAllocator = vk_default_allocator();
1109
1110 instance = vk_zalloc(pAllocator, sizeof(*instance), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
1111 if (!instance)
1112 return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
1113
1114 struct vk_instance_dispatch_table dispatch_table;
1115 vk_instance_dispatch_table_from_entrypoints(&dispatch_table, &radv_instance_entrypoints, true);
1116 vk_instance_dispatch_table_from_entrypoints(&dispatch_table, &wsi_instance_entrypoints, false);
1117 struct vk_instance_extension_table extensions_supported = radv_instance_extensions_supported;
1118
1119 result = vk_instance_init(&instance->vk, &extensions_supported, &dispatch_table,
1120 pCreateInfo, pAllocator);
1121 if (result != VK_SUCCESS) {
1122 vk_free(pAllocator, instance);
1123 return vk_error(instance, result);
1124 }
1125
1126 instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"), radv_debug_options);
1127 instance->perftest_flags = parse_debug_string(getenv("RADV_PERFTEST"), radv_perftest_options);
1128
1129 if (instance->debug_flags & RADV_DEBUG_STARTUP)
1130 fprintf(stderr, "radv: info: Created an instance.\n");
1131
1132 instance->physical_devices_enumerated = false;
1133 list_inithead(&instance->physical_devices);
1134
1135 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
1136
1137 radv_init_dri_options(instance);
1138
1139 *pInstance = radv_instance_to_handle(instance);
1140
1141 return VK_SUCCESS;
1142 }
1143
1144 VKAPI_ATTR void VKAPI_CALL
radv_DestroyInstance(VkInstance _instance,const VkAllocationCallbacks * pAllocator)1145 radv_DestroyInstance(VkInstance _instance, const VkAllocationCallbacks *pAllocator)
1146 {
1147 RADV_FROM_HANDLE(radv_instance, instance, _instance);
1148
1149 if (!instance)
1150 return;
1151
1152 list_for_each_entry_safe(struct radv_physical_device, pdevice, &instance->physical_devices, link)
1153 {
1154 radv_physical_device_destroy(pdevice);
1155 }
1156
1157 VG(VALGRIND_DESTROY_MEMPOOL(instance));
1158
1159 driDestroyOptionCache(&instance->dri_options);
1160 driDestroyOptionInfo(&instance->available_dri_options);
1161
1162 vk_instance_finish(&instance->vk);
1163 vk_free(&instance->vk.alloc, instance);
1164 }
1165
1166 static VkResult
radv_enumerate_physical_devices(struct radv_instance * instance)1167 radv_enumerate_physical_devices(struct radv_instance *instance)
1168 {
1169 if (instance->physical_devices_enumerated)
1170 return VK_SUCCESS;
1171
1172 instance->physical_devices_enumerated = true;
1173
1174 VkResult result = VK_SUCCESS;
1175
1176 if (getenv("RADV_FORCE_FAMILY")) {
1177 /* When RADV_FORCE_FAMILY is set, the driver creates a nul
1178 * device that allows to test the compiler without having an
1179 * AMDGPU instance.
1180 */
1181 struct radv_physical_device *pdevice;
1182
1183 result = radv_physical_device_try_create(instance, NULL, &pdevice);
1184 if (result != VK_SUCCESS)
1185 return result;
1186
1187 list_addtail(&pdevice->link, &instance->physical_devices);
1188 return VK_SUCCESS;
1189 }
1190
1191 #ifndef _WIN32
1192 /* TODO: Check for more devices ? */
1193 drmDevicePtr devices[8];
1194 int max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
1195
1196 if (instance->debug_flags & RADV_DEBUG_STARTUP)
1197 fprintf(stderr, "radv: info: Found %d drm nodes.\n", max_devices);
1198
1199 if (max_devices < 1)
1200 return vk_error(instance, VK_SUCCESS);
1201
1202 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
1203 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
1204 devices[i]->bustype == DRM_BUS_PCI &&
1205 devices[i]->deviceinfo.pci->vendor_id == ATI_VENDOR_ID) {
1206
1207 struct radv_physical_device *pdevice;
1208 result = radv_physical_device_try_create(instance, devices[i], &pdevice);
1209 /* Incompatible DRM device, skip. */
1210 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
1211 result = VK_SUCCESS;
1212 continue;
1213 }
1214
1215 /* Error creating the physical device, report the error. */
1216 if (result != VK_SUCCESS)
1217 break;
1218
1219 list_addtail(&pdevice->link, &instance->physical_devices);
1220 }
1221 }
1222 drmFreeDevices(devices, max_devices);
1223 #endif
1224
1225 /* If we successfully enumerated any devices, call it success */
1226 return result;
1227 }
1228
1229 VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumeratePhysicalDevices(VkInstance _instance,uint32_t * pPhysicalDeviceCount,VkPhysicalDevice * pPhysicalDevices)1230 radv_EnumeratePhysicalDevices(VkInstance _instance, uint32_t *pPhysicalDeviceCount,
1231 VkPhysicalDevice *pPhysicalDevices)
1232 {
1233 RADV_FROM_HANDLE(radv_instance, instance, _instance);
1234 VK_OUTARRAY_MAKE_TYPED(VkPhysicalDevice, out, pPhysicalDevices, pPhysicalDeviceCount);
1235
1236 VkResult result = radv_enumerate_physical_devices(instance);
1237 if (result != VK_SUCCESS)
1238 return result;
1239
1240 list_for_each_entry(struct radv_physical_device, pdevice, &instance->physical_devices, link)
1241 {
1242 vk_outarray_append_typed(VkPhysicalDevice, &out, i)
1243 {
1244 *i = radv_physical_device_to_handle(pdevice);
1245 }
1246 }
1247
1248 return vk_outarray_status(&out);
1249 }
1250
1251 VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumeratePhysicalDeviceGroups(VkInstance _instance,uint32_t * pPhysicalDeviceGroupCount,VkPhysicalDeviceGroupProperties * pPhysicalDeviceGroupProperties)1252 radv_EnumeratePhysicalDeviceGroups(VkInstance _instance, uint32_t *pPhysicalDeviceGroupCount,
1253 VkPhysicalDeviceGroupProperties *pPhysicalDeviceGroupProperties)
1254 {
1255 RADV_FROM_HANDLE(radv_instance, instance, _instance);
1256 VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceGroupProperties, out, pPhysicalDeviceGroupProperties,
1257 pPhysicalDeviceGroupCount);
1258
1259 VkResult result = radv_enumerate_physical_devices(instance);
1260 if (result != VK_SUCCESS)
1261 return result;
1262
1263 list_for_each_entry(struct radv_physical_device, pdevice, &instance->physical_devices, link)
1264 {
1265 vk_outarray_append_typed(VkPhysicalDeviceGroupProperties, &out, p)
1266 {
1267 p->physicalDeviceCount = 1;
1268 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
1269 p->physicalDevices[0] = radv_physical_device_to_handle(pdevice);
1270 p->subsetAllocation = false;
1271 }
1272 }
1273
1274 return vk_outarray_status(&out);
1275 }
1276
1277 VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice,VkPhysicalDeviceFeatures * pFeatures)1278 radv_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures *pFeatures)
1279 {
1280 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1281 memset(pFeatures, 0, sizeof(*pFeatures));
1282
1283 *pFeatures = (VkPhysicalDeviceFeatures){
1284 .robustBufferAccess = true,
1285 .fullDrawIndexUint32 = true,
1286 .imageCubeArray = true,
1287 .independentBlend = true,
1288 .geometryShader = true,
1289 .tessellationShader = true,
1290 .sampleRateShading = true,
1291 .dualSrcBlend = true,
1292 .logicOp = true,
1293 .multiDrawIndirect = true,
1294 .drawIndirectFirstInstance = true,
1295 .depthClamp = true,
1296 .depthBiasClamp = true,
1297 .fillModeNonSolid = true,
1298 .depthBounds = true,
1299 .wideLines = true,
1300 .largePoints = true,
1301 .alphaToOne = false,
1302 .multiViewport = true,
1303 .samplerAnisotropy = true,
1304 .textureCompressionETC2 = radv_device_supports_etc(pdevice) || pdevice->emulate_etc2,
1305 .textureCompressionASTC_LDR = false,
1306 .textureCompressionBC = true,
1307 .occlusionQueryPrecise = true,
1308 .pipelineStatisticsQuery = true,
1309 .vertexPipelineStoresAndAtomics = true,
1310 .fragmentStoresAndAtomics = true,
1311 .shaderTessellationAndGeometryPointSize = true,
1312 .shaderImageGatherExtended = true,
1313 .shaderStorageImageExtendedFormats = true,
1314 .shaderStorageImageMultisample = true,
1315 .shaderUniformBufferArrayDynamicIndexing = true,
1316 .shaderSampledImageArrayDynamicIndexing = true,
1317 .shaderStorageBufferArrayDynamicIndexing = true,
1318 .shaderStorageImageArrayDynamicIndexing = true,
1319 .shaderStorageImageReadWithoutFormat = true,
1320 .shaderStorageImageWriteWithoutFormat = true,
1321 .shaderClipDistance = true,
1322 .shaderCullDistance = true,
1323 .shaderFloat64 = true,
1324 .shaderInt64 = true,
1325 .shaderInt16 = true,
1326 .sparseBinding = true,
1327 .sparseResidencyBuffer = pdevice->rad_info.family >= CHIP_POLARIS10,
1328 .sparseResidencyImage2D = pdevice->rad_info.family >= CHIP_POLARIS10,
1329 .sparseResidencyAliased = pdevice->rad_info.family >= CHIP_POLARIS10,
1330 .variableMultisampleRate = true,
1331 .shaderResourceMinLod = true,
1332 .shaderResourceResidency = true,
1333 .inheritedQueries = true,
1334 };
1335 }
1336
1337 static void
radv_get_physical_device_features_1_1(struct radv_physical_device * pdevice,VkPhysicalDeviceVulkan11Features * f)1338 radv_get_physical_device_features_1_1(struct radv_physical_device *pdevice,
1339 VkPhysicalDeviceVulkan11Features *f)
1340 {
1341 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
1342
1343 f->storageBuffer16BitAccess = true;
1344 f->uniformAndStorageBuffer16BitAccess = true;
1345 f->storagePushConstant16 = true;
1346 f->storageInputOutput16 = pdevice->rad_info.has_packed_math_16bit;
1347 f->multiview = true;
1348 f->multiviewGeometryShader = true;
1349 f->multiviewTessellationShader = true;
1350 f->variablePointersStorageBuffer = true;
1351 f->variablePointers = true;
1352 f->protectedMemory = false;
1353 f->samplerYcbcrConversion = true;
1354 f->shaderDrawParameters = true;
1355 }
1356
1357 static void
radv_get_physical_device_features_1_2(struct radv_physical_device * pdevice,VkPhysicalDeviceVulkan12Features * f)1358 radv_get_physical_device_features_1_2(struct radv_physical_device *pdevice,
1359 VkPhysicalDeviceVulkan12Features *f)
1360 {
1361 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
1362
1363 f->samplerMirrorClampToEdge = true;
1364 f->drawIndirectCount = true;
1365 f->storageBuffer8BitAccess = true;
1366 f->uniformAndStorageBuffer8BitAccess = true;
1367 f->storagePushConstant8 = true;
1368 f->shaderBufferInt64Atomics = true;
1369 f->shaderSharedInt64Atomics = true;
1370 f->shaderFloat16 = pdevice->rad_info.has_packed_math_16bit;
1371 f->shaderInt8 = true;
1372
1373 f->descriptorIndexing = true;
1374 f->shaderInputAttachmentArrayDynamicIndexing = true;
1375 f->shaderUniformTexelBufferArrayDynamicIndexing = true;
1376 f->shaderStorageTexelBufferArrayDynamicIndexing = true;
1377 f->shaderUniformBufferArrayNonUniformIndexing = true;
1378 f->shaderSampledImageArrayNonUniformIndexing = true;
1379 f->shaderStorageBufferArrayNonUniformIndexing = true;
1380 f->shaderStorageImageArrayNonUniformIndexing = true;
1381 f->shaderInputAttachmentArrayNonUniformIndexing = true;
1382 f->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1383 f->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1384 f->descriptorBindingUniformBufferUpdateAfterBind = true;
1385 f->descriptorBindingSampledImageUpdateAfterBind = true;
1386 f->descriptorBindingStorageImageUpdateAfterBind = true;
1387 f->descriptorBindingStorageBufferUpdateAfterBind = true;
1388 f->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1389 f->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1390 f->descriptorBindingUpdateUnusedWhilePending = true;
1391 f->descriptorBindingPartiallyBound = true;
1392 f->descriptorBindingVariableDescriptorCount = true;
1393 f->runtimeDescriptorArray = true;
1394
1395 f->samplerFilterMinmax = true;
1396 f->scalarBlockLayout = pdevice->rad_info.gfx_level >= GFX7;
1397 f->imagelessFramebuffer = true;
1398 f->uniformBufferStandardLayout = true;
1399 f->shaderSubgroupExtendedTypes = true;
1400 f->separateDepthStencilLayouts = true;
1401 f->hostQueryReset = true;
1402 f->timelineSemaphore = true, f->bufferDeviceAddress = true;
1403 f->bufferDeviceAddressCaptureReplay = true;
1404 f->bufferDeviceAddressMultiDevice = false;
1405 f->vulkanMemoryModel = true;
1406 f->vulkanMemoryModelDeviceScope = true;
1407 f->vulkanMemoryModelAvailabilityVisibilityChains = false;
1408 f->shaderOutputViewportIndex = true;
1409 f->shaderOutputLayer = true;
1410 f->subgroupBroadcastDynamicId = true;
1411 }
1412
1413 static void
radv_get_physical_device_features_1_3(struct radv_physical_device * pdevice,VkPhysicalDeviceVulkan13Features * f)1414 radv_get_physical_device_features_1_3(struct radv_physical_device *pdevice,
1415 VkPhysicalDeviceVulkan13Features *f)
1416 {
1417 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES);
1418
1419 f->robustImageAccess = true;
1420 f->inlineUniformBlock = true;
1421 f->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1422 f->pipelineCreationCacheControl = true;
1423 f->privateData = true;
1424 f->shaderDemoteToHelperInvocation = true;
1425 f->shaderTerminateInvocation = true;
1426 f->subgroupSizeControl = true;
1427 f->computeFullSubgroups = true;
1428 f->synchronization2 = true;
1429 f->textureCompressionASTC_HDR = false;
1430 f->shaderZeroInitializeWorkgroupMemory = true;
1431 f->dynamicRendering = true;
1432 f->shaderIntegerDotProduct = true;
1433 f->maintenance4 = true;
1434 }
1435
1436 VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,VkPhysicalDeviceFeatures2 * pFeatures)1437 radv_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,
1438 VkPhysicalDeviceFeatures2 *pFeatures)
1439 {
1440 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1441 radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1442
1443 VkPhysicalDeviceVulkan11Features core_1_1 = {
1444 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
1445 };
1446 radv_get_physical_device_features_1_1(pdevice, &core_1_1);
1447
1448 VkPhysicalDeviceVulkan12Features core_1_2 = {
1449 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
1450 };
1451 radv_get_physical_device_features_1_2(pdevice, &core_1_2);
1452
1453 VkPhysicalDeviceVulkan13Features core_1_3 = {
1454 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES,
1455 };
1456 radv_get_physical_device_features_1_3(pdevice, &core_1_3);
1457
1458 #define CORE_FEATURE(major, minor, feature) features->feature = core_##major##_##minor.feature
1459
1460 vk_foreach_struct(ext, pFeatures->pNext)
1461 {
1462 if (vk_get_physical_device_core_1_1_feature_ext(ext, &core_1_1))
1463 continue;
1464 if (vk_get_physical_device_core_1_2_feature_ext(ext, &core_1_2))
1465 continue;
1466 if (vk_get_physical_device_core_1_3_feature_ext(ext, &core_1_3))
1467 continue;
1468
1469 switch (ext->sType) {
1470 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1471 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1472 (VkPhysicalDeviceConditionalRenderingFeaturesEXT *)ext;
1473 features->conditionalRendering = true;
1474 features->inheritedConditionalRendering = false;
1475 break;
1476 }
1477 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1478 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1479 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1480 features->vertexAttributeInstanceRateDivisor = true;
1481 features->vertexAttributeInstanceRateZeroDivisor = true;
1482 break;
1483 }
1484 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1485 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1486 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1487 features->transformFeedback = pdevice->rad_info.gfx_level < GFX11;
1488 features->geometryStreams = !pdevice->use_ngg_streamout && pdevice->rad_info.gfx_level < GFX11;
1489 break;
1490 }
1491 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES: {
1492 VkPhysicalDeviceScalarBlockLayoutFeatures *features =
1493 (VkPhysicalDeviceScalarBlockLayoutFeatures *)ext;
1494 CORE_FEATURE(1, 2, scalarBlockLayout);
1495 break;
1496 }
1497 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT: {
1498 VkPhysicalDeviceMemoryPriorityFeaturesEXT *features =
1499 (VkPhysicalDeviceMemoryPriorityFeaturesEXT *)ext;
1500 features->memoryPriority = true;
1501 break;
1502 }
1503 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1504 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features =
1505 (VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *)ext;
1506 CORE_FEATURE(1, 2, bufferDeviceAddress);
1507 CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
1508 CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
1509 break;
1510 }
1511 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1512 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1513 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1514 features->depthClipEnable = true;
1515 break;
1516 }
1517 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1518 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1519 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1520 features->computeDerivativeGroupQuads = false;
1521 features->computeDerivativeGroupLinear = true;
1522 break;
1523 }
1524 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1525 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1526 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1527 features->ycbcrImageArrays = true;
1528 break;
1529 }
1530 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1531 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1532 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1533 features->indexTypeUint8 = pdevice->rad_info.gfx_level >= GFX8;
1534 break;
1535 }
1536 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1537 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1538 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1539 features->pipelineExecutableInfo = true;
1540 break;
1541 }
1542 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1543 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1544 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1545 features->shaderSubgroupClock = true;
1546 features->shaderDeviceClock = pdevice->rad_info.gfx_level >= GFX8;
1547 break;
1548 }
1549 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1550 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1551 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1552 features->texelBufferAlignment = true;
1553 break;
1554 }
1555 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD: {
1556 VkPhysicalDeviceCoherentMemoryFeaturesAMD *features =
1557 (VkPhysicalDeviceCoherentMemoryFeaturesAMD *)ext;
1558 features->deviceCoherentMemory = pdevice->rad_info.has_l2_uncached;
1559 break;
1560 }
1561 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1562 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1563 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1564 features->rectangularLines = false;
1565 features->bresenhamLines = true;
1566 features->smoothLines = false;
1567 features->stippledRectangularLines = false;
1568 /* FIXME: Some stippled Bresenham CTS fails on Vega10
1569 * but work on Raven.
1570 */
1571 features->stippledBresenhamLines = pdevice->rad_info.gfx_level != GFX9;
1572 features->stippledSmoothLines = false;
1573 break;
1574 }
1575 case VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD: {
1576 VkDeviceMemoryOverallocationCreateInfoAMD *features =
1577 (VkDeviceMemoryOverallocationCreateInfoAMD *)ext;
1578 features->overallocationBehavior = true;
1579 break;
1580 }
1581 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
1582 VkPhysicalDeviceRobustness2FeaturesEXT *features =
1583 (VkPhysicalDeviceRobustness2FeaturesEXT *)ext;
1584 features->robustBufferAccess2 = true;
1585 features->robustImageAccess2 = true;
1586 features->nullDescriptor = true;
1587 break;
1588 }
1589 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
1590 VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
1591 (VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
1592 features->customBorderColors = true;
1593 features->customBorderColorWithoutFormat = true;
1594 break;
1595 }
1596 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT: {
1597 VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *features =
1598 (VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *)ext;
1599 features->extendedDynamicState = true;
1600 break;
1601 }
1602 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
1603 VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features =
1604 (VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *)ext;
1605 features->shaderBufferFloat32Atomics = true;
1606 features->shaderBufferFloat32AtomicAdd = false;
1607 features->shaderBufferFloat64Atomics = true;
1608 features->shaderBufferFloat64AtomicAdd = false;
1609 features->shaderSharedFloat32Atomics = true;
1610 features->shaderSharedFloat32AtomicAdd = pdevice->rad_info.gfx_level >= GFX8;
1611 features->shaderSharedFloat64Atomics = true;
1612 features->shaderSharedFloat64AtomicAdd = false;
1613 features->shaderImageFloat32Atomics = true;
1614 features->shaderImageFloat32AtomicAdd = false;
1615 features->sparseImageFloat32Atomics = true;
1616 features->sparseImageFloat32AtomicAdd = false;
1617 break;
1618 }
1619 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT: {
1620 VkPhysicalDevice4444FormatsFeaturesEXT *features =
1621 (VkPhysicalDevice4444FormatsFeaturesEXT *)ext;
1622 features->formatA4R4G4B4 = true;
1623 features->formatA4B4G4R4 = true;
1624 break;
1625 }
1626 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_IMAGE_ATOMIC_INT64_FEATURES_EXT: {
1627 VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT *features =
1628 (VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT *)ext;
1629 features->shaderImageInt64Atomics = true;
1630 features->sparseImageInt64Atomics = true;
1631 break;
1632 }
1633 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_VALVE: {
1634 VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE *features =
1635 (VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE *)ext;
1636 features->mutableDescriptorType = true;
1637 break;
1638 }
1639 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR: {
1640 VkPhysicalDeviceFragmentShadingRateFeaturesKHR *features =
1641 (VkPhysicalDeviceFragmentShadingRateFeaturesKHR *)ext;
1642 features->pipelineFragmentShadingRate = true;
1643 features->primitiveFragmentShadingRate = true;
1644 features->attachmentFragmentShadingRate =
1645 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_HIZ) &&
1646 pdevice->rad_info.gfx_level < GFX11; /* TODO: VRS no longer uses HTILE. */
1647 break;
1648 }
1649 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_FEATURES_KHR: {
1650 VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *features =
1651 (VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *)ext;
1652 features->workgroupMemoryExplicitLayout = true;
1653 features->workgroupMemoryExplicitLayoutScalarBlockLayout = true;
1654 features->workgroupMemoryExplicitLayout8BitAccess = true;
1655 features->workgroupMemoryExplicitLayout16BitAccess = true;
1656 break;
1657 }
1658 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT: {
1659 VkPhysicalDeviceProvokingVertexFeaturesEXT *features =
1660 (VkPhysicalDeviceProvokingVertexFeaturesEXT *)ext;
1661 features->provokingVertexLast = true;
1662 features->transformFeedbackPreservesProvokingVertex = true;
1663 break;
1664 }
1665 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_2_FEATURES_EXT: {
1666 VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *features =
1667 (VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *)ext;
1668 features->extendedDynamicState2 = true;
1669 features->extendedDynamicState2LogicOp = true;
1670 features->extendedDynamicState2PatchControlPoints = false;
1671 break;
1672 }
1673 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_KHR: {
1674 VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR *features =
1675 (VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR *)ext;
1676 features->globalPriorityQuery = true;
1677 break;
1678 }
1679 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR: {
1680 VkPhysicalDeviceAccelerationStructureFeaturesKHR *features =
1681 (VkPhysicalDeviceAccelerationStructureFeaturesKHR *)ext;
1682 features->accelerationStructure = true;
1683 features->accelerationStructureCaptureReplay = false;
1684 features->accelerationStructureIndirectBuild = false;
1685 features->accelerationStructureHostCommands = true;
1686 features->descriptorBindingAccelerationStructureUpdateAfterBind = true;
1687 break;
1688 }
1689 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_UNIFORM_CONTROL_FLOW_FEATURES_KHR: {
1690 VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *features =
1691 (VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *)ext;
1692 features->shaderSubgroupUniformControlFlow = true;
1693 break;
1694 }
1695 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_FEATURES_EXT: {
1696 VkPhysicalDeviceMultiDrawFeaturesEXT *features = (VkPhysicalDeviceMultiDrawFeaturesEXT *)ext;
1697 features->multiDraw = true;
1698 break;
1699 }
1700 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COLOR_WRITE_ENABLE_FEATURES_EXT: {
1701 VkPhysicalDeviceColorWriteEnableFeaturesEXT *features =
1702 (VkPhysicalDeviceColorWriteEnableFeaturesEXT *)ext;
1703 features->colorWriteEnable = true;
1704 break;
1705 }
1706 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT: {
1707 VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *features =
1708 (VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *)ext;
1709 bool has_shader_buffer_float_minmax = radv_has_shader_buffer_float_minmax(pdevice);
1710 bool has_shader_image_float_minmax =
1711 pdevice->rad_info.gfx_level != GFX8 && pdevice->rad_info.gfx_level != GFX9;
1712 features->shaderBufferFloat16Atomics = false;
1713 features->shaderBufferFloat16AtomicAdd = false;
1714 features->shaderBufferFloat16AtomicMinMax = false;
1715 features->shaderBufferFloat32AtomicMinMax = has_shader_buffer_float_minmax;
1716 features->shaderBufferFloat64AtomicMinMax = has_shader_buffer_float_minmax;
1717 features->shaderSharedFloat16Atomics = false;
1718 features->shaderSharedFloat16AtomicAdd = false;
1719 features->shaderSharedFloat16AtomicMinMax = false;
1720 features->shaderSharedFloat32AtomicMinMax = true;
1721 features->shaderSharedFloat64AtomicMinMax = true;
1722 features->shaderImageFloat32AtomicMinMax = has_shader_image_float_minmax;
1723 features->sparseImageFloat32AtomicMinMax = has_shader_image_float_minmax;
1724 break;
1725 }
1726 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVE_TOPOLOGY_LIST_RESTART_FEATURES_EXT: {
1727 VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *features =
1728 (VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *)ext;
1729 features->primitiveTopologyListRestart = true;
1730 features->primitiveTopologyPatchListRestart = false;
1731 break;
1732 }
1733 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_QUERY_FEATURES_KHR: {
1734 VkPhysicalDeviceRayQueryFeaturesKHR *features =
1735 (VkPhysicalDeviceRayQueryFeaturesKHR *)ext;
1736 features->rayQuery = true;
1737 break;
1738 }
1739 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR: {
1740 VkPhysicalDeviceRayTracingPipelineFeaturesKHR *features =
1741 (VkPhysicalDeviceRayTracingPipelineFeaturesKHR *)ext;
1742 features->rayTracingPipeline = true;
1743 features->rayTracingPipelineShaderGroupHandleCaptureReplay = false;
1744 features->rayTracingPipelineShaderGroupHandleCaptureReplayMixed = false;
1745 features->rayTracingPipelineTraceRaysIndirect = true;
1746 features->rayTraversalPrimitiveCulling = true;
1747 break;
1748 }
1749 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_MAINTENANCE_1_FEATURES_KHR: {
1750 VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR *features =
1751 (VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR *)ext;
1752 features->rayTracingMaintenance1 = true;
1753 features->rayTracingPipelineTraceRaysIndirect2 = radv_enable_rt(pdevice, true);
1754 break;
1755 }
1756 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES: {
1757 VkPhysicalDeviceMaintenance4Features *features =
1758 (VkPhysicalDeviceMaintenance4Features *)ext;
1759 features->maintenance4 = true;
1760 break;
1761 }
1762 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_INPUT_DYNAMIC_STATE_FEATURES_EXT: {
1763 VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT *features =
1764 (VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT *)ext;
1765 features->vertexInputDynamicState = true;
1766 break;
1767 }
1768 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_VIEW_MIN_LOD_FEATURES_EXT: {
1769 VkPhysicalDeviceImageViewMinLodFeaturesEXT *features =
1770 (VkPhysicalDeviceImageViewMinLodFeaturesEXT *)ext;
1771 features->minLod = true;
1772 break;
1773 }
1774 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES: {
1775 VkPhysicalDeviceSynchronization2Features *features =
1776 (VkPhysicalDeviceSynchronization2Features *)ext;
1777 features->synchronization2 = true;
1778 break;
1779 }
1780 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES: {
1781 VkPhysicalDeviceDynamicRenderingFeatures *features =
1782 (VkPhysicalDeviceDynamicRenderingFeatures *)ext;
1783 features->dynamicRendering = true;
1784 break;
1785 }
1786 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_NV: {
1787 VkPhysicalDeviceMeshShaderFeaturesNV *features =
1788 (VkPhysicalDeviceMeshShaderFeaturesNV *)ext;
1789 features->taskShader = features->meshShader = radv_taskmesh_enabled(pdevice);
1790 break;
1791 }
1792 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXTURE_COMPRESSION_ASTC_HDR_FEATURES: {
1793 VkPhysicalDeviceTextureCompressionASTCHDRFeatures *features =
1794 (VkPhysicalDeviceTextureCompressionASTCHDRFeatures *)ext;
1795 features->textureCompressionASTC_HDR = false;
1796 break;
1797 }
1798 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_SET_HOST_MAPPING_FEATURES_VALVE: {
1799 VkPhysicalDeviceDescriptorSetHostMappingFeaturesVALVE *features =
1800 (VkPhysicalDeviceDescriptorSetHostMappingFeaturesVALVE *)ext;
1801 features->descriptorSetHostMapping = true;
1802 break;
1803 }
1804 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_CONTROL_FEATURES_EXT: {
1805 VkPhysicalDeviceDepthClipControlFeaturesEXT *features =
1806 (VkPhysicalDeviceDepthClipControlFeaturesEXT *)ext;
1807 features->depthClipControl = true;
1808 break;
1809 }
1810 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_2D_VIEW_OF_3D_FEATURES_EXT: {
1811 VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *features =
1812 (VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *)ext;
1813 features->image2DViewOf3D = true;
1814 features->sampler2DViewOf3D = false;
1815 break;
1816 }
1817 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_FUNCTIONS_2_FEATURES_INTEL: {
1818 VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *features =
1819 (VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *)ext;
1820 features->shaderIntegerFunctions2 = true;
1821 break;
1822 }
1823 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVES_GENERATED_QUERY_FEATURES_EXT: {
1824 VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *features =
1825 (VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *)ext;
1826 features->primitivesGeneratedQuery = true;
1827 features->primitivesGeneratedQueryWithRasterizerDiscard = true;
1828 features->primitivesGeneratedQueryWithNonZeroStreams = true;
1829 break;
1830 }
1831 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NON_SEAMLESS_CUBE_MAP_FEATURES_EXT : {
1832 VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT *features =
1833 (VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT *)ext;
1834 features->nonSeamlessCubeMap = true;
1835 break;
1836 }
1837 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BORDER_COLOR_SWIZZLE_FEATURES_EXT: {
1838 VkPhysicalDeviceBorderColorSwizzleFeaturesEXT *features =
1839 (VkPhysicalDeviceBorderColorSwizzleFeaturesEXT *)ext;
1840 features->borderColorSwizzle = true;
1841 features->borderColorSwizzleFromImage = true;
1842 break;
1843 }
1844 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_FEATURES_EXT: {
1845 VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT *features =
1846 (VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT *)ext;
1847 features->shaderModuleIdentifier = true;
1848 break;
1849 }
1850 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: {
1851 VkPhysicalDevicePerformanceQueryFeaturesKHR *features =
1852 (VkPhysicalDevicePerformanceQueryFeaturesKHR *)ext;
1853 features->performanceCounterQueryPools = radv_perf_query_supported(pdevice);
1854 features->performanceCounterMultipleQueryPools = features->performanceCounterQueryPools;
1855 break;
1856 }
1857 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_FEATURES_NV: {
1858 VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV *features =
1859 (VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV *)ext;
1860 features->deviceGeneratedCommands = true;
1861 break;
1862 }
1863 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_FEATURES_EXT: {
1864 VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT *features =
1865 (VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT *)ext;
1866 features->attachmentFeedbackLoopLayout = true;
1867 break;
1868 }
1869 default:
1870 break;
1871 }
1872 }
1873 }
1874
1875 static size_t
radv_max_descriptor_set_size()1876 radv_max_descriptor_set_size()
1877 {
1878 /* make sure that the entire descriptor set is addressable with a signed
1879 * 32-bit int. So the sum of all limits scaled by descriptor size has to
1880 * be at most 2 GiB. the combined image & samples object count as one of
1881 * both. This limit is for the pipeline layout, not for the set layout, but
1882 * there is no set limit, so we just set a pipeline limit. I don't think
1883 * any app is going to hit this soon. */
1884 return ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
1885 MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
1886 (32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
1887 32 /* storage buffer, 32 due to potential space wasted on alignment */ +
1888 32 /* sampler, largest when combined with image */ + 64 /* sampled image */ +
1889 64 /* storage image */);
1890 }
1891
1892 static uint32_t
radv_uniform_buffer_offset_alignment(const struct radv_physical_device * pdevice)1893 radv_uniform_buffer_offset_alignment(const struct radv_physical_device *pdevice)
1894 {
1895 uint32_t uniform_offset_alignment =
1896 driQueryOptioni(&pdevice->instance->dri_options, "radv_override_uniform_offset_alignment");
1897 if (!util_is_power_of_two_or_zero(uniform_offset_alignment)) {
1898 fprintf(stderr,
1899 "ERROR: invalid radv_override_uniform_offset_alignment setting %d:"
1900 "not a power of two\n",
1901 uniform_offset_alignment);
1902 uniform_offset_alignment = 0;
1903 }
1904
1905 /* Take at least the hardware limit. */
1906 return MAX2(uniform_offset_alignment, 4);
1907 }
1908
1909 VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceProperties * pProperties)1910 radv_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
1911 VkPhysicalDeviceProperties *pProperties)
1912 {
1913 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1914 VkSampleCountFlags sample_counts = 0xf;
1915
1916 size_t max_descriptor_set_size = radv_max_descriptor_set_size();
1917
1918 VkPhysicalDeviceLimits limits = {
1919 .maxImageDimension1D = (1 << 14),
1920 .maxImageDimension2D = (1 << 14),
1921 .maxImageDimension3D = (1 << 11),
1922 .maxImageDimensionCube = (1 << 14),
1923 .maxImageArrayLayers = (1 << 11),
1924 .maxTexelBufferElements = UINT32_MAX,
1925 .maxUniformBufferRange = UINT32_MAX,
1926 .maxStorageBufferRange = UINT32_MAX,
1927 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1928 .maxMemoryAllocationCount = UINT32_MAX,
1929 .maxSamplerAllocationCount = 64 * 1024,
1930 .bufferImageGranularity = 1,
1931 .sparseAddressSpaceSize = RADV_MAX_MEMORY_ALLOCATION_SIZE, /* buffer max size */
1932 .maxBoundDescriptorSets = MAX_SETS,
1933 .maxPerStageDescriptorSamplers = max_descriptor_set_size,
1934 .maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
1935 .maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
1936 .maxPerStageDescriptorSampledImages = max_descriptor_set_size,
1937 .maxPerStageDescriptorStorageImages = max_descriptor_set_size,
1938 .maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
1939 .maxPerStageResources = max_descriptor_set_size,
1940 .maxDescriptorSetSamplers = max_descriptor_set_size,
1941 .maxDescriptorSetUniformBuffers = max_descriptor_set_size,
1942 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
1943 .maxDescriptorSetStorageBuffers = max_descriptor_set_size,
1944 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
1945 .maxDescriptorSetSampledImages = max_descriptor_set_size,
1946 .maxDescriptorSetStorageImages = max_descriptor_set_size,
1947 .maxDescriptorSetInputAttachments = max_descriptor_set_size,
1948 .maxVertexInputAttributes = MAX_VERTEX_ATTRIBS,
1949 .maxVertexInputBindings = MAX_VBS,
1950 .maxVertexInputAttributeOffset = UINT32_MAX,
1951 .maxVertexInputBindingStride = 2048,
1952 .maxVertexOutputComponents = 128,
1953 .maxTessellationGenerationLevel = 64,
1954 .maxTessellationPatchSize = 32,
1955 .maxTessellationControlPerVertexInputComponents = 128,
1956 .maxTessellationControlPerVertexOutputComponents = 128,
1957 .maxTessellationControlPerPatchOutputComponents = 120,
1958 .maxTessellationControlTotalOutputComponents = 4096,
1959 .maxTessellationEvaluationInputComponents = 128,
1960 .maxTessellationEvaluationOutputComponents = 128,
1961 .maxGeometryShaderInvocations = 127,
1962 .maxGeometryInputComponents = 64,
1963 .maxGeometryOutputComponents = 128,
1964 .maxGeometryOutputVertices = 256,
1965 .maxGeometryTotalOutputComponents = 1024,
1966 .maxFragmentInputComponents = 128,
1967 .maxFragmentOutputAttachments = 8,
1968 .maxFragmentDualSrcAttachments = 1,
1969 .maxFragmentCombinedOutputResources = max_descriptor_set_size,
1970 .maxComputeSharedMemorySize = pdevice->rad_info.gfx_level >= GFX7 ? 65536 : 32768,
1971 .maxComputeWorkGroupCount = {65535, 65535, 65535},
1972 .maxComputeWorkGroupInvocations = 1024,
1973 .maxComputeWorkGroupSize = {1024, 1024, 1024},
1974 .subPixelPrecisionBits = 8,
1975 .subTexelPrecisionBits = 8,
1976 .mipmapPrecisionBits = 8,
1977 .maxDrawIndexedIndexValue = UINT32_MAX,
1978 .maxDrawIndirectCount = UINT32_MAX,
1979 .maxSamplerLodBias = 16,
1980 .maxSamplerAnisotropy = 16,
1981 .maxViewports = MAX_VIEWPORTS,
1982 .maxViewportDimensions = {(1 << 14), (1 << 14)},
1983 .viewportBoundsRange = {INT16_MIN, INT16_MAX},
1984 .viewportSubPixelBits = 8,
1985 .minMemoryMapAlignment = 4096, /* A page */
1986 .minTexelBufferOffsetAlignment = 4,
1987 .minUniformBufferOffsetAlignment = radv_uniform_buffer_offset_alignment(pdevice),
1988 .minStorageBufferOffsetAlignment = 4,
1989 .minTexelOffset = -32,
1990 .maxTexelOffset = 31,
1991 .minTexelGatherOffset = -32,
1992 .maxTexelGatherOffset = 31,
1993 .minInterpolationOffset = -2,
1994 .maxInterpolationOffset = 2,
1995 .subPixelInterpolationOffsetBits = 8,
1996 .maxFramebufferWidth = MAX_FRAMEBUFFER_WIDTH,
1997 .maxFramebufferHeight = MAX_FRAMEBUFFER_HEIGHT,
1998 .maxFramebufferLayers = (1 << 10),
1999 .framebufferColorSampleCounts = sample_counts,
2000 .framebufferDepthSampleCounts = sample_counts,
2001 .framebufferStencilSampleCounts = sample_counts,
2002 .framebufferNoAttachmentsSampleCounts = sample_counts,
2003 .maxColorAttachments = MAX_RTS,
2004 .sampledImageColorSampleCounts = sample_counts,
2005 .sampledImageIntegerSampleCounts = sample_counts,
2006 .sampledImageDepthSampleCounts = sample_counts,
2007 .sampledImageStencilSampleCounts = sample_counts,
2008 .storageImageSampleCounts = sample_counts,
2009 .maxSampleMaskWords = 1,
2010 .timestampComputeAndGraphics = true,
2011 .timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq,
2012 .maxClipDistances = 8,
2013 .maxCullDistances = 8,
2014 .maxCombinedClipAndCullDistances = 8,
2015 .discreteQueuePriorities = 2,
2016 .pointSizeRange = {0.0, 8191.875},
2017 .lineWidthRange = {0.0, 8191.875},
2018 .pointSizeGranularity = (1.0 / 8.0),
2019 .lineWidthGranularity = (1.0 / 8.0),
2020 .strictLines = false, /* FINISHME */
2021 .standardSampleLocations = true,
2022 .optimalBufferCopyOffsetAlignment = 1,
2023 .optimalBufferCopyRowPitchAlignment = 1,
2024 .nonCoherentAtomSize = 64,
2025 };
2026
2027 VkPhysicalDeviceType device_type;
2028
2029 if (pdevice->rad_info.has_dedicated_vram) {
2030 device_type = VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU;
2031 } else {
2032 device_type = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
2033 }
2034
2035 *pProperties = (VkPhysicalDeviceProperties){
2036 .apiVersion = RADV_API_VERSION,
2037 .driverVersion = vk_get_driver_version(),
2038 .vendorID = ATI_VENDOR_ID,
2039 .deviceID = pdevice->rad_info.pci_id,
2040 .deviceType = device_type,
2041 .limits = limits,
2042 .sparseProperties =
2043 {
2044 .residencyNonResidentStrict = pdevice->rad_info.family >= CHIP_POLARIS10,
2045 .residencyStandard2DBlockShape = pdevice->rad_info.family >= CHIP_POLARIS10,
2046 },
2047 };
2048
2049 strcpy(pProperties->deviceName, pdevice->marketing_name);
2050 memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
2051 }
2052
2053 static void
radv_get_physical_device_properties_1_1(struct radv_physical_device * pdevice,VkPhysicalDeviceVulkan11Properties * p)2054 radv_get_physical_device_properties_1_1(struct radv_physical_device *pdevice,
2055 VkPhysicalDeviceVulkan11Properties *p)
2056 {
2057 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
2058
2059 memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
2060 memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
2061 memset(p->deviceLUID, 0, VK_LUID_SIZE);
2062 /* The LUID is for Windows. */
2063 p->deviceLUIDValid = false;
2064 p->deviceNodeMask = 0;
2065
2066 p->subgroupSize = RADV_SUBGROUP_SIZE;
2067 p->subgroupSupportedStages = VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT;
2068 p->subgroupSupportedOperations =
2069 VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_VOTE_BIT |
2070 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT | VK_SUBGROUP_FEATURE_BALLOT_BIT |
2071 VK_SUBGROUP_FEATURE_CLUSTERED_BIT | VK_SUBGROUP_FEATURE_QUAD_BIT |
2072 VK_SUBGROUP_FEATURE_SHUFFLE_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT;
2073 p->subgroupQuadOperationsInAllStages = true;
2074
2075 p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
2076 p->maxMultiviewViewCount = MAX_VIEWS;
2077 p->maxMultiviewInstanceIndex = INT_MAX;
2078 p->protectedNoFault = false;
2079 p->maxPerSetDescriptors = RADV_MAX_PER_SET_DESCRIPTORS;
2080 p->maxMemoryAllocationSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
2081 }
2082
2083 static void
radv_get_physical_device_properties_1_2(struct radv_physical_device * pdevice,VkPhysicalDeviceVulkan12Properties * p)2084 radv_get_physical_device_properties_1_2(struct radv_physical_device *pdevice,
2085 VkPhysicalDeviceVulkan12Properties *p)
2086 {
2087 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
2088
2089 p->driverID = VK_DRIVER_ID_MESA_RADV;
2090 snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE, "radv");
2091 snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE, "Mesa " PACKAGE_VERSION MESA_GIT_SHA1 "%s",
2092 radv_get_compiler_string(pdevice));
2093
2094 if (radv_is_conformant(pdevice)) {
2095 if (pdevice->rad_info.gfx_level >= GFX10_3) {
2096 p->conformanceVersion = (VkConformanceVersion){
2097 .major = 1,
2098 .minor = 3,
2099 .subminor = 0,
2100 .patch = 0,
2101 };
2102 } else {
2103 p->conformanceVersion = (VkConformanceVersion){
2104 .major = 1,
2105 .minor = 2,
2106 .subminor = 7,
2107 .patch = 1,
2108 };
2109 }
2110 } else {
2111 p->conformanceVersion = (VkConformanceVersion){
2112 .major = 0,
2113 .minor = 0,
2114 .subminor = 0,
2115 .patch = 0,
2116 };
2117 }
2118
2119 /* On AMD hardware, denormals and rounding modes for fp16/fp64 are
2120 * controlled by the same config register.
2121 */
2122 if (pdevice->rad_info.has_packed_math_16bit) {
2123 p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY;
2124 p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY;
2125 } else {
2126 p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
2127 p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
2128 }
2129
2130 /* With LLVM, do not allow both preserving and flushing denorms because
2131 * different shaders in the same pipeline can have different settings and
2132 * this won't work for merged shaders. To make it work, this requires LLVM
2133 * support for changing the register. The same logic applies for the
2134 * rounding modes because they are configured with the same config
2135 * register.
2136 */
2137 p->shaderDenormFlushToZeroFloat32 = true;
2138 p->shaderDenormPreserveFloat32 = !pdevice->use_llvm;
2139 p->shaderRoundingModeRTEFloat32 = true;
2140 p->shaderRoundingModeRTZFloat32 = !pdevice->use_llvm;
2141 p->shaderSignedZeroInfNanPreserveFloat32 = true;
2142
2143 p->shaderDenormFlushToZeroFloat16 =
2144 pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
2145 p->shaderDenormPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
2146 p->shaderRoundingModeRTEFloat16 = pdevice->rad_info.has_packed_math_16bit;
2147 p->shaderRoundingModeRTZFloat16 = pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
2148 p->shaderSignedZeroInfNanPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
2149
2150 p->shaderDenormFlushToZeroFloat64 = pdevice->rad_info.gfx_level >= GFX8 && !pdevice->use_llvm;
2151 p->shaderDenormPreserveFloat64 = pdevice->rad_info.gfx_level >= GFX8;
2152 p->shaderRoundingModeRTEFloat64 = pdevice->rad_info.gfx_level >= GFX8;
2153 p->shaderRoundingModeRTZFloat64 = pdevice->rad_info.gfx_level >= GFX8 && !pdevice->use_llvm;
2154 p->shaderSignedZeroInfNanPreserveFloat64 = pdevice->rad_info.gfx_level >= GFX8;
2155
2156 p->maxUpdateAfterBindDescriptorsInAllPools = UINT32_MAX / 64;
2157 p->shaderUniformBufferArrayNonUniformIndexingNative = false;
2158 p->shaderSampledImageArrayNonUniformIndexingNative = false;
2159 p->shaderStorageBufferArrayNonUniformIndexingNative = false;
2160 p->shaderStorageImageArrayNonUniformIndexingNative = false;
2161 p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
2162 p->robustBufferAccessUpdateAfterBind = true;
2163 p->quadDivergentImplicitLod = false;
2164
2165 size_t max_descriptor_set_size =
2166 ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
2167 MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
2168 (32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
2169 32 /* storage buffer, 32 due to potential space wasted on alignment */ +
2170 32 /* sampler, largest when combined with image */ + 64 /* sampled image */ +
2171 64 /* storage image */);
2172 p->maxPerStageDescriptorUpdateAfterBindSamplers = max_descriptor_set_size;
2173 p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = max_descriptor_set_size;
2174 p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = max_descriptor_set_size;
2175 p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_descriptor_set_size;
2176 p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_descriptor_set_size;
2177 p->maxPerStageDescriptorUpdateAfterBindInputAttachments = max_descriptor_set_size;
2178 p->maxPerStageUpdateAfterBindResources = max_descriptor_set_size;
2179 p->maxDescriptorSetUpdateAfterBindSamplers = max_descriptor_set_size;
2180 p->maxDescriptorSetUpdateAfterBindUniformBuffers = max_descriptor_set_size;
2181 p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS;
2182 p->maxDescriptorSetUpdateAfterBindStorageBuffers = max_descriptor_set_size;
2183 p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS;
2184 p->maxDescriptorSetUpdateAfterBindSampledImages = max_descriptor_set_size;
2185 p->maxDescriptorSetUpdateAfterBindStorageImages = max_descriptor_set_size;
2186 p->maxDescriptorSetUpdateAfterBindInputAttachments = max_descriptor_set_size;
2187
2188 /* We support all of the depth resolve modes */
2189 p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
2190 VK_RESOLVE_MODE_AVERAGE_BIT | VK_RESOLVE_MODE_MIN_BIT |
2191 VK_RESOLVE_MODE_MAX_BIT;
2192
2193 /* Average doesn't make sense for stencil so we don't support that */
2194 p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
2195 VK_RESOLVE_MODE_MIN_BIT | VK_RESOLVE_MODE_MAX_BIT;
2196
2197 p->independentResolveNone = true;
2198 p->independentResolve = true;
2199
2200 /* GFX6-8 only support single channel min/max filter. */
2201 p->filterMinmaxImageComponentMapping = pdevice->rad_info.gfx_level >= GFX9;
2202 p->filterMinmaxSingleComponentFormats = true;
2203
2204 p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
2205
2206 p->framebufferIntegerColorSampleCounts = VK_SAMPLE_COUNT_1_BIT;
2207 }
2208
2209 static void
radv_get_physical_device_properties_1_3(struct radv_physical_device * pdevice,VkPhysicalDeviceVulkan13Properties * p)2210 radv_get_physical_device_properties_1_3(struct radv_physical_device *pdevice,
2211 VkPhysicalDeviceVulkan13Properties *p)
2212 {
2213 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES);
2214
2215 p->minSubgroupSize = 64;
2216 p->maxSubgroupSize = 64;
2217 p->maxComputeWorkgroupSubgroups = UINT32_MAX;
2218 p->requiredSubgroupSizeStages = 0;
2219 if (pdevice->rad_info.gfx_level >= GFX10) {
2220 /* Only GFX10+ supports wave32. */
2221 p->minSubgroupSize = 32;
2222 p->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
2223 }
2224
2225 p->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
2226 p->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
2227 p->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
2228 p->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
2229 p->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
2230 p->maxInlineUniformTotalSize = UINT16_MAX;
2231
2232 bool accel = pdevice->rad_info.has_accelerated_dot_product;
2233 p->integerDotProduct8BitUnsignedAccelerated = accel;
2234 p->integerDotProduct8BitSignedAccelerated = accel;
2235 p->integerDotProduct8BitMixedSignednessAccelerated = false;
2236 p->integerDotProduct4x8BitPackedUnsignedAccelerated = accel;
2237 p->integerDotProduct4x8BitPackedSignedAccelerated = accel;
2238 p->integerDotProduct4x8BitPackedMixedSignednessAccelerated = false;
2239 p->integerDotProduct16BitUnsignedAccelerated = accel;
2240 p->integerDotProduct16BitSignedAccelerated = accel;
2241 p->integerDotProduct16BitMixedSignednessAccelerated = false;
2242 p->integerDotProduct32BitUnsignedAccelerated = false;
2243 p->integerDotProduct32BitSignedAccelerated = false;
2244 p->integerDotProduct32BitMixedSignednessAccelerated = false;
2245 p->integerDotProduct64BitUnsignedAccelerated = false;
2246 p->integerDotProduct64BitSignedAccelerated = false;
2247 p->integerDotProduct64BitMixedSignednessAccelerated = false;
2248 p->integerDotProductAccumulatingSaturating8BitUnsignedAccelerated = accel;
2249 p->integerDotProductAccumulatingSaturating8BitSignedAccelerated = accel;
2250 p->integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated = false;
2251 p->integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated = accel;
2252 p->integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated = accel;
2253 p->integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated = false;
2254 p->integerDotProductAccumulatingSaturating16BitUnsignedAccelerated = accel;
2255 p->integerDotProductAccumulatingSaturating16BitSignedAccelerated = accel;
2256 p->integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated = false;
2257 p->integerDotProductAccumulatingSaturating32BitUnsignedAccelerated = false;
2258 p->integerDotProductAccumulatingSaturating32BitSignedAccelerated = false;
2259 p->integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated = false;
2260 p->integerDotProductAccumulatingSaturating64BitUnsignedAccelerated = false;
2261 p->integerDotProductAccumulatingSaturating64BitSignedAccelerated = false;
2262 p->integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated = false;
2263
2264 p->storageTexelBufferOffsetAlignmentBytes = 4;
2265 p->storageTexelBufferOffsetSingleTexelAlignment = true;
2266 p->uniformTexelBufferOffsetAlignmentBytes = 4;
2267 p->uniformTexelBufferOffsetSingleTexelAlignment = true;
2268
2269 p->maxBufferSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
2270 }
2271
2272 VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,VkPhysicalDeviceProperties2 * pProperties)2273 radv_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
2274 VkPhysicalDeviceProperties2 *pProperties)
2275 {
2276 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
2277 radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
2278
2279 VkPhysicalDeviceVulkan11Properties core_1_1 = {
2280 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
2281 };
2282 radv_get_physical_device_properties_1_1(pdevice, &core_1_1);
2283
2284 VkPhysicalDeviceVulkan12Properties core_1_2 = {
2285 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
2286 };
2287 radv_get_physical_device_properties_1_2(pdevice, &core_1_2);
2288
2289 VkPhysicalDeviceVulkan13Properties core_1_3 = {
2290 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES,
2291 };
2292 radv_get_physical_device_properties_1_3(pdevice, &core_1_3);
2293
2294 vk_foreach_struct(ext, pProperties->pNext)
2295 {
2296 if (vk_get_physical_device_core_1_1_property_ext(ext, &core_1_1))
2297 continue;
2298 if (vk_get_physical_device_core_1_2_property_ext(ext, &core_1_2))
2299 continue;
2300 if (vk_get_physical_device_core_1_3_property_ext(ext, &core_1_3))
2301 continue;
2302
2303 switch (ext->sType) {
2304 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
2305 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
2306 (VkPhysicalDevicePushDescriptorPropertiesKHR *)ext;
2307 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
2308 break;
2309 }
2310 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: {
2311 VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties =
2312 (VkPhysicalDeviceDiscardRectanglePropertiesEXT *)ext;
2313 properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES;
2314 break;
2315 }
2316 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
2317 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *properties =
2318 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *)ext;
2319 properties->minImportedHostPointerAlignment = 4096;
2320 break;
2321 }
2322 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: {
2323 VkPhysicalDeviceShaderCorePropertiesAMD *properties =
2324 (VkPhysicalDeviceShaderCorePropertiesAMD *)ext;
2325
2326 /* Shader engines. */
2327 properties->shaderEngineCount = pdevice->rad_info.max_se;
2328 properties->shaderArraysPerEngineCount = pdevice->rad_info.max_sa_per_se;
2329 properties->computeUnitsPerShaderArray = pdevice->rad_info.min_good_cu_per_sa;
2330 properties->simdPerComputeUnit = pdevice->rad_info.num_simd_per_compute_unit;
2331 properties->wavefrontsPerSimd = pdevice->rad_info.max_wave64_per_simd;
2332 properties->wavefrontSize = 64;
2333
2334 /* SGPR. */
2335 properties->sgprsPerSimd = pdevice->rad_info.num_physical_sgprs_per_simd;
2336 properties->minSgprAllocation = pdevice->rad_info.min_sgpr_alloc;
2337 properties->maxSgprAllocation = pdevice->rad_info.max_sgpr_alloc;
2338 properties->sgprAllocationGranularity = pdevice->rad_info.sgpr_alloc_granularity;
2339
2340 /* VGPR. */
2341 properties->vgprsPerSimd = pdevice->rad_info.num_physical_wave64_vgprs_per_simd;
2342 properties->minVgprAllocation = pdevice->rad_info.min_wave64_vgpr_alloc;
2343 properties->maxVgprAllocation = pdevice->rad_info.max_vgpr_alloc;
2344 properties->vgprAllocationGranularity = pdevice->rad_info.wave64_vgpr_alloc_granularity;
2345 break;
2346 }
2347 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD: {
2348 VkPhysicalDeviceShaderCoreProperties2AMD *properties =
2349 (VkPhysicalDeviceShaderCoreProperties2AMD *)ext;
2350
2351 properties->shaderCoreFeatures = 0;
2352 properties->activeComputeUnitCount = pdevice->rad_info.num_cu;
2353 break;
2354 }
2355 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
2356 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *properties =
2357 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
2358 properties->maxVertexAttribDivisor = UINT32_MAX;
2359 break;
2360 }
2361 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
2362 VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
2363 (VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
2364 properties->primitiveOverestimationSize = 0;
2365 properties->maxExtraPrimitiveOverestimationSize = 0;
2366 properties->extraPrimitiveOverestimationSizeGranularity = 0;
2367 properties->primitiveUnderestimation = false;
2368 properties->conservativePointAndLineRasterization = false;
2369 properties->degenerateTrianglesRasterized = true;
2370 properties->degenerateLinesRasterized = false;
2371 properties->fullyCoveredFragmentShaderInputVariable = false;
2372 properties->conservativeRasterizationPostDepthCoverage = false;
2373 break;
2374 }
2375 #ifndef _WIN32
2376 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
2377 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
2378 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
2379 properties->pciDomain = pdevice->bus_info.domain;
2380 properties->pciBus = pdevice->bus_info.bus;
2381 properties->pciDevice = pdevice->bus_info.dev;
2382 properties->pciFunction = pdevice->bus_info.func;
2383 break;
2384 }
2385 #endif
2386 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
2387 VkPhysicalDeviceTransformFeedbackPropertiesEXT *properties =
2388 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
2389 properties->maxTransformFeedbackStreams = MAX_SO_STREAMS;
2390 properties->maxTransformFeedbackBuffers = MAX_SO_BUFFERS;
2391 properties->maxTransformFeedbackBufferSize = UINT32_MAX;
2392 properties->maxTransformFeedbackStreamDataSize = 512;
2393 properties->maxTransformFeedbackBufferDataSize = 512;
2394 properties->maxTransformFeedbackBufferDataStride = 512;
2395 properties->transformFeedbackQueries = !pdevice->use_ngg_streamout;
2396 properties->transformFeedbackStreamsLinesTriangles = !pdevice->use_ngg_streamout;
2397 properties->transformFeedbackRasterizationStreamSelect = false;
2398 properties->transformFeedbackDraw = true;
2399 break;
2400 }
2401 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
2402 VkPhysicalDeviceSampleLocationsPropertiesEXT *properties =
2403 (VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
2404 properties->sampleLocationSampleCounts = VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT |
2405 VK_SAMPLE_COUNT_8_BIT;
2406 properties->maxSampleLocationGridSize = (VkExtent2D){2, 2};
2407 properties->sampleLocationCoordinateRange[0] = 0.0f;
2408 properties->sampleLocationCoordinateRange[1] = 0.9375f;
2409 properties->sampleLocationSubPixelBits = 4;
2410 properties->variableSampleLocations = false;
2411 break;
2412 }
2413 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
2414 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
2415 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
2416 props->lineSubPixelPrecisionBits = 4;
2417 break;
2418 }
2419 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
2420 VkPhysicalDeviceRobustness2PropertiesEXT *properties =
2421 (VkPhysicalDeviceRobustness2PropertiesEXT *)ext;
2422 properties->robustStorageBufferAccessSizeAlignment = 4;
2423 properties->robustUniformBufferAccessSizeAlignment = 4;
2424 break;
2425 }
2426 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
2427 VkPhysicalDeviceCustomBorderColorPropertiesEXT *props =
2428 (VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
2429 props->maxCustomBorderColorSamplers = RADV_BORDER_COLOR_COUNT;
2430 break;
2431 }
2432 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR: {
2433 VkPhysicalDeviceFragmentShadingRatePropertiesKHR *props =
2434 (VkPhysicalDeviceFragmentShadingRatePropertiesKHR *)ext;
2435 props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D){8, 8};
2436 props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D){8, 8};
2437 props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 1;
2438 props->primitiveFragmentShadingRateWithMultipleViewports = true;
2439 props->layeredShadingRateAttachments = false; /* TODO */
2440 props->fragmentShadingRateNonTrivialCombinerOps = true;
2441 props->maxFragmentSize = (VkExtent2D){2, 2};
2442 props->maxFragmentSizeAspectRatio = 2;
2443 props->maxFragmentShadingRateCoverageSamples = 32;
2444 props->maxFragmentShadingRateRasterizationSamples = VK_SAMPLE_COUNT_8_BIT;
2445 props->fragmentShadingRateWithShaderDepthStencilWrites = false;
2446 props->fragmentShadingRateWithSampleMask = true;
2447 props->fragmentShadingRateWithShaderSampleMask = false;
2448 props->fragmentShadingRateWithConservativeRasterization = true;
2449 props->fragmentShadingRateWithFragmentShaderInterlock = false;
2450 props->fragmentShadingRateWithCustomSampleLocations = false;
2451 props->fragmentShadingRateStrictMultiplyCombiner = true;
2452 break;
2453 }
2454 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT: {
2455 VkPhysicalDeviceProvokingVertexPropertiesEXT *props =
2456 (VkPhysicalDeviceProvokingVertexPropertiesEXT *)ext;
2457 props->provokingVertexModePerPipeline = true;
2458 props->transformFeedbackPreservesTriangleFanProvokingVertex = true;
2459 break;
2460 }
2461 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR: {
2462 VkPhysicalDeviceAccelerationStructurePropertiesKHR *props =
2463 (VkPhysicalDeviceAccelerationStructurePropertiesKHR *)ext;
2464 props->maxGeometryCount = (1 << 24) - 1;
2465 props->maxInstanceCount = (1 << 24) - 1;
2466 props->maxPrimitiveCount = (1 << 29) - 1;
2467 props->maxPerStageDescriptorAccelerationStructures =
2468 pProperties->properties.limits.maxPerStageDescriptorStorageBuffers;
2469 props->maxPerStageDescriptorUpdateAfterBindAccelerationStructures =
2470 pProperties->properties.limits.maxPerStageDescriptorStorageBuffers;
2471 props->maxDescriptorSetAccelerationStructures =
2472 pProperties->properties.limits.maxDescriptorSetStorageBuffers;
2473 props->maxDescriptorSetUpdateAfterBindAccelerationStructures =
2474 pProperties->properties.limits.maxDescriptorSetStorageBuffers;
2475 props->minAccelerationStructureScratchOffsetAlignment = 128;
2476 break;
2477 }
2478 #ifndef _WIN32
2479 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT: {
2480 VkPhysicalDeviceDrmPropertiesEXT *props = (VkPhysicalDeviceDrmPropertiesEXT *)ext;
2481 if (pdevice->available_nodes & (1 << DRM_NODE_PRIMARY)) {
2482 props->hasPrimary = true;
2483 props->primaryMajor = (int64_t)major(pdevice->primary_devid);
2484 props->primaryMinor = (int64_t)minor(pdevice->primary_devid);
2485 } else {
2486 props->hasPrimary = false;
2487 }
2488 if (pdevice->available_nodes & (1 << DRM_NODE_RENDER)) {
2489 props->hasRender = true;
2490 props->renderMajor = (int64_t)major(pdevice->render_devid);
2491 props->renderMinor = (int64_t)minor(pdevice->render_devid);
2492 } else {
2493 props->hasRender = false;
2494 }
2495 break;
2496 }
2497 #endif
2498 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_PROPERTIES_EXT: {
2499 VkPhysicalDeviceMultiDrawPropertiesEXT *props = (VkPhysicalDeviceMultiDrawPropertiesEXT *)ext;
2500 props->maxMultiDrawCount = 2048;
2501 break;
2502 }
2503 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR: {
2504 VkPhysicalDeviceRayTracingPipelinePropertiesKHR *props =
2505 (VkPhysicalDeviceRayTracingPipelinePropertiesKHR *)ext;
2506 props->shaderGroupHandleSize = RADV_RT_HANDLE_SIZE;
2507 props->maxRayRecursionDepth = 31; /* Minimum allowed for DXR. */
2508 props->maxShaderGroupStride = 16384; /* dummy */
2509 props->shaderGroupBaseAlignment = 16;
2510 props->shaderGroupHandleCaptureReplaySize = 16;
2511 props->maxRayDispatchInvocationCount = 1024 * 1024 * 64;
2512 props->shaderGroupHandleAlignment = 16;
2513 props->maxRayHitAttributeSize = RADV_MAX_HIT_ATTRIB_SIZE;
2514 break;
2515 }
2516 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES: {
2517 VkPhysicalDeviceMaintenance4Properties *properties =
2518 (VkPhysicalDeviceMaintenance4Properties *)ext;
2519 properties->maxBufferSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
2520 break;
2521 }
2522 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_NV: {
2523 VkPhysicalDeviceMeshShaderPropertiesNV *properties =
2524 (VkPhysicalDeviceMeshShaderPropertiesNV *)ext;
2525
2526 /* Task shader limitations:
2527 * Same as compute, because TS are compiled to CS.
2528 */
2529 properties->maxDrawMeshTasksCount = 65535;
2530 properties->maxTaskTotalMemorySize = 65536;
2531 properties->maxTaskWorkGroupInvocations = 1024;
2532 properties->maxTaskWorkGroupSize[0] = 1024;
2533 properties->maxTaskWorkGroupSize[1] = 1024;
2534 properties->maxTaskWorkGroupSize[2] = 1024;
2535 properties->maxTaskOutputCount = 65535;
2536
2537 /* Mesh shader limitations:
2538 * Same as NGG, because MS are compiled to NGG.
2539 */
2540 properties->maxMeshMultiviewViewCount = MAX_VIEWS;
2541 properties->maxMeshOutputPrimitives = 256;
2542 properties->maxMeshOutputVertices = 256;
2543 properties->maxMeshTotalMemorySize = 31 * 1024; /* Reserve 1K for prim indices, etc. */
2544 properties->maxMeshWorkGroupInvocations = 256;
2545 properties->maxMeshWorkGroupSize[0] = 256;
2546 properties->maxMeshWorkGroupSize[1] = 256;
2547 properties->maxMeshWorkGroupSize[2] = 256;
2548 properties->meshOutputPerPrimitiveGranularity = 1;
2549 properties->meshOutputPerVertexGranularity = 1;
2550
2551 break;
2552 }
2553 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_PROPERTIES_EXT: {
2554 VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *properties =
2555 (VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *)ext;
2556 STATIC_ASSERT(sizeof(vk_shaderModuleIdentifierAlgorithmUUID) ==
2557 sizeof(properties->shaderModuleIdentifierAlgorithmUUID));
2558 memcpy(properties->shaderModuleIdentifierAlgorithmUUID,
2559 vk_shaderModuleIdentifierAlgorithmUUID,
2560 sizeof(properties->shaderModuleIdentifierAlgorithmUUID));
2561 break;
2562 }
2563 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: {
2564 VkPhysicalDevicePerformanceQueryPropertiesKHR *properties =
2565 (VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext;
2566 properties->allowCommandBufferQueryCopies = false;
2567 break;
2568 }
2569 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_PROPERTIES_NV: {
2570 VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV *properties =
2571 (VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV *)ext;
2572 properties->maxIndirectCommandsStreamCount = 1;
2573 properties->maxIndirectCommandsStreamStride = UINT32_MAX;
2574 properties->maxIndirectCommandsTokenCount = UINT32_MAX;
2575 properties->maxIndirectCommandsTokenOffset = UINT16_MAX;
2576 properties->minIndirectCommandsBufferOffsetAlignment = 4;
2577 properties->minSequencesCountBufferOffsetAlignment = 4;
2578 properties->minSequencesIndexBufferOffsetAlignment = 4;
2579
2580 /* Don't support even a shader group count = 1 until we support shader
2581 * overrides during pipeline creation. */
2582 properties->maxGraphicsShaderGroupCount = 0;
2583
2584 properties->maxIndirectSequenceCount = UINT32_MAX;
2585 break;
2586 }
2587 default:
2588 break;
2589 }
2590 }
2591 }
2592
2593 static void
radv_get_physical_device_queue_family_properties(struct radv_physical_device * pdevice,uint32_t * pCount,VkQueueFamilyProperties ** pQueueFamilyProperties)2594 radv_get_physical_device_queue_family_properties(struct radv_physical_device *pdevice,
2595 uint32_t *pCount,
2596 VkQueueFamilyProperties **pQueueFamilyProperties)
2597 {
2598 int num_queue_families = 1;
2599 int idx;
2600 if (pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues > 0 &&
2601 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE))
2602 num_queue_families++;
2603
2604 if (pQueueFamilyProperties == NULL) {
2605 *pCount = num_queue_families;
2606 return;
2607 }
2608
2609 if (!*pCount)
2610 return;
2611
2612 idx = 0;
2613 if (*pCount >= 1) {
2614 *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
2615 .queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT |
2616 VK_QUEUE_SPARSE_BINDING_BIT,
2617 .queueCount = 1,
2618 .timestampValidBits = 64,
2619 .minImageTransferGranularity = (VkExtent3D){1, 1, 1},
2620 };
2621 idx++;
2622 }
2623
2624 if (pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues > 0 &&
2625 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
2626 if (*pCount > idx) {
2627 *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
2628 .queueFlags =
2629 VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT,
2630 .queueCount = pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues,
2631 .timestampValidBits = 64,
2632 .minImageTransferGranularity = (VkExtent3D){1, 1, 1},
2633 };
2634 idx++;
2635 }
2636 }
2637 *pCount = idx;
2638 }
2639
2640 static const VkQueueGlobalPriorityKHR radv_global_queue_priorities[] = {
2641 VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR,
2642 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
2643 VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR,
2644 VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR,
2645 };
2646
2647 VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice,uint32_t * pCount,VkQueueFamilyProperties2 * pQueueFamilyProperties)2648 radv_GetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice, uint32_t *pCount,
2649 VkQueueFamilyProperties2 *pQueueFamilyProperties)
2650 {
2651 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
2652 if (!pQueueFamilyProperties) {
2653 radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
2654 return;
2655 }
2656 VkQueueFamilyProperties *properties[] = {
2657 &pQueueFamilyProperties[0].queueFamilyProperties,
2658 &pQueueFamilyProperties[1].queueFamilyProperties,
2659 &pQueueFamilyProperties[2].queueFamilyProperties,
2660 };
2661 radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
2662 assert(*pCount <= 3);
2663
2664 for (uint32_t i = 0; i < *pCount; i++) {
2665 vk_foreach_struct(ext, pQueueFamilyProperties[i].pNext)
2666 {
2667 switch (ext->sType) {
2668 case VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_KHR: {
2669 VkQueueFamilyGlobalPriorityPropertiesKHR *prop =
2670 (VkQueueFamilyGlobalPriorityPropertiesKHR *)ext;
2671 STATIC_ASSERT(ARRAY_SIZE(radv_global_queue_priorities) <= VK_MAX_GLOBAL_PRIORITY_SIZE_KHR);
2672 prop->priorityCount = ARRAY_SIZE(radv_global_queue_priorities);
2673 memcpy(&prop->priorities, radv_global_queue_priorities, sizeof(radv_global_queue_priorities));
2674 break;
2675 }
2676 default:
2677 break;
2678 }
2679 }
2680 }
2681 }
2682
2683 static void
radv_get_memory_budget_properties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceMemoryBudgetPropertiesEXT * memoryBudget)2684 radv_get_memory_budget_properties(VkPhysicalDevice physicalDevice,
2685 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
2686 {
2687 RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice);
2688 VkPhysicalDeviceMemoryProperties *memory_properties = &device->memory_properties;
2689
2690 /* For all memory heaps, the computation of budget is as follow:
2691 * heap_budget = heap_size - global_heap_usage + app_heap_usage
2692 *
2693 * The Vulkan spec 1.1.97 says that the budget should include any
2694 * currently allocated device memory.
2695 *
2696 * Note that the application heap usages are not really accurate (eg.
2697 * in presence of shared buffers).
2698 */
2699 if (!device->rad_info.has_dedicated_vram) {
2700 /* On APUs, the driver exposes fake heaps to the application because usually the carveout is
2701 * too small for games but the budgets need to be redistributed accordingly.
2702 */
2703
2704 assert(device->heaps == (RADV_HEAP_GTT | RADV_HEAP_VRAM_VIS));
2705 assert(device->memory_properties.memoryHeaps[0].flags == 0); /* GTT */
2706 assert(device->memory_properties.memoryHeaps[1].flags == VK_MEMORY_HEAP_DEVICE_LOCAL_BIT);
2707 uint8_t gtt_heap_idx = 0, vram_vis_heap_idx = 1;
2708
2709 /* Get the visible VRAM/GTT heap sizes and internal usages. */
2710 uint64_t gtt_heap_size = device->memory_properties.memoryHeaps[gtt_heap_idx].size;
2711 uint64_t vram_vis_heap_size = device->memory_properties.memoryHeaps[vram_vis_heap_idx].size;
2712
2713 uint64_t vram_vis_internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM_VIS) +
2714 device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
2715 uint64_t gtt_internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_GTT);
2716
2717 /* Compute the total heap size, internal and system usage. */
2718 uint64_t total_heap_size = vram_vis_heap_size + gtt_heap_size;
2719 uint64_t total_internal_usage = vram_vis_internal_usage + gtt_internal_usage;
2720 uint64_t total_system_usage = device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE) +
2721 device->ws->query_value(device->ws, RADEON_GTT_USAGE);
2722
2723 uint64_t total_usage = MAX2(total_internal_usage, total_system_usage);
2724
2725 /* Compute the total free space that can be allocated for this process accross all heaps. */
2726 uint64_t total_free_space = total_heap_size - MIN2(total_heap_size, total_usage);
2727
2728 /* Compute the remaining visible VRAM size for this process. */
2729 uint64_t vram_vis_free_space = vram_vis_heap_size - MIN2(vram_vis_heap_size, vram_vis_internal_usage);
2730
2731 /* Distribute the total free space (2/3rd as VRAM and 1/3rd as GTT) to match the heap sizes,
2732 * and align down to the page size to be conservative.
2733 */
2734 vram_vis_free_space = ROUND_DOWN_TO(MIN2((total_free_space * 2) / 3, vram_vis_free_space),
2735 device->rad_info.gart_page_size);
2736 uint64_t gtt_free_space = total_free_space - vram_vis_free_space;
2737
2738 memoryBudget->heapBudget[vram_vis_heap_idx] = vram_vis_free_space + vram_vis_internal_usage;
2739 memoryBudget->heapUsage[vram_vis_heap_idx] = vram_vis_internal_usage;
2740 memoryBudget->heapBudget[gtt_heap_idx] = gtt_free_space + gtt_internal_usage;
2741 memoryBudget->heapUsage[gtt_heap_idx] = gtt_internal_usage;
2742 } else {
2743 unsigned mask = device->heaps;
2744 unsigned heap = 0;
2745 while (mask) {
2746 uint64_t internal_usage = 0, system_usage = 0;
2747 unsigned type = 1u << u_bit_scan(&mask);
2748
2749 switch (type) {
2750 case RADV_HEAP_VRAM:
2751 internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
2752 system_usage = device->ws->query_value(device->ws, RADEON_VRAM_USAGE);
2753 break;
2754 case RADV_HEAP_VRAM_VIS:
2755 internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM_VIS);
2756 if (!(device->heaps & RADV_HEAP_VRAM))
2757 internal_usage += device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
2758 system_usage = device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE);
2759 break;
2760 case RADV_HEAP_GTT:
2761 internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_GTT);
2762 system_usage = device->ws->query_value(device->ws, RADEON_GTT_USAGE);
2763 break;
2764 }
2765
2766 uint64_t total_usage = MAX2(internal_usage, system_usage);
2767
2768 uint64_t free_space = device->memory_properties.memoryHeaps[heap].size -
2769 MIN2(device->memory_properties.memoryHeaps[heap].size, total_usage);
2770 memoryBudget->heapBudget[heap] = free_space + internal_usage;
2771 memoryBudget->heapUsage[heap] = internal_usage;
2772 ++heap;
2773 }
2774
2775 assert(heap == memory_properties->memoryHeapCount);
2776 }
2777
2778 /* The heapBudget and heapUsage values must be zero for array elements
2779 * greater than or equal to
2780 * VkPhysicalDeviceMemoryProperties::memoryHeapCount.
2781 */
2782 for (uint32_t i = memory_properties->memoryHeapCount; i < VK_MAX_MEMORY_HEAPS; i++) {
2783 memoryBudget->heapBudget[i] = 0;
2784 memoryBudget->heapUsage[i] = 0;
2785 }
2786 }
2787
2788 VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice,VkPhysicalDeviceMemoryProperties2 * pMemoryProperties)2789 radv_GetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice,
2790 VkPhysicalDeviceMemoryProperties2 *pMemoryProperties)
2791 {
2792 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
2793
2794 pMemoryProperties->memoryProperties = pdevice->memory_properties;
2795
2796 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memory_budget =
2797 vk_find_struct(pMemoryProperties->pNext, PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT);
2798 if (memory_budget)
2799 radv_get_memory_budget_properties(physicalDevice, memory_budget);
2800 }
2801
2802 VKAPI_ATTR VkResult VKAPI_CALL
radv_GetMemoryHostPointerPropertiesEXT(VkDevice _device,VkExternalMemoryHandleTypeFlagBits handleType,const void * pHostPointer,VkMemoryHostPointerPropertiesEXT * pMemoryHostPointerProperties)2803 radv_GetMemoryHostPointerPropertiesEXT(
2804 VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType, const void *pHostPointer,
2805 VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties)
2806 {
2807 RADV_FROM_HANDLE(radv_device, device, _device);
2808
2809 switch (handleType) {
2810 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2811 const struct radv_physical_device *physical_device = device->physical_device;
2812 uint32_t memoryTypeBits = 0;
2813 for (int i = 0; i < physical_device->memory_properties.memoryTypeCount; i++) {
2814 if (physical_device->memory_domains[i] == RADEON_DOMAIN_GTT &&
2815 !(physical_device->memory_flags[i] & RADEON_FLAG_GTT_WC)) {
2816 memoryTypeBits = (1 << i);
2817 break;
2818 }
2819 }
2820 pMemoryHostPointerProperties->memoryTypeBits = memoryTypeBits;
2821 return VK_SUCCESS;
2822 }
2823 default:
2824 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2825 }
2826 }
2827
2828 static enum radeon_ctx_priority
radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoKHR * pObj)2829 radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoKHR *pObj)
2830 {
2831 /* Default to MEDIUM when a specific global priority isn't requested */
2832 if (!pObj)
2833 return RADEON_CTX_PRIORITY_MEDIUM;
2834
2835 switch (pObj->globalPriority) {
2836 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR:
2837 return RADEON_CTX_PRIORITY_REALTIME;
2838 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR:
2839 return RADEON_CTX_PRIORITY_HIGH;
2840 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR:
2841 return RADEON_CTX_PRIORITY_MEDIUM;
2842 case VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR:
2843 return RADEON_CTX_PRIORITY_LOW;
2844 default:
2845 unreachable("Illegal global priority value");
2846 return RADEON_CTX_PRIORITY_INVALID;
2847 }
2848 }
2849
2850 int
radv_queue_init(struct radv_device * device,struct radv_queue * queue,int idx,const VkDeviceQueueCreateInfo * create_info,const VkDeviceQueueGlobalPriorityCreateInfoKHR * global_priority)2851 radv_queue_init(struct radv_device *device, struct radv_queue *queue, int idx,
2852 const VkDeviceQueueCreateInfo *create_info,
2853 const VkDeviceQueueGlobalPriorityCreateInfoKHR *global_priority)
2854 {
2855 queue->device = device;
2856 queue->priority = radv_get_queue_global_priority(global_priority);
2857 queue->hw_ctx = device->hw_ctx[queue->priority];
2858 queue->state.qf = vk_queue_to_radv(device->physical_device, create_info->queueFamilyIndex);
2859
2860 VkResult result = vk_queue_init(&queue->vk, &device->vk, create_info, idx);
2861 if (result != VK_SUCCESS)
2862 return result;
2863
2864 queue->vk.driver_submit = radv_queue_submit;
2865
2866 return VK_SUCCESS;
2867 }
2868
2869 static void
radv_queue_state_finish(struct radv_queue_state * queue,struct radeon_winsys * ws)2870 radv_queue_state_finish(struct radv_queue_state *queue, struct radeon_winsys *ws)
2871 {
2872 if (queue->initial_full_flush_preamble_cs)
2873 ws->cs_destroy(queue->initial_full_flush_preamble_cs);
2874 if (queue->initial_preamble_cs)
2875 ws->cs_destroy(queue->initial_preamble_cs);
2876 if (queue->continue_preamble_cs)
2877 ws->cs_destroy(queue->continue_preamble_cs);
2878 if (queue->descriptor_bo)
2879 ws->buffer_destroy(ws, queue->descriptor_bo);
2880 if (queue->scratch_bo)
2881 ws->buffer_destroy(ws, queue->scratch_bo);
2882 if (queue->esgs_ring_bo)
2883 ws->buffer_destroy(ws, queue->esgs_ring_bo);
2884 if (queue->gsvs_ring_bo)
2885 ws->buffer_destroy(ws, queue->gsvs_ring_bo);
2886 if (queue->tess_rings_bo)
2887 ws->buffer_destroy(ws, queue->tess_rings_bo);
2888 if (queue->task_rings_bo)
2889 ws->buffer_destroy(ws, queue->task_rings_bo);
2890 if (queue->gds_bo)
2891 ws->buffer_destroy(ws, queue->gds_bo);
2892 if (queue->gds_oa_bo)
2893 ws->buffer_destroy(ws, queue->gds_oa_bo);
2894 if (queue->compute_scratch_bo)
2895 ws->buffer_destroy(ws, queue->compute_scratch_bo);
2896 }
2897
2898 static void
radv_queue_finish(struct radv_queue * queue)2899 radv_queue_finish(struct radv_queue *queue)
2900 {
2901 if (queue->ace_internal_state) {
2902 /* Prevent double free */
2903 queue->ace_internal_state->task_rings_bo = NULL;
2904
2905 /* Clean up the internal ACE queue state. */
2906 radv_queue_state_finish(queue->ace_internal_state, queue->device->ws);
2907 free(queue->ace_internal_state);
2908 }
2909
2910 radv_queue_state_finish(&queue->state, queue->device->ws);
2911 vk_queue_finish(&queue->vk);
2912 }
2913
2914 static bool
radv_queue_init_ace_internal_state(struct radv_queue * queue)2915 radv_queue_init_ace_internal_state(struct radv_queue *queue)
2916 {
2917 if (queue->ace_internal_state)
2918 return true;
2919
2920 queue->ace_internal_state = calloc(1, sizeof(struct radv_queue_state));
2921 if (!queue->ace_internal_state)
2922 return false;
2923
2924 queue->ace_internal_state->qf = RADV_QUEUE_COMPUTE;
2925 return true;
2926 }
2927
2928 static VkResult
radv_device_init_border_color(struct radv_device * device)2929 radv_device_init_border_color(struct radv_device *device)
2930 {
2931 VkResult result;
2932
2933 result = device->ws->buffer_create(
2934 device->ws, RADV_BORDER_COLOR_BUFFER_SIZE, 4096, RADEON_DOMAIN_VRAM,
2935 RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_READ_ONLY | RADEON_FLAG_NO_INTERPROCESS_SHARING,
2936 RADV_BO_PRIORITY_SHADER, 0, &device->border_color_data.bo);
2937
2938 if (result != VK_SUCCESS)
2939 return vk_error(device, result);
2940
2941 result = device->ws->buffer_make_resident(device->ws, device->border_color_data.bo, true);
2942 if (result != VK_SUCCESS)
2943 return vk_error(device, result);
2944
2945 device->border_color_data.colors_gpu_ptr = device->ws->buffer_map(device->border_color_data.bo);
2946 if (!device->border_color_data.colors_gpu_ptr)
2947 return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
2948 mtx_init(&device->border_color_data.mutex, mtx_plain);
2949
2950 return VK_SUCCESS;
2951 }
2952
2953 static void
radv_device_finish_border_color(struct radv_device * device)2954 radv_device_finish_border_color(struct radv_device *device)
2955 {
2956 if (device->border_color_data.bo) {
2957 device->ws->buffer_make_resident(device->ws, device->border_color_data.bo, false);
2958 device->ws->buffer_destroy(device->ws, device->border_color_data.bo);
2959
2960 mtx_destroy(&device->border_color_data.mutex);
2961 }
2962 }
2963
2964 static VkResult
radv_device_init_vs_prologs(struct radv_device * device)2965 radv_device_init_vs_prologs(struct radv_device *device)
2966 {
2967 u_rwlock_init(&device->vs_prologs_lock);
2968 device->vs_prologs = _mesa_hash_table_create(NULL, &radv_hash_vs_prolog, &radv_cmp_vs_prolog);
2969 if (!device->vs_prologs)
2970 return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2971
2972 /* don't pre-compile prologs if we want to print them */
2973 if (device->instance->debug_flags & RADV_DEBUG_DUMP_PROLOGS)
2974 return VK_SUCCESS;
2975
2976 struct radv_vs_input_state state;
2977 state.nontrivial_divisors = 0;
2978 memset(state.offsets, 0, sizeof(state.offsets));
2979 state.alpha_adjust_lo = 0;
2980 state.alpha_adjust_hi = 0;
2981 memset(state.formats, 0, sizeof(state.formats));
2982
2983 struct radv_vs_prolog_key key;
2984 key.state = &state;
2985 key.misaligned_mask = 0;
2986 key.as_ls = false;
2987 key.is_ngg = device->physical_device->use_ngg;
2988 key.next_stage = MESA_SHADER_VERTEX;
2989 key.wave32 = device->physical_device->ge_wave_size == 32;
2990
2991 for (unsigned i = 1; i <= MAX_VERTEX_ATTRIBS; i++) {
2992 state.attribute_mask = BITFIELD_MASK(i);
2993 state.instance_rate_inputs = 0;
2994
2995 key.num_attributes = i;
2996
2997 device->simple_vs_prologs[i - 1] = radv_create_vs_prolog(device, &key);
2998 if (!device->simple_vs_prologs[i - 1])
2999 return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
3000 }
3001
3002 unsigned idx = 0;
3003 for (unsigned num_attributes = 1; num_attributes <= 16; num_attributes++) {
3004 state.attribute_mask = BITFIELD_MASK(num_attributes);
3005
3006 for (unsigned i = 0; i < num_attributes; i++)
3007 state.divisors[i] = 1;
3008
3009 for (unsigned count = 1; count <= num_attributes; count++) {
3010 for (unsigned start = 0; start <= (num_attributes - count); start++) {
3011 state.instance_rate_inputs = u_bit_consecutive(start, count);
3012
3013 key.num_attributes = num_attributes;
3014
3015 struct radv_shader_part *prolog = radv_create_vs_prolog(device, &key);
3016 if (!prolog)
3017 return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
3018
3019 assert(idx ==
3020 radv_instance_rate_prolog_index(num_attributes, state.instance_rate_inputs));
3021 device->instance_rate_vs_prologs[idx++] = prolog;
3022 }
3023 }
3024 }
3025 assert(idx == ARRAY_SIZE(device->instance_rate_vs_prologs));
3026
3027 return VK_SUCCESS;
3028 }
3029
3030 static void
radv_device_finish_vs_prologs(struct radv_device * device)3031 radv_device_finish_vs_prologs(struct radv_device *device)
3032 {
3033 if (device->vs_prologs) {
3034 hash_table_foreach(device->vs_prologs, entry)
3035 {
3036 free((void *)entry->key);
3037 radv_shader_part_destroy(device, entry->data);
3038 }
3039 _mesa_hash_table_destroy(device->vs_prologs, NULL);
3040 }
3041
3042 for (unsigned i = 0; i < ARRAY_SIZE(device->simple_vs_prologs); i++)
3043 radv_shader_part_destroy(device, device->simple_vs_prologs[i]);
3044
3045 for (unsigned i = 0; i < ARRAY_SIZE(device->instance_rate_vs_prologs); i++)
3046 radv_shader_part_destroy(device, device->instance_rate_vs_prologs[i]);
3047 }
3048
3049 VkResult
radv_device_init_vrs_state(struct radv_device * device)3050 radv_device_init_vrs_state(struct radv_device *device)
3051 {
3052 /* FIXME: 4k depth buffers should be large enough for now but we might want to adjust this
3053 * dynamically at some point.
3054 */
3055 uint32_t width = 4096, height = 4096;
3056 VkDeviceMemory mem;
3057 VkBuffer buffer;
3058 VkResult result;
3059 VkImage image;
3060
3061 VkImageCreateInfo image_create_info = {
3062 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
3063 .imageType = VK_IMAGE_TYPE_2D,
3064 .format = VK_FORMAT_D16_UNORM,
3065 .extent = {width, height, 1},
3066 .mipLevels = 1,
3067 .arrayLayers = 1,
3068 .samples = VK_SAMPLE_COUNT_1_BIT,
3069 .tiling = VK_IMAGE_TILING_OPTIMAL,
3070 .usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
3071 .sharingMode = VK_SHARING_MODE_EXCLUSIVE,
3072 .queueFamilyIndexCount = 0,
3073 .pQueueFamilyIndices = NULL,
3074 .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
3075 };
3076
3077 result = radv_CreateImage(radv_device_to_handle(device), &image_create_info,
3078 &device->meta_state.alloc, &image);
3079 if (result != VK_SUCCESS)
3080 return result;
3081
3082 VkBufferCreateInfo buffer_create_info = {
3083 .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
3084 .size = radv_image_from_handle(image)->planes[0].surface.meta_size,
3085 .usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
3086 .sharingMode = VK_SHARING_MODE_EXCLUSIVE,
3087 };
3088
3089 result = radv_CreateBuffer(radv_device_to_handle(device), &buffer_create_info,
3090 &device->meta_state.alloc, &buffer);
3091 if (result != VK_SUCCESS)
3092 goto fail_create;
3093
3094 VkBufferMemoryRequirementsInfo2 info = {
3095 .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2,
3096 .buffer = buffer,
3097 };
3098 VkMemoryRequirements2 mem_req = {
3099 .sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
3100 };
3101 radv_GetBufferMemoryRequirements2(radv_device_to_handle(device), &info, &mem_req);
3102
3103 VkMemoryAllocateInfo alloc_info = {
3104 .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
3105 .allocationSize = mem_req.memoryRequirements.size,
3106 };
3107
3108 result = radv_AllocateMemory(radv_device_to_handle(device), &alloc_info,
3109 &device->meta_state.alloc, &mem);
3110 if (result != VK_SUCCESS)
3111 goto fail_alloc;
3112
3113 VkBindBufferMemoryInfo bind_info = {
3114 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3115 .buffer = buffer,
3116 .memory = mem,
3117 .memoryOffset = 0
3118 };
3119
3120 result = radv_BindBufferMemory2(radv_device_to_handle(device), 1, &bind_info);
3121 if (result != VK_SUCCESS)
3122 goto fail_bind;
3123
3124 device->vrs.image = radv_image_from_handle(image);
3125 device->vrs.buffer = radv_buffer_from_handle(buffer);
3126 device->vrs.mem = radv_device_memory_from_handle(mem);
3127
3128 return VK_SUCCESS;
3129
3130 fail_bind:
3131 radv_FreeMemory(radv_device_to_handle(device), mem, &device->meta_state.alloc);
3132 fail_alloc:
3133 radv_DestroyBuffer(radv_device_to_handle(device), buffer, &device->meta_state.alloc);
3134 fail_create:
3135 radv_DestroyImage(radv_device_to_handle(device), image, &device->meta_state.alloc);
3136
3137 return result;
3138 }
3139
3140 static void
radv_device_finish_vrs_image(struct radv_device * device)3141 radv_device_finish_vrs_image(struct radv_device *device)
3142 {
3143 if (!device->vrs.image)
3144 return;
3145
3146 radv_FreeMemory(radv_device_to_handle(device), radv_device_memory_to_handle(device->vrs.mem),
3147 &device->meta_state.alloc);
3148 radv_DestroyBuffer(radv_device_to_handle(device), radv_buffer_to_handle(device->vrs.buffer),
3149 &device->meta_state.alloc);
3150 radv_DestroyImage(radv_device_to_handle(device), radv_image_to_handle(device->vrs.image),
3151 &device->meta_state.alloc);
3152 }
3153
3154 static enum radv_force_vrs
radv_parse_vrs_rates(const char * str)3155 radv_parse_vrs_rates(const char *str)
3156 {
3157 if (!strcmp(str, "2x2")) {
3158 return RADV_FORCE_VRS_2x2;
3159 } else if (!strcmp(str, "2x1")) {
3160 return RADV_FORCE_VRS_2x1;
3161 } else if (!strcmp(str, "1x2")) {
3162 return RADV_FORCE_VRS_1x2;
3163 } else if (!strcmp(str, "1x1")) {
3164 return RADV_FORCE_VRS_1x1;
3165 }
3166
3167 fprintf(stderr, "radv: Invalid VRS rates specified (valid values are 2x2, 2x1, 1x2 and 1x1)\n");
3168 return RADV_FORCE_VRS_1x1;
3169 }
3170
3171 static const char *
radv_get_force_vrs_config_file(void)3172 radv_get_force_vrs_config_file(void)
3173 {
3174 return getenv("RADV_FORCE_VRS_CONFIG_FILE");
3175 }
3176
3177 static enum radv_force_vrs
radv_parse_force_vrs_config_file(const char * config_file)3178 radv_parse_force_vrs_config_file(const char *config_file)
3179 {
3180 enum radv_force_vrs force_vrs = RADV_FORCE_VRS_1x1;
3181 char buf[4];
3182 FILE *f;
3183
3184 f = fopen(config_file, "r");
3185 if (!f) {
3186 fprintf(stderr, "radv: Can't open file: '%s'.\n", config_file);
3187 return force_vrs;
3188 }
3189
3190 if (fread(buf, sizeof(buf), 1, f) == 1) {
3191 buf[3] = '\0';
3192 force_vrs = radv_parse_vrs_rates(buf);
3193 }
3194
3195 fclose(f);
3196 return force_vrs;
3197 }
3198
3199 #ifdef __linux__
3200
3201 #define BUF_LEN ((10 * (sizeof(struct inotify_event) + NAME_MAX + 1)))
3202
3203 static int
radv_notifier_thread_run(void * data)3204 radv_notifier_thread_run(void *data)
3205 {
3206 struct radv_device *device = data;
3207 struct radv_notifier *notifier = &device->notifier;
3208 char buf[BUF_LEN];
3209
3210 while (!notifier->quit) {
3211 const char *file = radv_get_force_vrs_config_file();
3212 struct timespec tm = { .tv_nsec = 100000000 }; /* 1OOms */
3213 int length, i = 0;
3214
3215 length = read(notifier->fd, buf, BUF_LEN);
3216 while (i < length) {
3217 struct inotify_event *event = (struct inotify_event *)&buf[i];
3218
3219 i += sizeof(struct inotify_event) + event->len;
3220 if (event->mask & IN_MODIFY || event->mask & IN_DELETE_SELF) {
3221 /* Sleep 100ms for editors that use a temporary file and delete the original. */
3222 thrd_sleep(&tm, NULL);
3223 device->force_vrs = radv_parse_force_vrs_config_file(file);
3224
3225 fprintf(stderr, "radv: Updated the per-vertex VRS rate to '%d'.\n", device->force_vrs);
3226
3227 if (event->mask & IN_DELETE_SELF) {
3228 inotify_rm_watch(notifier->fd, notifier->watch);
3229 notifier->watch = inotify_add_watch(notifier->fd, file, IN_MODIFY | IN_DELETE_SELF);
3230 }
3231 }
3232 }
3233
3234 thrd_sleep(&tm, NULL);
3235 }
3236
3237 return 0;
3238 }
3239
3240 #endif
3241
3242 static int
radv_device_init_notifier(struct radv_device * device)3243 radv_device_init_notifier(struct radv_device *device)
3244 {
3245 #ifndef __linux__
3246 return true;
3247 #else
3248 struct radv_notifier *notifier = &device->notifier;
3249 const char *file = radv_get_force_vrs_config_file();
3250 int ret;
3251
3252 notifier->fd = inotify_init1(IN_NONBLOCK);
3253 if (notifier->fd < 0)
3254 return false;
3255
3256 notifier->watch = inotify_add_watch(notifier->fd, file, IN_MODIFY | IN_DELETE_SELF);
3257 if (notifier->watch < 0)
3258 goto fail_watch;
3259
3260 ret = thrd_create(¬ifier->thread, radv_notifier_thread_run, device);
3261 if (ret)
3262 goto fail_thread;
3263
3264 return true;
3265
3266 fail_thread:
3267 inotify_rm_watch(notifier->fd, notifier->watch);
3268 fail_watch:
3269 close(notifier->fd);
3270
3271 return false;
3272 #endif
3273 }
3274
3275 static void
radv_device_finish_notifier(struct radv_device * device)3276 radv_device_finish_notifier(struct radv_device *device)
3277 {
3278 #ifdef __linux__
3279 struct radv_notifier *notifier = &device->notifier;
3280
3281 if (!notifier->thread)
3282 return;
3283
3284 notifier->quit = true;
3285 thrd_join(notifier->thread, NULL);
3286 inotify_rm_watch(notifier->fd, notifier->watch);
3287 close(notifier->fd);
3288 #endif
3289 }
3290
3291 static void
radv_device_finish_perf_counter_lock_cs(struct radv_device * device)3292 radv_device_finish_perf_counter_lock_cs(struct radv_device *device)
3293 {
3294 if (!device->perf_counter_lock_cs)
3295 return;
3296
3297 for (unsigned i = 0; i < 2 * PERF_CTR_MAX_PASSES; ++i) {
3298 if (device->perf_counter_lock_cs[i])
3299 device->ws->cs_destroy(device->perf_counter_lock_cs[i]);
3300 }
3301
3302 free(device->perf_counter_lock_cs);
3303 }
3304
3305 VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateDevice(VkPhysicalDevice physicalDevice,const VkDeviceCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDevice * pDevice)3306 radv_CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo,
3307 const VkAllocationCallbacks *pAllocator, VkDevice *pDevice)
3308 {
3309 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
3310 VkResult result;
3311 struct radv_device *device;
3312
3313 bool keep_shader_info = false;
3314 bool robust_buffer_access = false;
3315 bool robust_buffer_access2 = false;
3316 bool overallocation_disallowed = false;
3317 bool custom_border_colors = false;
3318 bool attachment_vrs_enabled = false;
3319 bool image_float32_atomics = false;
3320 bool vs_prologs = false;
3321 bool global_bo_list = false;
3322 bool image_2d_view_of_3d = false;
3323 bool primitives_generated_query = false;
3324 bool use_perf_counters = false;
3325 bool use_dgc = false;
3326
3327 /* Check enabled features */
3328 if (pCreateInfo->pEnabledFeatures) {
3329 if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
3330 robust_buffer_access = true;
3331 }
3332
3333 vk_foreach_struct_const(ext, pCreateInfo->pNext)
3334 {
3335 switch (ext->sType) {
3336 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
3337 const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
3338 if (features->features.robustBufferAccess)
3339 robust_buffer_access = true;
3340 break;
3341 }
3342 case VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD: {
3343 const VkDeviceMemoryOverallocationCreateInfoAMD *overallocation = (const void *)ext;
3344 if (overallocation->overallocationBehavior ==
3345 VK_MEMORY_OVERALLOCATION_BEHAVIOR_DISALLOWED_AMD)
3346 overallocation_disallowed = true;
3347 break;
3348 }
3349 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
3350 const VkPhysicalDeviceCustomBorderColorFeaturesEXT *border_color_features =
3351 (const void *)ext;
3352 custom_border_colors = border_color_features->customBorderColors;
3353 break;
3354 }
3355 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR: {
3356 const VkPhysicalDeviceFragmentShadingRateFeaturesKHR *vrs = (const void *)ext;
3357 attachment_vrs_enabled = vrs->attachmentFragmentShadingRate;
3358 break;
3359 }
3360 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
3361 const VkPhysicalDeviceRobustness2FeaturesEXT *features = (const void *)ext;
3362 if (features->robustBufferAccess2)
3363 robust_buffer_access2 = true;
3364 break;
3365 }
3366 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
3367 const VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features = (const void *)ext;
3368 if (features->shaderImageFloat32Atomics ||
3369 features->sparseImageFloat32Atomics)
3370 image_float32_atomics = true;
3371 break;
3372 }
3373 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT: {
3374 const VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *features = (const void *)ext;
3375 if (features->shaderImageFloat32AtomicMinMax ||
3376 features->sparseImageFloat32AtomicMinMax)
3377 image_float32_atomics = true;
3378 break;
3379 }
3380 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_INPUT_DYNAMIC_STATE_FEATURES_EXT: {
3381 const VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT *features = (const void *)ext;
3382 if (features->vertexInputDynamicState)
3383 vs_prologs = true;
3384 break;
3385 }
3386 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES: {
3387 const VkPhysicalDeviceVulkan12Features *features = (const void *)ext;
3388 if (features->bufferDeviceAddress || features->descriptorIndexing)
3389 global_bo_list = true;
3390 break;
3391 }
3392 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_2D_VIEW_OF_3D_FEATURES_EXT: {
3393 const VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *features = (const void *)ext;
3394 if (features->image2DViewOf3D)
3395 image_2d_view_of_3d = true;
3396 break;
3397 }
3398 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVES_GENERATED_QUERY_FEATURES_EXT: {
3399 const VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *features = (const void *)ext;
3400 if (features->primitivesGeneratedQuery ||
3401 features->primitivesGeneratedQueryWithRasterizerDiscard ||
3402 features->primitivesGeneratedQueryWithNonZeroStreams)
3403 primitives_generated_query = true;
3404 break;
3405 }
3406 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: {
3407 const VkPhysicalDevicePerformanceQueryFeaturesKHR *features = (const void *)ext;
3408 if (features->performanceCounterQueryPools)
3409 use_perf_counters = true;
3410 break;
3411 }
3412 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_FEATURES_NV: {
3413 const VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV *features = (const void *)ext;
3414 if (features->deviceGeneratedCommands)
3415 use_dgc = true;
3416 break;
3417 }
3418 default:
3419 break;
3420 }
3421 }
3422
3423 device = vk_zalloc2(&physical_device->instance->vk.alloc, pAllocator, sizeof(*device), 8,
3424 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
3425 if (!device)
3426 return vk_error(physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
3427
3428 struct vk_device_dispatch_table dispatch_table;
3429
3430 if (physical_device->instance->vk.app_info.app_name &&
3431 !strcmp(physical_device->instance->vk.app_info.app_name, "metroexodus")) {
3432 /* Metro Exodus (Linux native) calls vkGetSemaphoreCounterValue() with a NULL semaphore and it
3433 * crashes sometimes. Workaround this game bug by enabling an internal layer. Remove this
3434 * when the game is fixed.
3435 */
3436 vk_device_dispatch_table_from_entrypoints(&dispatch_table, &metro_exodus_device_entrypoints, true);
3437 vk_device_dispatch_table_from_entrypoints(&dispatch_table, &radv_device_entrypoints, false);
3438 } else if (radv_thread_trace_enabled()) {
3439 vk_device_dispatch_table_from_entrypoints(&dispatch_table, &sqtt_device_entrypoints, true);
3440 vk_device_dispatch_table_from_entrypoints(&dispatch_table, &radv_device_entrypoints, false);
3441 } else {
3442 vk_device_dispatch_table_from_entrypoints(&dispatch_table, &radv_device_entrypoints, true);
3443 }
3444 vk_device_dispatch_table_from_entrypoints(&dispatch_table, &wsi_device_entrypoints, false);
3445
3446 result =
3447 vk_device_init(&device->vk, &physical_device->vk, &dispatch_table, pCreateInfo, pAllocator);
3448 if (result != VK_SUCCESS) {
3449 vk_free(&device->vk.alloc, device);
3450 return result;
3451 }
3452
3453 device->instance = physical_device->instance;
3454 device->physical_device = physical_device;
3455 simple_mtx_init(&device->trace_mtx, mtx_plain);
3456 simple_mtx_init(&device->pstate_mtx, mtx_plain);
3457
3458 device->ws = physical_device->ws;
3459 vk_device_set_drm_fd(&device->vk, device->ws->get_fd(device->ws));
3460
3461 /* With update after bind we can't attach bo's to the command buffer
3462 * from the descriptor set anymore, so we have to use a global BO list.
3463 */
3464 device->use_global_bo_list = global_bo_list ||
3465 (device->instance->perftest_flags & RADV_PERFTEST_BO_LIST) ||
3466 device->vk.enabled_extensions.EXT_descriptor_indexing ||
3467 device->vk.enabled_extensions.EXT_buffer_device_address ||
3468 device->vk.enabled_extensions.KHR_buffer_device_address ||
3469 device->vk.enabled_extensions.KHR_ray_tracing_pipeline ||
3470 device->vk.enabled_extensions.KHR_acceleration_structure ||
3471 device->vk.enabled_extensions.VALVE_descriptor_set_host_mapping;
3472
3473 device->robust_buffer_access = robust_buffer_access || robust_buffer_access2;
3474 device->robust_buffer_access2 = robust_buffer_access2;
3475
3476 device->attachment_vrs_enabled = attachment_vrs_enabled;
3477
3478 device->image_float32_atomics = image_float32_atomics;
3479
3480 device->image_2d_view_of_3d = image_2d_view_of_3d;
3481
3482 device->primitives_generated_query = primitives_generated_query;
3483 device->uses_device_generated_commands = use_dgc;
3484
3485 radv_init_shader_arenas(device);
3486
3487 device->overallocation_disallowed = overallocation_disallowed;
3488 mtx_init(&device->overallocation_mutex, mtx_plain);
3489
3490 /* Create one context per queue priority. */
3491 for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
3492 const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
3493 const VkDeviceQueueGlobalPriorityCreateInfoKHR *global_priority =
3494 vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_KHR);
3495 enum radeon_ctx_priority priority = radv_get_queue_global_priority(global_priority);
3496
3497 if (device->hw_ctx[priority])
3498 continue;
3499
3500 result = device->ws->ctx_create(device->ws, priority, &device->hw_ctx[priority]);
3501 if (result != VK_SUCCESS)
3502 goto fail;
3503 }
3504
3505 for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
3506 const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
3507 uint32_t qfi = queue_create->queueFamilyIndex;
3508 const VkDeviceQueueGlobalPriorityCreateInfoKHR *global_priority =
3509 vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_KHR);
3510
3511 device->queues[qfi] =
3512 vk_alloc(&device->vk.alloc, queue_create->queueCount * sizeof(struct radv_queue), 8,
3513 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
3514 if (!device->queues[qfi]) {
3515 result = VK_ERROR_OUT_OF_HOST_MEMORY;
3516 goto fail;
3517 }
3518
3519 memset(device->queues[qfi], 0, queue_create->queueCount * sizeof(struct radv_queue));
3520
3521 device->queue_count[qfi] = queue_create->queueCount;
3522
3523 for (unsigned q = 0; q < queue_create->queueCount; q++) {
3524 result = radv_queue_init(device, &device->queues[qfi][q], q, queue_create, global_priority);
3525 if (result != VK_SUCCESS)
3526 goto fail;
3527 }
3528 }
3529 device->private_sdma_queue = VK_NULL_HANDLE;
3530
3531 device->pbb_allowed = device->physical_device->rad_info.gfx_level >= GFX9 &&
3532 !(device->instance->debug_flags & RADV_DEBUG_NOBINNING);
3533
3534 /* The maximum number of scratch waves. Scratch space isn't divided
3535 * evenly between CUs. The number is only a function of the number of CUs.
3536 * We can decrease the constant to decrease the scratch buffer size.
3537 *
3538 * sctx->scratch_waves must be >= the maximum possible size of
3539 * 1 threadgroup, so that the hw doesn't hang from being unable
3540 * to start any.
3541 *
3542 * The recommended value is 4 per CU at most. Higher numbers don't
3543 * bring much benefit, but they still occupy chip resources (think
3544 * async compute). I've seen ~2% performance difference between 4 and 32.
3545 */
3546 uint32_t max_threads_per_block = 2048;
3547 device->scratch_waves =
3548 MAX2(32 * physical_device->rad_info.num_cu, max_threads_per_block / 64);
3549
3550 device->dispatch_initiator = S_00B800_COMPUTE_SHADER_EN(1);
3551
3552 if (device->physical_device->rad_info.gfx_level >= GFX7) {
3553 /* If the KMD allows it (there is a KMD hw register for it),
3554 * allow launching waves out-of-order.
3555 */
3556 device->dispatch_initiator |= S_00B800_ORDER_MODE(1);
3557 }
3558
3559 /* Disable partial preemption for task shaders.
3560 * The kernel may not support preemption, but PAL always sets this bit,
3561 * so let's also set it here for consistency.
3562 */
3563 device->dispatch_initiator_task =
3564 device->dispatch_initiator | S_00B800_DISABLE_DISP_PREMPT_EN(1);
3565
3566 if (device->instance->debug_flags & RADV_DEBUG_HANG) {
3567 /* Enable GPU hangs detection and dump logs if a GPU hang is
3568 * detected.
3569 */
3570 keep_shader_info = true;
3571
3572 if (!radv_init_trace(device))
3573 goto fail;
3574
3575 fprintf(stderr,
3576 "*****************************************************************************\n");
3577 fprintf(stderr,
3578 "* WARNING: RADV_DEBUG=hang is costly and should only be used for debugging! *\n");
3579 fprintf(stderr,
3580 "*****************************************************************************\n");
3581
3582 /* Wait for idle after every draw/dispatch to identify the
3583 * first bad call.
3584 */
3585 device->instance->debug_flags |= RADV_DEBUG_SYNC_SHADERS;
3586
3587 radv_dump_enabled_options(device, stderr);
3588 }
3589
3590 if (radv_thread_trace_enabled()) {
3591 if (device->physical_device->rad_info.gfx_level < GFX8 ||
3592 device->physical_device->rad_info.gfx_level > GFX10_3) {
3593 fprintf(stderr, "GPU hardware not supported: refer to "
3594 "the RGP documentation for the list of "
3595 "supported GPUs!\n");
3596 abort();
3597 }
3598
3599 if (!radv_thread_trace_init(device))
3600 goto fail;
3601
3602 fprintf(stderr, "radv: Thread trace support is enabled (initial buffer size: %u MiB, "
3603 "instruction timing: %s, cache counters: %s).\n",
3604 device->thread_trace.buffer_size / (1024 * 1024),
3605 radv_is_instruction_timing_enabled() ? "enabled" : "disabled",
3606 radv_spm_trace_enabled() ? "enabled" : "disabled");
3607
3608 if (radv_spm_trace_enabled()) {
3609 if (device->physical_device->rad_info.gfx_level >= GFX10) {
3610 if (!radv_spm_init(device))
3611 goto fail;
3612 } else {
3613 fprintf(stderr, "radv: SPM isn't supported for this GPU (%s)!\n",
3614 device->physical_device->name);
3615 }
3616 }
3617 }
3618
3619 if (getenv("RADV_TRAP_HANDLER")) {
3620 /* TODO: Add support for more hardware. */
3621 assert(device->physical_device->rad_info.gfx_level == GFX8);
3622
3623 fprintf(stderr, "**********************************************************************\n");
3624 fprintf(stderr, "* WARNING: RADV_TRAP_HANDLER is experimental and only for debugging! *\n");
3625 fprintf(stderr, "**********************************************************************\n");
3626
3627 /* To get the disassembly of the faulty shaders, we have to
3628 * keep some shader info around.
3629 */
3630 keep_shader_info = true;
3631
3632 if (!radv_trap_handler_init(device))
3633 goto fail;
3634 }
3635
3636 if (device->physical_device->rad_info.gfx_level >= GFX10_3) {
3637 if (getenv("RADV_FORCE_VRS_CONFIG_FILE")) {
3638 const char *file = radv_get_force_vrs_config_file();
3639
3640 device->force_vrs = radv_parse_force_vrs_config_file(file);
3641
3642 if (radv_device_init_notifier(device)) {
3643 device->force_vrs_enabled = true;
3644 } else {
3645 fprintf(stderr, "radv: Failed to initialize the notifier for RADV_FORCE_VRS_CONFIG_FILE!\n");
3646 }
3647 } else if (getenv("RADV_FORCE_VRS")) {
3648 const char *vrs_rates = getenv("RADV_FORCE_VRS");
3649
3650 device->force_vrs = radv_parse_vrs_rates(vrs_rates);
3651 device->force_vrs_enabled = device->force_vrs != RADV_FORCE_VRS_1x1;
3652 }
3653 }
3654
3655 /* PKT3_LOAD_SH_REG_INDEX is supported on GFX8+, but it hangs with compute queues until GFX10.3. */
3656 device->load_grid_size_from_user_sgpr = device->physical_device->rad_info.gfx_level >= GFX10_3;
3657
3658 device->keep_shader_info = keep_shader_info;
3659 result = radv_device_init_meta(device);
3660 if (result != VK_SUCCESS)
3661 goto fail;
3662
3663 radv_device_init_msaa(device);
3664
3665 /* If the border color extension is enabled, let's create the buffer we need. */
3666 if (custom_border_colors) {
3667 result = radv_device_init_border_color(device);
3668 if (result != VK_SUCCESS)
3669 goto fail;
3670 }
3671
3672 if (vs_prologs) {
3673 result = radv_device_init_vs_prologs(device);
3674 if (result != VK_SUCCESS)
3675 goto fail;
3676 }
3677
3678 if (device->physical_device->rad_info.gfx_level >= GFX7)
3679 cik_create_gfx_config(device);
3680
3681 VkPipelineCacheCreateInfo ci;
3682 ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
3683 ci.pNext = NULL;
3684 ci.flags = 0;
3685 ci.pInitialData = NULL;
3686 ci.initialDataSize = 0;
3687 VkPipelineCache pc;
3688 result = radv_CreatePipelineCache(radv_device_to_handle(device), &ci, NULL, &pc);
3689 if (result != VK_SUCCESS)
3690 goto fail_meta;
3691
3692 device->mem_cache = radv_pipeline_cache_from_handle(pc);
3693
3694 device->force_aniso = MIN2(16, radv_get_int_debug_option("RADV_TEX_ANISO", -1));
3695 if (device->force_aniso >= 0) {
3696 fprintf(stderr, "radv: Forcing anisotropy filter to %ix\n",
3697 1 << util_logbase2(device->force_aniso));
3698 }
3699
3700 if (use_perf_counters) {
3701 size_t bo_size = PERF_CTR_BO_PASS_OFFSET + sizeof(uint64_t) * PERF_CTR_MAX_PASSES;
3702 result =
3703 device->ws->buffer_create(device->ws, bo_size, 4096, RADEON_DOMAIN_GTT,
3704 RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING,
3705 RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, &device->perf_counter_bo);
3706 if (result != VK_SUCCESS)
3707 goto fail_cache;
3708
3709 device->perf_counter_lock_cs =
3710 calloc(sizeof(struct radeon_winsys_cs *), 2 * PERF_CTR_MAX_PASSES);
3711 if (!device->perf_counter_lock_cs) {
3712 result = VK_ERROR_OUT_OF_HOST_MEMORY;
3713 goto fail_cache;
3714 }
3715
3716 if (!device->physical_device->ac_perfcounters.blocks) {
3717 result = VK_ERROR_INITIALIZATION_FAILED;
3718 goto fail_cache;
3719 }
3720 }
3721
3722 *pDevice = radv_device_to_handle(device);
3723 return VK_SUCCESS;
3724
3725 fail_cache:
3726 radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
3727 fail_meta:
3728 radv_device_finish_meta(device);
3729 fail:
3730 radv_thread_trace_finish(device);
3731
3732 radv_spm_finish(device);
3733
3734 radv_trap_handler_finish(device);
3735 radv_finish_trace(device);
3736
3737 radv_device_finish_perf_counter_lock_cs(device);
3738 if (device->perf_counter_bo)
3739 device->ws->buffer_destroy(device->ws, device->perf_counter_bo);
3740 if (device->gfx_init)
3741 device->ws->buffer_destroy(device->ws, device->gfx_init);
3742
3743 radv_device_finish_notifier(device);
3744 radv_device_finish_vs_prologs(device);
3745 radv_device_finish_border_color(device);
3746
3747 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
3748 for (unsigned q = 0; q < device->queue_count[i]; q++)
3749 radv_queue_finish(&device->queues[i][q]);
3750 if (device->queue_count[i])
3751 vk_free(&device->vk.alloc, device->queues[i]);
3752 }
3753
3754 for (unsigned i = 0; i < RADV_NUM_HW_CTX; i++) {
3755 if (device->hw_ctx[i])
3756 device->ws->ctx_destroy(device->hw_ctx[i]);
3757 }
3758
3759 simple_mtx_destroy(&device->pstate_mtx);
3760 simple_mtx_destroy(&device->trace_mtx);
3761 mtx_destroy(&device->overallocation_mutex);
3762
3763 vk_device_finish(&device->vk);
3764 vk_free(&device->vk.alloc, device);
3765 return result;
3766 }
3767
3768 VKAPI_ATTR void VKAPI_CALL
radv_DestroyDevice(VkDevice _device,const VkAllocationCallbacks * pAllocator)3769 radv_DestroyDevice(VkDevice _device, const VkAllocationCallbacks *pAllocator)
3770 {
3771 RADV_FROM_HANDLE(radv_device, device, _device);
3772
3773 if (!device)
3774 return;
3775
3776 radv_device_finish_perf_counter_lock_cs(device);
3777 if (device->perf_counter_bo)
3778 device->ws->buffer_destroy(device->ws, device->perf_counter_bo);
3779
3780 if (device->gfx_init)
3781 device->ws->buffer_destroy(device->ws, device->gfx_init);
3782
3783 radv_device_finish_notifier(device);
3784 radv_device_finish_vs_prologs(device);
3785 radv_device_finish_border_color(device);
3786 radv_device_finish_vrs_image(device);
3787
3788 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
3789 for (unsigned q = 0; q < device->queue_count[i]; q++)
3790 radv_queue_finish(&device->queues[i][q]);
3791 if (device->queue_count[i])
3792 vk_free(&device->vk.alloc, device->queues[i]);
3793 }
3794 if (device->private_sdma_queue != VK_NULL_HANDLE) {
3795 radv_queue_finish(device->private_sdma_queue);
3796 vk_free(&device->vk.alloc, device->private_sdma_queue);
3797 }
3798
3799 for (unsigned i = 0; i < RADV_NUM_HW_CTX; i++) {
3800 if (device->hw_ctx[i])
3801 device->ws->ctx_destroy(device->hw_ctx[i]);
3802 }
3803
3804 mtx_destroy(&device->overallocation_mutex);
3805 simple_mtx_destroy(&device->pstate_mtx);
3806 simple_mtx_destroy(&device->trace_mtx);
3807
3808 radv_device_finish_meta(device);
3809
3810 VkPipelineCache pc = radv_pipeline_cache_to_handle(device->mem_cache);
3811 radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
3812
3813 radv_trap_handler_finish(device);
3814 radv_finish_trace(device);
3815
3816 radv_destroy_shader_arenas(device);
3817
3818 radv_thread_trace_finish(device);
3819
3820 radv_spm_finish(device);
3821
3822 vk_device_finish(&device->vk);
3823 vk_free(&device->vk.alloc, device);
3824 }
3825
3826 VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumerateInstanceLayerProperties(uint32_t * pPropertyCount,VkLayerProperties * pProperties)3827 radv_EnumerateInstanceLayerProperties(uint32_t *pPropertyCount, VkLayerProperties *pProperties)
3828 {
3829 if (pProperties == NULL) {
3830 *pPropertyCount = 0;
3831 return VK_SUCCESS;
3832 }
3833
3834 /* None supported at this time */
3835 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
3836 }
3837
3838 VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice,uint32_t * pPropertyCount,VkLayerProperties * pProperties)3839 radv_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount,
3840 VkLayerProperties *pProperties)
3841 {
3842 if (pProperties == NULL) {
3843 *pPropertyCount = 0;
3844 return VK_SUCCESS;
3845 }
3846
3847 /* None supported at this time */
3848 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
3849 }
3850
3851 static void
radv_fill_shader_rings(struct radv_device * device,uint32_t * map,bool add_sample_positions,uint32_t esgs_ring_size,struct radeon_winsys_bo * esgs_ring_bo,uint32_t gsvs_ring_size,struct radeon_winsys_bo * gsvs_ring_bo,struct radeon_winsys_bo * tess_rings_bo,struct radeon_winsys_bo * task_rings_bo,struct radeon_winsys_bo * mesh_scratch_ring_bo)3852 radv_fill_shader_rings(struct radv_device *device, uint32_t *map, bool add_sample_positions,
3853 uint32_t esgs_ring_size, struct radeon_winsys_bo *esgs_ring_bo,
3854 uint32_t gsvs_ring_size, struct radeon_winsys_bo *gsvs_ring_bo,
3855 struct radeon_winsys_bo *tess_rings_bo,
3856 struct radeon_winsys_bo *task_rings_bo,
3857 struct radeon_winsys_bo *mesh_scratch_ring_bo)
3858 {
3859 uint32_t *desc = &map[4];
3860
3861 if (esgs_ring_bo) {
3862 uint64_t esgs_va = radv_buffer_get_va(esgs_ring_bo);
3863
3864 /* stride 0, num records - size, add tid, swizzle, elsize4,
3865 index stride 64 */
3866 desc[0] = esgs_va;
3867 desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32);
3868 desc[2] = esgs_ring_size;
3869 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3870 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
3871 S_008F0C_INDEX_STRIDE(3) | S_008F0C_ADD_TID_ENABLE(1);
3872
3873 if (device->physical_device->rad_info.gfx_level >= GFX11)
3874 desc[1] |= S_008F04_SWIZZLE_ENABLE_GFX11(1);
3875 else
3876 desc[1] |= S_008F04_SWIZZLE_ENABLE_GFX6(1);
3877
3878 if (device->physical_device->rad_info.gfx_level >= GFX11) {
3879 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
3880 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
3881 } else if (device->physical_device->rad_info.gfx_level >= GFX10) {
3882 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
3883 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
3884 } else if (device->physical_device->rad_info.gfx_level >= GFX8) {
3885 /* DATA_FORMAT is STRIDE[14:17] for MUBUF with ADD_TID_ENABLE=1 */
3886 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3887 S_008F0C_DATA_FORMAT(0) | S_008F0C_ELEMENT_SIZE(1);
3888 } else {
3889 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3890 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1);
3891 }
3892
3893 /* GS entry for ES->GS ring */
3894 /* stride 0, num records - size, elsize0,
3895 index stride 0 */
3896 desc[4] = esgs_va;
3897 desc[5] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32);
3898 desc[6] = esgs_ring_size;
3899 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3900 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3901
3902 if (device->physical_device->rad_info.gfx_level >= GFX11) {
3903 desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
3904 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
3905 } else if (device->physical_device->rad_info.gfx_level >= GFX10) {
3906 desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
3907 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
3908 } else {
3909 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3910 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3911 }
3912 }
3913
3914 desc += 8;
3915
3916 if (gsvs_ring_bo) {
3917 uint64_t gsvs_va = radv_buffer_get_va(gsvs_ring_bo);
3918
3919 /* VS entry for GS->VS ring */
3920 /* stride 0, num records - size, elsize0,
3921 index stride 0 */
3922 desc[0] = gsvs_va;
3923 desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32);
3924 desc[2] = gsvs_ring_size;
3925 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3926 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3927
3928 if (device->physical_device->rad_info.gfx_level >= GFX11) {
3929 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
3930 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
3931 } else if (device->physical_device->rad_info.gfx_level >= GFX10) {
3932 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
3933 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
3934 } else {
3935 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3936 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3937 }
3938
3939 /* stride gsvs_itemsize, num records 64
3940 elsize 4, index stride 16 */
3941 /* shader will patch stride and desc[2] */
3942 desc[4] = gsvs_va;
3943 desc[5] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32);
3944 desc[6] = 0;
3945 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3946 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
3947 S_008F0C_INDEX_STRIDE(1) | S_008F0C_ADD_TID_ENABLE(true);
3948
3949 if (device->physical_device->rad_info.gfx_level >= GFX11)
3950 desc[5] |= S_008F04_SWIZZLE_ENABLE_GFX11(1);
3951 else
3952 desc[5] |= S_008F04_SWIZZLE_ENABLE_GFX6(1);
3953
3954 if (device->physical_device->rad_info.gfx_level >= GFX11) {
3955 desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
3956 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
3957 } else if (device->physical_device->rad_info.gfx_level >= GFX10) {
3958 desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
3959 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
3960 } else if (device->physical_device->rad_info.gfx_level >= GFX8) {
3961 /* DATA_FORMAT is STRIDE[14:17] for MUBUF with ADD_TID_ENABLE=1 */
3962 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3963 S_008F0C_DATA_FORMAT(0) | S_008F0C_ELEMENT_SIZE(1);
3964 } else {
3965 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3966 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1);
3967 }
3968 }
3969
3970 desc += 8;
3971
3972 if (tess_rings_bo) {
3973 uint64_t tess_va = radv_buffer_get_va(tess_rings_bo);
3974 uint64_t tess_offchip_va = tess_va + device->physical_device->hs.tess_offchip_ring_offset;
3975
3976 desc[0] = tess_va;
3977 desc[1] = S_008F04_BASE_ADDRESS_HI(tess_va >> 32);
3978 desc[2] = device->physical_device->hs.tess_factor_ring_size;
3979 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3980 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3981
3982 if (device->physical_device->rad_info.gfx_level >= GFX11) {
3983 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
3984 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW);
3985 } else if (device->physical_device->rad_info.gfx_level >= GFX10) {
3986 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
3987 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
3988 } else {
3989 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3990 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3991 }
3992
3993 desc[4] = tess_offchip_va;
3994 desc[5] = S_008F04_BASE_ADDRESS_HI(tess_offchip_va >> 32);
3995 desc[6] = device->physical_device->hs.tess_offchip_ring_size;
3996 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3997 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3998
3999 if (device->physical_device->rad_info.gfx_level >= GFX11) {
4000 desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
4001 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW);
4002 } else if (device->physical_device->rad_info.gfx_level >= GFX10) {
4003 desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
4004 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
4005 } else {
4006 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4007 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4008 }
4009 }
4010
4011 desc += 8;
4012
4013 if (task_rings_bo) {
4014 uint64_t task_va = radv_buffer_get_va(task_rings_bo);
4015 uint64_t task_draw_ring_va = task_va + device->physical_device->task_info.draw_ring_offset;
4016 uint64_t task_payload_ring_va = task_va + device->physical_device->task_info.payload_ring_offset;
4017
4018 desc[0] = task_draw_ring_va;
4019 desc[1] = S_008F04_BASE_ADDRESS_HI(task_draw_ring_va >> 32);
4020 desc[2] = device->physical_device->task_info.num_entries * AC_TASK_DRAW_ENTRY_BYTES;
4021 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4022 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4023
4024 if (device->physical_device->rad_info.gfx_level >= GFX11) {
4025 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_UINT) |
4026 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
4027 } else {
4028 assert(device->physical_device->rad_info.gfx_level >= GFX10_3);
4029 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_UINT) |
4030 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
4031 }
4032
4033 desc[4] = task_payload_ring_va;
4034 desc[5] = S_008F04_BASE_ADDRESS_HI(task_payload_ring_va >> 32);
4035 desc[6] = device->physical_device->task_info.num_entries * AC_TASK_PAYLOAD_ENTRY_BYTES;
4036 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4037 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4038
4039 if (device->physical_device->rad_info.gfx_level >= GFX11) {
4040 desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_UINT) |
4041 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
4042 } else {
4043 assert(device->physical_device->rad_info.gfx_level >= GFX10_3);
4044 desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_UINT) |
4045 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
4046 }
4047 }
4048
4049 desc += 8;
4050
4051 if (mesh_scratch_ring_bo) {
4052 uint64_t va = radv_buffer_get_va(mesh_scratch_ring_bo);
4053
4054 desc[0] = va;
4055 desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32);
4056 desc[2] = RADV_MESH_SCRATCH_NUM_ENTRIES * RADV_MESH_SCRATCH_ENTRY_BYTES;
4057 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4058 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4059
4060 if (device->physical_device->rad_info.gfx_level >= GFX11) {
4061 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_UINT) |
4062 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
4063 } else {
4064 assert(device->physical_device->rad_info.gfx_level >= GFX10_3);
4065 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_UINT) |
4066 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
4067 }
4068 }
4069
4070 desc += 4;
4071
4072 if (add_sample_positions) {
4073 /* add sample positions after all rings */
4074 memcpy(desc, device->sample_locations_1x, 8);
4075 desc += 2;
4076 memcpy(desc, device->sample_locations_2x, 16);
4077 desc += 4;
4078 memcpy(desc, device->sample_locations_4x, 32);
4079 desc += 8;
4080 memcpy(desc, device->sample_locations_8x, 64);
4081 }
4082 }
4083
4084 static void
radv_emit_gs_ring_sizes(struct radv_device * device,struct radeon_cmdbuf * cs,struct radeon_winsys_bo * esgs_ring_bo,uint32_t esgs_ring_size,struct radeon_winsys_bo * gsvs_ring_bo,uint32_t gsvs_ring_size)4085 radv_emit_gs_ring_sizes(struct radv_device *device, struct radeon_cmdbuf *cs,
4086 struct radeon_winsys_bo *esgs_ring_bo, uint32_t esgs_ring_size,
4087 struct radeon_winsys_bo *gsvs_ring_bo, uint32_t gsvs_ring_size)
4088 {
4089 if (!esgs_ring_bo && !gsvs_ring_bo)
4090 return;
4091
4092 if (esgs_ring_bo)
4093 radv_cs_add_buffer(device->ws, cs, esgs_ring_bo);
4094
4095 if (gsvs_ring_bo)
4096 radv_cs_add_buffer(device->ws, cs, gsvs_ring_bo);
4097
4098 if (device->physical_device->rad_info.gfx_level >= GFX7) {
4099 radeon_set_uconfig_reg_seq(cs, R_030900_VGT_ESGS_RING_SIZE, 2);
4100 radeon_emit(cs, esgs_ring_size >> 8);
4101 radeon_emit(cs, gsvs_ring_size >> 8);
4102 } else {
4103 radeon_set_config_reg_seq(cs, R_0088C8_VGT_ESGS_RING_SIZE, 2);
4104 radeon_emit(cs, esgs_ring_size >> 8);
4105 radeon_emit(cs, gsvs_ring_size >> 8);
4106 }
4107 }
4108
4109 static void
radv_emit_tess_factor_ring(struct radv_device * device,struct radeon_cmdbuf * cs,struct radeon_winsys_bo * tess_rings_bo)4110 radv_emit_tess_factor_ring(struct radv_device *device, struct radeon_cmdbuf *cs,
4111 struct radeon_winsys_bo *tess_rings_bo)
4112 {
4113 uint64_t tf_va;
4114 uint32_t tf_ring_size;
4115 if (!tess_rings_bo)
4116 return;
4117
4118 tf_ring_size = device->physical_device->hs.tess_factor_ring_size / 4;
4119 tf_va = radv_buffer_get_va(tess_rings_bo);
4120
4121 radv_cs_add_buffer(device->ws, cs, tess_rings_bo);
4122
4123 if (device->physical_device->rad_info.gfx_level >= GFX7) {
4124 if (device->physical_device->rad_info.gfx_level >= GFX11) {
4125 /* TF_RING_SIZE is per SE on GFX11. */
4126 tf_ring_size /= device->physical_device->rad_info.max_se;
4127 }
4128
4129 radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(tf_ring_size));
4130 radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE, tf_va >> 8);
4131
4132 if (device->physical_device->rad_info.gfx_level >= GFX10) {
4133 radeon_set_uconfig_reg(cs, R_030984_VGT_TF_MEMORY_BASE_HI,
4134 S_030984_BASE_HI(tf_va >> 40));
4135 } else if (device->physical_device->rad_info.gfx_level == GFX9) {
4136 radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(tf_va >> 40));
4137 }
4138
4139 radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM, device->physical_device->hs.hs_offchip_param);
4140 } else {
4141 radeon_set_config_reg(cs, R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(tf_ring_size));
4142 radeon_set_config_reg(cs, R_0089B8_VGT_TF_MEMORY_BASE, tf_va >> 8);
4143 radeon_set_config_reg(cs, R_0089B0_VGT_HS_OFFCHIP_PARAM, device->physical_device->hs.hs_offchip_param);
4144 }
4145 }
4146
4147 static VkResult
radv_initialise_task_control_buffer(struct radv_device * device,struct radeon_winsys_bo * task_rings_bo)4148 radv_initialise_task_control_buffer(struct radv_device *device,
4149 struct radeon_winsys_bo *task_rings_bo)
4150 {
4151 uint32_t *ptr = (uint32_t *)device->ws->buffer_map(task_rings_bo);
4152 if (!ptr)
4153 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
4154
4155 const uint32_t num_entries = device->physical_device->task_info.num_entries;
4156 const uint64_t task_va = radv_buffer_get_va(task_rings_bo);
4157 const uint64_t task_draw_ring_va = task_va + device->physical_device->task_info.draw_ring_offset;
4158 assert((task_draw_ring_va & 0xFFFFFF00) == (task_draw_ring_va & 0xFFFFFFFF));
4159
4160 /* 64-bit write_ptr */
4161 ptr[0] = num_entries;
4162 ptr[1] = 0;
4163 /* 64-bit read_ptr */
4164 ptr[2] = num_entries;
4165 ptr[3] = 0;
4166 /* 64-bit dealloc_ptr */
4167 ptr[4] = num_entries;
4168 ptr[5] = 0;
4169 /* num_entries */
4170 ptr[6] = num_entries;
4171 /* 64-bit draw ring address */
4172 ptr[7] = task_draw_ring_va;
4173 ptr[8] = task_draw_ring_va >> 32;
4174
4175 device->ws->buffer_unmap(task_rings_bo);
4176 return VK_SUCCESS;
4177 }
4178
4179 static void
radv_emit_task_rings(struct radv_device * device,struct radeon_cmdbuf * cs,struct radeon_winsys_bo * task_rings_bo,bool compute)4180 radv_emit_task_rings(struct radv_device *device, struct radeon_cmdbuf *cs,
4181 struct radeon_winsys_bo *task_rings_bo, bool compute)
4182 {
4183 if (!task_rings_bo)
4184 return;
4185
4186 const uint64_t task_ctrlbuf_va = radv_buffer_get_va(task_rings_bo);
4187 assert(radv_is_aligned(task_ctrlbuf_va, 256));
4188 radv_cs_add_buffer(device->ws, cs, task_rings_bo);
4189
4190 /* Tell the GPU where the task control buffer is. */
4191 radeon_emit(cs, PKT3(PKT3_DISPATCH_TASK_STATE_INIT, 1, 0) | PKT3_SHADER_TYPE_S(!!compute));
4192 /* bits [31:8]: control buffer address lo, bits[7:0]: reserved (set to zero) */
4193 radeon_emit(cs, task_ctrlbuf_va & 0xFFFFFF00);
4194 /* bits [31:0]: control buffer address hi */
4195 radeon_emit(cs, task_ctrlbuf_va >> 32);
4196 }
4197
4198 static void
radv_emit_graphics_scratch(struct radv_device * device,struct radeon_cmdbuf * cs,uint32_t size_per_wave,uint32_t waves,struct radeon_winsys_bo * scratch_bo)4199 radv_emit_graphics_scratch(struct radv_device *device, struct radeon_cmdbuf *cs,
4200 uint32_t size_per_wave, uint32_t waves,
4201 struct radeon_winsys_bo *scratch_bo)
4202 {
4203 struct radeon_info *info = &device->physical_device->rad_info;
4204
4205 if (!scratch_bo)
4206 return;
4207
4208 radv_cs_add_buffer(device->ws, cs, scratch_bo);
4209
4210 if (info->gfx_level >= GFX11) {
4211 uint64_t va = radv_buffer_get_va(scratch_bo);
4212
4213 /* WAVES is per SE for SPI_TMPRING_SIZE. */
4214 waves /= info->num_se;
4215
4216 radeon_set_context_reg_seq(cs, R_0286E8_SPI_TMPRING_SIZE, 3);
4217 radeon_emit(cs, S_0286E8_WAVES(waves) | S_0286E8_WAVESIZE(round_up_u32(size_per_wave, 256)));
4218 radeon_emit(cs, va >> 8); /* SPI_GFX_SCRATCH_BASE_LO */
4219 radeon_emit(cs, va >> 40); /* SPI_GFX_SCRATCH_BASE_HI */
4220 } else {
4221 radeon_set_context_reg(
4222 cs, R_0286E8_SPI_TMPRING_SIZE,
4223 S_0286E8_WAVES(waves) | S_0286E8_WAVESIZE(round_up_u32(size_per_wave, 1024)));
4224 }
4225 }
4226
4227 static void
radv_emit_compute_scratch(struct radv_device * device,struct radeon_cmdbuf * cs,uint32_t size_per_wave,uint32_t waves,struct radeon_winsys_bo * compute_scratch_bo)4228 radv_emit_compute_scratch(struct radv_device *device, struct radeon_cmdbuf *cs,
4229 uint32_t size_per_wave, uint32_t waves,
4230 struct radeon_winsys_bo *compute_scratch_bo)
4231 {
4232 struct radeon_info *info = &device->physical_device->rad_info;
4233 uint64_t scratch_va;
4234 uint32_t rsrc1;
4235
4236 if (!compute_scratch_bo)
4237 return;
4238
4239 scratch_va = radv_buffer_get_va(compute_scratch_bo);
4240 rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
4241
4242 if (device->physical_device->rad_info.gfx_level >= GFX11)
4243 rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX11(1);
4244 else
4245 rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX6(1);
4246
4247 radv_cs_add_buffer(device->ws, cs, compute_scratch_bo);
4248
4249 if (info->gfx_level >= GFX11) {
4250 radeon_set_sh_reg_seq(cs, R_00B840_COMPUTE_DISPATCH_SCRATCH_BASE_LO, 2);
4251 radeon_emit(cs, scratch_va >> 8);
4252 radeon_emit(cs, scratch_va >> 40);
4253
4254 waves /= info->num_se;
4255 }
4256
4257 radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2);
4258 radeon_emit(cs, scratch_va);
4259 radeon_emit(cs, rsrc1);
4260
4261 radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
4262 S_00B860_WAVES(waves) |
4263 S_00B860_WAVESIZE(round_up_u32(size_per_wave, info->gfx_level >= GFX11 ? 256 : 1024)));
4264 }
4265
4266 static void
radv_emit_compute_shader_pointers(struct radv_device * device,struct radeon_cmdbuf * cs,struct radeon_winsys_bo * descriptor_bo)4267 radv_emit_compute_shader_pointers(struct radv_device *device, struct radeon_cmdbuf *cs,
4268 struct radeon_winsys_bo *descriptor_bo)
4269 {
4270 if (!descriptor_bo)
4271 return;
4272
4273 uint64_t va = radv_buffer_get_va(descriptor_bo);
4274 radv_cs_add_buffer(device->ws, cs, descriptor_bo);
4275
4276 /* Compute shader user data 0-1 have the scratch pointer (unlike GFX shaders),
4277 * so emit the descriptor pointer to user data 2-3 instead (task_ring_offsets arg).
4278 */
4279 radv_emit_shader_pointer(device, cs, R_00B908_COMPUTE_USER_DATA_2, va, true);
4280 }
4281
4282 static void
radv_emit_graphics_shader_pointers(struct radv_device * device,struct radeon_cmdbuf * cs,struct radeon_winsys_bo * descriptor_bo)4283 radv_emit_graphics_shader_pointers(struct radv_device *device, struct radeon_cmdbuf *cs,
4284 struct radeon_winsys_bo *descriptor_bo)
4285 {
4286 uint64_t va;
4287
4288 if (!descriptor_bo)
4289 return;
4290
4291 va = radv_buffer_get_va(descriptor_bo);
4292
4293 radv_cs_add_buffer(device->ws, cs, descriptor_bo);
4294
4295 if (device->physical_device->rad_info.gfx_level >= GFX11) {
4296 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
4297 R_00B420_SPI_SHADER_PGM_LO_HS,
4298 R_00B220_SPI_SHADER_PGM_LO_GS};
4299
4300 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
4301 radv_emit_shader_pointer(device, cs, regs[i], va, true);
4302 }
4303 } else if (device->physical_device->rad_info.gfx_level >= GFX10) {
4304 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
4305 R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
4306 R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
4307
4308 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
4309 radv_emit_shader_pointer(device, cs, regs[i], va, true);
4310 }
4311 } else if (device->physical_device->rad_info.gfx_level == GFX9) {
4312 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
4313 R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
4314 R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
4315
4316 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
4317 radv_emit_shader_pointer(device, cs, regs[i], va, true);
4318 }
4319 } else {
4320 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
4321 R_00B230_SPI_SHADER_USER_DATA_GS_0, R_00B330_SPI_SHADER_USER_DATA_ES_0,
4322 R_00B430_SPI_SHADER_USER_DATA_HS_0, R_00B530_SPI_SHADER_USER_DATA_LS_0};
4323
4324 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
4325 radv_emit_shader_pointer(device, cs, regs[i], va, true);
4326 }
4327 }
4328 }
4329
4330 static void
radv_init_graphics_state(struct radeon_cmdbuf * cs,struct radv_device * device)4331 radv_init_graphics_state(struct radeon_cmdbuf *cs, struct radv_device *device)
4332 {
4333 if (device->gfx_init) {
4334 uint64_t va = radv_buffer_get_va(device->gfx_init);
4335
4336 radeon_emit(cs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
4337 radeon_emit(cs, va);
4338 radeon_emit(cs, va >> 32);
4339 radeon_emit(cs, device->gfx_init_size_dw & 0xffff);
4340
4341 radv_cs_add_buffer(device->ws, cs, device->gfx_init);
4342 } else {
4343 si_emit_graphics(device, cs);
4344 }
4345 }
4346
4347 static void
radv_init_compute_state(struct radeon_cmdbuf * cs,struct radv_device * device)4348 radv_init_compute_state(struct radeon_cmdbuf *cs, struct radv_device *device)
4349 {
4350 si_emit_compute(device, cs);
4351 }
4352
4353 static VkResult
radv_update_preamble_cs(struct radv_queue_state * queue,struct radv_device * device,const struct radv_queue_ring_info * needs)4354 radv_update_preamble_cs(struct radv_queue_state *queue, struct radv_device *device,
4355 const struct radv_queue_ring_info *needs)
4356 {
4357 struct radeon_winsys *ws = device->ws;
4358 struct radeon_winsys_bo *scratch_bo = queue->scratch_bo;
4359 struct radeon_winsys_bo *descriptor_bo = queue->descriptor_bo;
4360 struct radeon_winsys_bo *compute_scratch_bo = queue->compute_scratch_bo;
4361 struct radeon_winsys_bo *esgs_ring_bo = queue->esgs_ring_bo;
4362 struct radeon_winsys_bo *gsvs_ring_bo = queue->gsvs_ring_bo;
4363 struct radeon_winsys_bo *tess_rings_bo = queue->tess_rings_bo;
4364 struct radeon_winsys_bo *task_rings_bo = queue->task_rings_bo;
4365 struct radeon_winsys_bo *mesh_scratch_ring_bo = queue->mesh_scratch_ring_bo;
4366 struct radeon_winsys_bo *gds_bo = queue->gds_bo;
4367 struct radeon_winsys_bo *gds_oa_bo = queue->gds_oa_bo;
4368 struct radeon_cmdbuf *dest_cs[3] = {0};
4369 const uint32_t ring_bo_flags = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING;
4370 VkResult result = VK_SUCCESS;
4371
4372 const bool add_sample_positions = !queue->ring_info.sample_positions && needs->sample_positions;
4373 const uint32_t scratch_size = needs->scratch_size_per_wave * needs->scratch_waves;
4374 const uint32_t queue_scratch_size =
4375 queue->ring_info.scratch_size_per_wave * queue->ring_info.scratch_waves;
4376
4377 if (scratch_size > queue_scratch_size) {
4378 result = ws->buffer_create(ws, scratch_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
4379 RADV_BO_PRIORITY_SCRATCH, 0, &scratch_bo);
4380 if (result != VK_SUCCESS)
4381 goto fail;
4382 }
4383
4384 const uint32_t compute_scratch_size =
4385 needs->compute_scratch_size_per_wave * needs->compute_scratch_waves;
4386 const uint32_t compute_queue_scratch_size =
4387 queue->ring_info.compute_scratch_size_per_wave * queue->ring_info.compute_scratch_waves;
4388 if (compute_scratch_size > compute_queue_scratch_size) {
4389 result = ws->buffer_create(ws, compute_scratch_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
4390 RADV_BO_PRIORITY_SCRATCH, 0, &compute_scratch_bo);
4391 if (result != VK_SUCCESS)
4392 goto fail;
4393 }
4394
4395 if (needs->esgs_ring_size > queue->ring_info.esgs_ring_size) {
4396 result = ws->buffer_create(ws, needs->esgs_ring_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
4397 RADV_BO_PRIORITY_SCRATCH, 0, &esgs_ring_bo);
4398 if (result != VK_SUCCESS)
4399 goto fail;
4400 }
4401
4402 if (needs->gsvs_ring_size > queue->ring_info.gsvs_ring_size) {
4403 result = ws->buffer_create(ws, needs->gsvs_ring_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
4404 RADV_BO_PRIORITY_SCRATCH, 0, &gsvs_ring_bo);
4405 if (result != VK_SUCCESS)
4406 goto fail;
4407 }
4408
4409 if (!queue->ring_info.tess_rings && needs->tess_rings) {
4410 result = ws->buffer_create(
4411 ws, device->physical_device->hs.tess_offchip_ring_offset + device->physical_device->hs.tess_offchip_ring_size, 256,
4412 RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, &tess_rings_bo);
4413 if (result != VK_SUCCESS)
4414 goto fail;
4415 }
4416
4417 if (!queue->ring_info.task_rings && needs->task_rings) {
4418 assert(device->physical_device->rad_info.gfx_level >= GFX10_3);
4419
4420 /* We write the control buffer from the CPU, so need to grant CPU access to the BO.
4421 * The draw ring needs to be zero-initialized otherwise the ready bits will be incorrect.
4422 */
4423 uint32_t task_rings_bo_flags =
4424 RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_ZERO_VRAM;
4425
4426 result = ws->buffer_create(ws, device->physical_device->task_info.bo_size_bytes, 256,
4427 RADEON_DOMAIN_VRAM, task_rings_bo_flags, RADV_BO_PRIORITY_SCRATCH,
4428 0, &task_rings_bo);
4429 if (result != VK_SUCCESS)
4430 goto fail;
4431
4432 result = radv_initialise_task_control_buffer(device, task_rings_bo);
4433 if (result != VK_SUCCESS)
4434 goto fail;
4435 }
4436
4437 if (!queue->ring_info.mesh_scratch_ring && needs->mesh_scratch_ring) {
4438 assert(device->physical_device->rad_info.gfx_level >= GFX10_3);
4439 result =
4440 ws->buffer_create(ws, RADV_MESH_SCRATCH_NUM_ENTRIES * RADV_MESH_SCRATCH_ENTRY_BYTES, 256,
4441 RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, &mesh_scratch_ring_bo);
4442
4443 if (result != VK_SUCCESS)
4444 goto fail;
4445 }
4446
4447 if (!queue->ring_info.gds && needs->gds) {
4448 assert(device->physical_device->rad_info.gfx_level >= GFX10);
4449
4450 /* 4 streamout GDS counters.
4451 * We need 256B (64 dw) of GDS, otherwise streamout hangs.
4452 */
4453 result = ws->buffer_create(ws, 256, 4, RADEON_DOMAIN_GDS, ring_bo_flags,
4454 RADV_BO_PRIORITY_SCRATCH, 0, &gds_bo);
4455 if (result != VK_SUCCESS)
4456 goto fail;
4457 }
4458
4459 if (!queue->ring_info.gds_oa && needs->gds_oa) {
4460 assert(device->physical_device->rad_info.gfx_level >= GFX10);
4461
4462 result = ws->buffer_create(ws, 4, 1, RADEON_DOMAIN_OA, ring_bo_flags,
4463 RADV_BO_PRIORITY_SCRATCH, 0, &gds_oa_bo);
4464 if (result != VK_SUCCESS)
4465 goto fail;
4466 }
4467
4468 /* Re-initialize the descriptor BO when any ring BOs changed.
4469 *
4470 * Additionally, make sure to create the descriptor BO for the compute queue
4471 * when it uses the task shader rings. The task rings BO is shared between the
4472 * GFX and compute queues and already initialized here.
4473 */
4474 if ((queue->qf == RADV_QUEUE_COMPUTE && !descriptor_bo && task_rings_bo) ||
4475 scratch_bo != queue->scratch_bo || esgs_ring_bo != queue->esgs_ring_bo ||
4476 gsvs_ring_bo != queue->gsvs_ring_bo || tess_rings_bo != queue->tess_rings_bo ||
4477 task_rings_bo != queue->task_rings_bo || mesh_scratch_ring_bo != queue->mesh_scratch_ring_bo ||
4478 add_sample_positions) {
4479 uint32_t size = 0;
4480 if (gsvs_ring_bo || esgs_ring_bo || tess_rings_bo || task_rings_bo || mesh_scratch_ring_bo || add_sample_positions) {
4481 size = 160; /* 2 dword + 2 padding + 4 dword * 9 */
4482 if (add_sample_positions)
4483 size += 128; /* 64+32+16+8 = 120 bytes */
4484 } else if (scratch_bo) {
4485 size = 8; /* 2 dword */
4486 }
4487
4488 result = ws->buffer_create(
4489 ws, size, 4096, RADEON_DOMAIN_VRAM,
4490 RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY,
4491 RADV_BO_PRIORITY_DESCRIPTOR, 0, &descriptor_bo);
4492 if (result != VK_SUCCESS)
4493 goto fail;
4494 }
4495
4496 if (descriptor_bo != queue->descriptor_bo) {
4497 uint32_t *map = (uint32_t *)ws->buffer_map(descriptor_bo);
4498 if (!map)
4499 goto fail;
4500
4501 if (scratch_bo) {
4502 uint64_t scratch_va = radv_buffer_get_va(scratch_bo);
4503 uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
4504
4505 if (device->physical_device->rad_info.gfx_level >= GFX11)
4506 rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX11(1);
4507 else
4508 rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX6(1);
4509
4510 map[0] = scratch_va;
4511 map[1] = rsrc1;
4512 }
4513
4514 if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || task_rings_bo || mesh_scratch_ring_bo || add_sample_positions)
4515 radv_fill_shader_rings(device, map, add_sample_positions, needs->esgs_ring_size,
4516 esgs_ring_bo, needs->gsvs_ring_size, gsvs_ring_bo, tess_rings_bo,
4517 task_rings_bo, mesh_scratch_ring_bo);
4518
4519 ws->buffer_unmap(descriptor_bo);
4520 }
4521
4522 for (int i = 0; i < 3; ++i) {
4523 /* Don't create continue preamble when it's not necessary. */
4524 if (i == 2) {
4525 /* We only need the continue preamble when we can't use indirect buffers. */
4526 if (!(device->instance->debug_flags & RADV_DEBUG_NO_IBS) &&
4527 device->physical_device->rad_info.gfx_level >= GFX7)
4528 continue;
4529 /* Continue preamble is unnecessary when no shader rings are used. */
4530 if (!needs->scratch_size_per_wave && !needs->compute_scratch_size_per_wave &&
4531 !needs->esgs_ring_size && !needs->gsvs_ring_size && !needs->tess_rings &&
4532 !needs->task_rings && !needs->mesh_scratch_ring && !needs->gds && !needs->gds_oa && !needs->sample_positions)
4533 continue;
4534 }
4535
4536 enum rgp_flush_bits sqtt_flush_bits = 0;
4537 struct radeon_cmdbuf *cs = NULL;
4538 cs = ws->cs_create(ws, radv_queue_family_to_ring(device->physical_device, queue->qf));
4539 if (!cs) {
4540 result = VK_ERROR_OUT_OF_HOST_MEMORY;
4541 goto fail;
4542 }
4543
4544 dest_cs[i] = cs;
4545
4546 if (scratch_bo)
4547 radv_cs_add_buffer(ws, cs, scratch_bo);
4548
4549 /* Emit initial configuration. */
4550 switch (queue->qf) {
4551 case RADV_QUEUE_GENERAL:
4552 radv_init_graphics_state(cs, device);
4553
4554 if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || task_rings_bo) {
4555 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
4556 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
4557
4558 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
4559 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
4560 }
4561
4562 radv_emit_gs_ring_sizes(device, cs, esgs_ring_bo, needs->esgs_ring_size, gsvs_ring_bo,
4563 needs->gsvs_ring_size);
4564 radv_emit_tess_factor_ring(device, cs, tess_rings_bo);
4565 radv_emit_task_rings(device, cs, task_rings_bo, false);
4566 radv_emit_graphics_shader_pointers(device, cs, descriptor_bo);
4567 radv_emit_compute_scratch(device, cs, needs->compute_scratch_size_per_wave,
4568 needs->compute_scratch_waves, compute_scratch_bo);
4569 radv_emit_graphics_scratch(device, cs, needs->scratch_size_per_wave, needs->scratch_waves,
4570 scratch_bo);
4571 break;
4572 case RADV_QUEUE_COMPUTE:
4573 radv_init_compute_state(cs, device);
4574
4575 if (task_rings_bo) {
4576 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
4577 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
4578 }
4579
4580 radv_emit_task_rings(device, cs, task_rings_bo, true);
4581 radv_emit_compute_shader_pointers(device, cs, descriptor_bo);
4582 radv_emit_compute_scratch(device, cs, needs->compute_scratch_size_per_wave,
4583 needs->compute_scratch_waves, compute_scratch_bo);
4584 break;
4585 default:
4586 break;
4587 }
4588
4589 if (gds_bo)
4590 radv_cs_add_buffer(ws, cs, gds_bo);
4591 if (gds_oa_bo)
4592 radv_cs_add_buffer(ws, cs, gds_oa_bo);
4593
4594 if (i < 2) {
4595 /* The two initial preambles have a cache flush at the beginning. */
4596 const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
4597 const bool is_mec = queue->qf == RADV_QUEUE_COMPUTE && gfx_level >= GFX7;
4598 enum radv_cmd_flush_bits flush_bits = RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE |
4599 RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2 |
4600 RADV_CMD_FLAG_START_PIPELINE_STATS;
4601
4602 if (i == 0) {
4603 /* The full flush preamble should also wait for previous shader work to finish. */
4604 flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
4605 if (queue->qf == RADV_QUEUE_GENERAL)
4606 flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
4607 }
4608
4609 si_cs_emit_cache_flush(cs, gfx_level, NULL, 0, is_mec, flush_bits, &sqtt_flush_bits, 0);
4610 }
4611
4612 result = ws->cs_finalize(cs);
4613 if (result != VK_SUCCESS)
4614 goto fail;
4615 }
4616
4617 if (queue->initial_full_flush_preamble_cs)
4618 ws->cs_destroy(queue->initial_full_flush_preamble_cs);
4619
4620 if (queue->initial_preamble_cs)
4621 ws->cs_destroy(queue->initial_preamble_cs);
4622
4623 if (queue->continue_preamble_cs)
4624 ws->cs_destroy(queue->continue_preamble_cs);
4625
4626 queue->initial_full_flush_preamble_cs = dest_cs[0];
4627 queue->initial_preamble_cs = dest_cs[1];
4628 queue->continue_preamble_cs = dest_cs[2];
4629
4630 if (scratch_bo != queue->scratch_bo) {
4631 if (queue->scratch_bo)
4632 ws->buffer_destroy(ws, queue->scratch_bo);
4633 queue->scratch_bo = scratch_bo;
4634 }
4635
4636 if (compute_scratch_bo != queue->compute_scratch_bo) {
4637 if (queue->compute_scratch_bo)
4638 ws->buffer_destroy(ws, queue->compute_scratch_bo);
4639 queue->compute_scratch_bo = compute_scratch_bo;
4640 }
4641
4642 if (esgs_ring_bo != queue->esgs_ring_bo) {
4643 if (queue->esgs_ring_bo)
4644 ws->buffer_destroy(ws, queue->esgs_ring_bo);
4645 queue->esgs_ring_bo = esgs_ring_bo;
4646 }
4647
4648 if (gsvs_ring_bo != queue->gsvs_ring_bo) {
4649 if (queue->gsvs_ring_bo)
4650 ws->buffer_destroy(ws, queue->gsvs_ring_bo);
4651 queue->gsvs_ring_bo = gsvs_ring_bo;
4652 }
4653
4654 if (descriptor_bo != queue->descriptor_bo) {
4655 if (queue->descriptor_bo)
4656 ws->buffer_destroy(ws, queue->descriptor_bo);
4657 queue->descriptor_bo = descriptor_bo;
4658 }
4659
4660 queue->tess_rings_bo = tess_rings_bo;
4661 queue->task_rings_bo = task_rings_bo;
4662 queue->mesh_scratch_ring_bo = mesh_scratch_ring_bo;
4663 queue->gds_bo = gds_bo;
4664 queue->gds_oa_bo = gds_oa_bo;
4665 queue->ring_info = *needs;
4666 return VK_SUCCESS;
4667 fail:
4668 for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i)
4669 if (dest_cs[i])
4670 ws->cs_destroy(dest_cs[i]);
4671 if (descriptor_bo && descriptor_bo != queue->descriptor_bo)
4672 ws->buffer_destroy(ws, descriptor_bo);
4673 if (scratch_bo && scratch_bo != queue->scratch_bo)
4674 ws->buffer_destroy(ws, scratch_bo);
4675 if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo)
4676 ws->buffer_destroy(ws, compute_scratch_bo);
4677 if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo)
4678 ws->buffer_destroy(ws, esgs_ring_bo);
4679 if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo)
4680 ws->buffer_destroy(ws, gsvs_ring_bo);
4681 if (tess_rings_bo && tess_rings_bo != queue->tess_rings_bo)
4682 ws->buffer_destroy(ws, tess_rings_bo);
4683 if (task_rings_bo && task_rings_bo != queue->task_rings_bo)
4684 ws->buffer_destroy(ws, task_rings_bo);
4685 if (gds_bo && gds_bo != queue->gds_bo)
4686 ws->buffer_destroy(ws, gds_bo);
4687 if (gds_oa_bo && gds_oa_bo != queue->gds_oa_bo)
4688 ws->buffer_destroy(ws, gds_oa_bo);
4689
4690 return vk_error(queue, result);
4691 }
4692
4693 static struct radeon_cmdbuf *
radv_create_perf_counter_lock_cs(struct radv_device * device,unsigned pass,bool unlock)4694 radv_create_perf_counter_lock_cs(struct radv_device *device, unsigned pass, bool unlock)
4695 {
4696 struct radeon_cmdbuf **cs_ref = &device->perf_counter_lock_cs[pass * 2 + (unlock ? 1 : 0)];
4697 struct radeon_cmdbuf *cs;
4698
4699 if (*cs_ref)
4700 return *cs_ref;
4701
4702 cs = device->ws->cs_create(device->ws, AMD_IP_GFX);
4703 if (!cs)
4704 return NULL;
4705
4706 ASSERTED unsigned cdw = radeon_check_space(device->ws, cs, 21);
4707
4708 if (!unlock) {
4709 uint64_t mutex_va = radv_buffer_get_va(device->perf_counter_bo) + PERF_CTR_BO_LOCK_OFFSET;
4710 radeon_emit(cs, PKT3(PKT3_ATOMIC_MEM, 7, 0));
4711 radeon_emit(cs, ATOMIC_OP(TC_OP_ATOMIC_CMPSWAP_32) | ATOMIC_COMMAND(ATOMIC_COMMAND_LOOP));
4712 radeon_emit(cs, mutex_va); /* addr lo */
4713 radeon_emit(cs, mutex_va >> 32); /* addr hi */
4714 radeon_emit(cs, 1); /* data lo */
4715 radeon_emit(cs, 0); /* data hi */
4716 radeon_emit(cs, 0); /* compare data lo */
4717 radeon_emit(cs, 0); /* compare data hi */
4718 radeon_emit(cs, 10); /* loop interval */
4719 }
4720
4721 uint64_t va = radv_buffer_get_va(device->perf_counter_bo) + PERF_CTR_BO_PASS_OFFSET;
4722 uint64_t unset_va = va + (unlock ? 8 * pass : 0);
4723 uint64_t set_va = va + (unlock ? 0 : 8 * pass);
4724
4725 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
4726 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
4727 COPY_DATA_COUNT_SEL | COPY_DATA_WR_CONFIRM);
4728 radeon_emit(cs, 0); /* immediate */
4729 radeon_emit(cs, 0);
4730 radeon_emit(cs, unset_va);
4731 radeon_emit(cs, unset_va >> 32);
4732
4733 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
4734 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
4735 COPY_DATA_COUNT_SEL | COPY_DATA_WR_CONFIRM);
4736 radeon_emit(cs, 1); /* immediate */
4737 radeon_emit(cs, 0);
4738 radeon_emit(cs, set_va);
4739 radeon_emit(cs, set_va >> 32);
4740
4741 if (unlock) {
4742 uint64_t mutex_va = radv_buffer_get_va(device->perf_counter_bo) + PERF_CTR_BO_LOCK_OFFSET;
4743
4744 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
4745 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
4746 COPY_DATA_COUNT_SEL | COPY_DATA_WR_CONFIRM);
4747 radeon_emit(cs, 0); /* immediate */
4748 radeon_emit(cs, 0);
4749 radeon_emit(cs, mutex_va);
4750 radeon_emit(cs, mutex_va >> 32);
4751 }
4752
4753 assert(cs->cdw <= cdw);
4754
4755 VkResult result = device->ws->cs_finalize(cs);
4756 if (result != VK_SUCCESS) {
4757 device->ws->cs_destroy(cs);
4758 return NULL;
4759 }
4760
4761 /* All the casts are to avoid MSVC errors around pointer truncation in a non-taken
4762 * alternative.
4763 */
4764 if (p_atomic_cmpxchg((uintptr_t*)cs_ref, 0, (uintptr_t)cs) != 0) {
4765 device->ws->cs_destroy(cs);
4766 }
4767
4768 return *cs_ref;
4769 }
4770
4771 static VkResult
radv_sparse_buffer_bind_memory(struct radv_device * device,const VkSparseBufferMemoryBindInfo * bind)4772 radv_sparse_buffer_bind_memory(struct radv_device *device, const VkSparseBufferMemoryBindInfo *bind)
4773 {
4774 RADV_FROM_HANDLE(radv_buffer, buffer, bind->buffer);
4775 VkResult result;
4776
4777 for (uint32_t i = 0; i < bind->bindCount; ++i) {
4778 struct radv_device_memory *mem = NULL;
4779
4780 if (bind->pBinds[i].memory != VK_NULL_HANDLE)
4781 mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
4782
4783 result = device->ws->buffer_virtual_bind(device->ws, buffer->bo,
4784 bind->pBinds[i].resourceOffset, bind->pBinds[i].size,
4785 mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset);
4786 if (result != VK_SUCCESS)
4787 return result;
4788 }
4789
4790 return VK_SUCCESS;
4791 }
4792
4793 static VkResult
radv_sparse_image_opaque_bind_memory(struct radv_device * device,const VkSparseImageOpaqueMemoryBindInfo * bind)4794 radv_sparse_image_opaque_bind_memory(struct radv_device *device,
4795 const VkSparseImageOpaqueMemoryBindInfo *bind)
4796 {
4797 RADV_FROM_HANDLE(radv_image, image, bind->image);
4798 VkResult result;
4799
4800 for (uint32_t i = 0; i < bind->bindCount; ++i) {
4801 struct radv_device_memory *mem = NULL;
4802
4803 if (bind->pBinds[i].memory != VK_NULL_HANDLE)
4804 mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
4805
4806 result = device->ws->buffer_virtual_bind(device->ws, image->bindings[0].bo,
4807 bind->pBinds[i].resourceOffset, bind->pBinds[i].size,
4808 mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset);
4809 if (result != VK_SUCCESS)
4810 return result;
4811 }
4812
4813 return VK_SUCCESS;
4814 }
4815
4816 static VkResult
radv_sparse_image_bind_memory(struct radv_device * device,const VkSparseImageMemoryBindInfo * bind)4817 radv_sparse_image_bind_memory(struct radv_device *device, const VkSparseImageMemoryBindInfo *bind)
4818 {
4819 RADV_FROM_HANDLE(radv_image, image, bind->image);
4820 struct radeon_surf *surface = &image->planes[0].surface;
4821 uint32_t bs = vk_format_get_blocksize(image->vk.format);
4822 VkResult result;
4823
4824 for (uint32_t i = 0; i < bind->bindCount; ++i) {
4825 struct radv_device_memory *mem = NULL;
4826 uint32_t offset, pitch;
4827 uint32_t mem_offset = bind->pBinds[i].memoryOffset;
4828 const uint32_t layer = bind->pBinds[i].subresource.arrayLayer;
4829 const uint32_t level = bind->pBinds[i].subresource.mipLevel;
4830
4831 VkExtent3D bind_extent = bind->pBinds[i].extent;
4832 bind_extent.width =
4833 DIV_ROUND_UP(bind_extent.width, vk_format_get_blockwidth(image->vk.format));
4834 bind_extent.height =
4835 DIV_ROUND_UP(bind_extent.height, vk_format_get_blockheight(image->vk.format));
4836
4837 VkOffset3D bind_offset = bind->pBinds[i].offset;
4838 bind_offset.x /= vk_format_get_blockwidth(image->vk.format);
4839 bind_offset.y /= vk_format_get_blockheight(image->vk.format);
4840
4841 if (bind->pBinds[i].memory != VK_NULL_HANDLE)
4842 mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
4843
4844 if (device->physical_device->rad_info.gfx_level >= GFX9) {
4845 offset = surface->u.gfx9.surf_slice_size * layer + surface->u.gfx9.prt_level_offset[level];
4846 pitch = surface->u.gfx9.prt_level_pitch[level];
4847 } else {
4848 offset = (uint64_t)surface->u.legacy.level[level].offset_256B * 256 +
4849 surface->u.legacy.level[level].slice_size_dw * 4 * layer;
4850 pitch = surface->u.legacy.level[level].nblk_x;
4851 }
4852
4853 offset += (bind_offset.y * pitch * bs) + (bind_offset.x * surface->prt_tile_height * bs);
4854
4855 uint32_t aligned_extent_width = ALIGN(bind_extent.width, surface->prt_tile_width);
4856
4857 bool whole_subres = bind_offset.x == 0 && aligned_extent_width == pitch;
4858
4859 if (whole_subres) {
4860 uint32_t aligned_extent_height = ALIGN(bind_extent.height, surface->prt_tile_height);
4861
4862 uint32_t size = aligned_extent_width * aligned_extent_height * bs;
4863 result = device->ws->buffer_virtual_bind(device->ws, image->bindings[0].bo, offset, size,
4864 mem ? mem->bo : NULL, mem_offset);
4865 if (result != VK_SUCCESS)
4866 return result;
4867 } else {
4868 uint32_t img_increment = pitch * bs;
4869 uint32_t mem_increment = aligned_extent_width * bs;
4870 uint32_t size = mem_increment * surface->prt_tile_height;
4871 for (unsigned y = 0; y < bind_extent.height; y += surface->prt_tile_height) {
4872 result = device->ws->buffer_virtual_bind(device->ws,
4873 image->bindings[0].bo, offset + img_increment * y, size, mem ? mem->bo : NULL,
4874 mem_offset + mem_increment * y);
4875 if (result != VK_SUCCESS)
4876 return result;
4877 }
4878 }
4879 }
4880
4881 return VK_SUCCESS;
4882 }
4883
4884 static VkResult
radv_update_preambles(struct radv_queue_state * queue,struct radv_device * device,struct vk_command_buffer * const * cmd_buffers,uint32_t cmd_buffer_count,bool * uses_perf_counters)4885 radv_update_preambles(struct radv_queue_state *queue, struct radv_device *device,
4886 struct vk_command_buffer *const *cmd_buffers, uint32_t cmd_buffer_count,
4887 bool *uses_perf_counters)
4888 {
4889 if (queue->qf == RADV_QUEUE_TRANSFER)
4890 return VK_SUCCESS;
4891
4892 /* Figure out the needs of the current submission.
4893 * Start by copying the queue's current info.
4894 * This is done because we only allow two possible behaviours for these buffers:
4895 * - Grow when the newly needed amount is larger than what we had
4896 * - Allocate the max size and reuse it, but don't free it until the queue is destroyed
4897 */
4898 struct radv_queue_ring_info needs = queue->ring_info;
4899 *uses_perf_counters = false;
4900 for (uint32_t j = 0; j < cmd_buffer_count; j++) {
4901 struct radv_cmd_buffer *cmd_buffer = container_of(cmd_buffers[j], struct radv_cmd_buffer, vk);
4902
4903 needs.scratch_size_per_wave =
4904 MAX2(needs.scratch_size_per_wave, cmd_buffer->scratch_size_per_wave_needed);
4905 needs.scratch_waves = MAX2(needs.scratch_waves, cmd_buffer->scratch_waves_wanted);
4906 needs.compute_scratch_size_per_wave = MAX2(needs.compute_scratch_size_per_wave,
4907 cmd_buffer->compute_scratch_size_per_wave_needed);
4908 needs.compute_scratch_waves =
4909 MAX2(needs.compute_scratch_waves, cmd_buffer->compute_scratch_waves_wanted);
4910 needs.esgs_ring_size = MAX2(needs.esgs_ring_size, cmd_buffer->esgs_ring_size_needed);
4911 needs.gsvs_ring_size = MAX2(needs.gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed);
4912 needs.tess_rings |= cmd_buffer->tess_rings_needed;
4913 needs.task_rings |= cmd_buffer->task_rings_needed;
4914 needs.mesh_scratch_ring |= cmd_buffer->mesh_scratch_ring_needed;
4915 needs.gds |= cmd_buffer->gds_needed;
4916 needs.gds_oa |= cmd_buffer->gds_oa_needed;
4917 needs.sample_positions |= cmd_buffer->sample_positions_needed;
4918 *uses_perf_counters |= cmd_buffer->state.uses_perf_counters;
4919 }
4920
4921 /* Sanitize scratch size information. */
4922 needs.scratch_waves = needs.scratch_size_per_wave
4923 ? MIN2(needs.scratch_waves, UINT32_MAX / needs.scratch_size_per_wave)
4924 : 0;
4925 needs.compute_scratch_waves =
4926 needs.compute_scratch_size_per_wave
4927 ? MIN2(needs.compute_scratch_waves, UINT32_MAX / needs.compute_scratch_size_per_wave)
4928 : 0;
4929
4930 /* Return early if we already match these needs.
4931 * Note that it's not possible for any of the needed values to be less
4932 * than what the queue already had, because we only ever increase the allocated size.
4933 */
4934 if (queue->initial_full_flush_preamble_cs &&
4935 queue->ring_info.scratch_size_per_wave == needs.scratch_size_per_wave &&
4936 queue->ring_info.scratch_waves == needs.scratch_waves &&
4937 queue->ring_info.compute_scratch_size_per_wave == needs.compute_scratch_size_per_wave &&
4938 queue->ring_info.compute_scratch_waves == needs.compute_scratch_waves &&
4939 queue->ring_info.esgs_ring_size == needs.esgs_ring_size &&
4940 queue->ring_info.gsvs_ring_size == needs.gsvs_ring_size &&
4941 queue->ring_info.tess_rings == needs.tess_rings &&
4942 queue->ring_info.task_rings == needs.task_rings &&
4943 queue->ring_info.mesh_scratch_ring == needs.mesh_scratch_ring &&
4944 queue->ring_info.gds == needs.gds &&
4945 queue->ring_info.gds_oa == needs.gds_oa &&
4946 queue->ring_info.sample_positions == needs.sample_positions)
4947 return VK_SUCCESS;
4948
4949 return radv_update_preamble_cs(queue, device, &needs);
4950 }
4951
4952 static VkResult
radv_update_ace_preambles(struct radv_queue * queue)4953 radv_update_ace_preambles(struct radv_queue *queue)
4954 {
4955 if (!radv_queue_init_ace_internal_state(queue))
4956 return VK_ERROR_OUT_OF_HOST_MEMORY;
4957
4958 /* Copy task rings state.
4959 * Task shaders that are submitted on the ACE queue need to share
4960 * their ring buffers with the mesh shaders on the GFX queue.
4961 */
4962 queue->ace_internal_state->ring_info.task_rings = queue->state.ring_info.task_rings;
4963 queue->ace_internal_state->task_rings_bo = queue->state.task_rings_bo;
4964
4965 /* Copy some needed states from the parent queue state.
4966 * These can only increase so it's okay to copy them as-is without checking.
4967 * Note, task shaders use the scratch size from their graphics pipeline.
4968 */
4969 struct radv_queue_ring_info needs = queue->ace_internal_state->ring_info;
4970 needs.compute_scratch_size_per_wave = queue->state.ring_info.scratch_size_per_wave;
4971 needs.compute_scratch_waves = queue->state.ring_info.scratch_waves;
4972 needs.task_rings = queue->state.ring_info.task_rings;
4973
4974 return radv_update_preamble_cs(queue->ace_internal_state, queue->device, &needs);
4975 }
4976
4977 static bool
radv_cmd_buffer_needs_ace(const struct radv_cmd_buffer * cmd_buffer)4978 radv_cmd_buffer_needs_ace(const struct radv_cmd_buffer *cmd_buffer)
4979 {
4980 return cmd_buffer->ace_internal.cs && cmd_buffer->task_rings_needed;
4981 }
4982
4983 struct radv_deferred_queue_submission {
4984 struct radv_queue *queue;
4985 VkCommandBuffer *cmd_buffers;
4986 uint32_t cmd_buffer_count;
4987
4988 /* Sparse bindings that happen on a queue. */
4989 VkSparseBufferMemoryBindInfo *buffer_binds;
4990 uint32_t buffer_bind_count;
4991 VkSparseImageOpaqueMemoryBindInfo *image_opaque_binds;
4992 uint32_t image_opaque_bind_count;
4993 VkSparseImageMemoryBindInfo *image_binds;
4994 uint32_t image_bind_count;
4995
4996 bool flush_caches;
4997 VkPipelineStageFlags2 wait_dst_stage_mask;
4998 struct radv_semaphore_part **wait_semaphores;
4999 uint32_t wait_semaphore_count;
5000 struct radv_semaphore_part **signal_semaphores;
5001 uint32_t signal_semaphore_count;
5002 VkFence fence;
5003
5004 uint64_t *wait_values;
5005 uint64_t *signal_values;
5006
5007 struct radv_semaphore_part *temporary_semaphore_parts;
5008 uint32_t temporary_semaphore_part_count;
5009
5010 struct list_head queue_pending_list;
5011 uint32_t submission_wait_count;
5012
5013 struct list_head processing_list;
5014 };
5015
5016 static VkResult
radv_queue_submit_bind_sparse_memory(struct radv_device * device,struct vk_queue_submit * submission)5017 radv_queue_submit_bind_sparse_memory(struct radv_device *device, struct vk_queue_submit *submission)
5018 {
5019 for (uint32_t i = 0; i < submission->buffer_bind_count; ++i) {
5020 VkResult result = radv_sparse_buffer_bind_memory(device, submission->buffer_binds + i);
5021 if (result != VK_SUCCESS)
5022 return result;
5023 }
5024
5025 for (uint32_t i = 0; i < submission->image_opaque_bind_count; ++i) {
5026 VkResult result =
5027 radv_sparse_image_opaque_bind_memory(device, submission->image_opaque_binds + i);
5028 if (result != VK_SUCCESS)
5029 return result;
5030 }
5031
5032 for (uint32_t i = 0; i < submission->image_bind_count; ++i) {
5033 VkResult result = radv_sparse_image_bind_memory(device, submission->image_binds + i);
5034 if (result != VK_SUCCESS)
5035 return result;
5036 }
5037
5038 return VK_SUCCESS;
5039 }
5040
5041 static VkResult
radv_queue_submit_empty(struct radv_queue * queue,struct vk_queue_submit * submission)5042 radv_queue_submit_empty(struct radv_queue *queue, struct vk_queue_submit *submission)
5043 {
5044 struct radeon_winsys_ctx *ctx = queue->hw_ctx;
5045 struct radv_winsys_submit_info submit = {
5046 .ip_type = radv_queue_ring(queue),
5047 .queue_index = queue->vk.index_in_family,
5048 };
5049
5050 return queue->device->ws->cs_submit(ctx, 1, &submit, submission->wait_count, submission->waits,
5051 submission->signal_count, submission->signals, false);
5052 }
5053
5054 static VkResult
radv_queue_submit_with_ace(struct radv_queue * queue,struct vk_queue_submit * submission,struct radeon_cmdbuf ** cs_array,unsigned cs_count,unsigned cs_offset,bool can_patch)5055 radv_queue_submit_with_ace(struct radv_queue *queue, struct vk_queue_submit *submission,
5056 struct radeon_cmdbuf **cs_array, unsigned cs_count, unsigned cs_offset,
5057 bool can_patch)
5058 {
5059 /* Submits command buffers that may have an internal ACE cmdbuf
5060 * using scheduled dependencies. This guarantees that the GFX cmdbuf
5061 * is only scheduled after ACE.
5062 *
5063 * TODO: Unfortunately this is prone to a deadlock, so is considered a
5064 * temporary solution until gang submit is merged in the upstream kernel.
5065 */
5066 struct radeon_winsys_ctx *ctx = queue->hw_ctx;
5067 const uint32_t max_cs_submission = queue->device->trace_bo ? 1 : RADV_MAX_IBS_PER_SUBMIT;
5068 const bool need_wait = submission->wait_count > 0;
5069 VkResult result = VK_SUCCESS;
5070
5071 struct radeon_cmdbuf **ace_cs_array = calloc(max_cs_submission, sizeof(struct radeon_cmdbuf *));
5072 if (!ace_cs_array) {
5073 result = VK_ERROR_OUT_OF_HOST_MEMORY;
5074 goto finish;
5075 }
5076
5077 result = radv_update_ace_preambles(queue);
5078 if (result != VK_SUCCESS)
5079 goto finish;
5080
5081 struct radv_winsys_submit_info submit[2] = {
5082 {
5083 .ip_type = AMD_IP_COMPUTE,
5084 .cs_array = ace_cs_array,
5085 .cs_count = 0,
5086 .initial_preamble_cs = need_wait
5087 ? queue->ace_internal_state->initial_full_flush_preamble_cs
5088 : queue->ace_internal_state->initial_preamble_cs,
5089 },
5090 {
5091 .ip_type = radv_queue_ring(queue),
5092 .queue_index = queue->vk.index_in_family,
5093 .cs_array = cs_array,
5094 .cs_count = 0,
5095 .initial_preamble_cs = need_wait ? queue->state.initial_full_flush_preamble_cs
5096 : queue->state.initial_preamble_cs,
5097 }};
5098
5099 for (uint32_t advance, j = 0; j < cs_count; j += advance) {
5100 advance = MIN2(max_cs_submission, cs_count - j);
5101 bool last_submit = j + advance == cs_count;
5102
5103 if (queue->device->trace_bo)
5104 *queue->device->trace_id_ptr = 0;
5105
5106 for (unsigned c = 0; c < advance; ++c) {
5107 const struct radv_cmd_buffer *cmd_buffer =
5108 (struct radv_cmd_buffer *)submission->command_buffers[j + c + cs_offset];
5109 if (!radv_cmd_buffer_needs_ace(cmd_buffer))
5110 continue;
5111
5112 submit[0].cs_array[submit[0].cs_count++] = cmd_buffer->ace_internal.cs;
5113 }
5114
5115 const uint32_t submit_count = 1 + !!submit[0].cs_count;
5116 const struct radv_winsys_submit_info *submit_ptr = submit + !submit[0].cs_count;
5117 submit[1].cs_count = advance;
5118
5119 result = queue->device->ws->cs_submit(
5120 ctx, submit_count, submit_ptr, j == 0 ? submission->wait_count : 0, submission->waits,
5121 last_submit ? submission->signal_count : 0, submission->signals, can_patch);
5122
5123 if (result != VK_SUCCESS)
5124 goto finish;
5125
5126 if (queue->device->trace_bo) {
5127 radv_check_gpu_hangs(queue, cs_array[j]);
5128 }
5129
5130 if (queue->device->tma_bo) {
5131 radv_check_trap_handler(queue);
5132 }
5133
5134 submit[1].cs_array += submit[1].cs_count;
5135 submit[1].initial_preamble_cs = queue->state.initial_preamble_cs;
5136 submit[0].cs_count = 0;
5137 submit[0].initial_preamble_cs = queue->ace_internal_state->initial_preamble_cs;
5138 }
5139
5140 finish:
5141 free(ace_cs_array);
5142 return result;
5143 }
5144
5145 static VkResult
radv_queue_submit_normal(struct radv_queue * queue,struct vk_queue_submit * submission)5146 radv_queue_submit_normal(struct radv_queue *queue, struct vk_queue_submit *submission)
5147 {
5148 struct radeon_winsys_ctx *ctx = queue->hw_ctx;
5149 uint32_t max_cs_submission = queue->device->trace_bo ? 1 : RADV_MAX_IBS_PER_SUBMIT;
5150 bool can_patch = true;
5151 bool use_ace = false;
5152 uint32_t advance;
5153 VkResult result;
5154 bool uses_perf_counters = false;
5155
5156 result = radv_update_preambles(&queue->state, queue->device, submission->command_buffers,
5157 submission->command_buffer_count, &uses_perf_counters);
5158 if (result != VK_SUCCESS)
5159 return result;
5160
5161 if (queue->device->trace_bo)
5162 simple_mtx_lock(&queue->device->trace_mtx);
5163
5164 const unsigned cs_offset = uses_perf_counters ? 1 : 0;
5165 const unsigned cmd_buffer_count =
5166 submission->command_buffer_count + (uses_perf_counters ? 2 : 0);
5167
5168 struct radeon_cmdbuf **cs_array = malloc(sizeof(struct radeon_cmdbuf *) * cmd_buffer_count);
5169 if (!cs_array)
5170 goto fail;
5171
5172 for (uint32_t j = 0; j < submission->command_buffer_count; j++) {
5173 struct radv_cmd_buffer *cmd_buffer = (struct radv_cmd_buffer *)submission->command_buffers[j];
5174 assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5175
5176 cs_array[j + cs_offset] = cmd_buffer->cs;
5177 if ((cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
5178 can_patch = false;
5179
5180 cmd_buffer->status = RADV_CMD_BUFFER_STATUS_PENDING;
5181 use_ace |= radv_cmd_buffer_needs_ace(cmd_buffer);
5182 }
5183
5184 if (uses_perf_counters) {
5185 cs_array[0] =
5186 radv_create_perf_counter_lock_cs(queue->device, submission->perf_pass_index, false);
5187 cs_array[cmd_buffer_count - 1] =
5188 radv_create_perf_counter_lock_cs(queue->device, submission->perf_pass_index, true);
5189 can_patch = false;
5190 if (!cs_array[0] || !cs_array[cmd_buffer_count - 1]) {
5191 result = VK_ERROR_OUT_OF_HOST_MEMORY;
5192 goto fail;
5193 }
5194 }
5195
5196 if (use_ace) {
5197 result = radv_queue_submit_with_ace(queue, submission, cs_array, cmd_buffer_count, cs_offset,
5198 can_patch);
5199 goto fail;
5200 }
5201
5202 /* For fences on the same queue/vm amdgpu doesn't wait till all processing is finished
5203 * before starting the next cmdbuffer, so we need to do it here. */
5204 bool need_wait = submission->wait_count > 0;
5205
5206 struct radv_winsys_submit_info submit = {
5207 .ip_type = radv_queue_ring(queue),
5208 .queue_index = queue->vk.index_in_family,
5209 .cs_array = cs_array,
5210 .cs_count = 0,
5211 .initial_preamble_cs =
5212 need_wait ? queue->state.initial_full_flush_preamble_cs : queue->state.initial_preamble_cs,
5213 .continue_preamble_cs = queue->state.continue_preamble_cs,
5214 };
5215
5216 for (uint32_t j = 0; j < cmd_buffer_count; j += advance) {
5217 advance = MIN2(max_cs_submission, cmd_buffer_count - j);
5218 bool last_submit = j + advance == cmd_buffer_count;
5219
5220 if (queue->device->trace_bo)
5221 *queue->device->trace_id_ptr = 0;
5222
5223 submit.cs_count = advance;
5224
5225 result = queue->device->ws->cs_submit(
5226 ctx, 1, &submit, j == 0 ? submission->wait_count : 0, submission->waits,
5227 last_submit ? submission->signal_count : 0, submission->signals, can_patch);
5228
5229 if (result != VK_SUCCESS)
5230 goto fail;
5231
5232 if (queue->device->trace_bo) {
5233 radv_check_gpu_hangs(queue, cs_array[j]);
5234 }
5235
5236 if (queue->device->tma_bo) {
5237 radv_check_trap_handler(queue);
5238 }
5239
5240 submit.cs_array += advance;
5241 submit.initial_preamble_cs = queue->state.initial_preamble_cs;
5242 }
5243
5244 fail:
5245 free(cs_array);
5246 if (queue->device->trace_bo)
5247 simple_mtx_unlock(&queue->device->trace_mtx);
5248
5249 return result;
5250 }
5251
5252 static VkResult
radv_queue_submit(struct vk_queue * vqueue,struct vk_queue_submit * submission)5253 radv_queue_submit(struct vk_queue *vqueue, struct vk_queue_submit *submission)
5254 {
5255 struct radv_queue *queue = (struct radv_queue *)vqueue;
5256 VkResult result;
5257
5258 result = radv_queue_submit_bind_sparse_memory(queue->device, submission);
5259 if (result != VK_SUCCESS)
5260 goto fail;
5261
5262 if (!submission->command_buffer_count && !submission->wait_count && !submission->signal_count)
5263 return VK_SUCCESS;
5264
5265 if (!submission->command_buffer_count) {
5266 result = radv_queue_submit_empty(queue, submission);
5267 } else {
5268 result = radv_queue_submit_normal(queue, submission);
5269 }
5270
5271 fail:
5272 if (result != VK_SUCCESS && result != VK_ERROR_DEVICE_LOST) {
5273 /* When something bad happened during the submission, such as
5274 * an out of memory issue, it might be hard to recover from
5275 * this inconsistent state. To avoid this sort of problem, we
5276 * assume that we are in a really bad situation and return
5277 * VK_ERROR_DEVICE_LOST to ensure the clients do not attempt
5278 * to submit the same job again to this device.
5279 */
5280 result = vk_device_set_lost(&queue->device->vk, "vkQueueSubmit() failed");
5281 }
5282 return result;
5283 }
5284
5285 bool
radv_queue_internal_submit(struct radv_queue * queue,struct radeon_cmdbuf * cs)5286 radv_queue_internal_submit(struct radv_queue *queue, struct radeon_cmdbuf *cs)
5287 {
5288 struct radeon_winsys_ctx *ctx = queue->hw_ctx;
5289 struct radv_winsys_submit_info submit = {
5290 .ip_type = radv_queue_ring(queue),
5291 .queue_index = queue->vk.index_in_family,
5292 .cs_array = &cs,
5293 .cs_count = 1,
5294 };
5295
5296 VkResult result = queue->device->ws->cs_submit(ctx, 1, &submit, 0, NULL, 0, NULL, false);
5297 if (result != VK_SUCCESS)
5298 return false;
5299
5300 return true;
5301 }
5302
5303 VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumerateInstanceExtensionProperties(const char * pLayerName,uint32_t * pPropertyCount,VkExtensionProperties * pProperties)5304 radv_EnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pPropertyCount,
5305 VkExtensionProperties *pProperties)
5306 {
5307 if (pLayerName)
5308 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
5309
5310 return vk_enumerate_instance_extension_properties(&radv_instance_extensions_supported,
5311 pPropertyCount, pProperties);
5312 }
5313
5314 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
radv_GetInstanceProcAddr(VkInstance _instance,const char * pName)5315 radv_GetInstanceProcAddr(VkInstance _instance, const char *pName)
5316 {
5317 RADV_FROM_HANDLE(radv_instance, instance, _instance);
5318
5319 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
5320 * when we have to return valid function pointers, NULL, or it's left
5321 * undefined. See the table for exact details.
5322 */
5323 if (pName == NULL)
5324 return NULL;
5325
5326 #define LOOKUP_RADV_ENTRYPOINT(entrypoint) \
5327 if (strcmp(pName, "vk" #entrypoint) == 0) \
5328 return (PFN_vkVoidFunction)radv_##entrypoint
5329
5330 LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
5331 LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceLayerProperties);
5332 LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceVersion);
5333 LOOKUP_RADV_ENTRYPOINT(CreateInstance);
5334
5335 /* GetInstanceProcAddr() can also be called with a NULL instance.
5336 * See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
5337 */
5338 LOOKUP_RADV_ENTRYPOINT(GetInstanceProcAddr);
5339
5340 #undef LOOKUP_RADV_ENTRYPOINT
5341
5342 if (instance == NULL)
5343 return NULL;
5344
5345 return vk_instance_get_proc_addr(&instance->vk, &radv_instance_entrypoints, pName);
5346 }
5347
5348 /* Windows will use a dll definition file to avoid build errors. */
5349 #ifdef _WIN32
5350 #undef PUBLIC
5351 #define PUBLIC
5352 #endif
5353
5354 /* The loader wants us to expose a second GetInstanceProcAddr function
5355 * to work around certain LD_PRELOAD issues seen in apps.
5356 */
5357 PUBLIC
5358 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
vk_icdGetInstanceProcAddr(VkInstance instance,const char * pName)5359 vk_icdGetInstanceProcAddr(VkInstance instance, const char *pName)
5360 {
5361 return radv_GetInstanceProcAddr(instance, pName);
5362 }
5363
5364 PUBLIC
5365 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
vk_icdGetPhysicalDeviceProcAddr(VkInstance _instance,const char * pName)5366 vk_icdGetPhysicalDeviceProcAddr(VkInstance _instance, const char *pName)
5367 {
5368 RADV_FROM_HANDLE(radv_instance, instance, _instance);
5369 return vk_instance_get_physical_device_proc_addr(&instance->vk, pName);
5370 }
5371
5372 bool
radv_get_memory_fd(struct radv_device * device,struct radv_device_memory * memory,int * pFD)5373 radv_get_memory_fd(struct radv_device *device, struct radv_device_memory *memory, int *pFD)
5374 {
5375 /* Only set BO metadata for the first plane */
5376 if (memory->image && memory->image->bindings[0].offset == 0) {
5377 struct radeon_bo_metadata metadata;
5378 radv_init_metadata(device, memory->image, &metadata);
5379 device->ws->buffer_set_metadata(device->ws, memory->bo, &metadata);
5380 }
5381
5382 return device->ws->buffer_get_fd(device->ws, memory->bo, pFD);
5383 }
5384
5385 void
radv_device_memory_init(struct radv_device_memory * mem,struct radv_device * device,struct radeon_winsys_bo * bo)5386 radv_device_memory_init(struct radv_device_memory *mem, struct radv_device *device,
5387 struct radeon_winsys_bo *bo)
5388 {
5389 memset(mem, 0, sizeof(*mem));
5390 vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
5391
5392 mem->bo = bo;
5393 }
5394
5395 void
radv_device_memory_finish(struct radv_device_memory * mem)5396 radv_device_memory_finish(struct radv_device_memory *mem)
5397 {
5398 vk_object_base_finish(&mem->base);
5399 }
5400
5401 void
radv_free_memory(struct radv_device * device,const VkAllocationCallbacks * pAllocator,struct radv_device_memory * mem)5402 radv_free_memory(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
5403 struct radv_device_memory *mem)
5404 {
5405 if (mem == NULL)
5406 return;
5407
5408 #if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
5409 if (mem->android_hardware_buffer)
5410 AHardwareBuffer_release(mem->android_hardware_buffer);
5411 #endif
5412
5413 if (mem->bo) {
5414 if (device->overallocation_disallowed) {
5415 mtx_lock(&device->overallocation_mutex);
5416 device->allocated_memory_size[mem->heap_index] -= mem->alloc_size;
5417 mtx_unlock(&device->overallocation_mutex);
5418 }
5419
5420 if (device->use_global_bo_list)
5421 device->ws->buffer_make_resident(device->ws, mem->bo, false);
5422 device->ws->buffer_destroy(device->ws, mem->bo);
5423 mem->bo = NULL;
5424 }
5425
5426 radv_device_memory_finish(mem);
5427 vk_free2(&device->vk.alloc, pAllocator, mem);
5428 }
5429
5430 static VkResult
radv_alloc_memory(struct radv_device * device,const VkMemoryAllocateInfo * pAllocateInfo,const VkAllocationCallbacks * pAllocator,VkDeviceMemory * pMem)5431 radv_alloc_memory(struct radv_device *device, const VkMemoryAllocateInfo *pAllocateInfo,
5432 const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMem)
5433 {
5434 struct radv_device_memory *mem;
5435 VkResult result;
5436 enum radeon_bo_domain domain;
5437 uint32_t flags = 0;
5438
5439 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
5440
5441 const VkImportMemoryFdInfoKHR *import_info =
5442 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
5443 const VkMemoryDedicatedAllocateInfo *dedicate_info =
5444 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
5445 const VkExportMemoryAllocateInfo *export_info =
5446 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
5447 const struct VkImportAndroidHardwareBufferInfoANDROID *ahb_import_info =
5448 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
5449 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
5450 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
5451
5452 const struct wsi_memory_allocate_info *wsi_info =
5453 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
5454
5455 if (pAllocateInfo->allocationSize == 0 && !ahb_import_info &&
5456 !(export_info && (export_info->handleTypes &
5457 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID))) {
5458 /* Apparently, this is allowed */
5459 *pMem = VK_NULL_HANDLE;
5460 return VK_SUCCESS;
5461 }
5462
5463 mem =
5464 vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5465 if (mem == NULL)
5466 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
5467
5468 radv_device_memory_init(mem, device, NULL);
5469
5470 if (wsi_info) {
5471 if(wsi_info->implicit_sync)
5472 flags |= RADEON_FLAG_IMPLICIT_SYNC;
5473
5474 /* In case of prime, linear buffer is allocated in default heap which is VRAM.
5475 * Due to this when display is connected to iGPU and render on dGPU, ddx
5476 * function amdgpu_present_check_flip() fails due to which there is blit
5477 * instead of flip. Setting the flag RADEON_FLAG_GTT_WC allows kernel to
5478 * allocate GTT memory in supported hardware where GTT can be directly scanout.
5479 * Using wsi_info variable check to set the flag RADEON_FLAG_GTT_WC so that
5480 * only for memory allocated by driver this flag is set.
5481 */
5482 flags |= RADEON_FLAG_GTT_WC;
5483 }
5484
5485 if (dedicate_info) {
5486 mem->image = radv_image_from_handle(dedicate_info->image);
5487 mem->buffer = radv_buffer_from_handle(dedicate_info->buffer);
5488 } else {
5489 mem->image = NULL;
5490 mem->buffer = NULL;
5491 }
5492
5493 if (wsi_info && wsi_info->implicit_sync && mem->buffer) {
5494 /* Mark the linear prime buffer (aka the destination of the prime blit
5495 * as uncached.
5496 */
5497 flags |= RADEON_FLAG_VA_UNCACHED;
5498 }
5499
5500 float priority_float = 0.5;
5501 const struct VkMemoryPriorityAllocateInfoEXT *priority_ext =
5502 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_PRIORITY_ALLOCATE_INFO_EXT);
5503 if (priority_ext)
5504 priority_float = priority_ext->priority;
5505
5506 uint64_t replay_address = 0;
5507 const VkMemoryOpaqueCaptureAddressAllocateInfo *replay_info =
5508 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO);
5509 if (replay_info && replay_info->opaqueCaptureAddress)
5510 replay_address = replay_info->opaqueCaptureAddress;
5511
5512 unsigned priority = MIN2(RADV_BO_PRIORITY_APPLICATION_MAX - 1,
5513 (int)(priority_float * RADV_BO_PRIORITY_APPLICATION_MAX));
5514
5515 mem->user_ptr = NULL;
5516
5517 #if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
5518 mem->android_hardware_buffer = NULL;
5519 #endif
5520
5521 if (ahb_import_info) {
5522 result = radv_import_ahb_memory(device, mem, priority, ahb_import_info);
5523 if (result != VK_SUCCESS)
5524 goto fail;
5525 } else if (export_info && (export_info->handleTypes &
5526 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)) {
5527 result = radv_create_ahb_memory(device, mem, priority, pAllocateInfo);
5528 if (result != VK_SUCCESS)
5529 goto fail;
5530 } else if (import_info) {
5531 assert(import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
5532 import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
5533 result = device->ws->buffer_from_fd(device->ws, import_info->fd, priority, &mem->bo, NULL);
5534 if (result != VK_SUCCESS) {
5535 goto fail;
5536 } else {
5537 close(import_info->fd);
5538 }
5539
5540 if (mem->image && mem->image->plane_count == 1 &&
5541 !vk_format_is_depth_or_stencil(mem->image->vk.format) && mem->image->info.samples == 1 &&
5542 mem->image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
5543 struct radeon_bo_metadata metadata;
5544 device->ws->buffer_get_metadata(device->ws, mem->bo, &metadata);
5545
5546 struct radv_image_create_info create_info = {.no_metadata_planes = true,
5547 .bo_metadata = &metadata};
5548
5549 /* This gives a basic ability to import radeonsi images
5550 * that don't have DCC. This is not guaranteed by any
5551 * spec and can be removed after we support modifiers. */
5552 result = radv_image_create_layout(device, create_info, NULL, mem->image);
5553 if (result != VK_SUCCESS) {
5554 device->ws->buffer_destroy(device->ws, mem->bo);
5555 goto fail;
5556 }
5557 }
5558 } else if (host_ptr_info) {
5559 assert(host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
5560 result = device->ws->buffer_from_ptr(device->ws, host_ptr_info->pHostPointer,
5561 pAllocateInfo->allocationSize, priority, &mem->bo);
5562 if (result != VK_SUCCESS) {
5563 goto fail;
5564 } else {
5565 mem->user_ptr = host_ptr_info->pHostPointer;
5566 }
5567 } else {
5568 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
5569 uint32_t heap_index;
5570
5571 heap_index =
5572 device->physical_device->memory_properties.memoryTypes[pAllocateInfo->memoryTypeIndex]
5573 .heapIndex;
5574 domain = device->physical_device->memory_domains[pAllocateInfo->memoryTypeIndex];
5575 flags |= device->physical_device->memory_flags[pAllocateInfo->memoryTypeIndex];
5576
5577 if (!import_info && (!export_info || !export_info->handleTypes)) {
5578 flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
5579 if (device->use_global_bo_list) {
5580 flags |= RADEON_FLAG_PREFER_LOCAL_BO;
5581 }
5582 }
5583
5584 const VkMemoryAllocateFlagsInfo *flags_info = vk_find_struct_const(pAllocateInfo->pNext, MEMORY_ALLOCATE_FLAGS_INFO);
5585 if (flags_info && flags_info->flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT)
5586 flags |= RADEON_FLAG_REPLAYABLE;
5587
5588 if (device->instance->zero_vram)
5589 flags |= RADEON_FLAG_ZERO_VRAM;
5590
5591 if (device->overallocation_disallowed) {
5592 uint64_t total_size =
5593 device->physical_device->memory_properties.memoryHeaps[heap_index].size;
5594
5595 mtx_lock(&device->overallocation_mutex);
5596 if (device->allocated_memory_size[heap_index] + alloc_size > total_size) {
5597 mtx_unlock(&device->overallocation_mutex);
5598 result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
5599 goto fail;
5600 }
5601 device->allocated_memory_size[heap_index] += alloc_size;
5602 mtx_unlock(&device->overallocation_mutex);
5603 }
5604
5605 result = device->ws->buffer_create(device->ws, alloc_size,
5606 device->physical_device->rad_info.max_alignment, domain,
5607 flags, priority, replay_address, &mem->bo);
5608
5609 if (result != VK_SUCCESS) {
5610 if (device->overallocation_disallowed) {
5611 mtx_lock(&device->overallocation_mutex);
5612 device->allocated_memory_size[heap_index] -= alloc_size;
5613 mtx_unlock(&device->overallocation_mutex);
5614 }
5615 goto fail;
5616 }
5617
5618 mem->heap_index = heap_index;
5619 mem->alloc_size = alloc_size;
5620 }
5621
5622 if (!wsi_info) {
5623 if (device->use_global_bo_list) {
5624 result = device->ws->buffer_make_resident(device->ws, mem->bo, true);
5625 if (result != VK_SUCCESS)
5626 goto fail;
5627 }
5628 }
5629
5630 *pMem = radv_device_memory_to_handle(mem);
5631
5632 return VK_SUCCESS;
5633
5634 fail:
5635 radv_free_memory(device, pAllocator, mem);
5636
5637 return result;
5638 }
5639
5640 VKAPI_ATTR VkResult VKAPI_CALL
radv_AllocateMemory(VkDevice _device,const VkMemoryAllocateInfo * pAllocateInfo,const VkAllocationCallbacks * pAllocator,VkDeviceMemory * pMem)5641 radv_AllocateMemory(VkDevice _device, const VkMemoryAllocateInfo *pAllocateInfo,
5642 const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMem)
5643 {
5644 RADV_FROM_HANDLE(radv_device, device, _device);
5645 return radv_alloc_memory(device, pAllocateInfo, pAllocator, pMem);
5646 }
5647
5648 VKAPI_ATTR void VKAPI_CALL
radv_FreeMemory(VkDevice _device,VkDeviceMemory _mem,const VkAllocationCallbacks * pAllocator)5649 radv_FreeMemory(VkDevice _device, VkDeviceMemory _mem, const VkAllocationCallbacks *pAllocator)
5650 {
5651 RADV_FROM_HANDLE(radv_device, device, _device);
5652 RADV_FROM_HANDLE(radv_device_memory, mem, _mem);
5653
5654 radv_free_memory(device, pAllocator, mem);
5655 }
5656
5657 VKAPI_ATTR VkResult VKAPI_CALL
radv_MapMemory(VkDevice _device,VkDeviceMemory _memory,VkDeviceSize offset,VkDeviceSize size,VkMemoryMapFlags flags,void ** ppData)5658 radv_MapMemory(VkDevice _device, VkDeviceMemory _memory, VkDeviceSize offset, VkDeviceSize size,
5659 VkMemoryMapFlags flags, void **ppData)
5660 {
5661 RADV_FROM_HANDLE(radv_device, device, _device);
5662 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
5663
5664 if (mem->user_ptr)
5665 *ppData = mem->user_ptr;
5666 else
5667 *ppData = device->ws->buffer_map(mem->bo);
5668
5669 if (*ppData) {
5670 *ppData = (uint8_t *)*ppData + offset;
5671 return VK_SUCCESS;
5672 }
5673
5674 return vk_error(device, VK_ERROR_MEMORY_MAP_FAILED);
5675 }
5676
5677 VKAPI_ATTR void VKAPI_CALL
radv_UnmapMemory(VkDevice _device,VkDeviceMemory _memory)5678 radv_UnmapMemory(VkDevice _device, VkDeviceMemory _memory)
5679 {
5680 RADV_FROM_HANDLE(radv_device, device, _device);
5681 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
5682
5683 if (mem->user_ptr == NULL)
5684 device->ws->buffer_unmap(mem->bo);
5685 }
5686
5687 VKAPI_ATTR VkResult VKAPI_CALL
radv_FlushMappedMemoryRanges(VkDevice _device,uint32_t memoryRangeCount,const VkMappedMemoryRange * pMemoryRanges)5688 radv_FlushMappedMemoryRanges(VkDevice _device, uint32_t memoryRangeCount,
5689 const VkMappedMemoryRange *pMemoryRanges)
5690 {
5691 return VK_SUCCESS;
5692 }
5693
5694 VKAPI_ATTR VkResult VKAPI_CALL
radv_InvalidateMappedMemoryRanges(VkDevice _device,uint32_t memoryRangeCount,const VkMappedMemoryRange * pMemoryRanges)5695 radv_InvalidateMappedMemoryRanges(VkDevice _device, uint32_t memoryRangeCount,
5696 const VkMappedMemoryRange *pMemoryRanges)
5697 {
5698 return VK_SUCCESS;
5699 }
5700
5701 static void
radv_get_buffer_memory_requirements(struct radv_device * device,VkDeviceSize size,VkBufferCreateFlags flags,VkBufferCreateFlags usage,VkMemoryRequirements2 * pMemoryRequirements)5702 radv_get_buffer_memory_requirements(struct radv_device *device, VkDeviceSize size,
5703 VkBufferCreateFlags flags, VkBufferCreateFlags usage,
5704 VkMemoryRequirements2 *pMemoryRequirements)
5705 {
5706 pMemoryRequirements->memoryRequirements.memoryTypeBits =
5707 ((1u << device->physical_device->memory_properties.memoryTypeCount) - 1u) &
5708 ~device->physical_device->memory_types_32bit;
5709
5710 /* Allow 32-bit address-space for DGC usage, as this buffer will contain
5711 * cmd buffer upload buffers, and those get passed to shaders through 32-bit
5712 * pointers.
5713 *
5714 * We only allow it with this usage set, to "protect" the 32-bit address space
5715 * from being overused. The actual requirement is done as part of
5716 * vkGetGeneratedCommandsMemoryRequirementsNV. (we have to make sure their
5717 * intersection is non-zero at least)
5718 */
5719 if ((usage & VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT) && device->uses_device_generated_commands)
5720 pMemoryRequirements->memoryRequirements.memoryTypeBits |=
5721 device->physical_device->memory_types_32bit;
5722
5723 if (flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
5724 pMemoryRequirements->memoryRequirements.alignment = 4096;
5725 else
5726 pMemoryRequirements->memoryRequirements.alignment = 16;
5727
5728 /* Top level acceleration structures need the bottom 6 bits to store
5729 * the root ids of instances. The hardware also needs bvh nodes to
5730 * be 64 byte aligned.
5731 */
5732 if (usage & VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR)
5733 pMemoryRequirements->memoryRequirements.alignment =
5734 MAX2(pMemoryRequirements->memoryRequirements.alignment, 64);
5735
5736 pMemoryRequirements->memoryRequirements.size =
5737 align64(size, pMemoryRequirements->memoryRequirements.alignment);
5738
5739 vk_foreach_struct(ext, pMemoryRequirements->pNext)
5740 {
5741 switch (ext->sType) {
5742 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
5743 VkMemoryDedicatedRequirements *req = (VkMemoryDedicatedRequirements *)ext;
5744 req->requiresDedicatedAllocation = false;
5745 req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
5746 break;
5747 }
5748 default:
5749 break;
5750 }
5751 }
5752 }
5753
5754 VKAPI_ATTR void VKAPI_CALL
radv_GetBufferMemoryRequirements2(VkDevice _device,const VkBufferMemoryRequirementsInfo2 * pInfo,VkMemoryRequirements2 * pMemoryRequirements)5755 radv_GetBufferMemoryRequirements2(VkDevice _device, const VkBufferMemoryRequirementsInfo2 *pInfo,
5756 VkMemoryRequirements2 *pMemoryRequirements)
5757 {
5758 RADV_FROM_HANDLE(radv_device, device, _device);
5759 RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
5760
5761 radv_get_buffer_memory_requirements(device, buffer->vk.size, buffer->vk.create_flags,
5762 buffer->vk.usage, pMemoryRequirements);
5763 }
5764
5765 VKAPI_ATTR void VKAPI_CALL
radv_GetDeviceBufferMemoryRequirements(VkDevice _device,const VkDeviceBufferMemoryRequirements * pInfo,VkMemoryRequirements2 * pMemoryRequirements)5766 radv_GetDeviceBufferMemoryRequirements(VkDevice _device,
5767 const VkDeviceBufferMemoryRequirements *pInfo,
5768 VkMemoryRequirements2 *pMemoryRequirements)
5769 {
5770 RADV_FROM_HANDLE(radv_device, device, _device);
5771
5772 radv_get_buffer_memory_requirements(device, pInfo->pCreateInfo->size, pInfo->pCreateInfo->flags,
5773 pInfo->pCreateInfo->usage, pMemoryRequirements);
5774 }
5775
5776 VKAPI_ATTR void VKAPI_CALL
radv_GetImageMemoryRequirements2(VkDevice _device,const VkImageMemoryRequirementsInfo2 * pInfo,VkMemoryRequirements2 * pMemoryRequirements)5777 radv_GetImageMemoryRequirements2(VkDevice _device, const VkImageMemoryRequirementsInfo2 *pInfo,
5778 VkMemoryRequirements2 *pMemoryRequirements)
5779 {
5780 RADV_FROM_HANDLE(radv_device, device, _device);
5781 RADV_FROM_HANDLE(radv_image, image, pInfo->image);
5782
5783 pMemoryRequirements->memoryRequirements.memoryTypeBits =
5784 ((1u << device->physical_device->memory_properties.memoryTypeCount) - 1u) &
5785 ~device->physical_device->memory_types_32bit;
5786
5787 pMemoryRequirements->memoryRequirements.size = image->size;
5788 pMemoryRequirements->memoryRequirements.alignment = image->alignment;
5789
5790 vk_foreach_struct(ext, pMemoryRequirements->pNext)
5791 {
5792 switch (ext->sType) {
5793 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
5794 VkMemoryDedicatedRequirements *req = (VkMemoryDedicatedRequirements *)ext;
5795 req->requiresDedicatedAllocation =
5796 image->shareable && image->vk.tiling != VK_IMAGE_TILING_LINEAR;
5797 req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
5798 break;
5799 }
5800 default:
5801 break;
5802 }
5803 }
5804 }
5805
5806 VKAPI_ATTR void VKAPI_CALL
radv_GetDeviceImageMemoryRequirements(VkDevice device,const VkDeviceImageMemoryRequirements * pInfo,VkMemoryRequirements2 * pMemoryRequirements)5807 radv_GetDeviceImageMemoryRequirements(VkDevice device,
5808 const VkDeviceImageMemoryRequirements *pInfo,
5809 VkMemoryRequirements2 *pMemoryRequirements)
5810 {
5811 UNUSED VkResult result;
5812 VkImage image;
5813
5814 /* Determining the image size/alignment require to create a surface, which is complicated without
5815 * creating an image.
5816 * TODO: Avoid creating an image.
5817 */
5818 result = radv_CreateImage(device, pInfo->pCreateInfo, NULL, &image);
5819 assert(result == VK_SUCCESS);
5820
5821 VkImageMemoryRequirementsInfo2 info2 = {
5822 .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,
5823 .image = image,
5824 };
5825
5826 radv_GetImageMemoryRequirements2(device, &info2, pMemoryRequirements);
5827
5828 radv_DestroyImage(device, image, NULL);
5829 }
5830
5831 VKAPI_ATTR void VKAPI_CALL
radv_GetDeviceMemoryCommitment(VkDevice device,VkDeviceMemory memory,VkDeviceSize * pCommittedMemoryInBytes)5832 radv_GetDeviceMemoryCommitment(VkDevice device, VkDeviceMemory memory,
5833 VkDeviceSize *pCommittedMemoryInBytes)
5834 {
5835 *pCommittedMemoryInBytes = 0;
5836 }
5837
5838 VKAPI_ATTR VkResult VKAPI_CALL
radv_BindBufferMemory2(VkDevice _device,uint32_t bindInfoCount,const VkBindBufferMemoryInfo * pBindInfos)5839 radv_BindBufferMemory2(VkDevice _device, uint32_t bindInfoCount,
5840 const VkBindBufferMemoryInfo *pBindInfos)
5841 {
5842 RADV_FROM_HANDLE(radv_device, device, _device);
5843
5844 for (uint32_t i = 0; i < bindInfoCount; ++i) {
5845 RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
5846 RADV_FROM_HANDLE(radv_buffer, buffer, pBindInfos[i].buffer);
5847
5848 if (mem->alloc_size) {
5849 VkBufferMemoryRequirementsInfo2 info = {
5850 .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2,
5851 .buffer = pBindInfos[i].buffer,
5852 };
5853 VkMemoryRequirements2 reqs = {
5854 .sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
5855 };
5856
5857 radv_GetBufferMemoryRequirements2(_device, &info, &reqs);
5858
5859 if (pBindInfos[i].memoryOffset + reqs.memoryRequirements.size > mem->alloc_size) {
5860 return vk_errorf(device, VK_ERROR_UNKNOWN,
5861 "Device memory object too small for the buffer.\n");
5862 }
5863 }
5864
5865 buffer->bo = mem->bo;
5866 buffer->offset = pBindInfos[i].memoryOffset;
5867 }
5868 return VK_SUCCESS;
5869 }
5870
5871 VKAPI_ATTR VkResult VKAPI_CALL
radv_BindImageMemory2(VkDevice _device,uint32_t bindInfoCount,const VkBindImageMemoryInfo * pBindInfos)5872 radv_BindImageMemory2(VkDevice _device, uint32_t bindInfoCount,
5873 const VkBindImageMemoryInfo *pBindInfos)
5874 {
5875 RADV_FROM_HANDLE(radv_device, device, _device);
5876
5877 for (uint32_t i = 0; i < bindInfoCount; ++i) {
5878 RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
5879 RADV_FROM_HANDLE(radv_image, image, pBindInfos[i].image);
5880
5881 if (mem->alloc_size) {
5882 VkImageMemoryRequirementsInfo2 info = {
5883 .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,
5884 .image = pBindInfos[i].image,
5885 };
5886 VkMemoryRequirements2 reqs = {
5887 .sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
5888 };
5889
5890 radv_GetImageMemoryRequirements2(_device, &info, &reqs);
5891
5892 if (pBindInfos[i].memoryOffset + reqs.memoryRequirements.size > mem->alloc_size) {
5893 return vk_errorf(device, VK_ERROR_UNKNOWN,
5894 "Device memory object too small for the image.\n");
5895 }
5896 }
5897
5898 if (image->disjoint) {
5899 const VkBindImagePlaneMemoryInfo *plane_info =
5900 vk_find_struct_const(pBindInfos[i].pNext, BIND_IMAGE_PLANE_MEMORY_INFO);
5901
5902 switch (plane_info->planeAspect) {
5903 case VK_IMAGE_ASPECT_PLANE_0_BIT:
5904 image->bindings[0].bo = mem->bo;
5905 image->bindings[0].offset = pBindInfos[i].memoryOffset;
5906 break;
5907 case VK_IMAGE_ASPECT_PLANE_1_BIT:
5908 image->bindings[1].bo = mem->bo;
5909 image->bindings[1].offset = pBindInfos[i].memoryOffset;
5910 break;
5911 case VK_IMAGE_ASPECT_PLANE_2_BIT:
5912 image->bindings[2].bo = mem->bo;
5913 image->bindings[2].offset = pBindInfos[i].memoryOffset;
5914 break;
5915 default:
5916 break;
5917 }
5918 } else {
5919 image->bindings[0].bo = mem->bo;
5920 image->bindings[0].offset = pBindInfos[i].memoryOffset;
5921 }
5922 }
5923 return VK_SUCCESS;
5924 }
5925
5926 static void
radv_destroy_event(struct radv_device * device,const VkAllocationCallbacks * pAllocator,struct radv_event * event)5927 radv_destroy_event(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
5928 struct radv_event *event)
5929 {
5930 if (event->bo)
5931 device->ws->buffer_destroy(device->ws, event->bo);
5932
5933 vk_object_base_finish(&event->base);
5934 vk_free2(&device->vk.alloc, pAllocator, event);
5935 }
5936
5937 VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateEvent(VkDevice _device,const VkEventCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkEvent * pEvent)5938 radv_CreateEvent(VkDevice _device, const VkEventCreateInfo *pCreateInfo,
5939 const VkAllocationCallbacks *pAllocator, VkEvent *pEvent)
5940 {
5941 RADV_FROM_HANDLE(radv_device, device, _device);
5942 enum radeon_bo_domain bo_domain;
5943 enum radeon_bo_flag bo_flags;
5944 struct radv_event *event;
5945 VkResult result;
5946
5947 event = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8,
5948 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5949 if (!event)
5950 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
5951
5952 vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
5953
5954 if (pCreateInfo->flags & VK_EVENT_CREATE_DEVICE_ONLY_BIT) {
5955 bo_domain = RADEON_DOMAIN_VRAM;
5956 bo_flags = RADEON_FLAG_NO_CPU_ACCESS;
5957 } else {
5958 bo_domain = RADEON_DOMAIN_GTT;
5959 bo_flags = RADEON_FLAG_CPU_ACCESS;
5960 }
5961
5962 result = device->ws->buffer_create(
5963 device->ws, 8, 8, bo_domain,
5964 RADEON_FLAG_VA_UNCACHED | RADEON_FLAG_NO_INTERPROCESS_SHARING | bo_flags,
5965 RADV_BO_PRIORITY_FENCE, 0, &event->bo);
5966 if (result != VK_SUCCESS) {
5967 radv_destroy_event(device, pAllocator, event);
5968 return vk_error(device, result);
5969 }
5970
5971 if (!(pCreateInfo->flags & VK_EVENT_CREATE_DEVICE_ONLY_BIT)) {
5972 event->map = (uint64_t *)device->ws->buffer_map(event->bo);
5973 if (!event->map) {
5974 radv_destroy_event(device, pAllocator, event);
5975 return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
5976 }
5977 }
5978
5979 *pEvent = radv_event_to_handle(event);
5980
5981 return VK_SUCCESS;
5982 }
5983
5984 VKAPI_ATTR void VKAPI_CALL
radv_DestroyEvent(VkDevice _device,VkEvent _event,const VkAllocationCallbacks * pAllocator)5985 radv_DestroyEvent(VkDevice _device, VkEvent _event, const VkAllocationCallbacks *pAllocator)
5986 {
5987 RADV_FROM_HANDLE(radv_device, device, _device);
5988 RADV_FROM_HANDLE(radv_event, event, _event);
5989
5990 if (!event)
5991 return;
5992
5993 radv_destroy_event(device, pAllocator, event);
5994 }
5995
5996 VKAPI_ATTR VkResult VKAPI_CALL
radv_GetEventStatus(VkDevice _device,VkEvent _event)5997 radv_GetEventStatus(VkDevice _device, VkEvent _event)
5998 {
5999 RADV_FROM_HANDLE(radv_device, device, _device);
6000 RADV_FROM_HANDLE(radv_event, event, _event);
6001
6002 if (vk_device_is_lost(&device->vk))
6003 return VK_ERROR_DEVICE_LOST;
6004
6005 if (*event->map == 1)
6006 return VK_EVENT_SET;
6007 return VK_EVENT_RESET;
6008 }
6009
6010 VKAPI_ATTR VkResult VKAPI_CALL
radv_SetEvent(VkDevice _device,VkEvent _event)6011 radv_SetEvent(VkDevice _device, VkEvent _event)
6012 {
6013 RADV_FROM_HANDLE(radv_event, event, _event);
6014 *event->map = 1;
6015
6016 return VK_SUCCESS;
6017 }
6018
6019 VKAPI_ATTR VkResult VKAPI_CALL
radv_ResetEvent(VkDevice _device,VkEvent _event)6020 radv_ResetEvent(VkDevice _device, VkEvent _event)
6021 {
6022 RADV_FROM_HANDLE(radv_event, event, _event);
6023 *event->map = 0;
6024
6025 return VK_SUCCESS;
6026 }
6027
6028 void
radv_buffer_init(struct radv_buffer * buffer,struct radv_device * device,struct radeon_winsys_bo * bo,uint64_t size,uint64_t offset)6029 radv_buffer_init(struct radv_buffer *buffer, struct radv_device *device,
6030 struct radeon_winsys_bo *bo, uint64_t size,
6031 uint64_t offset)
6032 {
6033 VkBufferCreateInfo createInfo = {
6034 .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
6035 .size = size,
6036 };
6037
6038 vk_buffer_init(&device->vk, &buffer->vk, &createInfo);
6039
6040 buffer->bo = bo;
6041 buffer->offset = offset;
6042 }
6043
6044 void
radv_buffer_finish(struct radv_buffer * buffer)6045 radv_buffer_finish(struct radv_buffer *buffer)
6046 {
6047 vk_buffer_finish(&buffer->vk);
6048 }
6049
6050 static void
radv_destroy_buffer(struct radv_device * device,const VkAllocationCallbacks * pAllocator,struct radv_buffer * buffer)6051 radv_destroy_buffer(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
6052 struct radv_buffer *buffer)
6053 {
6054 if ((buffer->vk.create_flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) && buffer->bo)
6055 device->ws->buffer_destroy(device->ws, buffer->bo);
6056
6057 radv_buffer_finish(buffer);
6058 vk_free2(&device->vk.alloc, pAllocator, buffer);
6059 }
6060
6061 VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateBuffer(VkDevice _device,const VkBufferCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBuffer * pBuffer)6062 radv_CreateBuffer(VkDevice _device, const VkBufferCreateInfo *pCreateInfo,
6063 const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer)
6064 {
6065 RADV_FROM_HANDLE(radv_device, device, _device);
6066 struct radv_buffer *buffer;
6067
6068 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
6069
6070 buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
6071 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
6072 if (buffer == NULL)
6073 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
6074
6075 vk_buffer_init(&device->vk, &buffer->vk, pCreateInfo);
6076 buffer->bo = NULL;
6077 buffer->offset = 0;
6078
6079 if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) {
6080 enum radeon_bo_flag flags = RADEON_FLAG_VIRTUAL;
6081 if (pCreateInfo->flags & VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT)
6082 flags |= RADEON_FLAG_REPLAYABLE;
6083
6084 uint64_t replay_address = 0;
6085 const VkBufferOpaqueCaptureAddressCreateInfo *replay_info =
6086 vk_find_struct_const(pCreateInfo->pNext, BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO);
6087 if (replay_info && replay_info->opaqueCaptureAddress)
6088 replay_address = replay_info->opaqueCaptureAddress;
6089
6090 VkResult result =
6091 device->ws->buffer_create(device->ws, align64(buffer->vk.size, 4096), 4096, 0, flags,
6092 RADV_BO_PRIORITY_VIRTUAL, replay_address, &buffer->bo);
6093 if (result != VK_SUCCESS) {
6094 radv_destroy_buffer(device, pAllocator, buffer);
6095 return vk_error(device, result);
6096 }
6097 }
6098
6099 *pBuffer = radv_buffer_to_handle(buffer);
6100
6101 return VK_SUCCESS;
6102 }
6103
6104 VKAPI_ATTR void VKAPI_CALL
radv_DestroyBuffer(VkDevice _device,VkBuffer _buffer,const VkAllocationCallbacks * pAllocator)6105 radv_DestroyBuffer(VkDevice _device, VkBuffer _buffer, const VkAllocationCallbacks *pAllocator)
6106 {
6107 RADV_FROM_HANDLE(radv_device, device, _device);
6108 RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
6109
6110 if (!buffer)
6111 return;
6112
6113 radv_destroy_buffer(device, pAllocator, buffer);
6114 }
6115
6116 VKAPI_ATTR VkDeviceAddress VKAPI_CALL
radv_GetBufferDeviceAddress(VkDevice device,const VkBufferDeviceAddressInfo * pInfo)6117 radv_GetBufferDeviceAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo)
6118 {
6119 RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
6120 return radv_buffer_get_va(buffer->bo) + buffer->offset;
6121 }
6122
6123 VKAPI_ATTR uint64_t VKAPI_CALL
radv_GetBufferOpaqueCaptureAddress(VkDevice device,const VkBufferDeviceAddressInfo * pInfo)6124 radv_GetBufferOpaqueCaptureAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo)
6125 {
6126 RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
6127 return buffer->bo ? radv_buffer_get_va(buffer->bo) + buffer->offset : 0;
6128 }
6129
6130 VKAPI_ATTR uint64_t VKAPI_CALL
radv_GetDeviceMemoryOpaqueCaptureAddress(VkDevice device,const VkDeviceMemoryOpaqueCaptureAddressInfo * pInfo)6131 radv_GetDeviceMemoryOpaqueCaptureAddress(VkDevice device,
6132 const VkDeviceMemoryOpaqueCaptureAddressInfo *pInfo)
6133 {
6134 RADV_FROM_HANDLE(radv_device_memory, mem, pInfo->memory);
6135 return radv_buffer_get_va(mem->bo);
6136 }
6137
6138 static inline unsigned
si_tile_mode_index(const struct radv_image_plane * plane,unsigned level,bool stencil)6139 si_tile_mode_index(const struct radv_image_plane *plane, unsigned level, bool stencil)
6140 {
6141 if (stencil)
6142 return plane->surface.u.legacy.zs.stencil_tiling_index[level];
6143 else
6144 return plane->surface.u.legacy.tiling_index[level];
6145 }
6146
6147 static uint32_t
radv_surface_max_layer_count(struct radv_image_view * iview)6148 radv_surface_max_layer_count(struct radv_image_view *iview)
6149 {
6150 return iview->vk.view_type == VK_IMAGE_VIEW_TYPE_3D ? iview->extent.depth
6151 : (iview->vk.base_array_layer + iview->vk.layer_count);
6152 }
6153
6154 static unsigned
get_dcc_max_uncompressed_block_size(const struct radv_device * device,const struct radv_image_view * iview)6155 get_dcc_max_uncompressed_block_size(const struct radv_device *device,
6156 const struct radv_image_view *iview)
6157 {
6158 if (device->physical_device->rad_info.gfx_level < GFX10 && iview->image->info.samples > 1) {
6159 if (iview->image->planes[0].surface.bpe == 1)
6160 return V_028C78_MAX_BLOCK_SIZE_64B;
6161 else if (iview->image->planes[0].surface.bpe == 2)
6162 return V_028C78_MAX_BLOCK_SIZE_128B;
6163 }
6164
6165 return V_028C78_MAX_BLOCK_SIZE_256B;
6166 }
6167
6168 static unsigned
get_dcc_min_compressed_block_size(const struct radv_device * device)6169 get_dcc_min_compressed_block_size(const struct radv_device *device)
6170 {
6171 if (!device->physical_device->rad_info.has_dedicated_vram) {
6172 /* amdvlk: [min-compressed-block-size] should be set to 32 for
6173 * dGPU and 64 for APU because all of our APUs to date use
6174 * DIMMs which have a request granularity size of 64B while all
6175 * other chips have a 32B request size.
6176 */
6177 return V_028C78_MIN_BLOCK_SIZE_64B;
6178 }
6179
6180 return V_028C78_MIN_BLOCK_SIZE_32B;
6181 }
6182
6183 static uint32_t
radv_init_dcc_control_reg(struct radv_device * device,struct radv_image_view * iview)6184 radv_init_dcc_control_reg(struct radv_device *device, struct radv_image_view *iview)
6185 {
6186 unsigned max_uncompressed_block_size = get_dcc_max_uncompressed_block_size(device, iview);
6187 unsigned min_compressed_block_size = get_dcc_min_compressed_block_size(device);
6188 unsigned max_compressed_block_size;
6189 unsigned independent_128b_blocks;
6190 unsigned independent_64b_blocks;
6191
6192 if (!radv_dcc_enabled(iview->image, iview->vk.base_mip_level))
6193 return 0;
6194
6195 /* For GFX9+ ac_surface computes values for us (except min_compressed
6196 * and max_uncompressed) */
6197 if (device->physical_device->rad_info.gfx_level >= GFX9) {
6198 max_compressed_block_size =
6199 iview->image->planes[0].surface.u.gfx9.color.dcc.max_compressed_block_size;
6200 independent_128b_blocks = iview->image->planes[0].surface.u.gfx9.color.dcc.independent_128B_blocks;
6201 independent_64b_blocks = iview->image->planes[0].surface.u.gfx9.color.dcc.independent_64B_blocks;
6202 } else {
6203 independent_128b_blocks = 0;
6204
6205 if (iview->image->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
6206 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
6207 /* If this DCC image is potentially going to be used in texture
6208 * fetches, we need some special settings.
6209 */
6210 independent_64b_blocks = 1;
6211 max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
6212 } else {
6213 /* MAX_UNCOMPRESSED_BLOCK_SIZE must be >=
6214 * MAX_COMPRESSED_BLOCK_SIZE. Set MAX_COMPRESSED_BLOCK_SIZE as
6215 * big as possible for better compression state.
6216 */
6217 independent_64b_blocks = 0;
6218 max_compressed_block_size = max_uncompressed_block_size;
6219 }
6220 }
6221
6222 uint32_t result = S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) |
6223 S_028C78_MAX_COMPRESSED_BLOCK_SIZE(max_compressed_block_size) |
6224 S_028C78_MIN_COMPRESSED_BLOCK_SIZE(min_compressed_block_size) |
6225 S_028C78_INDEPENDENT_64B_BLOCKS(independent_64b_blocks);
6226
6227 if (device->physical_device->rad_info.gfx_level >= GFX11) {
6228 result |= S_028C78_INDEPENDENT_128B_BLOCKS_GFX11(independent_128b_blocks) |
6229 S_028C78_DISABLE_CONSTANT_ENCODE_REG(1) |
6230 S_028C78_FDCC_ENABLE(radv_dcc_enabled(iview->image, iview->vk.base_mip_level));
6231 } else {
6232 result |= S_028C78_INDEPENDENT_128B_BLOCKS_GFX10(independent_128b_blocks);
6233 }
6234
6235 return result;
6236 }
6237
6238 void
radv_initialise_color_surface(struct radv_device * device,struct radv_color_buffer_info * cb,struct radv_image_view * iview)6239 radv_initialise_color_surface(struct radv_device *device, struct radv_color_buffer_info *cb,
6240 struct radv_image_view *iview)
6241 {
6242 const struct util_format_description *desc;
6243 unsigned ntype, format, swap, endian;
6244 unsigned blend_clamp = 0, blend_bypass = 0;
6245 uint64_t va;
6246 const struct radv_image_plane *plane = &iview->image->planes[iview->plane_id];
6247 const struct radeon_surf *surf = &plane->surface;
6248
6249 desc = vk_format_description(iview->vk.format);
6250
6251 memset(cb, 0, sizeof(*cb));
6252
6253 /* Intensity is implemented as Red, so treat it that way. */
6254 if (device->physical_device->rad_info.gfx_level >= GFX11)
6255 cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1_GFX11(desc->swizzle[3] == PIPE_SWIZZLE_1);
6256 else
6257 cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1_GFX6(desc->swizzle[3] == PIPE_SWIZZLE_1);
6258
6259 uint32_t plane_id = iview->image->disjoint ? iview->plane_id : 0;
6260 va = radv_buffer_get_va(iview->image->bindings[plane_id].bo) +
6261 iview->image->bindings[plane_id].offset;
6262
6263 cb->cb_color_base = va >> 8;
6264
6265 if (device->physical_device->rad_info.gfx_level >= GFX9) {
6266 if (device->physical_device->rad_info.gfx_level >= GFX11) {
6267 cb->cb_color_attrib3 |= S_028EE0_COLOR_SW_MODE(surf->u.gfx9.swizzle_mode) |
6268 S_028EE0_DCC_PIPE_ALIGNED(surf->u.gfx9.color.dcc.pipe_aligned);
6269 } else if (device->physical_device->rad_info.gfx_level >= GFX10) {
6270 cb->cb_color_attrib3 |= S_028EE0_COLOR_SW_MODE(surf->u.gfx9.swizzle_mode) |
6271 S_028EE0_FMASK_SW_MODE(surf->u.gfx9.color.fmask_swizzle_mode) |
6272 S_028EE0_CMASK_PIPE_ALIGNED(1) |
6273 S_028EE0_DCC_PIPE_ALIGNED(surf->u.gfx9.color.dcc.pipe_aligned);
6274 } else {
6275 struct gfx9_surf_meta_flags meta = {
6276 .rb_aligned = 1,
6277 .pipe_aligned = 1,
6278 };
6279
6280 if (surf->meta_offset)
6281 meta = surf->u.gfx9.color.dcc;
6282
6283 cb->cb_color_attrib |= S_028C74_COLOR_SW_MODE(surf->u.gfx9.swizzle_mode) |
6284 S_028C74_FMASK_SW_MODE(surf->u.gfx9.color.fmask_swizzle_mode) |
6285 S_028C74_RB_ALIGNED(meta.rb_aligned) |
6286 S_028C74_PIPE_ALIGNED(meta.pipe_aligned);
6287 cb->cb_mrt_epitch = S_0287A0_EPITCH(surf->u.gfx9.epitch);
6288 }
6289
6290 cb->cb_color_base += surf->u.gfx9.surf_offset >> 8;
6291 cb->cb_color_base |= surf->tile_swizzle;
6292 } else {
6293 const struct legacy_surf_level *level_info = &surf->u.legacy.level[iview->vk.base_mip_level];
6294 unsigned pitch_tile_max, slice_tile_max, tile_mode_index;
6295
6296 cb->cb_color_base += level_info->offset_256B;
6297 if (level_info->mode == RADEON_SURF_MODE_2D)
6298 cb->cb_color_base |= surf->tile_swizzle;
6299
6300 pitch_tile_max = level_info->nblk_x / 8 - 1;
6301 slice_tile_max = (level_info->nblk_x * level_info->nblk_y) / 64 - 1;
6302 tile_mode_index = si_tile_mode_index(plane, iview->vk.base_mip_level, false);
6303
6304 cb->cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max);
6305 cb->cb_color_slice = S_028C68_TILE_MAX(slice_tile_max);
6306 cb->cb_color_cmask_slice = surf->u.legacy.color.cmask_slice_tile_max;
6307
6308 cb->cb_color_attrib |= S_028C74_TILE_MODE_INDEX(tile_mode_index);
6309
6310 if (radv_image_has_fmask(iview->image)) {
6311 if (device->physical_device->rad_info.gfx_level >= GFX7)
6312 cb->cb_color_pitch |=
6313 S_028C64_FMASK_TILE_MAX(surf->u.legacy.color.fmask.pitch_in_pixels / 8 - 1);
6314 cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(surf->u.legacy.color.fmask.tiling_index);
6315 cb->cb_color_fmask_slice = S_028C88_TILE_MAX(surf->u.legacy.color.fmask.slice_tile_max);
6316 } else {
6317 /* This must be set for fast clear to work without FMASK. */
6318 if (device->physical_device->rad_info.gfx_level >= GFX7)
6319 cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max);
6320 cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index);
6321 cb->cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max);
6322 }
6323 }
6324
6325 /* CMASK variables */
6326 va = radv_buffer_get_va(iview->image->bindings[0].bo) + iview->image->bindings[0].offset;
6327 va += surf->cmask_offset;
6328 cb->cb_color_cmask = va >> 8;
6329
6330 va = radv_buffer_get_va(iview->image->bindings[0].bo) + iview->image->bindings[0].offset;
6331 va += surf->meta_offset;
6332
6333 if (radv_dcc_enabled(iview->image, iview->vk.base_mip_level) &&
6334 device->physical_device->rad_info.gfx_level <= GFX8)
6335 va += plane->surface.u.legacy.color.dcc_level[iview->vk.base_mip_level].dcc_offset;
6336
6337 unsigned dcc_tile_swizzle = surf->tile_swizzle;
6338 dcc_tile_swizzle &= ((1 << surf->meta_alignment_log2) - 1) >> 8;
6339
6340 cb->cb_dcc_base = va >> 8;
6341 cb->cb_dcc_base |= dcc_tile_swizzle;
6342
6343 /* GFX10 field has the same base shift as the GFX6 field. */
6344 uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
6345 cb->cb_color_view =
6346 S_028C6C_SLICE_START(iview->vk.base_array_layer) | S_028C6C_SLICE_MAX_GFX10(max_slice);
6347
6348 if (iview->image->info.samples > 1) {
6349 unsigned log_samples = util_logbase2(iview->image->info.samples);
6350
6351 if (device->physical_device->rad_info.gfx_level >= GFX11)
6352 cb->cb_color_attrib |= S_028C74_NUM_FRAGMENTS_GFX11(log_samples);
6353 else
6354 cb->cb_color_attrib |=
6355 S_028C74_NUM_SAMPLES(log_samples) | S_028C74_NUM_FRAGMENTS_GFX6(log_samples);
6356 }
6357
6358 if (radv_image_has_fmask(iview->image)) {
6359 va = radv_buffer_get_va(iview->image->bindings[0].bo) + iview->image->bindings[0].offset +
6360 surf->fmask_offset;
6361 cb->cb_color_fmask = va >> 8;
6362 cb->cb_color_fmask |= surf->fmask_tile_swizzle;
6363 } else {
6364 cb->cb_color_fmask = cb->cb_color_base;
6365 }
6366
6367 ntype = radv_translate_color_numformat(iview->vk.format, desc,
6368 vk_format_get_first_non_void_channel(iview->vk.format));
6369 format = radv_translate_colorformat(iview->vk.format);
6370 assert(format != V_028C70_COLOR_INVALID);
6371
6372 swap = radv_translate_colorswap(iview->vk.format, false);
6373 endian = radv_colorformat_endian_swap(format);
6374
6375 /* blend clamp should be set for all NORM/SRGB types */
6376 if (ntype == V_028C70_NUMBER_UNORM || ntype == V_028C70_NUMBER_SNORM ||
6377 ntype == V_028C70_NUMBER_SRGB)
6378 blend_clamp = 1;
6379
6380 /* set blend bypass according to docs if SINT/UINT or
6381 8/24 COLOR variants */
6382 if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT ||
6383 format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 ||
6384 format == V_028C70_COLOR_X24_8_32_FLOAT) {
6385 blend_clamp = 0;
6386 blend_bypass = 1;
6387 }
6388 #if 0
6389 if ((ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) &&
6390 (format == V_028C70_COLOR_8 ||
6391 format == V_028C70_COLOR_8_8 ||
6392 format == V_028C70_COLOR_8_8_8_8))
6393 ->color_is_int8 = true;
6394 #endif
6395 cb->cb_color_info =
6396 S_028C70_COMP_SWAP(swap) | S_028C70_BLEND_CLAMP(blend_clamp) |
6397 S_028C70_BLEND_BYPASS(blend_bypass) | S_028C70_SIMPLE_FLOAT(1) |
6398 S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM && ntype != V_028C70_NUMBER_SNORM &&
6399 ntype != V_028C70_NUMBER_SRGB && format != V_028C70_COLOR_8_24 &&
6400 format != V_028C70_COLOR_24_8) |
6401 S_028C70_NUMBER_TYPE(ntype);
6402
6403 if (device->physical_device->rad_info.gfx_level >= GFX11)
6404 cb->cb_color_info |= S_028C70_FORMAT_GFX11(format);
6405 else
6406 cb->cb_color_info |= S_028C70_FORMAT_GFX6(format) | S_028C70_ENDIAN(endian);
6407
6408 if (radv_image_has_fmask(iview->image)) {
6409 cb->cb_color_info |= S_028C70_COMPRESSION(1);
6410 if (device->physical_device->rad_info.gfx_level == GFX6) {
6411 unsigned fmask_bankh = util_logbase2(surf->u.legacy.color.fmask.bankh);
6412 cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(fmask_bankh);
6413 }
6414
6415 if (radv_image_is_tc_compat_cmask(iview->image)) {
6416 /* Allow the texture block to read FMASK directly
6417 * without decompressing it. This bit must be cleared
6418 * when performing FMASK_DECOMPRESS or DCC_COMPRESS,
6419 * otherwise the operation doesn't happen.
6420 */
6421 cb->cb_color_info |= S_028C70_FMASK_COMPRESS_1FRAG_ONLY(1);
6422
6423 if (device->physical_device->rad_info.gfx_level == GFX8) {
6424 /* Set CMASK into a tiling format that allows
6425 * the texture block to read it.
6426 */
6427 cb->cb_color_info |= S_028C70_CMASK_ADDR_TYPE(2);
6428 }
6429 }
6430 }
6431
6432 if (radv_image_has_cmask(iview->image) &&
6433 !(device->instance->debug_flags & RADV_DEBUG_NO_FAST_CLEARS))
6434 cb->cb_color_info |= S_028C70_FAST_CLEAR(1);
6435
6436 if (radv_dcc_enabled(iview->image, iview->vk.base_mip_level) && !iview->disable_dcc_mrt &&
6437 device->physical_device->rad_info.gfx_level < GFX11)
6438 cb->cb_color_info |= S_028C70_DCC_ENABLE(1);
6439
6440 cb->cb_dcc_control = radv_init_dcc_control_reg(device, iview);
6441
6442 /* This must be set for fast clear to work without FMASK. */
6443 if (!radv_image_has_fmask(iview->image) && device->physical_device->rad_info.gfx_level == GFX6) {
6444 unsigned bankh = util_logbase2(surf->u.legacy.bankh);
6445 cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh);
6446 }
6447
6448 if (device->physical_device->rad_info.gfx_level >= GFX9) {
6449 unsigned mip0_depth = iview->image->vk.image_type == VK_IMAGE_TYPE_3D
6450 ? (iview->extent.depth - 1)
6451 : (iview->image->info.array_size - 1);
6452 unsigned width =
6453 vk_format_get_plane_width(iview->image->vk.format, iview->plane_id, iview->extent.width);
6454 unsigned height =
6455 vk_format_get_plane_height(iview->image->vk.format, iview->plane_id, iview->extent.height);
6456
6457 if (device->physical_device->rad_info.gfx_level >= GFX10) {
6458 cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX10(iview->vk.base_mip_level);
6459
6460 cb->cb_color_attrib3 |=
6461 S_028EE0_MIP0_DEPTH(mip0_depth) | S_028EE0_RESOURCE_TYPE(surf->u.gfx9.resource_type) |
6462 S_028EE0_RESOURCE_LEVEL(device->physical_device->rad_info.gfx_level >= GFX11 ? 0 : 1);
6463 } else {
6464 cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX9(iview->vk.base_mip_level);
6465 cb->cb_color_attrib |=
6466 S_028C74_MIP0_DEPTH(mip0_depth) | S_028C74_RESOURCE_TYPE(surf->u.gfx9.resource_type);
6467 }
6468
6469 cb->cb_color_attrib2 = S_028C68_MIP0_WIDTH(width - 1) | S_028C68_MIP0_HEIGHT(height - 1) |
6470 S_028C68_MAX_MIP(iview->image->info.levels - 1);
6471 }
6472 }
6473
6474 static unsigned
radv_calc_decompress_on_z_planes(struct radv_device * device,struct radv_image_view * iview)6475 radv_calc_decompress_on_z_planes(struct radv_device *device, struct radv_image_view *iview)
6476 {
6477 unsigned max_zplanes = 0;
6478
6479 assert(radv_image_is_tc_compat_htile(iview->image));
6480
6481 if (device->physical_device->rad_info.gfx_level >= GFX9) {
6482 /* Default value for 32-bit depth surfaces. */
6483 max_zplanes = 4;
6484
6485 if (iview->vk.format == VK_FORMAT_D16_UNORM && iview->image->info.samples > 1)
6486 max_zplanes = 2;
6487
6488 /* Workaround for a DB hang when ITERATE_256 is set to 1. Only affects 4X MSAA D/S images. */
6489 if (device->physical_device->rad_info.has_two_planes_iterate256_bug &&
6490 radv_image_get_iterate256(device, iview->image) &&
6491 !radv_image_tile_stencil_disabled(device, iview->image) &&
6492 iview->image->info.samples == 4) {
6493 max_zplanes = 1;
6494 }
6495
6496 max_zplanes = max_zplanes + 1;
6497 } else {
6498 if (iview->vk.format == VK_FORMAT_D16_UNORM) {
6499 /* Do not enable Z plane compression for 16-bit depth
6500 * surfaces because isn't supported on GFX8. Only
6501 * 32-bit depth surfaces are supported by the hardware.
6502 * This allows to maintain shader compatibility and to
6503 * reduce the number of depth decompressions.
6504 */
6505 max_zplanes = 1;
6506 } else {
6507 if (iview->image->info.samples <= 1)
6508 max_zplanes = 5;
6509 else if (iview->image->info.samples <= 4)
6510 max_zplanes = 3;
6511 else
6512 max_zplanes = 2;
6513 }
6514 }
6515
6516 return max_zplanes;
6517 }
6518
6519 void
radv_initialise_vrs_surface(struct radv_image * image,struct radv_buffer * htile_buffer,struct radv_ds_buffer_info * ds)6520 radv_initialise_vrs_surface(struct radv_image *image, struct radv_buffer *htile_buffer,
6521 struct radv_ds_buffer_info *ds)
6522 {
6523 const struct radeon_surf *surf = &image->planes[0].surface;
6524
6525 assert(image->vk.format == VK_FORMAT_D16_UNORM);
6526 memset(ds, 0, sizeof(*ds));
6527
6528 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
6529
6530 ds->db_z_info = S_028038_FORMAT(V_028040_Z_16) |
6531 S_028038_SW_MODE(surf->u.gfx9.swizzle_mode) |
6532 S_028038_ZRANGE_PRECISION(1) |
6533 S_028038_TILE_SURFACE_ENABLE(1);
6534 ds->db_stencil_info = S_02803C_FORMAT(V_028044_STENCIL_INVALID);
6535
6536 ds->db_depth_size = S_02801C_X_MAX(image->info.width - 1) |
6537 S_02801C_Y_MAX(image->info.height - 1);
6538
6539 ds->db_htile_data_base = radv_buffer_get_va(htile_buffer->bo) >> 8;
6540 ds->db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(1) |
6541 S_028ABC_VRS_HTILE_ENCODING(V_028ABC_VRS_HTILE_4BIT_ENCODING);
6542 }
6543
6544 void
radv_initialise_ds_surface(struct radv_device * device,struct radv_ds_buffer_info * ds,struct radv_image_view * iview)6545 radv_initialise_ds_surface(struct radv_device *device, struct radv_ds_buffer_info *ds,
6546 struct radv_image_view *iview)
6547 {
6548 unsigned level = iview->vk.base_mip_level;
6549 unsigned format, stencil_format;
6550 uint64_t va, s_offs, z_offs;
6551 bool stencil_only = iview->image->vk.format == VK_FORMAT_S8_UINT;
6552 const struct radv_image_plane *plane = &iview->image->planes[0];
6553 const struct radeon_surf *surf = &plane->surface;
6554
6555 assert(vk_format_get_plane_count(iview->image->vk.format) == 1);
6556
6557 memset(ds, 0, sizeof(*ds));
6558 if (!device->instance->absolute_depth_bias) {
6559 switch (iview->image->vk.format) {
6560 case VK_FORMAT_D24_UNORM_S8_UINT:
6561 case VK_FORMAT_X8_D24_UNORM_PACK32:
6562 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
6563 break;
6564 case VK_FORMAT_D16_UNORM:
6565 case VK_FORMAT_D16_UNORM_S8_UINT:
6566 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
6567 break;
6568 case VK_FORMAT_D32_SFLOAT:
6569 case VK_FORMAT_D32_SFLOAT_S8_UINT:
6570 ds->pa_su_poly_offset_db_fmt_cntl =
6571 S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) | S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
6572 break;
6573 default:
6574 break;
6575 }
6576 }
6577
6578 format = radv_translate_dbformat(iview->image->vk.format);
6579 stencil_format = surf->has_stencil ? V_028044_STENCIL_8 : V_028044_STENCIL_INVALID;
6580
6581 uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
6582 ds->db_depth_view = S_028008_SLICE_START(iview->vk.base_array_layer) |
6583 S_028008_SLICE_MAX(max_slice);
6584 if (device->physical_device->rad_info.gfx_level >= GFX10) {
6585 ds->db_depth_view |= S_028008_SLICE_START_HI(iview->vk.base_array_layer >> 11) |
6586 S_028008_SLICE_MAX_HI(max_slice >> 11);
6587 }
6588
6589 ds->db_htile_data_base = 0;
6590 ds->db_htile_surface = 0;
6591
6592 va = radv_buffer_get_va(iview->image->bindings[0].bo) + iview->image->bindings[0].offset;
6593 s_offs = z_offs = va;
6594
6595 if (device->physical_device->rad_info.gfx_level >= GFX9) {
6596 assert(surf->u.gfx9.surf_offset == 0);
6597 s_offs += surf->u.gfx9.zs.stencil_offset;
6598
6599 ds->db_z_info = S_028038_FORMAT(format) |
6600 S_028038_NUM_SAMPLES(util_logbase2(iview->image->info.samples)) |
6601 S_028038_SW_MODE(surf->u.gfx9.swizzle_mode) |
6602 S_028038_MAXMIP(iview->image->info.levels - 1) |
6603 S_028038_ZRANGE_PRECISION(1) |
6604 S_028040_ITERATE_256(device->physical_device->rad_info.gfx_level >= GFX11);
6605 ds->db_stencil_info = S_02803C_FORMAT(stencil_format) |
6606 S_02803C_SW_MODE(surf->u.gfx9.zs.stencil_swizzle_mode) |
6607 S_028044_ITERATE_256(device->physical_device->rad_info.gfx_level >= GFX11);
6608
6609 if (device->physical_device->rad_info.gfx_level == GFX9) {
6610 ds->db_z_info2 = S_028068_EPITCH(surf->u.gfx9.epitch);
6611 ds->db_stencil_info2 = S_02806C_EPITCH(surf->u.gfx9.zs.stencil_epitch);
6612 }
6613
6614 ds->db_depth_view |= S_028008_MIPID(level);
6615 ds->db_depth_size = S_02801C_X_MAX(iview->image->info.width - 1) |
6616 S_02801C_Y_MAX(iview->image->info.height - 1);
6617
6618 if (radv_htile_enabled(iview->image, level)) {
6619 ds->db_z_info |= S_028038_TILE_SURFACE_ENABLE(1);
6620
6621 if (radv_image_is_tc_compat_htile(iview->image)) {
6622 unsigned max_zplanes = radv_calc_decompress_on_z_planes(device, iview);
6623
6624 ds->db_z_info |= S_028038_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
6625
6626 if (device->physical_device->rad_info.gfx_level >= GFX10) {
6627 bool iterate256 = radv_image_get_iterate256(device, iview->image);
6628
6629 ds->db_z_info |= S_028040_ITERATE_FLUSH(1);
6630 ds->db_stencil_info |= S_028044_ITERATE_FLUSH(1);
6631 ds->db_z_info |= S_028040_ITERATE_256(iterate256);
6632 ds->db_stencil_info |= S_028044_ITERATE_256(iterate256);
6633 } else {
6634 ds->db_z_info |= S_028038_ITERATE_FLUSH(1);
6635 ds->db_stencil_info |= S_02803C_ITERATE_FLUSH(1);
6636 }
6637 }
6638
6639 if (radv_image_tile_stencil_disabled(device, iview->image)) {
6640 ds->db_stencil_info |= S_02803C_TILE_STENCIL_DISABLE(1);
6641 }
6642
6643 va = radv_buffer_get_va(iview->image->bindings[0].bo) + iview->image->bindings[0].offset +
6644 surf->meta_offset;
6645 ds->db_htile_data_base = va >> 8;
6646 ds->db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(1);
6647
6648 if (device->physical_device->rad_info.gfx_level == GFX9) {
6649 ds->db_htile_surface |= S_028ABC_RB_ALIGNED(1);
6650 }
6651
6652 if (radv_image_has_vrs_htile(device, iview->image)) {
6653 ds->db_htile_surface |= S_028ABC_VRS_HTILE_ENCODING(V_028ABC_VRS_HTILE_4BIT_ENCODING);
6654 }
6655 }
6656 } else {
6657 const struct legacy_surf_level *level_info = &surf->u.legacy.level[level];
6658
6659 if (stencil_only)
6660 level_info = &surf->u.legacy.zs.stencil_level[level];
6661
6662 z_offs += (uint64_t)surf->u.legacy.level[level].offset_256B * 256;
6663 s_offs += (uint64_t)surf->u.legacy.zs.stencil_level[level].offset_256B * 256;
6664
6665 ds->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(!radv_image_is_tc_compat_htile(iview->image));
6666 ds->db_z_info = S_028040_FORMAT(format) | S_028040_ZRANGE_PRECISION(1);
6667 ds->db_stencil_info = S_028044_FORMAT(stencil_format);
6668
6669 if (iview->image->info.samples > 1)
6670 ds->db_z_info |= S_028040_NUM_SAMPLES(util_logbase2(iview->image->info.samples));
6671
6672 if (device->physical_device->rad_info.gfx_level >= GFX7) {
6673 struct radeon_info *info = &device->physical_device->rad_info;
6674 unsigned tiling_index = surf->u.legacy.tiling_index[level];
6675 unsigned stencil_index = surf->u.legacy.zs.stencil_tiling_index[level];
6676 unsigned macro_index = surf->u.legacy.macro_tile_index;
6677 unsigned tile_mode = info->si_tile_mode_array[tiling_index];
6678 unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index];
6679 unsigned macro_mode = info->cik_macrotile_mode_array[macro_index];
6680
6681 if (stencil_only)
6682 tile_mode = stencil_tile_mode;
6683
6684 ds->db_depth_info |= S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) |
6685 S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) |
6686 S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) |
6687 S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) |
6688 S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) |
6689 S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode));
6690 ds->db_z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode));
6691 ds->db_stencil_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode));
6692 } else {
6693 unsigned tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, false);
6694 ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
6695 tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, true);
6696 ds->db_stencil_info |= S_028044_TILE_MODE_INDEX(tile_mode_index);
6697 if (stencil_only)
6698 ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
6699 }
6700
6701 ds->db_depth_size = S_028058_PITCH_TILE_MAX((level_info->nblk_x / 8) - 1) |
6702 S_028058_HEIGHT_TILE_MAX((level_info->nblk_y / 8) - 1);
6703 ds->db_depth_slice =
6704 S_02805C_SLICE_TILE_MAX((level_info->nblk_x * level_info->nblk_y) / 64 - 1);
6705
6706 if (radv_htile_enabled(iview->image, level)) {
6707 ds->db_z_info |= S_028040_TILE_SURFACE_ENABLE(1);
6708
6709 if (radv_image_tile_stencil_disabled(device, iview->image)) {
6710 ds->db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
6711 }
6712
6713 va = radv_buffer_get_va(iview->image->bindings[0].bo) + iview->image->bindings[0].offset +
6714 surf->meta_offset;
6715 ds->db_htile_data_base = va >> 8;
6716 ds->db_htile_surface = S_028ABC_FULL_CACHE(1);
6717
6718 if (radv_image_is_tc_compat_htile(iview->image)) {
6719 unsigned max_zplanes = radv_calc_decompress_on_z_planes(device, iview);
6720
6721 ds->db_htile_surface |= S_028ABC_TC_COMPATIBLE(1);
6722 ds->db_z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
6723 }
6724 }
6725 }
6726
6727 ds->db_z_read_base = ds->db_z_write_base = z_offs >> 8;
6728 ds->db_stencil_read_base = ds->db_stencil_write_base = s_offs >> 8;
6729 }
6730
6731 static unsigned
radv_tex_wrap(VkSamplerAddressMode address_mode)6732 radv_tex_wrap(VkSamplerAddressMode address_mode)
6733 {
6734 switch (address_mode) {
6735 case VK_SAMPLER_ADDRESS_MODE_REPEAT:
6736 return V_008F30_SQ_TEX_WRAP;
6737 case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:
6738 return V_008F30_SQ_TEX_MIRROR;
6739 case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:
6740 return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL;
6741 case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:
6742 return V_008F30_SQ_TEX_CLAMP_BORDER;
6743 case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE:
6744 return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL;
6745 default:
6746 unreachable("illegal tex wrap mode");
6747 break;
6748 }
6749 }
6750
6751 static unsigned
radv_tex_compare(VkCompareOp op)6752 radv_tex_compare(VkCompareOp op)
6753 {
6754 switch (op) {
6755 case VK_COMPARE_OP_NEVER:
6756 return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
6757 case VK_COMPARE_OP_LESS:
6758 return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS;
6759 case VK_COMPARE_OP_EQUAL:
6760 return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL;
6761 case VK_COMPARE_OP_LESS_OR_EQUAL:
6762 return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL;
6763 case VK_COMPARE_OP_GREATER:
6764 return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER;
6765 case VK_COMPARE_OP_NOT_EQUAL:
6766 return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL;
6767 case VK_COMPARE_OP_GREATER_OR_EQUAL:
6768 return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL;
6769 case VK_COMPARE_OP_ALWAYS:
6770 return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS;
6771 default:
6772 unreachable("illegal compare mode");
6773 break;
6774 }
6775 }
6776
6777 static unsigned
radv_tex_filter(VkFilter filter,unsigned max_ansio)6778 radv_tex_filter(VkFilter filter, unsigned max_ansio)
6779 {
6780 switch (filter) {
6781 case VK_FILTER_NEAREST:
6782 return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT
6783 : V_008F38_SQ_TEX_XY_FILTER_POINT);
6784 case VK_FILTER_LINEAR:
6785 return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR
6786 : V_008F38_SQ_TEX_XY_FILTER_BILINEAR);
6787 case VK_FILTER_CUBIC_EXT:
6788 default:
6789 fprintf(stderr, "illegal texture filter");
6790 return 0;
6791 }
6792 }
6793
6794 static unsigned
radv_tex_mipfilter(VkSamplerMipmapMode mode)6795 radv_tex_mipfilter(VkSamplerMipmapMode mode)
6796 {
6797 switch (mode) {
6798 case VK_SAMPLER_MIPMAP_MODE_NEAREST:
6799 return V_008F38_SQ_TEX_Z_FILTER_POINT;
6800 case VK_SAMPLER_MIPMAP_MODE_LINEAR:
6801 return V_008F38_SQ_TEX_Z_FILTER_LINEAR;
6802 default:
6803 return V_008F38_SQ_TEX_Z_FILTER_NONE;
6804 }
6805 }
6806
6807 static unsigned
radv_tex_bordercolor(VkBorderColor bcolor)6808 radv_tex_bordercolor(VkBorderColor bcolor)
6809 {
6810 switch (bcolor) {
6811 case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:
6812 case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:
6813 return V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK;
6814 case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:
6815 case VK_BORDER_COLOR_INT_OPAQUE_BLACK:
6816 return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK;
6817 case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:
6818 case VK_BORDER_COLOR_INT_OPAQUE_WHITE:
6819 return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE;
6820 case VK_BORDER_COLOR_FLOAT_CUSTOM_EXT:
6821 case VK_BORDER_COLOR_INT_CUSTOM_EXT:
6822 return V_008F3C_SQ_TEX_BORDER_COLOR_REGISTER;
6823 default:
6824 break;
6825 }
6826 return 0;
6827 }
6828
6829 static unsigned
radv_tex_aniso_filter(unsigned filter)6830 radv_tex_aniso_filter(unsigned filter)
6831 {
6832 return MIN2(util_logbase2(filter), 4);
6833 }
6834
6835 static unsigned
radv_tex_filter_mode(VkSamplerReductionMode mode)6836 radv_tex_filter_mode(VkSamplerReductionMode mode)
6837 {
6838 switch (mode) {
6839 case VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE:
6840 return V_008F30_SQ_IMG_FILTER_MODE_BLEND;
6841 case VK_SAMPLER_REDUCTION_MODE_MIN:
6842 return V_008F30_SQ_IMG_FILTER_MODE_MIN;
6843 case VK_SAMPLER_REDUCTION_MODE_MAX:
6844 return V_008F30_SQ_IMG_FILTER_MODE_MAX;
6845 default:
6846 break;
6847 }
6848 return 0;
6849 }
6850
6851 static uint32_t
radv_get_max_anisotropy(struct radv_device * device,const VkSamplerCreateInfo * pCreateInfo)6852 radv_get_max_anisotropy(struct radv_device *device, const VkSamplerCreateInfo *pCreateInfo)
6853 {
6854 if (device->force_aniso >= 0)
6855 return device->force_aniso;
6856
6857 if (pCreateInfo->anisotropyEnable && pCreateInfo->maxAnisotropy > 1.0f)
6858 return (uint32_t)pCreateInfo->maxAnisotropy;
6859
6860 return 0;
6861 }
6862
6863 static uint32_t
radv_register_border_color(struct radv_device * device,VkClearColorValue value)6864 radv_register_border_color(struct radv_device *device, VkClearColorValue value)
6865 {
6866 uint32_t slot;
6867
6868 mtx_lock(&device->border_color_data.mutex);
6869
6870 for (slot = 0; slot < RADV_BORDER_COLOR_COUNT; slot++) {
6871 if (!device->border_color_data.used[slot]) {
6872 /* Copy to the GPU wrt endian-ness. */
6873 util_memcpy_cpu_to_le32(&device->border_color_data.colors_gpu_ptr[slot], &value,
6874 sizeof(VkClearColorValue));
6875
6876 device->border_color_data.used[slot] = true;
6877 break;
6878 }
6879 }
6880
6881 mtx_unlock(&device->border_color_data.mutex);
6882
6883 return slot;
6884 }
6885
6886 static void
radv_unregister_border_color(struct radv_device * device,uint32_t slot)6887 radv_unregister_border_color(struct radv_device *device, uint32_t slot)
6888 {
6889 mtx_lock(&device->border_color_data.mutex);
6890
6891 device->border_color_data.used[slot] = false;
6892
6893 mtx_unlock(&device->border_color_data.mutex);
6894 }
6895
6896 static void
radv_init_sampler(struct radv_device * device,struct radv_sampler * sampler,const VkSamplerCreateInfo * pCreateInfo)6897 radv_init_sampler(struct radv_device *device, struct radv_sampler *sampler,
6898 const VkSamplerCreateInfo *pCreateInfo)
6899 {
6900 uint32_t max_aniso = radv_get_max_anisotropy(device, pCreateInfo);
6901 uint32_t max_aniso_ratio = radv_tex_aniso_filter(max_aniso);
6902 bool compat_mode = device->physical_device->rad_info.gfx_level == GFX8 ||
6903 device->physical_device->rad_info.gfx_level == GFX9;
6904 unsigned filter_mode = V_008F30_SQ_IMG_FILTER_MODE_BLEND;
6905 unsigned depth_compare_func = V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
6906 bool trunc_coord =
6907 pCreateInfo->minFilter == VK_FILTER_NEAREST && pCreateInfo->magFilter == VK_FILTER_NEAREST;
6908 bool uses_border_color = pCreateInfo->addressModeU == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
6909 pCreateInfo->addressModeV == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
6910 pCreateInfo->addressModeW == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
6911 VkBorderColor border_color =
6912 uses_border_color ? pCreateInfo->borderColor : VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
6913 uint32_t border_color_ptr;
6914 bool disable_cube_wrap = pCreateInfo->flags & VK_SAMPLER_CREATE_NON_SEAMLESS_CUBE_MAP_BIT_EXT;
6915
6916 const struct VkSamplerReductionModeCreateInfo *sampler_reduction =
6917 vk_find_struct_const(pCreateInfo->pNext, SAMPLER_REDUCTION_MODE_CREATE_INFO);
6918 if (sampler_reduction)
6919 filter_mode = radv_tex_filter_mode(sampler_reduction->reductionMode);
6920
6921 if (pCreateInfo->compareEnable)
6922 depth_compare_func = radv_tex_compare(pCreateInfo->compareOp);
6923
6924 sampler->border_color_slot = RADV_BORDER_COLOR_COUNT;
6925
6926 if (border_color == VK_BORDER_COLOR_FLOAT_CUSTOM_EXT ||
6927 border_color == VK_BORDER_COLOR_INT_CUSTOM_EXT) {
6928 const VkSamplerCustomBorderColorCreateInfoEXT *custom_border_color =
6929 vk_find_struct_const(pCreateInfo->pNext, SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT);
6930
6931 assert(custom_border_color);
6932
6933 sampler->border_color_slot =
6934 radv_register_border_color(device, custom_border_color->customBorderColor);
6935
6936 /* Did we fail to find a slot? */
6937 if (sampler->border_color_slot == RADV_BORDER_COLOR_COUNT) {
6938 fprintf(stderr, "WARNING: no free border color slots, defaulting to TRANS_BLACK.\n");
6939 border_color = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
6940 }
6941 }
6942
6943 /* If we don't have a custom color, set the ptr to 0 */
6944 border_color_ptr =
6945 sampler->border_color_slot != RADV_BORDER_COLOR_COUNT ? sampler->border_color_slot : 0;
6946
6947 sampler->state[0] =
6948 (S_008F30_CLAMP_X(radv_tex_wrap(pCreateInfo->addressModeU)) |
6949 S_008F30_CLAMP_Y(radv_tex_wrap(pCreateInfo->addressModeV)) |
6950 S_008F30_CLAMP_Z(radv_tex_wrap(pCreateInfo->addressModeW)) |
6951 S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) | S_008F30_DEPTH_COMPARE_FUNC(depth_compare_func) |
6952 S_008F30_FORCE_UNNORMALIZED(pCreateInfo->unnormalizedCoordinates ? 1 : 0) |
6953 S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) | S_008F30_ANISO_BIAS(max_aniso_ratio) |
6954 S_008F30_DISABLE_CUBE_WRAP(disable_cube_wrap) | S_008F30_COMPAT_MODE(compat_mode) |
6955 S_008F30_FILTER_MODE(filter_mode) | S_008F30_TRUNC_COORD(trunc_coord));
6956 sampler->state[1] = (S_008F34_MIN_LOD(radv_float_to_ufixed(CLAMP(pCreateInfo->minLod, 0, 15), 8)) |
6957 S_008F34_MAX_LOD(radv_float_to_ufixed(CLAMP(pCreateInfo->maxLod, 0, 15), 8)) |
6958 S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0));
6959 sampler->state[2] = (S_008F38_LOD_BIAS(radv_float_to_sfixed(CLAMP(pCreateInfo->mipLodBias, -16, 16), 8)) |
6960 S_008F38_XY_MAG_FILTER(radv_tex_filter(pCreateInfo->magFilter, max_aniso)) |
6961 S_008F38_XY_MIN_FILTER(radv_tex_filter(pCreateInfo->minFilter, max_aniso)) |
6962 S_008F38_MIP_FILTER(radv_tex_mipfilter(pCreateInfo->mipmapMode)));
6963 sampler->state[3] = S_008F3C_BORDER_COLOR_TYPE(radv_tex_bordercolor(border_color));
6964
6965 if (device->physical_device->rad_info.gfx_level >= GFX10) {
6966 sampler->state[2] |=
6967 S_008F38_ANISO_OVERRIDE_GFX10(device->instance->disable_aniso_single_level);
6968 } else {
6969 sampler->state[2] |=
6970 S_008F38_DISABLE_LSB_CEIL(device->physical_device->rad_info.gfx_level <= GFX8) |
6971 S_008F38_FILTER_PREC_FIX(1) |
6972 S_008F38_ANISO_OVERRIDE_GFX8(device->instance->disable_aniso_single_level &&
6973 device->physical_device->rad_info.gfx_level >= GFX8);
6974 }
6975
6976 if (device->physical_device->rad_info.gfx_level >= GFX11) {
6977 sampler->state[3] |= S_008F3C_BORDER_COLOR_PTR_GFX11(border_color_ptr);
6978 } else {
6979 sampler->state[3] |= S_008F3C_BORDER_COLOR_PTR_GFX6(border_color_ptr);
6980 }
6981 }
6982
6983 VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateSampler(VkDevice _device,const VkSamplerCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkSampler * pSampler)6984 radv_CreateSampler(VkDevice _device, const VkSamplerCreateInfo *pCreateInfo,
6985 const VkAllocationCallbacks *pAllocator, VkSampler *pSampler)
6986 {
6987 RADV_FROM_HANDLE(radv_device, device, _device);
6988 struct radv_sampler *sampler;
6989
6990 const struct VkSamplerYcbcrConversionInfo *ycbcr_conversion =
6991 vk_find_struct_const(pCreateInfo->pNext, SAMPLER_YCBCR_CONVERSION_INFO);
6992
6993 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
6994
6995 sampler = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*sampler), 8,
6996 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
6997 if (!sampler)
6998 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
6999
7000 vk_object_base_init(&device->vk, &sampler->base, VK_OBJECT_TYPE_SAMPLER);
7001
7002 radv_init_sampler(device, sampler, pCreateInfo);
7003
7004 sampler->ycbcr_sampler =
7005 ycbcr_conversion ? radv_sampler_ycbcr_conversion_from_handle(ycbcr_conversion->conversion)
7006 : NULL;
7007 *pSampler = radv_sampler_to_handle(sampler);
7008
7009 return VK_SUCCESS;
7010 }
7011
7012 VKAPI_ATTR void VKAPI_CALL
radv_DestroySampler(VkDevice _device,VkSampler _sampler,const VkAllocationCallbacks * pAllocator)7013 radv_DestroySampler(VkDevice _device, VkSampler _sampler, const VkAllocationCallbacks *pAllocator)
7014 {
7015 RADV_FROM_HANDLE(radv_device, device, _device);
7016 RADV_FROM_HANDLE(radv_sampler, sampler, _sampler);
7017
7018 if (!sampler)
7019 return;
7020
7021 if (sampler->border_color_slot != RADV_BORDER_COLOR_COUNT)
7022 radv_unregister_border_color(device, sampler->border_color_slot);
7023
7024 vk_object_base_finish(&sampler->base);
7025 vk_free2(&device->vk.alloc, pAllocator, sampler);
7026 }
7027
7028 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t * pSupportedVersion)7029 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion)
7030 {
7031 /* For the full details on loader interface versioning, see
7032 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
7033 * What follows is a condensed summary, to help you navigate the large and
7034 * confusing official doc.
7035 *
7036 * - Loader interface v0 is incompatible with later versions. We don't
7037 * support it.
7038 *
7039 * - In loader interface v1:
7040 * - The first ICD entrypoint called by the loader is
7041 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
7042 * entrypoint.
7043 * - The ICD must statically expose no other Vulkan symbol unless it is
7044 * linked with -Bsymbolic.
7045 * - Each dispatchable Vulkan handle created by the ICD must be
7046 * a pointer to a struct whose first member is VK_LOADER_DATA. The
7047 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
7048 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
7049 * vkDestroySurfaceKHR(). The ICD must be capable of working with
7050 * such loader-managed surfaces.
7051 *
7052 * - Loader interface v2 differs from v1 in:
7053 * - The first ICD entrypoint called by the loader is
7054 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
7055 * statically expose this entrypoint.
7056 *
7057 * - Loader interface v3 differs from v2 in:
7058 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
7059 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
7060 * because the loader no longer does so.
7061 *
7062 * - Loader interface v4 differs from v3 in:
7063 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
7064 *
7065 * - Loader interface v5 differs from v4 in:
7066 * - The ICD must support Vulkan API version 1.1 and must not return
7067 * VK_ERROR_INCOMPATIBLE_DRIVER from vkCreateInstance() unless a
7068 * Vulkan Loader with interface v4 or smaller is being used and the
7069 * application provides an API version that is greater than 1.0.
7070 */
7071 *pSupportedVersion = MIN2(*pSupportedVersion, 5u);
7072 return VK_SUCCESS;
7073 }
7074
7075 VKAPI_ATTR VkResult VKAPI_CALL
radv_GetMemoryFdKHR(VkDevice _device,const VkMemoryGetFdInfoKHR * pGetFdInfo,int * pFD)7076 radv_GetMemoryFdKHR(VkDevice _device, const VkMemoryGetFdInfoKHR *pGetFdInfo, int *pFD)
7077 {
7078 RADV_FROM_HANDLE(radv_device, device, _device);
7079 RADV_FROM_HANDLE(radv_device_memory, memory, pGetFdInfo->memory);
7080
7081 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
7082
7083 /* At the moment, we support only the below handle types. */
7084 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
7085 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
7086
7087 bool ret = radv_get_memory_fd(device, memory, pFD);
7088 if (ret == false)
7089 return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
7090 return VK_SUCCESS;
7091 }
7092
7093 static uint32_t
radv_compute_valid_memory_types_attempt(struct radv_physical_device * dev,enum radeon_bo_domain domains,enum radeon_bo_flag flags,enum radeon_bo_flag ignore_flags)7094 radv_compute_valid_memory_types_attempt(struct radv_physical_device *dev,
7095 enum radeon_bo_domain domains, enum radeon_bo_flag flags,
7096 enum radeon_bo_flag ignore_flags)
7097 {
7098 /* Don't count GTT/CPU as relevant:
7099 *
7100 * - We're not fully consistent between the two.
7101 * - Sometimes VRAM gets VRAM|GTT.
7102 */
7103 const enum radeon_bo_domain relevant_domains =
7104 RADEON_DOMAIN_VRAM | RADEON_DOMAIN_GDS | RADEON_DOMAIN_OA;
7105 uint32_t bits = 0;
7106 for (unsigned i = 0; i < dev->memory_properties.memoryTypeCount; ++i) {
7107 if ((domains & relevant_domains) != (dev->memory_domains[i] & relevant_domains))
7108 continue;
7109
7110 if ((flags & ~ignore_flags) != (dev->memory_flags[i] & ~ignore_flags))
7111 continue;
7112
7113 bits |= 1u << i;
7114 }
7115
7116 return bits;
7117 }
7118
7119 static uint32_t
radv_compute_valid_memory_types(struct radv_physical_device * dev,enum radeon_bo_domain domains,enum radeon_bo_flag flags)7120 radv_compute_valid_memory_types(struct radv_physical_device *dev, enum radeon_bo_domain domains,
7121 enum radeon_bo_flag flags)
7122 {
7123 enum radeon_bo_flag ignore_flags = ~(RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_GTT_WC);
7124 uint32_t bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
7125
7126 if (!bits) {
7127 ignore_flags |= RADEON_FLAG_GTT_WC;
7128 bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
7129 }
7130
7131 if (!bits) {
7132 ignore_flags |= RADEON_FLAG_NO_CPU_ACCESS;
7133 bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
7134 }
7135
7136 /* Avoid 32-bit memory types for shared memory. */
7137 bits &= ~dev->memory_types_32bit;
7138
7139 return bits;
7140 }
7141 VKAPI_ATTR VkResult VKAPI_CALL
radv_GetMemoryFdPropertiesKHR(VkDevice _device,VkExternalMemoryHandleTypeFlagBits handleType,int fd,VkMemoryFdPropertiesKHR * pMemoryFdProperties)7142 radv_GetMemoryFdPropertiesKHR(VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType,
7143 int fd, VkMemoryFdPropertiesKHR *pMemoryFdProperties)
7144 {
7145 RADV_FROM_HANDLE(radv_device, device, _device);
7146
7147 switch (handleType) {
7148 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT: {
7149 enum radeon_bo_domain domains;
7150 enum radeon_bo_flag flags;
7151 if (!device->ws->buffer_get_flags_from_fd(device->ws, fd, &domains, &flags))
7152 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
7153
7154 pMemoryFdProperties->memoryTypeBits =
7155 radv_compute_valid_memory_types(device->physical_device, domains, flags);
7156 return VK_SUCCESS;
7157 }
7158 default:
7159 /* The valid usage section for this function says:
7160 *
7161 * "handleType must not be one of the handle types defined as
7162 * opaque."
7163 *
7164 * So opaque handle types fall into the default "unsupported" case.
7165 */
7166 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
7167 }
7168 }
7169
7170 VKAPI_ATTR void VKAPI_CALL
radv_GetDeviceGroupPeerMemoryFeatures(VkDevice device,uint32_t heapIndex,uint32_t localDeviceIndex,uint32_t remoteDeviceIndex,VkPeerMemoryFeatureFlags * pPeerMemoryFeatures)7171 radv_GetDeviceGroupPeerMemoryFeatures(VkDevice device, uint32_t heapIndex,
7172 uint32_t localDeviceIndex, uint32_t remoteDeviceIndex,
7173 VkPeerMemoryFeatureFlags *pPeerMemoryFeatures)
7174 {
7175 assert(localDeviceIndex == remoteDeviceIndex);
7176
7177 *pPeerMemoryFeatures =
7178 VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT | VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
7179 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT | VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
7180 }
7181
7182 static const VkTimeDomainEXT radv_time_domains[] = {
7183 VK_TIME_DOMAIN_DEVICE_EXT,
7184 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
7185 #ifdef CLOCK_MONOTONIC_RAW
7186 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
7187 #endif
7188 };
7189
7190 VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(VkPhysicalDevice physicalDevice,uint32_t * pTimeDomainCount,VkTimeDomainEXT * pTimeDomains)7191 radv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(VkPhysicalDevice physicalDevice,
7192 uint32_t *pTimeDomainCount,
7193 VkTimeDomainEXT *pTimeDomains)
7194 {
7195 int d;
7196 VK_OUTARRAY_MAKE_TYPED(VkTimeDomainEXT, out, pTimeDomains, pTimeDomainCount);
7197
7198 for (d = 0; d < ARRAY_SIZE(radv_time_domains); d++) {
7199 vk_outarray_append_typed(VkTimeDomainEXT, &out, i)
7200 {
7201 *i = radv_time_domains[d];
7202 }
7203 }
7204
7205 return vk_outarray_status(&out);
7206 }
7207
7208 #ifndef _WIN32
7209 static uint64_t
radv_clock_gettime(clockid_t clock_id)7210 radv_clock_gettime(clockid_t clock_id)
7211 {
7212 struct timespec current;
7213 int ret;
7214
7215 ret = clock_gettime(clock_id, ¤t);
7216 #ifdef CLOCK_MONOTONIC_RAW
7217 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
7218 ret = clock_gettime(CLOCK_MONOTONIC, ¤t);
7219 #endif
7220 if (ret < 0)
7221 return 0;
7222
7223 return (uint64_t)current.tv_sec * 1000000000ULL + current.tv_nsec;
7224 }
7225
7226 VKAPI_ATTR VkResult VKAPI_CALL
radv_GetCalibratedTimestampsEXT(VkDevice _device,uint32_t timestampCount,const VkCalibratedTimestampInfoEXT * pTimestampInfos,uint64_t * pTimestamps,uint64_t * pMaxDeviation)7227 radv_GetCalibratedTimestampsEXT(VkDevice _device, uint32_t timestampCount,
7228 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
7229 uint64_t *pTimestamps, uint64_t *pMaxDeviation)
7230 {
7231 RADV_FROM_HANDLE(radv_device, device, _device);
7232 uint32_t clock_crystal_freq = device->physical_device->rad_info.clock_crystal_freq;
7233 int d;
7234 uint64_t begin, end;
7235 uint64_t max_clock_period = 0;
7236
7237 #ifdef CLOCK_MONOTONIC_RAW
7238 begin = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
7239 #else
7240 begin = radv_clock_gettime(CLOCK_MONOTONIC);
7241 #endif
7242
7243 for (d = 0; d < timestampCount; d++) {
7244 switch (pTimestampInfos[d].timeDomain) {
7245 case VK_TIME_DOMAIN_DEVICE_EXT:
7246 pTimestamps[d] = device->ws->query_value(device->ws, RADEON_TIMESTAMP);
7247 uint64_t device_period = DIV_ROUND_UP(1000000, clock_crystal_freq);
7248 max_clock_period = MAX2(max_clock_period, device_period);
7249 break;
7250 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
7251 pTimestamps[d] = radv_clock_gettime(CLOCK_MONOTONIC);
7252 max_clock_period = MAX2(max_clock_period, 1);
7253 break;
7254
7255 #ifdef CLOCK_MONOTONIC_RAW
7256 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
7257 pTimestamps[d] = begin;
7258 break;
7259 #endif
7260 default:
7261 pTimestamps[d] = 0;
7262 break;
7263 }
7264 }
7265
7266 #ifdef CLOCK_MONOTONIC_RAW
7267 end = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
7268 #else
7269 end = radv_clock_gettime(CLOCK_MONOTONIC);
7270 #endif
7271
7272 /*
7273 * The maximum deviation is the sum of the interval over which we
7274 * perform the sampling and the maximum period of any sampled
7275 * clock. That's because the maximum skew between any two sampled
7276 * clock edges is when the sampled clock with the largest period is
7277 * sampled at the end of that period but right at the beginning of the
7278 * sampling interval and some other clock is sampled right at the
7279 * begining of its sampling period and right at the end of the
7280 * sampling interval. Let's assume the GPU has the longest clock
7281 * period and that the application is sampling GPU and monotonic:
7282 *
7283 * s e
7284 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
7285 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
7286 *
7287 * g
7288 * 0 1 2 3
7289 * GPU -----_____-----_____-----_____-----_____
7290 *
7291 * m
7292 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
7293 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
7294 *
7295 * Interval <----------------->
7296 * Deviation <-------------------------->
7297 *
7298 * s = read(raw) 2
7299 * g = read(GPU) 1
7300 * m = read(monotonic) 2
7301 * e = read(raw) b
7302 *
7303 * We round the sample interval up by one tick to cover sampling error
7304 * in the interval clock
7305 */
7306
7307 uint64_t sample_interval = end - begin + 1;
7308
7309 *pMaxDeviation = sample_interval + max_clock_period;
7310
7311 return VK_SUCCESS;
7312 }
7313 #endif
7314
7315 VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceMultisamplePropertiesEXT(VkPhysicalDevice physicalDevice,VkSampleCountFlagBits samples,VkMultisamplePropertiesEXT * pMultisampleProperties)7316 radv_GetPhysicalDeviceMultisamplePropertiesEXT(VkPhysicalDevice physicalDevice,
7317 VkSampleCountFlagBits samples,
7318 VkMultisamplePropertiesEXT *pMultisampleProperties)
7319 {
7320 VkSampleCountFlagBits supported_samples = VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT |
7321 VK_SAMPLE_COUNT_8_BIT;
7322
7323 if (samples & supported_samples) {
7324 pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){2, 2};
7325 } else {
7326 pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){0, 0};
7327 }
7328 }
7329
7330 VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPhysicalDeviceFragmentShadingRatesKHR(VkPhysicalDevice physicalDevice,uint32_t * pFragmentShadingRateCount,VkPhysicalDeviceFragmentShadingRateKHR * pFragmentShadingRates)7331 radv_GetPhysicalDeviceFragmentShadingRatesKHR(
7332 VkPhysicalDevice physicalDevice, uint32_t *pFragmentShadingRateCount,
7333 VkPhysicalDeviceFragmentShadingRateKHR *pFragmentShadingRates)
7334 {
7335 VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceFragmentShadingRateKHR, out, pFragmentShadingRates,
7336 pFragmentShadingRateCount);
7337
7338 #define append_rate(w, h, s) \
7339 { \
7340 VkPhysicalDeviceFragmentShadingRateKHR rate = { \
7341 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR, \
7342 .sampleCounts = s, \
7343 .fragmentSize = {.width = w, .height = h}, \
7344 }; \
7345 vk_outarray_append_typed(VkPhysicalDeviceFragmentShadingRateKHR, &out, r) *r = rate; \
7346 }
7347
7348 for (uint32_t x = 2; x >= 1; x--) {
7349 for (uint32_t y = 2; y >= 1; y--) {
7350 VkSampleCountFlagBits samples;
7351
7352 if (x == 1 && y == 1) {
7353 samples = ~0;
7354 } else {
7355 samples = VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_2_BIT |
7356 VK_SAMPLE_COUNT_4_BIT | VK_SAMPLE_COUNT_8_BIT;
7357 }
7358
7359 append_rate(x, y, samples);
7360 }
7361 }
7362 #undef append_rate
7363
7364 return vk_outarray_status(&out);
7365 }
7366
7367 static bool
radv_thread_trace_set_pstate(struct radv_device * device,bool enable)7368 radv_thread_trace_set_pstate(struct radv_device *device, bool enable)
7369 {
7370 struct radeon_winsys *ws = device->ws;
7371 enum radeon_ctx_pstate pstate = enable ? RADEON_CTX_PSTATE_PEAK : RADEON_CTX_PSTATE_NONE;
7372
7373 if (device->physical_device->rad_info.has_stable_pstate) {
7374 /* pstate is per-device; setting it for one ctx is sufficient.
7375 * We pick the first initialized one below. */
7376 for (unsigned i = 0; i < RADV_NUM_HW_CTX; i++)
7377 if (device->hw_ctx[i])
7378 return ws->ctx_set_pstate(device->hw_ctx[i], pstate) >= 0;
7379 }
7380
7381 return true;
7382 }
7383
7384 bool
radv_device_acquire_performance_counters(struct radv_device * device)7385 radv_device_acquire_performance_counters(struct radv_device *device)
7386 {
7387 bool result = true;
7388 simple_mtx_lock(&device->pstate_mtx);
7389
7390 if (device->pstate_cnt == 0) {
7391 result = radv_thread_trace_set_pstate(device, true);
7392 if (result)
7393 ++device->pstate_cnt;
7394 }
7395
7396 simple_mtx_unlock(&device->pstate_mtx);
7397 return result;
7398 }
7399
7400 void
radv_device_release_performance_counters(struct radv_device * device)7401 radv_device_release_performance_counters(struct radv_device *device)
7402 {
7403 simple_mtx_lock(&device->pstate_mtx);
7404
7405 if (--device->pstate_cnt == 0)
7406 radv_thread_trace_set_pstate(device, false);
7407
7408 simple_mtx_unlock(&device->pstate_mtx);
7409 }
7410
7411 VKAPI_ATTR VkResult VKAPI_CALL
radv_AcquireProfilingLockKHR(VkDevice _device,const VkAcquireProfilingLockInfoKHR * pInfo)7412 radv_AcquireProfilingLockKHR(VkDevice _device, const VkAcquireProfilingLockInfoKHR *pInfo)
7413 {
7414 RADV_FROM_HANDLE(radv_device, device, _device);
7415 bool result = radv_device_acquire_performance_counters(device);
7416 return result ? VK_SUCCESS : VK_ERROR_UNKNOWN;
7417 }
7418
7419 VKAPI_ATTR void VKAPI_CALL
radv_ReleaseProfilingLockKHR(VkDevice _device)7420 radv_ReleaseProfilingLockKHR(VkDevice _device)
7421 {
7422 RADV_FROM_HANDLE(radv_device, device, _device);
7423 radv_device_release_performance_counters(device);
7424 }
7425