• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************//**
2  * @file     cmsis_gcc.h
3  * @brief    CMSIS compiler GCC header file
4  * @version  V5.0.3
5  * @date     16. January 2018
6  ******************************************************************************/
7 /*
8  * Copyright (c) 2009-2017 ARM Limited. All rights reserved.
9  *
10  * SPDX-License-Identifier: Apache-2.0
11  *
12  * Licensed under the Apache License, Version 2.0 (the License); you may
13  * not use this file except in compliance with the License.
14  * You may obtain a copy of the License at
15  *
16  * www.apache.org/licenses/LICENSE-2.0
17  *
18  * Unless required by applicable law or agreed to in writing, software
19  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21  * See the License for the specific language governing permissions and
22  * limitations under the License.
23  */
24 
25 #ifndef __CMSIS_GCC_H
26 #define __CMSIS_GCC_H
27 
28 /* ignore some GCC warnings */
29 #pragma GCC diagnostic push
30 #pragma GCC diagnostic ignored "-Wsign-conversion"
31 #pragma GCC diagnostic ignored "-Wconversion"
32 #pragma GCC diagnostic ignored "-Wunused-parameter"
33 
34 /* Fallback for __has_builtin */
35 #ifndef __has_builtin
36   #define __has_builtin(x) (0)
37 #endif
38 
39 /* CMSIS compiler specific defines */
40 #ifndef   __ASM
41   #define __ASM                                  __asm
42 #endif
43 #ifndef   __INLINE
44   #define __INLINE                               inline
45 #endif
46 #ifndef   __STATIC_INLINE
47   #define __STATIC_INLINE                        static inline
48 #endif
49 #ifndef   __STATIC_FORCEINLINE
50   #define __STATIC_FORCEINLINE                   __attribute__((always_inline)) static inline
51 #endif
52 #ifndef   __NO_RETURN
53   #define __NO_RETURN                            __attribute__((__noreturn__))
54 #endif
55 #ifndef   __USED
56   #define __USED                                 __attribute__((used))
57 #endif
58 #ifndef   __WEAK
59   #define __WEAK                                 __attribute__((weak))
60 #endif
61 #ifndef   __PACKED
62   #define __PACKED                               __attribute__((packed, aligned(1)))
63 #endif
64 #ifndef   __PACKED_STRUCT
65   #define __PACKED_STRUCT                        struct __attribute__((packed, aligned(1)))
66 #endif
67 #ifndef   __PACKED_UNION
68   #define __PACKED_UNION                         union __attribute__((packed, aligned(1)))
69 #endif
70 #ifndef   __UNALIGNED_UINT32        /* deprecated */
71   #pragma GCC diagnostic push
72   #pragma GCC diagnostic ignored "-Wpacked"
73   #pragma GCC diagnostic ignored "-Wattributes"
74   struct __attribute__((packed)) T_UINT32 { uint32_t v; };
75   #pragma GCC diagnostic pop
76   #define __UNALIGNED_UINT32(x)                  (((struct T_UINT32 *)(x))->v)
77 #endif
78 #ifndef   __UNALIGNED_UINT16_WRITE
79   #pragma GCC diagnostic push
80   #pragma GCC diagnostic ignored "-Wpacked"
81   #pragma GCC diagnostic ignored "-Wattributes"
82   __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
83   #pragma GCC diagnostic pop
84   #define __UNALIGNED_UINT16_WRITE(addr, val)    (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
85 #endif
86 #ifndef   __UNALIGNED_UINT16_READ
87   #pragma GCC diagnostic push
88   #pragma GCC diagnostic ignored "-Wpacked"
89   #pragma GCC diagnostic ignored "-Wattributes"
90   __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
91   #pragma GCC diagnostic pop
92   #define __UNALIGNED_UINT16_READ(addr)          (((const struct T_UINT16_READ *)(const void *)(addr))->v)
93 #endif
94 #ifndef   __UNALIGNED_UINT32_WRITE
95   #pragma GCC diagnostic push
96   #pragma GCC diagnostic ignored "-Wpacked"
97   #pragma GCC diagnostic ignored "-Wattributes"
98   __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
99   #pragma GCC diagnostic pop
100   #define __UNALIGNED_UINT32_WRITE(addr, val)    (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
101 #endif
102 #ifndef   __UNALIGNED_UINT32_READ
103   #pragma GCC diagnostic push
104   #pragma GCC diagnostic ignored "-Wpacked"
105   #pragma GCC diagnostic ignored "-Wattributes"
106   __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
107   #pragma GCC diagnostic pop
108   #define __UNALIGNED_UINT32_READ(addr)          (((const struct T_UINT32_READ *)(const void *)(addr))->v)
109 #endif
110 #ifndef   __ALIGNED
111   #define __ALIGNED(x)                           __attribute__((aligned(x)))
112 #endif
113 #ifndef   __RESTRICT
114   #define __RESTRICT                             __restrict
115 #endif
116 
117 
118 /* ###########################  Core Function Access  ########################### */
119 /** \ingroup  CMSIS_Core_FunctionInterface
120     \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
121   @{
122  */
123 
124 /**
125   \brief   Enable IRQ Interrupts
126   \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
127            Can only be executed in Privileged modes.
128  */
__enable_irq(void)129 __STATIC_FORCEINLINE void __enable_irq(void)
130 {
131   __ASM volatile ("cpsie i" : : : "memory");
132 }
133 
134 
135 /**
136   \brief   Disable IRQ Interrupts
137   \details Disables IRQ interrupts by setting the I-bit in the CPSR.
138            Can only be executed in Privileged modes.
139  */
__disable_irq(void)140 __STATIC_FORCEINLINE void __disable_irq(void)
141 {
142   __ASM volatile ("cpsid i" : : : "memory");
143 }
144 
145 
146 /**
147   \brief   Get Control Register
148   \details Returns the content of the Control Register.
149   \return               Control Register value
150  */
__get_CONTROL(void)151 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
152 {
153   uint32_t result;
154 
155   __ASM volatile ("MRS %0, control" : "=r" (result) );
156   return(result);
157 }
158 
159 
160 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
161 /**
162   \brief   Get Control Register (non-secure)
163   \details Returns the content of the non-secure Control Register when in secure mode.
164   \return               non-secure Control Register value
165  */
__TZ_get_CONTROL_NS(void)166 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
167 {
168   uint32_t result;
169 
170   __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
171   return(result);
172 }
173 #endif
174 
175 
176 /**
177   \brief   Set Control Register
178   \details Writes the given value to the Control Register.
179   \param [in]    control  Control Register value to set
180  */
__set_CONTROL(uint32_t control)181 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
182 {
183   __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
184 }
185 
186 
187 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
188 /**
189   \brief   Set Control Register (non-secure)
190   \details Writes the given value to the non-secure Control Register when in secure state.
191   \param [in]    control  Control Register value to set
192  */
__TZ_set_CONTROL_NS(uint32_t control)193 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
194 {
195   __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
196 }
197 #endif
198 
199 
200 /**
201   \brief   Get IPSR Register
202   \details Returns the content of the IPSR Register.
203   \return               IPSR Register value
204  */
__get_IPSR(void)205 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
206 {
207   uint32_t result;
208 
209   __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
210   return(result);
211 }
212 
213 
214 /**
215   \brief   Get APSR Register
216   \details Returns the content of the APSR Register.
217   \return               APSR Register value
218  */
__get_APSR(void)219 __STATIC_FORCEINLINE uint32_t __get_APSR(void)
220 {
221   uint32_t result;
222 
223   __ASM volatile ("MRS %0, apsr" : "=r" (result) );
224   return(result);
225 }
226 
227 
228 /**
229   \brief   Get xPSR Register
230   \details Returns the content of the xPSR Register.
231   \return               xPSR Register value
232  */
__get_xPSR(void)233 __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
234 {
235   uint32_t result;
236 
237   __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
238   return(result);
239 }
240 
241 
242 /**
243   \brief   Get Process Stack Pointer
244   \details Returns the current value of the Process Stack Pointer (PSP).
245   \return               PSP Register value
246  */
__get_PSP(void)247 __STATIC_FORCEINLINE uint32_t __get_PSP(void)
248 {
249   register uint32_t result;
250 
251   __ASM volatile ("MRS %0, psp"  : "=r" (result) );
252   return(result);
253 }
254 
255 
256 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
257 /**
258   \brief   Get Process Stack Pointer (non-secure)
259   \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
260   \return               PSP Register value
261  */
__TZ_get_PSP_NS(void)262 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
263 {
264   register uint32_t result;
265 
266   __ASM volatile ("MRS %0, psp_ns"  : "=r" (result) );
267   return(result);
268 }
269 #endif
270 
271 
272 /**
273   \brief   Set Process Stack Pointer
274   \details Assigns the given value to the Process Stack Pointer (PSP).
275   \param [in]    topOfProcStack  Process Stack Pointer value to set
276  */
__set_PSP(uint32_t topOfProcStack)277 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
278 {
279   __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
280 }
281 
282 
283 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
284 /**
285   \brief   Set Process Stack Pointer (non-secure)
286   \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
287   \param [in]    topOfProcStack  Process Stack Pointer value to set
288  */
__TZ_set_PSP_NS(uint32_t topOfProcStack)289 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
290 {
291   __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
292 }
293 #endif
294 
295 
296 /**
297   \brief   Get Main Stack Pointer
298   \details Returns the current value of the Main Stack Pointer (MSP).
299   \return               MSP Register value
300  */
__get_MSP(void)301 __STATIC_FORCEINLINE uint32_t __get_MSP(void)
302 {
303   register uint32_t result;
304 
305   __ASM volatile ("MRS %0, msp" : "=r" (result) );
306   return(result);
307 }
308 
309 
310 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
311 /**
312   \brief   Get Main Stack Pointer (non-secure)
313   \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
314   \return               MSP Register value
315  */
__TZ_get_MSP_NS(void)316 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
317 {
318   register uint32_t result;
319 
320   __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
321   return(result);
322 }
323 #endif
324 
325 
326 /**
327   \brief   Set Main Stack Pointer
328   \details Assigns the given value to the Main Stack Pointer (MSP).
329   \param [in]    topOfMainStack  Main Stack Pointer value to set
330  */
__set_MSP(uint32_t topOfMainStack)331 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
332 {
333   __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
334 }
335 
336 
337 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
338 /**
339   \brief   Set Main Stack Pointer (non-secure)
340   \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
341   \param [in]    topOfMainStack  Main Stack Pointer value to set
342  */
__TZ_set_MSP_NS(uint32_t topOfMainStack)343 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
344 {
345   __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
346 }
347 #endif
348 
349 
350 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
351 /**
352   \brief   Get Stack Pointer (non-secure)
353   \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
354   \return               SP Register value
355  */
__TZ_get_SP_NS(void)356 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
357 {
358   register uint32_t result;
359 
360   __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
361   return(result);
362 }
363 
364 
365 /**
366   \brief   Set Stack Pointer (non-secure)
367   \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
368   \param [in]    topOfStack  Stack Pointer value to set
369  */
__TZ_set_SP_NS(uint32_t topOfStack)370 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
371 {
372   __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
373 }
374 #endif
375 
376 
377 /**
378   \brief   Get Priority Mask
379   \details Returns the current state of the priority mask bit from the Priority Mask Register.
380   \return               Priority Mask value
381  */
__get_PRIMASK(void)382 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
383 {
384   uint32_t result;
385 
386   __ASM volatile ("MRS %0, primask" : "=r" (result) :: "memory");
387   return(result);
388 }
389 
390 
391 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
392 /**
393   \brief   Get Priority Mask (non-secure)
394   \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
395   \return               Priority Mask value
396  */
__TZ_get_PRIMASK_NS(void)397 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
398 {
399   uint32_t result;
400 
401   __ASM volatile ("MRS %0, primask_ns" : "=r" (result) :: "memory");
402   return(result);
403 }
404 #endif
405 
406 
407 /**
408   \brief   Set Priority Mask
409   \details Assigns the given value to the Priority Mask Register.
410   \param [in]    priMask  Priority Mask
411  */
__set_PRIMASK(uint32_t priMask)412 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
413 {
414   __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
415 }
416 
417 
418 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
419 /**
420   \brief   Set Priority Mask (non-secure)
421   \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
422   \param [in]    priMask  Priority Mask
423  */
__TZ_set_PRIMASK_NS(uint32_t priMask)424 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
425 {
426   __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
427 }
428 #endif
429 
430 
431 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
432      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
433      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
434 /**
435   \brief   Enable FIQ
436   \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
437            Can only be executed in Privileged modes.
438  */
__enable_fault_irq(void)439 __STATIC_FORCEINLINE void __enable_fault_irq(void)
440 {
441   __ASM volatile ("cpsie f" : : : "memory");
442 }
443 
444 
445 /**
446   \brief   Disable FIQ
447   \details Disables FIQ interrupts by setting the F-bit in the CPSR.
448            Can only be executed in Privileged modes.
449  */
__disable_fault_irq(void)450 __STATIC_FORCEINLINE void __disable_fault_irq(void)
451 {
452   __ASM volatile ("cpsid f" : : : "memory");
453 }
454 
455 
456 /**
457   \brief   Get Base Priority
458   \details Returns the current value of the Base Priority register.
459   \return               Base Priority register value
460  */
__get_BASEPRI(void)461 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
462 {
463   uint32_t result;
464 
465   __ASM volatile ("MRS %0, basepri" : "=r" (result) );
466   return(result);
467 }
468 
469 
470 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
471 /**
472   \brief   Get Base Priority (non-secure)
473   \details Returns the current value of the non-secure Base Priority register when in secure state.
474   \return               Base Priority register value
475  */
__TZ_get_BASEPRI_NS(void)476 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
477 {
478   uint32_t result;
479 
480   __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
481   return(result);
482 }
483 #endif
484 
485 
486 /**
487   \brief   Set Base Priority
488   \details Assigns the given value to the Base Priority register.
489   \param [in]    basePri  Base Priority value to set
490  */
__set_BASEPRI(uint32_t basePri)491 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
492 {
493   __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
494 }
495 
496 
497 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
498 /**
499   \brief   Set Base Priority (non-secure)
500   \details Assigns the given value to the non-secure Base Priority register when in secure state.
501   \param [in]    basePri  Base Priority value to set
502  */
__TZ_set_BASEPRI_NS(uint32_t basePri)503 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
504 {
505   __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
506 }
507 #endif
508 
509 
510 /**
511   \brief   Set Base Priority with condition
512   \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
513            or the new value increases the BASEPRI priority level.
514   \param [in]    basePri  Base Priority value to set
515  */
__set_BASEPRI_MAX(uint32_t basePri)516 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
517 {
518   __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
519 }
520 
521 
522 /**
523   \brief   Get Fault Mask
524   \details Returns the current value of the Fault Mask register.
525   \return               Fault Mask register value
526  */
__get_FAULTMASK(void)527 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
528 {
529   uint32_t result;
530 
531   __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
532   return(result);
533 }
534 
535 
536 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
537 /**
538   \brief   Get Fault Mask (non-secure)
539   \details Returns the current value of the non-secure Fault Mask register when in secure state.
540   \return               Fault Mask register value
541  */
__TZ_get_FAULTMASK_NS(void)542 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
543 {
544   uint32_t result;
545 
546   __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
547   return(result);
548 }
549 #endif
550 
551 
552 /**
553   \brief   Set Fault Mask
554   \details Assigns the given value to the Fault Mask register.
555   \param [in]    faultMask  Fault Mask value to set
556  */
__set_FAULTMASK(uint32_t faultMask)557 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
558 {
559   __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
560 }
561 
562 
563 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
564 /**
565   \brief   Set Fault Mask (non-secure)
566   \details Assigns the given value to the non-secure Fault Mask register when in secure state.
567   \param [in]    faultMask  Fault Mask value to set
568  */
__TZ_set_FAULTMASK_NS(uint32_t faultMask)569 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
570 {
571   __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
572 }
573 #endif
574 
575 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
576            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
577            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
578 
579 
580 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
581      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
582 
583 /**
584   \brief   Get Process Stack Pointer Limit
585   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
586   Stack Pointer Limit register hence zero is returned always in non-secure
587   mode.
588 
589   \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
590   \return               PSPLIM Register value
591  */
__get_PSPLIM(void)592 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
593 {
594 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
595     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
596     // without main extensions, the non-secure PSPLIM is RAZ/WI
597   return 0U;
598 #else
599   register uint32_t result;
600   __ASM volatile ("MRS %0, psplim"  : "=r" (result) );
601   return result;
602 #endif
603 }
604 
605 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
606 /**
607   \brief   Get Process Stack Pointer Limit (non-secure)
608   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
609   Stack Pointer Limit register hence zero is returned always.
610 
611   \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
612   \return               PSPLIM Register value
613  */
__TZ_get_PSPLIM_NS(void)614 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
615 {
616 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
617   // without main extensions, the non-secure PSPLIM is RAZ/WI
618   return 0U;
619 #else
620   register uint32_t result;
621   __ASM volatile ("MRS %0, psplim_ns"  : "=r" (result) );
622   return result;
623 #endif
624 }
625 #endif
626 
627 
628 /**
629   \brief   Set Process Stack Pointer Limit
630   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
631   Stack Pointer Limit register hence the write is silently ignored in non-secure
632   mode.
633 
634   \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
635   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
636  */
__set_PSPLIM(uint32_t ProcStackPtrLimit)637 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
638 {
639 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
640     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
641   // without main extensions, the non-secure PSPLIM is RAZ/WI
642   (void)ProcStackPtrLimit;
643 #else
644   __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
645 #endif
646 }
647 
648 
649 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
650 /**
651   \brief   Set Process Stack Pointer (non-secure)
652   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
653   Stack Pointer Limit register hence the write is silently ignored.
654 
655   \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
656   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
657  */
__TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)658 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
659 {
660 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
661   // without main extensions, the non-secure PSPLIM is RAZ/WI
662   (void)ProcStackPtrLimit;
663 #else
664   __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
665 #endif
666 }
667 #endif
668 
669 
670 /**
671   \brief   Get Main Stack Pointer Limit
672   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
673   Stack Pointer Limit register hence zero is returned always in non-secure
674   mode.
675 
676   \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
677   \return               MSPLIM Register value
678  */
__get_MSPLIM(void)679 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
680 {
681 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
682     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
683   // without main extensions, the non-secure MSPLIM is RAZ/WI
684   return 0U;
685 #else
686   register uint32_t result;
687   __ASM volatile ("MRS %0, msplim" : "=r" (result) );
688   return result;
689 #endif
690 }
691 
692 
693 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
694 /**
695   \brief   Get Main Stack Pointer Limit (non-secure)
696   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
697   Stack Pointer Limit register hence zero is returned always.
698 
699   \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
700   \return               MSPLIM Register value
701  */
__TZ_get_MSPLIM_NS(void)702 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
703 {
704 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
705   // without main extensions, the non-secure MSPLIM is RAZ/WI
706   return 0U;
707 #else
708   register uint32_t result;
709   __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
710   return result;
711 #endif
712 }
713 #endif
714 
715 
716 /**
717   \brief   Set Main Stack Pointer Limit
718   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
719   Stack Pointer Limit register hence the write is silently ignored in non-secure
720   mode.
721 
722   \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
723   \param [in]    MainStackPtrLimit  Main Stack Pointer Limit value to set
724  */
__set_MSPLIM(uint32_t MainStackPtrLimit)725 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
726 {
727 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
728     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
729   // without main extensions, the non-secure MSPLIM is RAZ/WI
730   (void)MainStackPtrLimit;
731 #else
732   __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
733 #endif
734 }
735 
736 
737 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
738 /**
739   \brief   Set Main Stack Pointer Limit (non-secure)
740   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
741   Stack Pointer Limit register hence the write is silently ignored.
742 
743   \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
744   \param [in]    MainStackPtrLimit  Main Stack Pointer value to set
745  */
__TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)746 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
747 {
748 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
749   // without main extensions, the non-secure MSPLIM is RAZ/WI
750   (void)MainStackPtrLimit;
751 #else
752   __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
753 #endif
754 }
755 #endif
756 
757 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
758            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
759 
760 
761 #if ((defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
762      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
763 
764 /**
765   \brief   Get FPSCR
766   \details Returns the current value of the Floating Point Status/Control register.
767   \return               Floating Point Status/Control register value
768  */
__get_FPSCR(void)769 __STATIC_FORCEINLINE uint32_t __get_FPSCR(void)
770 {
771 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
772      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
773 #if __has_builtin(__builtin_arm_get_fpscr) || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
774   /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
775   return __builtin_arm_get_fpscr();
776 #else
777   uint32_t result;
778 
779   __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
780   return(result);
781 #endif
782 #else
783   return(0U);
784 #endif
785 }
786 
787 
788 /**
789   \brief   Set FPSCR
790   \details Assigns the given value to the Floating Point Status/Control register.
791   \param [in]    fpscr  Floating Point Status/Control value to set
792  */
__set_FPSCR(uint32_t fpscr)793 __STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr)
794 {
795 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
796      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
797 #if __has_builtin(__builtin_arm_set_fpscr) || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
798   /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
799   __builtin_arm_set_fpscr(fpscr);
800 #else
801   __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory");
802 #endif
803 #else
804   (void)fpscr;
805 #endif
806 }
807 
808 #endif /* ((defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
809            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
810 
811 
812 
813 /*@} end of CMSIS_Core_RegAccFunctions */
814 
815 
816 /* ##########################  Core Instruction Access  ######################### */
817 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
818   Access to dedicated instructions
819   @{
820 */
821 
822 /* Define macros for porting to both thumb1 and thumb2.
823  * For thumb1, use low register (r0-r7), specified by constraint "l"
824  * Otherwise, use general registers, specified by constraint "r" */
825 #if defined (__thumb__) && !defined (__thumb2__)
826 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
827 #define __CMSIS_GCC_RW_REG(r) "+l" (r)
828 #define __CMSIS_GCC_USE_REG(r) "l" (r)
829 #else
830 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
831 #define __CMSIS_GCC_RW_REG(r) "+r" (r)
832 #define __CMSIS_GCC_USE_REG(r) "r" (r)
833 #endif
834 
835 /**
836   \brief   No Operation
837   \details No Operation does nothing. This instruction can be used for code alignment purposes.
838  */
839 #define __NOP()                             __ASM volatile ("nop")
840 
841 /**
842   \brief   Wait For Interrupt
843   \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
844  */
845 #define __WFI()                             __ASM volatile ("wfi")
846 
847 
848 /**
849   \brief   Wait For Event
850   \details Wait For Event is a hint instruction that permits the processor to enter
851            a low-power state until one of a number of events occurs.
852  */
853 #define __WFE()                             __ASM volatile ("wfe")
854 
855 
856 /**
857   \brief   Send Event
858   \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
859  */
860 #define __SEV()                             __ASM volatile ("sev")
861 
862 
863 /**
864   \brief   Instruction Synchronization Barrier
865   \details Instruction Synchronization Barrier flushes the pipeline in the processor,
866            so that all instructions following the ISB are fetched from cache or memory,
867            after the instruction has been completed.
868  */
__ISB(void)869 __STATIC_FORCEINLINE void __ISB(void)
870 {
871   __ASM volatile ("isb 0xF":::"memory");
872 }
873 
874 
875 /**
876   \brief   Data Synchronization Barrier
877   \details Acts as a special kind of Data Memory Barrier.
878            It completes when all explicit memory accesses before this instruction complete.
879  */
__DSB(void)880 __STATIC_FORCEINLINE void __DSB(void)
881 {
882   __ASM volatile ("dsb 0xF":::"memory");
883 }
884 
885 
886 /**
887   \brief   Data Memory Barrier
888   \details Ensures the apparent order of the explicit memory operations before
889            and after the instruction, without ensuring their completion.
890  */
__DMB(void)891 __STATIC_FORCEINLINE void __DMB(void)
892 {
893   __ASM volatile ("dmb 0xF":::"memory");
894 }
895 
896 
897 /**
898   \brief   Reverse byte order (32 bit)
899   \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
900   \param [in]    value  Value to reverse
901   \return               Reversed value
902  */
__REV(uint32_t value)903 __STATIC_FORCEINLINE uint32_t __REV(uint32_t value)
904 {
905 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
906   return __builtin_bswap32(value);
907 #else
908   uint32_t result;
909 
910   __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
911   return result;
912 #endif
913 }
914 
915 
916 /**
917   \brief   Reverse byte order (16 bit)
918   \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
919   \param [in]    value  Value to reverse
920   \return               Reversed value
921  */
__REV16(uint32_t value)922 __STATIC_FORCEINLINE uint32_t __REV16(uint32_t value)
923 {
924   uint32_t result;
925 
926   __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
927   return result;
928 }
929 
930 
931 /**
932   \brief   Reverse byte order (16 bit)
933   \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
934   \param [in]    value  Value to reverse
935   \return               Reversed value
936  */
__REVSH(int16_t value)937 __STATIC_FORCEINLINE int16_t __REVSH(int16_t value)
938 {
939 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
940   return (int16_t)__builtin_bswap16(value);
941 #else
942   int16_t result;
943 
944   __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
945   return result;
946 #endif
947 }
948 
949 
950 /**
951   \brief   Rotate Right in unsigned value (32 bit)
952   \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
953   \param [in]    op1  Value to rotate
954   \param [in]    op2  Number of Bits to rotate
955   \return               Rotated value
956  */
__ROR(uint32_t op1,uint32_t op2)957 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
958 {
959   op2 %= 32U;
960   if (op2 == 0U)
961   {
962     return op1;
963   }
964   return (op1 >> op2) | (op1 << (32U - op2));
965 }
966 
967 
968 /**
969   \brief   Breakpoint
970   \details Causes the processor to enter Debug state.
971            Debug tools can use this to investigate system state when the instruction at a particular address is reached.
972   \param [in]    value  is ignored by the processor.
973                  If required, a debugger can use it to store additional information about the breakpoint.
974  */
975 #define __BKPT(value)                       __ASM volatile ("bkpt "#value)
976 
977 
978 /**
979   \brief   Reverse bit order of value
980   \details Reverses the bit order of the given value.
981   \param [in]    value  Value to reverse
982   \return               Reversed value
983  */
__RBIT(uint32_t value)984 __STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value)
985 {
986   uint32_t result;
987 
988 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
989      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
990      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
991    __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
992 #else
993   uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
994 
995   result = value;                      /* r will be reversed bits of v; first get LSB of v */
996   for (value >>= 1U; value != 0U; value >>= 1U)
997   {
998     result <<= 1U;
999     result |= value & 1U;
1000     s--;
1001   }
1002   result <<= s;                        /* shift when v's highest bits are zero */
1003 #endif
1004   return result;
1005 }
1006 
1007 
1008 /**
1009   \brief   Count leading zeros
1010   \details Counts the number of leading zeros of a data value.
1011   \param [in]  value  Value to count the leading zeros
1012   \return             number of leading zeros in value
1013  */
1014 #define __CLZ             (uint8_t)__builtin_clz
1015 
1016 
1017 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1018      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1019      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1020      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1021 /**
1022   \brief   LDR Exclusive (8 bit)
1023   \details Executes a exclusive LDR instruction for 8 bit value.
1024   \param [in]    ptr  Pointer to data
1025   \return             value of type uint8_t at (*ptr)
1026  */
__LDREXB(volatile uint8_t * addr)1027 __STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr)
1028 {
1029     uint32_t result;
1030 
1031 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1032    __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
1033 #else
1034     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1035        accepted by assembler. So has to use following less efficient pattern.
1036     */
1037    __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
1038 #endif
1039    return ((uint8_t) result);    /* Add explicit type cast here */
1040 }
1041 
1042 
1043 /**
1044   \brief   LDR Exclusive (16 bit)
1045   \details Executes a exclusive LDR instruction for 16 bit values.
1046   \param [in]    ptr  Pointer to data
1047   \return        value of type uint16_t at (*ptr)
1048  */
__LDREXH(volatile uint16_t * addr)1049 __STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr)
1050 {
1051     uint32_t result;
1052 
1053 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1054    __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
1055 #else
1056     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1057        accepted by assembler. So has to use following less efficient pattern.
1058     */
1059    __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
1060 #endif
1061    return ((uint16_t) result);    /* Add explicit type cast here */
1062 }
1063 
1064 
1065 /**
1066   \brief   LDR Exclusive (32 bit)
1067   \details Executes a exclusive LDR instruction for 32 bit values.
1068   \param [in]    ptr  Pointer to data
1069   \return        value of type uint32_t at (*ptr)
1070  */
__LDREXW(volatile uint32_t * addr)1071 __STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr)
1072 {
1073     uint32_t result;
1074 
1075    __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
1076    return(result);
1077 }
1078 
1079 
1080 /**
1081   \brief   STR Exclusive (8 bit)
1082   \details Executes a exclusive STR instruction for 8 bit values.
1083   \param [in]  value  Value to store
1084   \param [in]    ptr  Pointer to location
1085   \return          0  Function succeeded
1086   \return          1  Function failed
1087  */
__STREXB(uint8_t value,volatile uint8_t * addr)1088 __STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
1089 {
1090    uint32_t result;
1091 
1092    __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
1093    return(result);
1094 }
1095 
1096 
1097 /**
1098   \brief   STR Exclusive (16 bit)
1099   \details Executes a exclusive STR instruction for 16 bit values.
1100   \param [in]  value  Value to store
1101   \param [in]    ptr  Pointer to location
1102   \return          0  Function succeeded
1103   \return          1  Function failed
1104  */
__STREXH(uint16_t value,volatile uint16_t * addr)1105 __STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
1106 {
1107    uint32_t result;
1108 
1109    __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
1110    return(result);
1111 }
1112 
1113 
1114 /**
1115   \brief   STR Exclusive (32 bit)
1116   \details Executes a exclusive STR instruction for 32 bit values.
1117   \param [in]  value  Value to store
1118   \param [in]    ptr  Pointer to location
1119   \return          0  Function succeeded
1120   \return          1  Function failed
1121  */
__STREXW(uint32_t value,volatile uint32_t * addr)1122 __STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
1123 {
1124    uint32_t result;
1125 
1126    __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
1127    return(result);
1128 }
1129 
1130 
1131 /**
1132   \brief   Remove the exclusive lock
1133   \details Removes the exclusive lock which is created by LDREX.
1134  */
__CLREX(void)1135 __STATIC_FORCEINLINE void __CLREX(void)
1136 {
1137   __ASM volatile ("clrex" ::: "memory");
1138 }
1139 
1140 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1141            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1142            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1143            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1144 
1145 
1146 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1147      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1148      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
1149 /**
1150   \brief   Signed Saturate
1151   \details Saturates a signed value.
1152   \param [in]  ARG1  Value to be saturated
1153   \param [in]  ARG2  Bit position to saturate to (1..32)
1154   \return             Saturated value
1155  */
1156 #define __SSAT(ARG1,ARG2) \
1157 __extension__ \
1158 ({                          \
1159   int32_t __RES, __ARG1 = (ARG1); \
1160   __ASM ("ssat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1161   __RES; \
1162  })
1163 
1164 
1165 /**
1166   \brief   Unsigned Saturate
1167   \details Saturates an unsigned value.
1168   \param [in]  ARG1  Value to be saturated
1169   \param [in]  ARG2  Bit position to saturate to (0..31)
1170   \return             Saturated value
1171  */
1172 #define __USAT(ARG1,ARG2) \
1173  __extension__ \
1174 ({                          \
1175   uint32_t __RES, __ARG1 = (ARG1); \
1176   __ASM ("usat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1177   __RES; \
1178  })
1179 
1180 
1181 /**
1182   \brief   Rotate Right with Extend (32 bit)
1183   \details Moves each bit of a bitstring right by one bit.
1184            The carry input is shifted in at the left end of the bitstring.
1185   \param [in]    value  Value to rotate
1186   \return               Rotated value
1187  */
__RRX(uint32_t value)1188 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
1189 {
1190   uint32_t result;
1191 
1192   __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1193   return(result);
1194 }
1195 
1196 
1197 /**
1198   \brief   LDRT Unprivileged (8 bit)
1199   \details Executes a Unprivileged LDRT instruction for 8 bit value.
1200   \param [in]    ptr  Pointer to data
1201   \return             value of type uint8_t at (*ptr)
1202  */
__LDRBT(volatile uint8_t * ptr)1203 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1204 {
1205     uint32_t result;
1206 
1207 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1208    __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1209 #else
1210     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1211        accepted by assembler. So has to use following less efficient pattern.
1212     */
1213    __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
1214 #endif
1215    return ((uint8_t) result);    /* Add explicit type cast here */
1216 }
1217 
1218 
1219 /**
1220   \brief   LDRT Unprivileged (16 bit)
1221   \details Executes a Unprivileged LDRT instruction for 16 bit values.
1222   \param [in]    ptr  Pointer to data
1223   \return        value of type uint16_t at (*ptr)
1224  */
__LDRHT(volatile uint16_t * ptr)1225 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1226 {
1227     uint32_t result;
1228 
1229 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1230    __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1231 #else
1232     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1233        accepted by assembler. So has to use following less efficient pattern.
1234     */
1235    __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
1236 #endif
1237    return ((uint16_t) result);    /* Add explicit type cast here */
1238 }
1239 
1240 
1241 /**
1242   \brief   LDRT Unprivileged (32 bit)
1243   \details Executes a Unprivileged LDRT instruction for 32 bit values.
1244   \param [in]    ptr  Pointer to data
1245   \return        value of type uint32_t at (*ptr)
1246  */
__LDRT(volatile uint32_t * ptr)1247 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
1248 {
1249     uint32_t result;
1250 
1251    __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1252    return(result);
1253 }
1254 
1255 
1256 /**
1257   \brief   STRT Unprivileged (8 bit)
1258   \details Executes a Unprivileged STRT instruction for 8 bit values.
1259   \param [in]  value  Value to store
1260   \param [in]    ptr  Pointer to location
1261  */
__STRBT(uint8_t value,volatile uint8_t * ptr)1262 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1263 {
1264    __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1265 }
1266 
1267 
1268 /**
1269   \brief   STRT Unprivileged (16 bit)
1270   \details Executes a Unprivileged STRT instruction for 16 bit values.
1271   \param [in]  value  Value to store
1272   \param [in]    ptr  Pointer to location
1273  */
__STRHT(uint16_t value,volatile uint16_t * ptr)1274 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1275 {
1276    __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1277 }
1278 
1279 
1280 /**
1281   \brief   STRT Unprivileged (32 bit)
1282   \details Executes a Unprivileged STRT instruction for 32 bit values.
1283   \param [in]  value  Value to store
1284   \param [in]    ptr  Pointer to location
1285  */
__STRT(uint32_t value,volatile uint32_t * ptr)1286 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1287 {
1288    __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1289 }
1290 
1291 #else  /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1292            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1293            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1294 
1295 /**
1296   \brief   Signed Saturate
1297   \details Saturates a signed value.
1298   \param [in]  value  Value to be saturated
1299   \param [in]    sat  Bit position to saturate to (1..32)
1300   \return             Saturated value
1301  */
__SSAT(int32_t val,uint32_t sat)1302 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
1303 {
1304   if ((sat >= 1U) && (sat <= 32U))
1305   {
1306     const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
1307     const int32_t min = -1 - max ;
1308     if (val > max)
1309     {
1310       return max;
1311     }
1312     else if (val < min)
1313     {
1314       return min;
1315     }
1316   }
1317   return val;
1318 }
1319 
1320 /**
1321   \brief   Unsigned Saturate
1322   \details Saturates an unsigned value.
1323   \param [in]  value  Value to be saturated
1324   \param [in]    sat  Bit position to saturate to (0..31)
1325   \return             Saturated value
1326  */
__USAT(int32_t val,uint32_t sat)1327 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
1328 {
1329   if (sat <= 31U)
1330   {
1331     const uint32_t max = ((1U << sat) - 1U);
1332     if (val > (int32_t)max)
1333     {
1334       return max;
1335     }
1336     else if (val < 0)
1337     {
1338       return 0U;
1339     }
1340   }
1341   return (uint32_t)val;
1342 }
1343 
1344 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1345            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1346            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1347 
1348 
1349 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1350      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1351 /**
1352   \brief   Load-Acquire (8 bit)
1353   \details Executes a LDAB instruction for 8 bit value.
1354   \param [in]    ptr  Pointer to data
1355   \return             value of type uint8_t at (*ptr)
1356  */
__LDAB(volatile uint8_t * ptr)1357 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
1358 {
1359     uint32_t result;
1360 
1361    __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1362    return ((uint8_t) result);
1363 }
1364 
1365 
1366 /**
1367   \brief   Load-Acquire (16 bit)
1368   \details Executes a LDAH instruction for 16 bit values.
1369   \param [in]    ptr  Pointer to data
1370   \return        value of type uint16_t at (*ptr)
1371  */
__LDAH(volatile uint16_t * ptr)1372 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
1373 {
1374     uint32_t result;
1375 
1376    __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1377    return ((uint16_t) result);
1378 }
1379 
1380 
1381 /**
1382   \brief   Load-Acquire (32 bit)
1383   \details Executes a LDA instruction for 32 bit values.
1384   \param [in]    ptr  Pointer to data
1385   \return        value of type uint32_t at (*ptr)
1386  */
__LDA(volatile uint32_t * ptr)1387 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
1388 {
1389     uint32_t result;
1390 
1391    __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1392    return(result);
1393 }
1394 
1395 
1396 /**
1397   \brief   Store-Release (8 bit)
1398   \details Executes a STLB instruction for 8 bit values.
1399   \param [in]  value  Value to store
1400   \param [in]    ptr  Pointer to location
1401  */
__STLB(uint8_t value,volatile uint8_t * ptr)1402 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1403 {
1404    __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1405 }
1406 
1407 
1408 /**
1409   \brief   Store-Release (16 bit)
1410   \details Executes a STLH instruction for 16 bit values.
1411   \param [in]  value  Value to store
1412   \param [in]    ptr  Pointer to location
1413  */
__STLH(uint16_t value,volatile uint16_t * ptr)1414 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1415 {
1416    __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1417 }
1418 
1419 
1420 /**
1421   \brief   Store-Release (32 bit)
1422   \details Executes a STL instruction for 32 bit values.
1423   \param [in]  value  Value to store
1424   \param [in]    ptr  Pointer to location
1425  */
__STL(uint32_t value,volatile uint32_t * ptr)1426 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1427 {
1428    __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1429 }
1430 
1431 
1432 /**
1433   \brief   Load-Acquire Exclusive (8 bit)
1434   \details Executes a LDAB exclusive instruction for 8 bit value.
1435   \param [in]    ptr  Pointer to data
1436   \return             value of type uint8_t at (*ptr)
1437  */
__LDAEXB(volatile uint8_t * ptr)1438 __STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr)
1439 {
1440     uint32_t result;
1441 
1442    __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) );
1443    return ((uint8_t) result);
1444 }
1445 
1446 
1447 /**
1448   \brief   Load-Acquire Exclusive (16 bit)
1449   \details Executes a LDAH exclusive instruction for 16 bit values.
1450   \param [in]    ptr  Pointer to data
1451   \return        value of type uint16_t at (*ptr)
1452  */
__LDAEXH(volatile uint16_t * ptr)1453 __STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr)
1454 {
1455     uint32_t result;
1456 
1457    __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) );
1458    return ((uint16_t) result);
1459 }
1460 
1461 
1462 /**
1463   \brief   Load-Acquire Exclusive (32 bit)
1464   \details Executes a LDA exclusive instruction for 32 bit values.
1465   \param [in]    ptr  Pointer to data
1466   \return        value of type uint32_t at (*ptr)
1467  */
__LDAEX(volatile uint32_t * ptr)1468 __STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr)
1469 {
1470     uint32_t result;
1471 
1472    __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) );
1473    return(result);
1474 }
1475 
1476 
1477 /**
1478   \brief   Store-Release Exclusive (8 bit)
1479   \details Executes a STLB exclusive instruction for 8 bit values.
1480   \param [in]  value  Value to store
1481   \param [in]    ptr  Pointer to location
1482   \return          0  Function succeeded
1483   \return          1  Function failed
1484  */
__STLEXB(uint8_t value,volatile uint8_t * ptr)1485 __STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
1486 {
1487    uint32_t result;
1488 
1489    __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1490    return(result);
1491 }
1492 
1493 
1494 /**
1495   \brief   Store-Release Exclusive (16 bit)
1496   \details Executes a STLH exclusive instruction for 16 bit values.
1497   \param [in]  value  Value to store
1498   \param [in]    ptr  Pointer to location
1499   \return          0  Function succeeded
1500   \return          1  Function failed
1501  */
__STLEXH(uint16_t value,volatile uint16_t * ptr)1502 __STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
1503 {
1504    uint32_t result;
1505 
1506    __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1507    return(result);
1508 }
1509 
1510 
1511 /**
1512   \brief   Store-Release Exclusive (32 bit)
1513   \details Executes a STL exclusive instruction for 32 bit values.
1514   \param [in]  value  Value to store
1515   \param [in]    ptr  Pointer to location
1516   \return          0  Function succeeded
1517   \return          1  Function failed
1518  */
__STLEX(uint32_t value,volatile uint32_t * ptr)1519 __STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
1520 {
1521    uint32_t result;
1522 
1523    __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1524    return(result);
1525 }
1526 
1527 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1528            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1529 
1530 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1531 
1532 
1533 /* ###################  Compiler specific Intrinsics  ########################### */
1534 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1535   Access to dedicated SIMD instructions
1536   @{
1537 */
1538 
1539 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1540 
__SADD8(uint32_t op1,uint32_t op2)1541 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1542 {
1543   uint32_t result;
1544 
1545   __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1546   return(result);
1547 }
1548 
__QADD8(uint32_t op1,uint32_t op2)1549 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1550 {
1551   uint32_t result;
1552 
1553   __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1554   return(result);
1555 }
1556 
__SHADD8(uint32_t op1,uint32_t op2)1557 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1558 {
1559   uint32_t result;
1560 
1561   __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1562   return(result);
1563 }
1564 
__UADD8(uint32_t op1,uint32_t op2)1565 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1566 {
1567   uint32_t result;
1568 
1569   __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1570   return(result);
1571 }
1572 
__UQADD8(uint32_t op1,uint32_t op2)1573 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1574 {
1575   uint32_t result;
1576 
1577   __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1578   return(result);
1579 }
1580 
__UHADD8(uint32_t op1,uint32_t op2)1581 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1582 {
1583   uint32_t result;
1584 
1585   __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1586   return(result);
1587 }
1588 
1589 
__SSUB8(uint32_t op1,uint32_t op2)1590 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1591 {
1592   uint32_t result;
1593 
1594   __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1595   return(result);
1596 }
1597 
__QSUB8(uint32_t op1,uint32_t op2)1598 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1599 {
1600   uint32_t result;
1601 
1602   __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1603   return(result);
1604 }
1605 
__SHSUB8(uint32_t op1,uint32_t op2)1606 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1607 {
1608   uint32_t result;
1609 
1610   __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1611   return(result);
1612 }
1613 
__USUB8(uint32_t op1,uint32_t op2)1614 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1615 {
1616   uint32_t result;
1617 
1618   __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1619   return(result);
1620 }
1621 
__UQSUB8(uint32_t op1,uint32_t op2)1622 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1623 {
1624   uint32_t result;
1625 
1626   __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1627   return(result);
1628 }
1629 
__UHSUB8(uint32_t op1,uint32_t op2)1630 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1631 {
1632   uint32_t result;
1633 
1634   __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1635   return(result);
1636 }
1637 
1638 
__SADD16(uint32_t op1,uint32_t op2)1639 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1640 {
1641   uint32_t result;
1642 
1643   __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1644   return(result);
1645 }
1646 
__QADD16(uint32_t op1,uint32_t op2)1647 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1648 {
1649   uint32_t result;
1650 
1651   __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1652   return(result);
1653 }
1654 
__SHADD16(uint32_t op1,uint32_t op2)1655 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1656 {
1657   uint32_t result;
1658 
1659   __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1660   return(result);
1661 }
1662 
__UADD16(uint32_t op1,uint32_t op2)1663 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1664 {
1665   uint32_t result;
1666 
1667   __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1668   return(result);
1669 }
1670 
__UQADD16(uint32_t op1,uint32_t op2)1671 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1672 {
1673   uint32_t result;
1674 
1675   __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1676   return(result);
1677 }
1678 
__UHADD16(uint32_t op1,uint32_t op2)1679 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1680 {
1681   uint32_t result;
1682 
1683   __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1684   return(result);
1685 }
1686 
__SSUB16(uint32_t op1,uint32_t op2)1687 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1688 {
1689   uint32_t result;
1690 
1691   __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1692   return(result);
1693 }
1694 
__QSUB16(uint32_t op1,uint32_t op2)1695 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1696 {
1697   uint32_t result;
1698 
1699   __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1700   return(result);
1701 }
1702 
__SHSUB16(uint32_t op1,uint32_t op2)1703 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1704 {
1705   uint32_t result;
1706 
1707   __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1708   return(result);
1709 }
1710 
__USUB16(uint32_t op1,uint32_t op2)1711 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1712 {
1713   uint32_t result;
1714 
1715   __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1716   return(result);
1717 }
1718 
__UQSUB16(uint32_t op1,uint32_t op2)1719 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1720 {
1721   uint32_t result;
1722 
1723   __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1724   return(result);
1725 }
1726 
__UHSUB16(uint32_t op1,uint32_t op2)1727 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1728 {
1729   uint32_t result;
1730 
1731   __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1732   return(result);
1733 }
1734 
__SASX(uint32_t op1,uint32_t op2)1735 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1736 {
1737   uint32_t result;
1738 
1739   __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1740   return(result);
1741 }
1742 
__QASX(uint32_t op1,uint32_t op2)1743 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1744 {
1745   uint32_t result;
1746 
1747   __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1748   return(result);
1749 }
1750 
__SHASX(uint32_t op1,uint32_t op2)1751 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1752 {
1753   uint32_t result;
1754 
1755   __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1756   return(result);
1757 }
1758 
__UASX(uint32_t op1,uint32_t op2)1759 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1760 {
1761   uint32_t result;
1762 
1763   __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1764   return(result);
1765 }
1766 
__UQASX(uint32_t op1,uint32_t op2)1767 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1768 {
1769   uint32_t result;
1770 
1771   __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1772   return(result);
1773 }
1774 
__UHASX(uint32_t op1,uint32_t op2)1775 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1776 {
1777   uint32_t result;
1778 
1779   __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1780   return(result);
1781 }
1782 
__SSAX(uint32_t op1,uint32_t op2)1783 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1784 {
1785   uint32_t result;
1786 
1787   __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1788   return(result);
1789 }
1790 
__QSAX(uint32_t op1,uint32_t op2)1791 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1792 {
1793   uint32_t result;
1794 
1795   __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1796   return(result);
1797 }
1798 
__SHSAX(uint32_t op1,uint32_t op2)1799 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1800 {
1801   uint32_t result;
1802 
1803   __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1804   return(result);
1805 }
1806 
__USAX(uint32_t op1,uint32_t op2)1807 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1808 {
1809   uint32_t result;
1810 
1811   __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1812   return(result);
1813 }
1814 
__UQSAX(uint32_t op1,uint32_t op2)1815 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1816 {
1817   uint32_t result;
1818 
1819   __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1820   return(result);
1821 }
1822 
__UHSAX(uint32_t op1,uint32_t op2)1823 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1824 {
1825   uint32_t result;
1826 
1827   __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1828   return(result);
1829 }
1830 
__USAD8(uint32_t op1,uint32_t op2)1831 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1832 {
1833   uint32_t result;
1834 
1835   __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1836   return(result);
1837 }
1838 
__USADA8(uint32_t op1,uint32_t op2,uint32_t op3)1839 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1840 {
1841   uint32_t result;
1842 
1843   __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1844   return(result);
1845 }
1846 
1847 #define __SSAT16(ARG1,ARG2) \
1848 ({                          \
1849   int32_t __RES, __ARG1 = (ARG1); \
1850   __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1851   __RES; \
1852  })
1853 
1854 #define __USAT16(ARG1,ARG2) \
1855 ({                          \
1856   uint32_t __RES, __ARG1 = (ARG1); \
1857   __ASM ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1858   __RES; \
1859  })
1860 
__UXTB16(uint32_t op1)1861 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1862 {
1863   uint32_t result;
1864 
1865   __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1866   return(result);
1867 }
1868 
__UXTAB16(uint32_t op1,uint32_t op2)1869 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1870 {
1871   uint32_t result;
1872 
1873   __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1874   return(result);
1875 }
1876 
__SXTB16(uint32_t op1)1877 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1878 {
1879   uint32_t result;
1880 
1881   __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1882   return(result);
1883 }
1884 
__SXTAB16(uint32_t op1,uint32_t op2)1885 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1886 {
1887   uint32_t result;
1888 
1889   __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1890   return(result);
1891 }
1892 
__SMUAD(uint32_t op1,uint32_t op2)1893 __STATIC_FORCEINLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
1894 {
1895   uint32_t result;
1896 
1897   __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1898   return(result);
1899 }
1900 
__SMUADX(uint32_t op1,uint32_t op2)1901 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1902 {
1903   uint32_t result;
1904 
1905   __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1906   return(result);
1907 }
1908 
__SMLAD(uint32_t op1,uint32_t op2,uint32_t op3)1909 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1910 {
1911   uint32_t result;
1912 
1913   __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1914   return(result);
1915 }
1916 
__SMLADX(uint32_t op1,uint32_t op2,uint32_t op3)1917 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1918 {
1919   uint32_t result;
1920 
1921   __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1922   return(result);
1923 }
1924 
__SMLALD(uint32_t op1,uint32_t op2,uint64_t acc)1925 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1926 {
1927   union llreg_u{
1928     uint32_t w32[2];
1929     uint64_t w64;
1930   } llr;
1931   llr.w64 = acc;
1932 
1933 #ifndef __ARMEB__   /* Little endian */
1934   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1935 #else               /* Big endian */
1936   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1937 #endif
1938 
1939   return(llr.w64);
1940 }
1941 
__SMLALDX(uint32_t op1,uint32_t op2,uint64_t acc)1942 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1943 {
1944   union llreg_u{
1945     uint32_t w32[2];
1946     uint64_t w64;
1947   } llr;
1948   llr.w64 = acc;
1949 
1950 #ifndef __ARMEB__   /* Little endian */
1951   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1952 #else               /* Big endian */
1953   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1954 #endif
1955 
1956   return(llr.w64);
1957 }
1958 
__SMUSD(uint32_t op1,uint32_t op2)1959 __STATIC_FORCEINLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
1960 {
1961   uint32_t result;
1962 
1963   __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1964   return(result);
1965 }
1966 
__SMUSDX(uint32_t op1,uint32_t op2)1967 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1968 {
1969   uint32_t result;
1970 
1971   __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1972   return(result);
1973 }
1974 
__SMLSD(uint32_t op1,uint32_t op2,uint32_t op3)1975 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1976 {
1977   uint32_t result;
1978 
1979   __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1980   return(result);
1981 }
1982 
__SMLSDX(uint32_t op1,uint32_t op2,uint32_t op3)1983 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1984 {
1985   uint32_t result;
1986 
1987   __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1988   return(result);
1989 }
1990 
__SMLSLD(uint32_t op1,uint32_t op2,uint64_t acc)1991 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1992 {
1993   union llreg_u{
1994     uint32_t w32[2];
1995     uint64_t w64;
1996   } llr;
1997   llr.w64 = acc;
1998 
1999 #ifndef __ARMEB__   /* Little endian */
2000   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2001 #else               /* Big endian */
2002   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2003 #endif
2004 
2005   return(llr.w64);
2006 }
2007 
__SMLSLDX(uint32_t op1,uint32_t op2,uint64_t acc)2008 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
2009 {
2010   union llreg_u{
2011     uint32_t w32[2];
2012     uint64_t w64;
2013   } llr;
2014   llr.w64 = acc;
2015 
2016 #ifndef __ARMEB__   /* Little endian */
2017   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2018 #else               /* Big endian */
2019   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2020 #endif
2021 
2022   return(llr.w64);
2023 }
2024 
__SEL(uint32_t op1,uint32_t op2)2025 __STATIC_FORCEINLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
2026 {
2027   uint32_t result;
2028 
2029   __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2030   return(result);
2031 }
2032 
__QADD(int32_t op1,int32_t op2)2033 __STATIC_FORCEINLINE  int32_t __QADD( int32_t op1,  int32_t op2)
2034 {
2035   int32_t result;
2036 
2037   __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2038   return(result);
2039 }
2040 
__QSUB(int32_t op1,int32_t op2)2041 __STATIC_FORCEINLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
2042 {
2043   int32_t result;
2044 
2045   __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2046   return(result);
2047 }
2048 
2049 #if 0
2050 #define __PKHBT(ARG1,ARG2,ARG3) \
2051 ({                          \
2052   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2053   __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
2054   __RES; \
2055  })
2056 
2057 #define __PKHTB(ARG1,ARG2,ARG3) \
2058 ({                          \
2059   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2060   if (ARG3 == 0) \
2061     __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2)  ); \
2062   else \
2063     __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
2064   __RES; \
2065  })
2066 #endif
2067 
2068 #define __PKHBT(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0x0000FFFFUL) |  \
2069                                            ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL)  )
2070 
2071 #define __PKHTB(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0xFFFF0000UL) |  \
2072                                            ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL)  )
2073 
__SMMLA(int32_t op1,int32_t op2,int32_t op3)2074 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
2075 {
2076  int32_t result;
2077 
2078  __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
2079  return(result);
2080 }
2081 
2082 #endif /* (__ARM_FEATURE_DSP == 1) */
2083 /*@} end of group CMSIS_SIMD_intrinsics */
2084 
2085 
2086 #pragma GCC diagnostic pop
2087 
2088 #endif /* __CMSIS_GCC_H */
2089