• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1(function(){
2
3    // Copyright (c) 2005  Tom Wu
4    // All Rights Reserved.
5    // See "LICENSE" for details.
6
7    // Basic JavaScript BN library - subset useful for RSA encryption.
8
9    // Bits per digit
10    var dbits;
11
12    // JavaScript engine analysis
13    var canary = 0xdeadbeefcafe;
14    var j_lm = ((canary&0xffffff)==0xefcafe);
15
16    // (public) Constructor
17    function BigInteger(a,b,c) {
18      if(a != null)
19        if("number" == typeof a) this.fromNumber(a,b,c);
20        else if(b == null && "string" != typeof a) this.fromString(a,256);
21        else this.fromString(a,b);
22    }
23
24    // return new, unset BigInteger
25    function nbi() { return new BigInteger(null); }
26
27    // am: Compute w_j += (x*this_i), propagate carries,
28    // c is initial carry, returns final carry.
29    // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
30    // We need to select the fastest one that works in this environment.
31
32    // am1: use a single mult and divide to get the high bits,
33    // max digit bits should be 26 because
34    // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
35    function am1(i,x,w,j,c,n) {
36      while(--n >= 0) {
37        var v = x*this[i++]+w[j]+c;
38        c = Math.floor(v/0x4000000);
39        w[j++] = v&0x3ffffff;
40      }
41      return c;
42    }
43    // am2 avoids a big mult-and-extract completely.
44    // Max digit bits should be <= 30 because we do bitwise ops
45    // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
46    function am2(i,x,w,j,c,n) {
47      var xl = x&0x7fff, xh = x>>15;
48      while(--n >= 0) {
49        var l = this[i]&0x7fff;
50        var h = this[i++]>>15;
51        var m = xh*l+h*xl;
52        l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
53        c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
54        w[j++] = l&0x3fffffff;
55      }
56      return c;
57    }
58    // Alternately, set max digit bits to 28 since some
59    // browsers slow down when dealing with 32-bit numbers.
60    function am3(i,x,w,j,c,n) {
61      var xl = x&0x3fff, xh = x>>14;
62      while(--n >= 0) {
63        var l = this[i]&0x3fff;
64        var h = this[i++]>>14;
65        var m = xh*l+h*xl;
66        l = xl*l+((m&0x3fff)<<14)+w[j]+c;
67        c = (l>>28)+(m>>14)+xh*h;
68        w[j++] = l&0xfffffff;
69      }
70      return c;
71    }
72    var inBrowser = typeof navigator !== "undefined";
73    if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
74      BigInteger.prototype.am = am2;
75      dbits = 30;
76    }
77    else if(inBrowser && j_lm && (navigator.appName != "Netscape")) {
78      BigInteger.prototype.am = am1;
79      dbits = 26;
80    }
81    else { // Mozilla/Netscape seems to prefer am3
82      BigInteger.prototype.am = am3;
83      dbits = 28;
84    }
85
86    BigInteger.prototype.DB = dbits;
87    BigInteger.prototype.DM = ((1<<dbits)-1);
88    BigInteger.prototype.DV = (1<<dbits);
89
90    var BI_FP = 52;
91    BigInteger.prototype.FV = Math.pow(2,BI_FP);
92    BigInteger.prototype.F1 = BI_FP-dbits;
93    BigInteger.prototype.F2 = 2*dbits-BI_FP;
94
95    // Digit conversions
96    var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
97    var BI_RC = new Array();
98    var rr,vv;
99    rr = "0".charCodeAt(0);
100    for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
101    rr = "a".charCodeAt(0);
102    for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
103    rr = "A".charCodeAt(0);
104    for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
105
106    function int2char(n) { return BI_RM.charAt(n); }
107    function intAt(s,i) {
108      var c = BI_RC[s.charCodeAt(i)];
109      return (c==null)?-1:c;
110    }
111
112    // (protected) copy this to r
113    function bnpCopyTo(r) {
114      for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
115      r.t = this.t;
116      r.s = this.s;
117    }
118
119    // (protected) set from integer value x, -DV <= x < DV
120    function bnpFromInt(x) {
121      this.t = 1;
122      this.s = (x<0)?-1:0;
123      if(x > 0) this[0] = x;
124      else if(x < -1) this[0] = x+this.DV;
125      else this.t = 0;
126    }
127
128    // return bigint initialized to value
129    function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
130
131    // (protected) set from string and radix
132    function bnpFromString(s,b) {
133      var k;
134      if(b == 16) k = 4;
135      else if(b == 8) k = 3;
136      else if(b == 256) k = 8; // byte array
137      else if(b == 2) k = 1;
138      else if(b == 32) k = 5;
139      else if(b == 4) k = 2;
140      else { this.fromRadix(s,b); return; }
141      this.t = 0;
142      this.s = 0;
143      var i = s.length, mi = false, sh = 0;
144      while(--i >= 0) {
145        var x = (k==8)?s[i]&0xff:intAt(s,i);
146        if(x < 0) {
147          if(s.charAt(i) == "-") mi = true;
148          continue;
149        }
150        mi = false;
151        if(sh == 0)
152          this[this.t++] = x;
153        else if(sh+k > this.DB) {
154          this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
155          this[this.t++] = (x>>(this.DB-sh));
156        }
157        else
158          this[this.t-1] |= x<<sh;
159        sh += k;
160        if(sh >= this.DB) sh -= this.DB;
161      }
162      if(k == 8 && (s[0]&0x80) != 0) {
163        this.s = -1;
164        if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
165      }
166      this.clamp();
167      if(mi) BigInteger.ZERO.subTo(this,this);
168    }
169
170    // (protected) clamp off excess high words
171    function bnpClamp() {
172      var c = this.s&this.DM;
173      while(this.t > 0 && this[this.t-1] == c) --this.t;
174    }
175
176    // (public) return string representation in given radix
177    function bnToString(b) {
178      if(this.s < 0) return "-"+this.negate().toString(b);
179      var k;
180      if(b == 16) k = 4;
181      else if(b == 8) k = 3;
182      else if(b == 2) k = 1;
183      else if(b == 32) k = 5;
184      else if(b == 4) k = 2;
185      else return this.toRadix(b);
186      var km = (1<<k)-1, d, m = false, r = "", i = this.t;
187      var p = this.DB-(i*this.DB)%k;
188      if(i-- > 0) {
189        if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
190        while(i >= 0) {
191          if(p < k) {
192            d = (this[i]&((1<<p)-1))<<(k-p);
193            d |= this[--i]>>(p+=this.DB-k);
194          }
195          else {
196            d = (this[i]>>(p-=k))&km;
197            if(p <= 0) { p += this.DB; --i; }
198          }
199          if(d > 0) m = true;
200          if(m) r += int2char(d);
201        }
202      }
203      return m?r:"0";
204    }
205
206    // (public) -this
207    function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
208
209    // (public) |this|
210    function bnAbs() { return (this.s<0)?this.negate():this; }
211
212    // (public) return + if this > a, - if this < a, 0 if equal
213    function bnCompareTo(a) {
214      var r = this.s-a.s;
215      if(r != 0) return r;
216      var i = this.t;
217      r = i-a.t;
218      if(r != 0) return (this.s<0)?-r:r;
219      while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
220      return 0;
221    }
222
223    // returns bit length of the integer x
224    function nbits(x) {
225      var r = 1, t;
226      if((t=x>>>16) != 0) { x = t; r += 16; }
227      if((t=x>>8) != 0) { x = t; r += 8; }
228      if((t=x>>4) != 0) { x = t; r += 4; }
229      if((t=x>>2) != 0) { x = t; r += 2; }
230      if((t=x>>1) != 0) { x = t; r += 1; }
231      return r;
232    }
233
234    // (public) return the number of bits in "this"
235    function bnBitLength() {
236      if(this.t <= 0) return 0;
237      return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
238    }
239
240    // (protected) r = this << n*DB
241    function bnpDLShiftTo(n,r) {
242      var i;
243      for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
244      for(i = n-1; i >= 0; --i) r[i] = 0;
245      r.t = this.t+n;
246      r.s = this.s;
247    }
248
249    // (protected) r = this >> n*DB
250    function bnpDRShiftTo(n,r) {
251      for(var i = n; i < this.t; ++i) r[i-n] = this[i];
252      r.t = Math.max(this.t-n,0);
253      r.s = this.s;
254    }
255
256    // (protected) r = this << n
257    function bnpLShiftTo(n,r) {
258      var bs = n%this.DB;
259      var cbs = this.DB-bs;
260      var bm = (1<<cbs)-1;
261      var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
262      for(i = this.t-1; i >= 0; --i) {
263        r[i+ds+1] = (this[i]>>cbs)|c;
264        c = (this[i]&bm)<<bs;
265      }
266      for(i = ds-1; i >= 0; --i) r[i] = 0;
267      r[ds] = c;
268      r.t = this.t+ds+1;
269      r.s = this.s;
270      r.clamp();
271    }
272
273    // (protected) r = this >> n
274    function bnpRShiftTo(n,r) {
275      r.s = this.s;
276      var ds = Math.floor(n/this.DB);
277      if(ds >= this.t) { r.t = 0; return; }
278      var bs = n%this.DB;
279      var cbs = this.DB-bs;
280      var bm = (1<<bs)-1;
281      r[0] = this[ds]>>bs;
282      for(var i = ds+1; i < this.t; ++i) {
283        r[i-ds-1] |= (this[i]&bm)<<cbs;
284        r[i-ds] = this[i]>>bs;
285      }
286      if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
287      r.t = this.t-ds;
288      r.clamp();
289    }
290
291    // (protected) r = this - a
292    function bnpSubTo(a,r) {
293      var i = 0, c = 0, m = Math.min(a.t,this.t);
294      while(i < m) {
295        c += this[i]-a[i];
296        r[i++] = c&this.DM;
297        c >>= this.DB;
298      }
299      if(a.t < this.t) {
300        c -= a.s;
301        while(i < this.t) {
302          c += this[i];
303          r[i++] = c&this.DM;
304          c >>= this.DB;
305        }
306        c += this.s;
307      }
308      else {
309        c += this.s;
310        while(i < a.t) {
311          c -= a[i];
312          r[i++] = c&this.DM;
313          c >>= this.DB;
314        }
315        c -= a.s;
316      }
317      r.s = (c<0)?-1:0;
318      if(c < -1) r[i++] = this.DV+c;
319      else if(c > 0) r[i++] = c;
320      r.t = i;
321      r.clamp();
322    }
323
324    // (protected) r = this * a, r != this,a (HAC 14.12)
325    // "this" should be the larger one if appropriate.
326    function bnpMultiplyTo(a,r) {
327      var x = this.abs(), y = a.abs();
328      var i = x.t;
329      r.t = i+y.t;
330      while(--i >= 0) r[i] = 0;
331      for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
332      r.s = 0;
333      r.clamp();
334      if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
335    }
336
337    // (protected) r = this^2, r != this (HAC 14.16)
338    function bnpSquareTo(r) {
339      var x = this.abs();
340      var i = r.t = 2*x.t;
341      while(--i >= 0) r[i] = 0;
342      for(i = 0; i < x.t-1; ++i) {
343        var c = x.am(i,x[i],r,2*i,0,1);
344        if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
345          r[i+x.t] -= x.DV;
346          r[i+x.t+1] = 1;
347        }
348      }
349      if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
350      r.s = 0;
351      r.clamp();
352    }
353
354    // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
355    // r != q, this != m.  q or r may be null.
356    function bnpDivRemTo(m,q,r) {
357      var pm = m.abs();
358      if(pm.t <= 0) return;
359      var pt = this.abs();
360      if(pt.t < pm.t) {
361        if(q != null) q.fromInt(0);
362        if(r != null) this.copyTo(r);
363        return;
364      }
365      if(r == null) r = nbi();
366      var y = nbi(), ts = this.s, ms = m.s;
367      var nsh = this.DB-nbits(pm[pm.t-1]);   // normalize modulus
368      if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
369      else { pm.copyTo(y); pt.copyTo(r); }
370      var ys = y.t;
371      var y0 = y[ys-1];
372      if(y0 == 0) return;
373      var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
374      var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
375      var i = r.t, j = i-ys, t = (q==null)?nbi():q;
376      y.dlShiftTo(j,t);
377      if(r.compareTo(t) >= 0) {
378        r[r.t++] = 1;
379        r.subTo(t,r);
380      }
381      BigInteger.ONE.dlShiftTo(ys,t);
382      t.subTo(y,y);  // "negative" y so we can replace sub with am later
383      while(y.t < ys) y[y.t++] = 0;
384      while(--j >= 0) {
385        // Estimate quotient digit
386        var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
387        if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {   // Try it out
388          y.dlShiftTo(j,t);
389          r.subTo(t,r);
390          while(r[i] < --qd) r.subTo(t,r);
391        }
392      }
393      if(q != null) {
394        r.drShiftTo(ys,q);
395        if(ts != ms) BigInteger.ZERO.subTo(q,q);
396      }
397      r.t = ys;
398      r.clamp();
399      if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
400      if(ts < 0) BigInteger.ZERO.subTo(r,r);
401    }
402
403    // (public) this mod a
404    function bnMod(a) {
405      var r = nbi();
406      this.abs().divRemTo(a,null,r);
407      if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
408      return r;
409    }
410
411    // Modular reduction using "classic" algorithm
412    function Classic(m) { this.m = m; }
413    function cConvert(x) {
414      if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
415      else return x;
416    }
417    function cRevert(x) { return x; }
418    function cReduce(x) { x.divRemTo(this.m,null,x); }
419    function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
420    function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
421
422    Classic.prototype.convert = cConvert;
423    Classic.prototype.revert = cRevert;
424    Classic.prototype.reduce = cReduce;
425    Classic.prototype.mulTo = cMulTo;
426    Classic.prototype.sqrTo = cSqrTo;
427
428    // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
429    // justification:
430    //         xy == 1 (mod m)
431    //         xy =  1+km
432    //   xy(2-xy) = (1+km)(1-km)
433    // x[y(2-xy)] = 1-k^2m^2
434    // x[y(2-xy)] == 1 (mod m^2)
435    // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
436    // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
437    // JS multiply "overflows" differently from C/C++, so care is needed here.
438    function bnpInvDigit() {
439      if(this.t < 1) return 0;
440      var x = this[0];
441      if((x&1) == 0) return 0;
442      var y = x&3;       // y == 1/x mod 2^2
443      y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
444      y = (y*(2-(x&0xff)*y))&0xff;   // y == 1/x mod 2^8
445      y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;    // y == 1/x mod 2^16
446      // last step - calculate inverse mod DV directly;
447      // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
448      y = (y*(2-x*y%this.DV))%this.DV;       // y == 1/x mod 2^dbits
449      // we really want the negative inverse, and -DV < y < DV
450      return (y>0)?this.DV-y:-y;
451    }
452
453    // Montgomery reduction
454    function Montgomery(m) {
455      this.m = m;
456      this.mp = m.invDigit();
457      this.mpl = this.mp&0x7fff;
458      this.mph = this.mp>>15;
459      this.um = (1<<(m.DB-15))-1;
460      this.mt2 = 2*m.t;
461    }
462
463    // xR mod m
464    function montConvert(x) {
465      var r = nbi();
466      x.abs().dlShiftTo(this.m.t,r);
467      r.divRemTo(this.m,null,r);
468      if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
469      return r;
470    }
471
472    // x/R mod m
473    function montRevert(x) {
474      var r = nbi();
475      x.copyTo(r);
476      this.reduce(r);
477      return r;
478    }
479
480    // x = x/R mod m (HAC 14.32)
481    function montReduce(x) {
482      while(x.t <= this.mt2) // pad x so am has enough room later
483        x[x.t++] = 0;
484      for(var i = 0; i < this.m.t; ++i) {
485        // faster way of calculating u0 = x[i]*mp mod DV
486        var j = x[i]&0x7fff;
487        var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
488        // use am to combine the multiply-shift-add into one call
489        j = i+this.m.t;
490        x[j] += this.m.am(0,u0,x,i,0,this.m.t);
491        // propagate carry
492        while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
493      }
494      x.clamp();
495      x.drShiftTo(this.m.t,x);
496      if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
497    }
498
499    // r = "x^2/R mod m"; x != r
500    function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
501
502    // r = "xy/R mod m"; x,y != r
503    function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
504
505    Montgomery.prototype.convert = montConvert;
506    Montgomery.prototype.revert = montRevert;
507    Montgomery.prototype.reduce = montReduce;
508    Montgomery.prototype.mulTo = montMulTo;
509    Montgomery.prototype.sqrTo = montSqrTo;
510
511    // (protected) true iff this is even
512    function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
513
514    // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
515    function bnpExp(e,z) {
516      if(e > 0xffffffff || e < 1) return BigInteger.ONE;
517      var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
518      g.copyTo(r);
519      while(--i >= 0) {
520        z.sqrTo(r,r2);
521        if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
522        else { var t = r; r = r2; r2 = t; }
523      }
524      return z.revert(r);
525    }
526
527    // (public) this^e % m, 0 <= e < 2^32
528    function bnModPowInt(e,m) {
529      var z;
530      if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
531      return this.exp(e,z);
532    }
533
534    // protected
535    BigInteger.prototype.copyTo = bnpCopyTo;
536    BigInteger.prototype.fromInt = bnpFromInt;
537    BigInteger.prototype.fromString = bnpFromString;
538    BigInteger.prototype.clamp = bnpClamp;
539    BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
540    BigInteger.prototype.drShiftTo = bnpDRShiftTo;
541    BigInteger.prototype.lShiftTo = bnpLShiftTo;
542    BigInteger.prototype.rShiftTo = bnpRShiftTo;
543    BigInteger.prototype.subTo = bnpSubTo;
544    BigInteger.prototype.multiplyTo = bnpMultiplyTo;
545    BigInteger.prototype.squareTo = bnpSquareTo;
546    BigInteger.prototype.divRemTo = bnpDivRemTo;
547    BigInteger.prototype.invDigit = bnpInvDigit;
548    BigInteger.prototype.isEven = bnpIsEven;
549    BigInteger.prototype.exp = bnpExp;
550
551    // public
552    BigInteger.prototype.toString = bnToString;
553    BigInteger.prototype.negate = bnNegate;
554    BigInteger.prototype.abs = bnAbs;
555    BigInteger.prototype.compareTo = bnCompareTo;
556    BigInteger.prototype.bitLength = bnBitLength;
557    BigInteger.prototype.mod = bnMod;
558    BigInteger.prototype.modPowInt = bnModPowInt;
559
560    // "constants"
561    BigInteger.ZERO = nbv(0);
562    BigInteger.ONE = nbv(1);
563
564    // Copyright (c) 2005-2009  Tom Wu
565    // All Rights Reserved.
566    // See "LICENSE" for details.
567
568    // Extended JavaScript BN functions, required for RSA private ops.
569
570    // Version 1.1: new BigInteger("0", 10) returns "proper" zero
571    // Version 1.2: square() API, isProbablePrime fix
572
573    // (public)
574    function bnClone() { var r = nbi(); this.copyTo(r); return r; }
575
576    // (public) return value as integer
577    function bnIntValue() {
578      if(this.s < 0) {
579        if(this.t == 1) return this[0]-this.DV;
580        else if(this.t == 0) return -1;
581      }
582      else if(this.t == 1) return this[0];
583      else if(this.t == 0) return 0;
584      // assumes 16 < DB < 32
585      return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
586    }
587
588    // (public) return value as byte
589    function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
590
591    // (public) return value as short (assumes DB>=16)
592    function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
593
594    // (protected) return x s.t. r^x < DV
595    function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
596
597    // (public) 0 if this == 0, 1 if this > 0
598    function bnSigNum() {
599      if(this.s < 0) return -1;
600      else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
601      else return 1;
602    }
603
604    // (protected) convert to radix string
605    function bnpToRadix(b) {
606      if(b == null) b = 10;
607      if(this.signum() == 0 || b < 2 || b > 36) return "0";
608      var cs = this.chunkSize(b);
609      var a = Math.pow(b,cs);
610      var d = nbv(a), y = nbi(), z = nbi(), r = "";
611      this.divRemTo(d,y,z);
612      while(y.signum() > 0) {
613        r = (a+z.intValue()).toString(b).substr(1) + r;
614        y.divRemTo(d,y,z);
615      }
616      return z.intValue().toString(b) + r;
617    }
618
619    // (protected) convert from radix string
620    function bnpFromRadix(s,b) {
621      this.fromInt(0);
622      if(b == null) b = 10;
623      var cs = this.chunkSize(b);
624      var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
625      for(var i = 0; i < s.length; ++i) {
626        var x = intAt(s,i);
627        if(x < 0) {
628          if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
629          continue;
630        }
631        w = b*w+x;
632        if(++j >= cs) {
633          this.dMultiply(d);
634          this.dAddOffset(w,0);
635          j = 0;
636          w = 0;
637        }
638      }
639      if(j > 0) {
640        this.dMultiply(Math.pow(b,j));
641        this.dAddOffset(w,0);
642      }
643      if(mi) BigInteger.ZERO.subTo(this,this);
644    }
645
646    // (protected) alternate constructor
647    function bnpFromNumber(a,b,c) {
648      if("number" == typeof b) {
649        // new BigInteger(int,int,RNG)
650        if(a < 2) this.fromInt(1);
651        else {
652          this.fromNumber(a,c);
653          if(!this.testBit(a-1))	// force MSB set
654            this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
655          if(this.isEven()) this.dAddOffset(1,0); // force odd
656          while(!this.isProbablePrime(b)) {
657            this.dAddOffset(2,0);
658            if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
659          }
660        }
661      }
662      else {
663        // new BigInteger(int,RNG)
664        var x = new Array(), t = a&7;
665        x.length = (a>>3)+1;
666        b.nextBytes(x);
667        if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
668        this.fromString(x,256);
669      }
670    }
671
672    // (public) convert to bigendian byte array
673    function bnToByteArray() {
674      var i = this.t, r = new Array();
675      r[0] = this.s;
676      var p = this.DB-(i*this.DB)%8, d, k = 0;
677      if(i-- > 0) {
678        if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
679          r[k++] = d|(this.s<<(this.DB-p));
680        while(i >= 0) {
681          if(p < 8) {
682            d = (this[i]&((1<<p)-1))<<(8-p);
683            d |= this[--i]>>(p+=this.DB-8);
684          }
685          else {
686            d = (this[i]>>(p-=8))&0xff;
687            if(p <= 0) { p += this.DB; --i; }
688          }
689          if((d&0x80) != 0) d |= -256;
690          if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
691          if(k > 0 || d != this.s) r[k++] = d;
692        }
693      }
694      return r;
695    }
696
697    function bnEquals(a) { return(this.compareTo(a)==0); }
698    function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
699    function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
700
701    // (protected) r = this op a (bitwise)
702    function bnpBitwiseTo(a,op,r) {
703      var i, f, m = Math.min(a.t,this.t);
704      for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
705      if(a.t < this.t) {
706        f = a.s&this.DM;
707        for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
708        r.t = this.t;
709      }
710      else {
711        f = this.s&this.DM;
712        for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
713        r.t = a.t;
714      }
715      r.s = op(this.s,a.s);
716      r.clamp();
717    }
718
719    // (public) this & a
720    function op_and(x,y) { return x&y; }
721    function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
722
723    // (public) this | a
724    function op_or(x,y) { return x|y; }
725    function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
726
727    // (public) this ^ a
728    function op_xor(x,y) { return x^y; }
729    function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
730
731    // (public) this & ~a
732    function op_andnot(x,y) { return x&~y; }
733    function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
734
735    // (public) ~this
736    function bnNot() {
737      var r = nbi();
738      for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
739      r.t = this.t;
740      r.s = ~this.s;
741      return r;
742    }
743
744    // (public) this << n
745    function bnShiftLeft(n) {
746      var r = nbi();
747      if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
748      return r;
749    }
750
751    // (public) this >> n
752    function bnShiftRight(n) {
753      var r = nbi();
754      if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
755      return r;
756    }
757
758    // return index of lowest 1-bit in x, x < 2^31
759    function lbit(x) {
760      if(x == 0) return -1;
761      var r = 0;
762      if((x&0xffff) == 0) { x >>= 16; r += 16; }
763      if((x&0xff) == 0) { x >>= 8; r += 8; }
764      if((x&0xf) == 0) { x >>= 4; r += 4; }
765      if((x&3) == 0) { x >>= 2; r += 2; }
766      if((x&1) == 0) ++r;
767      return r;
768    }
769
770    // (public) returns index of lowest 1-bit (or -1 if none)
771    function bnGetLowestSetBit() {
772      for(var i = 0; i < this.t; ++i)
773        if(this[i] != 0) return i*this.DB+lbit(this[i]);
774      if(this.s < 0) return this.t*this.DB;
775      return -1;
776    }
777
778    // return number of 1 bits in x
779    function cbit(x) {
780      var r = 0;
781      while(x != 0) { x &= x-1; ++r; }
782      return r;
783    }
784
785    // (public) return number of set bits
786    function bnBitCount() {
787      var r = 0, x = this.s&this.DM;
788      for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
789      return r;
790    }
791
792    // (public) true iff nth bit is set
793    function bnTestBit(n) {
794      var j = Math.floor(n/this.DB);
795      if(j >= this.t) return(this.s!=0);
796      return((this[j]&(1<<(n%this.DB)))!=0);
797    }
798
799    // (protected) this op (1<<n)
800    function bnpChangeBit(n,op) {
801      var r = BigInteger.ONE.shiftLeft(n);
802      this.bitwiseTo(r,op,r);
803      return r;
804    }
805
806    // (public) this | (1<<n)
807    function bnSetBit(n) { return this.changeBit(n,op_or); }
808
809    // (public) this & ~(1<<n)
810    function bnClearBit(n) { return this.changeBit(n,op_andnot); }
811
812    // (public) this ^ (1<<n)
813    function bnFlipBit(n) { return this.changeBit(n,op_xor); }
814
815    // (protected) r = this + a
816    function bnpAddTo(a,r) {
817      var i = 0, c = 0, m = Math.min(a.t,this.t);
818      while(i < m) {
819        c += this[i]+a[i];
820        r[i++] = c&this.DM;
821        c >>= this.DB;
822      }
823      if(a.t < this.t) {
824        c += a.s;
825        while(i < this.t) {
826          c += this[i];
827          r[i++] = c&this.DM;
828          c >>= this.DB;
829        }
830        c += this.s;
831      }
832      else {
833        c += this.s;
834        while(i < a.t) {
835          c += a[i];
836          r[i++] = c&this.DM;
837          c >>= this.DB;
838        }
839        c += a.s;
840      }
841      r.s = (c<0)?-1:0;
842      if(c > 0) r[i++] = c;
843      else if(c < -1) r[i++] = this.DV+c;
844      r.t = i;
845      r.clamp();
846    }
847
848    // (public) this + a
849    function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
850
851    // (public) this - a
852    function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
853
854    // (public) this * a
855    function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
856
857    // (public) this^2
858    function bnSquare() { var r = nbi(); this.squareTo(r); return r; }
859
860    // (public) this / a
861    function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
862
863    // (public) this % a
864    function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
865
866    // (public) [this/a,this%a]
867    function bnDivideAndRemainder(a) {
868      var q = nbi(), r = nbi();
869      this.divRemTo(a,q,r);
870      return new Array(q,r);
871    }
872
873    // (protected) this *= n, this >= 0, 1 < n < DV
874    function bnpDMultiply(n) {
875      this[this.t] = this.am(0,n-1,this,0,0,this.t);
876      ++this.t;
877      this.clamp();
878    }
879
880    // (protected) this += n << w words, this >= 0
881    function bnpDAddOffset(n,w) {
882      if(n == 0) return;
883      while(this.t <= w) this[this.t++] = 0;
884      this[w] += n;
885      while(this[w] >= this.DV) {
886        this[w] -= this.DV;
887        if(++w >= this.t) this[this.t++] = 0;
888        ++this[w];
889      }
890    }
891
892    // A "null" reducer
893    function NullExp() {}
894    function nNop(x) { return x; }
895    function nMulTo(x,y,r) { x.multiplyTo(y,r); }
896    function nSqrTo(x,r) { x.squareTo(r); }
897
898    NullExp.prototype.convert = nNop;
899    NullExp.prototype.revert = nNop;
900    NullExp.prototype.mulTo = nMulTo;
901    NullExp.prototype.sqrTo = nSqrTo;
902
903    // (public) this^e
904    function bnPow(e) { return this.exp(e,new NullExp()); }
905
906    // (protected) r = lower n words of "this * a", a.t <= n
907    // "this" should be the larger one if appropriate.
908    function bnpMultiplyLowerTo(a,n,r) {
909      var i = Math.min(this.t+a.t,n);
910      r.s = 0; // assumes a,this >= 0
911      r.t = i;
912      while(i > 0) r[--i] = 0;
913      var j;
914      for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
915      for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
916      r.clamp();
917    }
918
919    // (protected) r = "this * a" without lower n words, n > 0
920    // "this" should be the larger one if appropriate.
921    function bnpMultiplyUpperTo(a,n,r) {
922      --n;
923      var i = r.t = this.t+a.t-n;
924      r.s = 0; // assumes a,this >= 0
925      while(--i >= 0) r[i] = 0;
926      for(i = Math.max(n-this.t,0); i < a.t; ++i)
927        r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
928      r.clamp();
929      r.drShiftTo(1,r);
930    }
931
932    // Barrett modular reduction
933    function Barrett(m) {
934      // setup Barrett
935      this.r2 = nbi();
936      this.q3 = nbi();
937      BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
938      this.mu = this.r2.divide(m);
939      this.m = m;
940    }
941
942    function barrettConvert(x) {
943      if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
944      else if(x.compareTo(this.m) < 0) return x;
945      else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
946    }
947
948    function barrettRevert(x) { return x; }
949
950    // x = x mod m (HAC 14.42)
951    function barrettReduce(x) {
952      x.drShiftTo(this.m.t-1,this.r2);
953      if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
954      this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
955      this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
956      while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
957      x.subTo(this.r2,x);
958      while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
959    }
960
961    // r = x^2 mod m; x != r
962    function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
963
964    // r = x*y mod m; x,y != r
965    function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
966
967    Barrett.prototype.convert = barrettConvert;
968    Barrett.prototype.revert = barrettRevert;
969    Barrett.prototype.reduce = barrettReduce;
970    Barrett.prototype.mulTo = barrettMulTo;
971    Barrett.prototype.sqrTo = barrettSqrTo;
972
973    // (public) this^e % m (HAC 14.85)
974    function bnModPow(e,m) {
975      var i = e.bitLength(), k, r = nbv(1), z;
976      if(i <= 0) return r;
977      else if(i < 18) k = 1;
978      else if(i < 48) k = 3;
979      else if(i < 144) k = 4;
980      else if(i < 768) k = 5;
981      else k = 6;
982      if(i < 8)
983        z = new Classic(m);
984      else if(m.isEven())
985        z = new Barrett(m);
986      else
987        z = new Montgomery(m);
988
989      // precomputation
990      var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
991      g[1] = z.convert(this);
992      if(k > 1) {
993        var g2 = nbi();
994        z.sqrTo(g[1],g2);
995        while(n <= km) {
996          g[n] = nbi();
997          z.mulTo(g2,g[n-2],g[n]);
998          n += 2;
999        }
1000      }
1001
1002      var j = e.t-1, w, is1 = true, r2 = nbi(), t;
1003      i = nbits(e[j])-1;
1004      while(j >= 0) {
1005        if(i >= k1) w = (e[j]>>(i-k1))&km;
1006        else {
1007          w = (e[j]&((1<<(i+1))-1))<<(k1-i);
1008          if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
1009        }
1010
1011        n = k;
1012        while((w&1) == 0) { w >>= 1; --n; }
1013        if((i -= n) < 0) { i += this.DB; --j; }
1014        if(is1) {	// ret == 1, don't bother squaring or multiplying it
1015          g[w].copyTo(r);
1016          is1 = false;
1017        }
1018        else {
1019          while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
1020          if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
1021          z.mulTo(r2,g[w],r);
1022        }
1023
1024        while(j >= 0 && (e[j]&(1<<i)) == 0) {
1025          z.sqrTo(r,r2); t = r; r = r2; r2 = t;
1026          if(--i < 0) { i = this.DB-1; --j; }
1027        }
1028      }
1029      return z.revert(r);
1030    }
1031
1032    // (public) gcd(this,a) (HAC 14.54)
1033    function bnGCD(a) {
1034      var x = (this.s<0)?this.negate():this.clone();
1035      var y = (a.s<0)?a.negate():a.clone();
1036      if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
1037      var i = x.getLowestSetBit(), g = y.getLowestSetBit();
1038      if(g < 0) return x;
1039      if(i < g) g = i;
1040      if(g > 0) {
1041        x.rShiftTo(g,x);
1042        y.rShiftTo(g,y);
1043      }
1044      while(x.signum() > 0) {
1045        if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
1046        if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
1047        if(x.compareTo(y) >= 0) {
1048          x.subTo(y,x);
1049          x.rShiftTo(1,x);
1050        }
1051        else {
1052          y.subTo(x,y);
1053          y.rShiftTo(1,y);
1054        }
1055      }
1056      if(g > 0) y.lShiftTo(g,y);
1057      return y;
1058    }
1059
1060    // (protected) this % n, n < 2^26
1061    function bnpModInt(n) {
1062      if(n <= 0) return 0;
1063      var d = this.DV%n, r = (this.s<0)?n-1:0;
1064      if(this.t > 0)
1065        if(d == 0) r = this[0]%n;
1066        else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
1067      return r;
1068    }
1069
1070    // (public) 1/this % m (HAC 14.61)
1071    function bnModInverse(m) {
1072      var ac = m.isEven();
1073      if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
1074      var u = m.clone(), v = this.clone();
1075      var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
1076      while(u.signum() != 0) {
1077        while(u.isEven()) {
1078          u.rShiftTo(1,u);
1079          if(ac) {
1080            if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
1081            a.rShiftTo(1,a);
1082          }
1083          else if(!b.isEven()) b.subTo(m,b);
1084          b.rShiftTo(1,b);
1085        }
1086        while(v.isEven()) {
1087          v.rShiftTo(1,v);
1088          if(ac) {
1089            if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
1090            c.rShiftTo(1,c);
1091          }
1092          else if(!d.isEven()) d.subTo(m,d);
1093          d.rShiftTo(1,d);
1094        }
1095        if(u.compareTo(v) >= 0) {
1096          u.subTo(v,u);
1097          if(ac) a.subTo(c,a);
1098          b.subTo(d,b);
1099        }
1100        else {
1101          v.subTo(u,v);
1102          if(ac) c.subTo(a,c);
1103          d.subTo(b,d);
1104        }
1105      }
1106      if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
1107      if(d.compareTo(m) >= 0) return d.subtract(m);
1108      if(d.signum() < 0) d.addTo(m,d); else return d;
1109      if(d.signum() < 0) return d.add(m); else return d;
1110    }
1111
1112    var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
1113    var lplim = (1<<26)/lowprimes[lowprimes.length-1];
1114
1115    // (public) test primality with certainty >= 1-.5^t
1116    function bnIsProbablePrime(t) {
1117      var i, x = this.abs();
1118      if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
1119        for(i = 0; i < lowprimes.length; ++i)
1120          if(x[0] == lowprimes[i]) return true;
1121        return false;
1122      }
1123      if(x.isEven()) return false;
1124      i = 1;
1125      while(i < lowprimes.length) {
1126        var m = lowprimes[i], j = i+1;
1127        while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
1128        m = x.modInt(m);
1129        while(i < j) if(m%lowprimes[i++] == 0) return false;
1130      }
1131      return x.millerRabin(t);
1132    }
1133
1134    // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
1135    function bnpMillerRabin(t) {
1136      var n1 = this.subtract(BigInteger.ONE);
1137      var k = n1.getLowestSetBit();
1138      if(k <= 0) return false;
1139      var r = n1.shiftRight(k);
1140      t = (t+1)>>1;
1141      if(t > lowprimes.length) t = lowprimes.length;
1142      var a = nbi();
1143      for(var i = 0; i < t; ++i) {
1144        //Pick bases at random, instead of starting at 2
1145        a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);
1146        var y = a.modPow(r,this);
1147        if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
1148          var j = 1;
1149          while(j++ < k && y.compareTo(n1) != 0) {
1150            y = y.modPowInt(2,this);
1151            if(y.compareTo(BigInteger.ONE) == 0) return false;
1152          }
1153          if(y.compareTo(n1) != 0) return false;
1154        }
1155      }
1156      return true;
1157    }
1158
1159    // protected
1160    BigInteger.prototype.chunkSize = bnpChunkSize;
1161    BigInteger.prototype.toRadix = bnpToRadix;
1162    BigInteger.prototype.fromRadix = bnpFromRadix;
1163    BigInteger.prototype.fromNumber = bnpFromNumber;
1164    BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
1165    BigInteger.prototype.changeBit = bnpChangeBit;
1166    BigInteger.prototype.addTo = bnpAddTo;
1167    BigInteger.prototype.dMultiply = bnpDMultiply;
1168    BigInteger.prototype.dAddOffset = bnpDAddOffset;
1169    BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
1170    BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
1171    BigInteger.prototype.modInt = bnpModInt;
1172    BigInteger.prototype.millerRabin = bnpMillerRabin;
1173
1174    // public
1175    BigInteger.prototype.clone = bnClone;
1176    BigInteger.prototype.intValue = bnIntValue;
1177    BigInteger.prototype.byteValue = bnByteValue;
1178    BigInteger.prototype.shortValue = bnShortValue;
1179    BigInteger.prototype.signum = bnSigNum;
1180    BigInteger.prototype.toByteArray = bnToByteArray;
1181    BigInteger.prototype.equals = bnEquals;
1182    BigInteger.prototype.min = bnMin;
1183    BigInteger.prototype.max = bnMax;
1184    BigInteger.prototype.and = bnAnd;
1185    BigInteger.prototype.or = bnOr;
1186    BigInteger.prototype.xor = bnXor;
1187    BigInteger.prototype.andNot = bnAndNot;
1188    BigInteger.prototype.not = bnNot;
1189    BigInteger.prototype.shiftLeft = bnShiftLeft;
1190    BigInteger.prototype.shiftRight = bnShiftRight;
1191    BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
1192    BigInteger.prototype.bitCount = bnBitCount;
1193    BigInteger.prototype.testBit = bnTestBit;
1194    BigInteger.prototype.setBit = bnSetBit;
1195    BigInteger.prototype.clearBit = bnClearBit;
1196    BigInteger.prototype.flipBit = bnFlipBit;
1197    BigInteger.prototype.add = bnAdd;
1198    BigInteger.prototype.subtract = bnSubtract;
1199    BigInteger.prototype.multiply = bnMultiply;
1200    BigInteger.prototype.divide = bnDivide;
1201    BigInteger.prototype.remainder = bnRemainder;
1202    BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
1203    BigInteger.prototype.modPow = bnModPow;
1204    BigInteger.prototype.modInverse = bnModInverse;
1205    BigInteger.prototype.pow = bnPow;
1206    BigInteger.prototype.gcd = bnGCD;
1207    BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
1208
1209    // JSBN-specific extension
1210    BigInteger.prototype.square = bnSquare;
1211
1212    // Expose the Barrett function
1213    BigInteger.prototype.Barrett = Barrett
1214
1215    // BigInteger interfaces not implemented in jsbn:
1216
1217    // BigInteger(int signum, byte[] magnitude)
1218    // double doubleValue()
1219    // float floatValue()
1220    // int hashCode()
1221    // long longValue()
1222    // static BigInteger valueOf(long val)
1223
1224	// Random number generator - requires a PRNG backend, e.g. prng4.js
1225
1226	// For best results, put code like
1227	// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
1228	// in your main HTML document.
1229
1230	var rng_state;
1231	var rng_pool;
1232	var rng_pptr;
1233
1234	// Mix in a 32-bit integer into the pool
1235	function rng_seed_int(x) {
1236	  rng_pool[rng_pptr++] ^= x & 255;
1237	  rng_pool[rng_pptr++] ^= (x >> 8) & 255;
1238	  rng_pool[rng_pptr++] ^= (x >> 16) & 255;
1239	  rng_pool[rng_pptr++] ^= (x >> 24) & 255;
1240	  if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
1241	}
1242
1243	// Mix in the current time (w/milliseconds) into the pool
1244	function rng_seed_time() {
1245	  rng_seed_int(new Date().getTime());
1246	}
1247
1248	// Initialize the pool with junk if needed.
1249	if(rng_pool == null) {
1250	  rng_pool = new Array();
1251	  rng_pptr = 0;
1252	  var t;
1253	  if(typeof window !== "undefined" && window.crypto) {
1254		if (window.crypto.getRandomValues) {
1255		  // Use webcrypto if available
1256		  var ua = new Uint8Array(32);
1257		  window.crypto.getRandomValues(ua);
1258		  for(t = 0; t < 32; ++t)
1259			rng_pool[rng_pptr++] = ua[t];
1260		}
1261		else if(navigator.appName == "Netscape" && navigator.appVersion < "5") {
1262		  // Extract entropy (256 bits) from NS4 RNG if available
1263		  var z = window.crypto.random(32);
1264		  for(t = 0; t < z.length; ++t)
1265			rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
1266		}
1267	  }
1268	  while(rng_pptr < rng_psize) {  // extract some randomness from Math.random()
1269		t = Math.floor(65536 * Math.random());
1270		rng_pool[rng_pptr++] = t >>> 8;
1271		rng_pool[rng_pptr++] = t & 255;
1272	  }
1273	  rng_pptr = 0;
1274	  rng_seed_time();
1275	  //rng_seed_int(window.screenX);
1276	  //rng_seed_int(window.screenY);
1277	}
1278
1279	function rng_get_byte() {
1280	  if(rng_state == null) {
1281		rng_seed_time();
1282		rng_state = prng_newstate();
1283		rng_state.init(rng_pool);
1284		for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
1285		  rng_pool[rng_pptr] = 0;
1286		rng_pptr = 0;
1287		//rng_pool = null;
1288	  }
1289	  // TODO: allow reseeding after first request
1290	  return rng_state.next();
1291	}
1292
1293	function rng_get_bytes(ba) {
1294	  var i;
1295	  for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
1296	}
1297
1298	function SecureRandom() {}
1299
1300	SecureRandom.prototype.nextBytes = rng_get_bytes;
1301
1302	// prng4.js - uses Arcfour as a PRNG
1303
1304	function Arcfour() {
1305	  this.i = 0;
1306	  this.j = 0;
1307	  this.S = new Array();
1308	}
1309
1310	// Initialize arcfour context from key, an array of ints, each from [0..255]
1311	function ARC4init(key) {
1312	  var i, j, t;
1313	  for(i = 0; i < 256; ++i)
1314		this.S[i] = i;
1315	  j = 0;
1316	  for(i = 0; i < 256; ++i) {
1317		j = (j + this.S[i] + key[i % key.length]) & 255;
1318		t = this.S[i];
1319		this.S[i] = this.S[j];
1320		this.S[j] = t;
1321	  }
1322	  this.i = 0;
1323	  this.j = 0;
1324	}
1325
1326	function ARC4next() {
1327	  var t;
1328	  this.i = (this.i + 1) & 255;
1329	  this.j = (this.j + this.S[this.i]) & 255;
1330	  t = this.S[this.i];
1331	  this.S[this.i] = this.S[this.j];
1332	  this.S[this.j] = t;
1333	  return this.S[(t + this.S[this.i]) & 255];
1334	}
1335
1336	Arcfour.prototype.init = ARC4init;
1337	Arcfour.prototype.next = ARC4next;
1338
1339	// Plug in your RNG constructor here
1340	function prng_newstate() {
1341	  return new Arcfour();
1342	}
1343
1344	// Pool size must be a multiple of 4 and greater than 32.
1345	// An array of bytes the size of the pool will be passed to init()
1346	var rng_psize = 256;
1347
1348  BigInteger.SecureRandom = SecureRandom;
1349  BigInteger.BigInteger = BigInteger;
1350  if (typeof exports !== 'undefined') {
1351    exports = module.exports = BigInteger;
1352  } else {
1353    this.BigInteger = BigInteger;
1354    this.SecureRandom = SecureRandom;
1355  }
1356
1357}).call(this);
1358