#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the Apache License 2.0 (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements Poly1305 hash for x86_64. # # March 2015 # # Initial release. # # December 2016 # # Add AVX512F+VL+BW code path. # # November 2017 # # Convert AVX512F+VL+BW code path to pure AVX512F, so that it can be # executed even on Knights Landing. Trigger for modification was # observation that AVX512 code paths can negatively affect overall # Skylake-X system performance. Since we are likely to suppress # AVX512F capability flag [at least on Skylake-X], conversion serves # as kind of "investment protection". Note that next *lake processor, # Cannolake, has AVX512IFMA code path to execute... # # Numbers are cycles per processed byte with poly1305_blocks alone, # measured with rdtsc at fixed clock frequency. # # IALU/gcc-4.8(*) AVX(**) AVX2 AVX-512 # P4 4.46/+120% - # Core 2 2.41/+90% - # Westmere 1.88/+120% - # Sandy Bridge 1.39/+140% 1.10 # Haswell 1.14/+175% 1.11 0.65 # Skylake[-X] 1.13/+120% 0.96 0.51 [0.35] # Silvermont 2.83/+95% - # Knights L 3.60/? 1.65 1.10 0.41(***) # Goldmont 1.70/+180% - # VIA Nano 1.82/+150% - # Sledgehammer 1.38/+160% - # Bulldozer 2.30/+130% 0.97 # Ryzen 1.15/+200% 1.08 1.18 # # (*) improvement coefficients relative to clang are more modest and # are ~50% on most processors, in both cases we are comparing to # __int128 code; # (**) SSE2 implementation was attempted, but among non-AVX processors # it was faster than integer-only code only on older Intel P4 and # Core processors, 50-30%, less newer processor is, but slower on # contemporary ones, for example almost 2x slower on Atom, and as # former are naturally disappearing, SSE2 is deemed unnecessary; # (***) strangely enough performance seems to vary from core to core, # listed result is best case; # $output is the last argument if it looks like a file (it has an extension) # $flavour is the first argument if it doesn't look like a file $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef; $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef; $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22) + ($1>=2.25) + ($1>=2.26); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) { $avx = ($1>=2.09) + ($1>=2.10) + 2 * ($1>=2.12); $avx += 2 if ($1==2.11 && $2>=8); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=12); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"" or die "can't call $xlate: $!"; *STDOUT=*OUT; my ($ctx,$inp,$len,$padbit)=("%rdi","%rsi","%rdx","%rcx"); my ($mac,$nonce)=($inp,$len); # *_emit arguments my ($d1,$d2,$d3, $r0,$r1,$s1)=map("%r$_",(8..13)); my ($h0,$h1,$h2)=("%r14","%rbx","%rbp"); sub poly1305_iteration { # input: copy of $r1 in %rax, $h0-$h2, $r0-$r1 # output: $h0-$h2 *= $r0-$r1 $code.=<<___; mulq $h0 # h0*r1 mov %rax,$d2 mov $r0,%rax mov %rdx,$d3 mulq $h0 # h0*r0 mov %rax,$h0 # future $h0 mov $r0,%rax mov %rdx,$d1 mulq $h1 # h1*r0 add %rax,$d2 mov $s1,%rax adc %rdx,$d3 mulq $h1 # h1*s1 mov $h2,$h1 # borrow $h1 add %rax,$h0 adc %rdx,$d1 imulq $s1,$h1 # h2*s1 add $h1,$d2 mov $d1,$h1 adc \$0,$d3 imulq $r0,$h2 # h2*r0 add $d2,$h1 mov \$-4,%rax # mask value adc $h2,$d3 and $d3,%rax # last reduction step mov $d3,$h2 shr \$2,$d3 and \$3,$h2 add $d3,%rax add %rax,$h0 adc \$0,$h1 adc \$0,$h2 ___ } ######################################################################## # Layout of opaque area is following. # # unsigned __int64 h[3]; # current hash value base 2^64 # unsigned __int64 r[2]; # key value base 2^64 $code.=<<___; .text .extern OPENSSL_ia32cap_P .globl poly1305_init .hidden poly1305_init .globl poly1305_blocks .hidden poly1305_blocks .globl poly1305_emit .hidden poly1305_emit .type poly1305_init,\@function,3 .align 32 poly1305_init: .cfi_startproc xor %rax,%rax mov %rax,0($ctx) # initialize hash value mov %rax,8($ctx) mov %rax,16($ctx) cmp \$0,$inp je .Lno_key lea poly1305_blocks(%rip),%r10 lea poly1305_emit(%rip),%r11 ___ $code.=<<___ if ($avx); mov OPENSSL_ia32cap_P+4(%rip),%r9 lea poly1305_blocks_avx(%rip),%rax lea poly1305_emit_avx(%rip),%rcx bt \$`60-32`,%r9 # AVX? cmovc %rax,%r10 cmovc %rcx,%r11 ___ $code.=<<___ if ($avx>1); lea poly1305_blocks_avx2(%rip),%rax bt \$`5+32`,%r9 # AVX2? cmovc %rax,%r10 ___ $code.=<<___ if ($avx>3 && !$win64); mov \$`(1<<31|1<<21|1<<16)`,%rax shr \$32,%r9 and %rax,%r9 cmp %rax,%r9 je .Linit_base2_44 ___ $code.=<<___; mov \$0x0ffffffc0fffffff,%rax mov \$0x0ffffffc0ffffffc,%rcx and 0($inp),%rax and 8($inp),%rcx mov %rax,24($ctx) mov %rcx,32($ctx) ___ $code.=<<___ if ($flavour !~ /elf32/); mov %r10,0(%rdx) mov %r11,8(%rdx) ___ $code.=<<___ if ($flavour =~ /elf32/); mov %r10d,0(%rdx) mov %r11d,4(%rdx) ___ $code.=<<___; mov \$1,%eax .Lno_key: ret .cfi_endproc .size poly1305_init,.-poly1305_init .type poly1305_blocks,\@function,4 .align 32 poly1305_blocks: .cfi_startproc .Lblocks: shr \$4,$len jz .Lno_data # too short push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lblocks_body: mov $len,%r15 # reassign $len mov 24($ctx),$r0 # load r mov 32($ctx),$s1 mov 0($ctx),$h0 # load hash value mov 8($ctx),$h1 mov 16($ctx),$h2 mov $s1,$r1 shr \$2,$s1 mov $r1,%rax add $r1,$s1 # s1 = r1 + (r1 >> 2) jmp .Loop .align 32 .Loop: add 0($inp),$h0 # accumulate input adc 8($inp),$h1 lea 16($inp),$inp adc $padbit,$h2 ___ &poly1305_iteration(); $code.=<<___; mov $r1,%rax dec %r15 # len-=16 jnz .Loop mov $h0,0($ctx) # store hash value mov $h1,8($ctx) mov $h2,16($ctx) mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbp .cfi_restore %rbp mov 40(%rsp),%rbx .cfi_restore %rbx lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lno_data: .Lblocks_epilogue: ret .cfi_endproc .size poly1305_blocks,.-poly1305_blocks .type poly1305_emit,\@function,3 .align 32 poly1305_emit: .cfi_startproc .Lemit: mov 0($ctx),%r8 # load hash value mov 8($ctx),%r9 mov 16($ctx),%r10 mov %r8,%rax add \$5,%r8 # compare to modulus mov %r9,%rcx adc \$0,%r9 adc \$0,%r10 shr \$2,%r10 # did 130-bit value overflow? cmovnz %r8,%rax cmovnz %r9,%rcx add 0($nonce),%rax # accumulate nonce adc 8($nonce),%rcx mov %rax,0($mac) # write result mov %rcx,8($mac) ret .cfi_endproc .size poly1305_emit,.-poly1305_emit ___ if ($avx) { ######################################################################## # Layout of opaque area is following. # # unsigned __int32 h[5]; # current hash value base 2^26 # unsigned __int32 is_base2_26; # unsigned __int64 r[2]; # key value base 2^64 # unsigned __int64 pad; # struct { unsigned __int32 r^2, r^1, r^4, r^3; } r[9]; # # where r^n are base 2^26 digits of degrees of multiplier key. There are # 5 digits, but last four are interleaved with multiples of 5, totalling # in 9 elements: r0, r1, 5*r1, r2, 5*r2, r3, 5*r3, r4, 5*r4. my ($H0,$H1,$H2,$H3,$H4, $T0,$T1,$T2,$T3,$T4, $D0,$D1,$D2,$D3,$D4, $MASK) = map("%xmm$_",(0..15)); $code.=<<___; .type __poly1305_block,\@abi-omnipotent .align 32 __poly1305_block: .cfi_startproc ___ &poly1305_iteration(); $code.=<<___; ret .cfi_endproc .size __poly1305_block,.-__poly1305_block .type __poly1305_init_avx,\@abi-omnipotent .align 32 __poly1305_init_avx: .cfi_startproc mov $r0,$h0 mov $r1,$h1 xor $h2,$h2 lea 48+64($ctx),$ctx # size optimization mov $r1,%rax call __poly1305_block # r^2 mov \$0x3ffffff,%eax # save interleaved r^2 and r base 2^26 mov \$0x3ffffff,%edx mov $h0,$d1 and $h0#d,%eax mov $r0,$d2 and $r0#d,%edx mov %eax,`16*0+0-64`($ctx) shr \$26,$d1 mov %edx,`16*0+4-64`($ctx) shr \$26,$d2 mov \$0x3ffffff,%eax mov \$0x3ffffff,%edx and $d1#d,%eax and $d2#d,%edx mov %eax,`16*1+0-64`($ctx) lea (%rax,%rax,4),%eax # *5 mov %edx,`16*1+4-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 mov %eax,`16*2+0-64`($ctx) shr \$26,$d1 mov %edx,`16*2+4-64`($ctx) shr \$26,$d2 mov $h1,%rax mov $r1,%rdx shl \$12,%rax shl \$12,%rdx or $d1,%rax or $d2,%rdx and \$0x3ffffff,%eax and \$0x3ffffff,%edx mov %eax,`16*3+0-64`($ctx) lea (%rax,%rax,4),%eax # *5 mov %edx,`16*3+4-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 mov %eax,`16*4+0-64`($ctx) mov $h1,$d1 mov %edx,`16*4+4-64`($ctx) mov $r1,$d2 mov \$0x3ffffff,%eax mov \$0x3ffffff,%edx shr \$14,$d1 shr \$14,$d2 and $d1#d,%eax and $d2#d,%edx mov %eax,`16*5+0-64`($ctx) lea (%rax,%rax,4),%eax # *5 mov %edx,`16*5+4-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 mov %eax,`16*6+0-64`($ctx) shr \$26,$d1 mov %edx,`16*6+4-64`($ctx) shr \$26,$d2 mov $h2,%rax shl \$24,%rax or %rax,$d1 mov $d1#d,`16*7+0-64`($ctx) lea ($d1,$d1,4),$d1 # *5 mov $d2#d,`16*7+4-64`($ctx) lea ($d2,$d2,4),$d2 # *5 mov $d1#d,`16*8+0-64`($ctx) mov $d2#d,`16*8+4-64`($ctx) mov $r1,%rax call __poly1305_block # r^3 mov \$0x3ffffff,%eax # save r^3 base 2^26 mov $h0,$d1 and $h0#d,%eax shr \$26,$d1 mov %eax,`16*0+12-64`($ctx) mov \$0x3ffffff,%edx and $d1#d,%edx mov %edx,`16*1+12-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 shr \$26,$d1 mov %edx,`16*2+12-64`($ctx) mov $h1,%rax shl \$12,%rax or $d1,%rax and \$0x3ffffff,%eax mov %eax,`16*3+12-64`($ctx) lea (%rax,%rax,4),%eax # *5 mov $h1,$d1 mov %eax,`16*4+12-64`($ctx) mov \$0x3ffffff,%edx shr \$14,$d1 and $d1#d,%edx mov %edx,`16*5+12-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 shr \$26,$d1 mov %edx,`16*6+12-64`($ctx) mov $h2,%rax shl \$24,%rax or %rax,$d1 mov $d1#d,`16*7+12-64`($ctx) lea ($d1,$d1,4),$d1 # *5 mov $d1#d,`16*8+12-64`($ctx) mov $r1,%rax call __poly1305_block # r^4 mov \$0x3ffffff,%eax # save r^4 base 2^26 mov $h0,$d1 and $h0#d,%eax shr \$26,$d1 mov %eax,`16*0+8-64`($ctx) mov \$0x3ffffff,%edx and $d1#d,%edx mov %edx,`16*1+8-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 shr \$26,$d1 mov %edx,`16*2+8-64`($ctx) mov $h1,%rax shl \$12,%rax or $d1,%rax and \$0x3ffffff,%eax mov %eax,`16*3+8-64`($ctx) lea (%rax,%rax,4),%eax # *5 mov $h1,$d1 mov %eax,`16*4+8-64`($ctx) mov \$0x3ffffff,%edx shr \$14,$d1 and $d1#d,%edx mov %edx,`16*5+8-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 shr \$26,$d1 mov %edx,`16*6+8-64`($ctx) mov $h2,%rax shl \$24,%rax or %rax,$d1 mov $d1#d,`16*7+8-64`($ctx) lea ($d1,$d1,4),$d1 # *5 mov $d1#d,`16*8+8-64`($ctx) lea -48-64($ctx),$ctx # size [de-]optimization ret .cfi_endproc .size __poly1305_init_avx,.-__poly1305_init_avx .type poly1305_blocks_avx,\@function,4 .align 32 poly1305_blocks_avx: .cfi_startproc mov 20($ctx),%r8d # is_base2_26 cmp \$128,$len jae .Lblocks_avx test %r8d,%r8d jz .Lblocks .Lblocks_avx: and \$-16,$len jz .Lno_data_avx vzeroupper test %r8d,%r8d jz .Lbase2_64_avx test \$31,$len jz .Leven_avx push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lblocks_avx_body: mov $len,%r15 # reassign $len mov 0($ctx),$d1 # load hash value mov 8($ctx),$d2 mov 16($ctx),$h2#d mov 24($ctx),$r0 # load r mov 32($ctx),$s1 ################################# base 2^26 -> base 2^64 mov $d1#d,$h0#d and \$`-1*(1<<31)`,$d1 mov $d2,$r1 # borrow $r1 mov $d2#d,$h1#d and \$`-1*(1<<31)`,$d2 shr \$6,$d1 shl \$52,$r1 add $d1,$h0 shr \$12,$h1 shr \$18,$d2 add $r1,$h0 adc $d2,$h1 mov $h2,$d1 shl \$40,$d1 shr \$24,$h2 add $d1,$h1 adc \$0,$h2 # can be partially reduced... mov \$-4,$d2 # ... so reduce mov $h2,$d1 and $h2,$d2 shr \$2,$d1 and \$3,$h2 add $d2,$d1 # =*5 add $d1,$h0 adc \$0,$h1 adc \$0,$h2 mov $s1,$r1 mov $s1,%rax shr \$2,$s1 add $r1,$s1 # s1 = r1 + (r1 >> 2) add 0($inp),$h0 # accumulate input adc 8($inp),$h1 lea 16($inp),$inp adc $padbit,$h2 call __poly1305_block test $padbit,$padbit # if $padbit is zero, jz .Lstore_base2_64_avx # store hash in base 2^64 format ################################# base 2^64 -> base 2^26 mov $h0,%rax mov $h0,%rdx shr \$52,$h0 mov $h1,$r0 mov $h1,$r1 shr \$26,%rdx and \$0x3ffffff,%rax # h[0] shl \$12,$r0 and \$0x3ffffff,%rdx # h[1] shr \$14,$h1 or $r0,$h0 shl \$24,$h2 and \$0x3ffffff,$h0 # h[2] shr \$40,$r1 and \$0x3ffffff,$h1 # h[3] or $r1,$h2 # h[4] sub \$16,%r15 jz .Lstore_base2_26_avx vmovd %rax#d,$H0 vmovd %rdx#d,$H1 vmovd $h0#d,$H2 vmovd $h1#d,$H3 vmovd $h2#d,$H4 jmp .Lproceed_avx .align 32 .Lstore_base2_64_avx: mov $h0,0($ctx) mov $h1,8($ctx) mov $h2,16($ctx) # note that is_base2_26 is zeroed jmp .Ldone_avx .align 16 .Lstore_base2_26_avx: mov %rax#d,0($ctx) # store hash value base 2^26 mov %rdx#d,4($ctx) mov $h0#d,8($ctx) mov $h1#d,12($ctx) mov $h2#d,16($ctx) .align 16 .Ldone_avx: mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbp .cfi_restore %rbp mov 40(%rsp),%rbx .cfi_restore %rbx lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lno_data_avx: .Lblocks_avx_epilogue: ret .cfi_endproc .align 32 .Lbase2_64_avx: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lbase2_64_avx_body: mov $len,%r15 # reassign $len mov 24($ctx),$r0 # load r mov 32($ctx),$s1 mov 0($ctx),$h0 # load hash value mov 8($ctx),$h1 mov 16($ctx),$h2#d mov $s1,$r1 mov $s1,%rax shr \$2,$s1 add $r1,$s1 # s1 = r1 + (r1 >> 2) test \$31,$len jz .Linit_avx add 0($inp),$h0 # accumulate input adc 8($inp),$h1 lea 16($inp),$inp adc $padbit,$h2 sub \$16,%r15 call __poly1305_block .Linit_avx: ################################# base 2^64 -> base 2^26 mov $h0,%rax mov $h0,%rdx shr \$52,$h0 mov $h1,$d1 mov $h1,$d2 shr \$26,%rdx and \$0x3ffffff,%rax # h[0] shl \$12,$d1 and \$0x3ffffff,%rdx # h[1] shr \$14,$h1 or $d1,$h0 shl \$24,$h2 and \$0x3ffffff,$h0 # h[2] shr \$40,$d2 and \$0x3ffffff,$h1 # h[3] or $d2,$h2 # h[4] vmovd %rax#d,$H0 vmovd %rdx#d,$H1 vmovd $h0#d,$H2 vmovd $h1#d,$H3 vmovd $h2#d,$H4 movl \$1,20($ctx) # set is_base2_26 call __poly1305_init_avx .Lproceed_avx: mov %r15,$len mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbp .cfi_restore %rbp mov 40(%rsp),%rbx .cfi_restore %rbx lea 48(%rsp),%rax lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lbase2_64_avx_epilogue: jmp .Ldo_avx .cfi_endproc .align 32 .Leven_avx: .cfi_startproc vmovd 4*0($ctx),$H0 # load hash value vmovd 4*1($ctx),$H1 vmovd 4*2($ctx),$H2 vmovd 4*3($ctx),$H3 vmovd 4*4($ctx),$H4 .Ldo_avx: ___ $code.=<<___ if (!$win64); lea -0x58(%rsp),%r11 .cfi_def_cfa %r11,0x60 sub \$0x178,%rsp ___ $code.=<<___ if ($win64); lea -0xf8(%rsp),%r11 sub \$0x218,%rsp vmovdqa %xmm6,0x50(%r11) vmovdqa %xmm7,0x60(%r11) vmovdqa %xmm8,0x70(%r11) vmovdqa %xmm9,0x80(%r11) vmovdqa %xmm10,0x90(%r11) vmovdqa %xmm11,0xa0(%r11) vmovdqa %xmm12,0xb0(%r11) vmovdqa %xmm13,0xc0(%r11) vmovdqa %xmm14,0xd0(%r11) vmovdqa %xmm15,0xe0(%r11) .Ldo_avx_body: ___ $code.=<<___; sub \$64,$len lea -32($inp),%rax cmovc %rax,$inp vmovdqu `16*3`($ctx),$D4 # preload r0^2 lea `16*3+64`($ctx),$ctx # size optimization lea .Lconst(%rip),%rcx ################################################################ # load input vmovdqu 16*2($inp),$T0 vmovdqu 16*3($inp),$T1 vmovdqa 64(%rcx),$MASK # .Lmask26 vpsrldq \$6,$T0,$T2 # splat input vpsrldq \$6,$T1,$T3 vpunpckhqdq $T1,$T0,$T4 # 4 vpunpcklqdq $T1,$T0,$T0 # 0:1 vpunpcklqdq $T3,$T2,$T3 # 2:3 vpsrlq \$40,$T4,$T4 # 4 vpsrlq \$26,$T0,$T1 vpand $MASK,$T0,$T0 # 0 vpsrlq \$4,$T3,$T2 vpand $MASK,$T1,$T1 # 1 vpsrlq \$30,$T3,$T3 vpand $MASK,$T2,$T2 # 2 vpand $MASK,$T3,$T3 # 3 vpor 32(%rcx),$T4,$T4 # padbit, yes, always jbe .Lskip_loop_avx # expand and copy pre-calculated table to stack vmovdqu `16*1-64`($ctx),$D1 vmovdqu `16*2-64`($ctx),$D2 vpshufd \$0xEE,$D4,$D3 # 34xx -> 3434 vpshufd \$0x44,$D4,$D0 # xx12 -> 1212 vmovdqa $D3,-0x90(%r11) vmovdqa $D0,0x00(%rsp) vpshufd \$0xEE,$D1,$D4 vmovdqu `16*3-64`($ctx),$D0 vpshufd \$0x44,$D1,$D1 vmovdqa $D4,-0x80(%r11) vmovdqa $D1,0x10(%rsp) vpshufd \$0xEE,$D2,$D3 vmovdqu `16*4-64`($ctx),$D1 vpshufd \$0x44,$D2,$D2 vmovdqa $D3,-0x70(%r11) vmovdqa $D2,0x20(%rsp) vpshufd \$0xEE,$D0,$D4 vmovdqu `16*5-64`($ctx),$D2 vpshufd \$0x44,$D0,$D0 vmovdqa $D4,-0x60(%r11) vmovdqa $D0,0x30(%rsp) vpshufd \$0xEE,$D1,$D3 vmovdqu `16*6-64`($ctx),$D0 vpshufd \$0x44,$D1,$D1 vmovdqa $D3,-0x50(%r11) vmovdqa $D1,0x40(%rsp) vpshufd \$0xEE,$D2,$D4 vmovdqu `16*7-64`($ctx),$D1 vpshufd \$0x44,$D2,$D2 vmovdqa $D4,-0x40(%r11) vmovdqa $D2,0x50(%rsp) vpshufd \$0xEE,$D0,$D3 vmovdqu `16*8-64`($ctx),$D2 vpshufd \$0x44,$D0,$D0 vmovdqa $D3,-0x30(%r11) vmovdqa $D0,0x60(%rsp) vpshufd \$0xEE,$D1,$D4 vpshufd \$0x44,$D1,$D1 vmovdqa $D4,-0x20(%r11) vmovdqa $D1,0x70(%rsp) vpshufd \$0xEE,$D2,$D3 vmovdqa 0x00(%rsp),$D4 # preload r0^2 vpshufd \$0x44,$D2,$D2 vmovdqa $D3,-0x10(%r11) vmovdqa $D2,0x80(%rsp) jmp .Loop_avx .align 32 .Loop_avx: ################################################################ # ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2 # ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^3+inp[7]*r # \___________________/ # ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2+inp[8])*r^2 # ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^4+inp[7]*r^2+inp[9])*r # \___________________/ \____________________/ # # Note that we start with inp[2:3]*r^2. This is because it # doesn't depend on reduction in previous iteration. ################################################################ # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 # # though note that $Tx and $Hx are "reversed" in this section, # and $D4 is preloaded with r0^2... vpmuludq $T0,$D4,$D0 # d0 = h0*r0 vpmuludq $T1,$D4,$D1 # d1 = h1*r0 vmovdqa $H2,0x20(%r11) # offload hash vpmuludq $T2,$D4,$D2 # d3 = h2*r0 vmovdqa 0x10(%rsp),$H2 # r1^2 vpmuludq $T3,$D4,$D3 # d3 = h3*r0 vpmuludq $T4,$D4,$D4 # d4 = h4*r0 vmovdqa $H0,0x00(%r11) # vpmuludq 0x20(%rsp),$T4,$H0 # h4*s1 vmovdqa $H1,0x10(%r11) # vpmuludq $T3,$H2,$H1 # h3*r1 vpaddq $H0,$D0,$D0 # d0 += h4*s1 vpaddq $H1,$D4,$D4 # d4 += h3*r1 vmovdqa $H3,0x30(%r11) # vpmuludq $T2,$H2,$H0 # h2*r1 vpmuludq $T1,$H2,$H1 # h1*r1 vpaddq $H0,$D3,$D3 # d3 += h2*r1 vmovdqa 0x30(%rsp),$H3 # r2^2 vpaddq $H1,$D2,$D2 # d2 += h1*r1 vmovdqa $H4,0x40(%r11) # vpmuludq $T0,$H2,$H2 # h0*r1 vpmuludq $T2,$H3,$H0 # h2*r2 vpaddq $H2,$D1,$D1 # d1 += h0*r1 vmovdqa 0x40(%rsp),$H4 # s2^2 vpaddq $H0,$D4,$D4 # d4 += h2*r2 vpmuludq $T1,$H3,$H1 # h1*r2 vpmuludq $T0,$H3,$H3 # h0*r2 vpaddq $H1,$D3,$D3 # d3 += h1*r2 vmovdqa 0x50(%rsp),$H2 # r3^2 vpaddq $H3,$D2,$D2 # d2 += h0*r2 vpmuludq $T4,$H4,$H0 # h4*s2 vpmuludq $T3,$H4,$H4 # h3*s2 vpaddq $H0,$D1,$D1 # d1 += h4*s2 vmovdqa 0x60(%rsp),$H3 # s3^2 vpaddq $H4,$D0,$D0 # d0 += h3*s2 vmovdqa 0x80(%rsp),$H4 # s4^2 vpmuludq $T1,$H2,$H1 # h1*r3 vpmuludq $T0,$H2,$H2 # h0*r3 vpaddq $H1,$D4,$D4 # d4 += h1*r3 vpaddq $H2,$D3,$D3 # d3 += h0*r3 vpmuludq $T4,$H3,$H0 # h4*s3 vpmuludq $T3,$H3,$H1 # h3*s3 vpaddq $H0,$D2,$D2 # d2 += h4*s3 vmovdqu 16*0($inp),$H0 # load input vpaddq $H1,$D1,$D1 # d1 += h3*s3 vpmuludq $T2,$H3,$H3 # h2*s3 vpmuludq $T2,$H4,$T2 # h2*s4 vpaddq $H3,$D0,$D0 # d0 += h2*s3 vmovdqu 16*1($inp),$H1 # vpaddq $T2,$D1,$D1 # d1 += h2*s4 vpmuludq $T3,$H4,$T3 # h3*s4 vpmuludq $T4,$H4,$T4 # h4*s4 vpsrldq \$6,$H0,$H2 # splat input vpaddq $T3,$D2,$D2 # d2 += h3*s4 vpaddq $T4,$D3,$D3 # d3 += h4*s4 vpsrldq \$6,$H1,$H3 # vpmuludq 0x70(%rsp),$T0,$T4 # h0*r4 vpmuludq $T1,$H4,$T0 # h1*s4 vpunpckhqdq $H1,$H0,$H4 # 4 vpaddq $T4,$D4,$D4 # d4 += h0*r4 vmovdqa -0x90(%r11),$T4 # r0^4 vpaddq $T0,$D0,$D0 # d0 += h1*s4 vpunpcklqdq $H1,$H0,$H0 # 0:1 vpunpcklqdq $H3,$H2,$H3 # 2:3 #vpsrlq \$40,$H4,$H4 # 4 vpsrldq \$`40/8`,$H4,$H4 # 4 vpsrlq \$26,$H0,$H1 vpand $MASK,$H0,$H0 # 0 vpsrlq \$4,$H3,$H2 vpand $MASK,$H1,$H1 # 1 vpand 0(%rcx),$H4,$H4 # .Lmask24 vpsrlq \$30,$H3,$H3 vpand $MASK,$H2,$H2 # 2 vpand $MASK,$H3,$H3 # 3 vpor 32(%rcx),$H4,$H4 # padbit, yes, always vpaddq 0x00(%r11),$H0,$H0 # add hash value vpaddq 0x10(%r11),$H1,$H1 vpaddq 0x20(%r11),$H2,$H2 vpaddq 0x30(%r11),$H3,$H3 vpaddq 0x40(%r11),$H4,$H4 lea 16*2($inp),%rax lea 16*4($inp),$inp sub \$64,$len cmovc %rax,$inp ################################################################ # Now we accumulate (inp[0:1]+hash)*r^4 ################################################################ # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 vpmuludq $H0,$T4,$T0 # h0*r0 vpmuludq $H1,$T4,$T1 # h1*r0 vpaddq $T0,$D0,$D0 vpaddq $T1,$D1,$D1 vmovdqa -0x80(%r11),$T2 # r1^4 vpmuludq $H2,$T4,$T0 # h2*r0 vpmuludq $H3,$T4,$T1 # h3*r0 vpaddq $T0,$D2,$D2 vpaddq $T1,$D3,$D3 vpmuludq $H4,$T4,$T4 # h4*r0 vpmuludq -0x70(%r11),$H4,$T0 # h4*s1 vpaddq $T4,$D4,$D4 vpaddq $T0,$D0,$D0 # d0 += h4*s1 vpmuludq $H2,$T2,$T1 # h2*r1 vpmuludq $H3,$T2,$T0 # h3*r1 vpaddq $T1,$D3,$D3 # d3 += h2*r1 vmovdqa -0x60(%r11),$T3 # r2^4 vpaddq $T0,$D4,$D4 # d4 += h3*r1 vpmuludq $H1,$T2,$T1 # h1*r1 vpmuludq $H0,$T2,$T2 # h0*r1 vpaddq $T1,$D2,$D2 # d2 += h1*r1 vpaddq $T2,$D1,$D1 # d1 += h0*r1 vmovdqa -0x50(%r11),$T4 # s2^4 vpmuludq $H2,$T3,$T0 # h2*r2 vpmuludq $H1,$T3,$T1 # h1*r2 vpaddq $T0,$D4,$D4 # d4 += h2*r2 vpaddq $T1,$D3,$D3 # d3 += h1*r2 vmovdqa -0x40(%r11),$T2 # r3^4 vpmuludq $H0,$T3,$T3 # h0*r2 vpmuludq $H4,$T4,$T0 # h4*s2 vpaddq $T3,$D2,$D2 # d2 += h0*r2 vpaddq $T0,$D1,$D1 # d1 += h4*s2 vmovdqa -0x30(%r11),$T3 # s3^4 vpmuludq $H3,$T4,$T4 # h3*s2 vpmuludq $H1,$T2,$T1 # h1*r3 vpaddq $T4,$D0,$D0 # d0 += h3*s2 vmovdqa -0x10(%r11),$T4 # s4^4 vpaddq $T1,$D4,$D4 # d4 += h1*r3 vpmuludq $H0,$T2,$T2 # h0*r3 vpmuludq $H4,$T3,$T0 # h4*s3 vpaddq $T2,$D3,$D3 # d3 += h0*r3 vpaddq $T0,$D2,$D2 # d2 += h4*s3 vmovdqu 16*2($inp),$T0 # load input vpmuludq $H3,$T3,$T2 # h3*s3 vpmuludq $H2,$T3,$T3 # h2*s3 vpaddq $T2,$D1,$D1 # d1 += h3*s3 vmovdqu 16*3($inp),$T1 # vpaddq $T3,$D0,$D0 # d0 += h2*s3 vpmuludq $H2,$T4,$H2 # h2*s4 vpmuludq $H3,$T4,$H3 # h3*s4 vpsrldq \$6,$T0,$T2 # splat input vpaddq $H2,$D1,$D1 # d1 += h2*s4 vpmuludq $H4,$T4,$H4 # h4*s4 vpsrldq \$6,$T1,$T3 # vpaddq $H3,$D2,$H2 # h2 = d2 + h3*s4 vpaddq $H4,$D3,$H3 # h3 = d3 + h4*s4 vpmuludq -0x20(%r11),$H0,$H4 # h0*r4 vpmuludq $H1,$T4,$H0 vpunpckhqdq $T1,$T0,$T4 # 4 vpaddq $H4,$D4,$H4 # h4 = d4 + h0*r4 vpaddq $H0,$D0,$H0 # h0 = d0 + h1*s4 vpunpcklqdq $T1,$T0,$T0 # 0:1 vpunpcklqdq $T3,$T2,$T3 # 2:3 #vpsrlq \$40,$T4,$T4 # 4 vpsrldq \$`40/8`,$T4,$T4 # 4 vpsrlq \$26,$T0,$T1 vmovdqa 0x00(%rsp),$D4 # preload r0^2 vpand $MASK,$T0,$T0 # 0 vpsrlq \$4,$T3,$T2 vpand $MASK,$T1,$T1 # 1 vpand 0(%rcx),$T4,$T4 # .Lmask24 vpsrlq \$30,$T3,$T3 vpand $MASK,$T2,$T2 # 2 vpand $MASK,$T3,$T3 # 3 vpor 32(%rcx),$T4,$T4 # padbit, yes, always ################################################################ # lazy reduction as discussed in "NEON crypto" by D.J. Bernstein # and P. Schwabe vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $D0,$D1,$H1 # h0 -> h1 vpsrlq \$26,$H4,$D0 vpand $MASK,$H4,$H4 vpsrlq \$26,$H1,$D1 vpand $MASK,$H1,$H1 vpaddq $D1,$H2,$H2 # h1 -> h2 vpaddq $D0,$H0,$H0 vpsllq \$2,$D0,$D0 vpaddq $D0,$H0,$H0 # h4 -> h0 vpsrlq \$26,$H2,$D2 vpand $MASK,$H2,$H2 vpaddq $D2,$H3,$H3 # h2 -> h3 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $D0,$H1,$H1 # h0 -> h1 vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 ja .Loop_avx .Lskip_loop_avx: ################################################################ # multiply (inp[0:1]+hash) or inp[2:3] by r^2:r^1 vpshufd \$0x10,$D4,$D4 # r0^n, xx12 -> x1x2 add \$32,$len jnz .Long_tail_avx vpaddq $H2,$T2,$T2 vpaddq $H0,$T0,$T0 vpaddq $H1,$T1,$T1 vpaddq $H3,$T3,$T3 vpaddq $H4,$T4,$T4 .Long_tail_avx: vmovdqa $H2,0x20(%r11) vmovdqa $H0,0x00(%r11) vmovdqa $H1,0x10(%r11) vmovdqa $H3,0x30(%r11) vmovdqa $H4,0x40(%r11) # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 vpmuludq $T2,$D4,$D2 # d2 = h2*r0 vpmuludq $T0,$D4,$D0 # d0 = h0*r0 vpshufd \$0x10,`16*1-64`($ctx),$H2 # r1^n vpmuludq $T1,$D4,$D1 # d1 = h1*r0 vpmuludq $T3,$D4,$D3 # d3 = h3*r0 vpmuludq $T4,$D4,$D4 # d4 = h4*r0 vpmuludq $T3,$H2,$H0 # h3*r1 vpaddq $H0,$D4,$D4 # d4 += h3*r1 vpshufd \$0x10,`16*2-64`($ctx),$H3 # s1^n vpmuludq $T2,$H2,$H1 # h2*r1 vpaddq $H1,$D3,$D3 # d3 += h2*r1 vpshufd \$0x10,`16*3-64`($ctx),$H4 # r2^n vpmuludq $T1,$H2,$H0 # h1*r1 vpaddq $H0,$D2,$D2 # d2 += h1*r1 vpmuludq $T0,$H2,$H2 # h0*r1 vpaddq $H2,$D1,$D1 # d1 += h0*r1 vpmuludq $T4,$H3,$H3 # h4*s1 vpaddq $H3,$D0,$D0 # d0 += h4*s1 vpshufd \$0x10,`16*4-64`($ctx),$H2 # s2^n vpmuludq $T2,$H4,$H1 # h2*r2 vpaddq $H1,$D4,$D4 # d4 += h2*r2 vpmuludq $T1,$H4,$H0 # h1*r2 vpaddq $H0,$D3,$D3 # d3 += h1*r2 vpshufd \$0x10,`16*5-64`($ctx),$H3 # r3^n vpmuludq $T0,$H4,$H4 # h0*r2 vpaddq $H4,$D2,$D2 # d2 += h0*r2 vpmuludq $T4,$H2,$H1 # h4*s2 vpaddq $H1,$D1,$D1 # d1 += h4*s2 vpshufd \$0x10,`16*6-64`($ctx),$H4 # s3^n vpmuludq $T3,$H2,$H2 # h3*s2 vpaddq $H2,$D0,$D0 # d0 += h3*s2 vpmuludq $T1,$H3,$H0 # h1*r3 vpaddq $H0,$D4,$D4 # d4 += h1*r3 vpmuludq $T0,$H3,$H3 # h0*r3 vpaddq $H3,$D3,$D3 # d3 += h0*r3 vpshufd \$0x10,`16*7-64`($ctx),$H2 # r4^n vpmuludq $T4,$H4,$H1 # h4*s3 vpaddq $H1,$D2,$D2 # d2 += h4*s3 vpshufd \$0x10,`16*8-64`($ctx),$H3 # s4^n vpmuludq $T3,$H4,$H0 # h3*s3 vpaddq $H0,$D1,$D1 # d1 += h3*s3 vpmuludq $T2,$H4,$H4 # h2*s3 vpaddq $H4,$D0,$D0 # d0 += h2*s3 vpmuludq $T0,$H2,$H2 # h0*r4 vpaddq $H2,$D4,$D4 # h4 = d4 + h0*r4 vpmuludq $T4,$H3,$H1 # h4*s4 vpaddq $H1,$D3,$D3 # h3 = d3 + h4*s4 vpmuludq $T3,$H3,$H0 # h3*s4 vpaddq $H0,$D2,$D2 # h2 = d2 + h3*s4 vpmuludq $T2,$H3,$H1 # h2*s4 vpaddq $H1,$D1,$D1 # h1 = d1 + h2*s4 vpmuludq $T1,$H3,$H3 # h1*s4 vpaddq $H3,$D0,$D0 # h0 = d0 + h1*s4 jz .Lshort_tail_avx vmovdqu 16*0($inp),$H0 # load input vmovdqu 16*1($inp),$H1 vpsrldq \$6,$H0,$H2 # splat input vpsrldq \$6,$H1,$H3 vpunpckhqdq $H1,$H0,$H4 # 4 vpunpcklqdq $H1,$H0,$H0 # 0:1 vpunpcklqdq $H3,$H2,$H3 # 2:3 vpsrlq \$40,$H4,$H4 # 4 vpsrlq \$26,$H0,$H1 vpand $MASK,$H0,$H0 # 0 vpsrlq \$4,$H3,$H2 vpand $MASK,$H1,$H1 # 1 vpsrlq \$30,$H3,$H3 vpand $MASK,$H2,$H2 # 2 vpand $MASK,$H3,$H3 # 3 vpor 32(%rcx),$H4,$H4 # padbit, yes, always vpshufd \$0x32,`16*0-64`($ctx),$T4 # r0^n, 34xx -> x3x4 vpaddq 0x00(%r11),$H0,$H0 vpaddq 0x10(%r11),$H1,$H1 vpaddq 0x20(%r11),$H2,$H2 vpaddq 0x30(%r11),$H3,$H3 vpaddq 0x40(%r11),$H4,$H4 ################################################################ # multiply (inp[0:1]+hash) by r^4:r^3 and accumulate vpmuludq $H0,$T4,$T0 # h0*r0 vpaddq $T0,$D0,$D0 # d0 += h0*r0 vpmuludq $H1,$T4,$T1 # h1*r0 vpaddq $T1,$D1,$D1 # d1 += h1*r0 vpmuludq $H2,$T4,$T0 # h2*r0 vpaddq $T0,$D2,$D2 # d2 += h2*r0 vpshufd \$0x32,`16*1-64`($ctx),$T2 # r1^n vpmuludq $H3,$T4,$T1 # h3*r0 vpaddq $T1,$D3,$D3 # d3 += h3*r0 vpmuludq $H4,$T4,$T4 # h4*r0 vpaddq $T4,$D4,$D4 # d4 += h4*r0 vpmuludq $H3,$T2,$T0 # h3*r1 vpaddq $T0,$D4,$D4 # d4 += h3*r1 vpshufd \$0x32,`16*2-64`($ctx),$T3 # s1 vpmuludq $H2,$T2,$T1 # h2*r1 vpaddq $T1,$D3,$D3 # d3 += h2*r1 vpshufd \$0x32,`16*3-64`($ctx),$T4 # r2 vpmuludq $H1,$T2,$T0 # h1*r1 vpaddq $T0,$D2,$D2 # d2 += h1*r1 vpmuludq $H0,$T2,$T2 # h0*r1 vpaddq $T2,$D1,$D1 # d1 += h0*r1 vpmuludq $H4,$T3,$T3 # h4*s1 vpaddq $T3,$D0,$D0 # d0 += h4*s1 vpshufd \$0x32,`16*4-64`($ctx),$T2 # s2 vpmuludq $H2,$T4,$T1 # h2*r2 vpaddq $T1,$D4,$D4 # d4 += h2*r2 vpmuludq $H1,$T4,$T0 # h1*r2 vpaddq $T0,$D3,$D3 # d3 += h1*r2 vpshufd \$0x32,`16*5-64`($ctx),$T3 # r3 vpmuludq $H0,$T4,$T4 # h0*r2 vpaddq $T4,$D2,$D2 # d2 += h0*r2 vpmuludq $H4,$T2,$T1 # h4*s2 vpaddq $T1,$D1,$D1 # d1 += h4*s2 vpshufd \$0x32,`16*6-64`($ctx),$T4 # s3 vpmuludq $H3,$T2,$T2 # h3*s2 vpaddq $T2,$D0,$D0 # d0 += h3*s2 vpmuludq $H1,$T3,$T0 # h1*r3 vpaddq $T0,$D4,$D4 # d4 += h1*r3 vpmuludq $H0,$T3,$T3 # h0*r3 vpaddq $T3,$D3,$D3 # d3 += h0*r3 vpshufd \$0x32,`16*7-64`($ctx),$T2 # r4 vpmuludq $H4,$T4,$T1 # h4*s3 vpaddq $T1,$D2,$D2 # d2 += h4*s3 vpshufd \$0x32,`16*8-64`($ctx),$T3 # s4 vpmuludq $H3,$T4,$T0 # h3*s3 vpaddq $T0,$D1,$D1 # d1 += h3*s3 vpmuludq $H2,$T4,$T4 # h2*s3 vpaddq $T4,$D0,$D0 # d0 += h2*s3 vpmuludq $H0,$T2,$T2 # h0*r4 vpaddq $T2,$D4,$D4 # d4 += h0*r4 vpmuludq $H4,$T3,$T1 # h4*s4 vpaddq $T1,$D3,$D3 # d3 += h4*s4 vpmuludq $H3,$T3,$T0 # h3*s4 vpaddq $T0,$D2,$D2 # d2 += h3*s4 vpmuludq $H2,$T3,$T1 # h2*s4 vpaddq $T1,$D1,$D1 # d1 += h2*s4 vpmuludq $H1,$T3,$T3 # h1*s4 vpaddq $T3,$D0,$D0 # d0 += h1*s4 .Lshort_tail_avx: ################################################################ # horizontal addition vpsrldq \$8,$D4,$T4 vpsrldq \$8,$D3,$T3 vpsrldq \$8,$D1,$T1 vpsrldq \$8,$D0,$T0 vpsrldq \$8,$D2,$T2 vpaddq $T3,$D3,$D3 vpaddq $T4,$D4,$D4 vpaddq $T0,$D0,$D0 vpaddq $T1,$D1,$D1 vpaddq $T2,$D2,$D2 ################################################################ # lazy reduction vpsrlq \$26,$D3,$H3 vpand $MASK,$D3,$D3 vpaddq $H3,$D4,$D4 # h3 -> h4 vpsrlq \$26,$D0,$H0 vpand $MASK,$D0,$D0 vpaddq $H0,$D1,$D1 # h0 -> h1 vpsrlq \$26,$D4,$H4 vpand $MASK,$D4,$D4 vpsrlq \$26,$D1,$H1 vpand $MASK,$D1,$D1 vpaddq $H1,$D2,$D2 # h1 -> h2 vpaddq $H4,$D0,$D0 vpsllq \$2,$H4,$H4 vpaddq $H4,$D0,$D0 # h4 -> h0 vpsrlq \$26,$D2,$H2 vpand $MASK,$D2,$D2 vpaddq $H2,$D3,$D3 # h2 -> h3 vpsrlq \$26,$D0,$H0 vpand $MASK,$D0,$D0 vpaddq $H0,$D1,$D1 # h0 -> h1 vpsrlq \$26,$D3,$H3 vpand $MASK,$D3,$D3 vpaddq $H3,$D4,$D4 # h3 -> h4 vmovd $D0,`4*0-48-64`($ctx) # save partially reduced vmovd $D1,`4*1-48-64`($ctx) vmovd $D2,`4*2-48-64`($ctx) vmovd $D3,`4*3-48-64`($ctx) vmovd $D4,`4*4-48-64`($ctx) ___ $code.=<<___ if ($win64); vmovdqa 0x50(%r11),%xmm6 vmovdqa 0x60(%r11),%xmm7 vmovdqa 0x70(%r11),%xmm8 vmovdqa 0x80(%r11),%xmm9 vmovdqa 0x90(%r11),%xmm10 vmovdqa 0xa0(%r11),%xmm11 vmovdqa 0xb0(%r11),%xmm12 vmovdqa 0xc0(%r11),%xmm13 vmovdqa 0xd0(%r11),%xmm14 vmovdqa 0xe0(%r11),%xmm15 lea 0xf8(%r11),%rsp .Ldo_avx_epilogue: ___ $code.=<<___ if (!$win64); lea 0x58(%r11),%rsp .cfi_def_cfa %rsp,8 ___ $code.=<<___; vzeroupper ret .cfi_endproc .size poly1305_blocks_avx,.-poly1305_blocks_avx .type poly1305_emit_avx,\@function,3 .align 32 poly1305_emit_avx: .cfi_startproc cmpl \$0,20($ctx) # is_base2_26? je .Lemit mov 0($ctx),%eax # load hash value base 2^26 mov 4($ctx),%ecx mov 8($ctx),%r8d mov 12($ctx),%r11d mov 16($ctx),%r10d shl \$26,%rcx # base 2^26 -> base 2^64 mov %r8,%r9 shl \$52,%r8 add %rcx,%rax shr \$12,%r9 add %rax,%r8 # h0 adc \$0,%r9 shl \$14,%r11 mov %r10,%rax shr \$24,%r10 add %r11,%r9 shl \$40,%rax add %rax,%r9 # h1 adc \$0,%r10 # h2 mov %r10,%rax # could be partially reduced, so reduce mov %r10,%rcx and \$3,%r10 shr \$2,%rax and \$-4,%rcx add %rcx,%rax add %rax,%r8 adc \$0,%r9 adc \$0,%r10 mov %r8,%rax add \$5,%r8 # compare to modulus mov %r9,%rcx adc \$0,%r9 adc \$0,%r10 shr \$2,%r10 # did 130-bit value overflow? cmovnz %r8,%rax cmovnz %r9,%rcx add 0($nonce),%rax # accumulate nonce adc 8($nonce),%rcx mov %rax,0($mac) # write result mov %rcx,8($mac) ret .cfi_endproc .size poly1305_emit_avx,.-poly1305_emit_avx ___ if ($avx>1) { my ($H0,$H1,$H2,$H3,$H4, $MASK, $T4,$T0,$T1,$T2,$T3, $D0,$D1,$D2,$D3,$D4) = map("%ymm$_",(0..15)); my $S4=$MASK; $code.=<<___; .type poly1305_blocks_avx2,\@function,4 .align 32 poly1305_blocks_avx2: .cfi_startproc mov 20($ctx),%r8d # is_base2_26 cmp \$128,$len jae .Lblocks_avx2 test %r8d,%r8d jz .Lblocks .Lblocks_avx2: and \$-16,$len jz .Lno_data_avx2 vzeroupper test %r8d,%r8d jz .Lbase2_64_avx2 test \$63,$len jz .Leven_avx2 push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lblocks_avx2_body: mov $len,%r15 # reassign $len mov 0($ctx),$d1 # load hash value mov 8($ctx),$d2 mov 16($ctx),$h2#d mov 24($ctx),$r0 # load r mov 32($ctx),$s1 ################################# base 2^26 -> base 2^64 mov $d1#d,$h0#d and \$`-1*(1<<31)`,$d1 mov $d2,$r1 # borrow $r1 mov $d2#d,$h1#d and \$`-1*(1<<31)`,$d2 shr \$6,$d1 shl \$52,$r1 add $d1,$h0 shr \$12,$h1 shr \$18,$d2 add $r1,$h0 adc $d2,$h1 mov $h2,$d1 shl \$40,$d1 shr \$24,$h2 add $d1,$h1 adc \$0,$h2 # can be partially reduced... mov \$-4,$d2 # ... so reduce mov $h2,$d1 and $h2,$d2 shr \$2,$d1 and \$3,$h2 add $d2,$d1 # =*5 add $d1,$h0 adc \$0,$h1 adc \$0,$h2 mov $s1,$r1 mov $s1,%rax shr \$2,$s1 add $r1,$s1 # s1 = r1 + (r1 >> 2) .Lbase2_26_pre_avx2: add 0($inp),$h0 # accumulate input adc 8($inp),$h1 lea 16($inp),$inp adc $padbit,$h2 sub \$16,%r15 call __poly1305_block mov $r1,%rax test \$63,%r15 jnz .Lbase2_26_pre_avx2 test $padbit,$padbit # if $padbit is zero, jz .Lstore_base2_64_avx2 # store hash in base 2^64 format ################################# base 2^64 -> base 2^26 mov $h0,%rax mov $h0,%rdx shr \$52,$h0 mov $h1,$r0 mov $h1,$r1 shr \$26,%rdx and \$0x3ffffff,%rax # h[0] shl \$12,$r0 and \$0x3ffffff,%rdx # h[1] shr \$14,$h1 or $r0,$h0 shl \$24,$h2 and \$0x3ffffff,$h0 # h[2] shr \$40,$r1 and \$0x3ffffff,$h1 # h[3] or $r1,$h2 # h[4] test %r15,%r15 jz .Lstore_base2_26_avx2 vmovd %rax#d,%x#$H0 vmovd %rdx#d,%x#$H1 vmovd $h0#d,%x#$H2 vmovd $h1#d,%x#$H3 vmovd $h2#d,%x#$H4 jmp .Lproceed_avx2 .align 32 .Lstore_base2_64_avx2: mov $h0,0($ctx) mov $h1,8($ctx) mov $h2,16($ctx) # note that is_base2_26 is zeroed jmp .Ldone_avx2 .align 16 .Lstore_base2_26_avx2: mov %rax#d,0($ctx) # store hash value base 2^26 mov %rdx#d,4($ctx) mov $h0#d,8($ctx) mov $h1#d,12($ctx) mov $h2#d,16($ctx) .align 16 .Ldone_avx2: mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbp .cfi_restore %rbp mov 40(%rsp),%rbx .cfi_restore %rbx lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lno_data_avx2: .Lblocks_avx2_epilogue: ret .cfi_endproc .align 32 .Lbase2_64_avx2: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lbase2_64_avx2_body: mov $len,%r15 # reassign $len mov 24($ctx),$r0 # load r mov 32($ctx),$s1 mov 0($ctx),$h0 # load hash value mov 8($ctx),$h1 mov 16($ctx),$h2#d mov $s1,$r1 mov $s1,%rax shr \$2,$s1 add $r1,$s1 # s1 = r1 + (r1 >> 2) test \$63,$len jz .Linit_avx2 .Lbase2_64_pre_avx2: add 0($inp),$h0 # accumulate input adc 8($inp),$h1 lea 16($inp),$inp adc $padbit,$h2 sub \$16,%r15 call __poly1305_block mov $r1,%rax test \$63,%r15 jnz .Lbase2_64_pre_avx2 .Linit_avx2: ################################# base 2^64 -> base 2^26 mov $h0,%rax mov $h0,%rdx shr \$52,$h0 mov $h1,$d1 mov $h1,$d2 shr \$26,%rdx and \$0x3ffffff,%rax # h[0] shl \$12,$d1 and \$0x3ffffff,%rdx # h[1] shr \$14,$h1 or $d1,$h0 shl \$24,$h2 and \$0x3ffffff,$h0 # h[2] shr \$40,$d2 and \$0x3ffffff,$h1 # h[3] or $d2,$h2 # h[4] vmovd %rax#d,%x#$H0 vmovd %rdx#d,%x#$H1 vmovd $h0#d,%x#$H2 vmovd $h1#d,%x#$H3 vmovd $h2#d,%x#$H4 movl \$1,20($ctx) # set is_base2_26 call __poly1305_init_avx .Lproceed_avx2: mov %r15,$len # restore $len mov OPENSSL_ia32cap_P+8(%rip),%r10d mov \$`(1<<31|1<<30|1<<16)`,%r11d mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbp .cfi_restore %rbp mov 40(%rsp),%rbx .cfi_restore %rbx lea 48(%rsp),%rax lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lbase2_64_avx2_epilogue: jmp .Ldo_avx2 .cfi_endproc .align 32 .Leven_avx2: .cfi_startproc mov OPENSSL_ia32cap_P+8(%rip),%r10d vmovd 4*0($ctx),%x#$H0 # load hash value base 2^26 vmovd 4*1($ctx),%x#$H1 vmovd 4*2($ctx),%x#$H2 vmovd 4*3($ctx),%x#$H3 vmovd 4*4($ctx),%x#$H4 .Ldo_avx2: ___ $code.=<<___ if ($avx>2); cmp \$512,$len jb .Lskip_avx512 and %r11d,%r10d test \$`1<<16`,%r10d # check for AVX512F jnz .Lblocks_avx512 .Lskip_avx512: ___ $code.=<<___ if (!$win64); lea -8(%rsp),%r11 .cfi_def_cfa %r11,16 sub \$0x128,%rsp ___ $code.=<<___ if ($win64); lea -0xf8(%rsp),%r11 sub \$0x1c8,%rsp vmovdqa %xmm6,0x50(%r11) vmovdqa %xmm7,0x60(%r11) vmovdqa %xmm8,0x70(%r11) vmovdqa %xmm9,0x80(%r11) vmovdqa %xmm10,0x90(%r11) vmovdqa %xmm11,0xa0(%r11) vmovdqa %xmm12,0xb0(%r11) vmovdqa %xmm13,0xc0(%r11) vmovdqa %xmm14,0xd0(%r11) vmovdqa %xmm15,0xe0(%r11) .Ldo_avx2_body: ___ $code.=<<___; lea .Lconst(%rip),%rcx lea 48+64($ctx),$ctx # size optimization vmovdqa 96(%rcx),$T0 # .Lpermd_avx2 # expand and copy pre-calculated table to stack vmovdqu `16*0-64`($ctx),%x#$T2 and \$-512,%rsp vmovdqu `16*1-64`($ctx),%x#$T3 vmovdqu `16*2-64`($ctx),%x#$T4 vmovdqu `16*3-64`($ctx),%x#$D0 vmovdqu `16*4-64`($ctx),%x#$D1 vmovdqu `16*5-64`($ctx),%x#$D2 lea 0x90(%rsp),%rax # size optimization vmovdqu `16*6-64`($ctx),%x#$D3 vpermd $T2,$T0,$T2 # 00003412 -> 14243444 vmovdqu `16*7-64`($ctx),%x#$D4 vpermd $T3,$T0,$T3 vmovdqu `16*8-64`($ctx),%x#$MASK vpermd $T4,$T0,$T4 vmovdqa $T2,0x00(%rsp) vpermd $D0,$T0,$D0 vmovdqa $T3,0x20-0x90(%rax) vpermd $D1,$T0,$D1 vmovdqa $T4,0x40-0x90(%rax) vpermd $D2,$T0,$D2 vmovdqa $D0,0x60-0x90(%rax) vpermd $D3,$T0,$D3 vmovdqa $D1,0x80-0x90(%rax) vpermd $D4,$T0,$D4 vmovdqa $D2,0xa0-0x90(%rax) vpermd $MASK,$T0,$MASK vmovdqa $D3,0xc0-0x90(%rax) vmovdqa $D4,0xe0-0x90(%rax) vmovdqa $MASK,0x100-0x90(%rax) vmovdqa 64(%rcx),$MASK # .Lmask26 ################################################################ # load input vmovdqu 16*0($inp),%x#$T0 vmovdqu 16*1($inp),%x#$T1 vinserti128 \$1,16*2($inp),$T0,$T0 vinserti128 \$1,16*3($inp),$T1,$T1 lea 16*4($inp),$inp vpsrldq \$6,$T0,$T2 # splat input vpsrldq \$6,$T1,$T3 vpunpckhqdq $T1,$T0,$T4 # 4 vpunpcklqdq $T3,$T2,$T2 # 2:3 vpunpcklqdq $T1,$T0,$T0 # 0:1 vpsrlq \$30,$T2,$T3 vpsrlq \$4,$T2,$T2 vpsrlq \$26,$T0,$T1 vpsrlq \$40,$T4,$T4 # 4 vpand $MASK,$T2,$T2 # 2 vpand $MASK,$T0,$T0 # 0 vpand $MASK,$T1,$T1 # 1 vpand $MASK,$T3,$T3 # 3 vpor 32(%rcx),$T4,$T4 # padbit, yes, always vpaddq $H2,$T2,$H2 # accumulate input sub \$64,$len jz .Ltail_avx2 jmp .Loop_avx2 .align 32 .Loop_avx2: ################################################################ # ((inp[0]*r^4+inp[4])*r^4+inp[ 8])*r^4 # ((inp[1]*r^4+inp[5])*r^4+inp[ 9])*r^3 # ((inp[2]*r^4+inp[6])*r^4+inp[10])*r^2 # ((inp[3]*r^4+inp[7])*r^4+inp[11])*r^1 # \________/\__________/ ################################################################ #vpaddq $H2,$T2,$H2 # accumulate input vpaddq $H0,$T0,$H0 vmovdqa `32*0`(%rsp),$T0 # r0^4 vpaddq $H1,$T1,$H1 vmovdqa `32*1`(%rsp),$T1 # r1^4 vpaddq $H3,$T3,$H3 vmovdqa `32*3`(%rsp),$T2 # r2^4 vpaddq $H4,$T4,$H4 vmovdqa `32*6-0x90`(%rax),$T3 # s3^4 vmovdqa `32*8-0x90`(%rax),$S4 # s4^4 # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 # # however, as h2 is "chronologically" first one available pull # corresponding operations up, so it's # # d4 = h2*r2 + h4*r0 + h3*r1 + h1*r3 + h0*r4 # d3 = h2*r1 + h3*r0 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h2*5*r4 + h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 # d0 = h2*5*r3 + h0*r0 + h4*5*r1 + h3*5*r2 + h1*5*r4 vpmuludq $H2,$T0,$D2 # d2 = h2*r0 vpmuludq $H2,$T1,$D3 # d3 = h2*r1 vpmuludq $H2,$T2,$D4 # d4 = h2*r2 vpmuludq $H2,$T3,$D0 # d0 = h2*s3 vpmuludq $H2,$S4,$D1 # d1 = h2*s4 vpmuludq $H0,$T1,$T4 # h0*r1 vpmuludq $H1,$T1,$H2 # h1*r1, borrow $H2 as temp vpaddq $T4,$D1,$D1 # d1 += h0*r1 vpaddq $H2,$D2,$D2 # d2 += h1*r1 vpmuludq $H3,$T1,$T4 # h3*r1 vpmuludq `32*2`(%rsp),$H4,$H2 # h4*s1 vpaddq $T4,$D4,$D4 # d4 += h3*r1 vpaddq $H2,$D0,$D0 # d0 += h4*s1 vmovdqa `32*4-0x90`(%rax),$T1 # s2 vpmuludq $H0,$T0,$T4 # h0*r0 vpmuludq $H1,$T0,$H2 # h1*r0 vpaddq $T4,$D0,$D0 # d0 += h0*r0 vpaddq $H2,$D1,$D1 # d1 += h1*r0 vpmuludq $H3,$T0,$T4 # h3*r0 vpmuludq $H4,$T0,$H2 # h4*r0 vmovdqu 16*0($inp),%x#$T0 # load input vpaddq $T4,$D3,$D3 # d3 += h3*r0 vpaddq $H2,$D4,$D4 # d4 += h4*r0 vinserti128 \$1,16*2($inp),$T0,$T0 vpmuludq $H3,$T1,$T4 # h3*s2 vpmuludq $H4,$T1,$H2 # h4*s2 vmovdqu 16*1($inp),%x#$T1 vpaddq $T4,$D0,$D0 # d0 += h3*s2 vpaddq $H2,$D1,$D1 # d1 += h4*s2 vmovdqa `32*5-0x90`(%rax),$H2 # r3 vpmuludq $H1,$T2,$T4 # h1*r2 vpmuludq $H0,$T2,$T2 # h0*r2 vpaddq $T4,$D3,$D3 # d3 += h1*r2 vpaddq $T2,$D2,$D2 # d2 += h0*r2 vinserti128 \$1,16*3($inp),$T1,$T1 lea 16*4($inp),$inp vpmuludq $H1,$H2,$T4 # h1*r3 vpmuludq $H0,$H2,$H2 # h0*r3 vpsrldq \$6,$T0,$T2 # splat input vpaddq $T4,$D4,$D4 # d4 += h1*r3 vpaddq $H2,$D3,$D3 # d3 += h0*r3 vpmuludq $H3,$T3,$T4 # h3*s3 vpmuludq $H4,$T3,$H2 # h4*s3 vpsrldq \$6,$T1,$T3 vpaddq $T4,$D1,$D1 # d1 += h3*s3 vpaddq $H2,$D2,$D2 # d2 += h4*s3 vpunpckhqdq $T1,$T0,$T4 # 4 vpmuludq $H3,$S4,$H3 # h3*s4 vpmuludq $H4,$S4,$H4 # h4*s4 vpunpcklqdq $T1,$T0,$T0 # 0:1 vpaddq $H3,$D2,$H2 # h2 = d2 + h3*r4 vpaddq $H4,$D3,$H3 # h3 = d3 + h4*r4 vpunpcklqdq $T3,$T2,$T3 # 2:3 vpmuludq `32*7-0x90`(%rax),$H0,$H4 # h0*r4 vpmuludq $H1,$S4,$H0 # h1*s4 vmovdqa 64(%rcx),$MASK # .Lmask26 vpaddq $H4,$D4,$H4 # h4 = d4 + h0*r4 vpaddq $H0,$D0,$H0 # h0 = d0 + h1*s4 ################################################################ # lazy reduction (interleaved with tail of input splat) vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $D0,$D1,$H1 # h0 -> h1 vpsrlq \$26,$H4,$D4 vpand $MASK,$H4,$H4 vpsrlq \$4,$T3,$T2 vpsrlq \$26,$H1,$D1 vpand $MASK,$H1,$H1 vpaddq $D1,$H2,$H2 # h1 -> h2 vpaddq $D4,$H0,$H0 vpsllq \$2,$D4,$D4 vpaddq $D4,$H0,$H0 # h4 -> h0 vpand $MASK,$T2,$T2 # 2 vpsrlq \$26,$T0,$T1 vpsrlq \$26,$H2,$D2 vpand $MASK,$H2,$H2 vpaddq $D2,$H3,$H3 # h2 -> h3 vpaddq $T2,$H2,$H2 # modulo-scheduled vpsrlq \$30,$T3,$T3 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $D0,$H1,$H1 # h0 -> h1 vpsrlq \$40,$T4,$T4 # 4 vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 vpand $MASK,$T0,$T0 # 0 vpand $MASK,$T1,$T1 # 1 vpand $MASK,$T3,$T3 # 3 vpor 32(%rcx),$T4,$T4 # padbit, yes, always sub \$64,$len jnz .Loop_avx2 .byte 0x66,0x90 .Ltail_avx2: ################################################################ # while above multiplications were by r^4 in all lanes, in last # iteration we multiply least significant lane by r^4 and most # significant one by r, so copy of above except that references # to the precomputed table are displaced by 4... #vpaddq $H2,$T2,$H2 # accumulate input vpaddq $H0,$T0,$H0 vmovdqu `32*0+4`(%rsp),$T0 # r0^4 vpaddq $H1,$T1,$H1 vmovdqu `32*1+4`(%rsp),$T1 # r1^4 vpaddq $H3,$T3,$H3 vmovdqu `32*3+4`(%rsp),$T2 # r2^4 vpaddq $H4,$T4,$H4 vmovdqu `32*6+4-0x90`(%rax),$T3 # s3^4 vmovdqu `32*8+4-0x90`(%rax),$S4 # s4^4 vpmuludq $H2,$T0,$D2 # d2 = h2*r0 vpmuludq $H2,$T1,$D3 # d3 = h2*r1 vpmuludq $H2,$T2,$D4 # d4 = h2*r2 vpmuludq $H2,$T3,$D0 # d0 = h2*s3 vpmuludq $H2,$S4,$D1 # d1 = h2*s4 vpmuludq $H0,$T1,$T4 # h0*r1 vpmuludq $H1,$T1,$H2 # h1*r1 vpaddq $T4,$D1,$D1 # d1 += h0*r1 vpaddq $H2,$D2,$D2 # d2 += h1*r1 vpmuludq $H3,$T1,$T4 # h3*r1 vpmuludq `32*2+4`(%rsp),$H4,$H2 # h4*s1 vpaddq $T4,$D4,$D4 # d4 += h3*r1 vpaddq $H2,$D0,$D0 # d0 += h4*s1 vpmuludq $H0,$T0,$T4 # h0*r0 vpmuludq $H1,$T0,$H2 # h1*r0 vpaddq $T4,$D0,$D0 # d0 += h0*r0 vmovdqu `32*4+4-0x90`(%rax),$T1 # s2 vpaddq $H2,$D1,$D1 # d1 += h1*r0 vpmuludq $H3,$T0,$T4 # h3*r0 vpmuludq $H4,$T0,$H2 # h4*r0 vpaddq $T4,$D3,$D3 # d3 += h3*r0 vpaddq $H2,$D4,$D4 # d4 += h4*r0 vpmuludq $H3,$T1,$T4 # h3*s2 vpmuludq $H4,$T1,$H2 # h4*s2 vpaddq $T4,$D0,$D0 # d0 += h3*s2 vpaddq $H2,$D1,$D1 # d1 += h4*s2 vmovdqu `32*5+4-0x90`(%rax),$H2 # r3 vpmuludq $H1,$T2,$T4 # h1*r2 vpmuludq $H0,$T2,$T2 # h0*r2 vpaddq $T4,$D3,$D3 # d3 += h1*r2 vpaddq $T2,$D2,$D2 # d2 += h0*r2 vpmuludq $H1,$H2,$T4 # h1*r3 vpmuludq $H0,$H2,$H2 # h0*r3 vpaddq $T4,$D4,$D4 # d4 += h1*r3 vpaddq $H2,$D3,$D3 # d3 += h0*r3 vpmuludq $H3,$T3,$T4 # h3*s3 vpmuludq $H4,$T3,$H2 # h4*s3 vpaddq $T4,$D1,$D1 # d1 += h3*s3 vpaddq $H2,$D2,$D2 # d2 += h4*s3 vpmuludq $H3,$S4,$H3 # h3*s4 vpmuludq $H4,$S4,$H4 # h4*s4 vpaddq $H3,$D2,$H2 # h2 = d2 + h3*r4 vpaddq $H4,$D3,$H3 # h3 = d3 + h4*r4 vpmuludq `32*7+4-0x90`(%rax),$H0,$H4 # h0*r4 vpmuludq $H1,$S4,$H0 # h1*s4 vmovdqa 64(%rcx),$MASK # .Lmask26 vpaddq $H4,$D4,$H4 # h4 = d4 + h0*r4 vpaddq $H0,$D0,$H0 # h0 = d0 + h1*s4 ################################################################ # horizontal addition vpsrldq \$8,$D1,$T1 vpsrldq \$8,$H2,$T2 vpsrldq \$8,$H3,$T3 vpsrldq \$8,$H4,$T4 vpsrldq \$8,$H0,$T0 vpaddq $T1,$D1,$D1 vpaddq $T2,$H2,$H2 vpaddq $T3,$H3,$H3 vpaddq $T4,$H4,$H4 vpaddq $T0,$H0,$H0 vpermq \$0x2,$H3,$T3 vpermq \$0x2,$H4,$T4 vpermq \$0x2,$H0,$T0 vpermq \$0x2,$D1,$T1 vpermq \$0x2,$H2,$T2 vpaddq $T3,$H3,$H3 vpaddq $T4,$H4,$H4 vpaddq $T0,$H0,$H0 vpaddq $T1,$D1,$D1 vpaddq $T2,$H2,$H2 ################################################################ # lazy reduction vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $D0,$D1,$H1 # h0 -> h1 vpsrlq \$26,$H4,$D4 vpand $MASK,$H4,$H4 vpsrlq \$26,$H1,$D1 vpand $MASK,$H1,$H1 vpaddq $D1,$H2,$H2 # h1 -> h2 vpaddq $D4,$H0,$H0 vpsllq \$2,$D4,$D4 vpaddq $D4,$H0,$H0 # h4 -> h0 vpsrlq \$26,$H2,$D2 vpand $MASK,$H2,$H2 vpaddq $D2,$H3,$H3 # h2 -> h3 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $D0,$H1,$H1 # h0 -> h1 vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 vmovd %x#$H0,`4*0-48-64`($ctx)# save partially reduced vmovd %x#$H1,`4*1-48-64`($ctx) vmovd %x#$H2,`4*2-48-64`($ctx) vmovd %x#$H3,`4*3-48-64`($ctx) vmovd %x#$H4,`4*4-48-64`($ctx) ___ $code.=<<___ if ($win64); vmovdqa 0x50(%r11),%xmm6 vmovdqa 0x60(%r11),%xmm7 vmovdqa 0x70(%r11),%xmm8 vmovdqa 0x80(%r11),%xmm9 vmovdqa 0x90(%r11),%xmm10 vmovdqa 0xa0(%r11),%xmm11 vmovdqa 0xb0(%r11),%xmm12 vmovdqa 0xc0(%r11),%xmm13 vmovdqa 0xd0(%r11),%xmm14 vmovdqa 0xe0(%r11),%xmm15 lea 0xf8(%r11),%rsp .Ldo_avx2_epilogue: ___ $code.=<<___ if (!$win64); lea 8(%r11),%rsp .cfi_def_cfa %rsp,8 ___ $code.=<<___; vzeroupper ret .cfi_endproc .size poly1305_blocks_avx2,.-poly1305_blocks_avx2 ___ ####################################################################### if ($avx>2) { # On entry we have input length divisible by 64. But since inner loop # processes 128 bytes per iteration, cases when length is not divisible # by 128 are handled by passing tail 64 bytes to .Ltail_avx2. For this # reason stack layout is kept identical to poly1305_blocks_avx2. If not # for this tail, we wouldn't have to even allocate stack frame... my ($R0,$R1,$R2,$R3,$R4, $S1,$S2,$S3,$S4) = map("%zmm$_",(16..24)); my ($M0,$M1,$M2,$M3,$M4) = map("%zmm$_",(25..29)); my $PADBIT="%zmm30"; map(s/%y/%z/,($T4,$T0,$T1,$T2,$T3)); # switch to %zmm domain map(s/%y/%z/,($D0,$D1,$D2,$D3,$D4)); map(s/%y/%z/,($H0,$H1,$H2,$H3,$H4)); map(s/%y/%z/,($MASK)); $code.=<<___; .type poly1305_blocks_avx512,\@function,4 .align 32 poly1305_blocks_avx512: .cfi_startproc .Lblocks_avx512: mov \$15,%eax kmovw %eax,%k2 ___ $code.=<<___ if (!$win64); lea -8(%rsp),%r11 .cfi_def_cfa %r11,16 sub \$0x128,%rsp ___ $code.=<<___ if ($win64); lea -0xf8(%rsp),%r11 sub \$0x1c8,%rsp vmovdqa %xmm6,0x50(%r11) vmovdqa %xmm7,0x60(%r11) vmovdqa %xmm8,0x70(%r11) vmovdqa %xmm9,0x80(%r11) vmovdqa %xmm10,0x90(%r11) vmovdqa %xmm11,0xa0(%r11) vmovdqa %xmm12,0xb0(%r11) vmovdqa %xmm13,0xc0(%r11) vmovdqa %xmm14,0xd0(%r11) vmovdqa %xmm15,0xe0(%r11) .Ldo_avx512_body: ___ $code.=<<___; lea .Lconst(%rip),%rcx lea 48+64($ctx),$ctx # size optimization vmovdqa 96(%rcx),%y#$T2 # .Lpermd_avx2 # expand pre-calculated table vmovdqu `16*0-64`($ctx),%x#$D0 # will become expanded ${R0} and \$-512,%rsp vmovdqu `16*1-64`($ctx),%x#$D1 # will become ... ${R1} mov \$0x20,%rax vmovdqu `16*2-64`($ctx),%x#$T0 # ... ${S1} vmovdqu `16*3-64`($ctx),%x#$D2 # ... ${R2} vmovdqu `16*4-64`($ctx),%x#$T1 # ... ${S2} vmovdqu `16*5-64`($ctx),%x#$D3 # ... ${R3} vmovdqu `16*6-64`($ctx),%x#$T3 # ... ${S3} vmovdqu `16*7-64`($ctx),%x#$D4 # ... ${R4} vmovdqu `16*8-64`($ctx),%x#$T4 # ... ${S4} vpermd $D0,$T2,$R0 # 00003412 -> 14243444 vpbroadcastq 64(%rcx),$MASK # .Lmask26 vpermd $D1,$T2,$R1 vpermd $T0,$T2,$S1 vpermd $D2,$T2,$R2 vmovdqa64 $R0,0x00(%rsp){%k2} # save in case $len%128 != 0 vpsrlq \$32,$R0,$T0 # 14243444 -> 01020304 vpermd $T1,$T2,$S2 vmovdqu64 $R1,0x00(%rsp,%rax){%k2} vpsrlq \$32,$R1,$T1 vpermd $D3,$T2,$R3 vmovdqa64 $S1,0x40(%rsp){%k2} vpermd $T3,$T2,$S3 vpermd $D4,$T2,$R4 vmovdqu64 $R2,0x40(%rsp,%rax){%k2} vpermd $T4,$T2,$S4 vmovdqa64 $S2,0x80(%rsp){%k2} vmovdqu64 $R3,0x80(%rsp,%rax){%k2} vmovdqa64 $S3,0xc0(%rsp){%k2} vmovdqu64 $R4,0xc0(%rsp,%rax){%k2} vmovdqa64 $S4,0x100(%rsp){%k2} ################################################################ # calculate 5th through 8th powers of the key # # d0 = r0'*r0 + r1'*5*r4 + r2'*5*r3 + r3'*5*r2 + r4'*5*r1 # d1 = r0'*r1 + r1'*r0 + r2'*5*r4 + r3'*5*r3 + r4'*5*r2 # d2 = r0'*r2 + r1'*r1 + r2'*r0 + r3'*5*r4 + r4'*5*r3 # d3 = r0'*r3 + r1'*r2 + r2'*r1 + r3'*r0 + r4'*5*r4 # d4 = r0'*r4 + r1'*r3 + r2'*r2 + r3'*r1 + r4'*r0 vpmuludq $T0,$R0,$D0 # d0 = r0'*r0 vpmuludq $T0,$R1,$D1 # d1 = r0'*r1 vpmuludq $T0,$R2,$D2 # d2 = r0'*r2 vpmuludq $T0,$R3,$D3 # d3 = r0'*r3 vpmuludq $T0,$R4,$D4 # d4 = r0'*r4 vpsrlq \$32,$R2,$T2 vpmuludq $T1,$S4,$M0 vpmuludq $T1,$R0,$M1 vpmuludq $T1,$R1,$M2 vpmuludq $T1,$R2,$M3 vpmuludq $T1,$R3,$M4 vpsrlq \$32,$R3,$T3 vpaddq $M0,$D0,$D0 # d0 += r1'*5*r4 vpaddq $M1,$D1,$D1 # d1 += r1'*r0 vpaddq $M2,$D2,$D2 # d2 += r1'*r1 vpaddq $M3,$D3,$D3 # d3 += r1'*r2 vpaddq $M4,$D4,$D4 # d4 += r1'*r3 vpmuludq $T2,$S3,$M0 vpmuludq $T2,$S4,$M1 vpmuludq $T2,$R1,$M3 vpmuludq $T2,$R2,$M4 vpmuludq $T2,$R0,$M2 vpsrlq \$32,$R4,$T4 vpaddq $M0,$D0,$D0 # d0 += r2'*5*r3 vpaddq $M1,$D1,$D1 # d1 += r2'*5*r4 vpaddq $M3,$D3,$D3 # d3 += r2'*r1 vpaddq $M4,$D4,$D4 # d4 += r2'*r2 vpaddq $M2,$D2,$D2 # d2 += r2'*r0 vpmuludq $T3,$S2,$M0 vpmuludq $T3,$R0,$M3 vpmuludq $T3,$R1,$M4 vpmuludq $T3,$S3,$M1 vpmuludq $T3,$S4,$M2 vpaddq $M0,$D0,$D0 # d0 += r3'*5*r2 vpaddq $M3,$D3,$D3 # d3 += r3'*r0 vpaddq $M4,$D4,$D4 # d4 += r3'*r1 vpaddq $M1,$D1,$D1 # d1 += r3'*5*r3 vpaddq $M2,$D2,$D2 # d2 += r3'*5*r4 vpmuludq $T4,$S4,$M3 vpmuludq $T4,$R0,$M4 vpmuludq $T4,$S1,$M0 vpmuludq $T4,$S2,$M1 vpmuludq $T4,$S3,$M2 vpaddq $M3,$D3,$D3 # d3 += r2'*5*r4 vpaddq $M4,$D4,$D4 # d4 += r2'*r0 vpaddq $M0,$D0,$D0 # d0 += r2'*5*r1 vpaddq $M1,$D1,$D1 # d1 += r2'*5*r2 vpaddq $M2,$D2,$D2 # d2 += r2'*5*r3 ################################################################ # load input vmovdqu64 16*0($inp),%z#$T3 vmovdqu64 16*4($inp),%z#$T4 lea 16*8($inp),$inp ################################################################ # lazy reduction vpsrlq \$26,$D3,$M3 vpandq $MASK,$D3,$D3 vpaddq $M3,$D4,$D4 # d3 -> d4 vpsrlq \$26,$D0,$M0 vpandq $MASK,$D0,$D0 vpaddq $M0,$D1,$D1 # d0 -> d1 vpsrlq \$26,$D4,$M4 vpandq $MASK,$D4,$D4 vpsrlq \$26,$D1,$M1 vpandq $MASK,$D1,$D1 vpaddq $M1,$D2,$D2 # d1 -> d2 vpaddq $M4,$D0,$D0 vpsllq \$2,$M4,$M4 vpaddq $M4,$D0,$D0 # d4 -> d0 vpsrlq \$26,$D2,$M2 vpandq $MASK,$D2,$D2 vpaddq $M2,$D3,$D3 # d2 -> d3 vpsrlq \$26,$D0,$M0 vpandq $MASK,$D0,$D0 vpaddq $M0,$D1,$D1 # d0 -> d1 vpsrlq \$26,$D3,$M3 vpandq $MASK,$D3,$D3 vpaddq $M3,$D4,$D4 # d3 -> d4 ################################################################ # at this point we have 14243444 in $R0-$S4 and 05060708 in # $D0-$D4, ... vpunpcklqdq $T4,$T3,$T0 # transpose input vpunpckhqdq $T4,$T3,$T4 # ... since input 64-bit lanes are ordered as 73625140, we could # "vperm" it to 76543210 (here and in each loop iteration), *or* # we could just flow along, hence the goal for $R0-$S4 is # 1858286838784888 ... vmovdqa32 128(%rcx),$M0 # .Lpermd_avx512: mov \$0x7777,%eax kmovw %eax,%k1 vpermd $R0,$M0,$R0 # 14243444 -> 1---2---3---4--- vpermd $R1,$M0,$R1 vpermd $R2,$M0,$R2 vpermd $R3,$M0,$R3 vpermd $R4,$M0,$R4 vpermd $D0,$M0,${R0}{%k1} # 05060708 -> 1858286838784888 vpermd $D1,$M0,${R1}{%k1} vpermd $D2,$M0,${R2}{%k1} vpermd $D3,$M0,${R3}{%k1} vpermd $D4,$M0,${R4}{%k1} vpslld \$2,$R1,$S1 # *5 vpslld \$2,$R2,$S2 vpslld \$2,$R3,$S3 vpslld \$2,$R4,$S4 vpaddd $R1,$S1,$S1 vpaddd $R2,$S2,$S2 vpaddd $R3,$S3,$S3 vpaddd $R4,$S4,$S4 vpbroadcastq 32(%rcx),$PADBIT # .L129 vpsrlq \$52,$T0,$T2 # splat input vpsllq \$12,$T4,$T3 vporq $T3,$T2,$T2 vpsrlq \$26,$T0,$T1 vpsrlq \$14,$T4,$T3 vpsrlq \$40,$T4,$T4 # 4 vpandq $MASK,$T2,$T2 # 2 vpandq $MASK,$T0,$T0 # 0 #vpandq $MASK,$T1,$T1 # 1 #vpandq $MASK,$T3,$T3 # 3 #vporq $PADBIT,$T4,$T4 # padbit, yes, always vpaddq $H2,$T2,$H2 # accumulate input sub \$192,$len jbe .Ltail_avx512 jmp .Loop_avx512 .align 32 .Loop_avx512: ################################################################ # ((inp[0]*r^8+inp[ 8])*r^8+inp[16])*r^8 # ((inp[1]*r^8+inp[ 9])*r^8+inp[17])*r^7 # ((inp[2]*r^8+inp[10])*r^8+inp[18])*r^6 # ((inp[3]*r^8+inp[11])*r^8+inp[19])*r^5 # ((inp[4]*r^8+inp[12])*r^8+inp[20])*r^4 # ((inp[5]*r^8+inp[13])*r^8+inp[21])*r^3 # ((inp[6]*r^8+inp[14])*r^8+inp[22])*r^2 # ((inp[7]*r^8+inp[15])*r^8+inp[23])*r^1 # \________/\___________/ ################################################################ #vpaddq $H2,$T2,$H2 # accumulate input # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 # # however, as h2 is "chronologically" first one available pull # corresponding operations up, so it's # # d3 = h2*r1 + h0*r3 + h1*r2 + h3*r0 + h4*5*r4 # d4 = h2*r2 + h0*r4 + h1*r3 + h3*r1 + h4*r0 # d0 = h2*5*r3 + h0*r0 + h1*5*r4 + h3*5*r2 + h4*5*r1 # d1 = h2*5*r4 + h0*r1 + h1*r0 + h3*5*r3 + h4*5*r2 # d2 = h2*r0 + h0*r2 + h1*r1 + h3*5*r4 + h4*5*r3 vpmuludq $H2,$R1,$D3 # d3 = h2*r1 vpaddq $H0,$T0,$H0 vpmuludq $H2,$R2,$D4 # d4 = h2*r2 vpandq $MASK,$T1,$T1 # 1 vpmuludq $H2,$S3,$D0 # d0 = h2*s3 vpandq $MASK,$T3,$T3 # 3 vpmuludq $H2,$S4,$D1 # d1 = h2*s4 vporq $PADBIT,$T4,$T4 # padbit, yes, always vpmuludq $H2,$R0,$D2 # d2 = h2*r0 vpaddq $H1,$T1,$H1 # accumulate input vpaddq $H3,$T3,$H3 vpaddq $H4,$T4,$H4 vmovdqu64 16*0($inp),$T3 # load input vmovdqu64 16*4($inp),$T4 lea 16*8($inp),$inp vpmuludq $H0,$R3,$M3 vpmuludq $H0,$R4,$M4 vpmuludq $H0,$R0,$M0 vpmuludq $H0,$R1,$M1 vpaddq $M3,$D3,$D3 # d3 += h0*r3 vpaddq $M4,$D4,$D4 # d4 += h0*r4 vpaddq $M0,$D0,$D0 # d0 += h0*r0 vpaddq $M1,$D1,$D1 # d1 += h0*r1 vpmuludq $H1,$R2,$M3 vpmuludq $H1,$R3,$M4 vpmuludq $H1,$S4,$M0 vpmuludq $H0,$R2,$M2 vpaddq $M3,$D3,$D3 # d3 += h1*r2 vpaddq $M4,$D4,$D4 # d4 += h1*r3 vpaddq $M0,$D0,$D0 # d0 += h1*s4 vpaddq $M2,$D2,$D2 # d2 += h0*r2 vpunpcklqdq $T4,$T3,$T0 # transpose input vpunpckhqdq $T4,$T3,$T4 vpmuludq $H3,$R0,$M3 vpmuludq $H3,$R1,$M4 vpmuludq $H1,$R0,$M1 vpmuludq $H1,$R1,$M2 vpaddq $M3,$D3,$D3 # d3 += h3*r0 vpaddq $M4,$D4,$D4 # d4 += h3*r1 vpaddq $M1,$D1,$D1 # d1 += h1*r0 vpaddq $M2,$D2,$D2 # d2 += h1*r1 vpmuludq $H4,$S4,$M3 vpmuludq $H4,$R0,$M4 vpmuludq $H3,$S2,$M0 vpmuludq $H3,$S3,$M1 vpaddq $M3,$D3,$D3 # d3 += h4*s4 vpmuludq $H3,$S4,$M2 vpaddq $M4,$D4,$D4 # d4 += h4*r0 vpaddq $M0,$D0,$D0 # d0 += h3*s2 vpaddq $M1,$D1,$D1 # d1 += h3*s3 vpaddq $M2,$D2,$D2 # d2 += h3*s4 vpmuludq $H4,$S1,$M0 vpmuludq $H4,$S2,$M1 vpmuludq $H4,$S3,$M2 vpaddq $M0,$D0,$H0 # h0 = d0 + h4*s1 vpaddq $M1,$D1,$H1 # h1 = d2 + h4*s2 vpaddq $M2,$D2,$H2 # h2 = d3 + h4*s3 ################################################################ # lazy reduction (interleaved with input splat) vpsrlq \$52,$T0,$T2 # splat input vpsllq \$12,$T4,$T3 vpsrlq \$26,$D3,$H3 vpandq $MASK,$D3,$D3 vpaddq $H3,$D4,$H4 # h3 -> h4 vporq $T3,$T2,$T2 vpsrlq \$26,$H0,$D0 vpandq $MASK,$H0,$H0 vpaddq $D0,$H1,$H1 # h0 -> h1 vpandq $MASK,$T2,$T2 # 2 vpsrlq \$26,$H4,$D4 vpandq $MASK,$H4,$H4 vpsrlq \$26,$H1,$D1 vpandq $MASK,$H1,$H1 vpaddq $D1,$H2,$H2 # h1 -> h2 vpaddq $D4,$H0,$H0 vpsllq \$2,$D4,$D4 vpaddq $D4,$H0,$H0 # h4 -> h0 vpaddq $T2,$H2,$H2 # modulo-scheduled vpsrlq \$26,$T0,$T1 vpsrlq \$26,$H2,$D2 vpandq $MASK,$H2,$H2 vpaddq $D2,$D3,$H3 # h2 -> h3 vpsrlq \$14,$T4,$T3 vpsrlq \$26,$H0,$D0 vpandq $MASK,$H0,$H0 vpaddq $D0,$H1,$H1 # h0 -> h1 vpsrlq \$40,$T4,$T4 # 4 vpsrlq \$26,$H3,$D3 vpandq $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 vpandq $MASK,$T0,$T0 # 0 #vpandq $MASK,$T1,$T1 # 1 #vpandq $MASK,$T3,$T3 # 3 #vporq $PADBIT,$T4,$T4 # padbit, yes, always sub \$128,$len ja .Loop_avx512 .Ltail_avx512: ################################################################ # while above multiplications were by r^8 in all lanes, in last # iteration we multiply least significant lane by r^8 and most # significant one by r, that's why table gets shifted... vpsrlq \$32,$R0,$R0 # 0105020603070408 vpsrlq \$32,$R1,$R1 vpsrlq \$32,$R2,$R2 vpsrlq \$32,$S3,$S3 vpsrlq \$32,$S4,$S4 vpsrlq \$32,$R3,$R3 vpsrlq \$32,$R4,$R4 vpsrlq \$32,$S1,$S1 vpsrlq \$32,$S2,$S2 ################################################################ # load either next or last 64 byte of input lea ($inp,$len),$inp #vpaddq $H2,$T2,$H2 # accumulate input vpaddq $H0,$T0,$H0 vpmuludq $H2,$R1,$D3 # d3 = h2*r1 vpmuludq $H2,$R2,$D4 # d4 = h2*r2 vpmuludq $H2,$S3,$D0 # d0 = h2*s3 vpandq $MASK,$T1,$T1 # 1 vpmuludq $H2,$S4,$D1 # d1 = h2*s4 vpandq $MASK,$T3,$T3 # 3 vpmuludq $H2,$R0,$D2 # d2 = h2*r0 vporq $PADBIT,$T4,$T4 # padbit, yes, always vpaddq $H1,$T1,$H1 # accumulate input vpaddq $H3,$T3,$H3 vpaddq $H4,$T4,$H4 vmovdqu 16*0($inp),%x#$T0 vpmuludq $H0,$R3,$M3 vpmuludq $H0,$R4,$M4 vpmuludq $H0,$R0,$M0 vpmuludq $H0,$R1,$M1 vpaddq $M3,$D3,$D3 # d3 += h0*r3 vpaddq $M4,$D4,$D4 # d4 += h0*r4 vpaddq $M0,$D0,$D0 # d0 += h0*r0 vpaddq $M1,$D1,$D1 # d1 += h0*r1 vmovdqu 16*1($inp),%x#$T1 vpmuludq $H1,$R2,$M3 vpmuludq $H1,$R3,$M4 vpmuludq $H1,$S4,$M0 vpmuludq $H0,$R2,$M2 vpaddq $M3,$D3,$D3 # d3 += h1*r2 vpaddq $M4,$D4,$D4 # d4 += h1*r3 vpaddq $M0,$D0,$D0 # d0 += h1*s4 vpaddq $M2,$D2,$D2 # d2 += h0*r2 vinserti128 \$1,16*2($inp),%y#$T0,%y#$T0 vpmuludq $H3,$R0,$M3 vpmuludq $H3,$R1,$M4 vpmuludq $H1,$R0,$M1 vpmuludq $H1,$R1,$M2 vpaddq $M3,$D3,$D3 # d3 += h3*r0 vpaddq $M4,$D4,$D4 # d4 += h3*r1 vpaddq $M1,$D1,$D1 # d1 += h1*r0 vpaddq $M2,$D2,$D2 # d2 += h1*r1 vinserti128 \$1,16*3($inp),%y#$T1,%y#$T1 vpmuludq $H4,$S4,$M3 vpmuludq $H4,$R0,$M4 vpmuludq $H3,$S2,$M0 vpmuludq $H3,$S3,$M1 vpmuludq $H3,$S4,$M2 vpaddq $M3,$D3,$H3 # h3 = d3 + h4*s4 vpaddq $M4,$D4,$D4 # d4 += h4*r0 vpaddq $M0,$D0,$D0 # d0 += h3*s2 vpaddq $M1,$D1,$D1 # d1 += h3*s3 vpaddq $M2,$D2,$D2 # d2 += h3*s4 vpmuludq $H4,$S1,$M0 vpmuludq $H4,$S2,$M1 vpmuludq $H4,$S3,$M2 vpaddq $M0,$D0,$H0 # h0 = d0 + h4*s1 vpaddq $M1,$D1,$H1 # h1 = d2 + h4*s2 vpaddq $M2,$D2,$H2 # h2 = d3 + h4*s3 ################################################################ # horizontal addition mov \$1,%eax vpermq \$0xb1,$H3,$D3 vpermq \$0xb1,$D4,$H4 vpermq \$0xb1,$H0,$D0 vpermq \$0xb1,$H1,$D1 vpermq \$0xb1,$H2,$D2 vpaddq $D3,$H3,$H3 vpaddq $D4,$H4,$H4 vpaddq $D0,$H0,$H0 vpaddq $D1,$H1,$H1 vpaddq $D2,$H2,$H2 kmovw %eax,%k3 vpermq \$0x2,$H3,$D3 vpermq \$0x2,$H4,$D4 vpermq \$0x2,$H0,$D0 vpermq \$0x2,$H1,$D1 vpermq \$0x2,$H2,$D2 vpaddq $D3,$H3,$H3 vpaddq $D4,$H4,$H4 vpaddq $D0,$H0,$H0 vpaddq $D1,$H1,$H1 vpaddq $D2,$H2,$H2 vextracti64x4 \$0x1,$H3,%y#$D3 vextracti64x4 \$0x1,$H4,%y#$D4 vextracti64x4 \$0x1,$H0,%y#$D0 vextracti64x4 \$0x1,$H1,%y#$D1 vextracti64x4 \$0x1,$H2,%y#$D2 vpaddq $D3,$H3,${H3}{%k3}{z} # keep single qword in case vpaddq $D4,$H4,${H4}{%k3}{z} # it's passed to .Ltail_avx2 vpaddq $D0,$H0,${H0}{%k3}{z} vpaddq $D1,$H1,${H1}{%k3}{z} vpaddq $D2,$H2,${H2}{%k3}{z} ___ map(s/%z/%y/,($T0,$T1,$T2,$T3,$T4, $PADBIT)); map(s/%z/%y/,($H0,$H1,$H2,$H3,$H4, $D0,$D1,$D2,$D3,$D4, $MASK)); $code.=<<___; ################################################################ # lazy reduction (interleaved with input splat) vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpsrldq \$6,$T0,$T2 # splat input vpsrldq \$6,$T1,$T3 vpunpckhqdq $T1,$T0,$T4 # 4 vpaddq $D3,$H4,$H4 # h3 -> h4 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpunpcklqdq $T3,$T2,$T2 # 2:3 vpunpcklqdq $T1,$T0,$T0 # 0:1 vpaddq $D0,$H1,$H1 # h0 -> h1 vpsrlq \$26,$H4,$D4 vpand $MASK,$H4,$H4 vpsrlq \$26,$H1,$D1 vpand $MASK,$H1,$H1 vpsrlq \$30,$T2,$T3 vpsrlq \$4,$T2,$T2 vpaddq $D1,$H2,$H2 # h1 -> h2 vpaddq $D4,$H0,$H0 vpsllq \$2,$D4,$D4 vpsrlq \$26,$T0,$T1 vpsrlq \$40,$T4,$T4 # 4 vpaddq $D4,$H0,$H0 # h4 -> h0 vpsrlq \$26,$H2,$D2 vpand $MASK,$H2,$H2 vpand $MASK,$T2,$T2 # 2 vpand $MASK,$T0,$T0 # 0 vpaddq $D2,$H3,$H3 # h2 -> h3 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $H2,$T2,$H2 # accumulate input for .Ltail_avx2 vpand $MASK,$T1,$T1 # 1 vpaddq $D0,$H1,$H1 # h0 -> h1 vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpand $MASK,$T3,$T3 # 3 vpor 32(%rcx),$T4,$T4 # padbit, yes, always vpaddq $D3,$H4,$H4 # h3 -> h4 lea 0x90(%rsp),%rax # size optimization for .Ltail_avx2 add \$64,$len jnz .Ltail_avx2 vpsubq $T2,$H2,$H2 # undo input accumulation vmovd %x#$H0,`4*0-48-64`($ctx)# save partially reduced vmovd %x#$H1,`4*1-48-64`($ctx) vmovd %x#$H2,`4*2-48-64`($ctx) vmovd %x#$H3,`4*3-48-64`($ctx) vmovd %x#$H4,`4*4-48-64`($ctx) vzeroall ___ $code.=<<___ if ($win64); movdqa 0x50(%r11),%xmm6 movdqa 0x60(%r11),%xmm7 movdqa 0x70(%r11),%xmm8 movdqa 0x80(%r11),%xmm9 movdqa 0x90(%r11),%xmm10 movdqa 0xa0(%r11),%xmm11 movdqa 0xb0(%r11),%xmm12 movdqa 0xc0(%r11),%xmm13 movdqa 0xd0(%r11),%xmm14 movdqa 0xe0(%r11),%xmm15 lea 0xf8(%r11),%rsp .Ldo_avx512_epilogue: ___ $code.=<<___ if (!$win64); lea 8(%r11),%rsp .cfi_def_cfa %rsp,8 ___ $code.=<<___; ret .cfi_endproc .size poly1305_blocks_avx512,.-poly1305_blocks_avx512 ___ if ($avx>3 && !$win64) { ######################################################################## # VPMADD52 version using 2^44 radix. # # One can argue that base 2^52 would be more natural. Well, even though # some operations would be more natural, one has to recognize couple of # things. Base 2^52 doesn't provide advantage over base 2^44 if you look # at amount of multiply-n-accumulate operations. Secondly, it makes it # impossible to pre-compute multiples of 5 [referred to as s[]/sN in # reference implementations], which means that more such operations # would have to be performed in inner loop, which in turn makes critical # path longer. In other words, even though base 2^44 reduction might # look less elegant, overall critical path is actually shorter... ######################################################################## # Layout of opaque area is following. # # unsigned __int64 h[3]; # current hash value base 2^44 # unsigned __int64 s[2]; # key value*20 base 2^44 # unsigned __int64 r[3]; # key value base 2^44 # struct { unsigned __int64 r^1, r^3, r^2, r^4; } R[4]; # # r^n positions reflect # # placement in register, not # # memory, R[3] is R[1]*20 $code.=<<___; .type poly1305_init_base2_44,\@function,3 .align 32 poly1305_init_base2_44: .cfi_startproc xor %rax,%rax mov %rax,0($ctx) # initialize hash value mov %rax,8($ctx) mov %rax,16($ctx) .Linit_base2_44: lea poly1305_blocks_vpmadd52(%rip),%r10 lea poly1305_emit_base2_44(%rip),%r11 mov \$0x0ffffffc0fffffff,%rax mov \$0x0ffffffc0ffffffc,%rcx and 0($inp),%rax mov \$0x00000fffffffffff,%r8 and 8($inp),%rcx mov \$0x00000fffffffffff,%r9 and %rax,%r8 shrd \$44,%rcx,%rax mov %r8,40($ctx) # r0 and %r9,%rax shr \$24,%rcx mov %rax,48($ctx) # r1 lea (%rax,%rax,4),%rax # *5 mov %rcx,56($ctx) # r2 shl \$2,%rax # magic <<2 lea (%rcx,%rcx,4),%rcx # *5 shl \$2,%rcx # magic <<2 mov %rax,24($ctx) # s1 mov %rcx,32($ctx) # s2 movq \$-1,64($ctx) # write impossible value ___ $code.=<<___ if ($flavour !~ /elf32/); mov %r10,0(%rdx) mov %r11,8(%rdx) ___ $code.=<<___ if ($flavour =~ /elf32/); mov %r10d,0(%rdx) mov %r11d,4(%rdx) ___ $code.=<<___; mov \$1,%eax ret .cfi_endproc .size poly1305_init_base2_44,.-poly1305_init_base2_44 ___ { my ($H0,$H1,$H2,$r2r1r0,$r1r0s2,$r0s2s1,$Dlo,$Dhi) = map("%ymm$_",(0..5,16,17)); my ($T0,$inp_permd,$inp_shift,$PAD) = map("%ymm$_",(18..21)); my ($reduc_mask,$reduc_rght,$reduc_left) = map("%ymm$_",(22..25)); $code.=<<___; .type poly1305_blocks_vpmadd52,\@function,4 .align 32 poly1305_blocks_vpmadd52: .cfi_startproc endbranch shr \$4,$len jz .Lno_data_vpmadd52 # too short shl \$40,$padbit mov 64($ctx),%r8 # peek on power of the key # if powers of the key are not calculated yet, process up to 3 # blocks with this single-block subroutine, otherwise ensure that # length is divisible by 2 blocks and pass the rest down to next # subroutine... mov \$3,%rax mov \$1,%r10 cmp \$4,$len # is input long cmovae %r10,%rax test %r8,%r8 # is power value impossible? cmovns %r10,%rax and $len,%rax # is input of favourable length? jz .Lblocks_vpmadd52_4x sub %rax,$len mov \$7,%r10d mov \$1,%r11d kmovw %r10d,%k7 lea .L2_44_inp_permd(%rip),%r10 kmovw %r11d,%k1 vmovq $padbit,%x#$PAD vmovdqa64 0(%r10),$inp_permd # .L2_44_inp_permd vmovdqa64 32(%r10),$inp_shift # .L2_44_inp_shift vpermq \$0xcf,$PAD,$PAD vmovdqa64 64(%r10),$reduc_mask # .L2_44_mask vmovdqu64 0($ctx),${Dlo}{%k7}{z} # load hash value vmovdqu64 40($ctx),${r2r1r0}{%k7}{z} # load keys vmovdqu64 32($ctx),${r1r0s2}{%k7}{z} vmovdqu64 24($ctx),${r0s2s1}{%k7}{z} vmovdqa64 96(%r10),$reduc_rght # .L2_44_shift_rgt vmovdqa64 128(%r10),$reduc_left # .L2_44_shift_lft jmp .Loop_vpmadd52 .align 32 .Loop_vpmadd52: vmovdqu32 0($inp),%x#$T0 # load input as ----3210 lea 16($inp),$inp vpermd $T0,$inp_permd,$T0 # ----3210 -> --322110 vpsrlvq $inp_shift,$T0,$T0 vpandq $reduc_mask,$T0,$T0 vporq $PAD,$T0,$T0 vpaddq $T0,$Dlo,$Dlo # accumulate input vpermq \$0,$Dlo,${H0}{%k7}{z} # smash hash value vpermq \$0b01010101,$Dlo,${H1}{%k7}{z} vpermq \$0b10101010,$Dlo,${H2}{%k7}{z} vpxord $Dlo,$Dlo,$Dlo vpxord $Dhi,$Dhi,$Dhi vpmadd52luq $r2r1r0,$H0,$Dlo vpmadd52huq $r2r1r0,$H0,$Dhi vpmadd52luq $r1r0s2,$H1,$Dlo vpmadd52huq $r1r0s2,$H1,$Dhi vpmadd52luq $r0s2s1,$H2,$Dlo vpmadd52huq $r0s2s1,$H2,$Dhi vpsrlvq $reduc_rght,$Dlo,$T0 # 0 in topmost qword vpsllvq $reduc_left,$Dhi,$Dhi # 0 in topmost qword vpandq $reduc_mask,$Dlo,$Dlo vpaddq $T0,$Dhi,$Dhi vpermq \$0b10010011,$Dhi,$Dhi # 0 in lowest qword vpaddq $Dhi,$Dlo,$Dlo # note topmost qword :-) vpsrlvq $reduc_rght,$Dlo,$T0 # 0 in topmost word vpandq $reduc_mask,$Dlo,$Dlo vpermq \$0b10010011,$T0,$T0 vpaddq $T0,$Dlo,$Dlo vpermq \$0b10010011,$Dlo,${T0}{%k1}{z} vpaddq $T0,$Dlo,$Dlo vpsllq \$2,$T0,$T0 vpaddq $T0,$Dlo,$Dlo dec %rax # len-=16 jnz .Loop_vpmadd52 vmovdqu64 $Dlo,0($ctx){%k7} # store hash value test $len,$len jnz .Lblocks_vpmadd52_4x .Lno_data_vpmadd52: ret .cfi_endproc .size poly1305_blocks_vpmadd52,.-poly1305_blocks_vpmadd52 ___ } { ######################################################################## # As implied by its name 4x subroutine processes 4 blocks in parallel # (but handles even 4*n+2 blocks lengths). It takes up to 4th key power # and is handled in 256-bit %ymm registers. my ($H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2) = map("%ymm$_",(0..5,16,17)); my ($D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi) = map("%ymm$_",(18..23)); my ($T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD) = map("%ymm$_",(24..31)); $code.=<<___; .type poly1305_blocks_vpmadd52_4x,\@function,4 .align 32 poly1305_blocks_vpmadd52_4x: .cfi_startproc shr \$4,$len jz .Lno_data_vpmadd52_4x # too short shl \$40,$padbit mov 64($ctx),%r8 # peek on power of the key .Lblocks_vpmadd52_4x: vpbroadcastq $padbit,$PAD vmovdqa64 .Lx_mask44(%rip),$mask44 mov \$5,%eax vmovdqa64 .Lx_mask42(%rip),$mask42 kmovw %eax,%k1 # used in 2x path test %r8,%r8 # is power value impossible? js .Linit_vpmadd52 # if it is, then init R[4] vmovq 0($ctx),%x#$H0 # load current hash value vmovq 8($ctx),%x#$H1 vmovq 16($ctx),%x#$H2 test \$3,$len # is length 4*n+2? jnz .Lblocks_vpmadd52_2x_do .Lblocks_vpmadd52_4x_do: vpbroadcastq 64($ctx),$R0 # load 4th power of the key vpbroadcastq 96($ctx),$R1 vpbroadcastq 128($ctx),$R2 vpbroadcastq 160($ctx),$S1 .Lblocks_vpmadd52_4x_key_loaded: vpsllq \$2,$R2,$S2 # S2 = R2*5*4 vpaddq $R2,$S2,$S2 vpsllq \$2,$S2,$S2 test \$7,$len # is len 8*n? jz .Lblocks_vpmadd52_8x vmovdqu64 16*0($inp),$T2 # load data vmovdqu64 16*2($inp),$T3 lea 16*4($inp),$inp vpunpcklqdq $T3,$T2,$T1 # transpose data vpunpckhqdq $T3,$T2,$T3 # at this point 64-bit lanes are ordered as 3-1-2-0 vpsrlq \$24,$T3,$T2 # splat the data vporq $PAD,$T2,$T2 vpaddq $T2,$H2,$H2 # accumulate input vpandq $mask44,$T1,$T0 vpsrlq \$44,$T1,$T1 vpsllq \$20,$T3,$T3 vporq $T3,$T1,$T1 vpandq $mask44,$T1,$T1 sub \$4,$len jz .Ltail_vpmadd52_4x jmp .Loop_vpmadd52_4x ud2 .align 32 .Linit_vpmadd52: vmovq 24($ctx),%x#$S1 # load key vmovq 56($ctx),%x#$H2 vmovq 32($ctx),%x#$S2 vmovq 40($ctx),%x#$R0 vmovq 48($ctx),%x#$R1 vmovdqa $R0,$H0 vmovdqa $R1,$H1 vmovdqa $H2,$R2 mov \$2,%eax .Lmul_init_vpmadd52: vpxorq $D0lo,$D0lo,$D0lo vpmadd52luq $H2,$S1,$D0lo vpxorq $D0hi,$D0hi,$D0hi vpmadd52huq $H2,$S1,$D0hi vpxorq $D1lo,$D1lo,$D1lo vpmadd52luq $H2,$S2,$D1lo vpxorq $D1hi,$D1hi,$D1hi vpmadd52huq $H2,$S2,$D1hi vpxorq $D2lo,$D2lo,$D2lo vpmadd52luq $H2,$R0,$D2lo vpxorq $D2hi,$D2hi,$D2hi vpmadd52huq $H2,$R0,$D2hi vpmadd52luq $H0,$R0,$D0lo vpmadd52huq $H0,$R0,$D0hi vpmadd52luq $H0,$R1,$D1lo vpmadd52huq $H0,$R1,$D1hi vpmadd52luq $H0,$R2,$D2lo vpmadd52huq $H0,$R2,$D2hi vpmadd52luq $H1,$S2,$D0lo vpmadd52huq $H1,$S2,$D0hi vpmadd52luq $H1,$R0,$D1lo vpmadd52huq $H1,$R0,$D1hi vpmadd52luq $H1,$R1,$D2lo vpmadd52huq $H1,$R1,$D2hi ################################################################ # partial reduction vpsrlq \$44,$D0lo,$tmp vpsllq \$8,$D0hi,$D0hi vpandq $mask44,$D0lo,$H0 vpaddq $tmp,$D0hi,$D0hi vpaddq $D0hi,$D1lo,$D1lo vpsrlq \$44,$D1lo,$tmp vpsllq \$8,$D1hi,$D1hi vpandq $mask44,$D1lo,$H1 vpaddq $tmp,$D1hi,$D1hi vpaddq $D1hi,$D2lo,$D2lo vpsrlq \$42,$D2lo,$tmp vpsllq \$10,$D2hi,$D2hi vpandq $mask42,$D2lo,$H2 vpaddq $tmp,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vpsllq \$2,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vpsrlq \$44,$H0,$tmp # additional step vpandq $mask44,$H0,$H0 vpaddq $tmp,$H1,$H1 dec %eax jz .Ldone_init_vpmadd52 vpunpcklqdq $R1,$H1,$R1 # 1,2 vpbroadcastq %x#$H1,%x#$H1 # 2,2 vpunpcklqdq $R2,$H2,$R2 vpbroadcastq %x#$H2,%x#$H2 vpunpcklqdq $R0,$H0,$R0 vpbroadcastq %x#$H0,%x#$H0 vpsllq \$2,$R1,$S1 # S1 = R1*5*4 vpsllq \$2,$R2,$S2 # S2 = R2*5*4 vpaddq $R1,$S1,$S1 vpaddq $R2,$S2,$S2 vpsllq \$2,$S1,$S1 vpsllq \$2,$S2,$S2 jmp .Lmul_init_vpmadd52 ud2 .align 32 .Ldone_init_vpmadd52: vinserti128 \$1,%x#$R1,$H1,$R1 # 1,2,3,4 vinserti128 \$1,%x#$R2,$H2,$R2 vinserti128 \$1,%x#$R0,$H0,$R0 vpermq \$0b11011000,$R1,$R1 # 1,3,2,4 vpermq \$0b11011000,$R2,$R2 vpermq \$0b11011000,$R0,$R0 vpsllq \$2,$R1,$S1 # S1 = R1*5*4 vpaddq $R1,$S1,$S1 vpsllq \$2,$S1,$S1 vmovq 0($ctx),%x#$H0 # load current hash value vmovq 8($ctx),%x#$H1 vmovq 16($ctx),%x#$H2 test \$3,$len # is length 4*n+2? jnz .Ldone_init_vpmadd52_2x vmovdqu64 $R0,64($ctx) # save key powers vpbroadcastq %x#$R0,$R0 # broadcast 4th power vmovdqu64 $R1,96($ctx) vpbroadcastq %x#$R1,$R1 vmovdqu64 $R2,128($ctx) vpbroadcastq %x#$R2,$R2 vmovdqu64 $S1,160($ctx) vpbroadcastq %x#$S1,$S1 jmp .Lblocks_vpmadd52_4x_key_loaded ud2 .align 32 .Ldone_init_vpmadd52_2x: vmovdqu64 $R0,64($ctx) # save key powers vpsrldq \$8,$R0,$R0 # 0-1-0-2 vmovdqu64 $R1,96($ctx) vpsrldq \$8,$R1,$R1 vmovdqu64 $R2,128($ctx) vpsrldq \$8,$R2,$R2 vmovdqu64 $S1,160($ctx) vpsrldq \$8,$S1,$S1 jmp .Lblocks_vpmadd52_2x_key_loaded ud2 .align 32 .Lblocks_vpmadd52_2x_do: vmovdqu64 128+8($ctx),${R2}{%k1}{z}# load 2nd and 1st key powers vmovdqu64 160+8($ctx),${S1}{%k1}{z} vmovdqu64 64+8($ctx),${R0}{%k1}{z} vmovdqu64 96+8($ctx),${R1}{%k1}{z} .Lblocks_vpmadd52_2x_key_loaded: vmovdqu64 16*0($inp),$T2 # load data vpxorq $T3,$T3,$T3 lea 16*2($inp),$inp vpunpcklqdq $T3,$T2,$T1 # transpose data vpunpckhqdq $T3,$T2,$T3 # at this point 64-bit lanes are ordered as x-1-x-0 vpsrlq \$24,$T3,$T2 # splat the data vporq $PAD,$T2,$T2 vpaddq $T2,$H2,$H2 # accumulate input vpandq $mask44,$T1,$T0 vpsrlq \$44,$T1,$T1 vpsllq \$20,$T3,$T3 vporq $T3,$T1,$T1 vpandq $mask44,$T1,$T1 jmp .Ltail_vpmadd52_2x ud2 .align 32 .Loop_vpmadd52_4x: #vpaddq $T2,$H2,$H2 # accumulate input vpaddq $T0,$H0,$H0 vpaddq $T1,$H1,$H1 vpxorq $D0lo,$D0lo,$D0lo vpmadd52luq $H2,$S1,$D0lo vpxorq $D0hi,$D0hi,$D0hi vpmadd52huq $H2,$S1,$D0hi vpxorq $D1lo,$D1lo,$D1lo vpmadd52luq $H2,$S2,$D1lo vpxorq $D1hi,$D1hi,$D1hi vpmadd52huq $H2,$S2,$D1hi vpxorq $D2lo,$D2lo,$D2lo vpmadd52luq $H2,$R0,$D2lo vpxorq $D2hi,$D2hi,$D2hi vpmadd52huq $H2,$R0,$D2hi vmovdqu64 16*0($inp),$T2 # load data vmovdqu64 16*2($inp),$T3 lea 16*4($inp),$inp vpmadd52luq $H0,$R0,$D0lo vpmadd52huq $H0,$R0,$D0hi vpmadd52luq $H0,$R1,$D1lo vpmadd52huq $H0,$R1,$D1hi vpmadd52luq $H0,$R2,$D2lo vpmadd52huq $H0,$R2,$D2hi vpunpcklqdq $T3,$T2,$T1 # transpose data vpunpckhqdq $T3,$T2,$T3 vpmadd52luq $H1,$S2,$D0lo vpmadd52huq $H1,$S2,$D0hi vpmadd52luq $H1,$R0,$D1lo vpmadd52huq $H1,$R0,$D1hi vpmadd52luq $H1,$R1,$D2lo vpmadd52huq $H1,$R1,$D2hi ################################################################ # partial reduction (interleaved with data splat) vpsrlq \$44,$D0lo,$tmp vpsllq \$8,$D0hi,$D0hi vpandq $mask44,$D0lo,$H0 vpaddq $tmp,$D0hi,$D0hi vpsrlq \$24,$T3,$T2 vporq $PAD,$T2,$T2 vpaddq $D0hi,$D1lo,$D1lo vpsrlq \$44,$D1lo,$tmp vpsllq \$8,$D1hi,$D1hi vpandq $mask44,$D1lo,$H1 vpaddq $tmp,$D1hi,$D1hi vpandq $mask44,$T1,$T0 vpsrlq \$44,$T1,$T1 vpsllq \$20,$T3,$T3 vpaddq $D1hi,$D2lo,$D2lo vpsrlq \$42,$D2lo,$tmp vpsllq \$10,$D2hi,$D2hi vpandq $mask42,$D2lo,$H2 vpaddq $tmp,$D2hi,$D2hi vpaddq $T2,$H2,$H2 # accumulate input vpaddq $D2hi,$H0,$H0 vpsllq \$2,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vporq $T3,$T1,$T1 vpandq $mask44,$T1,$T1 vpsrlq \$44,$H0,$tmp # additional step vpandq $mask44,$H0,$H0 vpaddq $tmp,$H1,$H1 sub \$4,$len # len-=64 jnz .Loop_vpmadd52_4x .Ltail_vpmadd52_4x: vmovdqu64 128($ctx),$R2 # load all key powers vmovdqu64 160($ctx),$S1 vmovdqu64 64($ctx),$R0 vmovdqu64 96($ctx),$R1 .Ltail_vpmadd52_2x: vpsllq \$2,$R2,$S2 # S2 = R2*5*4 vpaddq $R2,$S2,$S2 vpsllq \$2,$S2,$S2 #vpaddq $T2,$H2,$H2 # accumulate input vpaddq $T0,$H0,$H0 vpaddq $T1,$H1,$H1 vpxorq $D0lo,$D0lo,$D0lo vpmadd52luq $H2,$S1,$D0lo vpxorq $D0hi,$D0hi,$D0hi vpmadd52huq $H2,$S1,$D0hi vpxorq $D1lo,$D1lo,$D1lo vpmadd52luq $H2,$S2,$D1lo vpxorq $D1hi,$D1hi,$D1hi vpmadd52huq $H2,$S2,$D1hi vpxorq $D2lo,$D2lo,$D2lo vpmadd52luq $H2,$R0,$D2lo vpxorq $D2hi,$D2hi,$D2hi vpmadd52huq $H2,$R0,$D2hi vpmadd52luq $H0,$R0,$D0lo vpmadd52huq $H0,$R0,$D0hi vpmadd52luq $H0,$R1,$D1lo vpmadd52huq $H0,$R1,$D1hi vpmadd52luq $H0,$R2,$D2lo vpmadd52huq $H0,$R2,$D2hi vpmadd52luq $H1,$S2,$D0lo vpmadd52huq $H1,$S2,$D0hi vpmadd52luq $H1,$R0,$D1lo vpmadd52huq $H1,$R0,$D1hi vpmadd52luq $H1,$R1,$D2lo vpmadd52huq $H1,$R1,$D2hi ################################################################ # horizontal addition mov \$1,%eax kmovw %eax,%k1 vpsrldq \$8,$D0lo,$T0 vpsrldq \$8,$D0hi,$H0 vpsrldq \$8,$D1lo,$T1 vpsrldq \$8,$D1hi,$H1 vpaddq $T0,$D0lo,$D0lo vpaddq $H0,$D0hi,$D0hi vpsrldq \$8,$D2lo,$T2 vpsrldq \$8,$D2hi,$H2 vpaddq $T1,$D1lo,$D1lo vpaddq $H1,$D1hi,$D1hi vpermq \$0x2,$D0lo,$T0 vpermq \$0x2,$D0hi,$H0 vpaddq $T2,$D2lo,$D2lo vpaddq $H2,$D2hi,$D2hi vpermq \$0x2,$D1lo,$T1 vpermq \$0x2,$D1hi,$H1 vpaddq $T0,$D0lo,${D0lo}{%k1}{z} vpaddq $H0,$D0hi,${D0hi}{%k1}{z} vpermq \$0x2,$D2lo,$T2 vpermq \$0x2,$D2hi,$H2 vpaddq $T1,$D1lo,${D1lo}{%k1}{z} vpaddq $H1,$D1hi,${D1hi}{%k1}{z} vpaddq $T2,$D2lo,${D2lo}{%k1}{z} vpaddq $H2,$D2hi,${D2hi}{%k1}{z} ################################################################ # partial reduction vpsrlq \$44,$D0lo,$tmp vpsllq \$8,$D0hi,$D0hi vpandq $mask44,$D0lo,$H0 vpaddq $tmp,$D0hi,$D0hi vpaddq $D0hi,$D1lo,$D1lo vpsrlq \$44,$D1lo,$tmp vpsllq \$8,$D1hi,$D1hi vpandq $mask44,$D1lo,$H1 vpaddq $tmp,$D1hi,$D1hi vpaddq $D1hi,$D2lo,$D2lo vpsrlq \$42,$D2lo,$tmp vpsllq \$10,$D2hi,$D2hi vpandq $mask42,$D2lo,$H2 vpaddq $tmp,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vpsllq \$2,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vpsrlq \$44,$H0,$tmp # additional step vpandq $mask44,$H0,$H0 vpaddq $tmp,$H1,$H1 # at this point $len is # either 4*n+2 or 0... sub \$2,$len # len-=32 ja .Lblocks_vpmadd52_4x_do vmovq %x#$H0,0($ctx) vmovq %x#$H1,8($ctx) vmovq %x#$H2,16($ctx) vzeroall .Lno_data_vpmadd52_4x: ret .cfi_endproc .size poly1305_blocks_vpmadd52_4x,.-poly1305_blocks_vpmadd52_4x ___ } { ######################################################################## # As implied by its name 8x subroutine processes 8 blocks in parallel... # This is intermediate version, as it's used only in cases when input # length is either 8*n, 8*n+1 or 8*n+2... my ($H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2) = map("%ymm$_",(0..5,16,17)); my ($D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi) = map("%ymm$_",(18..23)); my ($T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD) = map("%ymm$_",(24..31)); my ($RR0,$RR1,$RR2,$SS1,$SS2) = map("%ymm$_",(6..10)); $code.=<<___; .type poly1305_blocks_vpmadd52_8x,\@function,4 .align 32 poly1305_blocks_vpmadd52_8x: .cfi_startproc shr \$4,$len jz .Lno_data_vpmadd52_8x # too short shl \$40,$padbit mov 64($ctx),%r8 # peek on power of the key vmovdqa64 .Lx_mask44(%rip),$mask44 vmovdqa64 .Lx_mask42(%rip),$mask42 test %r8,%r8 # is power value impossible? js .Linit_vpmadd52 # if it is, then init R[4] vmovq 0($ctx),%x#$H0 # load current hash value vmovq 8($ctx),%x#$H1 vmovq 16($ctx),%x#$H2 .Lblocks_vpmadd52_8x: ################################################################ # fist we calculate more key powers vmovdqu64 128($ctx),$R2 # load 1-3-2-4 powers vmovdqu64 160($ctx),$S1 vmovdqu64 64($ctx),$R0 vmovdqu64 96($ctx),$R1 vpsllq \$2,$R2,$S2 # S2 = R2*5*4 vpaddq $R2,$S2,$S2 vpsllq \$2,$S2,$S2 vpbroadcastq %x#$R2,$RR2 # broadcast 4th power vpbroadcastq %x#$R0,$RR0 vpbroadcastq %x#$R1,$RR1 vpxorq $D0lo,$D0lo,$D0lo vpmadd52luq $RR2,$S1,$D0lo vpxorq $D0hi,$D0hi,$D0hi vpmadd52huq $RR2,$S1,$D0hi vpxorq $D1lo,$D1lo,$D1lo vpmadd52luq $RR2,$S2,$D1lo vpxorq $D1hi,$D1hi,$D1hi vpmadd52huq $RR2,$S2,$D1hi vpxorq $D2lo,$D2lo,$D2lo vpmadd52luq $RR2,$R0,$D2lo vpxorq $D2hi,$D2hi,$D2hi vpmadd52huq $RR2,$R0,$D2hi vpmadd52luq $RR0,$R0,$D0lo vpmadd52huq $RR0,$R0,$D0hi vpmadd52luq $RR0,$R1,$D1lo vpmadd52huq $RR0,$R1,$D1hi vpmadd52luq $RR0,$R2,$D2lo vpmadd52huq $RR0,$R2,$D2hi vpmadd52luq $RR1,$S2,$D0lo vpmadd52huq $RR1,$S2,$D0hi vpmadd52luq $RR1,$R0,$D1lo vpmadd52huq $RR1,$R0,$D1hi vpmadd52luq $RR1,$R1,$D2lo vpmadd52huq $RR1,$R1,$D2hi ################################################################ # partial reduction vpsrlq \$44,$D0lo,$tmp vpsllq \$8,$D0hi,$D0hi vpandq $mask44,$D0lo,$RR0 vpaddq $tmp,$D0hi,$D0hi vpaddq $D0hi,$D1lo,$D1lo vpsrlq \$44,$D1lo,$tmp vpsllq \$8,$D1hi,$D1hi vpandq $mask44,$D1lo,$RR1 vpaddq $tmp,$D1hi,$D1hi vpaddq $D1hi,$D2lo,$D2lo vpsrlq \$42,$D2lo,$tmp vpsllq \$10,$D2hi,$D2hi vpandq $mask42,$D2lo,$RR2 vpaddq $tmp,$D2hi,$D2hi vpaddq $D2hi,$RR0,$RR0 vpsllq \$2,$D2hi,$D2hi vpaddq $D2hi,$RR0,$RR0 vpsrlq \$44,$RR0,$tmp # additional step vpandq $mask44,$RR0,$RR0 vpaddq $tmp,$RR1,$RR1 ################################################################ # At this point Rx holds 1324 powers, RRx - 5768, and the goal # is 15263748, which reflects how data is loaded... vpunpcklqdq $R2,$RR2,$T2 # 3748 vpunpckhqdq $R2,$RR2,$R2 # 1526 vpunpcklqdq $R0,$RR0,$T0 vpunpckhqdq $R0,$RR0,$R0 vpunpcklqdq $R1,$RR1,$T1 vpunpckhqdq $R1,$RR1,$R1 ___ ######## switch to %zmm map(s/%y/%z/, $H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2); map(s/%y/%z/, $D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi); map(s/%y/%z/, $T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD); map(s/%y/%z/, $RR0,$RR1,$RR2,$SS1,$SS2); $code.=<<___; vshufi64x2 \$0x44,$R2,$T2,$RR2 # 15263748 vshufi64x2 \$0x44,$R0,$T0,$RR0 vshufi64x2 \$0x44,$R1,$T1,$RR1 vmovdqu64 16*0($inp),$T2 # load data vmovdqu64 16*4($inp),$T3 lea 16*8($inp),$inp vpsllq \$2,$RR2,$SS2 # S2 = R2*5*4 vpsllq \$2,$RR1,$SS1 # S1 = R1*5*4 vpaddq $RR2,$SS2,$SS2 vpaddq $RR1,$SS1,$SS1 vpsllq \$2,$SS2,$SS2 vpsllq \$2,$SS1,$SS1 vpbroadcastq $padbit,$PAD vpbroadcastq %x#$mask44,$mask44 vpbroadcastq %x#$mask42,$mask42 vpbroadcastq %x#$SS1,$S1 # broadcast 8th power vpbroadcastq %x#$SS2,$S2 vpbroadcastq %x#$RR0,$R0 vpbroadcastq %x#$RR1,$R1 vpbroadcastq %x#$RR2,$R2 vpunpcklqdq $T3,$T2,$T1 # transpose data vpunpckhqdq $T3,$T2,$T3 # at this point 64-bit lanes are ordered as 73625140 vpsrlq \$24,$T3,$T2 # splat the data vporq $PAD,$T2,$T2 vpaddq $T2,$H2,$H2 # accumulate input vpandq $mask44,$T1,$T0 vpsrlq \$44,$T1,$T1 vpsllq \$20,$T3,$T3 vporq $T3,$T1,$T1 vpandq $mask44,$T1,$T1 sub \$8,$len jz .Ltail_vpmadd52_8x jmp .Loop_vpmadd52_8x .align 32 .Loop_vpmadd52_8x: #vpaddq $T2,$H2,$H2 # accumulate input vpaddq $T0,$H0,$H0 vpaddq $T1,$H1,$H1 vpxorq $D0lo,$D0lo,$D0lo vpmadd52luq $H2,$S1,$D0lo vpxorq $D0hi,$D0hi,$D0hi vpmadd52huq $H2,$S1,$D0hi vpxorq $D1lo,$D1lo,$D1lo vpmadd52luq $H2,$S2,$D1lo vpxorq $D1hi,$D1hi,$D1hi vpmadd52huq $H2,$S2,$D1hi vpxorq $D2lo,$D2lo,$D2lo vpmadd52luq $H2,$R0,$D2lo vpxorq $D2hi,$D2hi,$D2hi vpmadd52huq $H2,$R0,$D2hi vmovdqu64 16*0($inp),$T2 # load data vmovdqu64 16*4($inp),$T3 lea 16*8($inp),$inp vpmadd52luq $H0,$R0,$D0lo vpmadd52huq $H0,$R0,$D0hi vpmadd52luq $H0,$R1,$D1lo vpmadd52huq $H0,$R1,$D1hi vpmadd52luq $H0,$R2,$D2lo vpmadd52huq $H0,$R2,$D2hi vpunpcklqdq $T3,$T2,$T1 # transpose data vpunpckhqdq $T3,$T2,$T3 vpmadd52luq $H1,$S2,$D0lo vpmadd52huq $H1,$S2,$D0hi vpmadd52luq $H1,$R0,$D1lo vpmadd52huq $H1,$R0,$D1hi vpmadd52luq $H1,$R1,$D2lo vpmadd52huq $H1,$R1,$D2hi ################################################################ # partial reduction (interleaved with data splat) vpsrlq \$44,$D0lo,$tmp vpsllq \$8,$D0hi,$D0hi vpandq $mask44,$D0lo,$H0 vpaddq $tmp,$D0hi,$D0hi vpsrlq \$24,$T3,$T2 vporq $PAD,$T2,$T2 vpaddq $D0hi,$D1lo,$D1lo vpsrlq \$44,$D1lo,$tmp vpsllq \$8,$D1hi,$D1hi vpandq $mask44,$D1lo,$H1 vpaddq $tmp,$D1hi,$D1hi vpandq $mask44,$T1,$T0 vpsrlq \$44,$T1,$T1 vpsllq \$20,$T3,$T3 vpaddq $D1hi,$D2lo,$D2lo vpsrlq \$42,$D2lo,$tmp vpsllq \$10,$D2hi,$D2hi vpandq $mask42,$D2lo,$H2 vpaddq $tmp,$D2hi,$D2hi vpaddq $T2,$H2,$H2 # accumulate input vpaddq $D2hi,$H0,$H0 vpsllq \$2,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vporq $T3,$T1,$T1 vpandq $mask44,$T1,$T1 vpsrlq \$44,$H0,$tmp # additional step vpandq $mask44,$H0,$H0 vpaddq $tmp,$H1,$H1 sub \$8,$len # len-=128 jnz .Loop_vpmadd52_8x .Ltail_vpmadd52_8x: #vpaddq $T2,$H2,$H2 # accumulate input vpaddq $T0,$H0,$H0 vpaddq $T1,$H1,$H1 vpxorq $D0lo,$D0lo,$D0lo vpmadd52luq $H2,$SS1,$D0lo vpxorq $D0hi,$D0hi,$D0hi vpmadd52huq $H2,$SS1,$D0hi vpxorq $D1lo,$D1lo,$D1lo vpmadd52luq $H2,$SS2,$D1lo vpxorq $D1hi,$D1hi,$D1hi vpmadd52huq $H2,$SS2,$D1hi vpxorq $D2lo,$D2lo,$D2lo vpmadd52luq $H2,$RR0,$D2lo vpxorq $D2hi,$D2hi,$D2hi vpmadd52huq $H2,$RR0,$D2hi vpmadd52luq $H0,$RR0,$D0lo vpmadd52huq $H0,$RR0,$D0hi vpmadd52luq $H0,$RR1,$D1lo vpmadd52huq $H0,$RR1,$D1hi vpmadd52luq $H0,$RR2,$D2lo vpmadd52huq $H0,$RR2,$D2hi vpmadd52luq $H1,$SS2,$D0lo vpmadd52huq $H1,$SS2,$D0hi vpmadd52luq $H1,$RR0,$D1lo vpmadd52huq $H1,$RR0,$D1hi vpmadd52luq $H1,$RR1,$D2lo vpmadd52huq $H1,$RR1,$D2hi ################################################################ # horizontal addition mov \$1,%eax kmovw %eax,%k1 vpsrldq \$8,$D0lo,$T0 vpsrldq \$8,$D0hi,$H0 vpsrldq \$8,$D1lo,$T1 vpsrldq \$8,$D1hi,$H1 vpaddq $T0,$D0lo,$D0lo vpaddq $H0,$D0hi,$D0hi vpsrldq \$8,$D2lo,$T2 vpsrldq \$8,$D2hi,$H2 vpaddq $T1,$D1lo,$D1lo vpaddq $H1,$D1hi,$D1hi vpermq \$0x2,$D0lo,$T0 vpermq \$0x2,$D0hi,$H0 vpaddq $T2,$D2lo,$D2lo vpaddq $H2,$D2hi,$D2hi vpermq \$0x2,$D1lo,$T1 vpermq \$0x2,$D1hi,$H1 vpaddq $T0,$D0lo,$D0lo vpaddq $H0,$D0hi,$D0hi vpermq \$0x2,$D2lo,$T2 vpermq \$0x2,$D2hi,$H2 vpaddq $T1,$D1lo,$D1lo vpaddq $H1,$D1hi,$D1hi vextracti64x4 \$1,$D0lo,%y#$T0 vextracti64x4 \$1,$D0hi,%y#$H0 vpaddq $T2,$D2lo,$D2lo vpaddq $H2,$D2hi,$D2hi vextracti64x4 \$1,$D1lo,%y#$T1 vextracti64x4 \$1,$D1hi,%y#$H1 vextracti64x4 \$1,$D2lo,%y#$T2 vextracti64x4 \$1,$D2hi,%y#$H2 ___ ######## switch back to %ymm map(s/%z/%y/, $H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2); map(s/%z/%y/, $D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi); map(s/%z/%y/, $T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD); $code.=<<___; vpaddq $T0,$D0lo,${D0lo}{%k1}{z} vpaddq $H0,$D0hi,${D0hi}{%k1}{z} vpaddq $T1,$D1lo,${D1lo}{%k1}{z} vpaddq $H1,$D1hi,${D1hi}{%k1}{z} vpaddq $T2,$D2lo,${D2lo}{%k1}{z} vpaddq $H2,$D2hi,${D2hi}{%k1}{z} ################################################################ # partial reduction vpsrlq \$44,$D0lo,$tmp vpsllq \$8,$D0hi,$D0hi vpandq $mask44,$D0lo,$H0 vpaddq $tmp,$D0hi,$D0hi vpaddq $D0hi,$D1lo,$D1lo vpsrlq \$44,$D1lo,$tmp vpsllq \$8,$D1hi,$D1hi vpandq $mask44,$D1lo,$H1 vpaddq $tmp,$D1hi,$D1hi vpaddq $D1hi,$D2lo,$D2lo vpsrlq \$42,$D2lo,$tmp vpsllq \$10,$D2hi,$D2hi vpandq $mask42,$D2lo,$H2 vpaddq $tmp,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vpsllq \$2,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vpsrlq \$44,$H0,$tmp # additional step vpandq $mask44,$H0,$H0 vpaddq $tmp,$H1,$H1 ################################################################ vmovq %x#$H0,0($ctx) vmovq %x#$H1,8($ctx) vmovq %x#$H2,16($ctx) vzeroall .Lno_data_vpmadd52_8x: ret .cfi_endproc .size poly1305_blocks_vpmadd52_8x,.-poly1305_blocks_vpmadd52_8x ___ } $code.=<<___; .type poly1305_emit_base2_44,\@function,3 .align 32 poly1305_emit_base2_44: .cfi_startproc endbranch mov 0($ctx),%r8 # load hash value mov 8($ctx),%r9 mov 16($ctx),%r10 mov %r9,%rax shr \$20,%r9 shl \$44,%rax mov %r10,%rcx shr \$40,%r10 shl \$24,%rcx add %rax,%r8 adc %rcx,%r9 adc \$0,%r10 mov %r8,%rax add \$5,%r8 # compare to modulus mov %r9,%rcx adc \$0,%r9 adc \$0,%r10 shr \$2,%r10 # did 130-bit value overflow? cmovnz %r8,%rax cmovnz %r9,%rcx add 0($nonce),%rax # accumulate nonce adc 8($nonce),%rcx mov %rax,0($mac) # write result mov %rcx,8($mac) ret .cfi_endproc .size poly1305_emit_base2_44,.-poly1305_emit_base2_44 ___ } } } $code.=<<___; .align 64 .Lconst: .Lmask24: .long 0x0ffffff,0,0x0ffffff,0,0x0ffffff,0,0x0ffffff,0 .L129: .long `1<<24`,0,`1<<24`,0,`1<<24`,0,`1<<24`,0 .Lmask26: .long 0x3ffffff,0,0x3ffffff,0,0x3ffffff,0,0x3ffffff,0 .Lpermd_avx2: .long 2,2,2,3,2,0,2,1 .Lpermd_avx512: .long 0,0,0,1, 0,2,0,3, 0,4,0,5, 0,6,0,7 .L2_44_inp_permd: .long 0,1,1,2,2,3,7,7 .L2_44_inp_shift: .quad 0,12,24,64 .L2_44_mask: .quad 0xfffffffffff,0xfffffffffff,0x3ffffffffff,0xffffffffffffffff .L2_44_shift_rgt: .quad 44,44,42,64 .L2_44_shift_lft: .quad 8,8,10,64 .align 64 .Lx_mask44: .quad 0xfffffffffff,0xfffffffffff,0xfffffffffff,0xfffffffffff .quad 0xfffffffffff,0xfffffffffff,0xfffffffffff,0xfffffffffff .Lx_mask42: .quad 0x3ffffffffff,0x3ffffffffff,0x3ffffffffff,0x3ffffffffff .quad 0x3ffffffffff,0x3ffffffffff,0x3ffffffffff,0x3ffffffffff ___ } $code.=<<___; .asciz "Poly1305 for x86_64, CRYPTOGAMS by " .align 16 ___ { # chacha20-poly1305 helpers my ($out,$inp,$otp,$len)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order ("%rdi","%rsi","%rdx","%rcx"); # Unix order $code.=<<___; .globl xor128_encrypt_n_pad .type xor128_encrypt_n_pad,\@abi-omnipotent .align 16 xor128_encrypt_n_pad: .cfi_startproc sub $otp,$inp sub $otp,$out mov $len,%r10 # put len aside shr \$4,$len # len / 16 jz .Ltail_enc nop .Loop_enc_xmm: movdqu ($inp,$otp),%xmm0 pxor ($otp),%xmm0 movdqu %xmm0,($out,$otp) movdqa %xmm0,($otp) lea 16($otp),$otp dec $len jnz .Loop_enc_xmm and \$15,%r10 # len % 16 jz .Ldone_enc .Ltail_enc: mov \$16,$len sub %r10,$len xor %eax,%eax .Loop_enc_byte: mov ($inp,$otp),%al xor ($otp),%al mov %al,($out,$otp) mov %al,($otp) lea 1($otp),$otp dec %r10 jnz .Loop_enc_byte xor %eax,%eax .Loop_enc_pad: mov %al,($otp) lea 1($otp),$otp dec $len jnz .Loop_enc_pad .Ldone_enc: mov $otp,%rax ret .cfi_endproc .size xor128_encrypt_n_pad,.-xor128_encrypt_n_pad .globl xor128_decrypt_n_pad .type xor128_decrypt_n_pad,\@abi-omnipotent .align 16 xor128_decrypt_n_pad: .cfi_startproc sub $otp,$inp sub $otp,$out mov $len,%r10 # put len aside shr \$4,$len # len / 16 jz .Ltail_dec nop .Loop_dec_xmm: movdqu ($inp,$otp),%xmm0 movdqa ($otp),%xmm1 pxor %xmm0,%xmm1 movdqu %xmm1,($out,$otp) movdqa %xmm0,($otp) lea 16($otp),$otp dec $len jnz .Loop_dec_xmm pxor %xmm1,%xmm1 and \$15,%r10 # len % 16 jz .Ldone_dec .Ltail_dec: mov \$16,$len sub %r10,$len xor %eax,%eax xor %r11,%r11 .Loop_dec_byte: mov ($inp,$otp),%r11b mov ($otp),%al xor %r11b,%al mov %al,($out,$otp) mov %r11b,($otp) lea 1($otp),$otp dec %r10 jnz .Loop_dec_byte xor %eax,%eax .Loop_dec_pad: mov %al,($otp) lea 1($otp),$otp dec $len jnz .Loop_dec_pad .Ldone_dec: mov $otp,%rax ret .cfi_endproc .size xor128_decrypt_n_pad,.-xor128_decrypt_n_pad ___ } # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->Rip<.Lprologue jb .Lcommon_seh_tail mov 152($context),%rax # pull context->Rsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lcommon_seh_tail lea 48(%rax),%rax mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R14 jmp .Lcommon_seh_tail .size se_handler,.-se_handler .type avx_handler,\@abi-omnipotent .align 16 avx_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail mov 208($context),%rax # pull context->R11 lea 0x50(%rax),%rsi lea 0xf8(%rax),%rax lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size avx_handler,.-avx_handler .section .pdata .align 4 .rva .LSEH_begin_poly1305_init .rva .LSEH_end_poly1305_init .rva .LSEH_info_poly1305_init .rva .LSEH_begin_poly1305_blocks .rva .LSEH_end_poly1305_blocks .rva .LSEH_info_poly1305_blocks .rva .LSEH_begin_poly1305_emit .rva .LSEH_end_poly1305_emit .rva .LSEH_info_poly1305_emit ___ $code.=<<___ if ($avx); .rva .LSEH_begin_poly1305_blocks_avx .rva .Lbase2_64_avx .rva .LSEH_info_poly1305_blocks_avx_1 .rva .Lbase2_64_avx .rva .Leven_avx .rva .LSEH_info_poly1305_blocks_avx_2 .rva .Leven_avx .rva .LSEH_end_poly1305_blocks_avx .rva .LSEH_info_poly1305_blocks_avx_3 .rva .LSEH_begin_poly1305_emit_avx .rva .LSEH_end_poly1305_emit_avx .rva .LSEH_info_poly1305_emit_avx ___ $code.=<<___ if ($avx>1); .rva .LSEH_begin_poly1305_blocks_avx2 .rva .Lbase2_64_avx2 .rva .LSEH_info_poly1305_blocks_avx2_1 .rva .Lbase2_64_avx2 .rva .Leven_avx2 .rva .LSEH_info_poly1305_blocks_avx2_2 .rva .Leven_avx2 .rva .LSEH_end_poly1305_blocks_avx2 .rva .LSEH_info_poly1305_blocks_avx2_3 ___ $code.=<<___ if ($avx>2); .rva .LSEH_begin_poly1305_blocks_avx512 .rva .LSEH_end_poly1305_blocks_avx512 .rva .LSEH_info_poly1305_blocks_avx512 ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_poly1305_init: .byte 9,0,0,0 .rva se_handler .rva .LSEH_begin_poly1305_init,.LSEH_begin_poly1305_init .LSEH_info_poly1305_blocks: .byte 9,0,0,0 .rva se_handler .rva .Lblocks_body,.Lblocks_epilogue .LSEH_info_poly1305_emit: .byte 9,0,0,0 .rva se_handler .rva .LSEH_begin_poly1305_emit,.LSEH_begin_poly1305_emit ___ $code.=<<___ if ($avx); .LSEH_info_poly1305_blocks_avx_1: .byte 9,0,0,0 .rva se_handler .rva .Lblocks_avx_body,.Lblocks_avx_epilogue # HandlerData[] .LSEH_info_poly1305_blocks_avx_2: .byte 9,0,0,0 .rva se_handler .rva .Lbase2_64_avx_body,.Lbase2_64_avx_epilogue # HandlerData[] .LSEH_info_poly1305_blocks_avx_3: .byte 9,0,0,0 .rva avx_handler .rva .Ldo_avx_body,.Ldo_avx_epilogue # HandlerData[] .LSEH_info_poly1305_emit_avx: .byte 9,0,0,0 .rva se_handler .rva .LSEH_begin_poly1305_emit_avx,.LSEH_begin_poly1305_emit_avx ___ $code.=<<___ if ($avx>1); .LSEH_info_poly1305_blocks_avx2_1: .byte 9,0,0,0 .rva se_handler .rva .Lblocks_avx2_body,.Lblocks_avx2_epilogue # HandlerData[] .LSEH_info_poly1305_blocks_avx2_2: .byte 9,0,0,0 .rva se_handler .rva .Lbase2_64_avx2_body,.Lbase2_64_avx2_epilogue # HandlerData[] .LSEH_info_poly1305_blocks_avx2_3: .byte 9,0,0,0 .rva avx_handler .rva .Ldo_avx2_body,.Ldo_avx2_epilogue # HandlerData[] ___ $code.=<<___ if ($avx>2); .LSEH_info_poly1305_blocks_avx512: .byte 9,0,0,0 .rva avx_handler .rva .Ldo_avx512_body,.Ldo_avx512_epilogue # HandlerData[] ___ } foreach (split('\n',$code)) { s/\`([^\`]*)\`/eval($1)/ge; s/%r([a-z]+)#d/%e$1/g; s/%r([0-9]+)#d/%r$1d/g; s/%x#%[yz]/%x/g or s/%y#%z/%y/g or s/%z#%[yz]/%z/g; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!";