Lines Matching refs:i_
1165 i_{RB} & =
1176 i_{floor} & = \left\lfloor i_{RB} \right\rfloor \\
1179 i_{frac} & = i_{RB} - i_{floor} \\
1188 & \tau_{RB}( i_{floor}, j_{floor})[level]
1189 & \times & ( 1 - i_{frac} ) &
1191 & \tau_{RB}( 1 + i_{floor}, j_{floor})[level]
1192 & \times & ( i_{frac} ) &
1194 & \tau_{RB}( i_{floor}, 1 + j_{floor})[level]
1195 & \times & ( 1 - i_{frac} ) &
1197 & \tau_{RB}( 1 + i_{floor}, 1 + j_{floor})[level]
1198 & \times & ( i_{frac} ) &
2250 i_{0} & = {\left \lfloor {u - \frac{3}{2}} \right \rfloor} & i_{1} & = i_{0} + 1 & i_{2} & = i_{1}…
2269 i_{0} & = {\left \lfloor {u - \frac{3}{2}} \right \rfloor} & i_{1} & = i_{0} + 1 & i_{2} & = i_{1}…
3170 latexmath:[filterCenter] to specify coordinates latexmath:[i_{0}, j_{0}].
3175 i_{0} &= \left\lfloor u - filterCenter_{x} \right\rfloor \\[1em]
3188 latexmath:[i_{0}] to latexmath:[i_{filterWidth-1}] and latexmath:[j_{0}] to
3200 \{i_q\}_{q=0}^{q=filterWidth-1} \quad &= i_{0} + q \\[1em]
3282 …lockHeight-1} \atop {l_{blockHeight-1}}}\quad \sum_{{i=i_0}\atop {k=k_0}}^{i_{blockWidth-1} \atop …
3349 latexmath:[(i_{0}, j_{0})] and the reference block latexmath:[(k_{0},
3355 i_{0} &= u \\[1em]
3364 The neighboring coordinates are combinations of latexmath:[i_{0}] to
3365 latexmath:[i_{blockWidth-1}] and latexmath:[j_{0}] to
3372 \{i_q\}_{q=0}^{q=blockWidth-1} \quad &= i_{0} + q \\[1em]
3414 …kHeight-1}} \atop {l_{blockHeight-1}}} \quad\sum_{{i=i_0} \atop {k=k_0}}^{{i_{blockWidth-1}} \atop…
3423 …kHeight-1}} \atop {l_{blockHeight-1}}} \quad\sum_{{i=i_0} \atop {k=k_0}}^{{i_{blockWidth-1}} \atop…
3489 latexmath:[boxSize] to specify integer texel coordinates latexmath:[(i_{0},
3495 i_{0} &= \left\lfloor u - \frac{boxWidth}{2} \right\rfloor \\[1em]
3523 The neighboring coordinates are combinations of latexmath:[i_{0}] to
3524 latexmath:[i_{filterWidth-1}] and latexmath:[j_{0}] to
3525 latexmath:[j_{filterHeight-1}], with latexmath:[i_{0}, j_{0}] being the
3532 \{i_q\}_{q=0}^{q=filterWidth-1} \quad &= i_{0} + q \\[1em]
3584 …eight \times boxWidth} \sum_{j=j_0}^{j_{filterHeight-1}}\quad\sum_{i=i_0}^{i_{filterWidth-1}}(hori…