// SPDX-License-Identifier: GPL-2.0+ /* * Xilinx USB peripheral controller driver * * Copyright (C) 2004 by Thomas Rathbone * Copyright (C) 2005 by HP Labs * Copyright (C) 2005 by David Brownell * Copyright (C) 2010 - 2014 Xilinx, Inc. * * Some parts of this driver code is based on the driver for at91-series * USB peripheral controller (at91_udc.c). */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* Register offsets for the USB device.*/ #define XUSB_EP0_CONFIG_OFFSET 0x0000 /* EP0 Config Reg Offset */ #define XUSB_SETUP_PKT_ADDR_OFFSET 0x0080 /* Setup Packet Address */ #define XUSB_ADDRESS_OFFSET 0x0100 /* Address Register */ #define XUSB_CONTROL_OFFSET 0x0104 /* Control Register */ #define XUSB_STATUS_OFFSET 0x0108 /* Status Register */ #define XUSB_FRAMENUM_OFFSET 0x010C /* Frame Number Register */ #define XUSB_IER_OFFSET 0x0110 /* Interrupt Enable Register */ #define XUSB_BUFFREADY_OFFSET 0x0114 /* Buffer Ready Register */ #define XUSB_TESTMODE_OFFSET 0x0118 /* Test Mode Register */ #define XUSB_DMA_RESET_OFFSET 0x0200 /* DMA Soft Reset Register */ #define XUSB_DMA_CONTROL_OFFSET 0x0204 /* DMA Control Register */ #define XUSB_DMA_DSAR_ADDR_OFFSET 0x0208 /* DMA source Address Reg */ #define XUSB_DMA_DDAR_ADDR_OFFSET 0x020C /* DMA destination Addr Reg */ #define XUSB_DMA_LENGTH_OFFSET 0x0210 /* DMA Length Register */ #define XUSB_DMA_STATUS_OFFSET 0x0214 /* DMA Status Register */ /* Endpoint Configuration Space offsets */ #define XUSB_EP_CFGSTATUS_OFFSET 0x00 /* Endpoint Config Status */ #define XUSB_EP_BUF0COUNT_OFFSET 0x08 /* Buffer 0 Count */ #define XUSB_EP_BUF1COUNT_OFFSET 0x0C /* Buffer 1 Count */ #define XUSB_CONTROL_USB_READY_MASK 0x80000000 /* USB ready Mask */ #define XUSB_CONTROL_USB_RMTWAKE_MASK 0x40000000 /* Remote wake up mask */ /* Interrupt register related masks.*/ #define XUSB_STATUS_GLOBAL_INTR_MASK 0x80000000 /* Global Intr Enable */ #define XUSB_STATUS_DMADONE_MASK 0x04000000 /* DMA done Mask */ #define XUSB_STATUS_DMAERR_MASK 0x02000000 /* DMA Error Mask */ #define XUSB_STATUS_DMABUSY_MASK 0x80000000 /* DMA Error Mask */ #define XUSB_STATUS_RESUME_MASK 0x01000000 /* USB Resume Mask */ #define XUSB_STATUS_RESET_MASK 0x00800000 /* USB Reset Mask */ #define XUSB_STATUS_SUSPEND_MASK 0x00400000 /* USB Suspend Mask */ #define XUSB_STATUS_DISCONNECT_MASK 0x00200000 /* USB Disconnect Mask */ #define XUSB_STATUS_FIFO_BUFF_RDY_MASK 0x00100000 /* FIFO Buff Ready Mask */ #define XUSB_STATUS_FIFO_BUFF_FREE_MASK 0x00080000 /* FIFO Buff Free Mask */ #define XUSB_STATUS_SETUP_PACKET_MASK 0x00040000 /* Setup packet received */ #define XUSB_STATUS_EP1_BUFF2_COMP_MASK 0x00000200 /* EP 1 Buff 2 Processed */ #define XUSB_STATUS_EP1_BUFF1_COMP_MASK 0x00000002 /* EP 1 Buff 1 Processed */ #define XUSB_STATUS_EP0_BUFF2_COMP_MASK 0x00000100 /* EP 0 Buff 2 Processed */ #define XUSB_STATUS_EP0_BUFF1_COMP_MASK 0x00000001 /* EP 0 Buff 1 Processed */ #define XUSB_STATUS_HIGH_SPEED_MASK 0x00010000 /* USB Speed Mask */ /* Suspend,Reset,Suspend and Disconnect Mask */ #define XUSB_STATUS_INTR_EVENT_MASK 0x01E00000 /* Buffers completion Mask */ #define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK 0x0000FEFF /* Mask for buffer 0 and buffer 1 completion for all Endpoints */ #define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK 0x00000101 #define XUSB_STATUS_EP_BUFF2_SHIFT 8 /* EP buffer offset */ /* Endpoint Configuration Status Register */ #define XUSB_EP_CFG_VALID_MASK 0x80000000 /* Endpoint Valid bit */ #define XUSB_EP_CFG_STALL_MASK 0x40000000 /* Endpoint Stall bit */ #define XUSB_EP_CFG_DATA_TOGGLE_MASK 0x08000000 /* Endpoint Data toggle */ /* USB device specific global configuration constants.*/ #define XUSB_MAX_ENDPOINTS 8 /* Maximum End Points */ #define XUSB_EP_NUMBER_ZERO 0 /* End point Zero */ /* DPRAM is the source address for DMA transfer */ #define XUSB_DMA_READ_FROM_DPRAM 0x80000000 #define XUSB_DMA_DMASR_BUSY 0x80000000 /* DMA busy */ #define XUSB_DMA_DMASR_ERROR 0x40000000 /* DMA Error */ /* * When this bit is set, the DMA buffer ready bit is set by hardware upon * DMA transfer completion. */ #define XUSB_DMA_BRR_CTRL 0x40000000 /* DMA bufready ctrl bit */ /* Phase States */ #define SETUP_PHASE 0x0000 /* Setup Phase */ #define DATA_PHASE 0x0001 /* Data Phase */ #define STATUS_PHASE 0x0002 /* Status Phase */ #define EP0_MAX_PACKET 64 /* Endpoint 0 maximum packet length */ #define STATUSBUFF_SIZE 2 /* Buffer size for GET_STATUS command */ #define EPNAME_SIZE 4 /* Buffer size for endpoint name */ /* container_of helper macros */ #define to_udc(g) container_of((g), struct xusb_udc, gadget) #define to_xusb_ep(ep) container_of((ep), struct xusb_ep, ep_usb) #define to_xusb_req(req) container_of((req), struct xusb_req, usb_req) /** * struct xusb_req - Xilinx USB device request structure * @usb_req: Linux usb request structure * @queue: usb device request queue * @ep: pointer to xusb_endpoint structure */ struct xusb_req { struct usb_request usb_req; struct list_head queue; struct xusb_ep *ep; }; /** * struct xusb_ep - USB end point structure. * @ep_usb: usb endpoint instance * @queue: endpoint message queue * @udc: xilinx usb peripheral driver instance pointer * @desc: pointer to the usb endpoint descriptor * @rambase: the endpoint buffer address * @offset: the endpoint register offset value * @name: name of the endpoint * @epnumber: endpoint number * @maxpacket: maximum packet size the endpoint can store * @buffer0count: the size of the packet recieved in the first buffer * @buffer1count: the size of the packet received in the second buffer * @curbufnum: current buffer of endpoint that will be processed next * @buffer0ready: the busy state of first buffer * @buffer1ready: the busy state of second buffer * @is_in: endpoint direction (IN or OUT) * @is_iso: endpoint type(isochronous or non isochronous) */ struct xusb_ep { struct usb_ep ep_usb; struct list_head queue; struct xusb_udc *udc; const struct usb_endpoint_descriptor *desc; u32 rambase; u32 offset; char name[4]; u16 epnumber; u16 maxpacket; u16 buffer0count; u16 buffer1count; u8 curbufnum; bool buffer0ready; bool buffer1ready; bool is_in; bool is_iso; }; /** * struct xusb_udc - USB peripheral driver structure * @gadget: USB gadget driver instance * @ep: an array of endpoint structures * @driver: pointer to the usb gadget driver instance * @setup: usb_ctrlrequest structure for control requests * @req: pointer to dummy request for get status command * @dev: pointer to device structure in gadget * @usb_state: device in suspended state or not * @remote_wkp: remote wakeup enabled by host * @setupseqtx: tx status * @setupseqrx: rx status * @addr: the usb device base address * @lock: instance of spinlock * @dma_enabled: flag indicating whether the dma is included in the system * @read_fn: function pointer to read device registers * @write_fn: function pointer to write to device registers */ struct xusb_udc { struct usb_gadget gadget; struct xusb_ep ep[8]; struct usb_gadget_driver *driver; struct usb_ctrlrequest setup; struct xusb_req *req; struct device *dev; u32 usb_state; u32 remote_wkp; u32 setupseqtx; u32 setupseqrx; void __iomem *addr; spinlock_t lock; bool dma_enabled; unsigned int (*read_fn)(void __iomem *); void (*write_fn)(void __iomem *, u32, u32); }; /* Endpoint buffer start addresses in the core */ static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500, 0x1600 }; static const char driver_name[] = "xilinx-udc"; static const char ep0name[] = "ep0"; /* Control endpoint configuration.*/ static const struct usb_endpoint_descriptor config_bulk_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(EP0_MAX_PACKET), }; /** * xudc_write32 - little endian write to device registers * @addr: base addr of device registers * @offset: register offset * @val: data to be written */ static void xudc_write32(void __iomem *addr, u32 offset, u32 val) { iowrite32(val, addr + offset); } /** * xudc_read32 - little endian read from device registers * @addr: addr of device register * Return: value at addr */ static unsigned int xudc_read32(void __iomem *addr) { return ioread32(addr); } /** * xudc_write32_be - big endian write to device registers * @addr: base addr of device registers * @offset: register offset * @val: data to be written */ static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val) { iowrite32be(val, addr + offset); } /** * xudc_read32_be - big endian read from device registers * @addr: addr of device register * Return: value at addr */ static unsigned int xudc_read32_be(void __iomem *addr) { return ioread32be(addr); } /** * xudc_wrstatus - Sets up the usb device status stages. * @udc: pointer to the usb device controller structure. */ static void xudc_wrstatus(struct xusb_udc *udc) { struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; u32 epcfgreg; epcfgreg = udc->read_fn(udc->addr + ep0->offset)| XUSB_EP_CFG_DATA_TOGGLE_MASK; udc->write_fn(udc->addr, ep0->offset, epcfgreg); udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0); udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); } /** * xudc_epconfig - Configures the given endpoint. * @ep: pointer to the usb device endpoint structure. * @udc: pointer to the usb peripheral controller structure. * * This function configures a specific endpoint with the given configuration * data. */ static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc) { u32 epcfgreg; /* * Configure the end point direction, type, Max Packet Size and the * EP buffer location. */ epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) | (ep->ep_usb.maxpacket << 15) | (ep->rambase)); udc->write_fn(udc->addr, ep->offset, epcfgreg); /* Set the Buffer count and the Buffer ready bits.*/ udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET, ep->buffer0count); udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET, ep->buffer1count); if (ep->buffer0ready) udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1 << ep->epnumber); if (ep->buffer1ready) udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT)); } /** * xudc_start_dma - Starts DMA transfer. * @ep: pointer to the usb device endpoint structure. * @src: DMA source address. * @dst: DMA destination address. * @length: number of bytes to transfer. * * Return: 0 on success, error code on failure * * This function starts DMA transfer by writing to DMA source, * destination and lenth registers. */ static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src, dma_addr_t dst, u32 length) { struct xusb_udc *udc = ep->udc; int rc = 0; u32 timeout = 500; u32 reg; /* * Set the addresses in the DMA source and * destination registers and then set the length * into the DMA length register. */ udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src); udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst); udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length); /* * Wait till DMA transaction is complete and * check whether the DMA transaction was * successful. */ do { reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET); if (!(reg & XUSB_DMA_DMASR_BUSY)) break; /* * We can't sleep here, because it's also called from * interrupt context. */ timeout--; if (!timeout) { dev_err(udc->dev, "DMA timeout\n"); return -ETIMEDOUT; } udelay(1); } while (1); if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) & XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){ dev_err(udc->dev, "DMA Error\n"); rc = -EINVAL; } return rc; } /** * xudc_dma_send - Sends IN data using DMA. * @ep: pointer to the usb device endpoint structure. * @req: pointer to the usb request structure. * @buffer: pointer to data to be sent. * @length: number of bytes to send. * * Return: 0 on success, -EAGAIN if no buffer is free and error * code on failure. * * This function sends data using DMA. */ static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req, u8 *buffer, u32 length) { u32 *eprambase; dma_addr_t src; dma_addr_t dst; struct xusb_udc *udc = ep->udc; src = req->usb_req.dma + req->usb_req.actual; if (req->usb_req.length) dma_sync_single_for_device(udc->dev, src, length, DMA_TO_DEVICE); if (!ep->curbufnum && !ep->buffer0ready) { /* Get the Buffer address and copy the transmit data.*/ eprambase = (u32 __force *)(udc->addr + ep->rambase); dst = virt_to_phys(eprambase); udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET, length); udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, XUSB_DMA_BRR_CTRL | (1 << ep->epnumber)); ep->buffer0ready = 1; ep->curbufnum = 1; } else if (ep->curbufnum && !ep->buffer1ready) { /* Get the Buffer address and copy the transmit data.*/ eprambase = (u32 __force *)(udc->addr + ep->rambase + ep->ep_usb.maxpacket); dst = virt_to_phys(eprambase); udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET, length); udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT))); ep->buffer1ready = 1; ep->curbufnum = 0; } else { /* None of ping pong buffers are ready currently .*/ return -EAGAIN; } return xudc_start_dma(ep, src, dst, length); } /** * xudc_dma_receive - Receives OUT data using DMA. * @ep: pointer to the usb device endpoint structure. * @req: pointer to the usb request structure. * @buffer: pointer to storage buffer of received data. * @length: number of bytes to receive. * * Return: 0 on success, -EAGAIN if no buffer is free and error * code on failure. * * This function receives data using DMA. */ static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req, u8 *buffer, u32 length) { u32 *eprambase; dma_addr_t src; dma_addr_t dst; struct xusb_udc *udc = ep->udc; dst = req->usb_req.dma + req->usb_req.actual; if (!ep->curbufnum && !ep->buffer0ready) { /* Get the Buffer address and copy the transmit data */ eprambase = (u32 __force *)(udc->addr + ep->rambase); src = virt_to_phys(eprambase); udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM | (1 << ep->epnumber)); ep->buffer0ready = 1; ep->curbufnum = 1; } else if (ep->curbufnum && !ep->buffer1ready) { /* Get the Buffer address and copy the transmit data */ eprambase = (u32 __force *)(udc->addr + ep->rambase + ep->ep_usb.maxpacket); src = virt_to_phys(eprambase); udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM | (1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT))); ep->buffer1ready = 1; ep->curbufnum = 0; } else { /* None of the ping-pong buffers are ready currently */ return -EAGAIN; } return xudc_start_dma(ep, src, dst, length); } /** * xudc_eptxrx - Transmits or receives data to or from an endpoint. * @ep: pointer to the usb endpoint configuration structure. * @req: pointer to the usb request structure. * @bufferptr: pointer to buffer containing the data to be sent. * @bufferlen: The number of data bytes to be sent. * * Return: 0 on success, -EAGAIN if no buffer is free. * * This function copies the transmit/receive data to/from the end point buffer * and enables the buffer for transmission/reception. */ static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req, u8 *bufferptr, u32 bufferlen) { u32 *eprambase; u32 bytestosend; int rc = 0; struct xusb_udc *udc = ep->udc; bytestosend = bufferlen; if (udc->dma_enabled) { if (ep->is_in) rc = xudc_dma_send(ep, req, bufferptr, bufferlen); else rc = xudc_dma_receive(ep, req, bufferptr, bufferlen); return rc; } /* Put the transmit buffer into the correct ping-pong buffer.*/ if (!ep->curbufnum && !ep->buffer0ready) { /* Get the Buffer address and copy the transmit data.*/ eprambase = (u32 __force *)(udc->addr + ep->rambase); if (ep->is_in) { memcpy(eprambase, bufferptr, bytestosend); udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET, bufferlen); } else { memcpy(bufferptr, eprambase, bytestosend); } /* * Enable the buffer for transmission. */ udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1 << ep->epnumber); ep->buffer0ready = 1; ep->curbufnum = 1; } else if (ep->curbufnum && !ep->buffer1ready) { /* Get the Buffer address and copy the transmit data.*/ eprambase = (u32 __force *)(udc->addr + ep->rambase + ep->ep_usb.maxpacket); if (ep->is_in) { memcpy(eprambase, bufferptr, bytestosend); udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET, bufferlen); } else { memcpy(bufferptr, eprambase, bytestosend); } /* * Enable the buffer for transmission. */ udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT)); ep->buffer1ready = 1; ep->curbufnum = 0; } else { /* None of the ping-pong buffers are ready currently */ return -EAGAIN; } return rc; } /** * xudc_done - Exeutes the endpoint data transfer completion tasks. * @ep: pointer to the usb device endpoint structure. * @req: pointer to the usb request structure. * @status: Status of the data transfer. * * Deletes the message from the queue and updates data transfer completion * status. */ static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status) { struct xusb_udc *udc = ep->udc; list_del_init(&req->queue); if (req->usb_req.status == -EINPROGRESS) req->usb_req.status = status; else status = req->usb_req.status; if (status && status != -ESHUTDOWN) dev_dbg(udc->dev, "%s done %p, status %d\n", ep->ep_usb.name, req, status); /* unmap request if DMA is present*/ if (udc->dma_enabled && ep->epnumber && req->usb_req.length) usb_gadget_unmap_request(&udc->gadget, &req->usb_req, ep->is_in); if (req->usb_req.complete) { spin_unlock(&udc->lock); req->usb_req.complete(&ep->ep_usb, &req->usb_req); spin_lock(&udc->lock); } } /** * xudc_read_fifo - Reads the data from the given endpoint buffer. * @ep: pointer to the usb device endpoint structure. * @req: pointer to the usb request structure. * * Return: 0 if request is completed and -EAGAIN if not completed. * * Pulls OUT packet data from the endpoint buffer. */ static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req) { u8 *buf; u32 is_short, count, bufferspace; u8 bufoffset; u8 two_pkts = 0; int ret; int retval = -EAGAIN; struct xusb_udc *udc = ep->udc; if (ep->buffer0ready && ep->buffer1ready) { dev_dbg(udc->dev, "Packet NOT ready!\n"); return retval; } top: if (ep->curbufnum) bufoffset = XUSB_EP_BUF1COUNT_OFFSET; else bufoffset = XUSB_EP_BUF0COUNT_OFFSET; count = udc->read_fn(udc->addr + ep->offset + bufoffset); if (!ep->buffer0ready && !ep->buffer1ready) two_pkts = 1; buf = req->usb_req.buf + req->usb_req.actual; prefetchw(buf); bufferspace = req->usb_req.length - req->usb_req.actual; is_short = count < ep->ep_usb.maxpacket; if (unlikely(!bufferspace)) { /* * This happens when the driver's buffer * is smaller than what the host sent. * discard the extra data. */ if (req->usb_req.status != -EOVERFLOW) dev_dbg(udc->dev, "%s overflow %d\n", ep->ep_usb.name, count); req->usb_req.status = -EOVERFLOW; xudc_done(ep, req, -EOVERFLOW); return 0; } ret = xudc_eptxrx(ep, req, buf, count); switch (ret) { case 0: req->usb_req.actual += min(count, bufferspace); dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n", ep->ep_usb.name, count, is_short ? "/S" : "", req, req->usb_req.actual, req->usb_req.length); bufferspace -= count; /* Completion */ if ((req->usb_req.actual == req->usb_req.length) || is_short) { if (udc->dma_enabled && req->usb_req.length) dma_sync_single_for_cpu(udc->dev, req->usb_req.dma, req->usb_req.actual, DMA_FROM_DEVICE); xudc_done(ep, req, 0); return 0; } if (two_pkts) { two_pkts = 0; goto top; } break; case -EAGAIN: dev_dbg(udc->dev, "receive busy\n"); break; case -EINVAL: case -ETIMEDOUT: /* DMA error, dequeue the request */ xudc_done(ep, req, -ECONNRESET); retval = 0; break; } return retval; } /** * xudc_write_fifo - Writes data into the given endpoint buffer. * @ep: pointer to the usb device endpoint structure. * @req: pointer to the usb request structure. * * Return: 0 if request is completed and -EAGAIN if not completed. * * Loads endpoint buffer for an IN packet. */ static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req) { u32 max; u32 length; int ret; int retval = -EAGAIN; struct xusb_udc *udc = ep->udc; int is_last, is_short = 0; u8 *buf; max = le16_to_cpu(ep->desc->wMaxPacketSize); buf = req->usb_req.buf + req->usb_req.actual; prefetch(buf); length = req->usb_req.length - req->usb_req.actual; length = min(length, max); ret = xudc_eptxrx(ep, req, buf, length); switch (ret) { case 0: req->usb_req.actual += length; if (unlikely(length != max)) { is_last = is_short = 1; } else { if (likely(req->usb_req.length != req->usb_req.actual) || req->usb_req.zero) is_last = 0; else is_last = 1; } dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n", __func__, ep->ep_usb.name, length, is_last ? "/L" : "", is_short ? "/S" : "", req->usb_req.length - req->usb_req.actual, req); /* completion */ if (is_last) { xudc_done(ep, req, 0); retval = 0; } break; case -EAGAIN: dev_dbg(udc->dev, "Send busy\n"); break; case -EINVAL: case -ETIMEDOUT: /* DMA error, dequeue the request */ xudc_done(ep, req, -ECONNRESET); retval = 0; break; } return retval; } /** * xudc_nuke - Cleans up the data transfer message list. * @ep: pointer to the usb device endpoint structure. * @status: Status of the data transfer. */ static void xudc_nuke(struct xusb_ep *ep, int status) { struct xusb_req *req; while (!list_empty(&ep->queue)) { req = list_first_entry(&ep->queue, struct xusb_req, queue); xudc_done(ep, req, status); } } /** * xudc_ep_set_halt - Stalls/unstalls the given endpoint. * @_ep: pointer to the usb device endpoint structure. * @value: value to indicate stall/unstall. * * Return: 0 for success and error value on failure */ static int xudc_ep_set_halt(struct usb_ep *_ep, int value) { struct xusb_ep *ep = to_xusb_ep(_ep); struct xusb_udc *udc; unsigned long flags; u32 epcfgreg; if (!_ep || (!ep->desc && ep->epnumber)) { pr_debug("%s: bad ep or descriptor\n", __func__); return -EINVAL; } udc = ep->udc; if (ep->is_in && (!list_empty(&ep->queue)) && value) { dev_dbg(udc->dev, "requests pending can't halt\n"); return -EAGAIN; } if (ep->buffer0ready || ep->buffer1ready) { dev_dbg(udc->dev, "HW buffers busy can't halt\n"); return -EAGAIN; } spin_lock_irqsave(&udc->lock, flags); if (value) { /* Stall the device.*/ epcfgreg = udc->read_fn(udc->addr + ep->offset); epcfgreg |= XUSB_EP_CFG_STALL_MASK; udc->write_fn(udc->addr, ep->offset, epcfgreg); } else { /* Unstall the device.*/ epcfgreg = udc->read_fn(udc->addr + ep->offset); epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; udc->write_fn(udc->addr, ep->offset, epcfgreg); if (ep->epnumber) { /* Reset the toggle bit.*/ epcfgreg = udc->read_fn(ep->udc->addr + ep->offset); epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK; udc->write_fn(udc->addr, ep->offset, epcfgreg); } } spin_unlock_irqrestore(&udc->lock, flags); return 0; } /** * xudc_ep_enable - Enables the given endpoint. * @ep: pointer to the xusb endpoint structure. * @desc: pointer to usb endpoint descriptor. * * Return: 0 for success and error value on failure */ static int __xudc_ep_enable(struct xusb_ep *ep, const struct usb_endpoint_descriptor *desc) { struct xusb_udc *udc = ep->udc; u32 tmp; u32 epcfg; u32 ier; u16 maxpacket; ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0); /* Bit 3...0:endpoint number */ ep->epnumber = (desc->bEndpointAddress & 0x0f); ep->desc = desc; ep->ep_usb.desc = desc; tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize); switch (tmp) { case USB_ENDPOINT_XFER_CONTROL: dev_dbg(udc->dev, "only one control endpoint\n"); /* NON- ISO */ ep->is_iso = 0; return -EINVAL; case USB_ENDPOINT_XFER_INT: /* NON- ISO */ ep->is_iso = 0; if (maxpacket > 64) { dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket); return -EINVAL; } break; case USB_ENDPOINT_XFER_BULK: /* NON- ISO */ ep->is_iso = 0; if (!(is_power_of_2(maxpacket) && maxpacket >= 8 && maxpacket <= 512)) { dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket); return -EINVAL; } break; case USB_ENDPOINT_XFER_ISOC: /* ISO */ ep->is_iso = 1; break; } ep->buffer0ready = 0; ep->buffer1ready = 0; ep->curbufnum = 0; ep->rambase = rambase[ep->epnumber]; xudc_epconfig(ep, udc); dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n", ep->epnumber, maxpacket); /* Enable the End point.*/ epcfg = udc->read_fn(udc->addr + ep->offset); epcfg |= XUSB_EP_CFG_VALID_MASK; udc->write_fn(udc->addr, ep->offset, epcfg); if (ep->epnumber) ep->rambase <<= 2; /* Enable buffer completion interrupts for endpoint */ ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber); udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); /* for OUT endpoint set buffers ready to receive */ if (ep->epnumber && !ep->is_in) { udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1 << ep->epnumber); ep->buffer0ready = 1; udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, (1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT))); ep->buffer1ready = 1; } return 0; } /** * xudc_ep_enable - Enables the given endpoint. * @_ep: pointer to the usb endpoint structure. * @desc: pointer to usb endpoint descriptor. * * Return: 0 for success and error value on failure */ static int xudc_ep_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc) { struct xusb_ep *ep; struct xusb_udc *udc; unsigned long flags; int ret; if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) { pr_debug("%s: bad ep or descriptor\n", __func__); return -EINVAL; } ep = to_xusb_ep(_ep); udc = ep->udc; if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { dev_dbg(udc->dev, "bogus device state\n"); return -ESHUTDOWN; } spin_lock_irqsave(&udc->lock, flags); ret = __xudc_ep_enable(ep, desc); spin_unlock_irqrestore(&udc->lock, flags); return ret; } /** * xudc_ep_disable - Disables the given endpoint. * @_ep: pointer to the usb endpoint structure. * * Return: 0 for success and error value on failure */ static int xudc_ep_disable(struct usb_ep *_ep) { struct xusb_ep *ep; unsigned long flags; u32 epcfg; struct xusb_udc *udc; if (!_ep) { pr_debug("%s: invalid ep\n", __func__); return -EINVAL; } ep = to_xusb_ep(_ep); udc = ep->udc; spin_lock_irqsave(&udc->lock, flags); xudc_nuke(ep, -ESHUTDOWN); /* Restore the endpoint's pristine config */ ep->desc = NULL; ep->ep_usb.desc = NULL; dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber); /* Disable the endpoint.*/ epcfg = udc->read_fn(udc->addr + ep->offset); epcfg &= ~XUSB_EP_CFG_VALID_MASK; udc->write_fn(udc->addr, ep->offset, epcfg); spin_unlock_irqrestore(&udc->lock, flags); return 0; } /** * xudc_ep_alloc_request - Initializes the request queue. * @_ep: pointer to the usb endpoint structure. * @gfp_flags: Flags related to the request call. * * Return: pointer to request structure on success and a NULL on failure. */ static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) { struct xusb_ep *ep = to_xusb_ep(_ep); struct xusb_req *req; req = kzalloc(sizeof(*req), gfp_flags); if (!req) return NULL; req->ep = ep; INIT_LIST_HEAD(&req->queue); return &req->usb_req; } /** * xudc_free_request - Releases the request from queue. * @_ep: pointer to the usb device endpoint structure. * @_req: pointer to the usb request structure. */ static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req) { struct xusb_req *req = to_xusb_req(_req); kfree(req); } /** * xudc_ep0_queue - Adds the request to endpoint 0 queue. * @ep0: pointer to the xusb endpoint 0 structure. * @req: pointer to the xusb request structure. * * Return: 0 for success and error value on failure */ static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req) { struct xusb_udc *udc = ep0->udc; u32 length; u8 *corebuf; if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { dev_dbg(udc->dev, "%s, bogus device state\n", __func__); return -EINVAL; } if (!list_empty(&ep0->queue)) { dev_dbg(udc->dev, "%s:ep0 busy\n", __func__); return -EBUSY; } req->usb_req.status = -EINPROGRESS; req->usb_req.actual = 0; list_add_tail(&req->queue, &ep0->queue); if (udc->setup.bRequestType & USB_DIR_IN) { prefetch(req->usb_req.buf); length = req->usb_req.length; corebuf = (void __force *) ((ep0->rambase << 2) + udc->addr); length = req->usb_req.actual = min_t(u32, length, EP0_MAX_PACKET); memcpy(corebuf, req->usb_req.buf, length); udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length); udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); } else { if (udc->setup.wLength) { /* Enable EP0 buffer to receive data */ udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0); udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); } else { xudc_wrstatus(udc); } } return 0; } /** * xudc_ep0_queue - Adds the request to endpoint 0 queue. * @_ep: pointer to the usb endpoint 0 structure. * @_req: pointer to the usb request structure. * @gfp_flags: Flags related to the request call. * * Return: 0 for success and error value on failure */ static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags) { struct xusb_req *req = to_xusb_req(_req); struct xusb_ep *ep0 = to_xusb_ep(_ep); struct xusb_udc *udc = ep0->udc; unsigned long flags; int ret; spin_lock_irqsave(&udc->lock, flags); ret = __xudc_ep0_queue(ep0, req); spin_unlock_irqrestore(&udc->lock, flags); return ret; } /** * xudc_ep_queue - Adds the request to endpoint queue. * @_ep: pointer to the usb endpoint structure. * @_req: pointer to the usb request structure. * @gfp_flags: Flags related to the request call. * * Return: 0 for success and error value on failure */ static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags) { struct xusb_req *req = to_xusb_req(_req); struct xusb_ep *ep = to_xusb_ep(_ep); struct xusb_udc *udc = ep->udc; int ret; unsigned long flags; if (!ep->desc) { dev_dbg(udc->dev, "%s: queuing request to disabled %s\n", __func__, ep->name); return -ESHUTDOWN; } if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { dev_dbg(udc->dev, "%s, bogus device state\n", __func__); return -EINVAL; } spin_lock_irqsave(&udc->lock, flags); _req->status = -EINPROGRESS; _req->actual = 0; if (udc->dma_enabled) { ret = usb_gadget_map_request(&udc->gadget, &req->usb_req, ep->is_in); if (ret) { dev_dbg(udc->dev, "gadget_map failed ep%d\n", ep->epnumber); spin_unlock_irqrestore(&udc->lock, flags); return -EAGAIN; } } if (list_empty(&ep->queue)) { if (ep->is_in) { dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n"); if (!xudc_write_fifo(ep, req)) req = NULL; } else { dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n"); if (!xudc_read_fifo(ep, req)) req = NULL; } } if (req != NULL) list_add_tail(&req->queue, &ep->queue); spin_unlock_irqrestore(&udc->lock, flags); return 0; } /** * xudc_ep_dequeue - Removes the request from the queue. * @_ep: pointer to the usb device endpoint structure. * @_req: pointer to the usb request structure. * * Return: 0 for success and error value on failure */ static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) { struct xusb_ep *ep = to_xusb_ep(_ep); struct xusb_req *req = to_xusb_req(_req); struct xusb_udc *udc = ep->udc; unsigned long flags; spin_lock_irqsave(&udc->lock, flags); /* Make sure it's actually queued on this endpoint */ list_for_each_entry(req, &ep->queue, queue) { if (&req->usb_req == _req) break; } if (&req->usb_req != _req) { spin_unlock_irqrestore(&udc->lock, flags); return -EINVAL; } xudc_done(ep, req, -ECONNRESET); spin_unlock_irqrestore(&udc->lock, flags); return 0; } /** * xudc_ep0_enable - Enables the given endpoint. * @ep: pointer to the usb endpoint structure. * @desc: pointer to usb endpoint descriptor. * * Return: error always. * * endpoint 0 enable should not be called by gadget layer. */ static int xudc_ep0_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { return -EINVAL; } /** * xudc_ep0_disable - Disables the given endpoint. * @ep: pointer to the usb endpoint structure. * * Return: error always. * * endpoint 0 disable should not be called by gadget layer. */ static int xudc_ep0_disable(struct usb_ep *ep) { return -EINVAL; } static const struct usb_ep_ops xusb_ep0_ops = { .enable = xudc_ep0_enable, .disable = xudc_ep0_disable, .alloc_request = xudc_ep_alloc_request, .free_request = xudc_free_request, .queue = xudc_ep0_queue, .dequeue = xudc_ep_dequeue, .set_halt = xudc_ep_set_halt, }; static const struct usb_ep_ops xusb_ep_ops = { .enable = xudc_ep_enable, .disable = xudc_ep_disable, .alloc_request = xudc_ep_alloc_request, .free_request = xudc_free_request, .queue = xudc_ep_queue, .dequeue = xudc_ep_dequeue, .set_halt = xudc_ep_set_halt, }; /** * xudc_get_frame - Reads the current usb frame number. * @gadget: pointer to the usb gadget structure. * * Return: current frame number for success and error value on failure. */ static int xudc_get_frame(struct usb_gadget *gadget) { struct xusb_udc *udc; int frame; if (!gadget) return -ENODEV; udc = to_udc(gadget); frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET); return frame; } /** * xudc_wakeup - Send remote wakeup signal to host * @gadget: pointer to the usb gadget structure. * * Return: 0 on success and error on failure */ static int xudc_wakeup(struct usb_gadget *gadget) { struct xusb_udc *udc = to_udc(gadget); u32 crtlreg; int status = -EINVAL; unsigned long flags; spin_lock_irqsave(&udc->lock, flags); /* Remote wake up not enabled by host */ if (!udc->remote_wkp) goto done; crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK; /* set remote wake up bit */ udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); /* * wait for a while and reset remote wake up bit since this bit * is not cleared by HW after sending remote wakeup to host. */ mdelay(2); crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK; udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); status = 0; done: spin_unlock_irqrestore(&udc->lock, flags); return status; } /** * xudc_pullup - start/stop USB traffic * @gadget: pointer to the usb gadget structure. * @is_on: flag to start or stop * * Return: 0 always * * This function starts/stops SIE engine of IP based on is_on. */ static int xudc_pullup(struct usb_gadget *gadget, int is_on) { struct xusb_udc *udc = to_udc(gadget); unsigned long flags; u32 crtlreg; spin_lock_irqsave(&udc->lock, flags); crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); if (is_on) crtlreg |= XUSB_CONTROL_USB_READY_MASK; else crtlreg &= ~XUSB_CONTROL_USB_READY_MASK; udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); spin_unlock_irqrestore(&udc->lock, flags); return 0; } /** * xudc_eps_init - initialize endpoints. * @udc: pointer to the usb device controller structure. */ static void xudc_eps_init(struct xusb_udc *udc) { u32 ep_number; INIT_LIST_HEAD(&udc->gadget.ep_list); for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) { struct xusb_ep *ep = &udc->ep[ep_number]; if (ep_number) { list_add_tail(&ep->ep_usb.ep_list, &udc->gadget.ep_list); usb_ep_set_maxpacket_limit(&ep->ep_usb, (unsigned short) ~0); snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number); ep->ep_usb.name = ep->name; ep->ep_usb.ops = &xusb_ep_ops; ep->ep_usb.caps.type_iso = true; ep->ep_usb.caps.type_bulk = true; ep->ep_usb.caps.type_int = true; } else { ep->ep_usb.name = ep0name; usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET); ep->ep_usb.ops = &xusb_ep0_ops; ep->ep_usb.caps.type_control = true; } ep->ep_usb.caps.dir_in = true; ep->ep_usb.caps.dir_out = true; ep->udc = udc; ep->epnumber = ep_number; ep->desc = NULL; /* * The configuration register address offset between * each endpoint is 0x10. */ ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10); ep->is_in = 0; ep->is_iso = 0; ep->maxpacket = 0; xudc_epconfig(ep, udc); /* Initialize one queue per endpoint */ INIT_LIST_HEAD(&ep->queue); } } /** * xudc_stop_activity - Stops any further activity on the device. * @udc: pointer to the usb device controller structure. */ static void xudc_stop_activity(struct xusb_udc *udc) { int i; struct xusb_ep *ep; for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) { ep = &udc->ep[i]; xudc_nuke(ep, -ESHUTDOWN); } } /** * xudc_start - Starts the device. * @gadget: pointer to the usb gadget structure * @driver: pointer to gadget driver structure * * Return: zero on success and error on failure */ static int xudc_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct xusb_udc *udc = to_udc(gadget); struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc; unsigned long flags; int ret = 0; spin_lock_irqsave(&udc->lock, flags); if (udc->driver) { dev_err(udc->dev, "%s is already bound to %s\n", udc->gadget.name, udc->driver->driver.name); ret = -EBUSY; goto err; } /* hook up the driver */ udc->driver = driver; udc->gadget.speed = driver->max_speed; /* Enable the control endpoint. */ ret = __xudc_ep_enable(ep0, desc); /* Set device address and remote wakeup to 0 */ udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); udc->remote_wkp = 0; err: spin_unlock_irqrestore(&udc->lock, flags); return ret; } /** * xudc_stop - stops the device. * @gadget: pointer to the usb gadget structure * * Return: zero always */ static int xudc_stop(struct usb_gadget *gadget) { struct xusb_udc *udc = to_udc(gadget); unsigned long flags; spin_lock_irqsave(&udc->lock, flags); udc->gadget.speed = USB_SPEED_UNKNOWN; udc->driver = NULL; /* Set device address and remote wakeup to 0 */ udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); udc->remote_wkp = 0; xudc_stop_activity(udc); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static const struct usb_gadget_ops xusb_udc_ops = { .get_frame = xudc_get_frame, .wakeup = xudc_wakeup, .pullup = xudc_pullup, .udc_start = xudc_start, .udc_stop = xudc_stop, }; /** * xudc_clear_stall_all_ep - clears stall of every endpoint. * @udc: pointer to the udc structure. */ static void xudc_clear_stall_all_ep(struct xusb_udc *udc) { struct xusb_ep *ep; u32 epcfgreg; int i; for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) { ep = &udc->ep[i]; epcfgreg = udc->read_fn(udc->addr + ep->offset); epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; udc->write_fn(udc->addr, ep->offset, epcfgreg); if (ep->epnumber) { /* Reset the toggle bit.*/ epcfgreg = udc->read_fn(udc->addr + ep->offset); epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK; udc->write_fn(udc->addr, ep->offset, epcfgreg); } } } /** * xudc_startup_handler - The usb device controller interrupt handler. * @udc: pointer to the udc structure. * @intrstatus: The mask value containing the interrupt sources. * * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts. */ static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus) { u32 intrreg; if (intrstatus & XUSB_STATUS_RESET_MASK) { dev_dbg(udc->dev, "Reset\n"); if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK) udc->gadget.speed = USB_SPEED_HIGH; else udc->gadget.speed = USB_SPEED_FULL; xudc_stop_activity(udc); xudc_clear_stall_all_ep(udc); udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0); /* Set device address and remote wakeup to 0 */ udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); udc->remote_wkp = 0; /* Enable the suspend, resume and disconnect */ intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK | XUSB_STATUS_DISCONNECT_MASK; udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); } if (intrstatus & XUSB_STATUS_SUSPEND_MASK) { dev_dbg(udc->dev, "Suspend\n"); /* Enable the reset, resume and disconnect */ intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK | XUSB_STATUS_DISCONNECT_MASK; udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); udc->usb_state = USB_STATE_SUSPENDED; if (udc->driver->suspend) { spin_unlock(&udc->lock); udc->driver->suspend(&udc->gadget); spin_lock(&udc->lock); } } if (intrstatus & XUSB_STATUS_RESUME_MASK) { bool condition = (udc->usb_state != USB_STATE_SUSPENDED); dev_WARN_ONCE(udc->dev, condition, "Resume IRQ while not suspended\n"); dev_dbg(udc->dev, "Resume\n"); /* Enable the reset, suspend and disconnect */ intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_DISCONNECT_MASK; udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); udc->usb_state = 0; if (udc->driver->resume) { spin_unlock(&udc->lock); udc->driver->resume(&udc->gadget); spin_lock(&udc->lock); } } if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) { dev_dbg(udc->dev, "Disconnect\n"); /* Enable the reset, resume and suspend */ intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK | XUSB_STATUS_SUSPEND_MASK; udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); if (udc->driver && udc->driver->disconnect) { spin_unlock(&udc->lock); udc->driver->disconnect(&udc->gadget); spin_lock(&udc->lock); } } } /** * xudc_ep0_stall - Stall endpoint zero. * @udc: pointer to the udc structure. * * This function stalls endpoint zero. */ static void xudc_ep0_stall(struct xusb_udc *udc) { u32 epcfgreg; struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; epcfgreg = udc->read_fn(udc->addr + ep0->offset); epcfgreg |= XUSB_EP_CFG_STALL_MASK; udc->write_fn(udc->addr, ep0->offset, epcfgreg); } /** * xudc_setaddress - executes SET_ADDRESS command * @udc: pointer to the udc structure. * * This function executes USB SET_ADDRESS command */ static void xudc_setaddress(struct xusb_udc *udc) { struct xusb_ep *ep0 = &udc->ep[0]; struct xusb_req *req = udc->req; int ret; req->usb_req.length = 0; ret = __xudc_ep0_queue(ep0, req); if (ret == 0) return; dev_err(udc->dev, "Can't respond to SET ADDRESS request\n"); xudc_ep0_stall(udc); } /** * xudc_getstatus - executes GET_STATUS command * @udc: pointer to the udc structure. * * This function executes USB GET_STATUS command */ static void xudc_getstatus(struct xusb_udc *udc) { struct xusb_ep *ep0 = &udc->ep[0]; struct xusb_req *req = udc->req; struct xusb_ep *target_ep; u16 status = 0; u32 epcfgreg; int epnum; u32 halt; int ret; switch (udc->setup.bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: /* Get device status */ status = 1 << USB_DEVICE_SELF_POWERED; if (udc->remote_wkp) status |= (1 << USB_DEVICE_REMOTE_WAKEUP); break; case USB_RECIP_INTERFACE: break; case USB_RECIP_ENDPOINT: epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK; if (epnum >= XUSB_MAX_ENDPOINTS) goto stall; target_ep = &udc->ep[epnum]; epcfgreg = udc->read_fn(udc->addr + target_ep->offset); halt = epcfgreg & XUSB_EP_CFG_STALL_MASK; if (udc->setup.wIndex & USB_DIR_IN) { if (!target_ep->is_in) goto stall; } else { if (target_ep->is_in) goto stall; } if (halt) status = 1 << USB_ENDPOINT_HALT; break; default: goto stall; } req->usb_req.length = 2; *(u16 *)req->usb_req.buf = cpu_to_le16(status); ret = __xudc_ep0_queue(ep0, req); if (ret == 0) return; stall: dev_err(udc->dev, "Can't respond to getstatus request\n"); xudc_ep0_stall(udc); } /** * xudc_set_clear_feature - Executes the set feature and clear feature commands. * @udc: pointer to the usb device controller structure. * * Processes the SET_FEATURE and CLEAR_FEATURE commands. */ static void xudc_set_clear_feature(struct xusb_udc *udc) { struct xusb_ep *ep0 = &udc->ep[0]; struct xusb_req *req = udc->req; struct xusb_ep *target_ep; u8 endpoint; u8 outinbit; u32 epcfgreg; int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0); int ret; switch (udc->setup.bRequestType) { case USB_RECIP_DEVICE: switch (udc->setup.wValue) { case USB_DEVICE_TEST_MODE: /* * The Test Mode will be executed * after the status phase. */ break; case USB_DEVICE_REMOTE_WAKEUP: if (flag) udc->remote_wkp = 1; else udc->remote_wkp = 0; break; default: xudc_ep0_stall(udc); break; } break; case USB_RECIP_ENDPOINT: if (!udc->setup.wValue) { endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK; if (endpoint >= XUSB_MAX_ENDPOINTS) { xudc_ep0_stall(udc); return; } target_ep = &udc->ep[endpoint]; outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK; outinbit = outinbit >> 7; /* Make sure direction matches.*/ if (outinbit != target_ep->is_in) { xudc_ep0_stall(udc); return; } epcfgreg = udc->read_fn(udc->addr + target_ep->offset); if (!endpoint) { /* Clear the stall.*/ epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; udc->write_fn(udc->addr, target_ep->offset, epcfgreg); } else { if (flag) { epcfgreg |= XUSB_EP_CFG_STALL_MASK; udc->write_fn(udc->addr, target_ep->offset, epcfgreg); } else { /* Unstall the endpoint.*/ epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK | XUSB_EP_CFG_DATA_TOGGLE_MASK); udc->write_fn(udc->addr, target_ep->offset, epcfgreg); } } } break; default: xudc_ep0_stall(udc); return; } req->usb_req.length = 0; ret = __xudc_ep0_queue(ep0, req); if (ret == 0) return; dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n"); xudc_ep0_stall(udc); } /** * xudc_handle_setup - Processes the setup packet. * @udc: pointer to the usb device controller structure. * * Process setup packet and delegate to gadget layer. */ static void xudc_handle_setup(struct xusb_udc *udc) __must_hold(&udc->lock) { struct xusb_ep *ep0 = &udc->ep[0]; struct usb_ctrlrequest setup; u32 *ep0rambase; /* Load up the chapter 9 command buffer.*/ ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET); memcpy(&setup, ep0rambase, 8); udc->setup = setup; udc->setup.wValue = cpu_to_le16(setup.wValue); udc->setup.wIndex = cpu_to_le16(setup.wIndex); udc->setup.wLength = cpu_to_le16(setup.wLength); /* Clear previous requests */ xudc_nuke(ep0, -ECONNRESET); if (udc->setup.bRequestType & USB_DIR_IN) { /* Execute the get command.*/ udc->setupseqrx = STATUS_PHASE; udc->setupseqtx = DATA_PHASE; } else { /* Execute the put command.*/ udc->setupseqrx = DATA_PHASE; udc->setupseqtx = STATUS_PHASE; } switch (udc->setup.bRequest) { case USB_REQ_GET_STATUS: /* Data+Status phase form udc */ if ((udc->setup.bRequestType & (USB_DIR_IN | USB_TYPE_MASK)) != (USB_DIR_IN | USB_TYPE_STANDARD)) break; xudc_getstatus(udc); return; case USB_REQ_SET_ADDRESS: /* Status phase from udc */ if (udc->setup.bRequestType != (USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE)) break; xudc_setaddress(udc); return; case USB_REQ_CLEAR_FEATURE: case USB_REQ_SET_FEATURE: /* Requests with no data phase, status phase from udc */ if ((udc->setup.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) break; xudc_set_clear_feature(udc); return; default: break; } spin_unlock(&udc->lock); if (udc->driver->setup(&udc->gadget, &setup) < 0) xudc_ep0_stall(udc); spin_lock(&udc->lock); } /** * xudc_ep0_out - Processes the endpoint 0 OUT token. * @udc: pointer to the usb device controller structure. */ static void xudc_ep0_out(struct xusb_udc *udc) { struct xusb_ep *ep0 = &udc->ep[0]; struct xusb_req *req; u8 *ep0rambase; unsigned int bytes_to_rx; void *buffer; req = list_first_entry(&ep0->queue, struct xusb_req, queue); switch (udc->setupseqrx) { case STATUS_PHASE: /* * This resets both state machines for the next * Setup packet. */ udc->setupseqrx = SETUP_PHASE; udc->setupseqtx = SETUP_PHASE; req->usb_req.actual = req->usb_req.length; xudc_done(ep0, req, 0); break; case DATA_PHASE: bytes_to_rx = udc->read_fn(udc->addr + XUSB_EP_BUF0COUNT_OFFSET); /* Copy the data to be received from the DPRAM. */ ep0rambase = (u8 __force *) (udc->addr + (ep0->rambase << 2)); buffer = req->usb_req.buf + req->usb_req.actual; req->usb_req.actual = req->usb_req.actual + bytes_to_rx; memcpy(buffer, ep0rambase, bytes_to_rx); if (req->usb_req.length == req->usb_req.actual) { /* Data transfer completed get ready for Status stage */ xudc_wrstatus(udc); } else { /* Enable EP0 buffer to receive data */ udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0); udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); } break; default: break; } } /** * xudc_ep0_in - Processes the endpoint 0 IN token. * @udc: pointer to the usb device controller structure. */ static void xudc_ep0_in(struct xusb_udc *udc) { struct xusb_ep *ep0 = &udc->ep[0]; struct xusb_req *req; unsigned int bytes_to_tx; void *buffer; u32 epcfgreg; u16 count = 0; u16 length; u8 *ep0rambase; u8 test_mode = udc->setup.wIndex >> 8; req = list_first_entry(&ep0->queue, struct xusb_req, queue); bytes_to_tx = req->usb_req.length - req->usb_req.actual; switch (udc->setupseqtx) { case STATUS_PHASE: switch (udc->setup.bRequest) { case USB_REQ_SET_ADDRESS: /* Set the address of the device.*/ udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, udc->setup.wValue); break; case USB_REQ_SET_FEATURE: if (udc->setup.bRequestType == USB_RECIP_DEVICE) { if (udc->setup.wValue == USB_DEVICE_TEST_MODE) udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, test_mode); } break; } req->usb_req.actual = req->usb_req.length; xudc_done(ep0, req, 0); break; case DATA_PHASE: if (!bytes_to_tx) { /* * We're done with data transfer, next * will be zero length OUT with data toggle of * 1. Setup data_toggle. */ epcfgreg = udc->read_fn(udc->addr + ep0->offset); epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK; udc->write_fn(udc->addr, ep0->offset, epcfgreg); udc->setupseqtx = STATUS_PHASE; } else { length = count = min_t(u32, bytes_to_tx, EP0_MAX_PACKET); /* Copy the data to be transmitted into the DPRAM. */ ep0rambase = (u8 __force *) (udc->addr + (ep0->rambase << 2)); buffer = req->usb_req.buf + req->usb_req.actual; req->usb_req.actual = req->usb_req.actual + length; memcpy(ep0rambase, buffer, length); } udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count); udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); break; default: break; } } /** * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler. * @udc: pointer to the udc structure. * @intrstatus: It's the mask value for the interrupt sources on endpoint 0. * * Processes the commands received during enumeration phase. */ static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus) { if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) { xudc_handle_setup(udc); } else { if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK) xudc_ep0_out(udc); else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK) xudc_ep0_in(udc); } } /** * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler. * @udc: pointer to the udc structure. * @epnum: End point number for which the interrupt is to be processed * @intrstatus: mask value for interrupt sources of endpoints other * than endpoint 0. * * Processes the buffer completion interrupts. */ static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum, u32 intrstatus) { struct xusb_req *req; struct xusb_ep *ep; ep = &udc->ep[epnum]; /* Process the End point interrupts.*/ if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum)) ep->buffer0ready = 0; if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum)) ep->buffer1ready = 0; if (list_empty(&ep->queue)) return; req = list_first_entry(&ep->queue, struct xusb_req, queue); if (ep->is_in) xudc_write_fifo(ep, req); else xudc_read_fifo(ep, req); } /** * xudc_irq - The main interrupt handler. * @irq: The interrupt number. * @_udc: pointer to the usb device controller structure. * * Return: IRQ_HANDLED after the interrupt is handled. */ static irqreturn_t xudc_irq(int irq, void *_udc) { struct xusb_udc *udc = _udc; u32 intrstatus; u32 ier; u8 index; u32 bufintr; unsigned long flags; spin_lock_irqsave(&udc->lock, flags); /* * Event interrupts are level sensitive hence first disable * IER, read ISR and figure out active interrupts. */ ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); ier &= ~XUSB_STATUS_INTR_EVENT_MASK; udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); /* Read the Interrupt Status Register.*/ intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET); /* Call the handler for the event interrupt.*/ if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) { /* * Check if there is any action to be done for : * - USB Reset received {XUSB_STATUS_RESET_MASK} * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK} * - USB Resume received {XUSB_STATUS_RESUME_MASK} * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK} */ xudc_startup_handler(udc, intrstatus); } /* Check the buffer completion interrupts */ if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) { /* Enable Reset, Suspend, Resume and Disconnect */ ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); ier |= XUSB_STATUS_INTR_EVENT_MASK; udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK) xudc_ctrl_ep_handler(udc, intrstatus); for (index = 1; index < 8; index++) { bufintr = ((intrstatus & (XUSB_STATUS_EP1_BUFF1_COMP_MASK << (index - 1))) || (intrstatus & (XUSB_STATUS_EP1_BUFF2_COMP_MASK << (index - 1)))); if (bufintr) { xudc_nonctrl_ep_handler(udc, index, intrstatus); } } } spin_unlock_irqrestore(&udc->lock, flags); return IRQ_HANDLED; } /** * xudc_probe - The device probe function for driver initialization. * @pdev: pointer to the platform device structure. * * Return: 0 for success and error value on failure */ static int xudc_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct resource *res; struct xusb_udc *udc; int irq; int ret; u32 ier; u8 *buff; udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL); if (!udc) return -ENOMEM; /* Create a dummy request for GET_STATUS, SET_ADDRESS */ udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req), GFP_KERNEL); if (!udc->req) return -ENOMEM; buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL); if (!buff) return -ENOMEM; udc->req->usb_req.buf = buff; /* Map the registers */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); udc->addr = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(udc->addr)) return PTR_ERR(udc->addr); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0, dev_name(&pdev->dev), udc); if (ret < 0) { dev_dbg(&pdev->dev, "unable to request irq %d", irq); goto fail; } udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma"); /* Setup gadget structure */ udc->gadget.ops = &xusb_udc_ops; udc->gadget.max_speed = USB_SPEED_HIGH; udc->gadget.speed = USB_SPEED_UNKNOWN; udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb; udc->gadget.name = driver_name; spin_lock_init(&udc->lock); /* Check for IP endianness */ udc->write_fn = xudc_write32_be; udc->read_fn = xudc_read32_be; udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, USB_TEST_J); if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET)) != USB_TEST_J) { udc->write_fn = xudc_write32; udc->read_fn = xudc_read32; } udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0); xudc_eps_init(udc); /* Set device address to 0.*/ udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget); if (ret) goto fail; udc->dev = &udc->gadget.dev; /* Enable the interrupts.*/ ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK | XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK | XUSB_STATUS_SETUP_PACKET_MASK | XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK; udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); platform_set_drvdata(pdev, udc); dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n", driver_name, (u32)res->start, udc->addr, udc->dma_enabled ? "with DMA" : "without DMA"); return 0; fail: dev_err(&pdev->dev, "probe failed, %d\n", ret); return ret; } /** * xudc_remove - Releases the resources allocated during the initialization. * @pdev: pointer to the platform device structure. * * Return: 0 always */ static int xudc_remove(struct platform_device *pdev) { struct xusb_udc *udc = platform_get_drvdata(pdev); usb_del_gadget_udc(&udc->gadget); return 0; } /* Match table for of_platform binding */ static const struct of_device_id usb_of_match[] = { { .compatible = "xlnx,usb2-device-4.00.a", }, { /* end of list */ }, }; MODULE_DEVICE_TABLE(of, usb_of_match); static struct platform_driver xudc_driver = { .driver = { .name = driver_name, .of_match_table = usb_of_match, }, .probe = xudc_probe, .remove = xudc_remove, }; module_platform_driver(xudc_driver); MODULE_DESCRIPTION("Xilinx udc driver"); MODULE_AUTHOR("Xilinx, Inc"); MODULE_LICENSE("GPL");