/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cmplx_mult_real_q31.c * Description: Q31 complex by real multiplication * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/complex_math_functions.h" /** @ingroup groupCmplxMath */ /** @addtogroup CmplxByRealMult @{ */ /** @brief Q31 complex-by-real multiplication. @param[in] pSrcCmplx points to complex input vector @param[in] pSrcReal points to real input vector @param[out] pCmplxDst points to complex output vector @param[in] numSamples number of samples in each vector @return none @par Scaling and Overflow Behavior The function uses saturating arithmetic. Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] are saturated. */ #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) void arm_cmplx_mult_real_q31( const q31_t * pSrcCmplx, const q31_t * pSrcReal, q31_t * pCmplxDst, uint32_t numSamples) { static const uint32_t stride_cmplx_x_real_32[4] = { 0, 0, 1, 1 }; q31x4_t rVec; q31x4_t cmplxVec; q31x4_t dstVec; uint32x4_t strideVec; uint32_t blockSizeC = numSamples * CMPLX_DIM; /* loop counters */ uint32_t blkCnt; q31_t in; /* * stride vector for pairs of real generation */ strideVec = vld1q(stride_cmplx_x_real_32); /* Compute 4 complex outputs at a time */ blkCnt = blockSizeC >> 2; while (blkCnt > 0U) { cmplxVec = vld1q(pSrcCmplx); rVec = vldrwq_gather_shifted_offset_s32(pSrcReal, strideVec); dstVec = vqdmulhq(cmplxVec, rVec); vst1q(pCmplxDst, dstVec); pSrcReal += 2; pSrcCmplx += 4; pCmplxDst += 4; blkCnt --; } blkCnt = (blockSizeC & 3) >> 1; while (blkCnt > 0U) { /* C[2 * i ] = A[2 * i ] * B[i]. */ /* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ in = *pSrcReal++; /* store saturated result in 1.31 format to destination buffer */ *pCmplxDst++ = (__SSAT((q31_t) (((q63_t) *pSrcCmplx++ * in) >> 32), 31) << 1); *pCmplxDst++ = (__SSAT((q31_t) (((q63_t) *pSrcCmplx++ * in) >> 32), 31) << 1); /* Decrement loop counter */ blkCnt--; } } #else void arm_cmplx_mult_real_q31( const q31_t * pSrcCmplx, const q31_t * pSrcReal, q31_t * pCmplxDst, uint32_t numSamples) { uint32_t blkCnt; /* Loop counter */ q31_t in; /* Temporary variable */ #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = numSamples >> 2U; while (blkCnt > 0U) { /* C[2 * i ] = A[2 * i ] * B[i]. */ /* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ in = *pSrcReal++; #if defined (ARM_MATH_DSP) /* store saturated result in 1.31 format to destination buffer */ *pCmplxDst++ = (__SSAT((q31_t) (((q63_t) *pSrcCmplx++ * in) >> 32), 31) << 1); *pCmplxDst++ = (__SSAT((q31_t) (((q63_t) *pSrcCmplx++ * in) >> 32), 31) << 1); #else /* store result in destination buffer. */ *pCmplxDst++ = (q31_t) clip_q63_to_q31(((q63_t) *pSrcCmplx++ * in) >> 31); *pCmplxDst++ = (q31_t) clip_q63_to_q31(((q63_t) *pSrcCmplx++ * in) >> 31); #endif in = *pSrcReal++; #if defined (ARM_MATH_DSP) *pCmplxDst++ = (__SSAT((q31_t) (((q63_t) *pSrcCmplx++ * in) >> 32), 31) << 1); *pCmplxDst++ = (__SSAT((q31_t) (((q63_t) *pSrcCmplx++ * in) >> 32), 31) << 1); #else *pCmplxDst++ = (q31_t) clip_q63_to_q31(((q63_t) *pSrcCmplx++ * in) >> 31); *pCmplxDst++ = (q31_t) clip_q63_to_q31(((q63_t) *pSrcCmplx++ * in) >> 31); #endif in = *pSrcReal++; #if defined (ARM_MATH_DSP) *pCmplxDst++ = (__SSAT((q31_t) (((q63_t) *pSrcCmplx++ * in) >> 32), 31) << 1); *pCmplxDst++ = (__SSAT((q31_t) (((q63_t) *pSrcCmplx++ * in) >> 32), 31) << 1); #else *pCmplxDst++ = (q31_t) clip_q63_to_q31(((q63_t) *pSrcCmplx++ * in) >> 31); *pCmplxDst++ = (q31_t) clip_q63_to_q31(((q63_t) *pSrcCmplx++ * in) >> 31); #endif in = *pSrcReal++; #if defined (ARM_MATH_DSP) *pCmplxDst++ = (__SSAT((q31_t) (((q63_t) *pSrcCmplx++ * in) >> 32), 31) << 1); *pCmplxDst++ = (__SSAT((q31_t) (((q63_t) *pSrcCmplx++ * in) >> 32), 31) << 1); #else *pCmplxDst++ = (q31_t) clip_q63_to_q31(((q63_t) *pSrcCmplx++ * in) >> 31); *pCmplxDst++ = (q31_t) clip_q63_to_q31(((q63_t) *pSrcCmplx++ * in) >> 31); #endif /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = numSamples % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* C[2 * i ] = A[2 * i ] * B[i]. */ /* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ in = *pSrcReal++; #if defined (ARM_MATH_DSP) /* store saturated result in 1.31 format to destination buffer */ *pCmplxDst++ = (__SSAT((q31_t) (((q63_t) *pSrcCmplx++ * in) >> 32), 31) << 1); *pCmplxDst++ = (__SSAT((q31_t) (((q63_t) *pSrcCmplx++ * in) >> 32), 31) << 1); #else /* store result in destination buffer. */ *pCmplxDst++ = (q31_t) clip_q63_to_q31(((q63_t) *pSrcCmplx++ * in) >> 31); *pCmplxDst++ = (q31_t) clip_q63_to_q31(((q63_t) *pSrcCmplx++ * in) >> 31); #endif /* Decrement loop counter */ blkCnt--; } } #endif /* defined(ARM_MATH_MVEI) */ /** @} end of CmplxByRealMult group */