/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_linear_interp_f32.c * Description: Floating-point linear interpolation * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/interpolation_functions.h" /** @ingroup groupInterpolation */ /** * @defgroup LinearInterpolate Linear Interpolation * * Linear interpolation is a method of curve fitting using linear polynomials. * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line * * \par * \image html LinearInterp.gif "Linear interpolation" * * \par * A Linear Interpolate function calculates an output value(y), for the input(x) * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) * * \par Algorithm: *
   *       y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
   *       where x0, x1 are nearest values of input x
   *             y0, y1 are nearest values to output y
   * 
* * \par * This set of functions implements Linear interpolation process * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single * sample of data and each call to the function returns a single processed value. * S points to an instance of the Linear Interpolate function data structure. * x is the input sample value. The functions returns the output value. * * \par * if x is outside of the table boundary, Linear interpolation returns first value of the table * if x is below input range and returns last value of table if x is above range. */ /** * @addtogroup LinearInterpolate * @{ */ /** * @brief Process function for the floating-point Linear Interpolation Function. * @param[in,out] S is an instance of the floating-point Linear Interpolation structure * @param[in] x input sample to process * @return y processed output sample. * */ float32_t arm_linear_interp_f32( arm_linear_interp_instance_f32 * S, float32_t x) { float32_t y; float32_t x0, x1; /* Nearest input values */ float32_t y0, y1; /* Nearest output values */ float32_t xSpacing = S->xSpacing; /* spacing between input values */ int32_t i; /* Index variable */ float32_t *pYData = S->pYData; /* pointer to output table */ /* Calculation of index */ i = (int32_t) ((x - S->x1) / xSpacing); if (i < 0) { /* Iniatilize output for below specified range as least output value of table */ y = pYData[0]; } else if ((uint32_t)i >= (S->nValues - 1)) { /* Iniatilize output for above specified range as last output value of table */ y = pYData[S->nValues - 1]; } else { /* Calculation of nearest input values */ x0 = S->x1 + i * xSpacing; x1 = S->x1 + (i + 1) * xSpacing; /* Read of nearest output values */ y0 = pYData[i]; y1 = pYData[i + 1]; /* Calculation of output */ y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); } /* returns output value */ return (y); } /** * @} end of LinearInterpolate group */